Inhaltsverzeichnis

1. Über das Modulhandbuch .. 7
 1.1. Wichtige Regeln .. 7
 1.1.1. Beginn und Abschluss eines Moduls .. 7
 1.1.2. Modul- und Teilleistungsverzeichnis .. 7
 1.1.3. Gesamt- oder Teilprüfungen .. 7
 1.1.4. Arten von Prüfungen ... 7
 1.1.5. Wiederholung von Prüfungen .. 7
 1.1.6. Zusatzleistungen .. 8
 1.1.7. Alles ganz genau .. 8

2. SPO 2015 ... 9

3. SPO-Änderungssatzung ... 26

4. Studienplan .. 29

5. Stundentafeln WS 20/21 ... 36

6. Aufbau des Studiengangs ... 38
 6.1. Orientierungsprüfung .. 38
 6.2. Bachelorarbeit ... 38
 6.3. Ingenieurwissenschaftliche Grundlagen .. 38
 6.4. Vertiefung im Maschinenbau .. 39
 6.5. Überfachliche Qualifikationen .. 39

7. Module .. 40
 7.1. Bachelorarbeit - M-MACH-104494 ... 40
 7.2. Betriebliche Produktionswirtschaft - M-MACH-100297 ... 42
 7.3. Elektrotechnik - M-ETIT-104801 ... 43
 7.4. Fertigungsprozesse - M-MACH-102549 .. 45
 7.5. Höhere Mathematik - M-MATH-102859 .. 46
 7.6. Informatik [BSc-Modul 09, Inf] - M-MACH-102563 .. 48
 7.7. Maschinen und Prozesse [mach13BSc-Modul 13, MuP] - M-MACH-102566 .. 49
 7.8. Maschinenkonstruktionslehre [BSc-Modul 06, MIKL] - M-MACH-102573 ... 50
 7.10. Orientierungsprüfung - M-MACH-104624 .. 55
 7.11. Physik - M-PHYS-104030 .. 56
 7.16. Schwerpunkt: Grundlehren der Energietechnik - M-MACH-102816 ... 65
 7.18. Schwerpunkt: Informationstechnik - M-MACH-102817 ... 68
 7.20. Schwerpunkt: Kraft- und Arbeitsmaschinen - M-MACH-102838 .. 71
 7.22. Schwerpunkt: Materialwissenschaften und Werkstofftechnik [SP 26] - M-MACH-102819 .. 75
 7.23. Schwerpunkt: Mechatronik [SP 31] - M-MACH-102820 ... 77
 7.25. Schwerpunkt: Produktionssysteme [SP 38] - M-MACH-102589 ... 80
 7.26. Schwerpunkt: Schwingungslehre - M-MACH-104442 ... 81
 7.27. Schwerpunkt: Technik des Verbrennungsmotors [SP 57] - M-MACH-102645 .. 82
 7.28. Schwerpunkt: Technische Logistik [SP 44] - M-MACH-102821 .. 83
 7.29. Strömungslehre [BSc-Modul 12, SL] - M-MACH-102565 ... 84
 7.30. Technische Mechanik [BSc-Modul 03, TM] - M-MACH-102572 .. 85
 7.31. Technische Thermodynamik [BSc-Modul 05, TTD] - M-MACH-102574 .. 87
 7.32. Wahlpflichtmodul [BSc-Modul WPF] - M-MACH-102746 ... 89
 7.33. Werkstoffkunde [BSc-Modul 04, WK] - M-MACH-102562 .. 91

8. Teilleistungen .. 93
 8.1. Abgas- und Schmierölanalyse am Verbrennungsmotor - T-MACH-105173 ... 93
 8.3. Alternative Antriebe für Automobile - T-MACH-105655 .. 95
 8.4. Angewandte Tribologie in der industriellen Produktentwicklung - T-MACH-105215 .. 96
8.5. Antriebsstrang mobiler Arbeitsmaschinen - T-MACH-105307 .. 97
8.6. Antriebsystemtechnik A: Fahrzeugantriebstechnik - T-MACH-105233 .. 99
8.7. Antriebsystemtechnik B: Stationäre Antriebssysteme - T-MACH-105216 .. 100
8.8. Arbeitstechniken im Maschinenbau - T-MACH-105296 .. 101
8.9. Arbeitswissenschaft I: Ergonomie - T-MACH-105518 .. 105
8.10. Arbeitswissenschaft II: Arbeitsorganisation - T-MACH-105519 .. 107
8.11. Atomistische Simulation und Molekulardynamik - T-MACH-105308 .. 109
8.12. Aufbau und Eigenschaften verschleißfester Werkstoffe - T-MACH-102141 .. 111
8.13. Aufladung von Verbrennungsmotoren - T-MACH-105649 .. 113
8.15. Ausgewählte Anwendungen der Technischen Logistik - Projekt - T-MACH-108945 .. 116
8.16. Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen - T-MACH-105462 .. 117
8.17. Ausgewählte Themen virtueller Ingenieursanwendungen - T-MACH-105381 .. 118
8.18. Auslegung einer Gasturbinenkammer - T-CIWT-105780 .. 119
8.19.Auslegung mobiler Arbeitsmaschinen - T-MACH-105311 .. 120
8.20. Auslegung mobiler Arbeitsmaschinen - Vorleistung - T-MACH-108887 .. 122
8.21. Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben - T-MACH-110958 .. 123
8.22. Automatisierte Produktionsanlagen - T-MACH-108844 .. 125
8.23. Bachelorarbeit - T-MACH-109188 .. 127
8.24. Bahnystemtechnik - T-MACH-106424 ... 128
8.25. Betriebliche Produktionswirtschaft - T-MACH-100304 ... 130
8.27. Betriebsstoffe für Verbrennungsmotoren - T-MACH-105184 ... 134
8.29. BUS-Steuerungen - T-MACH-102150 ... 136
8.30. BUS-Steuerungen - Vorleistung - T-MACH-108889 ... 138
8.31. CAD-Praktikum CATIA - T-MACH-102185 ... 139
8.32. CAD-Praktikum NX - T-MACH-102187 ... 141
8.33. CAE-Workshop - T-MACH-105212 ... 143
8.34. Computational Intelligence - T-MACH-105314 ... 145
8.35. Datenanalyse für Ingenieure - T-MACH-105694 ... 146
8.36. Die Eisenbahn im Verkehrsmarkt - T-MACH-105540 ... 148
8.37. Digitale Regelungen - T-MACH-105317 ... 149
8.38. Dimensionierung mit Numerik in der Produktentwicklung - T-MACH-108719 ... 151
8.39. Dynamik des Kfz-Antriebsstrangs - T-MACH-105226 ... 152
8.40. Einführung in die Finite-Elemente-Methode - T-MACH-105320 ... 153
8.41. Einführung in die Kernenergie - T-MACH-105525 ... 155
8.42. Einführung in die Mechatronik - T-MACH-105535 ... 156
8.43. Einführung in die Mehrkörperr dynamik - T-MACH-105209 ... 158
8.44. Einführung in die Numerische Strömungsmechanik - T-MACH-110362 ... 159
8.45. Einführung in die numerische Strömungstechnik - T-MACH-105515 ... 161
8.46. Einführung in nichtlineare Schwingungen - T-MACH-105439 ... 162
8.47. Elektrische Schienenfahrzeuge - T-MACH-102121 ... 164
8.48. Elektrotechnik und Elektronik - T-ETIT-109820 ... 166
8.49. Elemente und Systeme der Technischen Logistik - T-MACH-102159 ... 167
8.50. Elemente und Systeme der Technischen Logistik - Projekt - T-MACH-108946 ... 169
8.51. Energieeffiziente Intralogistiksysteme (mach und wiwi) - T-MACH-105151 ... 171
8.52. Energiespeicher und Netzintegration - T-MACH-105952 ... 172
8.53. Energiesysteme I - Regenerative Energien - T-MACH-105408 ... 173
8.54. Entwicklung des hybriden Antriebsstranges - T-MACH-110817 ... 174
8.55. Experimentelle Dynamik - T-MACH-105514 ... 175
8.56. Experimentelles metallographisches Praktikum - T-MACH-105447 ... 176
8.57. Fahrriegenschaften von Kraftfahrzeugen I - T-MACH-105152 ... 179
8.58. Fahrriegenschaften von Kraftfahrzeugen II - T-MACH-105153 ... 180
8.59. Fahrzeugergonomie - T-MACH-108374 ... 181
8.60. Fahrzeugkomfort und -akustik I - T-MACH-105154 ... 182
8.61. Fahrzeugkomfort und -akustik II - T-MACH-105155 ... 184
8.62. Fahrzeuggleichtbau - Strategien, Konzepte, Werkstoffe - T-MACH-105237 ... 187
8.63. Fahrzeugmechatronik I - T-MACH-105156 ... 189
8.64. Fahrzeugreifen- und Räderentwicklung für PKW - T-MACH-102207 ... 190
8.65. Fahrzeugsehen - T-MACH-105218 ... 191
8.66. Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung - T-MACH-105535 ... 193
Inhaltsverzeichnis

8.67. Fertigungstechnik - T-MACH-102105 ... 195
8.68. Fluidtechnik - T-MACH-102093 ... 197
8.69. Gasdynamik - T-MACH-105533 ... 199
8.70. Gießereikunde - T-MACH-105157 ... 200
8.71. Großdiesel- und -gasmotoren für Schiffsantriebe - T-MACH-110816 202
8.72. Grundlagen der Energietechnik - T-MACH-105220 ... 204
8.73. Grundlagen der Fahrzeugtechnik I - T-MACH-100092 ... 206
8.74. Grundlagen der Fahrzeugtechnik II - T-MACH-102117 .. 208
8.75. Grundlagen der Fertigungstechnik - T-MACH-105219 .. 210
8.76. Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie - T-MACH-102111 ... 212
8.77. Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren - T-MACH-105044 ... 213
8.78. Grundlagen der Mess- und Regelungstechnik - T-MACH-104745 215
8.79. Grundlagen der Technischen Logistik I - T-MACH-109919 218
8.80. Grundlagen der Technischen Logistik II - T-MACH-109920 222
8.81. Grundlagen der technischen Verbrennung I - T-MACH-105213 222
8.82. Grundlagen der technischen Verbrennung II - T-MACH-105325 223
8.83. Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I - T-MACH-102116 225
8.84. Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II - T-MACH-102119 ... 227
8.85. Grundsätze der Nutzfahrzeugentwicklung I - T-MACH-105160 229
8.86. Grundsätze der Nutzfahrzeugentwicklung II - T-MACH-105161 231
8.87. Grundsätze der PKW-Entwicklung I - T-MACH-105162 233
8.88. Grundsätze der PKW-Entwicklung II - T-MACH-105163 235
8.89. Höhere Mathematik I - T-MATH-100275 ... 237
8.90. Höhere Mathematik II - T-MATH-100276 ... 238
8.91. Höhere Mathematik III - T-MATH-100277 ... 239
8.92. Hybride und elektrische Fahrzeuge - T-ETIT-100784 .. 240
8.93. Hydraulische Strömungsmaschinen - T-MACH-105326 ... 241
8.94. Industrieartdynamik - T-MACH-105375 ... 243
8.95. Informatik im Maschinenbau - T-MACH-105205 ... 244
8.96. Informatik im Maschinenbau, VL - T-MACH-105206 .. 246
8.97. Information Engineering - T-MACH-102209 .. 247
8.98. Informationssysteme in Logistik und Supply Chain Management - T-MACH-102128 ... 248
8.99. Informationsverarbeitung in Sensordaten - T-INFO-101466 249
8.100. Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen - T-MACH-105188 250
8.101. Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 - T-MACH-108849 ... 253
8.102. IT-Grundlagen der Logistik - T-MACH-105187 .. 255
8.103. IT-Systemplattform 4.0 - T-MACH-106457 .. 256
8.104. Keramik-Grundlagen - T-MACH-100287 .. 258
8.105. Kognitive Automobile Labor - T-MACH-105376 .. 259
8.106. Konstruieren mit Polymerwerkstoffen - T-MACH-105330 261
8.107. Konstruktiver Leichtbau - T-MACH-105221 ... 263
8.108. Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110377 265
8.109. Lager- und Distributionssysteme - T-MACH-105174 .. 266
8.110. Lasereinsatz im Automobilbau - T-MACH-105164 ... 267
8.111. Leadership and Management Development - T-MACH-105231 269
8.112. Lehrlabor: Energietechnik - T-MACH-105331 .. 270
8.114. Logistiksysteme auf Flughäfen - T-MACH-105175 ... 274
8.115. Machine Vision - T-MACH-105223 .. 276
8.116. Management- und Führungstechniken - T-MACH-105440 277
8.117. Maschinen und Prozesse - T-MACH-105208 ... 279
8.118. Maschinen und Prozesse, Vorleistung - T-MACH-105232 281
8.119. Maschinendynamik - T-MACH-105210 .. 283
8.120. Maschinendynamik II - T-MACH-105224 ... 285
8.121. Maschinenkonstruktionslehre I & II - T-MACH-105266 286
8.122. Maschinenkonstruktionslehre I, Vorleistung - T-MACH-105282 289
8.123. Maschinenkonstruktionslehre II, Vorleistung - T-MACH-105283 290
8.124. Maschinenkonstruktionslehre III & IV - T-MACH-104810 292
8.126. Maschinenkonstruktionslehre IV, Vorleistung - T-MACH-110956 298
8.127. Materialfluss in Logistiksystemen - T-MACH-102151 ... 301
8.128. Mathématiques appliquées aux sciences de l’ingénieur - T-MACH-105452 303

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
8.129.	Mathematische Methoden der Dynamik	T-MACH-105293	305
8.130.	Mathematische Methoden der Kontinuumsmechanik	T-MACH-110836	307
8.131.	Mathematische Methoden der Kontinuumsmechanik	T-MACH-110375	308
8.132.	Mathematische Methoden der Schwingungslehre	T-MACH-105294	309
8.133.	Mathematische Methoden der Strömungslehre	T-MACH-105295	310
8.134.	Mechanik und Festigkeitslehre von Kunststoffen	T-MACH-105333	312
8.135.	Mechanik von Mikrosystemen	T-MACH-105334	313
8.136.	Mechatronik-Praktikum	T-MACH-105370	314
8.137.	Mensch-Maschine-Interaktion	T-INFO-101266	316
8.138.	Messtechnik II	T-MACH-105335	319
8.139.	Microenergy Technologies	T-MACH-105557	321
8.140.	Mikrostruktursimulation	T-MACH-105303	322
8.141.	Modellierung und Simulation	T-MACH-100300	324
8.142.	Moderne Regelungskonzepte I	T-MACH-105539	327
8.143.	Motoren labor	T-MACH-105337	329
8.144.	Motorenmesstechnik	T-MACH-105169	330
8.145.	Neue Akten und Sensoren	T-MACH-102152	331
8.146.	Numerische Strömungsmechanik	T-MACH-105338	332
8.147.	Patente und Patentstrategien in innovativen Unternehmen	T-MACH-105442	333
8.148.	Photovoltaik	T-ETIT-101939	336
8.149.	Physik für Ingenieure	T-MACH-100530	337
8.150.	Physikalische Grundlagen der Lasertechnik	T-MACH-102102	339
8.151.	Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung	T-MACH-105537	341
8.152.	PLM für mechatronische Produktentwicklung	T-MACH-102181	343
8.153.	PLM-CAD Workshop	T-MACH-102153	344
8.154.	Polymerengineering I	T-MACH-102137	346
8.155.	Praktikum für rechnergestützte Strömungsmechanik	T-MACH-106707	347
8.156.	Praktikum Lasermaterialbearbeitung	T-MACH-102154	350
8.157.	Praktikum Produktionsintegrierte Messtechnik	T-MACH-108878	353
8.158.	Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik	T-MACH-105341	355
8.159.	Präsentation	T-MACH-109189	357
8.160.	Produkt Lifecycle Management	T-MACH-105147	358
8.161.	Produkt- und Produktionskonzepte für moderne Automobile	T-MACH-110318	359
8.162.	Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung	T-MACH-102155	361
8.163.	Produktionstechnik für die Elektromobilität	T-MACH-110984	362
8.164.	Project Workshop: Automotive Engineering	T-MACH-102156	363
8.165.	Projektierung und Entwicklung ölhydraulischer Antriebssysteme	T-MACH-105441	365
8.166.	Projektmanagement in globalen Produktentwicklungsstrukturen	T-MACH-105347	366
8.167.	Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils	T-MACH-110960	367
8.168.	Python Algorithmus für Fahrzeugtechnik	T-MACH-110796	369
8.169.	Qualitätsmanagement	T-MACH-102107	371
8.170.	Rechnergestützte Dynamik	T-MACH-105349	373
8.171.	Rechnergestützte Fahrzeugdynamik	T-MACH-105350	375
8.172.	Rechnergestützte Mehrkörperdynamik	T-MACH-105384	376
8.173.	Reliability Engineering I	T-MACH-107447	377
8.174.	Robotik I - Einführung in die Robotik	T-INFO-108014	378
8.175.	Schadenskunde	T-MACH-105724	380
8.176.	Schienenfahrzeugtechnik	T-MACH-105353	381
8.177.	Schweißtechnik	T-MACH-105170	383
8.178.	Schwingfestigkeit metallischer Werkstoffe	T-MACH-105354	385
8.179.	Schwingungstechnisches Praktikum	T-MACH-105373	386
8.180.	Seminar für Bahnsystemtechnik	T-MACH-108692	387
8.181.	Sicherheitstechnik	T-MACH-105171	389
8.182.	Signale und Systeme	T-ETIT-109313	391
8.183.	Simulation gekoppelter Systeme	T-MACH-105172	392
8.184.	Simulation gekoppelter Systeme - Vorleistung	T-MACH-108888	394
8.186.	Stabilitätstheorie	T-MACH-105372	397
8.188.	Steuerungstechnik	T-MACH-105185	400
8.189.	Strategische Potenzialfindung zur Entwicklung innovativer Produkte	T-MACH-105696	402
Inhaltsverzeichnis

8.190. Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study - T-MACH-110396
8.191. Strömungen und Wärmeübertragung in der Energiotechnik - T-MACH-105403
8.192. Strömungsschleife I & II - T-MACH-105207
8.193. Strukturberechnung von Faserverbundlaminaten - T-MACH-105970
8.194. Sustainable Product Engineering - T-MACH-105358
8.195. Systematische Werkstoffauswahl - T-MACH-100531
8.196. Systemintegration in der Mikro- und Nanotechnik - T-MACH-105555
8.197. Systemintegration in der Mikro- und Nanotechnik 2 - T-MACH-110272
8.198. Systemtheorie der Mechatronik - T-MACH-105521
8.199. Technische Grundlagen des Verbrennungsmotors - T-MACH-105652
8.200. Technische Informationssysteme - T-MACH-102083
8.201. Technische Mechanik I - T-MACH-100282
8.202. Technische Mechanik II - T-MACH-100283
8.203. Technische Mechanik III & IV - T-MACH-105201
8.204. Technische Schwingungsschleife - T-MACH-105290
8.205. Technische Thermodynamik und Wärmeübertragung I - T-MACH-104747
8.206. Technische Thermodynamik und Wärmeübertragung I, Vorlesung - T-MACH-105204
8.207. Technische Thermodynamik und Wärmeübertragung II - T-MACH-105287
8.208. Technische Thermodynamik und Wärmeübertragung II, Vorlesung - T-MACH-105288
8.209. Technisches Design in der Produktentwicklung - T-MACH-105361
8.211. Thermische Solarenergie - T-MACH-105225
8.212. Thermische Turboschaltungen I - T-MACH-105363
8.213. Thermische Turboschaltungen II - T-MACH-105364
8.214. Tribologie - T-MACH-105531
8.215. Turbinen-Luftstrahl-Triebwerke - T-MACH-105366
8.216. Übungen - Tribologie - T-MACH-109303
8.217. Übungen zu Einführung in die Finite-Elemente-Methode - T-MACH-110330
8.218. Übungen zu Einführung in die Numerische Strömungsmechanik - T-MACH-111033
8.219. Übungen zu Höhere Mathematik I - T-MATH-100525
8.220. Übungen zu Höhere Mathematik II - T-MATH-100526
8.221. Übungen zu Höhere Mathematik III - T-MATH-100527
8.222. Übungen zu Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110333
8.223. Übungen zu Mathematische Methoden der Kontinuumsmechanik - T-MACH-110376
8.224. Übungen zu Technische Mechanik I - T-MACH-100528
8.225. Übungen zu Technische Mechanik II - T-MACH-100284
8.226. Übungen zu Technische Mechanik III - T-MACH-105202
8.227. Übungen zu Technische Mechanik IV - T-MACH-105203
8.228. Übungen zu Werkstoffanalytik - T-MACH-107685
8.229. Übungsschein Mensch-Maschine-Interaktion - T-INFO-106257
8.230. Verbrennungsmotoren I - T-MACH-102194
8.231. Verhaltensgenerierung für Fahrzeuge - T-MACH-105367
8.234. Verzahnntechnik - T-MACH-102148
8.235. Virtual Reality Praktikum - T-MACH-102149
8.236. Wärme- und Stoffübertragung - T-MACH-105292
8.237. Wellen- und Quantenphysik - T-PHYS-108322
8.238. Wellenausbreitung - T-MACH-105443
8.239. Werkstoffanalytik - T-MACH-107684
8.240. Werkstoffe für den Leichtbau - T-MACH-105211
8.241. Werkstoffkunde I & II - T-MACH-105145
8.242. Werkstoffkunde III - T-MACH-105301
8.243. Werkstoffkunde Praktikum - T-MACH-105146
8.244. Werkstoffrecycling und Nachhaltigkeit - T-MACH-110937
8.245. Werkzeugmaschinen und hochpräzise Fertigungssysteme - T-MACH-110962
8.246. Windkraft - T-MACH-105234
8.247. Wissenschaftliches Programmieren für Ingenieure - T-MACH-100532
8.248. Zündsysteme - T-MACH-105985

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
1 Über das Modulhandbuch

1.1 Wichtige Regeln

- die Zusammensetzung der Module,
- die Größe der Module (in LP),
- die Abhängigkeiten der Module untereinander,
- die Qualifikationsziele der Module,
- die Art der Erfolgskontrolle und
- die Bildung der Note eines Moduls.

Das Modulhandbuch gibt somit die notwendige Orientierung im Studium und ist ein hilfreicher Begleiter. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis, das aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) informiert.

1.1.1 Beginn und Abschluss eines Moduls

1.1.2 Modul- und Teilleistungsverionen

1.1.3 Gesamt- oder Teilprüfungen

1.1.4 Arten von Prüfungen

1.1.5 Wiederholung von Prüfungen

1.1.6 Zusatzleistungen

1.1.7 Alles ganz genau ...

Amtrliche Bekanntmachung

2015 Ausgegeben Karlsruhe, den 06. August 2015 Nr. 62

Inhalt

- Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau 381

Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau

vom 04. August 2015

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG iVm. § 32 Absatz 3 Satz 1 LHG am 04. August 2015 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich
§ 2 Ziele des Studiums, Akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
§ 6 Durchführung von Erfolgskontrollen
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
§ 6 b Computergestützte Erfolgskontrollen
§ 7 Bewertung von Studien- und Prüfungsleistungen
§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
§ 10 Abmeldung; Versäumnis, Rücktritt
§ 11 Täuschung, Ordnungsverstoß
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 13 Studierende mit Behinderung oder chronischer Erkrankung
§ 14 Modul Bachelorarbeit
§ 15 Zusatzleistungen
§ 15 a Mastervorzug
§ 16 Überfachliche Qualifikationen
§ 17 Prüfungsausschüsse
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung
§ 20 Umfang und Art der Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich

Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Maschinenbau am KIT.

§ 2 Ziel des Studiums, Akademischer Grad

(1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.

(2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Maschinenbau verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Der Studiengang nimmt teil am Programm „Studienmodelle individueller Geschwindigkeit“. Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg).

(2) Die Regelstudienzeit beträgt sechs Semester. Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 2 Satz 3 bis 5.

Eine qualifizierte Teilnahme liegt vor, wenn die Studierende Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtworkload 10 Semesterwochenstunden) belegt hat. Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.

(6) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutschsprachige Wahlmöglichkeiten gibt.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

(2) Prüfungsleistungen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
 1. in den Bachelorstudiengang Maschinenbau am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
 2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
 3. nachweist, dass er in dem Bachelorstudiengang Maschinenbau den Prüfungsanspruch nicht verloren hat.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.
(5) Die Zulassung ist abzulehnen, wenn die in Absatz 3 und 4 genannten Voraussetzungen nicht erfüllt sind.

§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungszuteilung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 5 zu berücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungszuteilung auch mündlich, oder eine mündlich durchzuführende Prüfungszuteilung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungszuteilung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüfungsleiters an der Kollegialprüfung zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet.

Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erläuterung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde." Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/des Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische und fachliche Betreuung zu gewährleisten. Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen
(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

<table>
<thead>
<tr>
<th>sehr gut (very good)</th>
<th>hervorragende Leistung,</th>
</tr>
</thead>
<tbody>
<tr>
<td>gut (good)</td>
<td>eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,</td>
</tr>
<tr>
<td>befriedigend (satisfactory)</td>
<td>eine Leistung, die durchschnittlichen Anforderungen entspricht,</td>
</tr>
<tr>
<td>ausreichend (sufficient)</td>
<td>eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,</td>
</tr>
<tr>
<td>nicht ausreichend (failed)</td>
<td>eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.</td>
</tr>
</tbody>
</table>

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

- 1,0; 1,3 : sehr gut
- 1,7; 2,0; 2,3 : gut
- 2,7; 3,0; 3,3 : befriedigend
- 3,7; 4,0 : ausreichend
- 5,0 : nicht ausreichend

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.
(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Note</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5</td>
<td>sehr gut</td>
</tr>
<tr>
<td>von 1,6 bis 2,5</td>
<td>gut</td>
</tr>
<tr>
<td>von 2,6 bis 3,5</td>
<td>befriedigend</td>
</tr>
<tr>
<td>von 3,6 bis 4,0</td>
<td>ausreichend</td>
</tr>
</tbody>
</table>

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

(1) Die Teilmodulprüfungen Höhere Mathematik I, Technische Mechanik I, Technische Mechanik II in den Modulen Höhere Mathematik und Technische Mechanik sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

(2) Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Abs. 2 vorliegt. Ohne ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine Fristüberschreitung von

1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von einem Semester nachweist oder

2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von zwei Semestern nachweist.

Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Abs. 2 auszustellende Bescheinigung, die beim Studierendenservice des KIT einzureichen ist. Im Falle von Nr. 1 kann der Vorsitzende des Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Ablegen der Orientierungsprüfung erforderlich ist, insbesondere wenn die Module, die Bestandteil der Orientierungsprüfung sind, nur einmal jährlich angeboten werden.

(3) Ist die Bachelorprüfung bis zum Ende des Prüfungszeitraums des neunten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsan-

(4) Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist oder eine Wiederholungsprüfung nach § 9 Abs. 6 nicht rechtzeitig erbracht wurde, es sei denn die Fristüberschreitung ist nicht selbst zu vertreten.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Wiederholung von Prüfungsleistungen hat spätestens bis zum Ende des Prüfungszeitraumes des übernächsten Semesters zu erfolgen.

(7) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(8) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(9) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(10) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

§ 10 Abmeldung; Versäumnis, Rücktritt

(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss die Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweils gültigen Gesetzes (Bundeselternzeitgesetz - BEEG) auf Antrag zu berücksichtigen. Der/die Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, dem Prüfungsausschuss, unter Beifügung der erforderlichen Nachweise schriftlich mitteilen, in welchem Zeitraum die Elternzeit in Anspruch genommen werden soll. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die bei einer Arbeitnehmerin bzw. einem Arbeitnehmer den Anspruch auf Elternzeit auslösen würden, und teilt...

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 20 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

(3) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

(5) Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht ange nommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.“ Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5,0) bewertet.

§ 15 Zusatzleistungen

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.
§ 15 a Mastervorzug

§ 16 Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschüsse

(1) Für den Bachelorstudiengang werden Prüfungsausschüsse gebildet. Sie bestehen jeweils aus vier stimmberechtigten Mitgliedern: zwei Hochschullehrer/innen / leitenden Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG / Privatdozentinnen bzw. -dozenten, zwei akademischen Mitarbeiterinnen und Mitarbeitern nach § 52 LHG / wissenschaftlichen Mitarbeiter/innen gemäß § 14 Abs. 3 Ziff. 2 KITG und einer bzw. einem Studierenden mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und Masterstudiengang Maschinenbau erhöht sich die Anzahl der Studierenden auf zwei Mitglieder mit beratender Stimme, wobei je eine bzw. einer dieser Beiden aus dem Bachelor- und aus dem Masterstudiengang stammt. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsberechtigte Person hinzuzuziehen.

§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrer/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem mathematisch-naturwissenschaftlichen oder ingenieurwissenschaftlichen Studiengang oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung bzw. Prüfungsleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Studiengang Maschinenbau immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschul-
II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung
(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14).
(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:
 1. Ingenieurwissenschaftliche Grundlagen: Modul(e) im Umfang von 143 LP,
 2. Vertiefung im Maschinenbau: Modul(e) im Umfang von 16 LP,
 3. Überfachliche Qualifikationen im Umfang von 6 LP gemäß § 16.
 Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.

§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen mindestens mit „ausreichend“ bewertet wurden.
(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit.
 Dabei wird die Note des Moduls Bachelorarbeit mit dem doppelten Gewicht gegenüber den Noten der übrigen Fächer berücksichtigt.
(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.

Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studierendenservice des KIT ausgestellt.

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen

Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 24 Aberkennung des Bachelorgrades

(1) Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.
§ 25 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsergebnisse sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften

(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2016 in Kraft.

Karlsruhe, den 04. August 2015

Professor Dr.-Ing. Holger Hanselka
(Präsident)
Amtliche Bekanntmachung

2019 Ausgegeben Karlsruhe, den 26. Februar 2019 Nr. 03

Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelor-studiengang Maschinenbau

Seite 26
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau

vom 21. Februar 2019

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 21. Februar 2019 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 9 Absatz 11 werden folgende Sätze 3 und 4 angefügt:

 „Die Präsentation nach § 14 Absatz 1 a ist eine Studienleistung und kann bei einer Bewertung mit „nicht bestanden (not passed)” (im Gegensatz zu anderen Studienleistungen) nur einmal wiederholt werden. Die Präsentation ist endgültig nicht bestanden, wenn sie zweimal mit „nicht bestanden” (not passed) bewertet wurde."

2. § 12 Absatz 1 wird wie folgt geändert:

 a) Satz 1 wird wie folgt gefasst:

 „Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung.”

 b) Satz 2 wird aufgehoben.

 c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

3. § 14 wird wie folgt geändert:

 b) In Absatz 2 Satz 1 werden nach den Wörtern „Hochschullehrer/innen“ das Wort “und” durch ein Komma ersetzt und nach der Angabe „§ 14 Abs. 3 Ziff. 1 KITG“ die Wörter „und habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau“ eingefügt.

 c) In Absatz 7 Satz 1 werden nach den Wörtern „Hochschullehrer/innen“ das Wort “oder” durch ein Komma ersetzt und nach der Angabe „§ 14 Abs. 3 Ziff. 1 KITG“ die Wörter „oder einem habilitierten Mitglied der KIT-Fakultät für Maschinenbau“ eingefügt.
4. § 17 wird wie folgt geändert:
 a) In Absatz 1 Satz 3 wird das Wort „stammt“ durch die Wörter „stammen soll“ ersetzt.
 b) In Absatz 7 Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.

5. § 18 Absatz 3 wird wie folgt geändert:
 Nach dem Wort „sofern“ werden die Wörter „die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und“ gestrichen.

6. § 26 Absatz 5 wird aufgehoben und folgender neuer Absatz 5 eingefügt:
 „(5) Für Studierende, die
 1. ihr Studium im Bachelorstudiengang Maschinenbau vor dem Wintersemester 2018/2019 aufgenommen haben oder
 2. ihr Studium im Bachelorstudiengang Maschinenbau ab dem Wintersemester 2018/2019 in einem höheren Fachsemester aufgenommen haben bzw. aufnehmen sofern das Fachsemester über dem Jahrgang der Studienanfänger zum Wintersemester 2018/2019 liegt,
 finden § 9 Abs. 11 und § 14 Abs. 1 a in der Fassung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau vom 04. August 2015 (Amtliche Bekanntmachung des KIT Nr. 62 vom 06. August 2015) weiterhin Anwendung.

 Studierende nach Satz 1 Ziffer 1 und Ziffer 2, können das Modul Bachelorarbeit auf Grundlage der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau in der Fassung vom 04. August 2015 (Amtliche Bekanntmachung des KIT Nr. 62 vom 06. August 2015) letztmalig bis zum 31. März 2023 ablegen“

Artikel 2 – Inkrafttreten

Diese Änderungssatzung tritt zum 01. April 2019 in Kraft.

Karlsruhe, den 21. Februar 2019

gez. Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Studienplan der KIT-Fakultät für Maschinenbau
für den Bachelorstudiengang Maschinenbau
gemäß SPO 2015

Fassung vom 01. Juli 2020

Inhaltsverzeichnis

0 Abkürzungsverzeichnis...2
1 Studienpläne, Module und Prüfungen ..3
 1.1 Prüfungsmodalitäten..3
 1.2 Module des Bachelorstudiums ..3
 1.3 Studienplan..5
 1.4 Bachelorarbeit..5
2 Schwerpunkte ...6
3 Änderungshistorie (ab 20.07.2016) ...7
0 Abkürzungsverzeichnis

Semester:
- WS Wintersemester
- SS Sommersemester

Schwerpunkte:
- K, KP Teilleistung im Kernbereich, ggf. Pflicht des Schwerpunkts
- E Teilleistung im Ergänzungsbereich des Schwerpunkts
- EM Teilleistung im Ergänzungsbereich ist nur im Masterstudiengang wählbar
- E(P), E/P Teilleistung Praktikum im Ergänzungsbereich des Schwerpunkts, unbenotet

Lehrveranstaltung:
- V Vorlesung
- Ü Übung
- P Praktikum
- SWS Semesterwochenstunden

Teilleistung:
- LP Leistungspunkte
- Pr Prüfung
- Pr (h) Prüfungsdauer in Stunden
- mPr mündliche Prüfung
- sPr schriftliche Prüfung
- PraA Prüfungsleistung anderer Art
- Üschein Übungsschein, Studienleistung
- Pschein Praktikumsschein, Studienleistung
- Schein unbenotete Modulleistung, Studienleistung
- TL Teilleistung
- Gew Gewichtung einer Prüfungsleistung im Modul bzw. in der Gesamtnote

Sonstiges:
- SPO Studien- und Prüfungsordnung
- w wählbar
- p verpflichtend
1 Studienpläne, Module und Prüfungen

Die Angabe der Leistungspunkte (LP) erfolgt gemäß dem „European Credit Transfer and Accumulation System“ (ECTS) und basiert auf dem von den Studierenden zu absolvierenden Arbeitspensum.

1.1 Prüfungsmodalitäten

1.2 Module des Bachelorstudiums

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>LP/Modul</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Koordinator</th>
<th>Art der Erfolgskontrolle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pr (h)</td>
</tr>
<tr>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>Höhere Mathematik</td>
<td>21</td>
<td>Höhere Mathematik I</td>
<td>7</td>
<td>Kirsch</td>
<td>Üschein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Höhere Mathematik II</td>
<td>7</td>
<td></td>
<td>Üschein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Höhere Mathematik III</td>
<td>7</td>
<td></td>
<td>Üschein</td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik</td>
<td>23</td>
<td>Technische Mechanik I</td>
<td>7</td>
<td>Böhlke</td>
<td>Üschein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik II</td>
<td>6</td>
<td></td>
<td>Üschein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik III & IV</td>
<td>10</td>
<td>Seemann</td>
<td>Üschein</td>
</tr>
<tr>
<td>Werkstoffkunde</td>
<td>14</td>
<td>Werkstoffkunde I & II</td>
<td>11</td>
<td>Heilmaier</td>
<td>mPr</td>
<td>ca.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Werkstoffkunde-Praktikum</td>
<td>3</td>
<td></td>
<td>Pschein</td>
</tr>
<tr>
<td></td>
<td>Technische Thermodynamik</td>
<td>15</td>
<td>Technische Thermo-dynamik und Wärmeübertragung I</td>
<td>8</td>
<td>Maas</td>
<td>Üschein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>7</td>
<td></td>
<td>Üschein</td>
</tr>
<tr>
<td>Strömungslehre</td>
<td>8</td>
<td>Strömungslehre I & II</td>
<td>8</td>
<td>Frohnapel</td>
<td>sPr</td>
<td>3</td>
</tr>
<tr>
<td>Physik</td>
<td>5</td>
<td>Wellen- und Quantenphysik</td>
<td>5</td>
<td>Pilawa</td>
<td>sPr</td>
<td>2</td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>8</td>
<td>Elektrotechnik und Elektronik</td>
<td>8</td>
<td>Becker</td>
<td>sPr</td>
<td>3</td>
</tr>
<tr>
<td>Mess- und Regelungstechnik</td>
<td>7</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>7</td>
<td>Stiller</td>
<td>sPr</td>
<td>2,5</td>
</tr>
<tr>
<td>Fach</td>
<td>Modul</td>
<td>LP/Modul</td>
<td>Teilleistung</td>
<td>LP</td>
<td>Koordinator</td>
<td>Art der Erfolgskontrolle</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>----</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Informatik</td>
<td>6</td>
<td>Informatik im Maschinenbau</td>
<td>6</td>
<td>Ovtcharova</td>
<td>Prüfungsleistung</td>
<td>sPr</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre</td>
<td>20</td>
<td>Maschinenkonstruktionslehre I & II</td>
<td>7</td>
<td>Albers</td>
<td>sPr</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maschinenkonstruktionslehre III & IV</td>
<td>13</td>
<td></td>
<td>sPr</td>
<td>4</td>
</tr>
<tr>
<td>Maschinen und Prozesse</td>
<td>7</td>
<td>Maschinen und Prozesse</td>
<td>7</td>
<td>Kubach</td>
<td>Prüfungsleistung</td>
<td>sPr</td>
</tr>
<tr>
<td>Fertigungsprozesse</td>
<td>4</td>
<td>Grundlagen der Fertigungstechnik</td>
<td>4</td>
<td>Schulze</td>
<td>sPr</td>
<td>1</td>
</tr>
<tr>
<td>Betriebliche Produktionswirtschaft</td>
<td>5</td>
<td>Betriebliche Produktionswirtschaft</td>
<td>3</td>
<td>Furmans</td>
<td>sPr</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Betriebliche Produktionswirtschaft Projekt</td>
<td>2</td>
<td></td>
<td>PraA</td>
<td></td>
</tr>
<tr>
<td>Schwerpunkt</td>
<td>12</td>
<td>Kern- und Ergänzungsbereich, wählbare TL siehe Modulhandbuch</td>
<td>12</td>
<td>SP-Verantwortlicher</td>
<td>mPr</td>
<td>ca. 0,7</td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td>4</td>
<td>wählbare TL siehe Modulhandbuch</td>
<td>4</td>
<td>Heilmaier</td>
<td>mPr</td>
<td>ca. 0,4</td>
</tr>
<tr>
<td>Schlüsselqualifikationen</td>
<td>6</td>
<td>Arbeitstechniken im Maschinenbau</td>
<td>4</td>
<td>Deml</td>
<td>Schein</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wählbare TL von HoC, ZAK bzw. siehe Modulhandbuch</td>
<td>2</td>
<td>N.N.</td>
<td>Schein</td>
<td></td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>15</td>
<td>Bachelorarbeit</td>
<td>12</td>
<td></td>
<td>PraA</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Präsentation</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3 Studienplan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>Ü</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Höhere Mathematik I-III</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Grundlagen der Fertigungstechnik</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellen- und Quantenphysik</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Technische Mechanik I-IV</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Werkstoffkunde I, II</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Werkstoffkunde-Praktikum</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung I, II</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre I-IV</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Informatik im Maschinenbau</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strömungslehre I</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitstechniken Maschinenbau</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>Ü</td>
</tr>
<tr>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Strömungslehre II</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Maschinen und Prozesse</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Betriebliche Produktionswirtschaft</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Schlüsselqualifikationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td>(2)</td>
<td>2</td>
</tr>
<tr>
<td>Schwerpunkt (6 SWS, variabel)</td>
<td>3</td>
<td>()</td>
</tr>
</tbody>
</table>

1.4 Bachelorarbeit

Das Modul Bachelorarbeit besteht aus einer schriftlichen Ausarbeitung (Bachelorarbeit, 12 LP) sowie einer mündlichen Präsentation (3 LP). Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen. Die Präsentation soll ca. 20 Minuten dauern und wird anschließend mit dem anwesenden Fachpublikum diskutiert.

Die Durchführung und Benotung der Bachelorarbeit ist in § 14 der SPO für den Bachelorstudiengang Maschinenbau sowie im Modulhandbuch unter „Modul Bachelorarbeit“ geregelt.

1 Das Werkstoffkunde-Praktikum findet in der vorlesungsfreien Zeit zwischen SS und WS statt und beansprucht eine Woche.
2 Schwerpunkte

Folgende Schwerpunkte sind derzeit vom Fakultätsrat genehmigt (siehe Angaben im Modulhandbuch):

<table>
<thead>
<tr>
<th>Schwerpunkt</th>
<th>Verantwortlicher</th>
<th>SP-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antriebssysteme</td>
<td>Albers</td>
<td>2</td>
</tr>
<tr>
<td>Bahnsystemtechnik</td>
<td>Gratfeld</td>
<td>50</td>
</tr>
<tr>
<td>Entwicklung und Konstruktion</td>
<td>Albers</td>
<td>10</td>
</tr>
<tr>
<td>Kontinuumsmechanik</td>
<td>Böhlke</td>
<td>13</td>
</tr>
<tr>
<td>Grundlagen der Energietechnik</td>
<td>Bauer</td>
<td>15</td>
</tr>
<tr>
<td>Informationsmanagement</td>
<td>Ovtcharova</td>
<td>17</td>
</tr>
<tr>
<td>Informationstechnik</td>
<td>Stiller</td>
<td>18</td>
</tr>
<tr>
<td>Kraftfahrzeugtechnik</td>
<td>Gauerin</td>
<td>12</td>
</tr>
<tr>
<td>Kraft- und Arbeitsmaschinen</td>
<td>Th. Koch</td>
<td>24</td>
</tr>
<tr>
<td>Materialwissenschaft und Werkstofftechnik</td>
<td>Heilmaier</td>
<td>26</td>
</tr>
<tr>
<td>Mechatronik</td>
<td>Hagenmeyer</td>
<td>31</td>
</tr>
<tr>
<td>Modellbildung und Simulation in der Dynamik</td>
<td>Seemann</td>
<td>61</td>
</tr>
<tr>
<td>Produktionssysteme</td>
<td>Schulze</td>
<td>38</td>
</tr>
<tr>
<td>Schwingungslehre</td>
<td>Fidlin</td>
<td>60</td>
</tr>
<tr>
<td>Technische Logistik</td>
<td>Furmans</td>
<td>44</td>
</tr>
<tr>
<td>Technik des Verbrennungsmotors</td>
<td>Th. Koch</td>
<td>57</td>
</tr>
</tbody>
</table>

Für den Schwerpunkt werden Teilleistungen im Umfang von 12 LP gewählt, davon werden mindestens 8 LP im Kernbereich (K) erworben. „KP“ bedeutet, dass die Teilleistung im Kernbereich Pflicht ist, sofern sie nicht bereits belegt wurde. Die übrigen 4 LP können aus dem Ergänzungsbereich kommen. Dabei dürfen im Rahmen von Praktika höchstens 4 LP erworben werden, die auch als unbenotete Moduleistung erbracht werden können.

Ein Absolvieren des Schwerpunktmoduls mit mehr als 12 LP ist nur im Fall, dass die Addition innerhalb des Schwerpunktmoduls nicht auf 12 LP aufgeht, erlaubt. Nicht zulässig ist es jedoch, noch weitere Teilleistungen anzumelden, wenn bereits 12 LP erreicht oder überschritten wurden.

Für die Prüfungsleistungen in den Schwerpunkten gelten folgende Regeln:

Die Prüfungen werden grundsätzlich mündlich abgenommen, bei unvertretbar hohem Prüfungsaufwand kann eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Es wird empfohlen, die Kernbereichsprüfung im Block abzulegen. Bei mündlichen Prüfungen im Schwerpunkt soll die Prüfungsdauer fünf Minuten pro Leistungspunkt betragen. Erstreckt sich eine mündliche Prüfung über mehr als 12 LP, soll die Prüfungsdauer 60 Minuten betragen.

Die Beschreibung der Schwerpunkte hinsichtlich der jeweils darin enthaltenen Teilleistungen und den damit verbundenen Lehrveranstaltungen ist im aktuellen Modulhandbuch des Bachelorstudiengangs festgelegt.
3 Änderungshistorie (ab 20.07.2016)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.07.2016</td>
<td>Sprachliche Anpassung an das Eckpunktepapier des KIT, Überarbeitung der Prüfungsmodalitäten</td>
</tr>
<tr>
<td>17.08.2016</td>
<td>Redaktionelle Änderungen, u.a. im Modul Physik</td>
</tr>
<tr>
<td>28.06.2017</td>
<td>Redaktionelle Änderungen, u.a. in den Modulen Technische Thermodynamik und Strömungslehre</td>
</tr>
<tr>
<td>13.07.2016</td>
<td>Anpassung der Schwerpunkte sowie redaktionelle Änderungen</td>
</tr>
<tr>
<td>30.08.2019</td>
<td>Redaktionelle Änderungen, u.a. in Punkt 1</td>
</tr>
<tr>
<td>15.02.2020</td>
<td>Redaktionelle Änderungen, u.a. in Punkt 1.2</td>
</tr>
<tr>
<td>30.03.2020</td>
<td>Namensänderung von SP 13</td>
</tr>
<tr>
<td>01.07.2020</td>
<td>SP 52 gelöscht</td>
</tr>
</tbody>
</table>
WS 2020-2021
B.Sc. Maschinenbau: 1. Fachsemester, Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 - 11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2149658 Grundlagen der Fertigungstechnik</td>
</tr>
<tr>
<td>12:00 - 13:30</td>
<td>0131100 Höhere Mathematik I (Ub)</td>
<td>013100 Höhere Mathematik I</td>
<td></td>
<td>2145185 Maschinenkonstruktionslehre I (Ub)</td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>2161245 Technische Mechanik I</td>
<td>2145178 Maschinenkonstruktionslehre I (Ub)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00 - 17:30</td>
<td></td>
<td>2173550 Werkstoffkunde I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00 - 19:30</td>
<td></td>
<td></td>
<td></td>
<td>0131100 Höhere Mathematik I (Ub)</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 06.10.2020

WS 2020-2021
B.Sc. Maschinenbau: 3. Fachsemester, Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2165002 Technische Thermodynamik und Wärmeübertragung I (Ub)</td>
</tr>
<tr>
<td>10:00 - 11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2165001 Technische Thermodynamik und Wärmeübertragung I (Ub)</td>
</tr>
<tr>
<td>12:00 - 13:30</td>
<td></td>
<td></td>
<td>2165003 Technische Thermodynamik und Wärmeübertragung I (Ub)</td>
<td></td>
<td>2165002 Technische Thermodynamik und Wärmeübertragung I (Ub)</td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2161241 Workshop zu MKL III</td>
</tr>
<tr>
<td>16:00 - 17:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00 - 19:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 06.10.2020
<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>2140093</td>
<td>2181612</td>
<td>2165156</td>
<td>2110911</td>
<td>2161207</td>
</tr>
<tr>
<td>bis 9:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>2113106</td>
<td>2161255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bis 11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>2181282</td>
<td>2137303</td>
<td>2161284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bis 13:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>2123005</td>
<td>2113095</td>
<td>2117396</td>
<td>2185792</td>
<td></td>
</tr>
<tr>
<td>bis 15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>2137301</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bis 17:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>2161250</td>
<td>2147175</td>
<td>2117303</td>
<td>2181739</td>
<td>2161250</td>
</tr>
<tr>
<td>bis 19:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtvorlesung</th>
<th>Übung / Tutorial</th>
<th>Wahlpflichtfach</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161250 Mathématiques appliquées aux sciences de l'ingénieur</td>
<td>2147175 CAI-Workshop</td>
<td>2117303</td>
</tr>
</tbody>
</table>
6 Aufbau des Studiengangs

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Orientierungsprüfung</th>
<th>0 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit</td>
<td>15 LP</td>
</tr>
<tr>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>143 LP</td>
</tr>
<tr>
<td>Vertiefung im Maschinenbau</td>
<td>16 LP</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

6.1 Orientierungsprüfung

| M-MACH-104624 Orientierungsprüfung | 0 LP |

6.2 Bachelorarbeit

| M-MACH-104494 Bachelorarbeit | 15 LP |

6.3 Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>M-MATH-102859 Höhere Mathematik</th>
<th>21 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102572 Technische Mechanik</td>
<td>23 LP</td>
</tr>
<tr>
<td>M-MACH-102562 Werkstoffkunde</td>
<td>14 LP</td>
</tr>
<tr>
<td>M-MACH-102574 Technische Thermodynamik</td>
<td>15 LP</td>
</tr>
<tr>
<td>M-MACH-102565 Strömungslehre</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-PHYS-104030 Physik</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-ETIT-104801 Elektrotechnik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-102564 Mess- und Regelungstechnik</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-102563 Informatik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-102573 Maschinenkonstruktionslehre</td>
<td>20 LP</td>
</tr>
<tr>
<td>M-MACH-102566 Maschinen und Prozesse</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-102549 Fertigungsprozesse</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-100297 Betriebliche Produktionswirtschaft</td>
<td>5 LP</td>
</tr>
</tbody>
</table>
6.4 Vertiefung im Maschinenbau

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102746</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Pflichtbestandteile: Schwerpunkt (1 Bestandteil)</td>
<td></td>
</tr>
<tr>
<td>M-MACH-102812</td>
<td>Schwerpunkt: Antriebssysteme</td>
</tr>
<tr>
<td>M-MACH-102638</td>
<td>Schwerpunkt: Bahnsystemtechnik</td>
</tr>
<tr>
<td>M-MACH-102815</td>
<td>Schwerpunkt: Entwicklung und Konstruktion</td>
</tr>
<tr>
<td>M-MACH-102582</td>
<td>Schwerpunkt: Kontinuumsmechanik</td>
</tr>
<tr>
<td>M-MACH-102816</td>
<td>Schwerpunkt: Grundlagen der Energietechnik</td>
</tr>
<tr>
<td>M-MACH-102583</td>
<td>Schwerpunkt: Informationsmanagement</td>
</tr>
<tr>
<td>M-MACH-102817</td>
<td>Schwerpunkt: Informationstechnik</td>
</tr>
<tr>
<td>M-MACH-102818</td>
<td>Schwerpunkt: Kraftfahrzeugtechnik</td>
</tr>
<tr>
<td>M-MACH-102838</td>
<td>Schwerpunkt: Kraft- und Arbeitsmaschinen</td>
</tr>
<tr>
<td>M-MACH-102819</td>
<td>Schwerpunkt: Materialwissenschaft und Werkstofftechnik</td>
</tr>
<tr>
<td>M-MACH-102820</td>
<td>Schwerpunkt: Mechatronik</td>
</tr>
<tr>
<td>M-MACH-104430</td>
<td>Schwerpunkt: Modellbildung und Simulation in der Dynamik</td>
</tr>
<tr>
<td>M-MACH-102589</td>
<td>Schwerpunkt: Produktionssysteme</td>
</tr>
<tr>
<td>M-MACH-104442</td>
<td>Schwerpunkt: Schwingungslehre</td>
</tr>
<tr>
<td>M-MACH-102645</td>
<td>Schwerpunkt: Technik des Verbrennungsmotors</td>
</tr>
<tr>
<td>M-MACH-102821</td>
<td>Schwerpunkt: Technische Logistik</td>
</tr>
</tbody>
</table>

6.5 Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102576</td>
<td>Schlüsselqualifikationen</td>
</tr>
</tbody>
</table>
7 Module

7.1 Modul: Bachelorarbeit [M-MACH-104494]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Bachelorarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Inhalt</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109188</td>
<td>Bachelorarbeit</td>
<td>12 LP</td>
<td>Heilmaier</td>
<td></td>
</tr>
<tr>
<td>T-MACH-109189</td>
<td>Präsentation</td>
<td>3 LP</td>
<td>Heilmaier</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuer/in/der Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Auf begründeten Antrag des Studenten kann der Prüfungsausschuss die Bearbeitungszeit um maximal einen Monat verlängern. Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

Die Bachelorarbeit wird von mindestens einem/einer Hochschullehrer/in oder einem/einer leitenden Wissenschaftler/in gemäß § 14 abs. 3 Ziff. 1 KITG oder habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau und einem/einer weiteren Prüfenden bewertet. In der Regel ist eine/r der Prüfenden die Person, die die Arbeit vergeben hat.

Bei nicht übereinstimmender Beurteilung dieser beiden Personen setzt der Prüfungsausschuss im Rahmen der Bewertung dieser beiden Personen die Note der Bachelorarbeit fest; er kann auch einen weiteren Gutachter bestellen. Die Bewertung hat innerhalb von sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen. Die Präsentation soll ca. 20 Minuten dauern, entspricht im Umfang 3 LP und wird anschließend mit dem anwesenden Fachpublikum diskutiert.

Qualifikationsziele

Die gewonnenen Ergebnisse kann er/sie interpretieren, evaluieren und bei Bedarf grafisch darstellen. Er/sie ist in der Lage, eine wissenschaftliche Arbeit klar zu strukturieren und sie (a) in schriftlicher Form unter Verwendung der Fachterminologie zu kommunizieren, sowie (b) in mündlicher Form zu präsentieren und mit Fachleuten zu diskutieren.

Voraussetzungen

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/DES Studierenden (vgl. §14 (1) der SPO).

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht werden:
 - Ingenieurwissenschaftliche Grundlagen
 - Überfachliche Qualifikationen
 - Vertiefung im Maschinenbau
Inhalt
Das Thema der Bachelorarbeit kann vom Studierenden selbst vorgeschlagen werden. Es wird vom Betreuer der Bachelorarbeit unter Beachtung von § 14 (3) der SPO festgelegt.

Arbeitsaufwand
Für die Ausarbeitung und Präsentation der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 450 Stunden gerechnet.
7.2 Modul: Betriebliche Produktionswirtschaft [M-MACH-100297]

Verantwortung: Prof. Dr.-Ing. Kai Furmans

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MACH-100304</th>
<th>Betriebliche Produktionswirtschaft</th>
<th>3 LP</th>
<th>Furmans, Lanza, Schultmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108734</td>
<td>Betriebliche Produktionswirtschaft-Projekt</td>
<td>2 LP</td>
<td>Furmans, Lanza</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

Nach erfolgreichem Abschluss der Lehrveranstaltung sind Sie in der Lage alleine und im Team

- die behandelten Fachbegriffe in den Bereichen Produktion, Logistik, und Betriebswirtschaft zu benennen,
- in einem Gespräch mit Fachkundigen die Zusammenhänge zwischen diesen Bereichen zutreffend zu beschreiben,
- die wichtigsten Entscheidungsprobleme in diesem Gebiet qualitativ und quantitativ zu beschreiben,
- die entsprechenden qualitativen und quantitativen Entscheidungsmodelle zu nutzen,
- deren Ergebnisse kritisch zu beurteilen und daraus Schlüsse zu ziehen,
- sowie durch eigene Recherche die behandelten Methoden und Modelle zu erweitern.

Voraussetzungen

keine

Inhalt

Es werden grundlegende Kompetenzen über die Planung und den Betrieb eines Produktionsbetriebes vermittelt. Inhalt der Vorlesung sind die Grundlagen des Operations- und Supply Chain Managements sowie betriebswirtschaftliche Grundlagen zu Rechnungswesen, Investitionsrechnung und Rechtsformen.

Anmerkungen

Es handelt sich um ein gemeinsames Modul des Instituts für Fördertechnik und Logistiksysteme (IFL), und des Instituts für Produktionstechnik (WBK). Die Institute wechseln sich bei jedem Zyklus ab.

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

Präsenzzeit: 42 Stunden,
Selbststudium: 108 Stunden

Lehr- und Lernformen

1. Vorlesungen (Pflicht)
2. Übungen (Pflicht)
3. Gruppenarbeit (Pflicht)
4. Mündliche Verteidigung der Gruppenarbeit (Pflicht)
7.3 Modul: Elektrotechnik [M-ETIT-104801]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ingenieurwissenschaftliche Grundlagen (EV ab 08.03.2019)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-109820 | Elektrotechnik und Elektronik | 8 LP | Becker |

Erfolgskontrolle(n)

Die Erfolgskontrolle findet im Rahmen einer schriftlichen Prüfung statt, Dauer 3 Stunden.

Qualifikationsziele

- Nach dem erfolgreichen Besuch der Lehrveranstaltung können die Studierenden die für Maschinenbauingenieure relevanten elektrotechnischen Grundlagen (Elektrisches Feld, magnetisches Feld, Widerstand, Kondensator, Spule) auf Fragestellungen der Praxis anwenden.
- Die Studierenden sind in der Lage elektrische Gleich- und Wechsel-Stromkreise zu analysieren und dabei verschiedene Methoden zur Netzwerkanalyse anzuwenden.
- Des Weiteren können die Studierenden (die natürlichen) Berührungspunkte zwischen Elektrotechnik und Maschinenbau erläutern: Sie können Aufbau und Funktion der wichtigsten elektrischen Maschinen (Transformator, Gleichstrom-, Asynchron- und Synchronmaschine) beschreiben und sind in der Lage einfache Auslegungen und Berechnungen zum stationären Betrieb von Maschinen durchzuführen.
- Des Weiteren können die Studierenden die wichtigsten Halbleiterbauelemente benennen und ihre physikalische Funktionsweise beschreiben.
- Darüber hinaus haben die Studierenden die wichtigsten leistungselektronische Grundschaltungen für abschaltbare und nicht abschaltbare Halbleiterschalter kennen gelernt und können auch daraus abgeleitete komplexere Schaltungen verstehen.
- Ebenso können die Studierenden Operationsverstärker-schaltungen erklären und berechnen, indem sie die am Anfang der Lehrveranstaltung erlernten Methoden der Netzwerkanalyse anwenden und auf die Untersuchung von Operationsverstärkerschaltungen übertragen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Die im 3. Fachsemester bekannten Kenntnisse in Mathematik sowie Schulphysik der Mittelstufe.

Inhalt

Im Abschnitt Halbleiterbauelemente werden neben der Herstellung insbesondere der PN-Übergang mit dem einfachsten zugehörigen Bauelement, der Diode, sowie weitere auf Halbleitern (ohne PN-Übergang) basierende Bauelemente erklärt.

Mit abschaltbaren Schaltern aufgebaute DC-DC-Steller (Tiefsetz- bzw. Hochsetzsteller) werden ebenso erklärt wie der Aufbau und die Ansteuerung selbstgeführter Drehstrombrücken zur Realisierung von Umrichtern zur Speisung von Drehfeldmaschinen.

Anmerkungen
Prüfungen und Vorlesungen finden in deutscher Sprache statt.

Durch erfolgreiche Bearbeitung zweier Zusatzübungsnachbären (auf freiwilliger Basis) kann ein Bonus von bis zu 6 Klausurpunkten erarbeitet werden (entspricht einer maximalen Notenverbesserung der schriftlichen Prüfung um den Wert 0,3 bzw. 0,4).

Arbeitsaufwand

<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Zeitdauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>31x 1h</td>
<td>67,5 h</td>
</tr>
<tr>
<td>31h Nachbereitung</td>
<td>31 h</td>
</tr>
<tr>
<td>24h Vor/Nachbereitung</td>
<td>24 h</td>
</tr>
<tr>
<td>10h Zusatzübungsblatt</td>
<td></td>
</tr>
<tr>
<td>80h Prüfungsvorbereitung</td>
<td></td>
</tr>
<tr>
<td>3h Prüfungseinsatz</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>215,5 h</td>
</tr>
</tbody>
</table>

(entspricht 8 Leistungspunkten)
7.4 Modul: Fertigungsprozesse [M-MACH-102549]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-MACH-105219 Grundlagen der Fertigungstechnik 4 LP Schulze

Erfolgskontrolle(n)

schriftliche Prüfung (Dauer: 60 min)

Qualifikationsziele

Die Studierenden …

- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der sechs Hauptgruppen (DIN 8580) klassifizieren.
- sind fähig, die wesentlichen Fertigungsverfahren der sechs Hauptgruppen (DIN 8580) anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, die charakteristischen Verfahrensmerkmale (Geometrie, Werkstoffe, Genauigkeit, Werkzeuge, Maschinen) der wesentlichen Fertigungsverfahren der sechs Hauptgruppen nach DIN 8580 zu beschreiben.
- sind fähig, aus den charakteristischen Verfahrensmerkmalen die relevanten prozessspezifischen technischen Vor- und Nachteile abzuleiten.
- sind in der Lage, für vorgegebene Bauteil eine Auswahl geeigneter Fertigungsprozesse durchzuführen.
- sind in der Lage, die für die Herstellung vorgegebener Beispielprodukte erforderlichen Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen.

Voraussetzungen

keine

Inhalt

Die Themen im Einzelnen sind:

- Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung

Arbeitstauglichkeit

Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Lehr- und Lernformen

Vorlesung
7.5 Modul: Höhere Mathematik [M-MATH-102859]

Verantwortung: Prof. Dr. Roland Griesmaier
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Jährlich</td>
<td>3 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul-Nr.</th>
<th>Modulbeschreibung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100525</td>
<td>Übungen zu Höhere Mathematik I</td>
<td>0</td>
</tr>
<tr>
<td>T-MATH-100526</td>
<td>Übungen zu Höhere Mathematik II</td>
<td>0</td>
</tr>
<tr>
<td>T-MATH-100527</td>
<td>Übungen zu Höhere Mathematik III</td>
<td>0</td>
</tr>
<tr>
<td>T-MATH-100275</td>
<td>Höhere Mathematik I</td>
<td>7</td>
</tr>
<tr>
<td>T-MATH-100276</td>
<td>Höhere Mathematik II</td>
<td>7</td>
</tr>
<tr>
<td>T-MATH-100277</td>
<td>Höhere Mathematik III</td>
<td>7</td>
</tr>
</tbody>
</table>

Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von drei schriftlichen Teilprüfungen im Umfang von jeweils 120 Minuten und je drei Studienleistungen (Übungsscheine). Das Bestehen eines Übungsscheins in Höherer Mathematik I, II oder III ist jeweils Voraussetzung für die Teilnahme an der entsprechenden schriftlichen Prüfung.

Qualifikationsziele

Die Studierenden beherrschen die Differentialrechnung für vektorwertige Funktionen mehrerer Veränderlicher und Techniken der Vektoranalyse wie die Definition und Anwendung von Differentialoperatoren, die Berechnung von Gebiets-, Kurven- und Oberflächenintegralen sowie zentrale Integralsätze. Sie haben grundlegende Kenntnisse über partielle Differentialgleichungen und beherrschen Grundbegriffe der Stochastik.

Voraussetzungen

Keine.

Inhalt

Arbeitsaufwand

Präsenzzeit: 270 Stunden

• Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 360 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vorbereitung auf die studienbegleitenden Modulprüfungen
Lehr- und Lernformen
Vorlesungen, Übungen, Tutorien
7.6 Modul: Informatik (BSc-Modul 09, Inf) [M-MACH-102563]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Titel</th>
<th>LP</th>
<th>Erster Kurslehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105205</td>
<td>Informatik im Maschinenbau</td>
<td>6</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105206</td>
<td>Informatik im Maschinenbau, VL</td>
<td>0</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftlich: "Informatik im Maschinenbau", 100%, 180 Minuten; Prüfungszulassung durch bestandenes Rechnerpraktikum.

Qualifikationsziele

Zusammensetzung der Modulnote
Prüfungsergebnis "Informatik im Maschinenbau" 100%

Voraussetzungen
Keine

Inhalt
Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzzeit: 63 Stunden
Selbststudium: 117 Stunden

Lehr- und Lernformen
Vorlesung und Rechnerpraktikum
7.7 Modul: Maschinen und Prozesse (mach13BSc-Modul 13, MuP) [M-MACH-102566]

Verantwortung: Dr.-Ing. Heiko Kubach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Klausur (2 h)

Qualifikationsziele

Die Studenten können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen.

Zusammensetzung der Modulnote

Notenbildung zu 100% aus o.g. schriftl. Prüfung

Voraussetzungen

Keine.

Inhalt

- Verbrennungsmotoren
- thermische Strömungsmaschinen
- hydraulische Strömungsmaschinen
- Thermodynamik

Anmerkungen

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

Präsenz: 48 h
Selbststudium: 162 h

Lehr- und Lernformen

Vorlesung+Übung
Praktikum
7.8 Modul: Maschinenkonstruktionslehre (BSc-Modul 06, MKL) [M-MACH-102573]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Jedes Wintersemester</td>
<td>4 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Prüfungsleistung</th>
<th>Prüfungsdauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105286</td>
<td>Maschinenkonstruktionslehre I & II</td>
<td>5 LP Matthiesen</td>
<td>Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre I, sowie erfolgreiche Bearbeitung von Abgabeleistungen in Maschinenkonstruktionslehre II</td>
<td></td>
</tr>
<tr>
<td>T-MACH-104810</td>
<td>Maschinenkonstruktionslehre III & IV</td>
<td>11 LP Matthiesen</td>
<td>Schriftliche Prüfung über das Lehrgebiet Maschinenkonstruktionslehre I und II: Dauer 60 min</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105282</td>
<td>Maschinenkonstruktionslehre I, Vorleistung</td>
<td>1 LP Matthiesen</td>
<td>Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre I, sowie erfolgreiche Bearbeitung von Abgabeleistungen in Maschinenkonstruktionslehre II</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105283</td>
<td>Maschinenkonstruktionslehre II, Vorleistung</td>
<td>1 LP Matthiesen</td>
<td>Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre I, sowie erfolgreiche Bearbeitung von Abgabeleistungen in Maschinenkonstruktionslehre II</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110955</td>
<td>Maschinenkonstruktionslehre III, Vorleistung</td>
<td>1 LP Matthiesen</td>
<td>Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre I, sowie erfolgreiche Bearbeitung von Abgabeleistungen in Maschinenkonstruktionslehre II</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110956</td>
<td>Maschinenkonstruktionslehre IV, Vorleistung</td>
<td>1 LP Matthiesen</td>
<td>Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre I, sowie erfolgreiche Bearbeitung von Abgabeleistungen in Maschinenkonstruktionslehre II</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Maschinenkonstruktionslehre I & II:
Prüfungsvorleistung: Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre I, sowie erfolgreiche Bearbeitung von Abgabeleistungen in Maschinenkonstruktionslehre II
Schriftliche Prüfung über das Lehrgebiet Maschinenkonstruktionslehre I und II: Dauer 60 min

Maschinenkonstruktionslehre III & IV:
Prüfungsvorleistung: Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre III und IV
Prüfung über das Lehrgebiet Maschinenkonstruktionslehre III und IV bestehend aus

- schriftlichem Teil mit Dauer 60 min zzgl. Einlesezeit und
- konstruktivem Teil mit Dauer 180 min zzgl. Einlesezeit

Qualifikationsziele

Voraussetzungen
Keine
Inhalt

MKL I:
- Einführung in die Produktentwicklung
- Federn
- Werkzeuge zur Visualisierung (Techn. Zeichnen)
- Technische Systeme
- Lagerungen und Führungen

MKL II:
- Grundlagen der Gestaltung
- Grundlagen Schraubenverbindungen
- Grundlagen Dichtungen

MKL III:
- Bauteilverbindungen
- Toleranzen und Passungen
- Getriebe

MKL IV:
- Kupplungen
- Fluidtechnik
- Dimensionierung
- Elektrische Maschinen

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.
Arbeitsaufwand
MKL1:
Präsenz: 33,5 h
Anwesenheit in Vorlesungen: 15 * 1,5 h = 22,5 h
Anwesenheit in Übungen: 8 * 1,5 h = 12 h
Selbststudium: 56,5 h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die Klausur: 56,5 h
Insgesamt: 90 h = 3 LP
MKL2:
Präsenz: 33 h
Anwesenheit in Vorlesungen: 15 * 1,5 h = 22,5 h
Anwesenheit in Übungen: 7 * 1,5 h = 10,5 h
Selbststudium: 57 h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die Klausur: 87h
Insgesamt: 120 h = 4 LP
MKL3:
Präsenz: 45h
Anwesenheit Vorlesungen (15 VL): 22,5h
Anwesenheit Übungen (7 ÜB): 10,5h
Anwesenheit Meilensteine Projektarbeit (3x 4h): 12h
Selbststudium: 135h
Projektarbeit im Team: 90h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung: 45h
Insgesamt: 180 h = 6 LP
MKL4:
Präsenz: 40,5h
Anwesenheit Vorlesungen (13 VL): 19,5h
Anwesenheit Übungen (6 ÜB): 9h
Anwesenheit Meilensteine Projektarbeit (3x 4h): 12h
Selbststudium: 169,5h
Projektarbeit im Team: 105h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung, inkl. Vorbereitung auf die Klausur: 64,5h
Insgesamt: 210 h = 7 LP
Lehr- und Lernformen
Vorlesungen
Hörsaalübungen
Semesterbegleitende Projektarbeit
Modul: Mess- und Regelungstechnik (BSc-Modul 11, MRT) [M-MACH-102564]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte
- **7** Punkte

Turnus
- Jedes Wintersemester

Dauer
- 1 Semester

Sprache
- Deutsch/Englisch

Level
- 3

Version
- 2

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104745</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erfolgskontrolle(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art der Prüfung: schriftliche Prüfung</td>
</tr>
<tr>
<td>Dauer der Prüfung: 150 Minuten</td>
</tr>
</tbody>
</table>

Qualifikationsziele
- Die Studierenden können mess- und regelungstechnische Prinzipien für physikalische Größen benennen, beschreiben und an Beispielen erläutern.
- Sie können systemtheoretische Eigenschaften von dynamischen Systemen benennen, analysieren und bewerten.
- Sie können reale Systeme systemtheoretisch modellieren und die Eignung aufgestellter Modellen bewerten.
- Sie können Methoden zur Synthese von Reglern anwenden und so parametrisierte Regler analysieren und bewerten.
- Sie können Messprinzipien auswählen und Messeinrichtungen zur Messung nicht-elektrischer Größen modellieren, analysieren und bewerten.
- Sie können die Messunsicherheiten von Messgrößen quantifizieren und beurteilen.

Zusammensetzung der Modulnote

Voraussetzungen
- keine

Inhalt
1. Dynamische Systeme
2. Eigenschaften wichtiger Systeme und Modellbildung
3. Übertragungsverhalten und Stabilität
4. Synthese von Reglern
5. Grundbegriffe der Messtechnik
6. Estimation
7. Messaufnehmer
8. Einführung in digitale Messverfahren

Empfehlungen
Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace Transformation

Anmerkungen
- Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
- Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
- 84 Stunden Präsenzzeit, 126 Stunden Selbststudium.

Lehr- und Lernformen
- Vorlesung
- Übungen
Literatur
Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

• Measurement and Control Systems:
R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:
J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
O. Föllinger: Regelungstechnik, Hüthig-Verlag
W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:
E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
Measurement and Control Systems
7.10 Modul: Orientierungsprüfung [M-MACH-104624]

Einrichtung: Universität gesamt
Bestandteil von: Orientierungsprüfung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Prüfungsform</th>
<th>Offerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100275</td>
<td>Höhere Mathematik I</td>
<td>7 LP</td>
<td>7 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MACH-100282</td>
<td>Technische Mechanik I</td>
<td>7 LP</td>
<td>7 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Technische Mechanik II</td>
<td>6 LP</td>
<td>6 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Modellierte Fristen
Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen
keine

Anmerkungen
Aufgrund der Auswirkungen der Corona-Pandemie 2020 auf den Studienbetrieb hat das KIT für Studienanfänger*innen des WS 18/19 und Studienanfänger*innen des WS 19/20 eine Fristverlängerung für die Orientierungsprüfung um ein Semester beschlossen.
7.11 Modul: Physik [M-PHYS-104030]

Verantwortung: apl. Prof. Dr. Gernot Goll
Prof. Dr. Bernd Pilawa

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-108322 | Wellen- und Quantenphysik | 5 LP | Goll, Pilawa |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4(2), 1 SPO).

Qualifikationsziele

Die Studierenden

- sind mit den Eigenschaften von Wellen vertraut und können diese diskutieren
- können die Gesetzmäßigkeiten der Relativitätstheorie wiedergeben
- sind mit den Wellen- und Teilchen-basierten Beschreibungen von Licht und Masse vertraut
- können die Grenzen der Wellenphysik erklären
- können die Schrödinger-Gleichung auf einfache Probleme der Quantenphysik anwenden
- sind in der Lage, die grundlegenden Eigenschaften von Atomen zu erklären, insbesondere für das H-Atom
- können grundlegende Aspekte der elektronischen Eigenschaften von Festkörpern diskutieren

Voraussetzungen

Keine

Inhalt

- Eigenschaften von Wellen
- Schallwellen und elektromagnetische Wellen
- Interferenz und Beugung
- Relativitätstheorie
- Welle-Teilchen Dualismus
- Grundlegende Eigenschaften von Atomen
- Grundlegende elektronische Eigenschaften von Festkörpern

Anmerkungen

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

150 Stunden, bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (105)

Lehr- und Lernformen

Vorlesung und Übung
7.12 Modul: Schlüsselqualifikationen (BSc-Modul 07, SQL) [M-MACH-102576]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Martin Heilmaier

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Name</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105296</td>
<td>Arbeitstechniken im Maschinenbau</td>
<td>4</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Schlüsselqualifikationen wählbare LV von HoC, ZAK (mind. 2 LP)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Name</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110961</td>
<td>Steuerung eines global agierenden Unternehmens - Am Beispiel der Robert BOSCH GmbH</td>
<td>2</td>
<td>Maier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen von Studienleistungen.
Anzahl, Form und Umfang der Erfolgskontrollen kann nach individueller Wahl abweichen.

Qualifikationsziele

Die Studierenden können nach Abschluss des Moduls Schlüsselqualifikationen:

- Arbeitsschritte, Vorhaben und Ziele bestimmen und koordinieren, systematisch und zielgerichtet vorgehen, Prioritäten setzen sowie die Machbarkeit einer Aufgabe einschätzen
- Methoden zur Planung einer konkreten Aufgabe unter vorgegebenen Rahmenbedingungen ziel- und ressourcenorientiert anwenden,
- Methoden für die wissenschaftliche Recherche und Auswahl von Fachinformationen nach vorher festgelegten Kriterien der Qualität beschreiben und diese auf vorgegebene Probleme anwenden,
- empirische Methoden erörtern und an ausgewählten Beispielen anwenden,
- Fachinformationen in klarer, lesbarer und überzeugend argumentierter Weise in verschiedenen Darstellungsformen (z. B. Poster, Exposé, Abstract) schriftlich darstellen und angemessen grafisch visualisieren (z. B. Konstruktionszeichnungen, Ablaufdiagramme),
- Fachinhalte überzeugend und ansprechend präsentieren und verteidigen,
- im Team aufgabenorientiert arbeiten, etwaige Konflikte selbstständig bewältigen sowie Verantwortung übernehmen für sich und andere,
- im Team sachlich zielgerichtet und zwischenmenschlich konstruktiv kommunizieren, eigene Interessen vertreten, die Interessen anderer in eigenen Worten wiedergeben und berücksichtigen sowie den Gesprächsverlauf erfolgreich gestalten.

Zusammensetzung der Modulnote

unbenotet

Voraussetzungen

keine

Inhalt

Anmerkungen

Es sind HoC/SPZ/ZAK-Veranstaltungen wählbar.

Arbeitsaufwand

Der Arbeitsaufwand im Bachelor of Science beträgt ca. 180 Zeitstunden, wovon etwa 66 Stunden Präsenzzeit darstellen. Dies entspricht 6 Leistungspunkten.
Lehr- und Lernformen
Die Lehr- und Lernformen hängen von den jeweils gewählten Teilleistungen ab. Sie können aus Vorlesungen, Seminaren, Übungen oder Praktika bestehen.
7.13 Modul: Schwerpunkt: Antriebssysteme (SP 02) [M-MACH-102812]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlinformationen
Im Kernbereich eines jeden Schwerpunktes sind mindestens 8 LP zu wählen.

Wahlpflichtblock: Antriebssysteme (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105307</td>
<td>Antriebsstrang mobiler Arbeitsmaschinen</td>
<td>4 LP</td>
<td>Geimer, Wydra</td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Antriebsystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Antriebsystemtechnik B: Stationäre Antriebssysteme</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>5 LP</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Antriebssysteme (E) ()

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105215</td>
<td>Angewandte Tribologie in der industriellen Produktentwicklung</td>
<td>4 LP</td>
<td>Albers, Lorentz, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110958</td>
<td>Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben</td>
<td>4 LP</td>
<td>Albers, Faust</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Einführung in die Mehrkörperdynamik</td>
<td>5 LP</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>4 LP</td>
<td>Braun, Schönung</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>4 LP</td>
<td>Becker</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Grundlagen der Logistik</td>
<td>4 LP</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ploch</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>5 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Maschinendynamik II</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Neue Akten und Sensoren</td>
<td>4 LP</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4 LP</td>
<td>Fleischer, Hofmann</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</td>
<td>4 LP</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>4 LP</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Steuerungstechnik</td>
<td>4 LP</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td>3 LP</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study</td>
<td>1 LP</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Zieghahn</td>
</tr>
<tr>
<td>T-MACH-105531</td>
<td>Tribologie</td>
<td>8 LP</td>
<td>Dienwiebel, Scherge</td>
</tr>
<tr>
<td>T-MACH-102194</td>
<td>Verbrennungsmotoren I</td>
<td>4 LP</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Versagensverhalten von Konstruktionswerkstofen: Verformung und Bruch</td>
<td>4 LP</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Verzahnertechnik</td>
<td>4 LP</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Antriebssysteme (Ü) ()

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109303</td>
<td>Übungen - Tribologie</td>
<td>0 LP</td>
<td>Dienwiebel</td>
</tr>
</tbody>
</table>
Qualifikationsziele

Sie sind fähig komplexe Auslegungs- und Gestaltungsmethoden für Antriebssysteme unter Berücksichtigung der Systemwechselwirkungen auszuwählen, zu beschreiben und anzuwenden.

Voraussetzungen

keine

Inhalt

siehe einzelne Leistungen des SP02

Arbeitsaufwand

Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen

Vorlesungen
Hörsaalübungen
Workshops
7.14 Modul: Schwerpunkt: Bahnsystemtechnik (SP 50) [M-MACH-102638]

Verantwortung: Prof. Dr.-Ing. Peter Gratzfeld
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

Leistungspunkte: 12
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte (LP)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106424</td>
<td>Bahnsystemtechnik</td>
<td>4</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>T-MACH-105353</td>
<td>Schienenfahrzeugtechnik</td>
<td>4</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Bahnsystemtechnik (E)()

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte (LP)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105540</td>
<td>Die Eisenbahn im Verkehrsmarkt</td>
<td>4</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>T-MACH-102121</td>
<td>Elektrische Schienenfahrzeuge</td>
<td>4</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>T-MACH-105237</td>
<td>Fahrzeuggleichbau - Strategien, Konzepte, Werkstoffe</td>
<td>4</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Fahrzeugsehen</td>
<td>6</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>4</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-105350</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>4</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-108692</td>
<td>Seminar für Bahnsystemtechnik</td>
<td>3</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 Minuten je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Qualifikationsziele

- Die Studierenden verstehen Zusammenhang und gegenseitige Abhängigkeit von Fahrzeugen, Infrastruktur und Betrieb in einem Bahnsystem.
- Aus den betrieblichen Vorgaben und den gesetzlichen Rahmenbedingungen leiten sie die Anforderungen an eine leistungsfähige Infrastruktur und geeignete Schienenfahrzeugkonzepte ab.
- Sie erkennen den Einfluss der Trassierung, verstehen die systembestimmende Funktion des Rad-Schiene-Kontaktes und schätzen die Effekte der Fahrdynamik auf das Betriebsprogramm ab.
- Sie beurteilen die Auswirkungen der Betriebsverfahren auf Sicherheit und Leistungsvermögen des Bahnsystems.
- Sie lernen die Infrastruktur zur Energieversorgung von Schienenfahrzeugen unterschiedlicher Traktionsarten kennen.
- Die Studierenden erkennen die Aufgaben von Schienenfahrzeugen und verstehen ihre Einteilung. Sie verstehen ihren grundsätzlichen Aufbau und lernen die Funktionen der Hauptsysteme kennen. Sie erkennen die übergreifenden Aufgaben der Fahrzeugsystemtechnik.
- Sie lernen Funktionen und Anforderungen des Wagenkastens kennen und beurteilen Vor- und Nachteile von Bauweisen. Sie verstehen die Funktionsweisen der Schnittstellen des Wagenkastens nach außen.
- Sie verstehen die Grundzüge der Lauftechnik und ihre Umsetzung in Laufwerke.
- Sie lernen die Vor- und Nachteile der verschiedenen Antriebsarten kennen und entscheiden, was für welchen Anwendungsfall am besten geeignet ist.
- Sie verstehen die Bremstechnik mit ihren fahrzeugseitigen und betrieblichen Aspekten und beurteilen die Tauglichkeit verschiedener Bremssysteme.
- Sie lernen den grundsätzlichen Aufbau der Leittechnik kennen und verstehen die Funktionen der wichtigsten Komponenten.
- Aus den Anforderungen an moderne Schienenfahrzeuge spezifizieren und definieren sie geeignete Fahrzeugkonzepte.
- Je nach Wahl der Ergänzungsfächer lernen die Studierenden weitere wichtige Aspekte eines Bahnsystems kennen.

Voraussetzungen
Keine
Inhalt

1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Fernverkehr, Güterverkehr, Betriebplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klotheide, Längsneigung), Bahnhöfe, (Bahnsteiglängen, Bahnsteighöhen), Lichtraumprofil und Fahrzeugbegrenzung
5. Längsdynamik: Zug- und Bremskraft, Fahrrichtung, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)
8. Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystemtechnik
9. Wagenkasten: Funktionen, Anforderungen, Bauprinzipien, Bauweisen, Energieverzehrelemente, Kupplungen und Übergänge, Türen und Fenster
10. Fahrwerke: Kräfte am Rad, Radsatzführung, Lenkachsfahrwerk, Drehgestell, Jakobsdrehgestell, Aktive Fahrwerkkomponenten, Längskraftübertragung auf den Wagenkasten, Achsanordnungen
11. Antrieb: Prinzipielle Antriebsarten, Elektrische Leistungsübertragung (AC-, DC-Netz, ohne Netzineinspeisung), Nichtelektrische Leistungsübertragung
12. Bremsen: Grundlagen, Wirkprinzipien (Rad-, Schienenbremsen, Blending), Bremssteuerung (direkte, indirekte Druckluftbremse, EP-Bremse)
13. Fahrzeugleittechnik: Definitionen, Bussysteme, Komponenten, Netzwerkarchitekturen, Beispiele, zukünftige Entwicklungen
15. Weitere Inhalte je nach Wahl der Ergänzungsfächer

Anmerkungen
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

Arbeitsaufwand
Gesamtaufwand im B.Sc. bei 12 Leistungspunkten: ca. 360 Stunden
Präsenzzeit: 63 Stunden
Vor-/Nachbereitung: 63 Stunden
Prüfung und Prüfungsvorbereitung: 234 Stunden

Lehr- und Lernformen
Vorlesungen im Kernbereich.
Im Ergänzungsbereich werden Vorlesungen und Seminare angeboten.
7.15 Modul: Schwerpunkt: Entwicklung und Konstruktion (SP 10) [M-MACH-102815]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Entwicklung und Konstruktion (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105233</td>
<td>Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Antriebssystemtechnik B: Stationäre Antriebssysteme</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Konstruktiver Leichtbau</td>
<td>4 LP</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Entwicklung und Konstruktion (E) ()

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105215</td>
<td>Angewandte Tribologie in der industriellen Produktentwicklung</td>
<td>4 LP</td>
<td>Albers, Lorenz, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105311</td>
<td>Auslegung mobiler Arbeitsmaschinen</td>
<td>4 LP</td>
<td>Geimer, Siebert</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 LP</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-108719</td>
<td>Dimensionierung mit Numerik in der Produktentwicklung</td>
<td>4 LP</td>
<td>Schnack</td>
</tr>
<tr>
<td>T-MACH-108374</td>
<td>Fahrzeugergonomie</td>
<td>4 LP</td>
<td>Kunkel</td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>8 LP</td>
<td>Schulze, Zanger</td>
</tr>
<tr>
<td>T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>8 LP</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>2 LP</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II</td>
<td>2 LP</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-105160</td>
<td>Grundsätze der Nutzfahrzeugentwicklung I</td>
<td>2 LP</td>
<td>Weber</td>
</tr>
<tr>
<td>T-MACH-105161</td>
<td>Grundsätze der Nutzfahrzeugentwicklung II</td>
<td>2 LP</td>
<td>Weber</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>2 LP</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Grundsätze der PKW-Entwicklung II</td>
<td>2 LP</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>4 LP</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105330</td>
<td>Konstruieren mit Polymerwerkstoffen</td>
<td>4 LP</td>
<td>Liedel</td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ploch</td>
</tr>
<tr>
<td>T-MACH-105440</td>
<td>Management- und Führungstechniken</td>
<td>4 LP</td>
<td>Hatzl</td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4 LP</td>
<td>Fleischer, Hofmann</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Projektierung und Entwicklung öhydraulischer Antriebssysteme</td>
<td>4 LP</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>4 LP</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>4 LP</td>
<td>Lanzan</td>
</tr>
<tr>
<td>T-MACH-105171</td>
<td>Sicherheitstechnik</td>
<td>4 LP</td>
<td>Kany</td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td>3 LP</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study</td>
<td>1 LP</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-105361</td>
<td>Technisches Design in der Produktentwicklung</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Schmid</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Verzahntechnik</td>
<td>4 LP</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>8 LP</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Entwicklung und Konstruktion (P) (max. 4 LP)
Qualifikationsziele
Die Studenten erwerben die Fähigkeit, exemplarisch im jeweiligen Fach erarbeitetes Wissen und Können im Bereich der Produktentwicklung / Produktkonstruktion verallgemeinert auf Systeme des Maschinenbaus in Forschung und industrieller Praxis umsetzen zu können.

Voraussetzungen
Keine

Inhalt
siehe einzelne Leistungen des SP10

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen
Hörsaalübungen
Workshops
7.16 Modul: Schwerpunkt: Grundlagen der Energietechnik [M-MACH-102816]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

Leistungspunkte Turnus Dauer Sprache Level Version
12 Jedes Semester 2 Semester Deutsch/Englisch 3 3

Pflichtbestandteile
T-MACH-105220 Grundlagen der Energietechnik 8 LP Badea, Cheng

Wahlpflichtblock: Grundlagen der Energietechnik (K) ()
T-MACH-105525 Einführung in die Kernenergie 4 LP Cheng
T-MACH-105325 Grundlagen der technischen Verbrennung II 4 LP Maas
T-MACH-105326 Hydraulische Strömungsmaschinen 8 LP Pritz

Wahlpflichtblock: Grundlagen der Energietechnik (E) ()
T-MACH-105462 Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen 4 LP Dagan
T-MACH-105151 Energieeffiziente Intralogistiksysteme (mach und wiwi) 4 LP Braun, Schönung
T-MACH-105952 Energiespeicher und Netzintegration 4 LP Jäger, Stieglitz
T-MACH-105408 Energiesysteme I - Regenerative Energien 4 LP Dagan
T-MACH-105533 Gasdynamik 4 LP Magagnato
T-MACH-105557 Microenergy Technologies 4 LP Kohl
T-MACH-105338 Numerische Strömungsmechanik 4 LP Magagnato
T-ETIT-101939 Photovoltaik 6 LP Powalla
T-MACH-105537 Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung 4 LP Dagan
T-MACH-110984 Produktionstechnik für die Elektromobilität 4 LP Fleischer, Hofmann
T-MACH-106493 Solar Thermal Energy Systems 4 LP Dagan
T-MACH-105403 Strömungen und Wärmeübertragung in der Energietechnik 4 LP Cheng
T-MACH-105225 Thermische Solarenergie 4 LP Stieglitz
T-MACH-105234 Windkraft 4 LP Lewald

Wahlpflichtblock: Grundlagen der Energietechnik (P) (max. 4 LP)
T-MACH-105331 Lehrlabor: Energietechnik 4 LP Bauer, Maas, Wirbser
T-MACH-106707 Praktikum für rechnergestützte Strömungsmesstechnik 4 LP Bauer

Erfolgskontrolle(n)
Mündliche Prüfung

Qualifikationsziele
Nach Abschluss des Schwerpunkts sind die Studierenden in der Lage:

- die Elemente eines Energiesystems und ihr komplexes Zusammenwirken zu beschreiben,
- unterschiedliche konventionelle Primärenergienquellen zu benennen und ihre statische Reichweite zu beurteilen,
- das zeitlich fluktuierende Angebot erneuerbarer Energien wie Wind, solare Strahlung, Meeresströmungen und Gezeiten etc. zu benennen und seine Auswirkungen auf das Energiesystem zu beschreiben,
- Auswirkungen von externen und internen wirtschaftlichen, ökologischen und technischen Randbedingungen auf Energiesysteme zu beurteilen und Ansätze für eine optimale Zusammensetzung unterschiedlicher Technologien zu erarbeiten.
- die grundlegenden Funktionsweisen etablierter Kraftwerke und auf erneuerbaren Energien basierenden zentralen und dezentralen Kraftwerken zu erklären.

Voraussetzungen
Keine
Inhalt

Arbeitsaufwand
360 Stunden

Lehr- und Lernformen
Vorlesung, Übungen
7.17 Modul: Schwerpunkt: Informationsmanagement (SP 17) [M-MACH-102583]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Informationsmanagement (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106457</td>
<td>IT-Systemplattform I4.0</td>
<td>4</td>
<td>Maier, Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Informationsmanagement (E) ()

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106744</td>
<td>Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte</td>
<td>4</td>
<td>Kläger</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-102209</td>
<td>Information Engineering</td>
<td>3</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>3</td>
<td>Kilger</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Grundlagen der Logistik</td>
<td>4</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Patente und Patenstrategien in innovativen Unternehmen</td>
<td>4</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-102181</td>
<td>PLM für mechatronische Produktentwicklung</td>
<td>4</td>
<td>Eigner</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung</td>
<td>4</td>
<td>Mbang</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>4</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Informationsmanagement (P) (max. 4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102185</td>
<td>CAD-Praktikum CATIA</td>
<td>2</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102187</td>
<td>CAD-Praktikum NX</td>
<td>2</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Praktikum</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art sowie mündliche und/oder schriftliche Prüfung mit einer Gesamtdauer von 2 Stunden.

Qualifikationsziele
Die Studierenden:
Begreifen die Bedeutung des Informationsmanagements für die Produktentwicklung vor dem Hintergrund immer komplexer werdender Produkte und Prozesse.
Sie erlangen ein Verständnis für den Umgang mit Informationen welche im Kontext der Entwicklung und Produktion eines Produktes entlang des Lebenszyklus entstehen.

Voraussetzungen
Keine

Inhalt
Generierung und Management von Informationen
Aufbau und Funktionsweise von Informationssystemen
CAX-Systeme, Industrie 4.0

Arbeitsaufwand
360 Stunden
7.18 Modul: Schwerpunkt: Informationstechnik [M-MACH-102817]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlinformationen
Im Kernbereich des Schwerpunktes sind mindestens 8 LP zu wählen.

Wahlpflichtblock: Informationstechnik (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrer/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4 LP</td>
<td>Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105694</td>
<td>Datenanalyse für Ingenieure</td>
<td>5 LP</td>
<td>Ludwig, Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digitale Regelungen</td>
<td>4 LP</td>
<td>Knoop</td>
</tr>
<tr>
<td>T-MACH-105223</td>
<td>Machine Vision</td>
<td>8 LP</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105335</td>
<td>Messtechnik II</td>
<td>4 LP</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Informationstechnik (E) (max. 6 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrer/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Steuerungen</td>
<td>4 LP</td>
<td>Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-108889</td>
<td>BUS-Steuerungen - Vorleistung</td>
<td>0 LP</td>
<td>Daiß, Geimer</td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Fahrzeugsehen</td>
<td>6 LP</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>3 LP</td>
<td>Kilger</td>
</tr>
<tr>
<td>T-INFO-101466</td>
<td>Informationsverarbeitung in Sensornetzwerken</td>
<td>6 LP</td>
<td>Hanebeck</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Grundlagen der Logistik</td>
<td>4 LP</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Motorenmesstechnik</td>
<td>4 LP</td>
<td>Bernhardt</td>
</tr>
<tr>
<td>T-MACH-107447</td>
<td>Reliability Engineering 1</td>
<td>3 LP</td>
<td>Konnov</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Steuerungstechnik</td>
<td>4 LP</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>4 LP</td>
<td>Stiller, Werling</td>
</tr>
<tr>
<td>T-MACH-105370</td>
<td>Mechatronik-Praktikum</td>
<td>4 LP</td>
<td>Hagenmeyer, Seemann, Stiller</td>
</tr>
<tr>
<td>T-MACH-105341</td>
<td>Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik</td>
<td>4 LP</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen Dauer ca. 5 Min. je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen

Qualifikationsziele
Die Studierenden können

- informationstechnische Grundlagen anhand verschiedener Problemstellungen des Maschinenbaus und der Mechatronik erörtern.
- die maßgeblichen Methoden zur Informationserfassung, Verarbeitung und technischen Nutzung erläutern.
- alternative Methoden zur Bestimmung und Beschreibung von Unsicherheiten von Messgrößen und deren Propagation in technischen Systemen aufzeigen und erörtern.
- Informationsfilter und Fusionsmethoden für Information beschreiben und deren zielgerichteten Einsatz auf gegebene Aufgabenstellungen erläutern.

Voraussetzungen
keine
Inhalt

- Techniken der Informations- und Datenverarbeitung im Maschinenbau
- Techniken der Sensordaten Auswertung
- Regelungstechnische Konzepte
- Elektronik zur Datenverarbeitung

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen
Vorlesung, Praktikum, Übung, Laborpraktikum
7.19 Modul: Schwerpunkt: Kontinuumsmechanik (SP 13) [M-MACH-102582]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

Leistungspunkte: 12 | Turnus: Jedes Semester | Dauer: 2 Semester | Sprache: Deutsch | Level: 3 | Version: 5

Pflichtbestandteile

T-MACH-110377 Kontinuumsmechanik der Festkörper und Fluide 3 LP Böhlke, Frohnapfel
T-MACH-110836 Mathematische Methoden der Kontinuumsmechanik 4 LP Böhlke

Wahlpflichtblock: Kontinuumsmechanik (E) ()

T-MACH-110362 Einführung in die Numerische Strömungsmechanik 3 LP Frohnapfel, Stroh
T-MACH-105320 Einführung in die Finite-Elemente-Methode 3 LP Böhlke, Langhoff

Wahlpflichtblock: Kontinuumsmechanik (Ü) ()

T-MACH-110330 Übungen zu Einführung in die Finite-Elemente-Methode 1 LP Böhlke, Langhoff
T-MACH-111033 Übungen zu Einführung in die Numerische Strömungsmechanik 1 LP Frohnapfel, Stroh
T-MACH-110333 Übungen zu Kontinuumsmechanik der Festkörper und Fluide 1 LP Böhlke, Frohnapfel

Erfolgskontrolle(n)
siehe einzelne Teilleistungen

Qualifikationsziele
Nach Abschluss dieses Schwerpunkts können die Studierenden

- wesentliche Konzepte und Modelle der Kontinuumsmechanik nennen, sowohl für Festkörper als auch für Fluide, mit Feldgleichungen und Randbedingungen
- diese Modelle im Rahmen gegebener Problemstellungen anwenden
- Tensoralgebra und Tensoranalysis für gegebene Problemstellungen im Rahmen der Kontinuumsmechanik anwenden
- die grundlegenden numerischen Werkzeuge einordnen und für konkrete Problemstellungen der Kontinuumsmechanik anwenden

Voraussetzungen
keine

Inhalt
Das übergreifende Thema des Schwerpunktes ist die Kenntnis der Grundlagen der Kontinuumsmechanik, die sich die Studierenden im Pflichtbereich aneignen (8 LP). Darüber hinaus gibt es einen Ergänzungsbereich mit den jeweils dazugehörigen numerischen Methoden, aus dem die Studierenden individuell ihren Interessen entsprechend auswählen können.

Arbeitsaufwand
Der Arbeitsaufwand im Bachelor of Science beträgt ca. 360 Zeitstunden, wovon etwa 125 Stunden Präsenzzeit darstellen.

Lehr- und Lernformen
Vorlesungen, Saalübungen, Rechnerübungen, Sprechstunden

Literatur
siehe einzelne Teilleistungen
Verantwortung: Prof. Dr. Thomas Koch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

Leistungspunkte: 12
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 2

Wahlpflichtblock: Kraft- und Arbeitsmaschinen (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Autor/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105326</td>
<td>Hydraulische Strömungsmaschinen</td>
<td>8</td>
<td>Pritz</td>
</tr>
<tr>
<td>T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>6</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-102194</td>
<td>Verbrennungsmotoren I</td>
<td>4</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Kraft- und Arbeitsmaschinen (E) ()

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Autor/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-105780</td>
<td>Auslegung einer Gasturbinkammer</td>
<td>6</td>
<td>Zarzalis</td>
</tr>
<tr>
<td>T-MACH-105184</td>
<td>Betriebsstoffe für Verbrennungsmotoren</td>
<td>4</td>
<td>Kehrwald, Kubach</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluidtechnik</td>
<td>4</td>
<td>Geimer, Pult</td>
</tr>
<tr>
<td>T-MACH-105533</td>
<td>Gasdynamik</td>
<td>4</td>
<td>Magagnato</td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>4</td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Grundlagen der technischen Verbrennung I</td>
<td>4</td>
<td>Maas, Sommerer</td>
</tr>
<tr>
<td>T-MACH-105325</td>
<td>Grundlagen der technischen Verbrennung II</td>
<td>4</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105338</td>
<td>Numerische Strömungsmechanik</td>
<td>4</td>
<td>Magagnato</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</td>
<td>4</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-107447</td>
<td>Reliability Engineering 1</td>
<td>3</td>
<td>Konnov</td>
</tr>
<tr>
<td>T-MACH-105364</td>
<td>Thermische Turbomaschinen II</td>
<td>6</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-105366</td>
<td>Turbinen-Luftstrahl-Triebwerke</td>
<td>4</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-105234</td>
<td>Windkraft</td>
<td>4</td>
<td>Lewald</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Kraft- und Arbeitsmaschinen (P) (max. 4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Autor/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105515</td>
<td>Einführung in die numerische Strömungstechnik</td>
<td>4</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
ziehe einzelne Teilleistungen des SP24

Qualifikationsziele
Die Studierenden erwerben in den grundlagenorientierten Kernfächern des Schwerpunktes breite und fundierte Kenntnisse der wissenschaftlichen Theorien, Prinzipien und Methoden der Kraft- und Arbeitsmaschinen, um diese entwerfen, einsetzen und bewerten zu können.

Darauf aufbauend vertiefen die Studierenden in den Ergänzungsfächern ausgewählte Anwendungsfelder, sodass sie im Anschluss in der Lage sind, Probleme aus diesem Anwendungsfeld selbstständig zu analysieren, zu bewerten und hierauf aufbauend Lösungsansätze zu entwickeln.

Die Studierenden können nach Abschluss des Schwerpunkts insbesondere

- Funktion und Einsatz von Kraft- und Arbeitsmaschinen benennen,
- den Stand der Technik und daraus resultierende Anwendungsfelder der Kraft- und Arbeitsmaschinen beschreiben und am Beispiel anzuwenden,
- grundlegende Theorien, Methoden und Eigenschaften für die verschiedenen Anwendungsfelder der Kraft- und Arbeitsmaschinen benennen und diese einsetzen und bewerten.

Voraussetzungen
Keine
Inhalt
Im Ergänzungsbereich werden ergänzende Grundlagen, Unterpunkte und Detailfragen der o.g. Maschinen behandelt. Die Bandbreite reicht dabei von grundlegender numerischer Simulation der Prozesse bis zur anwendungsorientierten Projektierung und Entwicklung von Systemen.

Empfehlungen
Empfohlene Wahlpflichtfächer: Wärme- und Stoffübertragung

Arbeitsaufwand
Der Arbeitsaufwand beträgt 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen und Übungen
7.21 Modul: Schwerpunkt: Kraftfahrzeugtechnik (SP 12) [M-MACH-102818]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Kraftfahrzeugtechnik (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Kraftfahrzeugtechnik (K)</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100092 Grundlagen der Fahrzeugtechnik I</td>
<td>8 LP</td>
<td>Gauterin, Unrau</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Kraftfahrzeugtechnik (E) ()

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Kraftfahrzeugtechnik</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105655 Alternative Antriebe für Automobile</td>
<td>4 LP</td>
<td>Noreikat</td>
</tr>
<tr>
<td>T-MACH-105233 Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105226 Dynamik des Kfz-Antriebsstrangs</td>
<td>5 LP</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105152 Fahreigenschaften von Kraftfahrzeugen I</td>
<td>4 LP</td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-105153 Fahreigenschaften von Kraftfahrzeugen II</td>
<td>4 LP</td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-108374 Fahrzeugergonomie</td>
<td>4 LP</td>
<td>Kunkel</td>
</tr>
<tr>
<td>T-MACH-105154 Fahrzeugklima und -akustik I</td>
<td>4 LP</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155 Fahrzeugklima und -akustik II</td>
<td>4 LP</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105237 Fahrzeugdynamik - Strategien, Konzepte, Werkstoffe</td>
<td>4 LP</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-105156 Fahrzeugmechatronik I</td>
<td>4 LP</td>
<td>Ammon</td>
</tr>
<tr>
<td>T-MACH-102207 Fahrzeugreifen- und Räderentwicklung für PKW</td>
<td>4 LP</td>
<td>Leister</td>
</tr>
<tr>
<td>T-MACH-105218 Fahrzeugsehen</td>
<td>6 LP</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105535 Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>4 LP</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-102117 Grundlagen der Fahrzeugtechnik II</td>
<td>4 LP</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105044 Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>4 LP</td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-102116 Grundlagen zur Konstruktion von Kraftfahrzeugbauteilen</td>
<td>2 LP</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-102119 Grundlagen zur Konstruktion von Kraftfahrzeugbauteilen II</td>
<td>2 LP</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-105160 Grundsätze der Nutzfahrzeugentwicklung I</td>
<td>2 LP</td>
<td>Weber</td>
</tr>
<tr>
<td>T-MACH-105161 Grundsätze der Nutzfahrzeugentwicklung II</td>
<td>2 LP</td>
<td>Weber</td>
</tr>
<tr>
<td>T-MACH-105162 Grundsätze der PKW-Entwicklung I</td>
<td>2 LP</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163 Grundsätze der PKW-Entwicklung II</td>
<td>2 LP</td>
<td>Frech</td>
</tr>
<tr>
<td>T-ETIT-100784 Hybride und elektrische Fahrzeuge</td>
<td>4 LP</td>
<td>Becker</td>
</tr>
<tr>
<td>T-MACH-105375 Industriearodynamik</td>
<td>4 LP</td>
<td>Breitling, Frohnape</td>
</tr>
<tr>
<td>T-MACH-105188 Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>4 LP</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105221 Konstruktiver Leichtbau</td>
<td>4 LP</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>T-MACH-105164 Laseransatz im Automobilbau</td>
<td>4 LP</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-105442 Patente und Patentstrategien in innovativen Unternehmen</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-102155 Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung</td>
<td>4 LP</td>
<td>Mbang</td>
</tr>
<tr>
<td>T-MACH-102156 Project Workshop: Automotive Engineering</td>
<td>6 LP</td>
<td>Frey, Gauterin, Gießler</td>
</tr>
<tr>
<td>T-MACH-105441 Projektierung und Entwicklung ölhädraulischer Antriebssysteme</td>
<td>4 LP</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-105347 Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>4 LP</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105350 Rechnergestützte Fahrzeugdynamik</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
</tbody>
</table>
7 MODULE

Modul: Schwerpunkt: Kraftfahrzeugtechnik (SP 12) [M-MACH-102818]

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Titel</th>
<th>LP</th>
<th>Lehrer/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105696</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td>3</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-102194</td>
<td>Verbrennungsmotoren I</td>
<td>4</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>4</td>
<td>Stiller, Werling</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Verzahntechnik</td>
<td>4</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-110318</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>4</td>
<td>Kienzle, Steegmüller</td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study</td>
<td>1</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-110796</td>
<td>Python-Algorithmus für Fahrzeugtechnik</td>
<td>4</td>
<td>Rhode</td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4</td>
<td>Fleischer, Hofmann</td>
</tr>
<tr>
<td>T-MACH-110958</td>
<td>Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben</td>
<td>4</td>
<td>Albers, Faust</td>
</tr>
<tr>
<td>T-MACH-110954</td>
<td>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</td>
<td>4</td>
<td>Kärger, Liebig</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Gilt für alle eigenen Studiengänge, für die im Folgenden kein Wert hinterlegt wurde.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende
- kennt die wichtigsten Baugruppen eines Fahrzeugs,
- kennt und versteht die Funktionsweise und das Zusammenspiel der einzelnen Komponenten,
- kennt die Grundlagen zur Dimensionierung der Bauteile,
- kennt und versteht die Vorgehensweisen bei der Entwicklung eines Fahrzeugs,
- kennt und versteht die technischen Besonderheiten, die beim Entwicklungsprozess eine Rolle spielen,
- ist sich der Randbedingungen, die z.B. aufgrund der Gesetzgebung zu beachten sind, bewusst,
- ist in der Lage, Fahrzeugkonzepte zu analysieren, zu beurteilen und bei der Entwicklung von Fahrzeugen kompetent mitzuwirken.

Voraussetzungen
Keine

Inhalt
Im Modul Kraftfahrzeugtechnik werden die Grundlagen vermittelt, die für die Entwicklung, die Auslegung, die Produktion und den Betrieb von Kraftfahrzeugen bedeutend sind. Insbesondere werden die primär wichtigen Aggregate wie Motor, Getriebe, Antriebsstrang, Fahrwerk und Hilfsaggregate behandelt, aber ebenso alle technischen Einrichtungen, die den Betrieb sicherer und einfacher machen, bis hin zur Innenausstattung, die dem Nutzer eine möglichst angenehme, arbeitsoptimale Umgebung bieten soll.

Im Modul Kraftfahrzeugtechnik liegt der Fokus auf den Personenkraftwagen und Nutzfahrzeugen, die für den Straßeneinsatz bestimmt sind.

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen
Die Lehr- und Lernform (Vorlesung, Praktikum oder Workshop) wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
7.22 Modul: Schwerpunkt: Materialwissenschaft und Werkstofftechnik (SP 26) [M-MACH-102819]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

Leistungspunkte	Turnus	Dauer	Sprache	Level	Version
12 | Jedes Semester | 2 Semester | Deutsch/Englisch | 3 | 5

Wahlinformationen
Im Kernbereich des Schwerpunktes sind mindestens 8 LP zu wählen.

Pflichtbestandteile
T-MACH-105301 Werkstoffkunde III 8 LP Heilmaier

Wahlpflichtblock: Materialwissenschaft und Werkstofftechnik (E) ()
T-MACH-105308 Atomistische Simulation und Molekulardynamik 4 LP Gumbsch, Schneider, Weygand
T-MACH-102141 Aufbau und Eigenschaften verschleißfester Werkstoffe 4 LP Ulrich
T-MACH-105157 Gießereikunde 4 LP Wilhelm
T-MACH-102111 Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie 4 LP Schell
T-MACH-100287 Keramik-Grundlagen 6 LP Hoffmann
T-MACH-105330 Konstruieren mit Polymerwerkstoffen 4 LP Liedel
T-MACH-105164 Lasereinsatz im Automobilbau 4 LP Schneider
T-MACH-105333 Mechanik und Festigkeitslehre von Kunststoffen 4 LP von Bernstorff
T-MACH-105303 Mikrostruktursimulation 5 LP August, Nestler
T-MACH-102137 Polymerengineering I 4 LP Elsner, Liebig
T-MACH-110960 Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils 4 LP Zanger
T-MACH-105724 Schadenskunde 4 LP Greiner, Schneider
T-MACH-105170 Schweißtechnik 4 LP Farajian
T-MACH-105354 Schwingfestigkeit metallischer Werkstoffe 4 LP Guth
T-MACH-105970 Strukturberechnung von Faserverbundlaminaten 4 LP Kärger
T-MACH-105362 Technologie der Stahlbauteile 4 LP Schulze
T-MACH-102139 Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen 4 LP Gruber, Gumbsch
T-MACH-102140 Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch 4 LP Gumbsch, Weygand
T-MACH-107684 Werkstoffanalytik 4 LP Gibmeier, Schneider
T-MACH-105211 Werkstoffe für den Leichtbau 4 LP Elsner, Liebig
T-MACH-110937 Werkstoffrecycling und Nachhaltigkeit 4 LP Elsner, Liebig

Wahlpflichtblock: Materialwissenschaft und Werkstofftechnik (P) (max. 4 LP)
T-MACH-105651 Biomechanik: Design in der Natur und nach der Natur 4 LP Mattheck
T-MACH-105447 Experimentelles metallographisches Praktikum 4 LP Heilmaier, Mühl
T-MACH-102154 Praktikum Lasermaterialbearbeitung 4 LP Schneider

Wahlpflichtblock: Materialwissenschaft und Werkstofftechnik (Ü) ()
T-MACH-107685 Übungen zu Werkstoffanalytik 2 LP Gibmeier, Schneider

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 Min. je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.
Qualifikationsziele
Im Rahmen des Schwerpunkts wird ein Teilgebiet des Maschinenbaus in Breite und Tiefe erschlossen. Die Studierenden erwerben in den Kernfächern umfassende und in den Ergänzungsfächern detaillierte Kenntnisse des gewählten Teilgebiets und sind in der Lage, dort neue (wissenschaftliche) Lösungen zu generieren.
Die konkreten Lernziele werden mit dem jeweiligen Koordinator des Schwerpunkts vereinbart.

Voraussetzungen
Keine

Inhalt
Das übergreifende Thema des Schwerpunktes sind die thermodynamischen und kinetischen Grundlagen der Werkstoffkunde, die sich die Studierenden im Pflichtbereich aneignen (8 LP). Darüber hinaus gibt es einen großen Ergänzungsbereich der Materialwissenschaft und Werkstofftechnik, aus dem die Studierenden individuell ihren Interessen entsprechend auswählen können.

Anmerkungen
Der Schwerpunkt Materialwissenschaft und Werkstofftechnik umfasst im Bachelorstudium 12 LP. Im Bereich der Pflichtbestandteile des Schwerpunktes sind mindestens 8 LP zu wählen. Im Ergänzungsbereich können die Studierenden ihren Neigungen entsprechend Veranstaltungen auswählen. Im Bachelorstudium gibt es einen eingeschränkten Wahlkatalog im Ergänzungsbereich (siehe Studienplan).

Arbeitsaufwand
Der Arbeitsaufwand im Bachelor of Science beträgt ca. 360 Zeitstunden, wovon etwa 66 Stunden Präsenzzeit darstellen.

Lehr- und Lernformen
Im Pflichtbereich des Schwerpunktes Materialwissenschaft und Werkstofftechnik wählen die Studierenden aus einer eng begrenzten Zahl von Vorlesungen und integrierten Übungen (Pflicht) aus.
Im Ergänzungsbereich können neben Vorlesungen und Übungen auch Praktika und Seminare ausgewählt werden.
Modul: Schwerpunkt: Mechatronik (SP 31) [M-MACH-102820]

Verantwortung: Prof. Dr. Veit Hagenmeyer

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Mechatronik (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105694</td>
<td>Datenanalyse für Ingenieure</td>
<td>5</td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Einführung in die Mechatronik</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Einführung in die Mehrkörperdynamik</td>
<td>5</td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Fahrzeugsehen</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-105539</td>
<td>Moderne Regelungskonzepte I</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Mechatronik (E) (höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8</td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Steuerungen</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digitale Regelungen</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimentelle Dynamik</td>
<td>5</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Grundlagen der Logistik</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>5</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Maschinendynamik II</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-105334</td>
<td>Mechanik von Mikrosystemen</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105370</td>
<td>Mechatronik-Praktikum</td>
<td>4</td>
</tr>
<tr>
<td>T-INFO-101266</td>
<td>Mensch-Maschine-Interaktion</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-105335</td>
<td>Messtechnik II</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Neue Akten und Sensoren</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>4</td>
</tr>
<tr>
<td>T-INFO-108014</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-105373</td>
<td>Schwingungstechnisches Praktikum</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-109313</td>
<td>Signale und Systeme</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-105372</td>
<td>Stabilitätstheorie</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105521</td>
<td>Systemtheorie der Mechatronik</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105555</td>
<td>Systemintegration in der Mikro- und Nanotechnik</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-110272</td>
<td>Systemintegration in der Mikro- und Nanotechnik 2</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Technische Schwingungslehre</td>
<td>5</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Praktikum</td>
<td>4</td>
</tr>
</tbody>
</table>

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
Wahlpflichtblock: Mechatronik (Ü) ()

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108889</td>
<td>BUS-Steuerungen - Vorleistung</td>
<td>0</td>
<td>Daß, Geimer</td>
</tr>
<tr>
<td>T-INFO-106257</td>
<td>Übungsschein Mensch-Maschine-Interaktion</td>
<td>0</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfungen und mündliche Prüfungen.

Qualifikationsziele
Studierende des Schwerpunkts kennen die zukunftsorientierten Verfahren des modernen Ingenieurs. Sie haben die Fähigkeit zur individuellen, kreativen Lösung komplexer Probleme mit interdisziplinär anwendbaren Mitteln unter Berücksichtigung der Eigenheiten der betroffenen Fachrichtungen.

Voraussetzungen
keine

Inhalt
Der Schwerpunkt Mechatronik bietet eine breite interdisziplinäre Ausbildung der Studierenden. Sie sind zur ganzheitlichen Lösung von Aufgabenstellungen der Mechatronik befähigt, die im Wesentlichen folgende Teilgebiete miteinander in Verbindung bringt:
§ Mechanik und Fluidik
§ Elektronik
§ Informationsverarbeitung
§ Automation.

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen
Die Inhalte des Schwerpunkts werden in Form von Vorlesungen, Übungen und Praktika vermittelt.
7.24 Modul: Schwerpunkt: Modellbildung und Simulation in der Dynamik (SP 61) [M-MACH-104430]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik/LS Technische Mechanik
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Modellbildung und Simulation in der Dynamik (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105209</td>
<td>Einführung in die Mehrkörperdynamik</td>
<td>5 LP</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>5 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematische Methoden der Dynamik</td>
<td>6 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>5 LP</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Technische Schwingungslehre</td>
<td>5 LP</td>
<td>Fidlin, Seemann</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Modellbildung und Simulation in der Dynamik (E) (max. 5 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105308</td>
<td>Atomistische Simulation und Molekulardynamik</td>
<td>4 LP</td>
<td>Gumbsch, Schneider, Weygand</td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimentelle Dynamik</td>
<td>5 LP</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Maschinendynamik II</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>6 LP</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105349</td>
<td>Rechnergestützte Dynamik</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105350</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105384</td>
<td>Rechnergestützte Mehrkörperdynamik</td>
<td>4 LP</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105172</td>
<td>Simulation gekoppelter Systeme</td>
<td>4 LP</td>
<td>Geimer, Xiang</td>
</tr>
<tr>
<td>T-MACH-108888</td>
<td>Simulation gekoppelter Systeme - Vorleistung</td>
<td>0 LP</td>
<td>Geimer, Xiang</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung

Qualifikationsziele

Voraussetzungen
Keine

Inhalt

Arbeitsaufwand
360 h

Lehr- und Lernformen
Vorlesungen, Übungen
7.25 Modul: Schwerpunkt: Produktionssysteme (SP 38) [M-MACH-102589]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Produktionssysteme (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Tutor/Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>4 LP</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>4 LP</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>8 LP</td>
<td>Schulze, Zanger</td>
</tr>
<tr>
<td>T-MACH-108849</td>
<td>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</td>
<td>8 LP</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102151</td>
<td>Materialfluss in Logistiksystemen</td>
<td>9 LP</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>8 LP</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Produktionssysteme (E) ()

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Tutor/Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8 LP</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>4 LP</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Produktionssysteme (P) (max. 4 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Tutor/Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>4 LP</td>
<td>Häfner</td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils</td>
<td>4 LP</td>
<td>Zanger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Qualifikationsziele
Die Studierenden …

- können in vertrauten Situationen productionstechnische Methoden zielgerichtet auswählen und ihre Auswahl begründen.
- sind in der Lage, Produktionsprozesse modellhaft zu beschreiben und zu vergleichen.
- sind in der Lage, bekannte Lösungen auf vorgegebene Probleme im productionstechnischen Umfeld unter Berücksichtigung wissenschaftlicher Theorien, Prinzipien und Methoden zu transferieren.
- sind befähigt, Aufgabenstellungen im productionstechnischen Umfeld teamorientiert zu lösen und dabei verantwortungsvoll und situationsangemessen vorzugehen.
- können bei der Lösung vorgegebener Problemstellungen die Ergebnisse anderer integrieren.
- besitzen die Fähigkeit, die eigenen Lösungsergebnisse schriftlich darzulegen und können diese interpretieren.
- können Systeme und Prozesse identifizieren, zergliedern, weiterentwickeln und vorgegebene Bewertungsmaßstäbe unter Berücksichtigung technischer, ökonomischer und gesellschaftlicher Randbedingungen anlegen.

Voraussetzungen
Keine

Inhalt
Im Rahmen des Moduls werden die Studierenden die Productionstechnik erlernen und kennenlernen. Durch das vielfältige Vorlesungsangebot und die Exkursionen im Rahmen einiger Vorlesungen werden tiefe Einblicke in den Bereich der Productionstechnik geschaffen.

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen, Seminare, Workshops, Exkursionen
7.26 Modul: Schwerpunkt: Schwingungslehre [M-MACH-104442]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik/LS Technische Mechanik
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Schwingungslehre (K) (mind. 8 LP)

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>Leistungspunkte</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105290</td>
<td>Technische Schwingungslehre</td>
<td>5 LP</td>
<td>Fidlin, Seemann</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>5 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>6 LP</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105372</td>
<td>Stabilitätstheorie</td>
<td>6 LP</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105439</td>
<td>Einführung in nichtlineare Schwingungen</td>
<td>7 LP</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Schwingungslehre (E) (höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>Leistungspunkte</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105224</td>
<td>Maschinendynamik II</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105443</td>
<td>Wellenausbreitung</td>
<td>4 LP</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>5 LP</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimentelle Dynamik</td>
<td>5 LP</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>4 LP</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>4 LP</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105349</td>
<td>Rechnergestützte Dynamik</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Schwingungslehre (P) (max. 4 LP)

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>Leistungspunkte</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105373</td>
<td>Schwingungstechnisches Praktikum</td>
<td>4 LP</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung

Voraussetzungen
Keine

Inhalt
Verantwortung: Prof. Dr. Thomas Koch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

Leistungspunkte 12
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch
Level 3
Version 4

Pflichtbestandteile
T-MACH-105652 Technische Grundlagen des Verbrennungsmotors 5 LP Bernhardt, Kubach, Pfeil, Toedter, Wagner

Wahlpflichtblock: Technik des Verbrennungsmotors (K) (mind. 3 LP)
T-MACH-105184 Betriebsstoffe für Verbrennungsmotoren 4 LP Kehrwald, Kubach
T-MACH-110817 Entwicklung des hybriden Antriebsstranges 4 LP Koch
T-MACH-105169 Motorenmesstechnik 4 LP Bernhardt

Wahlpflichtblock: Technik des Verbrennungsmotors (E) (höchstens 1 Bestandteil)
T-MACH-105173 Abgas- und Schmierölanalyse am Verbrennungsmotor 4 LP Gohl
T-MACH-105649 Aufladung von Verbrennungsmotoren 4 LP Kech, Kubach
T-MACH-110816 Großdiesel- und -gasmotoren für Schiffsantriebe 4 LP Kubach
T-MACH-105044 Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren 4 LP Deutschmann, Grunwaldt, Kubach, Lox
T-MACH-105337 Motorenlabor 4 LP Wagner
T-MACH-105985 Zündsysteme 4 LP Toedter

Erfolgskontrolle(n)
mündliche Prüfung, schriftl. Prüfung, Praktikumsbericht (s. Beschreibung der Teilleistungen)

Qualifikationsziele
Nach Abschluss des Schwerpunktes sind die Studierenden in der Lage

- Die Funktionsweise verschiedener Motortypen zu beschreiben und zu erklären
- Herausforderungen bei der Motorentwicklung zu benennen
- Zusammenhänge zwischen Motorbetrieb, Applikationsparametern und Abgasemissionen zu beschreiben

Voraussetzungen
Keine

Inhalt
Im Fokus dieses Schwerpunktes stehen der grundlegende Aufbau und die Wirkungsweise von Verbrennungsmotoren. Unterschiedliche Motortypen wie Ottomotoren, Dieselmotoren und Gasmotoren werden behandelt. Dabei werden sowohl die grundlegenden thermodynamischen wie auch die mechanischen Gesichtspunkte beleuchtet. Der Einfluss von Applikationsparametern wird ebenso erläutert wie der Zusammenhang von Motorkonzept, Betriebsstoff und Emissionen.

Arbeitsaufwand
Der Arbeitsaufwand beträgt 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen, Übungen, Labore
Modul: Schwerpunkt: Technische Logistik (SP 44) [M-MACH-102821]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: Vertiefung im Maschinenbau (Schwerpunkt)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>4 LP</td>
<td>Mittwollen, Oellerich</td>
<td></td>
</tr>
<tr>
<td>T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>5 LP</td>
<td>Hochstein</td>
<td></td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Technische Logistik (E) ()

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102160</td>
<td>Ausgewählte Anwendungen der Technischen Logistik</td>
<td>4 LP</td>
<td>Milushev, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108945</td>
<td>Ausgewählte Anwendungen der Technischen Logistik - Projekt</td>
<td>2 LP</td>
<td>Milushev, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102159</td>
<td>Elemente und Systeme der Technischen Logistik</td>
<td>4 LP</td>
<td>Fischer, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108946</td>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
<td>2 LP</td>
<td>Fischer, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105174</td>
<td>Lager- und Distributionssysteme</td>
<td>3 LP</td>
<td>Furmans</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>4 LP</td>
<td>Braun, Schönung</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105175</td>
<td>Logistiksysteme auf Flughäfen</td>
<td>3 LP</td>
<td>Richter</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Grundlagen der Logistik</td>
<td>4 LP</td>
<td>Thomas</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105171</td>
<td>Sicherheitstechnik</td>
<td>4 LP</td>
<td>Kany</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>4 LP</td>
<td>Lanza</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8 LP</td>
<td>Fleischer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105378</td>
<td>Kognitive Automobile Labor</td>
<td>6 LP</td>
<td>Kitt, Lauer, Stiller</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>4 LP</td>
<td>Stiller, Werling</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche und mündliche Prüfung, siehe Teilleistungen

Qualifikationsziele

Die Studierenden können:

- Die grundlegenden Funktionselemente der technischen Logistik beschreiben,
- Die für die Funktionsweise wichtigsten Parameter bestimmen,
- Diese Funktionselemente zur Lösung fördertechnischer Aufgaben geeignet kombinieren und
- Daraus entstandene fördertechnische Anlagen beurteilen.

Voraussetzungen

Keine

Inhalt

Der Schwerpunkt *Technische Logistik* vermittelt tiefreichende Grundlagen für die zentralen Fragestellungen der technischen Logistik. Es wird gezielt auf technische Besonderheiten der Fördertechnik eingegangen. Die Vorlesungsinhalte werden durch Übungen vertieft.

Arbeitsaufwand

Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen

Vorlesung und Übung; Selbststudium
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte: 8
Turnus: Jedes Sommersemester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105207</td>
<td>Strömungslehre 1&2</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

gemeinsame Erfolgskontrolle der LV "Strömungslehre I" und "Strömungslehre II"; schriftliche Prüfung, 3. Std. (benotet)

Qualifikationsziele

Nach Abschluss dieses Moduls ist der/die Studierende in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, herzuleiten und auf Beispiele anzuwenden. Er/Sie kann die charakteristischen Eigenschaften von Fluiden benennen und Strömungszustände unterscheiden. Der/Die Studierende ist in der Lage, Strömungsgrößen für grundlegende Anwendungsfälle zu bestimmen. Dies beinhaltet die Berechnung von

- statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken
- zweidimensionalen viskosen Strömungen
- verlustfreien inkompressiblen und kompressiblen Strömungen (Stromfadentheorie)
- verlustbehafteten technischen Rohrströmungen

Zusammensetzung der Modulnote

Note der Prüfung

Voraussetzungen

Keine

Inhalt

Eigenschaften von Fluiden, Oberflächenspannung, Hydro- und Aerostatik, Kinematik, Stromfadentheorie (kompressibel und inkompressibel), Verluste in Rohrströmungen, Dimensionsanalyse, dimensionslose Kennzahlen

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton'scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Anmerkungen

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

Präsenzzeit: 64 Stunden
Selbststudium: 176 Stunden

Lehr- und Lernformen

Vorlesungen + Übungen

Literatur

Zirep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg
Kuhlmann, H.: Strömungsmechanik, Pearson Studium
Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag
7.30 Modul: Technische Mechanik (BSc-Modul 03, TM) [M-MACH-102572]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte 23 Turnus Jedes Wintersemester Dauer 4 Semester Sprache Deutsch/Englisch Level 3 Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Vorlesender</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Technische Mechanik I</td>
<td>7</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Technische Mechanik II</td>
<td>6</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-105201</td>
<td>Technische Mechanik III & IV</td>
<td>10</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-100528</td>
<td>Übungen zu Technische Mechanik I</td>
<td>0</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-100284</td>
<td>Übungen zu Technische Mechanik II</td>
<td>0</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-105202</td>
<td>Übungen zu Technische Mechanik III</td>
<td>0</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105203</td>
<td>Übungen zu Technische Mechanik IV</td>
<td>0</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Prüfungsvorleistung in TM III, IV

Teilleistung "Technische Mechanik I", schriftliche Prüfung (Klausur), 90 Minuten; benotet
Teilleistung "Technische Mechanik II", schriftliche Prüfung (Klausur), 90 Minuten; benotet
Teilleistung "Technische Mechanik III/IV", schriftliche Prüfung (Klausur), 180 Minuten; benotet

Die Modulnote berechnet sich aus dem LP-gewichteten Mittel der enthaltenen benoteten Teilleistungen.

Qualifikationsziele

Nach Abschluss der Vorlesungen TM I und TM II können die Studierenden

- Spannungs- und Verzerrungsverteilungen für die Grundlastfälle im Rahmen der Elastizität und Thermoelastizität bewerten
- 3D-Spannungs- und Verzerrungszustände berechnen und bewerten
- das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- Energiemethoden anwenden und Näherungslösungen bewerten
- die Stabilität von Gleichgewichtslagen bewerten
- Übungsaufgaben zu den Themen der Vorlesungen unter Verwendung des Computeralgebrasystems MAPLE lösen

Voraussetzungen

Keine
Inhalt
Das Modul besteht aus den Lehrveranstaltungen "Technische Mechanik I" bis "Technische Mechanik IV" sowie den "Übungen zu Technische Mechanik I" bis "Übungen zu Technische Mechanik IV".

Inhalte "Technische Mechanik I": Grundzüge der Vektorrechnung; Kraftsysteme; Statik starrer Körper; Schnittgrößen in Stäben u. Balken; Haftung und Gleitreibung; Schwerpunkt u. Massenmittelpunkt; Arbeit, Energie, Prinzip der virtuellen Verschiebungen; Statik der undehnbaren Seile; Elastostatik der Zug-Druck-Stäbe

Inhalte "Technische Mechanik II": Balkenbiegung; Querkraftschub; Torsionstheorie; Spannungs- und Verzerrungszustand in 3D; Hooke'sches Gesetz in 3D; Elastizitätstheorie in 3D; Energiemethoden der Elastostatik; Näherungsverfahren; Stabilität elastischer Stäbe

Inhalte "Technische Mechanik III": Kinematik: kartesische, zylindrische und natürliche Koordinaten, Ableitungen in verschiedenen Bezugssystemen, Winkelgeschwindigkeiten.

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzzeit: 204h
Selbststudium: 486h

Lehr- und Lernformen
Vorlesungen, Übungen, Kleingruppenübungen am Rechner, Bewertung bearbeiteter Übungsblätter, Kolloquien, Sprechstunden (freiwilige Teilnahme)
Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104747</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>8 LP</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105287</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>7 LP</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105204</td>
<td>Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td>0 LP</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105288</td>
<td>Technische Thermodynamik und Wärmeübertragung II, Vorleistung</td>
<td>0 LP</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern

Thermodynamik I: Prüfungsleistung schriftlich, benotet; Dauer ca. 3h

Thermodynamik II: Prüfungsleistung schriftlich, benotet; Dauer ca. 3h

Qualifikationsziele

Die Studierenden erwerben Fähigkeiten die Grundlagen der Thermodynamik zu benennen und auf Problemstellungen in verschiedenen Bereichen des Maschinenbaus, insbesondere der Energietechnik anzuwenden.

Zusammensetzung der Modulnote

Gewichtung nach LP

Voraussetzungen

Keine

Inhalt

Thermodynamik I:

- System, Zustandsgrößen
- Chemische und thermodynamische Eigenschaften von reinen Stoffen
- Absolute Temperatur, Modellsysteme
- 1. Hauptsatz für ruhende und bewegte Systeme Entropie und 2. Hauptsatz
- Verhalten realer Stoffe beschrieben durch Tabellen,Diagramme und Zustandsgleichungen
- Maschinenprozesse
- Mischung idealer Gase

Thermodynamik II:

- Wiederholung des Stoffes von “Thermodynamik und Wärmeübertragung I”
- Verhalten von Mischungen
- Feuchtluft
- Einfluss molekularer Eigenschaften auf thermodynamische Größen
- Verhalten realer Stoffe beschrieben durch Zustandsgleichungen
- Anwendung der Hauptsätze auf chemische Reaktionen
- 3. Hauptsatz der Thermodynamik
- Wärmeübertragung
Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzeit: 150h
Selbststudium: 300h

Lehr- und Lernformen
Vorlesungen
Übungen
Tutorien
7.32 Modul: Wahlpflichtmodul (BSc-Modul WPF) [M-MACH-102746]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Vertiefung im Maschinenbau (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtmodul (1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105381</td>
<td>Ausgewählte Themen virtueller Ingenieursanwendungen</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105320</td>
<td>Einführung in die Finite-Elemente-Methode</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-100535</td>
<td>Einführung in die Mechatronik</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105209</td>
<td>Einführung in die Mehrkörperrdynamik</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-110362</td>
<td>Einführung in die Numerische Strömungsmechanik</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-102093</td>
<td>Fluidtechnik</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105213</td>
<td>Grundlagen der technischen Verbrennung I</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-110377</td>
<td>Kontinuumsmechanik der Festkörper und Fluide</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105452</td>
<td>Mathématiques appliquées aux sciences de l’ingénieur</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105293</td>
<td>Mathematische Methoden der Dynamik</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-110375</td>
<td>Mathematische Methoden der Kontinuumsmechanik</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105294</td>
<td>Mathematische Methoden der Schwingungsllehre</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105295</td>
<td>Mathematische Methoden der Strömungslehre</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-100300</td>
<td>Modellierung und Simulation</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-100530</td>
<td>Physik für Ingenieure</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-102102</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105970</td>
<td>Strukturberechnung von Faserverbundlaminaten</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105290</td>
<td>Technische Schwingungsllehre</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-105292</td>
<td>Wärme- und Stoffübertragung</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-100532</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtmodul (Ü)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110330</td>
<td>Übungen zu Einführung in die Finite-Elemente-Methode</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-111033</td>
<td>Übungen zu Einführung in die Numerische Strömungsmechanik</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-110333</td>
<td>Übungen zu Kontinuumsmechanik der Festkörper und Fluide</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-MACH-110376</td>
<td>Übungen zu Mathematische Methoden der Kontinuumsmechanik</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche/schriftliche Prüfung
Qualifikationsziele

Voraussetzungen
Keine

Inhalt
Siehe Teilleistungen.

Anmerkungen
Insgesamt müssen Fächer aus den entsprechenden Wahlpflichtkatalogen gewählt werden, und zwar im Umfang von 4 LP im Bachelorstudium (siehe entsprechende Studienpläne bzw. Modulhandbücher).

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 120 Zeitstunden und entspricht 4 Leistungspunkten. Der Arbeitsaufwand variiert je nach Veranstaltung, bei einer Vorlesungsveranstaltung beispielsweise mit 2 SWS beträgt die Präsenzzeit 28 h und die Vor- und Nachbearbeitungszeit zuhause 92 h, insgesamt 120 h.

Lehr- und Lernformen
Vorlesungen, Übungen
7.33 Modul: Werkstoffkunde (BSc-Modul 04, WK) [M-MACH-102562]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte 14
Turnus Jedes Wintersemester
Dauer 2 Semester
Sprache Deutsch/Englisch
Level 3
Version 2

Pflichtbestandteile
T-MACH-105145 Werkstoffkunde I & II 11 LP Gibmeier, Heilmaier, Pundt
T-MACH-105146 Werkstoffkunde Praktikum 3 LP Gibmeier, Heilmaier, Pundt

Erfolgskontrolle(n)
Unbenotet: Teilnahme an 10 Praktikumsversuchen, erfolgreiche Eingangskolloquien und 1 Kurzvortrag. Das Praktikum muss vor der Anmeldung zur Prüfung erfolgreich abgeschlossen werden;
Benotet: mündliche Prüfung über Inhalte des gesamten Moduls, ca. 25 Minuten.

Qualifikationsziele
Die Studierenden sollen in diesem Modul die folgenden Fähigkeiten erreichen:

- Vertiefte Kenntnisse über Konstruktionswerkstoffe (auch als Struktur- oder Ingenieurswerkstoffe bezeichnet) und weniger ausführlich Funktionswerkstoffe
- Erkennen der Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten
- Kennenlernen sowie sicheres Anwenden der geeigneten Methoden zur Ermittlung von Kennwerten sowie zur Charakterisierung der Mikrostruktur von Werkstoffen
- Beurteilung von Werkstoffeigenschaften und den daraus resultierenden Verwendungsmöglichkeiten

Voraussetzungen
keine

Inhalt
WK I
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung
WK II
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe
Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Der Arbeitsaufwand des Moduls umfasst ca. 420 Stunden.

Der Arbeitsaufwand für das Praktikum Werkstoffkunde beträgt insgesamt 90 h und besteht aus Präsenzplicht in den 10 Versuchen (eine Woche halbtags, je 4 Zeitstunden pro Tag) und Vor- und Nachbearbeitungszeit zuhause.

Der Arbeitsaufwand für die Vorlesung Werkstoffkunde 1 und 2 beträgt pro Semester 165 h und besteht aus Präsenz in den Vorlesungen (WS: 4 SWS, SS: 2SWS) und Übungen (je 1 SWS im WS und SS) sowie Vor- und Nachbearbeitungszeit zuhause.

Lehr- und Lernformen
Das Modul "Werkstoffkunde" besteht aus den Vorlesungen "Werkstoffkunde I und II" mit zugehörigen Übungen in Kleingruppen und einem einwöchigen Laborpraktikum in Kleingruppen.
8 Teilleistungen

8.1 Teilleistung: Abgas- und Schmierölanalyse am Verbrennungsmotor [T-MACH-105173]

Verantwortung: Dr.-Ing. Marcus Gohl
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134150</td>
<td>Abgas- und Schmierölanalyse am Verbrennungsmotor</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gohl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76--T-Mach-105173</td>
<td>Abgas- und Schmierölanalyse am Verbrennungsmotor</td>
<td>Prüfung (PR)</td>
<td>Gohl</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105173</td>
<td>Abgas- und Schmierölanalyse am Verbrennungsmotor</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Hörerschein oder Möglichkeit einer mündlichen Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Abgas- und Schmierölanalyse am Verbrennungsmotor
2134150, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise
Die Vorlesungsunterlagen werden vor jeder Veranstaltung an die Studenten verteilt.

Verantwortung: Hon.-Prof. Dr. Roland Kläger
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>4</th>
<th>Turnus</th>
<th>Jedes Sommersemester</th>
<th>Version</th>
<th>3</th>
</tr>
</thead>
</table>

Lehrveranstaltungen
WS 20/21 2122300 Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte

Legende: 🖥 Online, 🛩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte
2122300, WS 20/21, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Abgesagt

Inhalt
Die Studierenden können
- die wesentlichen Zusammenhänge, Vorgänge und Strukturelemente der Produkt-/Innovationsplanung reproduzieren und als Handlungsleitfaden bei der Planung neuer Produkte anwenden
- agile Innovationsprozesse und die notwendigen Grundvoraussetzungen beschreiben
- den Mehrwert eines Produktes unter systemtechnischer Betrachtung verdeutlichen und Alleinstellungsmerkmale interpretieren
- den Zusammenhang zwischen dem "Mehrwert" überlegener Produkte und der Kreativität/Innovation ableiten
- Methoden und Werkzeuge der digitalen Produktplanung auf spezifische Anwendungsfälle anwenden
- die Elemente und Methoden des rechnergestützten Ideenmanagements und der Anforderungsmodellierung erläutern
- die Unterstützung des Produktplanungsprozesses durch entwicklungsbegleitende RP-Systeme beschreiben und für spezifische Anwendungsfälle geeignete 3D-Druckverfahren auswählen

Literaturhinweise
Vorlesungsfolien / Lecture slides

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 2020/21
8.3 Teilleistung: Alternative Antriebe für Automobile [T-MACH-105655]

Verantwortung: Prof. Dipl.-Ing. Karl Ernst Noreikat
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2133132</th>
<th>Nachhaltige Fahrzeugantriebe (Alternative Antriebe für Automobile)</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣 Toedter</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105655</th>
<th>Alternative Antriebe für Automobile</th>
<th>Prüfung (PR)</th>
<th>Noreikat</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105655</td>
<td>Alternative Antriebe für Automobile</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nachhaltige Fahrzeugantriebe (Alternative Antriebe für Automobile)
2133132, WS 20/21, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Nachhaltigkeit
Umweltbilanzierung
Geschichte
Infrastruktur
Marktsituation
Gesetzgebung
Alternative Kraftstoffe
Innovative Antriebe
BEV
Brennstoffzelle
Gemeinsame Komponenten
8.4 Teilleistung: Angewandte Tribologie in der industriellen Produktentwicklung [T-MACH-105215]

Verantwortung:
- Prof. Dr.-Ing. Albert Albers
- Dr.-Ing. Benoit Lorentz
- Prof. Dr.-Ing. Sven Matthiesen

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
- M-MACH-102812 - Schwerpunkt: Antriebssysteme
- M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 4

Turnus
- Jedes Wintersemester

Version
- 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Turnus</th>
<th>Prof. Dr.-Ing. Albert Albers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2145181</td>
<td>Angewandte Tribologie in der industriellen Produktentwicklung</td>
<td>2</td>
<td>Vorlesung (V) / 🖥</td>
<td>Lorentz</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 👥 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)
- Mündliche Prüfung (20 min)

Voraussetzungen
- Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Angewandte Tribologie in der industriellen Produktentwicklung

2145181, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Online

Inhalt

Das Ziel der Vorlesung ist, anhand von Beispielen aus der Industrie, die Vielfalt der Tribologie und die Besonderheiten geschmierter und ungeschmierter Wirkpartner zu diskutieren.

Die Studierenden sind in der Lage
- das tribologische System zu definieren,
- ein tribologisches System zu gestalten,
- Verschleiß- bzw. Beschädigungseffekten zu erörtern,
- Messtechnik, zur Untersuchung eines tribologischen Systems, zu erklären und
- Grenzen eines tribologischen Systems aufzuzeigen.

Weitere Inhalte:
- Reibung, Verschleiß, Verschleißprüfung
- Schmiermittel (Öle, Fette, Festschmierstoffe)
- Hydrodynamische und elastohydrodynamische Schmierung
- Tribologische Auslegung der KontaktPartner
- Messtechnik in geschmierten Kontakten
- Schadensfälle und deren Vermeidung
- Oberflächenschutzschichten
- Gleitlager, Wälzlager
- Zahnradpaarungen, Getriebe

Präsenzzeit: 21 h
Selbststudium: 99 h
Prüfung: Mündlich

Literaturhinweise

Vorlesungsfolien werden im Ilias veröffentlicht.
The lecture script will be allocated at Ilias.

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
8.5 Teilleistung: Antriebsstrang mobiler Arbeitsmaschinen [T-MACH-105307]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Marco Wydra

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme

Lehrveranstaltungen

| WS 20/21 | 2113077 | Antriebsstrang mobiler Arbeitsmaschinen | 2 SWS | Vorlesung (V) / 🧩 | Geimer, Herr |
| WS 20/21 | 2113078 | Übung zu 'Antriebsstrang mobiler Arbeitsmaschinen' | 1 SWS | Übung (Ü) / 🧩 | Geimer, Herr |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105307 | Antriebsstrang mobiler Arbeitsmaschinen | Prüfung (PR) | Geimer |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🧩 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen
- Allgemeine Grundlagen des Maschinenbaus
- Grundkenntnisse Hydraulik
- Interesse an mobilen Arbeitsmaschinen

Anmerkungen

Lernziele:
Die Studierenden können den Aufbau und die Funktionsweise aller diskutierten Antriebsstränge mobiler Arbeitsmaschinen erläutern. Sie können sowohl komplexe Getriebeschaupläne analysieren als auch mittels Überschlagsrechnungen einfache Getriebefunktionen synthetisieren.

Inhalt:
Innerhalb dieser Vorlesung werden die Variationsmöglichkeiten der Fahrantriebsstränge von mobilen Arbeitsmaschinen vorgestellt und diskutiert. Die Schwerpunkte der Vorlesung sind wie folgt:
- Mechanische Getriebe
- Hydrodynamische Wandler
- Hydrostatische Antriebe
- Leistungsverzweigte Getriebe
- Elektrische Antriebe
- Hybridantriebe
- Achsen
- Terramechanik (Rad-Boden Effekte)

Medien:
Beamer-Präsentation

Literatur:
Foliensatz zur Vorlesung downloadbar über ILIAS
Literaturhinweise in der Vorlesung

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Antriebsstrang mobiler Arbeitsmaschinen
2113077, WS 20/21, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt
Innerhalb dieser Vorlesung sollen die Variationsmöglichkeiten der Fahrantriebsstränge von mobilen Arbeitsmaschinen vorgestellt und diskutiert werden. Die Schwerpunkte der Vorlesung sind wie folgt:
- Vertiefen der bisherigen Grundlagen
- Mechanische Getriebe
- Hydrodynamische Wandler
- Hydrostatische Antriebe
- Leistungsverzweigte Getriebe
- Elektrische Antriebe
- Hybridantriebe
- Achsen
- Terramechanik (Rad-Boden Effekte)

Empfehlungen:
- Allgemeine Grundlagen des Maschinenbaus
- Grundkenntnisse Hydraulik
- Interesse an mobilen Arbeitsmaschinen
- Präsenzzeit: 21 Stunden
- Selbststudium: 89 Stunden

Literaturhinweise
Skriptum zur Vorlesung downloadbar über ILIAS
8.6 Teilleistung: Antriebssystemtechnik A: Fahrzeugantriebstechnik [T-MACH-105233]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Sascha Ott

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2146180</th>
<th>Antriebssystemtechnik A: Fahrzeugantriebstechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Albers, Ott</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105233</th>
<th>Antriebssystemtechnik A: Fahrzeugantriebstechnik</th>
<th>Prüfung (PR)</th>
<th>Albers, Ott</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105233-m</td>
<td>Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>Prüfung (PR)</td>
<td>Albers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung: 60 min Prüfungsdauer

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Antriebssystemtechnik A: Fahrzeugantriebstechnik
2146180, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden erwerben die grundlegenden Kompetenzen, die benötigt werden, um zukünftige energieeffiziente und gleichzeitig komfortabel fahrbare Antriebstränge zu entwickeln. Hierbei werden ganzheitliche Entwicklungsmethoden und Bewertungen von Antriebsystemen betrachtet. Die Schwerpunkte lassen sich hierbei in folgende Kapitel gliedern:

- System Antriebsstrang
- System Fahrer
- System Umgebung
- Systemkomponenten
- Entwicklungsprozess

Empfehlungen für ergänzende Lehrveranstaltungen:

- Antriebssystemtechnik B: Stationäre Antriebssysteme

Literaturhinweise

Kirchner, E.; "Leistungsübertragung in Fahrzeuggetrieben: Grundlagen der Auslegung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten", Springer Verlag Berlin Heidelberg 2007

Naunheimer, H.; "Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion", Springer Verlag Berlin Heidelberg 2007
8.7 Teilleistung: Antriebssystemtechnik B: Stationäre Antriebssysteme [T-MACH-105216]

Verantwortung: Prof. Dr.-Ing. Albert Albers
 Prof. Dr.-Ing. Sven Matthiesen
 Sascha Ott

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
 M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

Teilleistungsart
 Prüfungsleistung schriftlich
Leistungspunkte 4
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2145150, Antriebssystemtechnik B: Stationäre Antriebssysteme</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Albers, Ott</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105216, Antriebssystemtechnik B: Stationäre Antriebssysteme</td>
<td>Prüfung (PR)</td>
<td>Albers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung: 60 min Prüfungsdauer

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Antriebssystemtechnik B: Stationäre Antriebssysteme
2145150, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden erwerben die grundlegenden Kompetenzen, die benötigt werden, um zukünftige energieeffiziente und sicherer Antriebssystemlösungen für den Einsatz im industriellen Umfeld zu entwickeln. Hierbei werden ganzheitliche Entwicklungsmethoden und Bewertungen von Antriebssystemen betrachtet. Die Schwerpunkte lassen sich hierbei in folgende Kapitel gliedern:

- System Antriebsstrang
- System Bediener
- System Umgebung
- Systemkomponenten
- Entwicklungsprozess

Empfehlungen für ergänzende Lehrveranstaltungen:

- Antriebssystemtechnik A: Fahrzeugantriebssysteme

Literaturhinweise

VDI-2241: "Schaltare fremdbetätigte Reibkupplungen und -bremsen", VDI Verlag GmbH, Düsseldorf

8.8 Teilleistung: Arbeitstechniken im Maschinenbau [T-MACH-105296]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitwissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-102576 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2110969 | Arbeitstechniken im Maschinenbau (englisch) | 1 SWS | Kurs (Ku) | Deml |
| SS 2020 | 2174970 | Arbeitstechniken im Maschinenbau | 1 SWS | Kurs (Ku) | Deml |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105296 | Arbeitstechniken im Maschinenbau | Prüfung (PR) | Deml |
| SS 2020 | 76-T-MACH-105296-englisch | Arbeitstechniken im Maschinenbau | Prüfung (PR) | Deml |

Erfolgskontrolle(n)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Arbeitstechniken im Maschinenbau (englisch)
2110969, SS 2020, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Contents:
The aim of the course is to acquire basic knowledge about scientific work and the practical completion of a scientific thesis. The theoretical basis will be trained in the following six modules of the e-learning course „Competence of information in the natural and engineering sciences: planning, researching, writing“:

- Modul A Introduction to the content of the course
- Modul B Planning of the research process
- Modul C Methods of literature research
- Modul D Execution of literature research
- Modul E Review of scientific literature
- Modul F Scientific writing

In addition to the e-learning course, the practical process of a scientific thesis will be learned over the whole semester period in a group on current topics by the institutes of the KIT-department of Mechanical Engineering. The groups are supervised by the respective institutes and the theoretical basics are trained in further exercises.

Learning Objects:
On completion of the course the students are able:

- to structure and formulate a research question,
- to plan projects in a task- and resource-oriented way,
- to apply creativity techniques within a team,
- to investigate and to evaluate scientific resources and to derive information,
- to summarize work results in a well-structured written report,
- to present scientific problems/results in an oral presentation,
- to work actively in a team in a task-oriented and constructive manner.

Examinations:

- Module tests within the e-learning course
- Completion of four group exercises

1. Structuring of a formulate research question
2. Development of a milestone plan
3. Preparation of a list of scientific literature
4. Structuring of the scientific thesis

- Preparation of a scientific thesis of at least 30 pages according to a given guideline
- Preparation and execution of a scientific presentation of maximum 30 minutes

The course will be passed, if:

- the exam registration in KIT-Campus is done until 2020/07/24.
- all e-learning module tests are passed and the certification is submitted until 2020/05/20.
- all group exercises submit on deadline:

2020/05/22: Research question and milestone plan
2020/06/12: A list of scientific literature
2020/06/19: Structuring of the scientific thesis

- the complete scientific thesis is submitted until 2020/07/17.
- the scientific presentation is submitted until 2020/07/26 and you have to present your work until the end of the examination period at the supervised institute.

If you have not submitted the respective exercises by the deadline, you will have further three days for the completion. If you have not submitted the exercises after the additional time, the course will be failed and must be repeated in one of the following semesters.

Organisatorisches
The course addresses students in the Bachelor programme Mechanical Engineering in the fourth semester. Students in the Bachelor programme Mechanical Engineering in the second semester, as well as students in the Master programme Mechanical Engineering or other programmes, may participate in case of vacancies. The lecture consists of an e-learning course with a workload of approx. 9 hours and an accompanying self-study over the entire semester period.

The amount of work accounts for 120 h (=4 ECTS).
Inhalt

Inhalt:

- Modul A: Inhaltliche Einführung in den Kurs
- Modul B: Planen des Rechercheprozesses
- Modul C: Methoden der Literaturrecherche
- Modul D: Durchführung der Literaturrecherche
- Modul E: Umgang mit der gefundenen Literatur
- Modul F: Die schriftliche Ausarbeitung

Lernziele:
Die Studierende können nach erfolgreicher Teilnahme an der Veranstaltung:

- eigenständig eine Forschungsfrage strukturieren und aufstellen
- Aufgaben ressourcen- und zielorientiert planen
- geeignete Datenquellen finden, bewerten und Informationen extrahieren
- selbstständig eine wissenschaftliche Arbeit strukturieren und gliedern
- Informationen und Ergebnisse in einer schriftlichen Form aussagekräftig festhalten
- eine wissenschaftliche Fragestellung und Ergebnisse visuell aufbereiten, mündlich präsentieren sowie verteidigen
- aktiv im Team aufgabenorientiert und konstruktiv zusammenarbeiten

Erfolgskontrollen:

- Modul-Testate innerhalb des e-Learning Kurses
- Durchführung von insgesamt vier Hausarbeiten
 1. Strukturierung einer Forschungsfrage
 2. Erstellung eines Meilensteinplans
 3. Anfertigung eines Literaturverzeichnisses
 4. Gliederung der wissenschaftlichen Arbeit

- Anfertigung einer wissenschaftlichen Arbeit in einem Umfang von mindestens 30 Seiten nach einer vorgegebenen Richtlinie
- Erstellung und Durchführung einer maximal 30-minütigen wissenschaftlichen Präsentation

Die Veranstaltung ist bestanden, wenn:

- Sie sich bis Ende 07./2020 im KIT-Campus zur Prüfung angemeldet haben.
- Sie alle Modul-Testate des e-Learning Kurses bestehen und den Nachweis bis zum 05./2020 erbringen.
- Sie alle Hausarbeiten fristgerecht einreichen:
 22.05.2020: Forschungsfrage & Meilensteinplan
 12.06.2020: Literaturverzeichnis
 19.06.2020: Gliederung der wissenschaftlichen Arbeit
- Sie die wissenschaftliche Arbeit bis Ende 07./2020 vollständig abgegeben haben.
- Sie eine wissenschaftliche Präsentation bis Ende 07./2020 abgegeben und bis zum Ende der Prüfungszeit gehalten haben.

Sollten Sie die einzelnen Erfolgskontrollen nicht fristgerecht eingereicht haben, erhalten Sie jeweils weitere drei Tage Bearbeitungszeit. Sollten Sie auch nach der zusätzlichen Zeit keine Erfolgskontrolle abgeben haben, wird die Veranstaltung als nicht bestanden bewertet und muss in einem der folgenden Semester wiederholt werden.
Organisatorisches
Teilleistung: Arbeitswissenschaft I: Ergonomie [T-MACH-105518]

Verantwortung: Prof. Dr.-Ing. Barbara Deml

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>2109035</th>
<th>Arbeitswissenschaft I: Ergonomie</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Deml</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>76-T-MACH-105518</th>
<th>Arbeitswissenschaft I: Ergonomie</th>
<th>Prüfung (PR)</th>
<th>Deml</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 60 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Arbeitswissenschaft I: Ergonomie

2109035, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

1. Grundlagen menschlicher Arbeit
2. Verhaltenswissenschaftliche Datenerhebung
3. Arbeitsplatzgestaltung
4. Arbeitsumweltgestaltung
5. Arbeitswirtschaft
6. Arbeitsrecht und Interessensvertretung

Lernziele:

Die Studierende erwerben vor allem grundlegendes Wissen im Bereich der Ergonomie:

- Sie können Arbeitsplätze hinsichtlich kognitiver, physiologischer, anthropometrischer und sicherheitstechnischer Aspekte ergonomisch gestalten.
- Ebenso kennen sie physikalische und psychophysische Grundlagen (z. B. Lärm, Beleuchtung, Klima) im Bereich der Arbeitsumweltgestaltung.
- Die Studierenden sind zudem in der Lage, Arbeitsplätze arbeitwirtschaftlich zu bewerten, indem sie wesentliche Methoden des Zeitstudiums und der Entgeltfindung kennen und anwenden können.
- Schließlich erwerben sie auch einen ersten, überblickhaften Einblick in das deutsche Arbeitsrecht und die Organisation der überbetrieblichen Interessensvertretung.

Darüber hinaus lernen die Teilnehmer wesentliche Methoden der verhaltenswissenschaftlichen Datenerhebung (z. B. Eyetracking, EKG, Dual-Task-Paradigma) kennen.

Organisatorisches

In der zweiten Hälfte des Semesters, **ab dem 23.12.2020**, findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" statt.

- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).
Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
8.10 Teilleistung: Arbeitswissenschaft II: Arbeitsorganisation [T-MACH-105519]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung / Vorlesung</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2109036</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Online</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>Prüfung (PR)</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>Prüfung (PR)</td>
<td>Deml</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>Prüfung (PR)</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Legende: 📱 Online, 🛑 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Arbeitswissenschaft II: Arbeitsorganisation
2109036, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lehrinhalt:

1. Grundlagen der Arbeitsorganisation
2. Empirische Forschungsmethoden
3. Individualebene
 - Personalauswahl
 - Personalentwicklung
 - Personalbeurteilung
 - Arbeitszufriedenheit und Arbeitsmotivation
4. Gruppenebene
 - Interaktion und Kommunikation
 - Führung von Mitarbeitern
 - Teamarbeit
5. Organisationsebene
 - Aufbauorganisation
 - Ablauforganisation
 - Produktionsorganisation

Lernziele:
Die Studierenden erwerben einen ersten Einblick in empirische Forschungsmethoden (z. B. Experimentaldesign, statistische Datenauswertung). Darüber hinaus erwerben sie vor allem grundlegendes Wissen im Bereich der Arbeitsorganisation:

- Organisationsebene. Im Rahmen des Moduls erwerben die Studierenden auch grundlegendes Wissen im Bereich der Aufbau-, Ablauf- und Produktionsorganisation.
- Individualebene. Schließlich lernen die Studierenden auch Methoden aus dem Bereich der Personalauswahl, -entwicklung und -beurteilung kennen.
Organisatorisches
- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
8.11 Teilleistung: Atomistische Simulation und Molekulardynamik [T-MACH-105308]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik
M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2020 2181740 Atomistische Simulation und Molekulardynamik 2 SWS Vorlesung (V) Weygand, Gumbsch
SS 2020 2181741 Übungen zu 'Atomistische Simulation und Molekulardynamik' 2 SWS Übung (Ü) Weygand, Gumbsch

Prüfungsveranstaltungen
SS 2020 76T-MACH-105308 Atomistische Simulation und Molekulardynamik Prüfung (PR) Gumbsch

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Atomistische Simulation und Molekulardynamik
2181740, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt
Die Vorlesung gibt eine Einführung in partikelbasierte Simulationsmethoden weitgehend am Beispiel der Molekulardynamik:

1. Einführung
2. Werkstoffphysik
3. MD Basics, Atom-Billard
 * Teilchen, Ort, Energie, Kräfte -- Paarpotenzial
 * Anfangs- und Randbedingungen
 * Zeitintegration
4. Algorithmisches
5. Statik, Dynamik, Thermodynamik
6. MD Output
7. Wechselwirkung zwischen Teilchen
 * Paarpotenziale -- Mehrkörperpotenziale
 * Quantenmechanische Prinzipien
 * Tight Binding Methoden
 * dissipative Partikeldynamik
8. Anwendung von teilenbasierten Methoden

Übungen (2181741, 2 SWS) dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für ausführliche Rückfragen der Studierenden.

Der/die Studierende kann

- die physikalischen Grundlagen partikelbasierten Simulationsmethoden (z. Bsp. Molekulardynamik) erläutern.
- partikelbasierte Simulationsmethoden anwenden, um Fragstellungen aus der Werkstoffwissenschaft zu bearbeiten.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

- Präsenzzeit: 22,5 Stunden
- Übung: 22,5 Stunden
- Selbststudium: 75 Stunden

Mündliche Prüfung ca. 30 Minuten

Organisatorisches
Die Vorlesung wird auf Englisch angeboten!

Admission to the course is possible until 23.4.2020 (first lecture) without password. The course is offered asynchronously. The lecture slides and an audio review of the most important elements of the lecture will be made accessible via ILIAS.

Literaturhinweise

Übungen zu 'Atomistische Simulation und Molekulardynamik'
2181741, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Einführung in die Grundlagen des Molekulardynamik Tools IMD

* Strukterstellung
* Energieberechnungen
* Defekte in Gittern
* Visualisierung von MD Strukturen

Der Student vertieft den Vorlesungsstoff und erlernt den Umgang mit einem Molekulardynamikpaket.

Organisatorisches
RZ-Pool, Termine werden in der Vorlesung bekannt gegeben!

Literaturhinweise
siehe Voprlesung
8.12 Teilleistung: Aufbau und Eigenschaften verschleißfester Werkstoffe [T-MACH-102141]

Verantwortung: apl. Prof. Dr. Sven Ulrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Turnus</th>
<th>Vorlesungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2194643</td>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
<th>SWS</th>
<th>Turnus</th>
<th>Vorlesungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102141</td>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>Prüfung (PR)</td>
<td>Ulrich</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-102141</td>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>Prüfung (PR)</td>
<td>Ulrich</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Aufbau und Eigenschaften verschleißfester Werkstoffe

2194643, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Achtung: geänderter Zeitraum
Die Blockveranstaltung findet in folgendem Zeitraum statt:
27.07. - 29.07.2020
Montag und Dienstag jeweils von 8:00-19:00 Uhr; Mittwoch von 15:45-19:00 Uhr
Ort: KIT-Campus Nord, Geb. 681, SR 214, IAM-Angewandte Werkstoffphysik (IAM-AWP)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 min.) zum vereinbarten Termin (nach §4(2), 2 SPO).
Die Wiederholungsprüfung findet nach Vereinbarung statt.
Lehrinhalt:
Einführung
Werkstoffe und Verschleiß
Unlegierte und legierte Werkzeugstähle
Schnellarbeitsstähle
Stellite und Hartlegierungen
Hartstoffe
Hartmetalle
Schneidkeramik
Superharte Materialien
Neueste Entwicklungen
Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden
Empfehlungen: keine
Organisatorisches
Aufgrund der aktuellen Situation findet die Blockveranstaltung online in folgendem Zeitraum statt:
27.07.-29.07.2020
Montag und Dienstag jeweils von 8:00-19:00 Uhr; Mittwoch von 15:45-19:00 Uhr
Ort: online per MS-Teams
Anmeldung verbindlich bis zum 23.07.2020 unter sven.ulrich@kit.edu.
Nach der Anmeldung wird Ihnen der Link zur Vorlesung per E-Mail mitgeteilt.
Literaturhinweise
Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995
Kopien der Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
8.13 Teilleistung: Aufladung von Verbrennungsmotoren [T-MACH-105649]

Verantwortung: Dr.-Ing. Johannes Kech
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Credits</th>
<th>Type</th>
<th>Online</th>
<th>Präsenz/Online gemischt</th>
<th>Präsenz</th>
<th>Abgesagt</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134153</td>
<td>2 SWS</td>
<td>BV</td>
<td>Online</td>
<td></td>
<td></td>
<td></td>
<td>Kech</td>
</tr>
<tr>
<td></td>
<td>Aufladung von Verbrennungsmotoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2134153</td>
<td>2 SWS</td>
<td>BV</td>
<td>Online</td>
<td></td>
<td></td>
<td></td>
<td>Kech</td>
</tr>
<tr>
<td></td>
<td>Turboaufladung von Verbrennungskraftmaschinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 Minuten.

Voraussetzungen
keine
8.14 Teilleistung: Ausgewählte Anwendungen der Technischen Logistik [T-MACH-102160]

Verantwortung: Viktor Milushev
Dr.-Ing. Martin Mittwollen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-102821 - Schwerpunkt: Technische Logistik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2118087</th>
<th>Ausgewählte Anwendungen der Technischen Logistik</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Mittwollen, Milushev</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-102160</th>
<th>Ausgewählte Anwendungen der Technischen Logistik</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
</table>

| WS 20/21 | 76-T-MACH-102160 | Ausgewählte Anwendungen der Technischen Logistik | Prüfung (PR) | Mittwollen |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen
Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) / Elemente und Systeme der Technischen Logistik (T-MACH-102159) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ausgewählte Anwendungen der Technischen Logistik
2118087, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt

- Aufbau und Gestaltung von Maschinen der Intralogistik
- Statisches und dynamisches Verhalten
- Betriebliche Eigenschaften und Besonderheiten
- In den Übungen: Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten

Detailinfos zur Terminplanung in der Vorlesung / Aushang

Die Studierenden können:

- das dynamische Verhalten von fördertechnischen Einrichtungen modellieren
- darauf aufbauend das dynamische Verhalten berechnen
- diese Vorgehensweise selbstständig auf weitere, verschiedenartige fördertechnischen Einrichtungen übertragen
- das erworben Wissen mit fachkundigen Personen diskutieren.

Students are able to:

- Model the dynamic behaviour of material handling systems
- based on this calculate the dynamical behavior
- Transfer this approach autonomous to further, different material handling installations
- Discuss the knowledge with subject related persons

Präsenz: 36 Std.
Nacharbeit 84 Std

presence: 36h
rework: 84h

Ganztagsschicht, Präsentationen
supplementary Sheets, presentations

Organisatorisches

Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4 (2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik-I“ (LV 2117095) vorausgesetzt

Knowledge out of Basics of Technical Logistics-I preconditioned

Literaturhinweise

Empfehlungen in der Vorlesung
8.15 Teilleistung: Ausgewählte Anwendungen der Technischen Logistik - Projekt [T-MACH-108945]

Verantwortung: Viktor Milushev
Dr.-Ing. Martin Mittwollen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-102821 - Schwerpunkt: Technische Logistik

Lehrveranstaltungen

| SS 2020 | 2118088 | Ausgewählte Anwendungen der Technischen Logistik - Projekt | 1 SWS | Projekt (PRO) | Milushev, Mittwollen |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-108945 | Ausgewählte Anwendungen der Technischen Logistik - Projekt | Prüfung (PR) | Mittwollen |
| WS 20/21 | 76-T-MACH-108945 | Ausgewählte Anwendungen der Technischen Logistik - Projekt | Prüfung (PR) | Mittwollen |

Erfolgskontrolle(n)
Präsentation des bearbeiteten Projekts und Verteidigung (30min) nach §4, Abs. 2, Nr. 3 SPO

Voraussetzungen
Teilleistung T-MACH-102160 (Ausgewählte Anwendungen der Technischen Logistik) muss begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102160 - Ausgewählte Anwendungen der Technischen Logistik muss begonnen worden sein.

Empfehlungen
Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) / Elemente und Systeme der Technischen Logistik (T-MACH-102159) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ausgewählte Anwendungen der Technischen Logistik - Projekt

| 2118088, SS 2020, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen | Projekt (PRO) |

Organisatorisches
Ort und Zeit: siehe Homepage / Bekanntgabe in der Veranstaltung

Literaturhinweise
Empfehlungen in der Vorlesung
8.16 Teilleistung: Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen [T-MACH-105462]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2190411</th>
<th>Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Dagan, Metz</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105462 | Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen | Prüfung (PR) | Dagan |
| WS 20/21 | 76-T-MACH-105462 | Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen | Prüfung (PR) | Dagan, Stieglitz |

Erfolgskontrolle(n)
mündliche Prüfung, 1/2 Stunde

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen
2190411, SS 2020, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

- Kernenergie und -kräfte
- Radioaktive Umwandlungen der Atomkerne
- Kernprozesse
- Kernspaltung und verzögerte Neutronen
- Grundbegriffe der Wirkungsquerschnitt
- Grundprinzipien der Kettenreaktion
- Statische Theorie des monoenergetischen Reaktors
- Einführung in Reaktorkinetik
- Kernphysikalisches Praktikum

Lernziel: Die Studierenden

- kennen die grundlegenden Begriffe, die in der Reaktorphysik vorkommen
- verstehen und berechnen den Prozess von Zunahme oder Zerfall von radioaktiven Materialien und die dazu gehörige biologische Schädigung
- kennen fundamentale Parameter, um einem stabilen Reaktor zu betreiben
- verstehen wichtige dynamische Prozesse von Kernreaktoren.

Präsenzzeit 26 Stunden
Selbststudium: 94 Stunden
mündlich ca. 30 min

Literaturhinweise
K. Wirtz Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton, Nuclear reactor Analysis, J. Wiley & Sons, Inc. 1975 (in English)
8.17 Teilleistung: Ausgewählte Themen virtueller Ingenieursanwendungen [T-MACH-105381]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.17</td>
<td></td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2020 3122031 Virtual Engineering (Specific Topics) 2 SWS Vorlesung (V) Ovtcharova, Maier

Prüfungsveranstaltungen

SS 2020 76-T-MACH-105381 Virtual Engineering (Specific Topics) Prüfung (PR) Ovtcharova

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Engineering (Specific Topics)
3122031, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V)

Inhalt

Studierende können

- die Grundlagen des Virtual Engineerings erläutern und exemplarisch Modellierungswerkzeuge benennen und den entsprechenden Methoden und Prozessen zuordnen
- Validierungsfragenstellungen im Produktentstehungsprozess formulieren und naheliegende Lösungsmethoden benennen
- die Grundlagen des Systems Engineering erläutern und den Zusammenhang zum Produktentstehungsprozess herstellen
- einzelne Methoden der Digitalen Fabrik erläutern sowie die Funktionen der Digitalen Fabrik im Kontext des Produktentstehungsprozesses darstellen
- die theoretischen und technischen Grundlagen der Virtual Reality Technologie erläutern und den Zusammenhang zum Virtual Engineering aufzeigen

Literaturhinweise
Lecture slides / Vorlesungsfolien
8.18 Teilleistung: Auslegung einer Gasturbinenkammer [T-CIWVT-105780]

Verantwortung: Prof. Dr.-Ing. Nikolaos Zarzalis
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 22527 | Design of a Jet Engine Combustion Chamber | SWS | Projekt / Seminar (PJ/S) / | Zarzalis |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle ist eine mündlichen im Umfang ca. 20 Minuten zu den Inhalten der Lehrveranstaltungen 22527.

Voraussetzungen
keine
8.19 Teilleistung: Auslegung mobiler Arbeitsmaschinen [T-MACH-105311]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2113079</th>
<th>Auslegung mobiler Arbeitsmaschinen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩 Geimer, Siebert, Lehr</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105311</th>
<th>Auslegung mobiler Arbeitsmaschinen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🧩 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die mündliche Prüfung (20 min) wird in der vorlesungsfreien Zeit des Semesters angeboten. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Eine vorherige Anmeldung ist erforderlich, die Details werden auf den Webseiten des Instituts Fahrzeugsystemtechnik / Teilinstitut Mobile Arbeitsmaschinen angekündigt. Bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten nach Qualifikation statt.

Die Veranstaltung wird um interessante Vorträge von Referenten aus der Praxis ergänzt.

Voraussetzungen

Voraussetzung zur mündlichen Prüfung ist die Anfertigung eines Semesterberichts. Die Teilleistung mit der Kennung T-MACH-108887 muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-108887 - Auslegung Mobile Arbeitsmaschinen - Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Kenntnisse in Fluidtechnik (LV 2114093) werden vorausgesetzt.
Anmerkungen
Lernziele:
Am Ende der Veranstaltung können die Studenten:

- Die Arbeits- und Fahrhydraulik einer mobilen Arbeitsmaschine auslegen und charakteristische Größen ermitteln.
- Geeignete Auslegungsmethoden aus der Praxis auswählen und zielführend anwenden.
- Eine mobile Arbeitsmaschine analysieren und als komplexes System in einzelne Subbaugruppen zerlegen.
- Wechselwirkungen und Verknüpfungen zwischen den Subbaugruppen einer mobilen Arbeitsmaschine identifizieren und beschreiben
- Eine technische Fragestellung und deren Lösung wissenschaftlich präsentieren und schriftlich dokumentieren.

Die Anzahl der Teilnehmer ist begrenzt.

Inhalt:

Literatur:
Buch "Grundlagen mobiler Arbeitsmaschinen", Karlsruher Schriftenreihe Fahrzeugsystemtechnik, Band 22, KIT Scientific Publishing

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auslegung mobiler Arbeitsmaschinen
2113079, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Radlader und Bagger sind hochgradig spezialisierte mobile Arbeitsmaschinen. Ihre Funktion besteht darin, Gut zu lösen und aufzunehmen und in geringer Entfernung wieder abzusetzen/abzuschütten. Maßgebliche Größe zur Dimensionierung ist der Inhalt der Standardschaufel. Anhand eines Radladers oder Baggers werden in dieser Veranstaltung die wesentlichen Dimensionierungsschritte zur Auslegung durchgearbeitet. Das beinhaltet unter anderem:

- das Festlegen der Größenklassen und Hauptabmaße,
- die Dimensionierung eines hydrostatischen Antriebsstrangs,
- die Auslegung der Primärenergieversorgung,
- das Bestimmen der Kinematik der Ausrüstung,
- das Dimensionieren der Arbeitshydraulik sowie
- Festigkeitsberechnungen.

Der gesamte Auslegungs- und Entwurfsprozess dieser Maschinen ist stark geprägt von der Verwendung von Normen und Richtlinien. Auch dieser Aspekt wird behandelt.

Aufgebaut wird auf das Wissen aus den Bereichen Mechanik, Festigkeitslehre, Maschinenelemente, Antriebstechnik und Fluidtechnik.

Die Veranstaltung erfordert eine aktive Teilnahme und kontinuierliche Mitarbeit.

Empfehlungen:
Kenntnisse in Fluidtechnik (SoSe, LV 21093)

- Präsenzzeit: 21 Stunden
- Selbststudium: 99 Stunden

Literaturhinweise
Keine.
8.20 Teilleistung: Auslegung Mobiler Arbeitsmaschinen - Vorleistung [T-MACH-108887]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von:
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Anfertigung Semesterbericht

Voraussetzungen
keine
8.21 Teilleistung: Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben [T-MACH-110958]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Hartmut Faust

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Thema</th>
<th>SWS</th>
<th>Prüfungart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146208</td>
<td>Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Faust</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Thema</th>
<th>Prüfungart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105536</td>
<td>Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben</td>
<td>Prüfung (PR)</td>
<td>Faust, Albers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung (20 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben
2146208, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Getriebetypen: Handschalt- (MT) & automatisierte Schaltgetriebe (AMT), Planeten-Wandler-Automaten (AT), Doppelkupplungs- (DCT), stufenlose (CVT) und geared neutral Getriebe (IVT), Hybridgetriebe (Seriente, parallele, Multimode-, Powersplit-Hybride), E-Achsen
- Drehschwingungsdämpfer: Gedämpfte Kupplungsscheibe, Zweimassenschwungrad, Fliehkraftpendel (FKP), Lock-Up-Dämpfer für Drehmomentwandler
- Anfahrelemente: Trockene Einfachkupplung, trockene und nasslaufende Doppelkupplung, hydrodynamischer Drehmomentwandler, Sonderformen, e-motorisch
- Kraftübertragung: Vorgelege-Getriebe, Planetensatz, CVT-Variator, Kette, Synchronisierung, Schalt- und Klauenkupplungen, Reversierung, Differenziale und Sperrsysteme, koaxiale und achsparallele E-Achsantriebe
- Getriebebesteuerung: Schaltsysteme für MT, Aktuatoren für Kupplungen und Schaltung, hydraulische Steuerung, elektronische Steuerung, Softwareapplikation, Komfort und Sportlichkeit
- Sonderbauformen: Triebstränge von Nutzfahrzeugen, Hydrostat mit Leistungsverzweigung, Torque Vectoring
- E-Mobilität: Einteilung in 5 Ausbaustufen der Elektrifizierung, 4 Hybrid-Konfigurationen, 7 Parallelhybrid-Architekturen, Hybridisierter Getriebep (P2, P2.5, P3, P4), Dedicated Hybrid Transmissions (DHT; seriell/parallel/Multimode, Powersplit, neue Konzepte), Getriebe für Elektrofahrzeuge (E-Achsgetriebe, koaxial und achsparallel)
Organisatorisches

Lernziele
Die Studenten erwerben das Wissen aus aktuellen Getriebe-, Hybrid- und reinen Elektroantriebs-Entwicklungen über …

- die Funktionsweise und Auslegung von konventionellen und elektrifizierten Fahrzeuggetrieben und deren Komponenten;
- Konstruktions- und Funktionsprinzipien der wichtigsten Komponenten von Handschalt-, Doppelkupplungs-, stufenlosen und Planetenautomat-Getrieben;
- komfortrelevante Zusammenhänge und Abhilfemaßnahmen;
- die Hybridisierung und Elektrifizierung der Triebstränge auf Basis bekannter Getriebetypen und mit speziellen sogenannten Dedicated Hybrid Transmissions (DHT) sowie Bewertung der Konzepte auf Systemebene.
8.22 Teilleistung: Automatisierte Produktionsanlagen [T-MACH-108844]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
- M-MACH-102589 - Schwerpunkt: Produktionssysteme
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102820 - Schwerpunkt: Mechatronik
- M-MACH-102821 - Schwerpunkt: Technische Logistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150904</td>
<td>Automatisierte Produktionsanlagen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (40 Minuten)

Voraussetzungen
"T-MACH-102162 - Automatisierte Produktionsanlagen" darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Automatisierte Produktionsanlagen
2150904, SS 2020, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Die Vorlesung gibt einen Überblick über den Aufbau und die Funktionsweise von automatisierten Produktionsanlagen. In einem Grundlagenkapitel werden die grundlegenden Elemente zur Realisierung automatisierter Produktionsanlagen vermittelt. Hierunter fallen:

- Antriebs- und Steuerungstechnik
- Handhabungstechnik zur Handhabung von Werkstücken und Werkzeugen
- Industrierobotertechnik
- Qualitätssicherung in automatisierten Produktionsanlagen
- Automaten, Zellen, Zentren und Systeme zur Fertigung und Montage
- Strukturen von Mehrmaschinenystemen
- Projektierung von automatisierten Produktionsanlagen

Durch eine interdisziplinäre Betrachtung dieser Teilgebiete ergeben sich Schnittstellen zu Industrie 4.0 Ansätzen. Im zweiten Teil der Vorlesung werden die vermittelten Grundlagen anhand praktisch ausgeführter Produktionsprozesse zur Herstellung von Komponenten im Automobilbau (Karosserie und Antriebstechnik) verdeutlicht und die automatisierten Produktionsanlagen zur Herstellung dieser Komponenten analysiert. Im Bereich der Kfz-Antriebstechnik wird sowohl der automatisierte Produktionsprozess zur Herstellung des konventionellen Verbrennungsmotors als auch der automatisierte Produktionsprozess zu Herstellung des zukünftigen Elektroantriebsstranges im Kfz für die Elektromobilität (Elektromotor und Batterie) betrachtet. Im Bereich des Karosseriebaus liegt der Fokus auf der Analyse der Prozesskette zur automatisierten Herstellung konventioneller Blech-Karosseriebauteile sowie zur automatisierten Herstellung von Karosseriebauteilen aus faserverstärkten Kunststoffen.

Innerhalb von Übungen werden die Inhalte aus der Vorlesung vertieft und auf konkrete Problem- und Aufgabenstellungen angewendet.

Lernziele:
Die Studierenden …

- sind fähig, ausgeführte automatisierte Produktionsanlagen zu analysieren und ihre Bestandteile zu beschreiben.
- können die an ausgeführten Beispielen umgesetzte Automatisierung von Produktionsanlagen beurteilen und auf neue Problemstellungen anwenden.
- sind in der Lage, die Automatisierungsaufgaben in Produktionsanlagen und die zur Umsetzung erforderlichen Komponenten zu nennen.
- sind fähig, bzgl. einer gegebenen Aufgabenstellung die Projektierung einer automatisierten Produktionsanlage durchzuführen sowie die zur Realisierung erforderlichen Komponenten zu ermitteln.
- sind in der Lage, unterschiedliche Konzepte für Mehrmaschinenysteme zu vergleichen und für einen gegebenen Anwendungsfall geeignet auszuwählen.

Arbeitsaufwand:
MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches
Start: 21.04.2020
Vorlesungstermine dienstags 8.00 Uhr und donnerstags 8.00 Uhr, Übungstermine donnerstags 9.45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Erfolgskontrolle(n)
Die Studierenden sollen in der Bachelorarbeit zeigen, dass sie in der Lage sind, ein Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten.
Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuerin/den Betreuer und die Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Auf begründeten Antrag des Studenten kann der Prüfungsausschuss die Bearbeitungszeit um maximal einen Monat verlängern. Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

Voraussetzungen
Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/des Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (vgl. §14 (1) der SPO).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht werden:
 - Ingenieurwissenschaftliche Grundlagen
 - Überfachliche Qualifikationen
 - Vertiefung im Maschinenbau

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 3 Monate
Maximale Verlängerungsfrist 1 Monate
Korrekturfrist 6 Wochen

Anmerkungen
Für die Ausarbeitung der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 360 Stunden gerechnet.
8.24 Teilleistung: Bahnsystemtechnik [T-MACH-106424]

Verantwortung: Prof. Dr.-Ing. Peter Gratzfeld
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von: M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2115919</th>
<th>Bahnsystemtechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🖥</th>
<th>Gratzfeld</th>
</tr>
</thead>
</table>

| WS 20/21 | 2115919 | Bahnsystemtechnik | 2 SWS | Vorlesung (V) / 🖥 | Gratzfeld |

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-106424</th>
<th>Bahnsystemtechnik</th>
<th>Prüfung (PR)</th>
<th>Gratzfeld</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-106425</th>
<th>Bahnsystemtechnik (Wiederholungsprüfung)</th>
<th>Prüfung (PR)</th>
<th>Gratzfeld</th>
</tr>
</thead>
</table>

| WS 20/21 | 76-T-MACH-106424 | Bahnsystemtechnik | Prüfung (PR) | Gratzfeld |

Legende: 🖥 Online, 🌱 Präsenz/Online gemischt, 🌱 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Prüfung: mündlich
Dauer: ca. 20 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bahnsystemtechnik

2115919, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klochoide, Längsneigung), Bahnhöfe, (Bahnteilgländef, Bahnsteighöhen), Lichtraumprofil und Fahrzeugbegrenzung
5. Längsdynamik: Zug- und Bremskraft, Fahrwiderstands Kraft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)
8. Geschichte (optional)

Organisatorisches
Die Vorlesung "Bahnsystemtechnik" im SS 2020 findet bis auf weiteres als asynchrone Online-Veranstaltung statt.

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).

Bachelorstudiengang Maschinenbau (Stand 15.09.2020) Modulhandbuch gültig ab Wintersemester 20/21
Bahnsystemtechnik
2115919, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Online

Inhalt
1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klothoide, Längsneigung), Bahnhöfe, (Bahnsteiglängen, Bahnsteighöhen), Lichtraumprofil und Fahrzeugbegrenzung
5. Längsdynamik: Zug- und Bremskraft, Fahrwiderstands Kraft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)

Organisatorisches
Die Vorlesung "Bahnsystemtechnik" im WS 20/21 findet als asynchrone Online-Veranstaltung statt.

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
8.25 Teilleistung: Betriebliche Produktionswirtschaft [T-MACH-100304]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Gisela Lanza
Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-100297 - Betriebliche Produktionswirtschaft

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Prüfungsveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🖥 Furmans, Lanza</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-100304</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Betriebliche Produktionswirtschaft</td>
<td>Furmans, Lanza</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 180 min)

Voraussetzungen

T-MACH-108734 - Betriebliche Produktionswirtschaft-Projekt muss erfolgreich abgeschlossen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-108734 - Betriebliche Produktionswirtschaft-Projekt muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebliche Produktionswirtschaft

2110085, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Online

Inhalt

Es handelt sich um eine gemeinsame Vorlesung des Instituts für Fördertechnik und Logistiksysteme (IFL), und des Instituts für Produktionstechnik (WKB), die Institute wechseln sich bei jedem Zyklus ab.

Es werden grundlegende Kompetenzen über die Planung und den Betrieb eines Produktionsbetriebes vermittelt. Inhalt der Vorlesung sind die Grundlagen des Operations- und Supply Chain Managements sowie betriebswirtschaftliche Grundlagen zu Rechnungswesen, Investitionsrechnung und Rechtsformen.

Nach erfolgreichem Abschluss der Lehrveranstaltung sind Sie in der Lage alleine und im Team

- die behandelten Fachbegriffe in den Bereichen Produktion, Logistik, und Betriebswirtschaft zu benennen,
- in einem Gespräch mit Fachkundigen die Zusammenhänge zwischen diesen Bereichen zutreffend zu beschreiben,
- die wichtigsten Entscheidungsprobleme in diesem Gebiet qualitativ und quantitativ zu beschreiben,
- die entsprechenden qualitativen und quantitativen Entscheidungsmodelle zu nutzen,
- deren Ergebnisse kritisch zu beurteilen und daraus Schlüsse zu ziehen,
- sowie durch eigene Recherche die behandelten Methoden und Modelle zu erweitern.

Die Teilleistung „Betriebliche Produktionswirtschaft – Projekt“ muss erfolgreich abgeschlossen sein, bevor die Teilleistung „Betriebliche Produktionswirtschaft“ abgelegt werden kann.

Medien:

Vorlesungsunterlagen zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Präsenzzeit: 25 Stunden
Selbststudium: 65 Stunden
Literaturhinweise
Verantwortung: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Gisela Lanza

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-100297 - Betriebliche Produktionswirtschaft

Lehrveranstaltungen

| WS 20/21 | 2110086 | Betriebliche Produktionswirtschaft-Projekt | 1 SWS | Projekt (PRO) / Online | Furmans, Lanza |

Erfolgskontrolle(n)
Semesterleistung bestehend aus Bearbeitung und Verteidigung von Fallstudien, die sich wie folgt aufteilen:

- 70% Bewertung der Fallstudie als Gruppenleistung
- 30% Bewertung der mündlichen Verteidigung der Fallstudien als Einzelleistung

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt

Nach erfolgreichem Abschluss der Lehrveranstaltung sind Sie in der Lage alleine und im Team

- die behandelten Fachbegriffe in den Bereichen Produktion, Logistik, und Betriebswirtschaft zu benennen,
- in einem Gespräch mit Fachkundigen die Zusammenhänge zwischen diesen Bereichen zutreffend zu beschreiben,
- die wichtigsten Entscheidungsprobleme in diesem Gebiet qualitativ und quantitativ zu beschreiben,
- die entsprechenden qualitativen und quantitativen Entscheidungsmodelle zu nutzen,
- deren Ergebnisse kritisch zu beurteilen und daraus Schlüsse zu ziehen,
- sowie durch eigene Recherche die behandelten Methoden und Modelle zu erweitern.

Die Teilnahme aller Mitglieder der Gruppen am Kolloquium ist Pflicht und wird kontrolliert. Für die schriftliche Abgabe erhält die Gruppe eine gemeinsame Note, im Kolloquium wird jedes Gruppenmitglied einzeln bewertet. Das Kolloquium geht vollständig in die Bewertung ein, sie müssen jedoch nicht bestanden werden, um die Gesamtveranstaltung zu bestehen. Die Endnote der Veranstaltung bildet sich zu 70% aus den schriftlichen Abgaben sowie zu 30% aus der Bewertung der Kolloquien.

Es handelt sich um eine gemeinsame Vorlesung des Instituts für Fördertechnik und Logistiksysteme (IFL), und des Instituts für Produktionstechnik (WFK). Die Institute wechseln sich bei jedem Zyklus ab.

Bitte informieren Sie sich rechtzeitig spätestens in der Einführungsveranstaltung über den Ablauf dieser Veranstaltung! Es ist eine Anmeldung zu Beginn des Semesters notwendig, ein späterer Einstieg in die Veranstaltung ist nicht möglich.

Präsenzzeit: 17 Stunden,
Selbststudium: 43 Stunden
Literaturhinweise
8.27 Teilleistung: Betriebsstoffe für Verbrennungsmotoren [T-MACH-105184]

Verantwortung: Dr.-Ing. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

Lehrveranstaltungen

| WS 20/21 | 2133109 | Betriebsstoffe für motorische Antriebe | 2 SWS | Vorlesung (V) | Kehrwald |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105184 | Betriebsstoffe für Verbrennungsmotoren | Prüfung (PR) | Kehrwald |
| WS 20/21 | 76-T-MACH-105184 | Betriebsstoffe für motorische Antriebe | Prüfung (PR) | Kehrwald |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, Dauer ca. 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebsstoffe für motorische Antriebe
2133109, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Einführung /Grundlagen
Kraftstoffe für Otto- und Dieselmotoren
Wasserstoff
Schmierstoffe für Otto- und Dieselmotoren
Kühlstoffe für Verbrennungsmotoren

Literaturhinweise
Skript

Verantwortung: Prof. Dr. Claus Mattheck
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Biomechanik
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2181708</th>
<th>Biomechanik: Design in der Natur und nach der Natur</th>
<th>3 SWS</th>
<th>Seminar / Praktikum (S/P)</th>
<th>Mattheck</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kolloquium, unbenotet.

Voraussetzungen
Die Anzahl Teilnehmer ist begrenzt. Eine vorherige Anmeldung über ILIAS ist erforderlich; bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten (gemäß SPO) statt. Vor Anmeldung im SP 26 (MACH) oder SP 01 (MWT) muss die Teilnahme am Seminar bestätigt sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Biomechanik: Design in der Natur und nach der Natur
2181708, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Anzahl Teilnehmer ist begrenzt.
Die vorläufige Anmeldung erfolgt nicht über ILIAS sondern per Mail an Claus.Mattheck@kit.edu, u.a.mit Angabe von:
Studiengang
Matrikelnummer
SP 26(MACH) bzw. SP 01 (MWT) bzw. "Sonstiges"

Bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten (gemäß SPO) statt.

Vor der Anmeldung im SP 26 (MACH) bzw. SP 01 (MWT) über den SP-Planer bzw. direkt im Prüfungsaccount (QISPOS) muss durch das Institut die Teilnahme am Seminar bestätigt sein.

* Mechanik und Wuchsgesetze der Bäume
* Körpersprache der Bäume
* Versagenskriterien und Sicherheitsfaktoren
* Computersimulation adaptiven Wachstums
* Kerben und Schadensfälle
* Bauteiloptimierung nach dem Vorbild der Natur
* Computerfreie Bauteiloptimierung
* Universalformen der Natur
* Schubspannungsbomben in Faserverbunden
* Optimale Faserverläufe in Natur und Technik
* Bäume, Hänge, Deiche, Mauern und Rohrleitungen

Die Studierenden können in der Natur verwirklichten mechanischen Optimierungen benennen und verstehen. Die Studierenden können die daraus abgeleiteten Denkwerkzeuge analysieren und diese für einfache technische Fragestellungen anwenden.

Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Organisatorisches
06.10.2020: Biomechanik ist im WS 20/21 bereits voll belegt, weitere Anmeldungen sind nicht möglich.
October 6th, 2020: Biomechanics is already fully booked in WS 20/21; further registrations are not possible.
8.29 Teilleistung: BUS-Steuerungen [T-MACH-102150]

Verantwortung: Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-102817 - Schwerpunkt: Informationstechnik
M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart Prüfungsleistung mündlich
Leistungspunkte 4
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen
SS 2020 2114092 BUS-Steuerungen 2 SWS Vorlesung (V) Geimer, Daiß, Metzger

Prüfungsveranstaltungen
SS 2020 76T-MACH-102150 BUS-Steuerungen Prüfung (PR) Geimer

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Voraussetzung zur Teilnahme an der Prüfung ist die Erstellung eines Steuerungsprogramms. Die Teilleistung mit der Kennung T-MACH-108889 muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-108889 - BUS-Steuerungen - Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Anmerkungen
Lernziele:

Inhalt:
- Erlernen der Grundlagen der Datenkommunikation in Netzwerken
- Übersicht über die Funktionsweise aktueller Feldbusse
- Detailliertere Betrachtung der Funktionsweise und Einsatzgebiete von CAN-Bussen
- Praktische Umsetzung des Erlernten durch die Programmierung einer Beispielanwendung (Hardware wird gestellt)

Literatur:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
BUS-Steuerungen
2114092, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt
- Erlernen der Grundlagen der Datenkommunikation in Netzwerken
- Übersicht über die Funktionsweise aktueller Feldbusse
- Detaillierte Betrachtung der Funktionsweise und Einsatzgebiete von CAN-Bussen
- Praktische Umsetzung des Erlernten durch die Programmierung einer Beispielanwendung (Hardware wird gestellt)

Es werden Grundkenntnisse der Elektrotechnik empfohlen. Programmierkenntnisse sind ebenfalls hilfreich.

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literaturhinweise

Weiterführende Literatur:

8.30 Teilleistung: BUS-Steuerungen - Vorleistung [T-MACH-108889]

Verantwortung: Kevin Däss
Prof. Dr.-Ing. Marcus Geimer

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von:
M-MACH-102817 - Schwerpunkt: Informationstechnik
M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart
Studienleistung
Leistungspunkte
0
Turnus
Jedes Sommersemester
Version
1

Prüfungsveranstaltungen
SS 2020 76-T-MACH-108889 BUS-Steuerungen - Vorleistung Prüfung (PR) Geimer

Erfolgskontrolle(n)
Erstellung Steuerungsprogramm

Voraussetzungen
keine
8.31 Teilleistung: CAD-Praktikum CATIA [T-MACH-102185]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement

Teilleistungsart: Studienleistung praktisch
Leistungspunkte: 2
Turnus: Jedes Semester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienbereich</th>
<th>Modul</th>
<th>SWS</th>
<th>Format</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2123358</td>
<td>CAD-Praktikum CATIA</td>
<td>3</td>
<td>Praktikum (P)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2123358</td>
<td>CAD-Praktikum CATIA</td>
<td>2</td>
<td>Praktikum (P) / 🖥</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienbereich</th>
<th>Modul</th>
<th>SWS</th>
<th>Format</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102185</td>
<td>CAD-Praktikum CATIA</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Praktische Prüfung am CAD Rechner, Dauer 60 min.

Voraussetzungen
Keine

Empfehlungen
Umgang mit technischen Zeichnungen wird vorausgesetzt.

Anmerkungen
Für das Praktikum besteht Anwesenheitspflicht.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CAD-Praktikum CATIA
2123358, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Praktikum (P)

Inhalt
- Grundlagen zu CATIA wie Benutzeroberfläche, Bedienung etc.
- Erstellung und Bearbeitung unterschiedlicher CAD-Modellarten
- Erzeugung von Basisgeometrien und Einzelteilen
- Erstellung von Einzelteilzeichnungen
- Integration von Teillösungen in Baugruppen
- Arbeiten mit Constraints
- Festigkeitsuntersuchung mit FEM
- Kinematische Simulation mit DMU
- Umgang mit CATIA Knowledgeware

Die Studierenden sind in der Lage:
- selbstständig 3D-Geometriemodelle im CAD-System CATIA zu erstellen und aufgrund der erstellten Geometrie Konstruktionszeichnungen zu generieren
- die integrierten CAE-Werkzeuge für FE-Untersuchungen anzuwenden sowie kinematische Simulationen durchzuführen
- mit erweiterten, wissensbasierten Funktionalitäten von CATIA die Geometrierestellung zu automatisieren und die Wiederverwendbarkeit von Modelle umzusetzen

Organisatorisches
Das Praktikum wird mehrmals in der vorlesungsfreien Zeit als einwöchige Blockveranstaltung angeboten. Weitere Informationen siehe Homepage des Instituts.
Inhalt

- Grundlagen zu CATIA wie Benutzeroberfläche, Bedienung etc.
- Erstellung und Bearbeitung unterschiedlicher CAD-Modellarten
- Erzeugung von Basisgeometrien und Einzelteilen
- Erstellung von Einzelteilzeichnungen
- Integration von Teillösungen in Baugruppen
- Arbeiten mit Constraints
- Festigkeitsuntersuchung mit FEM
- Kinematische Simulation mit DMU
- Umgang mit CATIA Knowledgeware

Die Studierenden sind in der Lage:

- selbständig 3D-Geometriemodelle im CAD-System CATIA zu erstellen und aufgrund der erstellten Geometrie Konstruktionszeichnungen zu generieren
- die integrierten CAE-Werkzeuge für FE-Untersuchungen anzuwenden sowie kinematische Simulationen durchzuführen
- mit erweiterten, wissensbasierten Funktionalitäten von CATIA die Geometrieerstellung zu automatisieren und die Wiederverwendbarkeit von Modellen umzusetzen

Organisatorisches

Siehe ILIAS

Literaturhinweise

Praktikumskript

Praktikumskript
8.32 Teilleistung: CAD-Praktikum NX [T-MACH-102187]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2123357</td>
<td>CAD-Praktikum NX</td>
<td>2</td>
<td>2</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2123357</td>
<td>CAD-Praktikum NX</td>
<td>2</td>
<td>2</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102187</td>
<td>CAD-Praktikum NX</td>
<td>Prüfung (PR)</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Praktische Prüfung am CAD Rechner, Dauer 60 min.

Voraussetzungen
Keine

Empfehlungen
Umgang mit technischen Zeichnungen wird vorausgesetzt.

Anmerkungen
Für das Praktikum besteht Anwesenheitspflicht.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V CAD-Praktikum NX
2123357, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)

Inhalt
- Überblick über den Funktionsumfang
- Einführung in die Arbeitsumgebung von NX
- Grundlagen der 3D-CAD Modellierung
- Feature-basiertes Modellieren
- Freiformflächenmodellierung
- Erstellen von technischen Zeichnungen
- Baugruppenmodellierung
- Finite Elemente Methode (FEM) und Mehrkörpersimulation (MKS) mit NX

Die Studierenden sind in der Lage:
- selbständig 3D-Geometriemodelle im CAD-System NX zu erstellen und aufgrund der erstellten Geometrie Konstruktionszeichnungen zu generieren
- die integrierten CAE-Werkzeugen für FE-Untersuchungen anzuwenden sowie kinematische Simulationen durchzuführen
- mit erweiterten, wissensbasierten Funktionalitäten von NX die Geometrieerstellung zu automatisieren und die Wiederverwendbarkeit von Modelle umzusetzen

Organisatorisches
Das Praktikum wird mehrmals in der vorlesungsfreien Zeit als einwöchige Blockveranstaltung angeboten. Weitere Informationen siehe Homepage des Instituts.
Literaturhinweise
Praktikumsskript

CAD-Praktikum NX
2123357, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

• Überblick über den Funktionsumfang
• Einführung in die Arbeitsumgebung von NX
• Grundlagen der 3D-CAD Modellierung
• Feature-basiertes Modellieren
• Freiformflächenmodellierung
• Erstellen von technischen Zeichnungen
• Baugruppenmodellierung
• Finite Elemente Methode (FEM) und Mehrkörpersimulation (MKS) mit NX

Die Studierenden sind in der Lage:

• selbständig 3D-Geometriemodelle im CAD-System NX zu erstellen und aufgrund der erstellten Geometrie Konstruktionszeichnungen zu generieren
• die integrierten CAE-Werkzeuge für FE-Untersuchungen anzuwenden sowie kinematische Simulationen durchzuführen
• mit erweiterten, wissensbasierten Funktionalitäten von NX die Geometrieerstellung zu automatisieren und die Wiederverwendbarkeit von Modelle umzusetzen

Organisatorisches
Siehe ILIAS

Literaturhinweise
Praktikumsskript
8.33 Teilleistung: CAE-Workshop [T-MACH-105212]

Verantwortung: Prof. Dr.-Ing. Albert Albers
 Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement
 M-MACH-102746 - Wahlpflichtmodul
 M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
 M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart
Prüfungsleistung anderer Art
Leistungspunkte 4
Turnus Jedes Semester
Version 2

Lehrveranstaltungen
SS 2020 2147175 CAE-Workshop 3 SWS Block (B) / Albers, Mitarbeiter
WS 20/21 2147175 CAE-Workshop 3 SWS Block (B) / Albers, Mitarbeiter

Prüfungsveranstaltungen
SS 2020 76-T-MACH-105212 CAE-Workshop Prüfung (PR) Albers

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (mit praktischem Teil am Computer), Dauer 60 min

Voraussetzungen
Keine

Anmerkungen
Für eine erfolgreiche Teilnahme an der Prüfung ist eine durchgängige Anwesenheit an den Workshoptagen erforderlich. Teilnehmerzahl beschränkt. Auswahl erfolgt nach einem Auswahlverfahren

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CAE-Workshop
2147175, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Inhalt:

- Einführung in die Finite Elemente Analyse (FEA)
- Spannungs- und Modalanalyse von FE-Modellen unter Nutzung von Abaqus CAE als Preprocessor und Abaqus als Solver
- Einführung in die Topologie- und Gestalloptimierung
- Erstellung und Berechnung verschiedener Optimierungsmodelle mit dem Abaqus Optimierungspaket

Die Studierenden sind fähig...

- die Einsatzzwecke und Grenzen der numerischen Simulation und Optimierung bei der virtuellen Produktentwicklung zu nennen.
- einfache praxisnahe Aufgaben aus dem Bereich der Finiten Elemente Analyse und Strukturoptimierung inindustriegebräuchlicher Software zu lösen.
- Ergebnisse einer Simulation oder Optimierung zu hinterfragen und zu bewerten.
- Fehler in einer Simulation oder Optimierung zu identifizieren und zu verbessern.

Präsenzzeit: 31,5 h
Selbststudium: 88,5 h
Prüfung: 1h in der Regel schriftlich
Organisatorisches
Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht

Literaturhinweise
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.

CAE-Workshop
2147175, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Inhalt:

- Einführung in die Finite Elemente Analyse (FEA)
- Spannungs- und Modalanalyse von FE-Modellen unter Nutzung von Abaqus CAE als Preprocessor und Abaqus als Solver
- Einführung in die Topologie- und Gestaltoptimierung
- Erstellung und Berechnung verschiedener Optimierungsmodelle mit dem Abaqus Optimierungspaket

Die Studierenden sind fähig...

- die Einsatzzwecke und Grenzen der numerischen Simulation und Optimierung bei der virtuellen Produktentwicklung zu nennen.
- einfache praxisnahe Aufgaben aus dem Bereich der Finiten Elemente Analyse und Strukturoptimierung inindustriegebräuchlicher Software zu lösen.
- Ergebnisse einer Simulation oder Optimierung zu hinterfragen und zu bewerten.
- Fehler in einer Simulation oder Optimierung zu identifizieren und zu verbessern.

Präsenzzeit: 31,5 h
Selbststudium: 88,5 h
Prüfung: 1h in der Regel schriftlich

Organisatorisches
Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht

Literaturhinweise
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.
8.34 Teilleistung: Computational Intelligence [T-MACH-105314]

Verantwortung: Prof. Dr. Ralf Mikut
 apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von:
 M-MACH-102817 - Schwerpunkt: Informationstechnik
 M-MACH-102820 - Schwerpunkt: Mechatronik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2105016</th>
<th>Computational Intelligence</th>
<th>2 SWS</th>
<th>Vorlesung (V) / Online</th>
<th>Mikut, Reischl</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105314</th>
<th>Computational Intelligence</th>
<th>Prüfung (PR)</th>
<th>Mikut</th>
</tr>
</thead>
</table>

Legende: ● Online, ♦ Präsenz/Online gemischt, ❌ Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Computational Intelligence

2105016, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Online

Inhalt

Die Studierenden können die grundlegenden Methoden der Computational Intelligence (Fuzzy-Logik, Künstliche Neuronale Netze, Evolutionäre Algorithmen) zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen sowohl die wichtigsten mathematischen Methoden als auch den Transfer zu praktischen Anwendungsfällen.

Content:

- Begriff Computational Intelligence, Anwendungsgebiete und -beispiele
- Fuzzy Logik: Fuzzy-Mengen; Fuzzifizierung und Zugehörigkeitsfunktionen; Inferenz: T-Normen und -Konormen, Operatoren, Prämissenbewertung, Aktivierung, Akkumulation; Defuzzifizierung, Reglerstrukturen für Fuzzy-Regler
- Künstliche Neuronale Netze: Biologie neuronaler Netze, Neuronen, Multi-Layer-Perceptrons, Radiale-Basis-Funktionen, Kohonen-Karten, Lernverfahren (Backpropagation, Levenberg-Marquardt)
- Evolutionäre Algorithmen: Basalgorithmen, Genetische Algorithmen und Evolutionsstrategien, Evolutionärer Algorithmus GLEAM, Einbindung lokaler Suchverfahren, Memetische Algorithmen, Anwendungsbeispiele

Lernziele:

Die Studierenden können die grundlegenden Methoden der Computational Intelligence (Fuzzy-Logik, Künstliche Neuronale Netze, Evolutionäre Algorithmen) zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen sowohl die wichtigsten mathematischen Methoden als auch den Transfer zu praktischen Anwendungsfällen.

Literaturhinweise

Kroll, A. Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013

Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet)
8.35 Teilleistung: Datenanalyse für Ingenieure [T-MACH-105694]

Verantwortung: Nicole Ludwig
 Prof. Dr. Ralf Mikut
 apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102817 - Schwerpunkt: Informationstechnik
 M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2106014</td>
<td>Datenanalyse für Ingenieure</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) Mikut, Reischl, Ludwig</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76-T-MACH-105694</td>
<td>Datenanalyse für Ingenieure</td>
<td>Prüfung (PR) Mikut, Reischl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen

deine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenanalyse für Ingenieure

2106014, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Inhalt

Lerninhalt:

• Einführung und Motivation
• Begriffe und Definitionen (Arten von mehrdimensionalen Merkmalen - Zeitreihen und Bilder, Einteilung Problemstellungen)
• Einsatzszenario: Problemformulierungen, Merkmalsextraktion, -bewertung, -selektion und -transformation, Distanzmaße, Bayes-Klassifikation, Support-Vektor-Maschinen, Entscheidungsbäume, Cluster-Verfahren, Regression, Validierung
• 14tägige Rechnerübungen und Anwendungen (Software-Übung mit SciXMiner): Import von Daten, Verschiedene Benchmarkdatensätze, Steuerung Handprothese, Energieprognose
• 2 SWS Vorlesungen, 1 SWS Übung

Lernziele:

Literaturhinweise
Vorlesungsunterlagen (ILIAS)

Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe.
2008 (PDF frei im Internet)

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
8.36 Teilleistung: Die Eisenbahn im Verkehrsmarkt [T-MACH-105540]

Verantwortung: Prof. Dr.-Ing. Peter Gratzfeld

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von: M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 4

Turnus
- Jedes Sommersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2114914</th>
<th>Die Eisenbahn im Verkehrsmarkt</th>
<th>2 SWS</th>
<th>Block (B)</th>
<th>Gratzfeld</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105540</th>
<th>Die Eisenbahn im Verkehrsmarkt</th>
<th>Prüfung (PR)</th>
<th>Gratzfeld</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
- Prüfung: mündlich
- Dauer: ca. 20 Minuten
- Hilfsmittel: keine

Voraussetzungen
- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Die Eisenbahn im Verkehrsmarkt

2114914, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Veranstaltung vermittelt die unternehmerische Sicht auf Chancen und Herausforderungen der Eisenbahn im Verkehrsmarkt. Im Einzelnen werden behandelt:

- Einführung und Grundlagen
- Bahnreform in Deutschland
- Deutsche Bahn im Überblick
- Infrastrukturfinanzierung und -entwicklung
- Eisenbahnregulierung
- Intra- und Intermodaler Wettbewerb
- Verkehrspolitische Handlungsfelder
- Bahn und Umwelt
- Trends im Verkehrsmarkt
- Zukunft Bahn
- Digitalisierung

Lernziele:

Organisatorisches

Näheres siehe Homepage http://www.fast.kit.edu/bst/929.php

Literaturhinweise
keine
8.37 Teilleistung: Digitale Regelungen [T-MACH-105317]

Verantwortung: Dr.-Ing. Michael Knoop
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-102817 - Schwerpunkt: Informationstechnik
M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Lehrveranstaltungsnummer</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Vorlesung (V) / 🖥</td>
<td>2137309</td>
<td>Digitale Regelungen</td>
<td>2</td>
<td>Knoop, Hauser</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | Prüfung (PR) | 76-T-MACH-105317 | Digitale Regelungen | Stiller |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☒ Abgesagt

Erfolgskontrolle(n)

- **Schriftliche Prüfung**
 - 60 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Digitale Regelungen

- **2137309, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen**
 - **Vorlesung (V) Online**
Inhalt
Lehrinhalt:

Inhalt
1. Einführung in digitale Regelungen:
 Motivation für die digitale Realisierung von Reglern
 Grundstruktur digitaler Regelungen
 Abtastung und Halteeinrichtung
2. Analyse und Entwurf im Zustandsraum: Zeitdiskretisierung kontinuierlicher Strecken,
 Zustandsdifferenzengleichung,
 Stabilität - Definition und Kriterien,
 Zustandsreglerentwurf durch Eigenwertvorgabe, PI-Zustandsregler, Zustandsbeobachter, Separationstheorem, Strecken mit Totzeit, Entwurf auf endliche Einstellzeit
3. Analyse und Entwurf im Bildbereich der z-Transformation:
 z-Transformation, Definition und Rechenregeln Beschreibung des Regelkreises im Bildbereich
 Stabilitätskriterien im Bildbereich
 Reglerentwurf mit dem Wurzelortskurvenverfahren
 Übertragung zeitkontinuierlicher Regler in zeitdiskrete Regler

Voraussetzungen:
Grundstudium mit abgeschlossenem Vorexamen, Grundvorlesung in Regelungstechnik

Lernziele:
Die Studierenden werden in die wesentlichen Methoden zur Beschreibung, Analyse und zum
Entwurf digitaler Regelungssysteme eingeführt. Ausgangspunkt ist die Zeitdiskretisierung linearer, kontinuierlicher
Systemmodelle. Entwurfstechniken im Zustandsraum und im Bildbereich der z-Transformation werden für zeitdiskrete
Eingrößensysteme vorgestellt. Zusätzlich werden Strecken mit Totzeit und der Entwurf auf endliche Einstellzeit behandelt.
Nachweis: schriftlich

Dauer: 60 Minuten
Hilfsmittel: keine
Arbeitsaufwand: 120 Stunden

Literaturhinweise

- Föllinger, O.: Lineare Abtastsysteme. 4. Auflage, R. Oldenbourg Verlag, München Wien 1990
8.38 Teilleistung: Dimensionierung mit Numerik in der Produktentwicklung [T-MACH-108719]

Verantwortung: Prof. Dr. Eckart Schnack
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>Vorkenntnisse</th>
<th>Turnus</th>
</tr>
</thead>
</table>
| WS 20/21 | 2161229 | Dimensionierung mit Numerik in der Produktentwicklung | 2 SWS | Vorlesung (V) / Präsenz
| | | | | Schnack |

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Prüfungstitel</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-108719</td>
<td>Dimensionierung mit Numerik in der Produktentwicklung</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-108719</td>
<td>Dimensionierung mit Numerik in der Produktentwicklung</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗺 Präsenz/Online gemischt, 🗺️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (Dauer: 20 min)

Voraussetzungen
Keine

Anmerkungen
Das Vorlesungsskript wird über ILIAS bereitgestellt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Dimensionierung mit Numerik in der Produktentwicklung
2161229, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Literaturhinweise
Vorlesungsskript
8.39 Teilleistung: Dynamik des Kfz-Antriebsstrangs [T-MACH-105226]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
Kontakt: KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von:
- M-MACH-102812 - Schwerpunkt: Antriebssysteme
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik
- M-MACH-104442 - Schwerpunkt: Schwingungslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsart</th>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Semesterwochenstunden</th>
<th>Veranstaltungsort</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2163111</td>
<td>Vorlesung (V)</td>
<td>T-MACH-105226</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>2 SWS</td>
<td>Online</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2163112</td>
<td>Übung (Ü)</td>
<td>T-MACH-105226</td>
<td>Übungen zu Dynamik des Kfz-Antriebsstrangs</td>
<td>2 SWS</td>
<td>Präsenz</td>
<td>Fidlin, Keller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfung (PR)</th>
<th>Veranstaltungsort</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105226</td>
<td>Dynamik vom Kfz-Antriebsstrang</td>
<td>Präsenz</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105226</td>
<td>Dynamik vom Kfz-Antriebsstrang</td>
<td>Präsenz</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Legende:
- Online
- Präsenz/Online gemischt
- Präsenz
- Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, 30 Min.

Voraussetzungen
keine

Empfehlungen
Antriebssystemtechnik A: Fahrzeugantriebssysteme
Maschinendynamik
Technische Schwingungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Dynamik des Kfz-Antriebsstrangs

2163111, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

- Hauptkomponenten eines KFZ-Antriebsstrangs und ihre Modelle
- Typische Fahrmanöver
- Problembezogene Modelle für einzelne Fahrsituationen
- Gesamtsystem: Betrachtung und Optimierung vom Antriebstrang in Bezug auf dynamisches Verhalten

Literaturhinweise

- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Übung (Ü)

Übungen zu Dynamik des Kfz-Antriebsstrangs

2163112, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

Übung des Vorlesungsstoffs
8.40 Teilleistung: Einführung in die Finite-Elemente-Methode [T-MACH-105320]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
M-MACH-102582 - Schwerpunkt: Kontinuumsmechanik
M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2162282</th>
<th>Einführung in die Finite-Elemente-Methode</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Langhoff, Böhlke</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105320</th>
<th>Einführung in die Finite-Elemente-Methode</th>
<th>Prüfung (PR)</th>
<th>Böhlke, Langhoff</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min)
Klausurzulassung: bestandene Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330)

Voraussetzungen
Das Bestehen der Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330) ist Klausurvorleistung.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Anmerkungen
Kenntnisse aus den Vorlesungen "Kontinuumsmechanik der Festkörper und Fluide" und "Mathematische Methoden der Kontinuumsmechanik" und den jeweils begleitenden Übungsveranstaltungen werden vorausgesetzt

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen.
Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Finite-Elemente-Methode

2162282, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

- Einführung und Motivation, Elemente der Tensorrechnung
- Diskrete FEM: Stab- und Federsysteme
- Formulierungen eines Randwertproblems (1D)
- Approximationsansätze in der FEM
- FEM für skalare und vektorwertige Feldprobleme
- Lösungsverfahren für lineare Gleichungssysteme
Literaturhinweise

- Fish, J., Belytschko, T.: A First Course in Finite Elements, Wiley 2007
8.41 Teilleistung: Einführung in die Kernenergie [T-MACH-105525]

Verantwortung: Prof. Dr.-Ing. Xu Cheng
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Modulnummer</th>
<th>Modulname</th>
<th>SWS</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>2189903</td>
<td>Einführung in die Kernenergie</td>
<td>2 SWS</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>76-T-MACH-105525</td>
<td>Einführung in die Kernenergie</td>
<td>Cheng</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, 30 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Kernenergie

Vorlesung (V)

2189903, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Online

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Inhalt

1. Nukleare Energieerzeugung
2. Grundlagen der Reaktorphysik
3. Reaktortypen und Struktur
4. Reaktorsicherheit und Wärmeabfuhr
5. Kerntechnische Werkstoffe
6. Brennstoffkreislauf und Abfallbehandlung
7. Strahlenschutz
8. Wirtschaftlichkeit
9. Übungen mit Kernkraftwerkssimulation
8.42 Teilleistung: Einführung in die Mechatronik [T-MACH-100535]

Verantwortung: Moritz Böhland
apl. Prof. Dr. Markus Reischl

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von:
M-MACH-102746 - Wahlpflichtmodul
M-MACH-102820 - Schwerpunkt: Mechatronik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltung</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2105011</td>
<td>Einführung in die Mechatronik</td>
<td>3 SWS, V/ 🖥</td>
<td>Reischl, Böhland</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-100535</td>
<td>Einführung in die Mechatronik</td>
<td>Prüfung (PR)</td>
<td>Reischl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltung</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>6</td>
<td>Einführung in die Mechatronik</td>
<td>Reischl</td>
</tr>
</tbody>
</table>

Turnus

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltung</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>6</td>
<td>Einführung in die Mechatronik</td>
<td>Reischl</td>
</tr>
</tbody>
</table>

Legende:

🖥 Online, 🧩 Präsenz/Online gemischt, 🗺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 2h)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Mechatronik

2105011, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lerninhalt:

- Einleitung
- Aufbau mechatronischer Systeme
- Mathematische Behandlung mechatronischer Systeme
- Sensorik und Aktorik
- Messwerterfassung und –interpretation
- Modellierung mechatronischer Systeme
- Steuerung und Regelung
- Informationsverarbeitung

Lernziele:

Der Studierende kennt die fachspezifischen Herausforderungen in der interdisziplinären Zusammenarbeit im Rahmen der Mechatronik.

Er ist in der Lage Ursprung, Notwendigkeit und methodische Umsetzung dieser interdisziplinären Zusammenarbeit zu erläutern und kann deren wesentliche Schwierigkeiten benennen, sowie die Besonderheiten der Entwicklung mechatronischer Produkte aus entwicklungs methodischer Sicht erläutern.

Der Studierende hat grundlegende Kenntnisse zu Grundlagen der Modellbildung mechanischer, pneumatischer, hydraulischer und elektrischer Teilsysteme, sowie geeigneter Optimierungsstrategien.

Der Studierende kennt den Unterschied des Systembegriffs in der Mechatronik im Vergleich zu rein maschinenbaulichen Systemen. Er ist in der Lage, Systemverhalten mathematisch zu modellieren und darauf basierend Vorhersagen zu treffen. Einfache Steuerungs-/Regelungskonzepte kann er umsetzen und kennt die zugehörigen Infrastrukturen.
Literaturhinweise
8.43 Teilleistung: Einführung in die Mehrkörperdynamik [T-MACH-105209]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102820 - Schwerpunkt: Mechatronik
M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik

Lehrveranstaltungen

| SS 2020 | 2162235 | Einführung in die Mehrkörperdynamik | 3 SWS | Vorlesung (V) | Seemann |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105209 | Einführung in die Mehrkörperdynamik | Prüfung (PR) | Seemann |

Erfolgskontrolle(n)
Schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Empfehlungen
Technische Mechanik III/IV

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Mehrkörperdynamik
2162235, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Mehrkörpersysteme und ihre technische Bedeutung, Kinematik des einzelnen starren Körpers, Drehmatrizen, Winkelgeschwindigkeiten, Ableitungen in verschiedenen Bezugs-systemen, Relativmechanik, holomone und nichtholomone Bindungsgleichungen für geschlossene kinematische Ketten, Newton-Eulersche Gleichungen, Prinzip von d'Alembert, Prinzip der virtuellen Leistung, Lagrangesche Gleichungen, Kane-Ruckadar Formulismus, Struktur der Bewegungsgleichungen

Literaturhinweise
Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
de Ja'lon, J. G., Bayo, E.: Kinematik and Dynamic Simulation of Multibody Systems.
Kane, T.: Dynamics of rigid bodies.
8.44 Teilleistung: Einführung in die Numerische Strömungsmechanik [T-MACH-110362]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Alexander Stroh

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102582 - Schwerpunkt: Kontinuumsmechanik
M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2154533</th>
<th>Vorlesung (V)</th>
<th>Stroh, Frohnapfel</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-110362</th>
<th>Prüfung (PR)</th>
<th>Frohnapfel</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 90Min

Voraussetzungen

Das Bestehen der Studienleistung "Übungen zu Einführung in die Numerische Strömungsmechanik" (T-MACH-111033) ist Klausurvoraussetzung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-111033 - Übungen zu Einführung in die Numerische Strömungsmechanik muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Numerische Strömungsmechanik

2154533, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

- Einführung und Motivation, Grundgleichungen und Kennzahlen,
- Turbulenz und deren Modellierung (DNS, LES, RANS);
- Numerische Lösung der Navier-Stokes Gleichungen: Diskretisierung und Lösungsverfahren (FDM, FVM), Randbedingungen, Initialbedingungen, Stabilität, Fehler der Numerik und der Modellierung
- Aufbau einer numerischen Strömungssimulation: Pre- und Postprocessing, Validierung, Darstellung der Rechenergebnisse, kritische Bewertung
- Einführung in open-source Simulationstoolbox OpenFOAM: Simulationsaufbau, Netzgenerierung mit OpenFOAM-Werkzeugen, Netzgenerierung mit kommerziellen Softwarepaketen, OpenFOAM-Auswertewerkzeuge, Auswertung in python;
- Einführung in einen forschungsorientierten Strömungslöser für turbulente Strömungen (DNS mit Incompact3d), Simulationsaufbau, statistische Auswertung und Analyse turbulenter Strömungen in MATLAB und python;
- Visualisierung von Simulationsergebnissen in ParaView, Interpretation der Simulationsergebnisse

Die Veranstaltung umfasst eine Vorlesung und ein Rechnerpraktikum.
Organisatorisches
Die LV findet erst ab SS 2020 statt.
Die Kenntnis der Vorlesungsinhalte "Kontinuumsmechanik der Festkörper und Fluide" sowie "Mathematische Methoden der Kontinuumsmechanik" wird vorausgesetzt.

Literaturhinweise
Wird in der Vorlesung bekannt gegeben.
8.45 Teilleistung: Einführung in die numerische Strömungstechnik [T-MACH-105515]

Verantwortung: Dr. Balazs Pritz
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2157444</th>
<th>Einführung in die numerische Strömungstechnik</th>
<th>2 SWS</th>
<th>Praktikum (P) / 🗤</th>
<th>Pritz</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗤 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Praktikumschein

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die numerische Strömungstechnik

2157444, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise
Praktikumsskript
8.46 Teilleistung: Einführung in nichtlineare Schwingungen [T-MACH-105439]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-104442 - Schwerpunkt: Schwingungslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>Termin</th>
<th>Form</th>
<th>SWS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2162247</td>
<td>Einführung in nichtlineare Schwingungen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Online</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2162248</td>
<td>Übungen zu Einführung in nichtlineare Schwingungen</td>
<td>2 SWS</td>
<td>Übung (Ü) / Präsenz/Online gemischt</td>
<td>Fidlin, Aramendiz Fuentes</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>Prüfungstyp</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105439</td>
<td>Einführung in nichtlineare Schwingungen</td>
<td>Prüfung (PR)</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105439</td>
<td>Einführung in nichtlineare Schwingungen</td>
<td>Prüfung (PR)</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, 30 Min.

Voraussetzungen

keine

Empfehlungen

Technische Schwingungslehre, Mathematische Methoden der Schwingungslehre, Stabilitätstheorie

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in nichtlineare Schwingungen

2162247, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

- Dynamische Systeme
- Die Grundideen asymptotischer Verfahren
- Störungsmethoden: Linstedt-Poincare, Mittelwertbildung, Multiple scales
- Grenzzyklen
- Nichtlineare Resonanz
- Grundlagen der Bifurkationsanalyse, Bifurkationsdiagramme
- Typen der Bifurkationen
- Unstetige Systeme
- Dynamisches Chaos
Literaturhinweise

Übung (Ü)

Übungen zu Einführung in nichtlineare Schwingungen
2162248, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Übung des Vorlesungsstoffs
8.47 Teilleistung: Elektrische Schienenfahrzeuge [T-MACH-102121]

Verantwortung: Prof. Dr.-Ing. Peter Gratzfeld
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik
Bestandteil von: M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik

Teilleistungsarten
Prüfungsleistung mündlich
Leistungspunkte 4
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2020 2114346 Elektrische Schienenfahrzeuge 2 SWS Vorlesung (V) Online Gratzfeld
WS 20/21 2114346 Elektrische Schienenfahrzeuge 2 SWS Vorlesung (V) Online Gratzfeld

Prüfungsveranstaltungen
SS 2020 76-T-MACH-102121 Elektrische Schienenfahrzeuge Prüfung (PR) Gratzfeld
SS 2020 76-T-MACH-102122 Elektrische Schienenfahrzeuge (Wiederholungsprüfung) Prüfung (PR) Gratzfeld
WS 20/21 76-T-MACH-102121 Elektrische Schienenfahrzeuge Prüfung (PR) Gratzfeld

Erfolgskontrolle(n)
Prüfung: mündlich
Dauer: ca. 20 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Elektrische Schienenfahrzeuge
2114346, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Online

Inhalt
1. Einführung: Geschichte der elektrischen Traktion bei Schienenfahrzeugen, wirtschaftliche Bedeutung
2. Rad-Schiene-Kontakt: Tragen des Fahrzeuggewichts, Übertragen der Fahr- und Bremskräfte, Rückführen des Stromes bei elektrischen Triebfahrzeugen
3. Fahrdynamik: Zug- und Bremskraft, Fahrwiderstandschaft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)
5. Fahrzeugleittechnik: Definitionen, Bussysteme, Komponenten, Netzwerkarchitekturen, Beispiele, zukünftige Entwicklungen
6. Fahrzeugkonzepte: Moderne Fahrzeugkonzepte für elektrischen Nah- und Fernverkehr

Organisatorisches
Die Vorlesung "Elektrische Schienenfahrzeuge" im SS 2020 findet bis auf weiteres als asynchrone Online-Veranstaltung statt.

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (ilias-platform).
Inhalt

1. Einführung: Geschichte der elektrischen Traktion bei Schienenfahrzeugen, wirtschaftliche Bedeutung
2. Rad-Schiene-Kontakt: Tragen des Fahrzeuggewichts, Übertragen der Fahr- und Bremskräfte, Rückführen des Stromes bei elektrischen Triebfahrzeugen
3. Fahrdynamik: Zug- und Bremskraft, Fahrdynamik, Trägheitskraft, Typische Fahrradkkräfte (Nah-, Fernverkehr)
5. Fahrzeugleittechnik: Definitionen, Bussysteme, Komponenten, Netzwerkarchitekturen, Beispiele, zukünftige Entwicklungen
6. Fahrzeugkonzepte: Moderne Fahrzeugkonzepte für elektrischen Nah- und Fernverkehr

Organisatorisches
Die Vorlesung "Elektrische Schienenfahrzeuge" im WS 2021 findet als asynchrone Online-Veranstaltung statt.

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
8.48 Teilleistung: Elektrotechnik und Elektronik [T-ETIT-109820]

Verantwortung:
Dr.-Ing. Klaus-Peter Becker

Einrichtung:
KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von:
M-ETIT-104801 - Elektrotechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
8

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltungsinhalt</th>
<th>SWS</th>
<th>Art/Online</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2306339</td>
<td>Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>4</td>
<td>Vorlesung (V) / 🖥</td>
<td>Becker</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2306340</td>
<td>Übung zu 2306339 Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>2</td>
<td>Vorlesung (V) / 🖥</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltungsinhalt</th>
<th>Art</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7306351</td>
<td>Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>Prüfung (PR)</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle findet im Rahmen einer schriftlichen Prüfung statt, Dauer 3 Stunden.

Voraussetzung
keine

Anmerkungen
Die Prüfung findet in deutscher Sprache statt.
8.49 Teilleistung: Elemente und Systeme der Technischen Logistik [T-MACH-102159]

Verantwortung: Georg Fischer
Dr.-Ing. Martin Mittwollen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-102821 - Schwerpunkt: Technische Logistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>Elemente und Systeme der Technischen Logistik</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🧩</th>
<th>Mittwollen, Rauscher</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-102159</td>
<td>Elemente und Systeme der Technischen Logistik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-102159</td>
<td>Elemente und Systeme der Technischen Logistik</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20min) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

keine

Empfehlungen

Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Elemente und Systeme der Technischen Logistik
2117096, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt

Lernziele:
Die Studierenden können:

- Elemente und Systeme der Technischen Logistik erläutern,
- Den Aufbau und die Wirkungsweise spezieller fördertechnischer Maschinen modellieren und berechnen,
- Wirkzusammenhänge von Materialflussystemen und Technik quantitativ und qualitativ beschreiben
- Für Materialflussysteme geeignete Maschinen auswählen.

Content of teaching:

- Materialflussysteme und ihre fördertechnischen Komponenten
- Betrieb fördertechnischer Maschinen
- Elemente der Intralogistik (Bandförderer, Regale, Fahrender Transportsysteme, Zusammenführung, Verzweigung, etc.)
- Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten während der Übungen

Präsenz: 36Std
Nacharbeit: 84Std

Anmerkungen:

- Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (LV 2117095) vorausgesetzt.
- Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4 (2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4 (2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

siehe auch Homepage / ILIAS

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulations.
look also at our homepage / ILIAS

Literaturhinweise
Empfehlungen in der Vorlesung.
Recommendations during lectures.
8.50 Teilleistung: Elemente und Systeme der Technischen Logistik - Projekt [T-MACH-108946]

Verantwortung: Georg Fischer
Dr.-Ing. Martin Mittwollen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-102821 - Schwerpunkt: Technische Logistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 20/21 (WS 20/21)</th>
<th>Kursnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
<th>Prüfungsveranstaltung</th>
<th>Prüfung (PR)</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117097, WS 20/21, SWS, Sprache: Deutsch</td>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
<td>SWS</td>
<td>Projekt (PRO) / 📚</td>
<td>Mittwollen, Rauscher</td>
<td>76-T-MACH-108946, SS 2020</td>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>76-T-MACH-108946, WS 20/21</td>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)

Präsentation des bearbeiteten Projekts und Verteidigung (30min) nach §4, Abs. 2, Nr. 3 SPO

Voraussetzungen

T-MACH-102159 (Elemente und Systeme der Technischen Logistik) muss begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102159 - Elemente und Systeme der Technischen Logistik muss begonnen worden sein.

Empfehlungen

Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>V</th>
<th>Elemente und Systeme der Technischen Logistik - Projekt</th>
<th>Projekt (PRO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117097, WS 20/21, SWS, Sprache: Deutsch</td>
<td>Prüfung (PR)</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt

Lernziele:
Die Studierenden können:

• Elemente und Systeme der Technischen Logistik erläutern,
• Den Aufbau und die Wirkungsweise spezieller fördertechnischer Maschinen modellieren und berechnen,
• Wirkzusammenhänge von Materialflussystemen und Technik quantitativ und qualitativ beschreiben,
• Für Materialflusssysteme geeignete Maschinen auswählen
• Ein reales System beurteilen und einer fachkundigen Person die dabei erzielten Ergebnisse vermitteln.

Lehrinhalt:

• Materialflussysteme und ihre fördertechnischen Komponenten
• Betrieb fördertechnischer Maschinen
• Elemente der Intralogistik (Bandförderer, Regale, Fahrerlose Transportsysteme, Zusammenführung, Verzweigung, etc.)
• Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten während der Übungen
• Eine selbstständige Projektarbeit anfertigen, die das Themengebiet vertieft.

Medien:
Ergänzungsblätter, Präsentationen, Tafel

Voraussetzungen:
Teilleistung T-MACH-102159 (Elemente und Systeme der Technischen Logistik) muss begonnen sein.

Anmerkungen:

• Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (LV 2117095) vorausgesetzt.
• Präsentation des bearbeiteten Projekts und Verteidigung (30min) nach §4, Abs. 2, Nr. 3 SPO.

Organisatorisches
siehe auch Homepage / ILIAS
8.51 Teilleistung: Energieeffiziente Intralogistiksysteme (mach und wiwi) [T-MACH-105151]

Verantwortung: Dr.-Ing. Meike Braun
Dr. Frank Schönung

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102821 - Schwerpunkt: Technische Logistik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Hörer / Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2117500</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>2 SWS</td>
<td>Braun, Schönung</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Veranstaltungsname</th>
<th>Prüfung (PR)</th>
<th>Hörer / Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>Braun</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Empfehlungen
Der Besuch der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) wird empfohlen.

Anmerkungen
Bitte beachten Sie die Informationen auf der IFL Homepage der Lehrveranstaltung für evtl. Terminänderungen zu einer Blockveranstaltung und/oder einer Begrenzung der Teilnehmerzahl.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energieeffiziente Intralogistiksysteme (mach und wiwi)
2117500, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Der Besuch der Veranstaltung „Grundlagen der Technischen Logistik“ wird empfohlen.

Organisatorisches
Termine und Hinweise siehe Homepage / Aushang

Literaturhinweise
Keine.
8.52 Teilleistung: Energiespeicher und Netzintegration [T-MACH-105952]

Verantwortung: Dr.-Ing. Wadim Jäger
Prof. Dr. Robert Stieglitz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105952</th>
<th>Energiespeicher und Netzintegration</th>
<th>Prüfung (PR)</th>
<th>Jäger, Stieglitz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105952</td>
<td>Energiespeicher und Netzintegration</td>
<td>Prüfung (PR)</td>
<td>Jäger, Stieglitz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
8.53 Teilleistung: Energiesysteme I - Regenerative Energien [T-MACH-105408]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 2129901 Energiesysteme I - Regenerative Energien 3 SWS Vorlesung (V) / Prüfung (PR) Dagan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 76-T-MACH-105408 Energiesysteme I - Regenerative Energien Prüfung (PR) Dagan</td>
</tr>
<tr>
<td>WS 20/21 76-T-MACH-105408 Energiesysteme I - Regenerative Energien Prüfung (PR) Dagan</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 1/2 Stunde

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energiesysteme I - Regenerative Energien
2129901, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

**Vorlesung (V)
Präsenz/Online gemischt**

Inhalt
Die Lehrveranstaltung behandelt im wesentlichen fundamentalen Aspekte von "Erneuerbaren Energien".

2. Als weitere Nutzung der Sonnenenergie zur Stromerzeugung werden die Grundlagen der Photovoltaik diskutiert.
3. Im letzten Teil werden andere regenerative Energiequellen wie Wind und Erdwärme dargestellt.

Lernziel: Der Studierende beherrscht die Grundlagen für die Energieumwandlung mit "Erneuerbaren Energien", vor allem durch die Sonne.

Präsenzzeit: 34 Stunden
Selbststudium: 146 Stunden

Mündliche Prüfung - als Wahlfach ca. 30 Minuten, in Kombination mit Energiesysteme-II oder anderen Vorlesungen aus dem Energiesektor als Hauptfach 1 Stunde
8.54 Teilleistung: Entwicklung des hybriden Antriebsstranges [T-MACH-110817]

Verantwortung: Prof. Dr. Thomas Koch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors

Lehreinheitenart
Prüfungsleistung schriftlich
Leistungspunkte 4
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2020 2134155 Entwicklung des hybriden Antriebsstranges 2 SWS Vorlesung (V) Koch, Doppelbauer

Prüfungsveranstaltungen
SS 2020 76-T-MACH-110817 Entwicklung des hybriden Antriebsstranges Prüfung (PR) Koch

Erfolgskontrolle(n)
schriftliche Prüfung, 1 Stunde

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Entwicklung des hybriden Antriebsstranges
2134155, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

1. Einleitung und Zielsetzung
2. Alternative Antriebskonzepte
3. Grundlagen der Hybridantriebe
4. Grundlagen der elektrischen Komponenten von Hybridantrieben
5. Wechselwirkung bei der hybriden Antriebsstrangentwicklung
6. Gesamtsystemoptimierung
7. Gesamtsystembetrachtung
Teilleistung: Experimentelle Dynamik [T-MACH-105514]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von:
- M-MACH-102820 - Schwerpunkt: Mechatronik
- M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik
- M-MACH-104442 - Schwerpunkt: Schwingungslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.55</td>
<td></td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2162225</th>
<th>Experimentelle Dynamik</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Fidlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162228</td>
<td>Übungen zu Experimentelle Dynamik</td>
<td>2 SWS</td>
<td>Übung (U)</td>
<td>Fidlin, Keller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105514</th>
<th>Experimentelle Dynamik</th>
<th>Prüfung (PR)</th>
<th>Fidlin</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
- mündliche Prüfung, 30 min.

Voraussetzungen
- Kann nicht mit Schwingungstechnisches Praktikum (T-MACH-105373) kombiniert werden.

Modellierte Voraussetzungen
- Es müssen die folgenden Bedingungen erfüllt werden:
 1. Die Teilleistung T-MACH-105373 - Schwingungstechnisches Praktikum darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelle Dynamik
2162225, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

1. Einführung
2. Messprinzip
3. Sensoren als gekoppelte, multiphysikalische Systeme
4. Digitale Signalverarbeitung, Messung von Frequenzgängen
5. Zwangserregte Schwingungen nichtlinearer Schwinger
6. Stabilitätsprobleme (Mathieu-Schwinger, reibungserregte Schwingungen)
7. Elementare Rotordynamik
8. Modalanalyse
8.56 Teilleistung: Experimentelles metallographisches Praktikum [T-MACH-105447]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Fabian Mühl

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Turnus: Jedes Semester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2175590</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Mühl</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2175590</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Mühl, Heilmaier</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Kursbezeichnung</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105447</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>Prüfung (PR)</td>
<td>Heilmaier</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105447</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>Prüfung (PR)</td>
<td>Heilmaier</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kolloquium zu jedem Versuch, ca. 60 Minuten, Protokoll

Voraussetzungen
M-MACH-102562 - Werkstoffkunde muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-MACH-102562 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelles metallographisches Praktikum
2175590, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Versuche:
2. Unlegierte Stähle & Gusseisen
3. Nicht-Gleichgewichtszustände
4. Nichteisenwerkstoffe
5. Rasterelektronenmikroskopie
Es finden 6 Versuche á 4 Stunden ungefähr alle 14 Tage statt. Zu jedem Versuch muss ein Protokoll angefertigt werden.

Die Grundlagen eignet sich der Studierende vorab an - sie werden in einem Kolloquium vor dem Versuch abgefragt und sind Voraussetzung für die Teilnahme. Zur Orientierung und aneignung erster Grundlagen steht ein Skript zur Verfügung.

Lernziele:

Voraussetzungen:
Grundkenntnisse Werkstoffkunde (Werkstoffkunde I und II)

Arbeitsaufwand:
Präsenzzeit: 25 Stunden
Selbststudium: 95 Stunden

Organisatorisches
Der Anmeldezeitraum für das SoSe 2020 ist nun eröffnet.

Anmeldung trotzdem erforderlich, per Mail an fabian.muehl@kit.edu mit Angaben von: Name, Matrikelnr., Studiengang, Semester, Anrechnung als Fachpraktikum, Laborpraktikum oder Schwerpunkt.
Anmeldeschluss: 19.04.2020

Literaturhinweise
Macherauch, E.: Praktikum in Werkstoffkunde, 10. Aufl., 1992

Literaturliste wird zu jedem Versuch ausgegeben
Inhalt
Das Lichtmikroskop in der Metallographie
Schiﬄerstellung bei metallischen Werkstoffen
Gefügeuntersuchung an unlegierten Stählen und an Gußeisenwerkstoffen
Gefügeausbildung bei beschleunigter Abkühlung aus dem Austenitgebiet
Gefügeausbildung bei legierten Stählen
Quantitative Gefügeanalyse
Gefügeuntersuchungen an technisch wichtigen Nichteisenmetallen
Verwendung eines Rasterelektronenmikroskops

Qualifikationsziele:

Organisatorisches
Der Anmeldezeitraum für das Wintersemester 2020/2021 ist nun eröffnet.

Anmeldung trotzdem erforderlich, per Mail an fabian.muehl@kit.edu mit Angaben von: Name, Matrikelnr., Studiengang, Semester, Anrechnung als Fachpraktikum, Laborpraktikum oder Schwerpunkt.
Anmeldeschluss: 02.11.2020

Literaturhinweise
Macherauch, E.: Praktikum in Werkstoffkunde, 10. Aufl., 1992

Literaturliste wird zu jedem Versuch ausgegeben
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt
1. Problemstellung: Regelkreis Fahrer - Fahrzeug - Umgebung (z.B. Koordinatensysteme, Schwingungsforframe des Aufbaus und der Räder)
2. Simulationsmodelle: Erstellung von Bewegungsgleichungen (Methode nach D'Alembert, Methode nach Lagrange, Automatische Gleichungsgenerierer), Modell für Fahreigenschaften (Aufgabenstellung, Bewegungsgleichungen)
3. Reifenverhalten: Grundlagen, trockene, nasse und winterglatte Fahrbahn

Literaturhinweise
8.58 Teilleistung: Fahreigenschaften von Kraftfahrzeugen II [T-MACH-105153]

Verantwortung: Dr.-Ing. Hans-Joachim Unrau
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2020 2114838 Fahreigenschaften von Kraftfahrzeugen II 2 SWS Vorlesung (V) Unrau

Prüfungsveranstaltungen
SS 2020 76-T-MACH-105153 Fahreigenschaften von Kraftfahrzeugen II Prüfung (PR) Unrau
WS 20/21 76-T-MACH-105153 Fahreigenschaften von Kraftfahrzeugen II Prüfung (PR) Unrau

Erfolgskontrolle(n)
mündlich
Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahreigenschaften von Kraftfahrzeugen II
2114838, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Fahrverhalten: Grundlagen, Stationäre Kreisfahrt, Lenkwinkelsprung, Einzelsinus, Doppelter Spurwechsel, Slalom, Seitenwindverhalten, Unebene Fahrbahn

2. Stabilitätsverhalten: Grundlagen, Stabilitätsbedingungen beim Einzelfahrzeug und beim Gespann

Lernziele:

Literaturhinweise
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugergonomie
2110050, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Grundlagen der physikalisch-körperbezogenen Ergonomie
- Grundlagen der kognitiven Ergonomie
- Theorien des Fahrerverhaltens
- Schnittstellengestaltung
- Usability-Testing

Lernziele:

Organisatorisches
Die Vorlesung hat einen Arbeitsaufwand von 120 h (= 4 LP).
Schriftliche Klausur, außer bei zuwenig Teilnehmern. In dem Fall ist die Prüfung mündlich.

Literaturhinweise
Die Literaturliste wird in der Vorlesung ausgegeben. Die Folien zur Vorlesung stehen auf ILIAS zum Download zur Verfügung.
8.60 Teilleistung: Fahrzeugkomfort und -akustik I [T-MACH-105154]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-104442 - Schwerpunkt: Schwingungslehre

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

SS 2020
2114856
Vehicle Ride Comfort & Acoustics I
2 SWS
Vorlesung (V)
Gauterin

WS 20/21
2113806
Fahrzeugkomfort und -akustik I
2 SWS
Vorlesung (V) / 🖥
Gauterin

Prüfungsveranstaltungen

SS 2020
76-T-MACH-105154
Fahrzeugkomfort und -akustik I
Prüfung (PR)
Gauterin

WS 20/21
76-T-MACH-105154
Fahrzeugkomfort und -akustik I
Prüfung (PR)
Gauterin

Erfolgskontrolle(n)
mündlich

Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen
Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics I T-MACH-102206 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vehicle Ride Comfort & Acoustics I
2114856, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seitens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsphänomenen beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analysieren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.
Organisatorisches
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]
Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.

Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

V Fahrzeugkomfort und -akustik I
2113806, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seltens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsspänomenen beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analysieren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.

Organisatorisches
Kann nicht mit der Veranstaltung [2114856] kombiniert werden.
Can not be combined with lecture [2114856]

Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
8.61 Teilleistung: Fahrzeugkomfort und -akustik II [T-MACH-105155]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-104442 - Schwerpunkt: Schwingungslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Unterrichtstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114825</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Unterrichtstitel</th>
<th>Prüfungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündlich

Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen

Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics II T-MACH-102205 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugkomfort und -akustik II

2114825, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
1. Zusammenfassung der Grundlagen Akustik und Schwingungen
2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
3. Geräuschemission von Kraftfahrzeugen
 - Geräuschenlastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
Lernziele:

Organisatorisches
Kann nicht mit der Veranstaltung [2114857] kombiniert werden.
Can not be combined with lecture [2114857]

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

Vehicle Ride Comfort & Acoustics II
2114857, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Zusammenfassung der Grundlagen Akustik und Schwingungen
2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
3. Geräuschemission von Kraftfahrzeugen
 - Geräuschenlastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
Lernziele:
Organisatorisches
Genaue Termine entnehmen Sie bitte der Institu-homepage.
Kann nicht mit der Veranstaltung [2114825] kombiniert werden.

Scheduled dates:
see homepage of the institute.
Can not be combined with lecture [2114825].

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
8.62 Teilleistung: Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe [T-MACH-105237]

Verantwortung: Prof. Dr.-Ing. Frank Henning
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbautechnologie
Bestandteil von: M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Veranstaltungscode</th>
<th>Lehrveranstaltungsart</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td>2113102</td>
<td>Vorlesung (V)</td>
<td>Deutsch</td>
<td>2 SWS</td>
<td>Henning</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltung</th>
<th>Veranstaltungscode</th>
<th>Prüfung (PR)</th>
<th>Henning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td>76-T-MACH-105237</td>
<td>Henning</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td>76-T-MACH-105237-SS20</td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung schriftlich; Dauer ca. 90 min

Voraussetzungen
keine

Empfehlungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe
2113102, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Leichtbaustrategien
- Stoffleichtbau
- Formleichtbau
- Konzeptleichtbau
- Multi-Material-Design

Ingenieurtechnische Bauweisen
- Differentialbauweise
- Integralbauweise
- Sandwichbauweise
- Modulbauweise
- Bionik

Karosseriebauweisen
- Schalenbauweise
- Space Frame
- Gitterrohrrahmen
- Monocoque

Metallische Leichtbauwerkstoffe
- Hoch- und Höchstfeste Stähle
- Aluminiumlegierungen
- Magnesiumlegierungen
- Titanlegierungen

Lernziele:
Sie können nachvollziehen, dass dies besonders bei anisotropen Werkstoffen, deren Eigenschaften maßgeblich vom Fertigungsprozess beeinflusst werden, für die industrielle Nutzung essentiell ist. Die Studierenden kennen die gängigen Leichtbaustrategien, Ingenieurtechnische Leichtbauweisen sowie die gängige Karosseriebauweisen. Sie lernen die im Fahrzeugleichtbau verwendeten metallischen Leichtbauwerkstoffe kennen und können die Zusammenhänge aus verwendetem Werkstoff zur anzuwendenden Karosseriebauweise bilden.

Literaturhinweise
8.63 Teilleistung: Fahrzeugmechatronik I [T-MACH-105156]

Verantwortung: Prof. Dr.-Ing. Dieter Ammon
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105156 | Fahrzeugmechatronik I | Prüfung (PR) | Ammon |

Erfolgskontrolle(n)
schriftlich

Dauer: 90 Minuten
Hilfsmittel: keine

Voraussetzungen
keine
Teilleistung: Fahrzeugreifen- und Räderentwicklung für PKW [T-MACH-102207]

Verantwortung: Hon.-Prof. Dr. Günter Leister

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2020</th>
<th>2114845</th>
<th>Fahrzeugreifen- und Räderentwicklung für PKW</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Leister</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td>SS 2020</td>
<td>76-T-MACH-102207</td>
<td>Fahrzeugreifen- und Räderentwicklung für PKW</td>
<td>Prüfung (PR)</td>
<td>Leister</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-102207</td>
<td>Fahrzeugreifen- und Räderentwicklung für PKW</td>
<td>Prüfung (PR)</td>
<td>Leister</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündlich

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugreifen- und Räderentwicklung für PKW
2114845, SS 2020, 2 SWS, im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

1. Die Rolle von Reifen und Räder im Fahrzeugumfeld
2. Geometrische Verhältnisse von Reifen und Rad, Package, Tragfähigkeit und Betriebsfestigkeit, Lastenheftprozess
3. Mobilitätsstrategie: Reserverad, Notlaufsysteme und Pannensets
4. Projektmanagement: Kosten, Gewicht, Termine, Dokumentation
5. Reifenprüfungen und Reifeneigenschaften
6. Rädertechnik im Spannungsfeld Design und Herstellungsprozess, Radprüfung
7. Reifendruck: Indirekt und direkt messende Systeme
8. Reifenbeurteilung subjektiv und objektiv

Lernziele:

Die Studierenden kennen die Wechselwirkungen von Reifen, Rädern und Fahrwerk. Sie haben einen Überblick über die Prozesse, die sich rund um die Reifen- und Räderentwicklung abspielen. Ihnen sind die physikalischen Zusammenhänge klar, die hierfür eine wesentliche Rolle spielen.

Organisatorisches

Voraussichtliche Termine, nähere Informationen und eventuelle Terminänderungen:
siehe Institutshomepage.

Literaturhinweise

Manuskript zur Vorlesung
Manuscript to the lecture
8.65 Teilleistung: Fahrzeugsehen [T-MACH-105218]

Verantwortung: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von:
- M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik
- M-MACH-102817 - Schwerpunkt: Informationstechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 6
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen

SS 2020 2138340 Automotive Vision / Fahrzeugsehen 3 SWS Vorlesung (V) Lauer

Prüfungsveranstaltungen

SS 2020 76-T-MACH-105218 Fahrzeugsehen Prüfung (PR) Stiller, Lauer

Erfolgskontrolle(n)
Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Autonomous Vision / Fahrzeugsehen
2138340, SS 2020, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt
Lernziele:

Lehrinhalt:
1. Fahrerassistenzsysteme
2. Stereossehen
3. Merkmalspunktverfahren
4. Optischer Fluss/Tracking im Bild
5. Tracking und Zustandsschätzung
6. Selbstlokalisierung und Kartierung
7. Fahrbahnkennung
8. Verhaltenserkennung
Nachweis: Schriftlich 60 Min.
Arbeitsaufwand: 120 Stunden
Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
8.66 Teilleistung: Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung [T-MACH-105535]

Verantwortung: Prof. Dr.-Ing. Frank Henning
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbautechnologie

Bestandteil von: M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2020 2114053 Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung 2 SWS Vorlesung (V) Henning

Prüfungsveranstaltungen
SS 2020 76-T-MACH-105535 Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung Prüfung (PR) Henning
SS 2020 76-T-MACH-105535-SS20 Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung Prüfung (PR) Henning

Erfolgskontrolle(n)
Schriftliche Prüfung 90 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung 2114053, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Physikalische Zusammenhänge der Faserverstärkung
- Paradoxa der FVW

Anwendungen und Beispiele
- Automobilbau
- Transport
- Energie- und Bauwesen
- Sportgeräte und Hobby

Matrixwerkstoffe
- Aufgaben der Matrix im Faserverbundwerkstoff
- Grundlagen Kunststoffe
- Duromere
- Thermoplaste

Verstärkungsfasern und ihre Eigenschaften
- Aufgaben im FVW, Einfluss der Fasern
- Glasfasern
- Kohlenstofffasern
- Aramidfasern
- Naturfasern

Halbzeuge/Prepregs

Verarbeitungsverfahren

Recycling von Verbundstoffen

Lernziele:

Literaturhinweise

Literatur Leichtbau II

[1-7]

8.67 Teilleistung: Fertigungstechnik [T-MACH-102105]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 8
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2149657</th>
<th>Fertigungstechnik</th>
<th>6 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Schulze, Gerstenmeyer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-102105</th>
<th>Fertigungstechnik</th>
<th>Prüfung (PR)</th>
<th>Schulze</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (180 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fertigungstechnik
2149657, WS 20/21, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Online
Inhalt
Ziel der Vorlesung ist es, die Fertigungstechnik im Rahmen der Produktionstechnik einzuordnen, einen Überblick über die Verfahren der Fertigungstechnik zu geben und ein vertieftes Prozesswissen der gängigen Verfahren aufzubauen. Dazu werden im Rahmen der Vorlesung fertigungstechnische Grundlagen vermittelt und die Fertigungsverfahren entsprechend ihrer Hauptgruppen sowohl unter technischen als auch wirtschaftlichen Gesichtspunkten behandelt. Durch die Vermittlung von Themen wie Prozessketten in der Fertigung wird die Vorlesung abgerundet.

Die Themen im Einzelnen sind:

- Qualitätsregelung
- Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung, Kunststofftechnik)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung
- Prozessketten in der Fertigung

Eine Exkursion zu einem Industriunternehmen gehört zum Angebot dieser Vorlesung.

Lernziele:
Die Studierenden ...

- sind fähig, die verschiedenen Fertigungsverfahren anzugeben und deren Funktionen zu erläutern.
- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der Hauptgruppen klassifizieren.
- sind in der Lage, für vorgegebene Verfahren auf Basis deren Eigenschaften eine Prozessauswahl durchzuführen.
- sind befähigt, Zusammenhänge einzelner Verfahren zu identifizieren, und können diese hinsichtlich ihrer Einsatzmöglichkeiten auswählen.
- können die Verfahren für gegebene Anwendungen unter technischen und wirtschaftlichen Gesichtspunkten beurteilen und eine spezifische Auswahl treffen.
- sind in der Lage, die Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen und deren jeweiligen Einfluss im Kontext der gesamten Prozesskette auf die resultierenden Werkstückeigenschaften zu beurteilen.

Arbeitsaufwand:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

Organisatorisches
Vorlesungstermine montags und dienstags, Übungstermine mittwochs.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
8.68 Teilleistung: Fluidtechnik [T-MACH-102093]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Felix Pult

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Thema</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2114093</td>
<td>Fluidtechnik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Geimer, Pult, Metzger</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Thema</th>
<th>Veranstaltungstyp</th>
<th>Prüfungstermin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102093</td>
<td>Fluidtechnik</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
keine

Anmerkungen

Lernziele:
Der Studierende ist in der Lage:

- die physikalischen Prinzipien der Fluidtechnik anzuwenden und zu bewerten,
- gängige Komponenten zu nennen und deren Funktionsweisen zu erläutern,
- die Vor- und Nachteile unterschiedlicher Komponenten aufzuzeigen,
- Komponenten für einen gegeben Zweck zu dimensionieren
- sowie einfache Systeme zu berechnen.

Inhalt:
Im Bereich der Hydrostatik werden die Themenkomplexe

- Druckflüssigkeiten,
- Pumpen und Motoren,
- Ventile,
- Zubehör und Hydraulische Schaltungen behandelt.

Im Bereich der Pneumatik werden die Themenkomplexe

- Verdichter,
- Antriebe,
- Ventile und Steuerungen behandelt.

Literatur:
Skiptum zur Vorlesung Fluidtechnik, über die Lernplattform ILIAS downloadbar.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Im Bereich der Hydrostatik werden die Themenkomplexe

- Druckflüssigkeiten,
- Pumpen und Motoren,
- Ventile,
- Zubehör und
- Hydraulische Schaltungen betrachtet.

Im Bereich der Pneumatik die Themenkomplexe

- Verdichter,
- Antriebe,
- Ventile und
- Steuerungen betrachtet.

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literaturhinweise
Skriptum zur Vorlesung *Fluidtechnik*
Institut für Fahrzeugsystemtechnik
downloadbar
8.69 Teilleistung: Gasdynamik [T-MACH-105533]

Verantwortung: Dr.-Ing. Franco Magagnato
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 20/21 | 2154200 | Gasdynamik | 2 SWS | Vorlesung (V) / 🖥 | Magagnato |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105533 | Gasdynamik | Prüfung (PR) | Magagnato |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗝 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung - 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Gasdynamik
2154200, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Online

Inhalt

Sie sind in der Lage die Ruhewerte der strömungsmechanischen Variablen zu berechnen und deren kritische Werte zu bestimmen. Die Studierenden können die Stromfadentheorie bei veränderlichem Querschnitt anwenden und damit verbundenen unterschiedlichen Strömungen in einer Lavaldüse beurteilen.

Sie sind in der Lage schräge Verdichtungsstöße zu berechnen und können abgelöste von nicht abgelösten Verdichtungstöße unterscheiden. Die Studenten können die Prandtl-Meyer Expansionfächer berechnen.

In dieser Lehrveranstaltung werden folgende Themen behandelt:

- Einführung in die Gasdynamik
- Numerische und experimentelle Beispiele
- Die Grundgleichungen in differenzieller und integraler Form
- Stationäre Stromfadentheorie mit und ohne senkrechten Verdichtungsstoß
- Diskussion des Energiesatzes: Ruhewerte und kritische Werte
- Stromfadentheorie bei veränderlichem Querschnitt. Strömung in einer Lavaldüse
- Schräger Verdichtungsstoß und abgelöster Verdichtungsstoß
- Prandtl-Meyer Expansionsfächer
- Strömungen mit Reibung (Fanno Linie)

Literaturhinweise
Zierep, J.: Theoretische Gasdynamik, Braun Verlag, Karlsruhe. 1991
8.70 Teilleistung: Gießereikunde [T-MACH-105157]

Verantwortung: Dr.-Ing. Christian Wilhelm
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2174575</th>
<th>Gießereikunde</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Wilhelm</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105157</th>
<th>Gießereikunde</th>
<th>Prüfung (PR)</th>
<th>Wilhelm</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
mündliche Prüfung; ca. 25 Minuten

Voraussetzungen
M-MACH-102562 - Werkstoffkunde muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-102562 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Gießereikunde
2174575, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt
Form- und Gießverfahren
Erstarrung metall. Schmelzen
Gießbarkeit
Fe-Metalllegierungen
Ne-Metalllegierungen
Form- und Hilfsstoffe
Kernherstellung
Sandregenerierung
Gießgerechtes Konstruieren
Gieß- und Erstarrungssimulation
Arbeitsablauf in der Gießerei

Lernziele:
Die Studenten kennen die einzelnen Form- und Gießtechnischen Verfahren und können sie detailliert beschreiben. Sie kennen die Anwendungsgebiete der einzelnen Form- und Gießtechnischen Verfahren hinsichtlich Gussteilen und Metallen, deren Vor- und Nachteile sowie deren Einsatzgebiet der Gussmaterialien detailliert beschreiben.

Die Studenten kennen die im Einsatz befindlichen Gusswerkstoffe und können die Vor- und Nachteile sowie das jeweilige Einsatzgebiet der Gussteile hinsichtlich o.a. Kriterien und können sie konkret beschreiben.

Voraussetzungen:
Pflicht: Werkstoffkunde I und II

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Gießereikunde beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).

Organisatorisches
Die Kapitel zur Vorlesung werden als sprach-unterstützte PPT-Dateien in ILIAS, dem Fortschritt der Vorlesung entsprechend, zur Verfügung gestellt.

Bis auf weiteres werden zu den im Vorlesungsverzeichnis wiedergegebenen Terminen (= ursprünglich geplante Vorlesungen) freitags ab 9:45 Uhr Rückfragemöglichkeit der Studierenden mit dem Dozenten eingerichtet. Der erste Rückfragetermin findet am 8.5.2020 statt. Die Kommunikationsform für diese Rückfragetermine (E-Mail, MS Teams o.a.) steht noch nicht fest und wird noch bekanntgegeben. Der Dozent ist grundsätzlich unter fcs-wilhelm@outlook.de zu erreichen.

Literaturhinweise
Literaturhinweise werden in der Vorlesung gegeben

Reference to literature, documentation and partial lecture notes given in lecture
8.71 Teilleistung: Großdiesel- und -gasmotoren für Schiffsantriebe [T-MACH-110816]

Verantwortung: Dr.-Ing. Heiko Kubach
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2134154</td>
<td>Großdiesel- und -gasmotoren für Schiffsantriebe</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Kubach</td>
</tr>
<tr>
<td>WS 2021</td>
<td>2134154</td>
<td>Großdiesel- und -gasmotoren für Schiffsantriebe</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

| Prüfungsveranstaltungen |
| SS 2020 | 76-T-MACH-110816 | Großdiesel- und -gasmotoren für Schiffsantriebe | Prüfung (PR) |

Erfolgskontrolle(n)
mündliche Prüfung, 20 Minuten

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Großdiesel- und -gasmotoren für Schiffsantriebe

2134154, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt
- Einführung, Geschichte
- Schiffstypen und Antriebssysteme
- Thermodynamik
- Aufladung
- Konstruktion
- Brennstoffe
- Schmierung
- Zumessung von Flüssigkraftstoffen
- Brennverfahren für Flüssigkraftstoffe
- Zumessung von Gaskraftstoffen
- Brennverfahren für Gaskraftstoffe
- Emissionen
- Einbindung Motor im Schiff
- Grossmotorenanwendungen in anderen Sektoren
- Entwicklungsperspektiven

Großdiesel- und -gasmotoren für Schiffsantriebe

2134154, WS 2021, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Präsenz
Inhalt

- Einführung, Geschichte
- Schiffstypen und Antriebssysteme
- Thermodynamik
- Aufladung
- Konstruktion
- Brennstoffe
- Schmierung
- Zumessung von Flüssigkraftstoffen
- Brennverfahren für Flüssigkraftstoffe
- Zumessung von Gaskraftstoffen
- Brennverfahren für Gaskraftstoffe
- Emissionen
- Einbindung Motor im Schiff
- Grossmotorenanwendungen in anderen Sektoren
- Entwicklungsperspektiven
8.72 Teilleistung: Grundlagen der Energietechnik [T-MACH-105220]

Verantwortung: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
8

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Grundlagen der Energietechnik</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2130927</td>
<td>Grundlagen der Energietechnik</td>
<td>Cheng, Badea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Fundamentals of Energy Technology</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3190923</td>
<td>Fundamentals of Energy Technology</td>
<td>Badea</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Grundlagen der Energietechnik</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105220</td>
<td>Grundlagen der Energietechnik</td>
<td>Cheng, Badea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Grundlagen der Energietechnik</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105220 Fundamentals of Energy Technology</td>
<td>Grundlagen der Energietechnik</td>
<td>Badea</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 90 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Energietechnik

2130927, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

Die Vorlesung umfasst folgende Themengebiete:
- Energiebedarf und Energiesituation
- Energietyphen und Energiemix
- Grundlagen. Thermodynamik relevant für den Energiesektor
- Konventionelle Fossil befeuerte Kraftwerke, inkl. GuD
- Kraft-Wärme-Kopplung
- Kernenergie
- Regenerative Energien: Wasserkraft, Windenergie, Solarenergie, andere Energiesysteme
- Energiebedarfsstrukturen. Grundlagen der Kostenrechnung / Optimierung
- Energiespeicher
- Transport von Energie
- Energieerzeugung und Umwelt. Zukunft des Energiesektors

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
Inhalt

Die Vorlesung umfasst folgende Themengebiete:
- Energieformen
- Thermodynamik relevant für den Energiesektor
- Energiequellen: fossile Brennstoffe, Kernenergie, regenerative Energien
- Energiebedarf, -versorgung, -reserven; Energiebedarfsstrukturen
- Energieerzeugung und Umwelt
- Energiewandlung
- Prinzip thermisch/elektrischer Kraftwerke
- Transport von Energie
- Energiespeicher
- Systemen zur Nutzung regenerativer Energiequellen
- Grundlagen der Kostenrechnung / Optimierung
- Zukunft des Energiesektors
8.73 Teilleistung: Grundlagen der Fahrzeugtechnik I [T-MACH-100092]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Sem.
Sprache: Deutsch
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung (V)</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Automotive Engineering I</td>
<td>Gauterin, Gießler</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

schriftlich
Dauer: 120 Minuten
Hilfsmittel: keine

Voraussetzungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik I

2113805, WS 20/21, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Online

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanische Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differential

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsrädern sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.
Organisatorisches
Kann nicht mit der Veranstaltung [2113809] kombiniert werden.
Can not be combined with lecture [2113809].

Literaturhinweise

Automotive Engineering I
2113809, WS 20/21, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

V Vorlesung (V) Online

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanisches Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differential

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsrädern sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches
Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literaturhinweise
8.74 Teilleistung: Grundlagen der Fahrzeugtechnik II [T-MACH-102117]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2114835</th>
<th>Grundlagen der Fahrzeugtechnik II</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114855</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gießler</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-102117 | Grundlagen der Fahrzeugtechnik II | Prüfung (PR) | Unrau, Gauterin |
| WS 20/21 | 76-T-MACH-102117 | Grundlagen der Fahrzeugtechnik II | Prüfung (PR) | Unrau, Gauterin |

Erfolgskontrolle(n)

schriftlich

Dauer: 90 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik II

2114835, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele:

Organisatorisches

Kann nicht mit der Veranstaltung [2114855] kombiniert werden.

Can not be combined with lecture [2114855]
Literaturhinweise

Automotive Engineering II
2114855, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele:

Literaturhinweise
Elective literature:
8.75 Teilleistung: Grundlagen der Fertigungstechnik [T-MACH-105219]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102549 - Fertigungsprozesse

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2149658 | Grundlagen der Fertigungstechnik | 2 SWS | Vorlesung / Übung (VÜ) / 🖥 | Schulze, Gerstenmeyer |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105219 | Grundlagen der Fertigungstechnik | Prüfung (PR) | Schulze |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (Dauer: 60 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fertigungstechnik

2149658, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) 🖥 Online
Inhalt

Die Themen im Einzelnen sind:

- Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung

Lernziele:
Die Studierenden ...

- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der sechs Hauptgruppen (DIN 8580) klassifizieren.
- sind fähig, die wesentlichen Fertigungsverfahren der sechs Hauptgruppen (DIN 8580) anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, die charakteristischen Verfahrensmerkmale (Geometrie, Werkstoffe, Genauigkeit, Werkzeuge, Maschinen) der wesentlichen Fertigungsverfahren der sechs Hauptgruppen nach DIN 8580 zu beschreiben.
- sind fähig, aus den charakteristischen Verfahrensmerkmalen die relevanten prozessspezifischen technischen Vor- und Nachteile abzuleiten.
- sind in der Lage, für vorgegebene Bauteil eine Auswahl geeigneter Fertigungsprozesse durchzuführen.
- sind in der Lage, für die Herstellung vorgegebener Beispielprodukte erforderlichen Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
8.76 Teilleistung: Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie [T-MACH-102111]

Verantwortung: Dr. Günter Schell
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Veranstaltungscode</th>
<th>tín</th>
<th>Vorlesung (V)</th>
<th>Schell</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</td>
<td>2193010</td>
<td>2 SWS</td>
<td>Online</td>
<td>Schell</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Veranstaltungscode</th>
<th>Leistung</th>
<th>Prüfung (PR)</th>
<th>Schell</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</td>
<td>76-T-MACH-102111</td>
<td>Prüfung (PR)</td>
<td>Schell</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</td>
<td>76-T-MACH-102111</td>
<td>Prüfung (PR)</td>
<td>Schell</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 20-30 min. mündlichen Prüfung zu einem vereinbarten Termin. Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2193010, WS 20/21, 2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Organisatorisches

Die Veranstaltung findet online statt.
Erster Termin: 05.11.2020

Literaturhinweise

- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
8.77 Teilleistung: Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren [T-MACH-105044]

Verantwortung: Prof. Dr. Olaf Deutschmann
Prof. Dr. Jan-Dierk Grunwaldt
Dr.-Ing. Heiko Kubach
Hon.-Prof. Dr. Egbert Lox

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2134138</th>
<th>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Lox, Grunwaldt, Deutschmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2134138</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Lox, Grunwaldt, Deutschmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105044</th>
<th>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</th>
<th>Prüfung (PR)</th>
<th>Lox</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105044</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>Prüfung (PR)</td>
<td>Lox</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren

2134138, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches
Blockvorlesung, Termin und Ort werden auf der Homepage des IFKM und ITCP bekannt gegeben.
Teilleistung: Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren [T-MACH-105044]

Literaturhinweise
Skript, erhältlich in der Vorlesung

Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren
2134138, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches
Blockvorlesung, Termin und Ort werden auf der Homepage des IFKM und ITCP bekannt gegeben.

Literaturhinweise
Skript, erhältlich in der Vorlesung
8.78 Teilleistung: Grundlagen der Mess- und Regelungstechnik [T-MACH-104745]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-102564 - Mess- und Regelungstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2137301</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>3</td>
<td>Stiller</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2137302</td>
<td>Übungen zu Grundlagen der Mess- und Regelungstechnik</td>
<td>1</td>
<td>Stiller, Fischer, Pauls</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3137020</td>
<td>Measurement and Control Systems</td>
<td>3</td>
<td>Stiller</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3137021</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1</td>
<td>Stiller, Fischer, Pauls</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Prüfungstitel</th>
<th>Prüfungsform</th>
<th>Lehrbeauftragte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-104745</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>Prüfung (PR)</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung
2,5 Stunden

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mess- und Regelungstechnik

<table>
<thead>
<tr>
<th>Vorlesungs-ID</th>
<th>Semester</th>
<th>Sprache</th>
<th>Prüfungsart</th>
<th>Veranstaltungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>2137301</td>
<td>WS 20/21</td>
<td>Deutsch</td>
<td>Vorlesung (V)</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen
Inhalt
Lehrinhalt
1. Dynamische Systeme
2. Eigenschaften wichtiger Systeme und Modellbildung
3. Übertragungsverhalten und Stabilität
4. Synthese von Reglern
5. Grundbegriffe der Messtechnik
6. Estimation
7. Messaufnehmer
8. Einführung in digitale Messverfahren

Lernziele:

Voraussetzungen:
Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace-Transformation
Arbeitsaufwand:
210 Stunden

Literaturhinweise
Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005
 • Measurement and Control Systems:
 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley
 • Regelungstechnische Bücher:
 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag
 • Messtechnische Bücher:
 E. Schrüber: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Übungen zu Grundlagen der Mess- und Regelungstechnik
2137302, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierenportal anzeigen

Inhalt
Übung zu Veranstaltung 2137301

Measurement and Control Systems
3137020, WS 20/21, 3 SWS, Sprache: Englisch, Im Studierenportal anzeigen
Literaturhinweise

- Measurement and Control Systems:
 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

- Regelungstechnische Bücher:
 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

- Messtechnische Bücher:
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
8.79 Teilleistung: Grundlagen der Technischen Logistik I [T-MACH-109919]

Verantwortung: Dr.-Ing. Martin Mittwollen
Jan Oellerich

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-102746 - Wahlpflichtmodul
M-MACH-102821 - Schwerpunkt: Technische Logistik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2117095</th>
<th>Grundlagen der technischen Logistik I</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Mittwollen, Oellerich</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-109919</th>
<th>Grundlagen der Technischen Logistik I</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-109919-mPr</th>
<th>Grundlagen der Technischen Logistik I</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>76-T-MACH-109919</th>
<th>Grundlagen der Technischen Logistik I</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗬 Präsenz, 🔴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

keine

Empfehlungen

Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Logistik I

<table>
<thead>
<tr>
<th>Vorlesung / Übung (VÜ)</th>
<th>2117095, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierenportal anzeigen</th>
</tr>
</thead>
</table>

Inhalt

- Wirkmodell fördertechnischer Maschinen
- Elemente zur Orts- und Lageveränderung
- fördertechnische Prozesse
- Identifikationssysteme
- Antriebe
- Betrieb fördertechnischer Maschinen
- Elemente der Intralogistik
- Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten während der Übungen

Die Studierenden können:

- Prozesse und Maschinen der Technischen Logistik beschreiben,
- Den grundsätzlichen Aufbau und die Wirkungsweise fördertechnischer Maschinen mit Hilfe mathematischer Modelle modellieren,
- Den Bezug zu industriell eingesetzten Maschinen herstellen
- Mit Hilfe der erworbenen Kenntnisse reale Maschinen modellieren und rechnerisch dimensionieren.
Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer mündlichen oder schriftlichen Prüfung (nach §4 (2), 1 bzw. 2SPO).
The assessment consists of an oral or a written exam according to Section 4 (2), 1 or 2 of the examination regulation.
Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.
Basics knowledge of technical mechanics is preconditioned.
Ergänzungsblätter, Präsentationen, Tafel.
Supplementary sheets, presentations, blackboard.
Präsenz: 48 Std
Nacharbeit: 132 Std
presence: 48h
rework: 132h

Literaturhinweise
Empfehlungen in der Vorlesung / Recommendations during lessons
Teilleistung: Grundlagen der Technischen Logistik II [T-MACH-109920]

Verantwortung: Maximilian Hochstein
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102821 - Schwerpunkt: Technische Logistik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Lehrveranstaltungsform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2117098</td>
<td>Grundlagen der technischen Logistik II</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ) / 🧩</td>
<td>Hochstein, Oellerich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Prüfungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>Prüfung (PR)</td>
<td>Hochstein, Mittwollen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-109920-mPr</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>Prüfung (PR)</td>
<td>Mittwollen, Hochstein</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

keine

Empfehlungen

Es werden Kenntnis der Grundlagen der Technischen Mechanik und die Inhalte der Teilleistung "Grundlagen der Technischen Logistik I" (T-MACH-109919) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Logistik II

<table>
<thead>
<tr>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Lehrveranstaltungsform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117098, WS 20/21</td>
<td>Grundlagen der technischen Logistik II</td>
<td>Vorlesung / Übung (VÜ) / 🧩</td>
<td>Hochstein, Oellerich</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗞️ Präsenz, ❌ Abgesagt
Inhalt
Lehrinhalte:
 • Prozesse und Prozessnetzwerke der Intralogistik
 • Materialfluss und Materialflusselement
 • Aufbau von Fördermitteln
 • Risikobeurteilung und Sicherheitstechnik
 • Steuerung von Intralogistiksystemen

Lernziele: Die Studierenden können
 • Prozesse und Prozessnetzwerke in der Intralogistik bescheiden und auslegen
 • Den Materialfluss zwischen den Prozessen abbilden und analysieren
 • Materialflusselemente beschreiben und gezielt einsetzen
 • Materialflusselemente auf deren Sicherheit überprüfen

Beschreibung:
Diese Vorlesung baut auf GTL I auf und hat zum Ziel weitere Einblick in die drei großen Themengebiete der technischen Logistik zu ermöglichen:
 • Prozesse in Intralogistiksystemen
 • Technik der technischen Logistik
 • Organisation und Steuerung von Intralogistikprozessen

Am Beispiel eines Intralogistiksystems werden über den Vorlesungszeitraum hinweg die einzelnen Themengebiete vorgestellt, so dass die Studierenden am Ende in der Lage sind ein solches Gesamtsystem zu verstehen und im Detail zu beschreiben.

Voraussetzungen:
 • GTL I muss zuvor gehört worden sein.

Arbeitsaufwand:
 • Präsenz: 36 Std.
 • Nacharbeit: 114 Std.
8.81 Teilleistung: Grundlagen der technischen Verbrennung I [T-MACH-105213]

Verantwortung: Prof. Dr. Ulrich Maas
Dr. Jörg Sommerer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2165515</th>
<th>Grundlagen der technischen Verbrennung I</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2165517</td>
<td>Übungen zu Grundlagen der technischen Verbrennung I</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🖥</td>
<td>Bykov</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3165016</td>
<td>Fundamentals of Combustion I</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Maas</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3165017</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🖥</td>
<td>Bykov</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105213 | Grundlagen der technischen Verbrennung I | Prüfung (PR) | Maas |

Erfolgskontrolle(n)
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Verbrennung I

2165515, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise
Vorlesungsskript,

Übungen zu Grundlagen der technischen Verbrennung I

2165517, WS 20/21, 1 SWS, Im Studierendenportal anzeigen

Übung (Ü) Online

Literaturhinweise
- Vorlesungsskript

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 2020/21
Teilleistung: Grundlagen der technischen Verbrennung II [T-MACH-105325]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2166538 | Grundlagen der technischen Verbrennung II | 2 SWS | Vorlesung (V) | Maas |
| SS 2020 | 2166539 | Übung zu Grundlagen der technischen Verbrennung II | 1 SWS | Übung (Ü) | Maas |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105325 | Grundlagen der technischen Verbrennung II | Prüfung (PR) | Maas |

Erfolgskontrolle(n)

Prüfungsleistung mündlich; Dauer ca. 20 min

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Verbrennung II

2166538, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

- Die dreidimensionalen Navier-Stokes-Gleichungen für reagierende Strömungen
- Turbulente reaktive Strömungen
- Turbulente nicht vorgemischte Flammen
- Turbulente Vormischflammen
- Verbrennung flüssiger und fester Brennstoffe
- Motorklopfen
- Stickoxid-Bildung
- Bildung von Kohlenwasserstoffen und Ruß
- Thermodynamik von Verbrennungsvorgängen
- Transporterscheinungen

Literaturhinweise

Vorlesungsskript;

Übung zu Grundlagen der technischen Verbrennung II

2166539, SS 2020, 1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

Berechnung und Simulation von Verbrennungsprozessen
Literaturhinweise
Skript Grundlagen der technischen Verbrennung (I+II) von Prof. Dr. rer. nat. habil. U. Maas
8.83 Teilleistung: Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I [T-MACH-102116]

Verantwortung: Horst Dietmar Bardehle
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2113814 | Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I | 1 SWS | Vorlesung (V) / 🧩 | Bardehle |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-102116 | Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I | Prüfung (PR) | Bardehle, Unrau |
| WS 20/21 | 76-T-MACH-102116 | Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I | Prüfung (PR) | Unrau, Bardehle |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Gruppenprüfung

Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I
2113814, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
1. Historie und Design
2. Aerodynamik
3. Konstruktionstechnik (CAD/CAM, FEM)
4. Herstellungsverfahren von Aufbauteilen
5. Verbindungstechnik
6. Rohbau / Rohbaufertigung, Karosserieoberflächen

Lernziele:

Organisatorisches
Termine, nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage

Dates and further information will be published on the homepage of the institute

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
Literaturhinweise
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
8.84 Teilleistung: Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II [T-MACH-102119]

Verantwortung: Horst Dietmar Bardehle
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 2
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2020 2114840 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II 1 SWS Vorlesung (V) Bardehle

Prüfungsveranstaltungen
SS 2020 76-T-MACH-102119 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II Prüfung (PR) Bardehle, Gauterin
WS 20/21 76-T-MACH-102119 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II Prüfung (PR) Bardehle

Erfolgskontrolle(n)
Mündliche Gruppenprüfung

Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II
2114840, SS 2020, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Karosserieeigenschaften / Prüfverfahren
2. Äußere Karosseriebauteile
3. Innenraum-Anbauteile
4. Fahrzeug-Klimatisierung
5. Elektrische Anlagen, Elektronik
6. Aufpralluntersuchungen
7. Projektmanagement-Aspekte und Ausblick

Lernziele:

Organisatorisches
Voraussichtliche Termine, nähere Informationen und evtl. Änderungen: siehe Institutshomepage.
Scheduled dates, further Information and possible changes of date: see homepage of the institute.
Literaturhinweise
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
8.85 Teilleistung: Grundsätze der Nutzfahrzeugentwicklung I [T-MACH-105160]

Verantwortung: Dr. Christof Weber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2113812 | Grundsätze der Nutzfahrzeugentwicklung I | 1 SWS | Vorlesung (V) / Online | Weber |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105160 | Grundsätze der Nutzfahrzeugentwicklung I | Prüfung (PR) | Zürn |
| WS 20/21 | 76-T-MACH-105160 | Grundsätze der Nutzfahrzeugentwicklung I | Prüfung (PR) | Weber |

Erfolgskontrollen

Mündliche Gruppenprüfung

Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der Nutzfahrzeugentwicklung I

2113812, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Einführung, Definitionen, Historik
2. Entwicklungswerkzeuge
3. Gesamtfahrzeug
4. Fahrerkabinen, Rohbau
5. Fahrerkabinen, Innenausbau
6. Alternative Antriebe
7. Antriebsstrang
8. Antriebsquelle Dieselmotor
9. Ladeluftgekühlte Dieselmotoren

Lernziele:

Sie haben gute Kenntnisse in Bezug auf die Entwicklung von Einzelkomponenten und haben einen Überblick über die unterschiedlichen Fahrerkabinenkonzepte, einschließlich Innenraum und Innenraumgestaltung. Damit sind sie in der Lage, Nutzfahrzeugkonzepte zu analysieren und zu beurteilen und bei der Nutzfahrzeugentwicklung kompetent mitzuwirken.

Organisatorisches

Termine und Nähere Informationen: siehe Institutshomepage

Dates and further information will be published on the homepage of the institute.
Literaturhinweise
8.86 Teilleistung: Grundsätze der Nutzfahrzeugentwicklung II [T-MACH-105161]

Verantwortung: Dr. Christof Weber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2114844 | Grundsätze der Nutzfahrzeugentwicklung II | 1 SWS | Vorlesung (V) | Zürn |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105161 | Grundsätze der Nutzfahrzeugentwicklung II | Prüfung (PR) | Zürn |
| WS 20/21 | 76-T-MACH-105161 | Grundsätze der Nutzfahrzeugentwicklung II | Prüfung (PR) | Weber |

Erfolgskontrolle(n)
Mündliche Gruppenprüfung

Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der Nutzfahrzeugentwicklung II
2114844, SS 2020, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Nfz-Getriebe
2. Triebstrangzwischenelemente
3. Achssysteme
4. Vorderachsen und Fahrdynamik
5. Rahmen und Achsaufhängung
6. Bremsanlage
7. Systeme
8. Exkursion

Lernziele:

Organisatorisches
genaue Termine, nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage.
Literaturhinweise

1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803
8.87 Teilleistung: Grundsätze der PKW-Entwicklung I [T-MACH-105162]

Verantwortung:
Hon.-Prof. Rolf Frech

Einrichtung:
KIT-Fakultät für Maschinenbau

Bestandteil von:
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2113810</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>1</td>
<td>Vorlesung (V) / 📱 Frech</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2113851</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>1</td>
<td>Vorlesung (V) / 📱 Frech</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Vorlesungsbezeichnung</th>
<th>Prüfungstyp</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>Prüfung (PR)</td>
<td>Frech, Unrau</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>Prüfung (PR)</td>
<td>Frech, Unrau</td>
</tr>
</tbody>
</table>

Legende: 📱 Online, 🗿 Präsenz/Online gemischt, 🗿 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- **schriftlich**

 - **Dauer:** 90 Minuten
 - **Hilfsmittel:** keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der PKW-Entwicklung I

2113810, WS 20/21, 1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
1. Prozess der PKW-Entwicklung
2. Konzeptionelle Auslegung und Gestaltung eines PKW
3. Gesetze und Vorschriften – Nationale und internationale Randbedingungen
4. Aerodynamische Auslegung und Gestaltung eines PKW I
5. Aerodynamische Auslegung und Gestaltung eines PKW II
6. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben I
7. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben II

Lernziele:

Organisatorisches
Termine und nähere Informationen finden Sie auf der Institutshomepage.

Kann nicht mit Lehrveranstaltung 2113851 kombiniert werden.

Date and further information will be published on the homepage of the institute.

Cannot be combined with lecture 2113851.
Literaturhinweise
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons

Principles of Whole Vehicle Engineering I
2113851, WS 20/21, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Prozess der PKW-Entwicklung
2. Konzeptionelle Auslegung und Gestaltung eines PKW
3. Gesetze und Vorschriften – Nationale und internationale Randbedingungen
4. Aerodynamische Auslegung und Gestaltung eines PKW I
5. Aerodynamische Auslegung und Gestaltung eines PKW II
6. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben I
7. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben II

Lernziele:

Organisatorisches
Termine und nähere Informationen finden Sie auf der Institutshomepage.

Kann nicht mit Lehrveranstaltung 2113810 kombiniert werden
Cannot be combined with lecture 2113810.

Literaturhinweise
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons
8.88 Teilleistung: Grundsätze der PKW-Entwicklung II [T-MACH-105163]

Verantwortung: Hon.-Prof. Rolf Frech
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114842</td>
<td>Grundsätze der PKW-Entwicklung II</td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
<td>Frech</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2114860</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>1 SWS</td>
<td>Block-Vorlesung (BV)</td>
<td>Frech</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Prüfung</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105163</td>
<td>Grundsätze der PKW-Entwicklung II</td>
<td>Prüfung (PR)</td>
<td>Frech, Unrau</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105163</td>
<td>Grundsätze der PKW-Entwicklung II</td>
<td>Prüfung (PR)</td>
<td>Unrau, Frech</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftlich
Dauer: 90 Minuten
Hilfsmittel: keine

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der PKW-Entwicklung II

2114842, SS 2020, 1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)

Inhalt

1. Anwendungsorientierte Werkstoff- und Fertigungstechnik I
2. Anwendungsorientierte Werkstoff- und Fertigungstechnik II
3. Gesamtfahrzeugakustik in der PKW-Entwicklung
4. Antriebsakustik in der PKW-Entwicklung
5. Gesamtfahrzeugerprobung
6. Gesamtfahrzeugeigenschaften

Lernziele:

Organisatorisches

Vorlesung findet als Blockvorlesung statt,
Geb. 70.04 (Campus Ost), Raum 219, Termine werden auf der Institutshomepage bekanntgegeben
Kann nicht mit der Veranstaltung [2114860] kombiniert werden.
Cannot be combined with lecture [2114860].
Inhalt
1. Anwendungsorientierte Werkstoff- und Fertigungstechnik I
2. Anwendungsorientierte Werkstoff- und Fertigungstechnik II
3. Gesamtfahrzeugakustik in der PKW-Entwicklung
4. Antriebsakustik in der PKW-Entwicklung
5. Gesamtfahrzeugerprobung
6. Gesamtfahrzeugeigenschaften

Lernziele:

Organisatorisches
Kann nicht mit der Veranstaltung [2114842] kombiniert werden.
Cannot be combined with lecture [2114842],
 Raum 219, Geb. 70.04, Campus Ost.
 Genaue Termine entnehmen Sie bitte der Institushomepage.
 Scheduled dates:
 see homepage of the institute.

Literaturhinweise
Das Skript zur Vorlesung ist über ILIAS verfügbar.
Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
M-MACH-104624 - Orientierungsprüfung
M-MATH-102859 - Höhere Mathematik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 7
Turnus: Jedes Semester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 2020/21</th>
<th>Veranstaltungskennung</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Leistung/Prüfung</th>
<th>Professoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>0131000</td>
<td>Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 🚀</td>
<td>Arens</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>0131200</td>
<td>Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 🚀</td>
<td>Arens</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester 2020</th>
<th>Veranstaltungskennung</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>Prüfungstyp</th>
<th>Prüfung/Modul</th>
<th>Professoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6700025</td>
<td>Höhere Mathematik I</td>
<td>Prüfung (PR)</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🚀 Online, 🎤 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Erfolgreiche Bearbeitung der Übungsblätter in HM 1-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 1.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100525 - Übungen zu Höhere Mathematik I muss erfolgreich abgeschlossen worden sein.
8.90 Teilleistung: Höhere Mathematik II [T-MATH-100276]

Verantwortung:
PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung:
KIT-Fakultät für Mathematik

Bestandteil von:
M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0180800</td>
<td>Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Hettlich</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0181000</td>
<td>Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6700001</td>
<td>Höhere Mathematik II</td>
<td>Prüfung (PR)</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7700031</td>
<td>Höhere Mathematik II</td>
<td>Prüfung (PR)</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Erfolgreiche Bearbeitung der Übungsblätter in HM 2-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 2.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100526 - Übungen zu Höhere Mathematik II muss erfolgreich abgeschlossen worden sein.
8.91 Teilleistung: Höhere Mathematik III [T-MATH-100277]

Verantwortung: PD Dr. Tilo Arens
 Prof. Dr. Roland Griesmaier
 PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>7</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 0131400 | Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau | 4 SWS | Vorlesung (V) / 🔄 | Griesmaier |

Prüfungsveranstaltungen

| SS 2020 | 6700002 | Höhere Mathematik III | Prüfung (PR) | Arens, Griesmaier, Hettlich |

Legende: 🖥 Online, 🔄 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Erfolgreiche Bearbeitung der Übungsblätter in HM 3-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 3.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

8.92 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Dr.-Ing. Klaus-Peter Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von:
- M-MACH-102812 - Schwerpunkt: Antriebssysteme
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Leistung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2306321 Hybride und elektrische Fahrzeuge</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2306323 Übungen zu 2306321 Hybride und elektrische Fahrzeuge</td>
<td>1</td>
<td>Übung (U)</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7306321 Hybride und elektrische Fahrzeuge</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstitel</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7306321 Hybride und elektrische Fahrzeuge</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Legende: ☑ Online, ☞ Präsenz/Online gemischt, ☞ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Empfehlungen
Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (gewonnen beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").
8.93 Teilleistung: Hydraulische Strömungsmaschinen [T-MACH-105326]

Verantwortung: Dr. Balazs Pritz
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von:
- M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
- M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2157432</th>
<th>Hydraulische Strömungsmaschinen</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Pritz</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>7600001</th>
<th>Hydraulische Strömungsmaschinen</th>
<th>Prüfung (PR)</th>
<th>Pritz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105326</td>
<td>Hydraulische Strömungsmaschinen</td>
<td>Prüfung (PR)</td>
<td>Gabi</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 40 Min.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Hydraulische Strömungsmaschinen

2157432, SS 2020, 4 SWS, Sprache: Deutsch, **Im Studierendenportal anzeigen**
Inhalt
Fachgebiet: Strömungsmaschinen
Lehrinhalt:

1. Einleitung
2. Grundlagen
3. Systemanalyse
4. Elementare Theorie
5. Betriebsverhalten, Kennlinien
6. Ähnlichkeit, Kennzahlen
7. Regelung
8. Windturbinen, Propeller
9. Kavitation
10. Hydrodynamische Kupplungen, Wandler

Voraussetzungen:
2157432 kann nicht kombiniert werden mit der Lehrveranstaltung 2157451 (Wind and Hydropower).

Empfehlungen:
2153412 Strömungslehre

Lernziele:

Die Studenten sind damit in der Lage die Wirkungsweise Hydraulischer Strömungsmaschinen und deren Wechselwirkung mit typischen Systemen in denen sie eingesetzt werden zu verstehen und zu bewerten.

Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 150 Stunden
Prüfungsvorbereitung: 40 Stunden
Nachweis:
 mündlich oder schriftlich (siehe Ankündigung)
Hilfsmittel: keine

Literaturhinweise

1. Fister, W.: Fluidenergiemaschinen I & II, Springer-Verlag
2. Bohl, W.: Strömungsmaschinen I & II. Vogel-Verlag
6. Kreiselpumpenlexikon. KSB Aktiengesellschaft
8.94 Teilleistung: Industrieaerodynamik [T-MACH-105375]

Verantwortung: Prof. Dr.-Ing. Thomas Breitling
Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>Industrieaerodynamik</th>
</tr>
</thead>
<tbody>
<tr>
<td>2153425</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Block-Vorlesung (BV) / Breitling

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 📡 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung - 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Industrieaerodynamik
2153425, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)
Präsenz/Online gemischt

Inhalt
In dieser Vorlesung werden Strömungen behandelt, die in der Fahrzeugtechnik von Bedeutung sind. Besonderen Raum wird die Optimierung der Fahrzeugumströmung, den thermischen Komforts in Fahrzeugkabinen sowie die Vorstellung moderner industrieller Windkanaltechnik einnehmen. Der zweite große Themenblock umfasst sowohl aeroakustische Grundlagen als auch praktische Beispiele der Aeroakustik insbesondere aus dem Bereich der Fahrzeugtechnik.

Die Felder werden in ihrer Bedeutung und Phänomenologie erläutert, die theoretischen Grundlagen dargelegt und die Werkzeuge zur Simulation der Strömungen sowie deren Schallfeldern vorgestellt. Anhand dieser Beispiele werden Messverfahren und die industrierelevanten Methoden zur Erfassung und Beschreibung von Kräften, Strömungsstrukturen, Turbulenz, Schall, sowie Strömungen mit Wärme- und Phasenübergang im Überblick aufbereitet.

Eine Exkursion zu den Forschungs- und Entwicklungseinrichtungen der Daimler AG ist geplant.

- Einführung
- Industriell eingesetzte Strömungsmeßtechnik und moderne Windkanalmesstechnik
- Strömungssimulation in der Industrie, Kontrolle des numerischen Fehlers und verwendete Turbulenzmodelle
- Fahrzeugumströmung
- Klimatisierung/Thermischer Komfort
- Aeroakustik: Grundlagen und praktische Beispiele insbesondere aus dem Bereich der Fahrzeugtechnik inklusive Messtechnik & numerische Methoden

Die Studierenden können die unterschiedlichen aerodynamischen und aeroakustischen Problemstellungen in der Fahrzeugtechnik beschreiben. Sie sind in der Lage, sowohl die Fahrzeugumströmung, die Aeroakustik von Fahrzeugen und die Fahrzeuginnenströmung (thermischer Komfort) zu analysieren.

Literaturhinweise
Vorlesungsskript
8.95 Teilleistung: Informatik im Maschinenbau [T-MACH-105205]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102563 - Informatik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2121390</td>
<td>Informatik im Maschinenbau</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>3121034</td>
<td>Computer Science for Engineers</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105205</td>
<td>Informatik im Maschinenbau</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105205-english</td>
<td>Informatik im Maschinenbau - Englisch</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung [180 min]

Voraussetzungen
Prüfungsvoraussetzung: T-MACH-105206 „Informatik im Maschinenbau, VL“ muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105206 - Informatik im Maschinenbau, VL muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Informatik im Maschinenbau
2121390, SS 2020, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.
Algorithmen: Eigenschaften von Algorithmen, Abschätzung der Komplexität, Entwurfsmethoden, wichtige Beispiele.
Datenverwaltungssysteme: Relationales Datenmodell, relationale Algebra, deklarative Sprache SQL.

Literaturhinweise
„Grundkurs Programmieren in Java“ Carl Hanser Verlag GmbH & CO. KG; Auflage 6, ISBN 10: 3446426639
Computer Science for Engineers
3121034, SS 2020, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Inhalt
Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.
Algorithmen: Eigenschaften von Algorithmen, Abschätzung der Komplexität, Entwurfsmethoden, wichtige Beispiele.
Datenverwaltungssysteme: Relationales Datenmodell, relationale Algebra, deklarative Sprache SQL.

Organisatorisches
Location/time see lecture homepage

Literaturhinweise
8.96 Teilleistung: Informatik im Maschinenbau, VL [T-MACH-105206]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102563 - Informatik

Teilleistungsart: Studienleistung praktisch
Leistungspunkte: 0
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

SS 2020 2121392 Rechnerpraktikum zu Informatik im Maschinenbau 2 SWS Praktische Übung (PÜ) Ovtcharova, Mitarbeiter
SS 2020 3121036 Computer Science for Engineers Lab Course 2 SWS Praktische Übung (PÜ) Ovtcharova, Elstermann

Prüfungsveranstaltungen

SS 2020 76-T-MACH-105206 Informatik im Maschinenbau, VL Prüfung (PR) Ovtcharova

Erfolgskontrolle(n)

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnerpraktikum zu Informatik im Maschinenbau

2121392, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktische Übung (PÜ)

Inhalt

Literaturhinweise
Übungsblätter / exercise sheets

Computer Science for Engineers Lab Course

3121036, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Praktische Übung (PÜ)

Inhalt

Literaturhinweise
Exercise sheets / Übungsblätter
8.97 Teilleistung: Information Engineering [T-MACH-102209]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2122014</th>
<th>Information Engineering</th>
<th>2 SWS</th>
<th>Seminar (S)</th>
<th>Ovtcharova, Mitarbeiter</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-102209 | Information Engineering | | Prüfung (PR) | Ovtcharova |
|---------|-------------------|-------------------------|| | |

Erfolgskontrolle(n)

Erfolgskontrolle anderer Art (schriftl. Ausarbeitung und Vortrag)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Information Engineering
2122014, SS 2020, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Seminararbeiten zu aktuellen Forschungsthemen des Instituts für Informationsmanagement im Ingenieurwesen (IMI). Die jeweiligen Themen werden zu jedem Semesterbeginn vorgestellt.

Organisatorisches
Siehe Homepage zur Lehrveranstaltung

Literaturhinweise
Themenspezifische Literatur
8.98 Teilleistung: Informationssysteme in Logistik und Supply Chain Management [T-MACH-102128]

Verantwortung: Dr.-Ing. Christoph Kilger
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement
M-MACH-102817 - Schwerpunkt: Informationstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2118094</th>
<th>Informationssysteme in Logistik und Supply Chain Management</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Kilger</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-102128</th>
<th>Informationssysteme in Logistik und Supply Chain Management</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Informationssysteme in Logistik und Supply Chain Management
2118094, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise
8.99 Teilleistung: Informationsverarbeitung in Sensornetzwerken [T-INFO-101466]

Verantwortung: Prof. Dr.-Ing. Uwe Hanebeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-102817 - Schwerpunkt: Informationstechnik

Teilleistung: Informationsverarbeitung in Sensornetzwerken [T-INFO-101466]

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 24102</td>
<td>Informationsverarbeitung in Sensornetzwerken</td>
<td>3 SWS</td>
<td>Vorlesung (V) / ☝</td>
<td>Noack, Mayer, Hanebeck</td>
</tr>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 7500011</td>
<td>Informationsverarbeitung in Sensornetzwerken</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Hanebeck, Noack</td>
</tr>
<tr>
<td>WS 20/21 7500030</td>
<td>Informationsverarbeitung in Sensornetzwerken</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Noack, Hanebeck</td>
</tr>
</tbody>
</table>

Legende: ☟ Online, ☝ Präsenz/Online gemischt, ☟ Präsenz, 🧩 Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 15 Minuten nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
Keine.

Empfehlungen
Kenntnis der Vorlesungen Lokalisierung mobiler Agenten oder Stochastische Informationsverarbeitung sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Informationsverarbeitung in Sensornetzwerken
24102, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

V | Vorlesung (V) Präsenz/Online gemischt

Inhalt

Im Rahmen der Vorlesung werden insbesondere die verschiedenen für Sensornetzwerke relevanten Aspekte der Informationsverarbeitung betrachtet. Begonnen wird mit dem technischen Aufbau der Sensorknoten, wobei hier die einzelnen Komponenten wie Energieversorgung, Sensorik und Signalvorverarbeitung vorgestellt werden. Dann werden für Sensornetzwerke relevante Verfahren zur Mustererkennung sowie Orts- und Zeitsynchronisation behandelt. Abgeschlossen wird die Vorlesung mit Verfahren zur Vermessung physikalischer Phänomene und zur Fusion der Messdaten der einzelnen Sensorknoten.

Ziel der Lehrveranstaltung ist, dass die Studierenden ein Verständnis für die für Sensornetzwerke spezifischen Herausforderungen der Informationsverarbeitung aufbauen und die verschiedenen Ebenen der Informationsverarbeitung von Messdaten aus Sensornetzwerken kennenlernen. Somit sollen sie verschiedene Ansätze zur Informationsverarbeitung von Messdaten analysieren, vergleichen und bewerten können.

Organisatorisches
Prüfungsterminvorschläge und das Verfahren dazu sind auf der Webseite der Vorlesung zu finden.

Literaturhinweise
Weiterführende Literatur wird im Skript zur Vorlesung (siehe ILLIAS) und in den Vorlesungsfolien genannt.
8.100 Teilleistung: Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen [T-MACH-105188]

Verantwortung: Dr. Karl-Hubert Schlichtenmayer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von:
- M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsserie</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Art der Veranstaltung</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2150601</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2150601</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>2</td>
<td>Vorlesung (V) / 🖥</td>
<td>Schlichtenmayer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsserie</th>
<th>Veranstaltungstitel</th>
<th>Art der Veranstaltung</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105188</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>Prüfung (PR)</td>
<td>Schlichtenmayer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧬 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (60 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen

2150601, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Die Themen im Einzelnen sind:
- Einführung und gesellschaftliche Trends mit Auswirkungen auf das Sportwagengeschäft
- Automobile Produktionsprozesse – von der Idee bis zum Ende des Lebenszyklus
- Integrierte Entwicklungsstrategie und ganzheitliches Kapazitätsmanagement
- Management von Entwicklungsprojekten (Matrixorganisation, Multiprojektmanagement, Entwicklungscontrolling)
- Zusammenspiel zwischen Entwicklung, Produktion und Einkauf
- Rolle der Produktion aus Entwicklungssicht - Restriktion und Befähiger?
- Global verteilte Produktion und Entwicklung – Herausforderung China
- Methoden zur Identifikation von technologischen Kernkompetenzen

Lernziele:
Die Studierenden …
- können die technologischen und gesellschaftlichen Herausforderungen der Automobilindustrie erörtern.
- sind befähigt Zusammenhänge zwischen Produktentwicklungsprozess und Produktionssystem zu diskutieren.
- sind in der Lage die Herausforderungen globaler Märkte auf Produktion und Entwicklung von exportfähigen Premium-Produkten zu diskutieren.
- sind in der Lage Methoden zur Identifikation von Kernkompetenzen eines Unternehmens zu erläutern.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Start: 21.04.2020

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Inhalt

Die Themen im Einzelnen sind:

- Einführung und gesellschaftliche Trends mit Auswirkungen auf das Sportwagengeschäft
- Automobile Produktionsprozesse – von der Idee bis zum Ende des Lebenszyklus
- Integrierte Entwicklungsstrategie und ganzheitliches Kapazitätsmanagement
- Management von Entwicklungsprojekten (Matrixorganisation, Multiprojektmanagement, Entwicklungscontrolling)
- Zusammenspiel zwischen Entwicklung, Produktion und Einkauf
- Rolle der Produktion aus Entwicklungssicht - Restriktion und Befähiger?
- Global verteilte Produktion und Entwicklung – Herausforderung China
- Methoden zur Identifikation von technologischen Kernkompetenzen

Lernziele:
Die Studierenden …

- können die technologischen und gesellschaftlichen Herausforderungen der Automobilindustrie erörtern.
- sind befähigt Zusammenhänge zwischen Produktentwicklungsprozess und Produktionssystem zu diskutieren.
- sind in der Lage die Herausforderungen globaler Märkte auf Produktion und Entwicklung von exportfähigen Premium-Produkten zu diskutieren.
- sind in der Lage Methoden zur Identifikation von Kernkompetenzen eines Unternehmens zu erläutern.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Die LV wurde wegen der Coronapandemie vom SS 20 ins WS 20/21 verschoben.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.101 Teilleistung: Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 [T-MACH-108849]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2150660 | Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 | 6 SWS | Vorlesung / Übung (VÜ) | Lanza |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-108849 | Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 | Prüfung (PR) | Lanza |

Erfolgskontrolle(n)
Mündliche Prüfung (40 min)

Voraussetzungen
Weder "T-MACH-109054 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" noch "T-MACH-102106 Integrierte Produktionsplanung" dürfen begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Integrierte Produktionsplanung im Zeitalter von Industrie 4.0
2150660, SS 2020, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Inhalt
Im Rahmen dieser ingenieurwissenschaftlichen Veranstaltung wird die Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 vermittelt. Neben einer umfassenden Einführung in Industrie 4.0 werden zu Beginn der Vorlesung folgende Themenfelder adressiert:

- Grundlagen, Geschichte und zeitliche Entwicklung der Produktion
- Integrierte Produktionsplanung und durchgängiges digitales Engineering
- Prinzipien Ganzheitlicher Produktionssysteme und Weiterentwicklung mit Industrie 4.0

Darauf aufbauend werden die Phasen der Integrierten Produktionsplanung in Anlehnung an die VDI-Richtlinie 5200 vermittelt, wobei im Rahmen von Fallstudien auf Besonderheiten der Teilefertigung und Montage eingegangen wird:

- Systematik der Fabrikplanung
- Zielfestlegung
- Datenerhebung und –analyse
- Konzeption (Strukturentwicklung, Strukturdimensionierung und Groblayout)
- Detailplanung (Produktionsplanung und –steuerung, Feinlayout, IT-Systeme in der Industrie 4.0 Fabrik)
- Realisierungsanreiz und –überwachung
- Hochlauf und -serienbetreuung

Abgerundet werden die Vorlesungsinhalte durch zahlreiche aktuelle Praxisbeispiele mit einem starken Industrie 4.0-Bezug. Innerhalb der Übungen werden die Vorlesungsinhalte vertieft und auf konkrete Problem- und Aufgabenstellungen angewendet.

Lernziele:
Die Studierenden ...

- können grundlegende Fragestellungen der Produktionstechnik erörtern.
- können die grundlegenden Fragestellungen der Produktionstechnik zur Planung von Produktionsprozessen anwenden.
- sind in der Lage die Methoden, Vorgehensweisen und Techniken der Integrierten Produktionsplanung zu analysieren und zu bewerten und können die vorgestellten Inhalte und Herausforderungen und Handlungsfelder in der Praxis reflektieren.
- können die Methoden der Integrierten Produktionsplanung auf neue Problemstellungen anwenden.
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen.
- können ihr Wissen zielgerichtet für eine effiziente Produktionstechnik einsetzen.

Arbeitsaufwand:
MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches
Start: 21.04.2020
Vorlesungstermine dienstags 14.00 Uhr und donnerstags 14.00 Uhr, Übungstermine donnerstags 15.45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
8.102 Teilleistung: IT-Grundlagen der Logistik [T-MACH-105187]

Verantwortung: Prof. Dr.-Ing. Frank Thomas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement
M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102817 - Schwerpunkt: Informationstechnik
M-MACH-102820 - Schwerpunkt: Mechatronik
M-MACH-102821 - Schwerpunkt: Technische Logistik

Lehrveranstaltungen

| SS 2020 | 2118184 | IT-Grundlagen der Logistik: Chancen zur digitalen Transformation | 2 SWS | Vorlesung (V) | Thomas |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105187 | IT-Grundlagen der Logistik | Prüfung (PR) | Furmans, Mittwollen |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min.) nach § 4 Abs. 2 Nr. 2 SPO. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiedergeboten werden.

Voraussetzungen
keine

Anmerkungen
2) Zusätzlich wird eine CD-ROM der Vorlesungsinhalte und Übungen am Ende des Semesters beim Dozenten ausgehändigt, ebenfalls jährlich aktualisiert und erweitert.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

IT-Grundlagen der Logistik: Chancen zur digitalen Transformation
2118184, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
\textbf{8.103 Teilleistung: IT-Systemplattform I4.0 [T-MACH-106457]}

\begin{tabular}{|l|l|l|l|l|}
\hline
Verantwortung: & Dipl.-Ing. Thomas Maier & Prof. Dr.-Ing. Jivka Ovtcharova \\
\hline
Einrichtung: & KIT-Fakultät für Maschinenbau \\
& KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen \\
\hline
Bestandteil von: & M-MACH-102583 - Schwerpunkt: Informationsmanagement \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline
Teilleistungsart & Prüfungsleistung anderer Art & Leistungspunkte & 4 & Turnus & Jedes Semester & Version & 2 \\
\hline
\end{tabular}

\textbf{Lehrveranstaltungen}

\begin{tabular}{|l|l|l|l|l|}
\hline
SS 2020 & 2123900 & IT-Systemplattform I4.0 & 4 SWS & Projekt (PRO) & Ovtcharova, Maier \\
\hline
WS 20/21 & 2123900 & IT-Systemplattform I4.0 & 4 SWS & Projekt (PRO) / \ding{51} & Ovtcharova, Maier \\
\hline
\end{tabular}

\textbf{Prüfungsveranstaltungen}

\begin{tabular}{|l|l|l|l|l|}
\hline
SS 2020 & 76-T-MACH-106457 & IT-Systemplattform I4.0 & Prüfung (PR) & Ovtcharova \\
\hline
\end{tabular}

\textbf{Erfolgskontrolle(n)}

Prüfungsleistung anderer Art (Projektarbeit)

\textbf{Voraussetzungen}

Keine

\textbf{Anmerkungen}

Teilnehmerzahl begrenzt.

\textit{Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:}

\textbf{IT-Systemplattform I4.0}

2123900, SS 2020, 4 SWS, Sprache: Deutsch, \textit{Im Studierendenportal anzeigen}

\textbf{Projekt (PRO)}

\textbf{Inhalt}

Industrie 4.0, IT-Systeme im Fertigungsumfeld (z.B. CAx, PDM, ERP, MES), Prozessmodellierung und -ausführung, Projektarbeiten im Team, praxisrelevante I4.0 Fragestellungen im Bereich Automatisierung, Fertigungsindustrie und Dienstleistungssektor.

Studierende können

- die grundlegenden Konzepte, Herausforderungen und Ziele von Industrie 4.0 beschreiben und die wesentlichen Begriffe im Zusammenhang mit dem einhergehenden Informationsmanagement benennen und erläutern
- den notwendigen Informationsfluss zwischen unterschiedlichen IT-Systemen erläutern und praxisnahe Kenntnisse im Umgang mit gängigen IT-Systemen vom Auftrag bis zur Fertigung im Kontext von Industrie 4.0 wiedergeben
- Prozesse im Kontext von Industrie 4.0 mit speziellen Methoden der Prozessmodellierung abbilden und analysieren
- kollaborativ Praxisrelevante I4.0 Fragestellungen mit Bezug auf den durchgängigen Informationsfluss erfassen und Lösungsvorschläge im Team ausarbeiten
- die selbsterarbeiteten Lösungsvorschläge mit den vorgegebenen IT-Systemen prototypisch umsetzen und abschließend präsentieren

\textbf{Organisatorisches}

Siehe Homepage zur Lehrveranstaltung

\textbf{Literaturhinweise}

Keine / None

\textbf{IT-Systemplattform I4.0}

2123900, WS 20/21, 4 SWS, Sprache: Deutsch, \textit{Im Studierendenportal anzeigen}

\textit{Präsenz/Online gemischt}
Inhalt
Industrie 4.0, IT-Systeme im Fertigungsumfeld (z.B. CAx, PDM, ERP, MES), Prozessmodellierung und -ausführung, Projektarbeiten im Team, praxisrelevante I4.0 Fragestellungen im Bereich Automatisierung, Fertigungsindustrie und Dienstleistungssektor.

Studierende können

• die grundlegenden Konzepte, Herausforderungen und Ziele von Industrie 4.0 beschreiben und die wesentlichen Begriffe im Zusammenhang mit dem einhergehenden Informationsmanagement benennen und erläutern
• den notwendigen Informationsfluss zwischen unterschiedlichen IT-Systemen erläutern und praxisnahe Kenntnisse im Umgang mit gängigen IT-Systemen vom Auftrag bis zur Fertigung im Kontext von Industrie 4.0 wiedergeben
• Prozesse im Kontext von Industrie 4.0 mit speziellen Methoden der Prozessmodellierung abbilden und analysieren
• kollaborativ Praxisrelevante I4.0 Fragestellungen mit Bezug auf den durchgängigen Informationsfluss erfassen und Lösungsvorschläge im Team ausarbeiten
• die selbsterarbeiteten Lösungsvorschläge mit den vorgegebenen IT-Systemen prototypisch umsetzen und abschließend präsentieren

Organisatorisches
Veranstaltungsort: CAIT am IMI in der Kriegsstraße 77. Zeit siehe ILIAS zur Lehrveranstaltung.

Literaturhinweise
Keine / None
8.104 Teilleistung: Keramik-Grundlagen [T-MACH-100287]

Verantwortung: Prof. Dr. Michael Hoffmann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2125757</td>
<td>Keramik-Grundlagen</td>
<td>3</td>
<td>Vorlesung (V) / 🖥</td>
<td>Hoffmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Art</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-100287</td>
<td>Keramik-Grundlagen</td>
<td>Prüfung (PR)</td>
<td>Hoffmann, Schell, Wagner</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-100287</td>
<td>Keramik-Grundlagen</td>
<td>Prüfung (PR)</td>
<td>Hoffmann, Schell, Wagner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🟥 Präsenz/Online gemischt, 🟢 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min) zu einem festgelegten Termin.
Die Wiederholungsprüfung findet an einem festgelegten Termin statt.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Keramik-Grundlagen

2125757, WS 20/21, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Organisatorisches

Die Veranstaltung findet online statt.

Literaturhinweise

- Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
- S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier
8.105 Teilleistung: Kognitive Automobile Labor [T-MACH-105378]

Verantwortung:
Bernd Kitt
Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von:
M-MACH-102821 - Schwerpunkt: Technische Logistik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2138341</th>
<th>Kognitive Automobile Labor</th>
<th>3 SWS</th>
<th>Praktische Übung (PÜ)</th>
<th>Stiller, Lauer, Kamran</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105378 | Kognitive Automobile Labor | Prüfung (PR) | Stiller |

Erfolgskontrolle(n)
mündliche Prüfung
30 Minuten

Voraussetzungen
keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kognitive Automobile Labor
2138341, SS 2020, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Anmeldung erforderlich, Teilnehmerbegrenzung

Lehrinhalt:
1. Fahrbahnerkennung
2. Objektdetektion
3. Fahrzeugquerführung
4. Fahrzeuglängsführung
5. Kollisionsvermeidung

Lernziele:

Nachweis: Kolloquien, Abschlusswettbewerb.

Arbeitsaufwand: 120 Stunden
Literaturhinweise
Dokumentation zur SW und HW werden als pdf bereitgestellt.
8.106 Teilleistung: Konstruieren mit Polymerwerkstoffen [T-MACH-105330]

Verantwortung: Markus Liedel

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von:
- M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
- M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2174571</td>
<td>Konstruieren mit Polymerwerkstoffen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Liedel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung Code</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105330</td>
<td>Konstruieren mit Polymerwerkstoffen</td>
<td>Liedel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 20 minutes

Voraussetzungen
keine

Empfehlungen
Poly I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Konstruieren mit Polymerwerkstoffen

2174571, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
Inhalt

Lernziele:
Studierende sind in der Lage,

- Polymercompounds von anderen Konstruktionswerkstoffen in ihren chemischen Grundlagen, Temperaturverhalten sowie Festkörpereigenschaften zu unterscheiden,
- wesentliche Verarbeitungstechniken hinsichtlich Möglichkeiten und Einschränkungen in Stoffauswahl und Bauteilgeometriegestaltung zu erörtern und geeignet auszuwählen.
- komplexe Applikationsanforderungen bzgl. festigkeitsverändernder Einflüsse zu analysieren und die klassische Festigkeitsdimensionierung applikationsspezifisch anzuwenden und die Lebensdauerfestigkeit zu bewerten.
- Bauteilgeometrien mit Berücksichtigung von Verarbeitungsschwindung, Herstelltoleranzen, Nachschwindung, Wärmeausdehnung, Quellen, elastische Verformung und Kriechen mit geeigneten Methoden zu bewerten und zu tolerieren.
- Fügegeometrien für Schnaphaken, Kunststoffdirektverschraubungen, Verschweißungen und Filmscharniere kunststoffgerecht zu konstruieren.
- klassische Spritzgussteilefahler zu erkennen, mögliche Ursachen zu finden und die Fehlerwahrscheinlichkeit durch konstruktive Maßnahmen zu reduzieren.
- Nutzen und Grenzen von ausgewählten Simulationstools der Kunststofftechnik (Festigkeit, Verformung, Füllung, Verzug) zu benennen.
- Polymerklassen und Kunststoffkonstruktionen bzgl. möglicher Recyklingkonzepte und möglicher ökologischer Auswirkungen einzuschätzen.

Voraussetzungen:
keine

Empfehlung: Polymerengineering I

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Konstruieren mit Polymerwerkstoffen beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).

Organisatorisches
unter markus.liedel@de.bosch.com oder carolin.koenig@kit.edu

Literaturhinweise
Materialien werden in der Vorlesung ausgegeben. Literaturhinweise werden in der Vorlesung gegeben.
8.107 Teilleistung: Konstruktiver Leichtbau [T-MACH-105221]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich

Leistungspunkte: 4

Turnus: Jedes Sommersemester

Version: 2

Lehrveranstaltungen

| SS 2020 | 2146190 | Konstruktiver Leichtbau | 2 SWS | Vorlesung (V) | Albers, Burkardt |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105221 | Konstruktiver Leichtbau | Prüfung (PR) | Albers, Burkardt |

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Konstruktiver Leichtbau

2146190, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)

Inhalt

Die Vorlesung wird durch Gastvorträge "Leichtbau aus Sicht der Praxis" aus der Industrie ergänzt.

Die Studierenden

- können zentrale Leichtbaustategien hinsichtlich ihres Potenzials bewerten und beim Konstruieren anwenden.
- sind fähig, unterschiedliche Versteifungsmethoden qualitativ anzuwenden und hinsichtlich ihrer Wirksamkeit zu bewerten.
- sind in der Lage, die Leistungsfähigkeit der rechnergestützten Gestaltung und der damit verbundenen Grenzen und Einflüsse auf die Fertigung zu bewerten.
- können Grundlagen des Leichtbaus aus Systemsicht und in dessen Kontext zum Produktentstehungsprozess wiedergeben.
Organisatorisches
Vorlesungsfolien können über die eLearning-Plattform ILIAS bezogen werden.
Die Prüfungsart wird gemäß der Prüfungsordnung zu Vorlesungsbeginn angekündigt:

- Schriftliche Prüfung: 90 min Prüfungsdauer
- Mündliche Prüfung: 20 min Prüfungsdauer
- Erlaubte Hilfsmittel: keine

Medien: Beamer

Arbeitsbelastung:

- Präsenzzeit: 21 h
- Selbststudium: 99 h

Lecture slides are available via eLearning-Platform ILIAS.
The type of examination (written or oral) will be announced at the beginning of the lecture:

- written examination: 90 min duration
- oral examination: 20 min duration
- auxiliary means: None

Media: Beamer

Workload:

- regular attendance: 21 h
- self-study: 99 h

Literaturhinweise
Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
8.108 Teilleistung: Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110377]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102582 - Schwerpunkt: Kontinuumsmechanik
M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 3

Turnus Jedes Wintersemester

Dauer 1 Sem.

Version 2

Lehrveranstaltungen

| WS 20/21 | 2161252 | Kontinuumsmechanik der Festkörper und Fluide 2 SWS Vorlesung (V) / 🕵️ Böhlke, Frohnapfel |

Legende: Online, 🕵️ Präsenz/Online gemischt, 🌐 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung

Voraussetzungen
bestandene Studienleistung "Übung zu Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110333)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110333 - Übungen zu Kontinuumsmechanik der Festkörper und Fluide muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen.
Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kontinuumsmechanik der Festkörper und Fluide
2161252, WS 20/21, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt

- Einführung in die Tensorrechnung
- Kinematik
- Bilanzgleichungen der Mechanik und Thermodynamik
- Materialtheorie der Festkörper und Fluide
- Feldgleichungen für Festkörper und Fluide
- Thermomechanische Kopplungen
- Dimensionsanalyse

Literaturhinweise
Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
8.109 Teilleistung: Lager- und Distributionssysteme [T-MACH-105174]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102821 - Schwerpunkt: Technische Logistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2118097 | Lager- und Distributionssysteme | 2 SWS | Vorlesung (V) | Furmans |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105174 | Lager- und Distributionssysteme | Prüfung (PR) | Furmans |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lager- und Distributionssysteme
2118097, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Literaturhinweise
ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag

ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag

Warehouse Science

GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Handhaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISSE, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag

Eine ausführliche Übersicht wissenschaftlicher Paper findet sich bei:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature
8.110 Teilleistung: Lasereinsatz im Automobilbau [T-MACH-105164]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Vorlesungsstunden</th>
<th>Vorlesungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Lasereinsatz im Automobilbau</td>
<td>2 SWS</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung (PR)</th>
<th>Prüfungspunkt</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Lasereinsatz im Automobilbau</td>
<td>Prüfung (PR)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung (30 min)
keine Hilfsmittel

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102102 - Physikalische Grundlagen der Lasertechnik darf nicht begonnen worden sein.

Empfehlungen

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lasereinsatz im Automobilbau

2182642, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Nd:YAG-, CO2-, Hochleistungs-Dioden-Laser)
- Strahleigenschaften, -führung, -formung
- Grundlagen der Materialbearbeitung mit Lasern
- Laseranwendungen im Automobilbau
- Wirtschaftliche Aspekte
- Lasersicherheit

Der/die Studierende

- kann die Grundlagen der Lichtentstehung, die Voraussetzungen für die Lichtverstärkung sowie den prinzipiellen Aufbau und die Funktionsweise von Nd:YAG-, CO2- und Hochleistungs-Dioden-Laserstrahlquellen erläutern.
- kann die wichtigsten lasergestützten Materialbearbeitungsprozesse für die Anwendung im Automobilbau benennen und für diese den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben
- kann Bearbeitungsaufgaben bzgl. ihrer Anforderungen analysieren und geeignete Laserstrahlquellen und Prozessparameter auswählen.
- kann die Gefahren beim Umgang mit Laserstrahlung beschreiben und geeignete Maßnahmen zur Gewährleistung der Arbeitssicherheit ableiten.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.
Die Veranstaltung kann nicht zusammen mit der Veranstaltung Physikalische Grundlagen der Lasertechnik [2181612] gewählt werden.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Organisatorisches
Bitte nutzen Sie die Vorlesungsauzeichnung aus dem SS 19!
Bei Interesse bitte melden bei johannes.schneider@kit.edu!
Aktuelle Infos werden über ILIAS verteilt!

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.111 Teilleistung: Leadership and Management Development [T-MACH-105231]

Verantwortung:
- Prof. Dr.-Ing. Albert Albers
- Prof. Dr.-Ing. Sven Matthiesen
- Andreas Ploch

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
- M-MACH-102812 - Schwerpunkt: Antriebssysteme
- M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 4

Turnus
- Jedes Wintersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Veranstaltungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2145184</td>
<td>Leadership and Management Development</td>
<td>2 SWS</td>
<td>Block (B) / Online</td>
</tr>
</tbody>
</table>

Legende:
- 📚 Online,
- 📦 Präsent/Online gemischt,
- 🗣 Präsent,
- ☑ Abgesagt

Erfolgskontrolle(n)
- mündliche Prüfung (20 min)

Voraussetzungen
- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Leadership and Management Development

2145184, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt
- Führungstheorien
- Führungsinstrumente
- Kommunikation als Führungsinstrument
- Change Management
- Management Development und MD-Programme
- Assessment-Center und Management-Audits
- Teamarbeit, Teamentwicklung und Teamrollen
- Interkulturelle Kompetenz
- Führung und Ethik, Corporate Governance
- Executive Coaching
- Praxisvorträge

Organisatorisches
- Vorlesungsanmeldung ab 01.10.2020 und Informationen zur Veranstaltung wie Termine werden im ILIAS Kurs zur Verfügung gestellt.
- Weitere Information siehe IPEK-Homepage

Literaturhinweise
- Vorlesungsumdruck
8.112 Teilleistung: Lehrlabor: Energietechnik [T-MACH-105331]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Prof. Dr. Ulrich Maas
Dr.-Ing. Heinrich Wirbser

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2171487</td>
<td>Lehrlabor: Energietechnik</td>
<td>3</td>
<td>Jedes Semester</td>
<td>Bauer, Maas, Bykov</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2171487</td>
<td>Lehrlabor: Energietechnik</td>
<td>3</td>
<td>Praktikum (P)</td>
<td>Bauer, Maas, Bykov</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105331</td>
<td>Lehrlabor: Energietechnik</td>
<td>Prüfung (PR)</td>
<td>Bauer, Maas, Wirbser</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105331</td>
<td>Lehrlabor: Energietechnik</td>
<td>Prüfung (PR)</td>
<td>Bauer, Maas, Wirbser</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

1 Protokoll, à 12 Seiten
Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lehrlabor: Energietechnik
2171487, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Inhalt
Information auf Internetseite des Instituts; Anmeldung erfolgt online.
Anmeldung innerhalb der ersten beiden Wochen der Vorlesungszeit auf der Institutshomepage: http://www.its.kit.edu

Lehrinhalt:

- Modellgasturbine
- Verschiedene Messstrecken zur Untersuchung des Wärmeübergangs an thermische hochbelasteten Bauteilen.
- Optimierung von Komponenten des internen Luft- und Ölsystems
- Sprühstrahlcharakterisierung von Zerstäuberdüsen
- Untersuchung von Schadstoff-emissionen, Lärmemissionen, Zuverlässigkeit und Material-schädigung in Brennkammern
- Abgasnachbehandlung
 - Abgas-Turbolader
 - Kühlturn
 - Wärmepumpe
 - Pflanzenölkocher
 - Wärmekapazität
 - Holzverbrennung

Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudium: 78h

Lernziele:
Durch die Teilnahme an der Veranstaltung sollen Studierende:

- in einem wissenschaftlichen Rahmen sowohl experimentelle und konstruktive, als auch theoretische Aufgaben bearbeiten können
- erhaltene Daten korrekt auswerten
- Ergebnisse dokumentieren und im wissenschaftlichen Kontext darstellen

Nachweis:
1 Protokoll, à 12 Seiten
Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Dauer: 30 Minuten

Hilfsmittel: keine

Lehrlabor: Energietechnik
2171487, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Information auf Internetseite des Instituts; Anmeldung erfolgt online.
Anmeldung innerhalb der ersten beiden Wochen der Vorlesungszeit auf der Institutshomepage: http://www.its.kit.edu

Lehrinhalt:

- Modellgasturbine
- Verschiedene Messstrecken zur Untersuchung des Wärmeübergangs an thermische hochbelasteten Bauteilen.
- Optimierung von Komponenten des internen Luft- und Ölsystems
- Sprühstrahlnachbehandlung von Zerstäuberdüsen
- Untersuchung von Schadstoff-emissionen, Lärmemissionen, Zuverlässigkeit und Material-schädigung in Brennkammern
- Abgasnachbehandlung
 - Abgas-Turbolader
 - Kühl turm
 - Wärmepumpe
 - Pflanzenölkocher
 - Wärmekapazität
 - Holzverbrennung

Präsenzzeit: 42h
Selbststudium: 78h
Durch die Teilnahme an der Veranstaltung sollen Studierende:

- in einem wissenschaftlichen Rahmen sowohl experimentelle und konstruktive, als auch theoretische Aufgaben bearbeiten können
- erhaltene Daten korrekt auswerten
- Ergebnisse dokumentieren und im wissenschaftlichen Kontext darstellen

Nachweis:
1 Protokoll, à 12 Seiten
Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Dauer: 30 Minuten
Hilfsmittel: keine
8.113 Teilleistung: Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis [T-MACH-110954]

Verantwortung: Dr.-Ing. Luise Kärger
Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Turnus Jedes Wintersemester
Version 1

Lehreveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2113110</th>
<th>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🗣</th>
<th>Kärger, Liebig</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>76-T-MACH-110954</th>
<th>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</th>
<th>Prüfung (PR)</th>
<th>Liebig, Kärger</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (ca. 25 Minuten)

Voraussetzungen
keine

Empfehlungen

- Werkstoffe für den Leichtbau
- Strukturberechnung von Faserverbundlaminaten
- Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzuge, Verarbeitung

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis
2113110, WS 20/21, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz

Inhalt

- Grundlagen Leichtbaustrategien
- Grundlagen Faser-Verbund-Kunststoffe
- Grundlagen FEM-Simulation mit nicht-isotropen Multimaterialsystemen
- Simulative Bauteilbetrachtung
- Fertigung von Faser-Verbund-Kunststoffen
- Mechanische Prüfung

Organisatorisches
Die Veranstaltung findet Mittwochs von 14:00 - 17:00 Uhr statt. Die Raumbelegung wird zu Beginn des Wintersemesters bekannt gegeben.
8.114 Teilleistung: Logistiksysteme auf Flughäfen [T-MACH-105175]

Verantwortung: Dr.-Ing. André Richter
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102821 - Schwerpunkt: Technische Logistik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2117056</th>
<th>Logistiksysteme auf Flughäfen (mach und wiwi)</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Richter</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🕹 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Logistiksysteme auf Flughäfen (mach und wiwi)
2117056, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Medien
Präsentationen

Lehrinhalte

- Einführung
- Flughafenanlagen
- Gepäckbeförderung
- Personenberförderung
- Sicherheit auf dem Flughafen
- Rechtsgrundlagen des Flugverkehrs
- Fracht auf dem Flughafen

Lernziele
Die Studierenden können:

- Fördertechnische und informationstechnische Abläufe auf Flughäfen beschreiben,
- Auf Basis des geltenden Rechts Abläufe und Systeme auf Flughäfen beurteilen und
- Geeignete Prozesse und fördertechnische Systeme für Flughäfen auswählen.

Empfehlungen
Keine

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Anmerkungen
Organisatorisches

Literaturhinweise
8.115 Teilleistung: Machine Vision [T-MACH-105223]

Verantwortung: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-102817 - Schwerpunkt: Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2137308</th>
<th>Machine Vision</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lauer, Kinzig</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105223</th>
<th>Machine Vision</th>
<th>Prüfung (PR)</th>
<th>Stiller, Lauer</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗿 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 60 Minuten

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Machine Vision
2137308, WS 20/21, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Online

Inhalt
Lernziele:

Nachweis: schriftlich 60 Minuten
Arbeitsaufwand 240 Stunden
Voraussetzungen: keine

Organisatorisches
ca 100 - 200 Teilnehmer

Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
8.116 Teilleistung: Management- und Führungstechniken [T-MACH-105440]

Verantwortung: Hans Hatzl
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Leistungsnachrichten</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2110017</td>
<td>Management- und Führungstechniken</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Hatzl</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2110017</td>
<td>Management- und Führungstechniken</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Deml, Hatzl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Leistungsnachrichten</th>
<th>Prüfung (PR)</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105440</td>
<td>Management- und Führungstechniken</td>
<td>Deml</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105440</td>
<td>Management- und Führungstechniken</td>
<td>Deml</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
keine

Anmerkungen
Diese Veranstaltung wird einmalig auch im WS 20/21 angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Management- und Führungstechniken

<table>
<thead>
<tr>
<th>Vorlesungscode</th>
<th>SS 2020</th>
<th>2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
</table>

Inhalt
In dieser Kompaktveranstaltung werden Management- und Führungstechniken vermittelt, die zu den Schlüsselqualifikationen für Führungsaufgaben gehören. Des Weiteren werden Sie auf Management- und Führungsaufgaben vorbereitet.

Die Veranstaltung besteht aus den folgenden Lehrinhalten:

1. Einführung in das Thema
2. Zielfindung und Zielerreichung
3. Managementtechniken in der Planung
4. Kommunikation und Information
5. Entscheidungslehre
6. Führung und Zusammenarbeit
7. Selbstmanagement
8. Konfliktbewältigung und -strategie
9. Fallstudien

Empfehlungen:

- Arbeits- und wirtschaftswissenschaftliche Kenntnisse vorteilhaft
Organisatorisches
Diese Vorlesung fällt dieses Sommersemester aufgrund der momentanen Lage wegen Corona leider aus. Es wird versucht einen Ersatz im Wintersemester anzubieten.
- Anwesenheitspflicht
- Teilnehmerzahl beschränkt. Anmeldung über ILIAS.
- Für eine verbindliche Kursteilnahme ist die Prüfungsanmeldung bis 10 Tage vor Veranstaltungsbeginn im ifab-Sekretariat nachzuweisen.
- mündliche Prüfung (ca. 30 Minuten)
- Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.

Management- und Führungstechniken
2110017, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Abgesagt

Inhalt
In dieser Kompaktveranstaltung werden Management- und Führungstechniken vermittelt, die zu den Schlüsselqualifikationen für Führungsaufgaben gehören. Des Weiteren werden Sie auf Management- und Führungsaufgaben vorbereitet.

Die Veranstaltung besteht aus den folgenden Lehrinhalten:

1. Einführung in das Thema
2. Zielfindung und Zielerreichung
3. Managementtechniken in der Planung
4. Kommunikation und Information
5. Entscheidungslehre
6. Führung und Zusammenarbeit
7. Selbstmanagement
8. Konfliktbewältigung und -strategie
9. Fallstudien

Empfehlungen:

- Arbeits- und wirtschaftswissenschaftliche Kenntnisse vorteilhaft

Organisatorisches

Bleiben Sie und die Ihren gesund.

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
8.117 Teilleistung: Maschinen und Prozesse [T-MACH-105208]

Verantwortung:
- Prof. Dr.-Ing. Hans-Jörg Bauer
- Dr.-Ing. Heiko Kubach
- Prof. Dr. Ulrich Maas
- Dr. Balazs Pritz

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
- KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
- KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von:
- M-MACH-102566 - Maschinen und Prozesse

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3134140</td>
<td>Machines and Processes</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Bauer, Maas, Kubach, le</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2185000</td>
<td>Maschinen und Prozesse</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Bauer, Kubach, Maas, le</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105208</td>
<td>Maschinen und Prozesse (Exam in German Language)</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Kubach, Bauer, Maas, le</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105208e</td>
<td>Machines and Processes (Exam in English Language)</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Kubach, Bauer, Maas, le</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105208</td>
<td>Maschinen und Prozesse (Klausur in deutscher Sprache)</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Kubach, Maas, le</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105208e</td>
<td>Machines and Processes (exam in English language)</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Kubach, Maas, le</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Schriftliche Prüfung (Dauer: 120 min)

Voraussetzungen
Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105232 - Maschinen und Prozesse, Vorleistung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinen und Prozesse
- Vorlesung / Übung (VÜ)
 - Online
- SS 20/21: 2185000, WS 20/21, 4 SWS, Im Studierendenportal anzeigen
8 TEILLEISTUNGEN

Teilleistung: Maschinen und Prozesse [T-MACH-105208]

Inhalt
Grundlagen der Thermodynamik

Thermische Strömungsmaschinen
- Dampfturbinen
- Gasturbinen
- GuD Kraftwerke
- Turbinen und Verdichter
- Flugtriebwerke

Hydraulische Strömungsmaschinen
- Betriebsverhalten
- Charakterisierung
- Regelung
- Kavitation
- Windturbinen, Propeller

Verbrennungsmotoren
- Kenngrößen
- Konstruktionselemente
- Kinematik
- Motorprozesse
- Emissionen
8.118 Teilleistung: Maschinen und Prozesse, Vorleistung [T-MACH-105232]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Heiko Kubach
Prof. Dr. Ulrich Maas
Dr. Balazs Pritz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-102566 - Maschinen und Prozesse

Teilleistungsart
Studienleistung
Leistungspunkte 0
Turnus Jedes Semester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung-ID</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Modulbetitel</th>
<th>Prüfung (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2187000</td>
<td>Maschinen und Prozesse</td>
<td>1</td>
<td>(Praktikum)</td>
<td>Praktikum (P) Bauer, Kubach, Maas, Pritz</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2187000</td>
<td>Maschinen und Prozesse</td>
<td>1</td>
<td>(Praktikum)</td>
<td>Praktikum (P) / 🗣 Bauer, Kubach, Maas, Pritz, Schmidt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung-ID</th>
<th>Veranstaltungsbezeichnung</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105232</td>
<td>Maschinen und Prozesse, Vorleistung (German and English)</td>
<td>Prüfung (PR) Kubach, Bauer, Maas, Pritz</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105232</td>
<td>Maschinen und Prozesse, Vorleistung</td>
<td>Prüfung (PR) Kubach, Maas, Bauer, Gabi</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
erfolgreich absolviert Praktikumsversuch

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinen und Prozesse (Praktikum)

2187000, SS 2020, 1 SWS, Im Studierendenportal anzeigen

Praktikum (P)
Inhalt
Nachweis:
erfolgreich absolviert Praktikumsversuch und schriftliche Klausur (2 h)
Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein
Anmerkung:
Praktikum und Vorlesung finden im Sommer- und Wintersemester statt.
Im SS findet die VL auf englisch statt. Das Praktikum ist immer zweisprachig.
Medien:
Folien zum Download
Dokumentation des Praktikumsversuchs
Lehrinhalte:
Grundlagen der Thermodynamik
Thermische Strömungsmaschinen
 • Dampfturbinen
 • Gasturbinen
 • GuD Kraftwerke
 • Turbinen und Verdichter
 • Flugtriebwerke
Hydraulische Strömungsmaschinen
 • Betriebsverhalten
 • Charakterisierung
 • Regelung
 • Kavitation
 • Windturbinen, Propeller
Verbrennungsmotoren
 • Kenngrößen
 • Konstruktionselemente
 • Kinematik
 • Motorprozesse
 • Emissionen
Arbeitsaufwand: Präsenzzeit: 48 h, Selbststudium 160 h
Lernziele:
Die Studenten können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen

Maschinen und Prozesse (Praktikum)
2187000, WS 20/21, 1 SWS, Im Studierendenportal anzeigen

Inhalt
Praktisches Experiment
8.119 Teilleistung: Maschinendynamik [T-MACH-105210]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102820 - Schwerpunkt: Mechatronik
M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik
M-MACH-104442 - Schwerpunkt: Schwingungslehre

Teilleistungsart	Prüfungsleistung schriftlich	Leistungspunkte	Turnus	Version
	5	Jedes Sommersemester	1	

Lehrveranstaltungen
- SS 2020 2161224 Maschinendynamik 2 SWS Vorlesung (V) Proppe
- SS 2020 2161225 Übungen zu Maschinendynamik 1 SWS Übung (Ü) Proppe, Fischer
- WS 20/21 2161224 Maschinendynamik 2 SWS Vorlesung (V) Proppe

Prüfungsveranstaltungen
- SS 2020 76-T-MACH-105210 Maschinendynamik Prüfung (PR) Proppe

Erfolgskontrolle(n)
Schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinendynamik
2161224, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Zielsetzung
2. Maschinen als mechatronische Systeme
3. Starre Rotoren: Bewegungsgleichungen, instationäres Anfahren, stationärer Betrieb, Auswuchten (mit Schwingungen)
4. Elastische Rotoren (Lavalrotor, Bewegungsgleichungen, instationärer und stationärer Betrieb, biegekritische Drehzahl, Zusatzeinflüsse), mehrfach und kontinuierlich besetzte Wellen, Auswuchten
5. Dynamik der Hubkolbenmaschine: Kinematik und Bewegungsgleichungen, Massen- und Leistungsausgleich

Course Language: English / Vorlesungssprache: Englisch

Literaturhinweise
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953

Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979

Dresig, Vulfson: Dynamik der Mechanismen, 1989

Übungen zu Maschinendynamik
2161225, SS 2020, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Übung des Vorlesungsstoffs

Course Language: English / Vorlesungssprache: Englisch
Inhalt

1. Zielsetzung
2. Maschinen als mechatronische Systeme
3. Starre Rotoren: Bewegungsgleichungen, instationäres Anfahren, stationärer Betrieb, Auswuchten (mit Schwingungen)
4. Elastische Rotoren (Lavalrotor, Bewegungsgleichungen, instationärer und stationärer Betrieb, biegekritische Drehzahl, Zusatzeinflüsse), mehrfach und kontinuierlich besetzte Wellen, Auswuchten
5. Dynamik der Hubkolbenmaschine: Kinematik und Bewegungsgleichungen, Massen- und Leistungsausgleich

Organisatorisches
Vorlesung wird ausschließlich online gehalten.

Literaturhinweise
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989
8.120 Teilleistung: Maschinendynamik II [T-MACH-105224]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102820 - Schwerpunkt: Mechatronik
M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik
M-MACH-104442 - Schwerpunkt: Schwingungslehre

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/21</td>
<td>2162220</td>
<td>Maschinendynamik II</td>
<td>2</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Proppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>76-T-MACH-105224</td>
<td>Maschinendynamik II</td>
<td>Prüfung (PR)</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Voraussetzungen
keine

Empfehlungen
Maschinendynamik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinendynamik II
2162220, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Studierende sind in der Lage, detaillierte Modelle in der Maschinendynamik zu entwickeln und zu analysieren, die Kontinuumsmodelle, Fluid-Struktur-Interaktion, Stabilitätsanalysen umfassen.

Gleitlager
- Rotierende Wellen in Gleitlagern
- Riementriebe
- Schaufenlschwingungen

Literaturhinweise
8.121 Teilleistung: Maschinenkonstruktionslehre I & II [T-MACH-105286]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurzbezeichnung</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Online/Präsent/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146178</td>
<td>Maschinenkonstruktionslehre II (mach)</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146017</td>
<td>Mechanical Design II Lecture</td>
<td>2 SWS</td>
<td>Englisch</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2145178</td>
<td>Maschinenkonstruktionslehre I</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3145186</td>
<td>Mechanical Design I (Lecture)</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurzbezeichnung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Online/Präsent/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105286</td>
<td>Maschinenkonstruktionslehre I & II</td>
<td>Prüfung (PR)</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76T-MACH-105286_EN</td>
<td>Maschinenkonstruktionslehre I & II (englisch)</td>
<td>Prüfung (PR)</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, benotet, Dauer: 60 min

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinenkonstruktionslehre II (mach)

2146178, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt
Für Studierende des Maschinenbaus

Lehrinhalte:
Lagerungen
Dichtungen
Gestaltung
Schraubenverbindungen

Erfolgskontrollen:
Weitere Informationen sind im Ilias hinterlegt und werden in der Vorlesung Maschinenkonstruktionslehre II bekannt gegeben.

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;

Vorlesungsumdruck:
Über die Ilias-Plattform des RZ werden alle relevanten Inhalte (Folien zu Vorlesung und Saalübung, sowie Übungsblätter) entsprechend den Vorlesungsböckchen gebündelt zur Verfügung gestellt.

Mechanical Design II Lecture
3146017, SS 2020, 2 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Inhalt
Grundlagen Lagerung
Dichtungen
Gestaltung
Schraubenverbindungen

Begleitend zur Vorlesung finden Übungen zur Vertiefung der Vorlesungsinhalte statt.

Erfolgskontrollen:
Weitere Informationen sind im Ilias hinterlegt und werden in der Vorlesung Maschinenkonstruktionslehre II bekannt gegeben.

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;

Maschinenkonstruktionslehre I
2145178, WS 20/21, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Literaturhinweise

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

V Mechanical Design I (Lecture)
3145186, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Literaturhinweise

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
Teilleistung: Maschinenkonstruktionslehre I, Vorleistung [T-MACH-105282]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
Kit-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2145185</td>
<td>Übungen zu Maschinenkonstruktionslehre I</td>
<td>1 SWS</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3145187</td>
<td>Mechanical Design I (Tutorial)</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕔 Präsenz/Online gemischt, 🕑 Präsenz, X Abgesagt

Erfolgskontrolle(n)

Des weiteren wird ein Online-Test zur Wissensüberprüfung durchgeführt.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre I

<table>
<thead>
<tr>
<th>Übungen zu Maschinenkonstruktionslehre I</th>
<th>Übung (Ü) Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145185, WS 20/21, 1 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Mechanical Design I (Tutorial)

<table>
<thead>
<tr>
<th>Mechanical Design I (Tutorial)</th>
<th>Übung (Ü) Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>3145187, WS 20/21, 2 SWS, Sprache: Englisch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
8.123 Teilleistung: Maschinenkonstruktionslehre II, Vorleistung [T-MACH-105283]

Verantwortung:
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
M-MACH-102573 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146185</td>
<td>Übungen zu Maschinenkonstruktionslehre II (mach)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Albers, Matthiesen, Behrendt, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146018</td>
<td>Mechanical Design II Tutorials</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Albers, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105283</td>
<td>Maschinenkonstruktionslehre II, Vorleistung</td>
<td>2 SWS</td>
<td>Albers, Matthiesen</td>
</tr>
</tbody>
</table>

Legende:
- Online,
- Präsenz/Online gemischt,
- Präsenz
- Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre II (mach)
2146185, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lerninhalte:
- Lagerungen
- Dichtungen
- Gestaltung
- Schraubenverbindungen

Arbeitsaufwand:
- Präsenzzeit: 10,5 h
- Selbststudium: 55 h

Literaturhinweise

- **Konstruktionselemente des Maschinenbaus** - 1 und 2
- **Grundlagen von Maschinenelementen für Antriebsaufgaben**;
 Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
- **CAD**:
 Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Mechanical Design II Tutorials
3146018, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü)
Online

Inhalt
Lager
Dichtungen
Gestaltung
Schraubverbindungen

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.124 Teilleistung: Maschinenkonstruktionslehre III & IV [T-MACH-104810]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistungspunkt</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Vorlesung/Online</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146177</td>
<td>Maschinenkonstruktionslehre IV</td>
<td>2</td>
<td>Jedes Semester</td>
<td>Vorlesung (V)</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146020</td>
<td>Mechanical Design IV Lecture</td>
<td>2</td>
<td>Jedes Semester</td>
<td>Vorlesung (V)</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2145151</td>
<td>Maschinenkonstruktionslehre III</td>
<td>2</td>
<td>Jedes Semester</td>
<td>Vorlesung (V) / Online</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3145016</td>
<td>Mechanical Design III (Lecture)</td>
<td>2</td>
<td>Jedes Semester</td>
<td>Vorlesung (V) / Online</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsleistung</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Prüfung/Online</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-104810</td>
<td>Maschinenkonstruktionslehre III & IV</td>
<td>2</td>
<td>Jedes Semester</td>
<td>Prüfung (PR)</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76T-MACH-104810_EN</td>
<td>Maschinenkonstruktionslehre III & IV (englisch)</td>
<td>2</td>
<td>Jedes Semester</td>
<td>Prüfung (PR)</td>
<td>Albers, Matthiesen</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung bestehend aus:

- schriftlichem Teil mit Dauer 60 min und
- konstruktivem Teil mit Dauer 180 min

Insgesamt: 240 min

Voraussetzungen

Für die Zulassung zur Prüfung ist die erfolgreiche Teilnahme an T-MACH-110955 Maschinenkonstruktionslehre III, Vorleistung und T-MACH-110956 Maschinenkonstruktionslehre IV, Vorleistung erforderlich.

Modellierte Voraussetzungen

Es muss eine von 2 Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinenkonstruktionslehre IV

2146177, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt
Elementare Bauteilverbindungen - Teil 2

- Grundlagen der Kupplungen
- Grundlagen der Hydraulik
- Grundlagen der Dimensionierung

Die Studierenden können ...

- verschiedene Kupplungssysteme einordnen, deren Funktion benennen, systemspezifische Phänomene erklären und die Grundsätze der Kupplungsauslegung anwenden.
- unterschiedliche Kupplungssysteme anwendungsgerecht einsetzen und gestalten.
- unterschiedliche Arten der Dimensionierung und relevante Einflussparameter der Beanspruchung und Beanspruchbarkeit benennen.
- die Festigkeitshypothesen benennen, anwenden und Festigkeitsberechnungen selbstständig durchführen.
- Festigkeitsrechnungen selbstständig durchführen und anwenden
- die grundlegenden Eigenschaften von hydraulischen Systemen benennen, grundlegende Sinnbilder der Fluidtechnik benennen und Funktionsdiagramme interpretieren, sowie einfache hydraulische Anlagen mit Hilfe eines Schaltplans gestalten und auslegen.
- im Team unkonventionelle technische Lösungsideen entwickeln, deren prinzipielle Machbarkeit bewerten, die Ideen in technische Lösungen umsetzen und die eigenen Arbeits- und Entscheidungsprozesse mit Hilfe von Protokollen und Diagrammen gegenüber Dritten darstellen, planen und beurteilen.
- technische Zeichnungen normgerecht anfertigen.
- von technischen Systemen mit Hilfe der Top-Down-Methode ein CAD-Modell erstellen

Organisatorisches
Nachweis:
Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn des Workshops das Wissen aus der Vorlesung abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Weitere Informationen sind im ILIAS hinterlegt und werden in der Vorlesung Maschinenkonstruktionslehre IV bekannt gegeben.

Vorlesungsumdruck:
Registrierten Studierenden wird die Produktentwicklung Knowledge Base PKB als digitale Wissensbasis zur Verfügung gestellt.

Über die ILIAS-Plattform des RZ werden alle relevanten Inhalte (Folien zu Vorlesung und Saalübung sowie Übungsblätter) entsprechend den Vorlesungsblöcken gebündelt zur Verfügung gestellt.

Medien:
- Beamer
- Visualizer
- Mechanische Bauteilmodelle

Vorraussetzungen: Erfolgreiche Teilnahme an Maschinenkonstruktionslehre I, Maschinenkonstruktionslehre II und Maschinenkonstruktionslehre III.

Präsenzzeit: 42 h
Selbststudium: 80 h
Literaturhinweise
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Lecture notes:
The lecture notes can be downloaded via the eLearning platform Ilias.

Literature:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
or per full text access provided by university library
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Literaturhinweise
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3(für Fortgeschrittene)

V Mechanical Design III (Lecture)
3145016, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Literaturhinweise
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3(für Fortgeschrittene)
8.125 Teilleistung: Maschinenkonstruktionslehre III, Vorleistung [T-MACH-110955]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2145153</td>
<td>Übungen zu Maschinenkonstruktionslehre III</td>
<td>2 SWS</td>
<td>Übung (Ü) / Online</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2145154</td>
<td>Workshop zu Maschinenkonstruktionslehre III</td>
<td>1 SWS</td>
<td>Praktikum (P) / Online</td>
<td>Albers, Matthiesen, Albers Assistenten</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3145017</td>
<td>Mechanical Design III (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü) / Online</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3145018</td>
<td>Mechanical Design III (Workshop)</td>
<td>SWS</td>
<td>Seminar / Praktikum (S/P) / Online</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legende: 🌐 Online, 🌐 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre III

2145153, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Workshop zu Maschinenkonstruktionslehre III

2145154, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III (Tutorial)
3145017, WS 20/21, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Organisatorisches
Termine siehe Lehrveranstaltung 2145154

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.126 Teilleistung: Maschinenkonstruktionslehre IV, Vorleistung [T-MACH-110956]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Modul</th>
<th>Tutor*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146184</td>
<td>Übungen zu Maschinenkonstruktionslehre IV</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2146187</td>
<td>Workshop zu Maschinenkonstruktionslehre IV</td>
<td>1</td>
<td>Praktische Übung (PÜ)</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146021</td>
<td>Mechanical Design IV Tutorials</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Albers, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146022</td>
<td>Mechanical Design IV Workshop</td>
<td>1</td>
<td>Praktische Übung (PÜ)</td>
<td>Albers, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Modul</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105285</td>
<td>Maschinenkonstruktionslehre IV, Vorleistung</td>
<td></td>
<td>Albers, Matthiesen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn des Workshops das Wissen aus der Vorlesung abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre IV

2146184, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)

Inhalt

Elementare Bauteilverbindungen - Teil 2

- Grundlagen der Kupplungen
- Grundlagen der Dimensionierung
- Grundlagen der Hydraulik

Organisatorisches

Voraussetzungen: Teilnahme Maschinenkonstruktionslehre I-III.

Arbeitsaufwand:

- Präsenzzeit: 10,5 h
- Selbststudium: 49,5 h
Teilung

Konstruktionselemente des Maschinenbaus - 1 und 2

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Workshop zu Maschinenkonstruktionslehre IV
2146187, SS 2020, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches
Anmeldung erforderlich; Termine/Ort siehe IPEK-Homepage

LITERATURHINWEISE

Konstruktionselemente des Maschinenbaus - 1 und 2

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design IV Tutorials
3146021, SS 2020, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

LITERATURHINWEISE

Konstruktionselemente des Maschinenbaus - 1 und 2

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design IV Workshop
3146022, SS 2020, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches

Bonus
The student can achieve an extra bonus for the mechanical design exam.
The bonus amounts to 0.3 exam points and it can only be achieved in case of passed MD-exam (lowest passing grade 4.0).
More details will announce in mechanical design IV.
A prosperous participation is compulsory to attend the exam.

lectures: 10.5 h
preparation to exam: 19.5 h
Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.127 Teilleistung: Materialfluss in Logistiksystemen [T-MACH-102151]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Leitungsart</th>
<th>WS 20/21</th>
<th>2117051</th>
<th>Materialfluss in Logistiksystemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>9</td>
<td>Prüfungsleistung anderer Art</td>
<td>6 SWS</td>
<td>Sonstige (sonst.) / Präsenz/Online gemischt</td>
<td>Furmans, Jacobi, Klein</td>
</tr>
</tbody>
</table>

Legende: 🔄 Online, 🌧 Präsenz/Online gemischt, 🌧 Präsenz, X Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Diese setzt sich wie folgt zusammen:

- 40% Bewertung der Abschlussfallstudie als Einzelleistung,
- 60% Bewertung der Semesterleistung aus Bearbeitung und Verteidigung von 5 Fallstudien (Es werden jeweils die besten 4 aus 5 Leistungen gewertet.):
 - 40% Bewertung der Fallstudienlösungen als Gruppenleistung,
 - 20% Bewertung der mündlichen Leistung in den Fallstudienkolloquien als Einzelleistung.

Eine detaillierte Beschreibung der Erfolgskontrolle findet sich unter Anmerkungen.

Voraussetzungen
keine

Empfehlungen
Empfohlenes Wahlpflichtfach: Wahrscheinlichkeitsrechnung und Statistik

Anmerkungen

Nach Ende der Vorlesungszeit findet die Abschlussfallstudie statt. Diese umfasst den gesamten Semesterinhalt und wird von den Studierenden in Einzelarbeit an einem vorgegebenen Präsenztermin mit zeitlicher Begrenzung (4h) gelöst.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Materialfluss in Logistiksystemen
2117051, WS 20/21, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Sonstige (sonst.)
Präsenz/Online gemischt
Inhalt
Lehrinhalte:

- Materialflusselemente (Förderstrecke, Verzweigung, Zusammenführung)
- Beschreibung vernetzter MF-Modelle mit Graphen, Matrizen etc.
- Warteschlangentheorie: Berechnung von Wartezeiten, Auslastungsgraden etc.
- Lagern und Kommissionieren
- Shuttle-Systeme
- Sorter
- Simulation
- Verfügbarkeitsrechnung
- Wertstromanalyse

Lernziele:
Nach erfolgreichem Abschluss der Lehrveranstaltung können Sie alleine und im Team:

- In einem Gespräch mit Fachkundigen ein Materialflussystem zutreffend beschreiben.
- Die Systemlast und die typischen Materialflusselemente modellieren und parametrieren.
- Daraus ein Materialflussystem für eine Aufgabe konzipieren.
- Die Leistungsfähigkeit einer Anlage in Bezug auf die Anforderungen qualifiziert beurteilen.
- Die wichtigsten Stellhebel zur Beeinflussung der Leistungsfähigkeit gezielt verändern.
- Die Grenzen der heutigen Methoden und Systemkomponenten konzeptionell bei Bedarf erweitern.

Literatur:
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 2009

Beschreibung:

Es wird dringend empfohlen die Einführungsveranstaltung in der ersten Vorlesungswoche (02.11.2020) zu besuchen. Wir stellen zu diesem Termin das Konzept vor und wollen offene Fragen klären.

Die Anmeldung zum Kurs inklusive Gruppenzuteilung über Ilias ist zwingend erforderlich. Die Anmeldung wird nach der Einführungsveranstaltung für mehrere Tage freigeschaltet (Anmeldezeitraum: 02.11.2020 08:00 Uhr - 05.11.2020 18:00 Uhr).

Arbeitsaufwand:

- Präsenzzeit: 35 h
- Selbststudium: 135 h
- Gruppenarbeit: 100 h

Nachweise:
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Diese setzt sich wie folgt zusammen:

- 40% Bewertung der Abschlussfallstudie als Einzelleistung,
- 60% Bewertung der Semesterleistung aus Bearbeitung und Verteidigung von 5 Fallstudien (Es werden jeweils die besten 4 aus 5 Leistungen gewertet.):
 - 40% Bewertung der Fallstudienlösungen und deren Präsentation als Gruppenleistung,
 - 20% Bewertung der mündlichen Leistung in den Kolloquien als Einzelleistung.

Organisatorisches
Die Advance Organizer und Übungen werden im Online-Format angeboten. Die Kolloquien finden in Präsenz im Institutsgebäude des IFL (Geb. 50.38) statt.
8.128 Teilleistung: Mathématiques appliquées aux sciences de l'ingénieur [T-MACH-105452]

Verantwortung: Prof. Dr. Jean-Yves Dantan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
5

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Art</th>
<th>Prüfungsform</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2161230</td>
<td>Mathématiques appliquées aux sciences de l'ingénieur</td>
<td>4</td>
<td>VÜ</td>
<td>Vorlesung / Übung</td>
<td>Dantan</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2161230</td>
<td>Mathématiques appliquées aux sciences de l'ingénieur</td>
<td>4</td>
<td>VÜ</td>
<td>Vorlesung / Übung</td>
<td>Dantan</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathématiques appliquées aux sciences de l'ingénieur
2161230, SS 2020, 4 SWS, Sprache: Französisch, Im Studierendenportal anzeigen

Inhalt
Für Ingenieure, Physiker, Masch.bauer, in franz. Sprache auch als fremdsprachl. Wahlfach für mach zugelassen.
Vorlesung in französischer Sprache
1. Blockkurs am KIT: Grundlagen der Wahrscheinlichkeitstheorie, Grundlagen der Laplace-Transformation
Cours en français
1. Cours donné au KIT: les bases de la théorie de la probabilité et de la transformée de Laplace
2. Cours donné aux Arts et Métiers ParisTech, Centre Metz, France: Application des bases mathématiques dans le domaine de Sureté de fonctionnement, Conception fiabiliste - Analyse des risques, Vibrations et Commande. Une visite d'entreprise proche de Metz est planifiée.

Organisatorisches
S. Aushang am Institut bzw. Informationen auf der website.

Mathématiques appliquées aux sciences de l'ingénieur
2161230, WS 20/21, 4 SWS, Sprache: Französisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Inhalt
Vorlesung in französischer Sprache
1. Blockkurs am KIT:
 Grundlagen der Wahrscheinlichkeitstheorie, Grundlagen der Laplace-Transformation
2. Blockkurs an der Arts et Métiers ParisTech, Zentrum Metz, Frankreich:
 Anwendung der mathematischen Grundlagen in den Bereichen "Sureté de fonctionnement, Conception fiabiliste - Analyse des risques, Vibrations et Commande". Es ist eine Exkursion zu einem Industriepartner in der Nähe von Metz geplant.
Cours en français
1. Cours donné au KIT:
 les bases de la théorie de la probabilité et de la transformée de Laplace
2. Cours donné aux Arts et Métiers ParisTech, Centre Metz, France :
 Application des bases mathématiques dans le domaine de Sureté de fonctionnement, Conception fiabiliste - Analyse des risques, Vibrations et Commande. Une visite d'entreprise proche de Metz est planifiée.
Organisatorisches
Termine werden auf der Homepage bekannt gegeben
8.129 Teilleistung: Mathematische Methoden der Dynamik [T-MACH-105293]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
M-MACH-102746 - Wahlpflichtmodul
M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 6
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Lehrveranstaltungsform (V/U)</th>
<th>Fachangestellter (F/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2161206</td>
<td>Mathematische Methoden der Dynamik</td>
<td>Vorlesung (V) / Online</td>
<td>Proppe</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2161207</td>
<td>Übungen zu Mathematischen Methoden der Dynamik</td>
<td>Übung (Ü) / Präsenz</td>
<td>Proppe, Oestringer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfungstitel</th>
<th>Prüfungsart (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Mathematische Methoden der Dynamik</td>
<td>Prüfung (PR) Proppe</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Dynamik
2161206, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden können die mathematischen Methoden der Dynamik zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen die grundlegenden mathematischen Methoden zur Modellbildung für das dynamische Verhalten elastischer und starrer Körper. Die Studierenden besitzen ein grundsätzliches Verständnis für die Darstellung der Kinematik und Kinetik elastischer und starrer Körper, für die alternativen Formulierungen auf der Basis von schwachen Formulierungen und Variationsmethoden sowie der Approximationsmethoden zur numerischen Berechnung des Bewegungsverhaltens elastischer Körper.

Dynamik der Kontinua: Kontinuumsbegriff, Geometrie der Kontinua, Kinematik und Kinetik der Kontinua

Analytische Methoden: Prinzip der virtuellen Arbeit, Variationsrechnung, Prinzip von Hamilton

Approximationsmethoden: Methoden des gewichteten Restes, Ritz-Methode

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994
P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000
M. Riemer: Technische Kontinuumsmekhanik, Mannheim, 1993
<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung des Vorlesungsstoffes</td>
</tr>
</tbody>
</table>
8.130 Teilleistung: Mathematische Methoden der Kontinuumsmechanik [T-MACH-110836]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102582 - Schwerpunkt: Kontinuumsmechanik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Dauer: 1 Sem.
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2161254</th>
<th>Mathematische Methoden der Kontinuumsmechanik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / Präsenz/Online gemischt</th>
<th>Böhlke</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung
Es gibt im SP 13 (Kontinuumsmechanik) keine Klausurvoraussetzungen

Anmerkungen
Diese Teilleistung ist nur im SP 13 im Bachelor-Studiengang Maschinenbau wählbar. Es gibt keine Klausurvoraussetzungen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Kontinuumsmechanik
2161254, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt
Tensoralgebra

- Vektoren; Basistransformation; dyadisches Produkt; Tensoren 2. Stufe
- Eigenschaften von Tensoren 2. Stufe: Symmetrie, Antimetrie, Orthogonalität etc.
- Eigenwertproblem, Theorem von Cayley-Hamilton, Invarianten; Tensoren höherer Stufe Tensoranalysis
- Tensoralgebra und -analyse in schiefwinkligen und krummlinigen Koordinatensystemen
- Differentiation von Tensorfunktionen

Anwendungen der Tensorrechnung in der Festigkeitslehre

- Kinematik infinitesimaler und finiter Deformationen
- Transporttheorem, Bilanzgleichungen, Spannungstensor
- Materialgleichungen für Festkörper und Fluide
- Formulierung von Anfangs-Randwertproblemen
- Materialgleichungen für Festkörper und Fluide

Literaturhinweise
Vorlesungsskript
Schade, H: Strömungslehre, de Gruyter 2013
8.131 Teilleistung: Mathematische Methoden der Kontinuumsmechanik [T-MACH-110375]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2161254 | Mathematische Methoden der Kontinuumsmechanik | 2 SWS | Vorlesung (V) / 🧩 | Böhlke |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung
Klausurzulassung: bestandene Studienleistung Übung zu Mathematische Methoden der Kontinuumsmechanik (T-MACH-110376)

Voraussetzungen

bestandene Studienleistung Übungen zu Mathematische Methoden der Kontinuumsmechanik (T-MACH-110376)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Kontinuumsmechanik
2161254, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)

Präsenz/Online gemischt

Inhalt
Tensoralgebra

- Vektoren; Basistransformation; dyadisches Produkt; Tensoren 2. Stufe
- Eigenschaften von Tensoren 2. Stufe: Symmetrie, Antimetrie, Orthogonalität etc.
- Eigenwertproblem, Theorem von Cayley-Hamilton, Invarianten; Tensoren höherer Stufe Tensoranalysis
- Tensoralgebra und -analysis in schiefwinkligen und krummlinigen Koordinatensystemen
- Differentiation von Tensorfunktionen

Anwendungen der Tensorrechnung in der Festigkeitslehre

- Kinematik infinitesimaler und finiter Deformationen
- Transporttheorem, Bilanzgleichungen, Spannungstensor
- Materialgleichungen für Festkörper und Fluide
- Formulierung von Anfangs-Randwertproblemen
- Materialgleichungen für Festkörper und Fluide

Literaturhinweise

Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
8.132 Teilleistung: Mathematische Methoden der Schwingungslehre [T-MACH-105294]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
- M-MACH-102746 - Wahlpflichtmodul
- M-MACH-102820 - Schwerpunkt: Mechatronik
- M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik
- M-MACH-104442 - Schwerpunkt: Schwingungslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2162241</th>
<th>Mathematische Methoden der Schwingungslehre</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Seemann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162242</td>
<td>Übungen zu Mathematische Methoden der Schwingungslehre</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Seemann, Burgert</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105294</th>
<th>Mathematische Methoden der Schwingungslehre</th>
<th>Prüfung (PR)</th>
<th>Seemann</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 180 min.

Voraussetzungen

keine

Empfehlungen

Technische Mechanik III/IV

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Schwingungslehre

2162241, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Lineare, zeitinvariante, gewöhnliche Einzeldifferentialgleichungen: homogene Lösung, harmonische periodische und nichtperiodische Anregung, Faltungintegral, Fourier- und Laplacetransformation, Einführung in die Distributionstheorie; Systeme gewöhnlicher Differentialgleichungen: Matrixschreibweise, Eigenwerttheorie, Fundamentalmatrix; fremderregte Systeme mittels Modalentwicklung und Transitionsmatrix; Einführung in die Stabilitätstheorie; Partielle Differentialgleichungen: Produktsatz, Eigenwertproblem, gemischter Ritz-Ansatz; Variationsrechnung mit Prinzip von Hamilton; Störungsrechnung

Literaturhinweise

Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik

Übungen zu Mathematische Methoden der Schwingungslehre

2162242, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Sieben vorgerechnete Übungen mit Beispielen zum Vorlesungsstoff

Literaturhinweise

Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
8.133 Teilleistung: Mathematische Methoden der Strömungslehre [T-MACH-105295]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 6
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Code</th>
<th>Titel</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2154432</td>
<td>Mathematische Methoden der Strömungslehre</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Frohnapfel, Gatti</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2154433</td>
<td>Übungen zu Mathematische Methoden der Strömungslehre</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Frohnapfel, Gatti, Magagnato</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2154540</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
<td>Magagnato</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Code</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105295</td>
<td>Mathematische Methoden der Strömungslehre</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung - 3 Stunden

Voraussetzungen
keine

Empfehlungen
Allgemeines Grundwissen im Bereich Strömungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Strömungslehre
2154432, SS 2020, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden können die zugrunde liegenden Navier-Stokes-Gleichungen für spezielle Strömungsprobleme vereinfachen. Sie können mathematische Methoden in der Strömungsmechanik zielgerichtet und effizient anwenden, um die resultierenden Erhaltungsgleichungen, wenn möglich, analytisch zu lösen oder sie einer einfacheren numerischen Lösung zugänglich zu machen. Sie können die Grenzen der Anwendbarkeit der getroffenen Modellan nahmen erläutern.

In der Vorlesung wird eine Auswahl der folgenden Themen behandelt:

- Schleichende Strömungen (Stokes Strömungen)
- Schmierfilmtheorie
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitätstheorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)

Organisatorisches
Ab SS2020 findet zu der deutschen Vorlesung zusätzlich eine englische Vorlesung statt.
Dozent Franco Magagnato
Literaturhinweise

Inhalt
In der Übung wird die Auswahl der Vorlesungsthemen vertieft:

- Krummlinige Koordinaten und Tensorrechnung
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitätstheorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)

Organisatorisches
Die Übungen zu Mathematische Methoden der Strömungslehre findet gemeinsam mit der englischen Übung statt.

Literaturhinweise

Literaturhinweise

Inhalt
Die Studierenden können die zugrunde liegenden Navier-Stokes-Gleichungen für spezielle Strömungsprobleme vereinfachen. Sie können mathematische Methoden in der Strömungsmechanik zielgerichtet und effizient anwenden, um die resultierenden Erhaltungsgleichungen, wenn möglich, analytisch zu lösen oder sie einer einfacheren numerischen Lösung zugänglich zu machen. Sie können die Grenzen der Anwendbarkeit der getroffenen Modellannahmen erläutern.

In der Vorlesung wird eine Auswahl der folgenden Themen behandelt:

- Schleichende Strömungen (Stokes Strömungen)
- Schmierfilmtheorie
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitätstheorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)
8.134 Teilleistung: Mechanik und Festigkeitslehre von Kunststoffen [T-MACH-105333]

Verantwortung: Hon.-Prof. Dr. Bernd-Steffen von Bernstorff

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Teilleistungsart

<table>
<thead>
<tr>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Module</th>
<th>Erstellter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2173580</td>
<td>Mechanik und Festigkeitslehre von Kunststoffen</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📘 Präsenz/Online gemischt, 📘 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

keine

Empfehlungen

Grundkenntnisse Werkstoffkunde (z. B. durch die Vorlesung Werkstoffkunde I und II)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mechanik und Festigkeitslehre von Kunststoffen

2173580, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Molekülstruktur und Morphologie von Kunststoffen, Temperatur- und Zeitabhängigkeit der mechanischen Eigenschaften, Viskoelastisches Materialverhalten, Zeit/Temperatur-Superpositionsprinzip, Fließen, Crazing und Bruch, Versagenskriterien, Stoßartige und schwingende Beanspruchung, Korrespondenzprinzip, Zäh/Spröd-Übergang, Grundlagen der Faserverstärkung und Mehrschichtbildung

Qualifikationsziele:

Die Studierenden sind in der Lage,

- die Berechnung von Kunststoffbauteilen für komplexe Belastungszustände nachzuvollziehen,
- die Einflussgrößen Zeit und Temperatur auf die Festigkeit von Polymerwerkstoffen zu beurteilen,
- die Bauteilfestigkeit auf die Molekülstruktur und die Morphologie der Werkstoffe zurückzuführen und daraus Versagenskriterien für homogene Polymerwerkstoffe und für Verbundwerkstoffe abzuleiten.

Literaturhinweise

Literaturliste, spezielle Unterlagen und ein Teilmanuskript werden in der Vorlesung ausgegeben.
8 TEILLEISTUNGEN

8.135 Teilleistung: Mechanik von Mikrosystemen [T-MACH-105334]

Verantwortung: Dr. Christian Greiner
Dr. Patric Gruber

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Biomechanik

Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2181710</th>
<th>Mechanik von Mikrosystemen</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🖥</th>
<th>Gruber, Greiner</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105334</th>
<th>Mechanik von Mikrosystemen</th>
<th>Prüfung (PR)</th>
<th>Gruber</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Mechanik von Mikrosystemen

2181710, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Einleitung: Anwendungen und Herstellungsverfahren
2. Physikalische Skalierungseffekte
3. Grundlagen: Spannung und Dehnung, (anisotropes) Hookesches Gesetz
4. Grundlagen: Mechanik von Balken und Membranen
5. Dünnenschichtmechanik: Ursachen und Auswirkung mechanischer Spannungen
6. Charakterisierung der mechanischen Eigenschaften dünner Schichten und kleiner Strukturen: Eigenspannungen und Spannungsgradienten; mechanische Kenngrößen wie z.B. Fließgrenze, E-Modul oder Bruchzähigkeit; Haftfestigkeit der Schicht auf dem Substrat; Stiction
7. Elektro-mechanische Wandlung: piezo-resistiv, piezo-elektisch, elektrostatisch,...
8. Aktorik: inverter Piezoeffekt, Formgedächtnis, elektromagnetisch

Die Studierenden können Größen- und Skalierungseffekte in Mikro- und Nanosystemen benennen und verstehen. Sie verstehen die Bedeutung von mechanischen Phänomenen in kleinen Dimensionen und können darauf aufbauend beurteilen, wie diese die Werkstofftechnik sowie die Wirkprinzipien und das Design von Mikrosensoren und Mikroaktoren mitbestimmen.

Präsenzzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten

Literaturhinweise

Folien,
2. L.B. Freund and S. Suresh: "Thin Film Materials"
8.136 Teilleistung: Mechatronik-Praktikum [T-MACH-105370]

Verantwortung: Prof. Dr. Veit Hagenmeyer
Prof. Dr.-Ing. Wolfgang Seemann
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102817 - Schwerpunkt: Informationstechnik
M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart
Studienleistung
Leistungspunkte 4

Turnus Jedes Wintersemester
Version 4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2105014</th>
<th>Mechatronik-Praktikum</th>
<th>3 SWS</th>
<th>Praktikum (P) / 🗣</th>
<th>Seemann, Stiller, Böhland, Chen, Yüzbasioglu</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schein über erfolgreiche Teilnahme

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Im Studierendenportal anzeigen

V Mechatronik-Praktikum
2105014, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Teil I
Steuerung, Programmierung und Simulation von Robotersystemen
CAN-Bus Kommunikation
Bildverarbeitung
Dynamische Simulation von Robotern in ADAMS

Teil II
Bearbeitung einer komplexen Aufgabenstellung in Gruppenarbeit

Lernziele:

Der Student ist in der Lage ...

- die einzelnen Teile eines Manipulators in Teamarbeit zu einem funktionierenden Gesamtsystem zu integrieren.

Nachweis: Schein über erfolgreiche Teilnahme

Voraussetzung: keine
Arbeitsaufwand:
Präsenzzeit: 33,5 h
Selbststudium: 88,5 h
Organisatorisches
Das Praktikum ist anmeldepflichtig.
Die Anmeldungsmodalitäten-/fristen werden auf www.iai.kit.edu bekannt gegeben.
Siehe Internet / Aushang Raum 033 EG, im Gebäude 40.32.

Literaturhinweise
Materialien zum Mechatronik-Praktikum
Manuals for the laboratory course on Mechatronics
8.137 Teilleistung: Mensch-Maschine-Interaktion [T-INFO-101266]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2020 24659 Mensch-Maschine-Interaktion 2 SWS Vorlesung (V) Exler, Beigl

Prüfungsveranstaltungen
SS 2020 7500048 Mensch-Maschine-Interaktion Prüfung (PR) Beigl
WS 20/21 7500076 Mensch-Maschine-Interaktion Prüfung (PR) Beigl

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-INFO-106257 - Übungsschein Mensch-Maschine-Interaktion muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mensch-Maschine-Interaktion
24659, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt

Beschreibung:

Lehrinhalt:
Themenbereiche sind:
1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse),
2. Designgrundlagen und Designmethoden, Ein- und Ausgabeinheiten für Computer, eingebettete Systeme und mobile Geräte,
3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
4. Technische Grundlagen und Beispiele für den Entwurf von Benutzerschnittstellen (Textdialoge und Formulare, Menüsysteme, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
6. Evaluierung von Systemen zur Mensch-Maschine-Interaktion (Werkzeuge, Bewertungsmethoden, Leistungsmessung, Checklisten),
7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Aktivität
Arbeitsaufwand
Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min
Präsenzzeit: Besuch der Übung
8 x 90 min
12 h 00 min
Vor- / Nachbereitung der Vorlesung
15 x 150 min
37 h 30 min
Vor- / Nachbereitung der Übung
8 x 360 min
48 h 00 min
Foliensatz/Skriptum 2x durchgehen
2 x 12 h
24 h 00 min
Prüfung vorbereiten
36 h 00 min
SUMME
180 h 00 min
Arbeitsaufwand für die Lerneinheit "Mensch-Maschine-Interaktion"

Lernziele:
Die Vorlesung führt in Grundlagen der Mensch-Maschine Kommunikation ein. Nach Abschluss der Veranstaltung können die Studierenden

• grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
• grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
• grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
• existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Organisatorisches
Die Vorlesung ist ein Stammmodul und wird entweder mündlich oder schriftlich abgeprüft (Klausur). Dabei wird zu Semesterbeginn entschieden, welche der beiden Formen der Prüfung angeboten wird.
Literaturhinweise
8.138 Teilleistung: Messtechnik II [T-MACH-105335]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-102817 - Schwerpunkt: Informationstechnik
M-MACH-102820 - Schwerpunkt: Mechatronik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2138326</th>
<th>Messtechnik II</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Stiller, Wirth, Bieder</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105335</th>
<th>Messtechnik II</th>
<th>Prüfung (PR)</th>
<th>Stiller</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung
60 Minuten
Selbstverfasste Formelsammlung über 2 DIN A4 erlaubt

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Messtechnik II
2138326, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt

Lerninhalten:

1. Signalverstärker
2. Digitale Schaltungstechnik
3. Stochastische Modellierung in der Messtechnik
4. Stochastische Schätzverfahren
5. Kalman-Filter
6. Umfeldwahrnehmung

Lernziele:

Die wachsende Leistungsfähigkeit der Messtechnik eröffnet Ingenieuren laufend innovative Anwendungsfelder. Dabei kommt digitalen Messverfahren eine wachsende Bedeutung zu, da sie gerade für komplexe Aufgaben eine hohe Leistungsfähigkeit bieten. Stochastische Modelle des Messaufbaus und der Messgrößenentstehung sind Grundlage für aussagekräftige Informationsverarbeitung und bilden zunehmend ein unverzichtbares Handwerkszeug des Ingenieurs, nicht nur in der Messtechnik.

Nachweis:

Schriftlich
Dauer: 60 Minuten
Eigene Formelsammlung

Arbeitsaufwand:

120 Stunden

Literaturhinweise

Skript und Foliensatz zur Veranstaltung werden als kostenlose pdf-Dateien bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
Ideealerweise haben Sie zuvor ‘Grundlagen der Mess- und Regelungstechnik’ gehört oder verfügen aus einer Vorlesung anderer Fakultäten über grundlegende Kenntnisse der Mess- und Regelungstechnik und der Systemtheorie.
8.139 Teilleistung: Microenergy Technologies [T-MACH-105557]

Verantwortung: Prof. Dr. Manfred Kohl

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2142897 | Microenergy Technologies | 2 SWS | Vorlesung (V) | Kohl |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105557 | Microenergy Technologies | Prüfung (PR) | Kohl |

Erfolgskontrolle(n)

mündliche Prüfung (30 Min.)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Microenergy Technologies

2142897, SS 2020, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Vorlesung (V)

Inhalt

- Physikalische Grundlagen der Prinzipien zur Energiewandlung
- Layout und Designoptimierung
- Technologien
- ausgewählte Bauelemente
- Anwendungen

Die Vorlesung beinhaltet unter anderem folgende Themen:

- Mikro-Energy Harvesting von Schwingungen
- Thermisches Mikro-Energy Harvesting
- Mikrotechnische Anwendungen von Energy Harvesting
- Wärmepumpen in der Mikrotechnik
- Mikrokühlen

Literaturhinweise

- Folienskript "Micro Energy Technologies"
8.140 Teilleistung: Mikrostruktursimulation [T-MACH-105303]

Verantwortung: Dr. Anastasia August
Prof. Dr. Britta Nestler

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von:
M-MACH-102746 - Wahlpflichtmodul
M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2183702 | Mikrostruktursimulation | 3 SWS | Vorlesung / Übung (VÜ) / Online | August, Nestler |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105303 | Mikrostruktursimulation | Prüfung (PR) | August, Nestler, Weygand |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung 30 min

Voraussetzungen

keine

Empfehlungen

Werkstoffkunde
mathematische Grundlagen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mikrostruktursimulation

2183702, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Online
Inhalt

- Einige Grundlagen der Thermodynamik
- Statistische Interpretation der Entropie
- Gibbs'sche Freie Energie und Phasendiagramme
- Freie Energie-Funktional für reine Stoffe
- Phasen-Feld-Gleichung
- Gibbs-Thomson-Gleichung
- Treibende Kräfte
- Großkannonische Potential Funktional und die Evolutionsgleichungen
- Zum Vergleich: Das Freie Energie-Funktional mit treibenden Kräften

Der/die Studierende

- kann die thermodynamischen und statistischen Grundlagen für flüssig-fest und fest-fest Phasenumwandlungsprozess erläutern und zur Konstruktion von Phasendiagrammen anwenden
- kann die spezifischen Eigenschaften dendritischer, eutektischer und peritektischer Mikrostrukturen beschreiben
- kann Mechanismen zur Bewegung von Korn- und Phasengrenzen durch äußere Felder erläutern
- kann mit Hilfe der Phasenfeldmodellierung die Entwicklung von Mikrostrukturen simulieren und verwendet dabei Modellierungsansätze aus der aktuellen Forschung
- verfügt durch Rechnerübungen über Erfahrungen in der Implementierung von Phasenfeldmodellen und kann eigene Simulationen von Mikrostrukturnausbildungen durchführen

Kenntnisse in Werkstoffkunde und mathematische Grundlagen empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden

Es werden regelmäßig Übungszettel ausgeteilt. Die individuellen Lösungswege werden korrigiert zurückgegeben.

mündliche Prüfung ca. 30 min

Literaturhinweise

4. Gaskell, D.R., Introduction to the thermodynamics of materials
5. Übungsblätter
8.141 Teilleistung: Modellierung und Simulation [T-MACH-100300]

Verantwortung: Prof. Dr. Peter Gumbsch
Prof. Dr. Britta Nestler

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modellierung und Simulation</td>
<td>5</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2020 2183703 Modellierung und Simulation 2+1 SWS Vorlesung / Übung (VÜ) Nestler

WS 20/21 2183703 Modellierung und Simulation 3 SWS Vorlesung / Übung (VÜ) Nestler

Prüfungsveranstaltungen

SS 2020 76-T-MACH-100300 Modellierung und Simulation Prüfung (PR) Nestler

Erfolgskontrolle(n)
Schriftliche Prüfung, 90 min

Voraussetzungen
Keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Modellierung und Simulation
2183703, SS 2020, 2+1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Die Vorlesung gibt eine Einführung in Modellierungs- und Simulationsmethoden. Inhalte sind:
- Splines, Interpolationverfahren, Taylorreihe
- Finite Differenzenverfahren
- Dynamische Systeme
- Raum-Zeit-Probleme, Numerik partieller Differenzialgleichungen
- Stoff- und Wärmediffusion
- Werkstoffsimulation
- parallele und adaptive Algorithmen
- Hochleistungsrechnen
- Computerpraktikum

Der/die Studierende
• kann grundlegende Algorithmen und numerische Methoden erläutern, die u.a. bei der Werkstoffsimulation eingesetzt werden
• kann numerische Lösungsverfahren für dynamische Systeme und partielle Differentialgleichungen beschreiben und anwenden
• kann Methoden zur numerischen Lösung von Wärme- und Stoffdiffusionsprozessen anwenden, die ebenfalls für die Simulation von Mikrostrukturausbildungen genutzt werden können
• verfügt durch das begleitende Rechnerpraktikum über Erfahrungen mit der Implementierung / Programmierung der erarbeiteten numerischen Verfahren.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden
Es werden regelmäßig Übungszettel ausgeteilt. Außerdem wird die Veranstaltung ergänzt durch praktische Übungen am Computer.

schriftliche Klausur: 90 Minuten

Organisatorisches
Die Termine für die Übungen werden in der Vorlesung und im Ilias bekannt gegeben.

Literaturhinweise
Organisatorisches
Termine für Rechnerübungen werden in der Vorlesung bekannt gegeben!

Literaturhinweise

8.142 Teilleistung: Moderne Regelungskonzepte I [T-MACH-105539]

Verantwortung: apl. Prof. Dr. Lutz Groell
PD Dr.-Ing. Jörg Matthes

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4

Turnus Jedes Sommersemester

Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Typ</th>
<th>Prüfung</th>
<th>Dozent</th>
<th>Dozent2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2105024</td>
<td>Moderne Regelungskonzepte I</td>
<td>2</td>
<td>V</td>
<td>Vorlesung (V)</td>
<td>Matthes, Groell</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2106020</td>
<td>Übung zu Moderne Regelungskonzepte I</td>
<td>2</td>
<td>Ü</td>
<td>Übung (Ü)</td>
<td>Matthes</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
<th>SWS</th>
<th>Typ</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105539</td>
<td>Moderne Regelungskonzepte I</td>
<td></td>
<td>PR</td>
<td>Prüfung (PR)</td>
<td>Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 1 h)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Moderne Regelungskonzepte I
2105024, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lehrinhalt:
1. Einführung (Abgrenzung, Übersichten)
2. Ruhelagen (Bedeutung, Berechnung, mathematische Tools)
3. Linearisierung (Kleine-Delta-Methode, Hartman-Grobman-Theorem, Entwurfsverfahren für lineare Festwertregler)
4. PID-Regler (praktische Realisierung, Design-Tipps, Anti-Windup-Techniken, Smith-Prädiktor, Umschalttechniken, Komplexbeispiel)
5. Experimentelle Modellbildung (Identifikation für zeitkontinuierliche/zeitdiskrete Modelle)
6. Konzept der Zwei-Freiheitsgrade-Regelungen (Struktur, Softsignaldesign)
7. Zustandsraum (Transformationen, Normalformen, Systemeigenschaften im Zustandsraum, geometrische Sichtweise)
8. Folgeregelungen mit Zustandsrückführung und Integratorenweiterung
9. Beobachter (LQG-Entwurf, Störgrößenbeobachter, reduzierte Beobachter)

Voraussetzungen:
Der Besuch folgender Vorlesung wird empfohlen::
• Grundlagen der Mess- und Regelungstechnik

Alternativ: Vergleichbare Lehrveranstaltungen der Fakultät für Elektrotechnik und Informationstechnik

Literaturhinweise
• Rugh, W.: Linear System Theory. Prentice Hall, 1996

Übung zu Moderne Regelungskonzepte I
2106020, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Lehrinhalt:

1. Einführung (Abgrenzung, Übersichten)
2. Ruhelagen (Bedeutung, Berechnung, mathematische Tools)
3. Linearisierung (Kleine-Delta-Methode, Hartman-Grobman-Theorem, Entwurfsverfahren für lineare Festwertregler)
4. PID-Regler (praktische Realisierung, Design-Tipps, Anti-Windup-Techniken, Smith-Prädiktor, Umschalttechniken, Komplexbeispiel)
5. Experimentelle Modellbildung (Identifikation für zeitkontinuierliche/zeitdiskrete Modelle)
6. Konzept der Zwei-Freihheitsgrade-Regelungen (Struktur, Sollsignal-Entwurf)
7. Zustandsraum (Transformationen, Normalformen, Systemeigenschaften im Zustandsraum, geometrische Sichtweise)
8. Folgeregelungen mit Zustandsrückführung und Integratorerweiterung
9. Beobachter (LQG-Entwurf, Störgroßenbeobachter, reduzierte Beobachter)

Voraussetzungen:
Der Besuch folgender Vorlesung wird empfohlen:

- Grundlagen der Mess- und Regelungstechnik

Alternativ: Vergleichbare Lehrveranstaltungen der Fakultät für Elektrotechnik und Informationstechnik

Organisatorisches
Die Übung findet erstmalig im SS21 statt.

Literaturhinweise

8.143 Teilleistung: Motorenlabor [T-MACH-105337]

Verantwortung: Dr.-Ing. Uwe Wagner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134001</td>
<td>Motorenlabor</td>
<td>2</td>
<td>Praktikum (P)</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Veranstaltung</th>
<th>Prüfungsart</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105337</td>
<td>Motorenlabor</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105337</td>
<td>Motorenlabor</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Ausarbeitung über jeden Versuch, Schein über erfolgreiche Teilnahme, keine Benotung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Motorenlabor
2134001, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Anmeldung im Sekretariat des IFKM.

Organisatorisches
voraussichtlich 1. vorlesungsfreie Woche im SS 2018. Wird auf der Homepage und in den Vorlesungen bekannt gegeben

Literaturhinweise
Versuchsbeschreibungen
8.144 Teilleistung: Motorenmesstechnik [T-MACH-105169]

Verantwortung: Dr.-Ing. Sören Bernhardt
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors
M-MACH-102817 - Schwerpunkt: Informationstechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2020 2134137 Motorenmesstechnik 2 SWS Vorlesung (V) Bernhardt

Prüfungsveranstaltungen
SS 2020 76-T-MACH-105169 Motorenmesstechnik Prüfung (PR) Koch
WS 20/21 76-T-MACH-105169 Motorenmesstechnik Prüfung (PR) Koch

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 0,5 Stunden, keine Hilfsmittel

Voraussetzungen
keine

Empfehlungen
T-MACH-102194 Verbrennungsmotoren I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Motorenmesstechnik 2134137, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise
1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C
8.145 Teilleistung: Neue Aktoren und Sensoren [T-MACH-102152]

Verantwortung:
- Prof. Dr. Manfred Kohl
- Dr. Martin Sommer

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von:
- M-MACH-102812 - Schwerpunkt: Antriebssysteme
- M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 4

Turnus
- Jedes Wintersemester

Version
- 3

Lehrveranstaltungen

| WS 20/21 | 2141865 | Neue Aktoren und Sensoren | 2 SWS | Vorlesung (V) | Kohl, Sommer |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Neue Aktoren und Sensoren
2141865, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Online

Literaturhinweise
- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
8.146 Teilleistung: Numerische Strömungsmechanik [T-MACH-105338]

Verantwortung: Dr.-Ing. Franco Magagnato
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2153441</th>
<th>Numerische Strömungsmechanik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🖥</th>
<th>Magagnato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76T-Mach-105338</td>
<td>Numerische Strömungsmechanik</td>
<td>Prüfung (PR)</td>
<td>Frohnapfel, Magagnato</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🖼 Präsenz/Online gemischt, 🗿 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung - 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Numerische Strömungsmechanik 2153441, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Grundgleichungen der Numerischen Strömungsmechanik
2. Diskretisierung
3. Rand- und Anfangsbedingungen
4. Turbulenzmodellierung
5. Netzgenerierung
6. Lösungsverfahren
7. LES, DNS und Lattice Gas Methode
8. Pre- und Postprocessing
9. Beispiele zur numerischen Simulation in der Praxis

Organisatorisches
Ergänzend zur Vorlesung wird das Praktikum LV Nr. 2157444 von FSM, siehe www.fsm.kit.edu angeboten.

Literaturhinweise
8.147 Teilleistung: Patente und Patentstrategien in innovativen Unternehmen [T-MACH-105442]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dipl.-Ing. Frank Zacharias

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement
M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen

SS 2020 2147160 Patente und Patentstrategien in innovativen Unternehmen 2 SWS Block-Vorlesung (BV) Zacharias

WS 20/21 2147161 Patente und Patentstrategien in innovativen Unternehmen 2 SWS Vorlesung (V) / Zacharias

Prüfungsveranstaltungen

SS 2020 76-T-MACH-105442 Patente und Patentstrategien in innovativen Unternehmen Prüfung (PR) Zacharias, Albers

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, benotet, Dauer: 20 Minuten

Voraussetzungen
keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Patente und Patentstrategien in innovativen Unternehmen
2147160, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)
Inhalt
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage oder ILIAS
Anwesenheit Vorlesung (5 VL): 24 Std
Persönliche Vor- und Nachbereitung Vorlesung: 5 Std
Vorbereitung Klausur: 91 Std

Vorlesungsumdruck:

1. Einführung in gewerbliche Schutzrechte (Intellectual Property)
2. Beruf des Patentanwalts
3. Anmelden und Erwirken von gewerblichen Schutzrechten
4. Patentliteratur als Wissens-/Informationsquelle
5. Arbeitnehmererfindungsrecht
6. Aktive, projektorientierte Schutzrechtsbetreuung
7. Strategisches Patentieren
8. Bedeutung gewerblicher Schutzrechte
9. Internationale Herausforderungen und Trends
10. Professionelle Verhandlungsführung und Konfliktbeilegungsverfahren
11. Aspekte des Gesellschaftsrechts

Vorlesung (V)
2147161, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage oder ILIAS
Anwesenheit Vorlesung (5 VL): 24 Std
Persönliche Vor- und Nachbereitung Vorlesung: 5 Std
Vorbereitung Klausur: 91 Std

Vorlesungsumdruck:

1. Einführung in gewerbliche Schutzrechte (Intellectual Property)
2. Beruf des Patentanwalts
3. Anmelden und Erwirken von gewerblichen Schutzrechten
4. Patentliteratur als Wissens-/Informationsquelle
5. Arbeitnehmererfindungsrecht
6. Aktive, projektorientierte Schutzrechtsbetreuung
7. Strategisches Patentieren
8. Bedeutung gewerblicher Schutzrechte
9. Internationale Herausforderungen und Trends
10. Professionelle Verhandlungsführung und Konfliktbeilegungsverfahren
11. Aspekte des Gesellschaftsrechts
Organisatorisches
Weitere Informationen siehe IPEK-Homepage.
https://www.ipek.kit.edu/2976_2858.php

- Die Prüfung dauert (für Schwerpunktfächer und Wahlfächer) ca. 30+5 Minuten und es werden 3 Personen parallel geprüft. Wird das Fach nicht als Schwerpunktfach oder Wahlfach geprüft, kann die Dauer der Prüfung davon abweichen.
- Wenn das Fach nicht als Schwerpunktfach oder Wahlfach geprüft werden soll, schreiben Sie zusätzlich eine Mail an manuel.petersen@kit.edu, mit dem Inhalt: Name, Matr. Nr., Modus in dem das Fach anerkannt werden soll und ob der Modus (von der Prüfungskommission) genehmigt wurde.
- Die Anerkennung als Wahlfach Wirtschaft/Recht und Wahlpflichtfach ist nicht möglich.
- Eine Anmeldung zur Prüfung muss zusätzlich auch über das Studienbüro erfolgen! Kümmern Sie sich rechtzeitig darum und beachten Sie auch die geänderten Öffnungszeiten des Studienbüros in der Vorlesungsfreien Zeit.
- Die finale Einteilung erfolgt durch das Vorlesungsteam und wird vor der Prüfung bekannt gegeben. Diese finale Einteilung ist dann auch im Kurs zur Vorlesung einsehbar. Ihre Wunschtermine werden dabei so gut wie möglich berücksichtigt, jedoch sind Änderungen hierbei vorbehalten.
8.148 Teilleistung: Photovoltaik [T-ETIT-101939]

Verantwortung: Prof. Dr.-Ing. Michael Powalla
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2313737</th>
<th>Photovoltaik</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Powalla, Lemmer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>7313737</th>
<th>Photovoltaik</th>
<th>Prüfung (PR)</th>
<th>Powalla, Lemmer</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Modulnote ist die Note dieser schriftlichen Prüfung.

Voraussetzungen
"M-ETIT-100524 - Solar Energy" darf nicht begonnen sein.
8.149 Teilleistung: Physik für Ingenieure [T-MACH-100530]

Verantwortung: Prof. Dr. Martin Dienwiebel
Prof. Dr. Peter Gumbsch
apl. Prof. Dr. Alexander Nesterov-Müller
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2142890</th>
<th>Physik für Ingenieure</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Weygand, Dienwiebel, Nesterov-Müller, Gumbsch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-100530</th>
<th>Physik für Ingenieure</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gumbsch, Weygand, Nesterov-Müller, Dienwiebel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung 90 min

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Physik für Ingenieure

2142890, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
8 TEILLEISTUNGEN

Inhalt
1) Grundlagen der Festkörperphysik
 - Teilchen Welle Dualismus
 - Schrödingergleichung
 - Teilchen /Tunneln
 - Wasserstoffatom
2) elektrische Leitfähigkeit von Festkörpern
 - Festkörper: periodische Potenziale
 - Pauliprinzip
 - Bandstrukturen
 - Metalle, Halbleitern und Isolatoren
 - pn-Übergang
3) Optik
 - Quantenmechanische Prinzipien des Lasers
 - Lineare Optik
 - Nicht-lineare Optik
 - Quanten-Optik

Übungen (2142891, 2 SWS) dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für ausführlichen Rückfragen der Studierenden und zur Überprüfung der vermittelten Lehrinhalte in Tests.

Der/die Studierende
 - besitzt das grundlegende Verständnis der physikalischen Grundlagen, um den Zusammenhang zwischen den quantenmechanische Prinzipien und elektrischen und optischen Eigenschaften von Materialien zu erklären.
 - kann die relevanten Experimente zur Veranschaulichung quantenmechanischer Prinzipien beschreiben

Präsenzzeit: 22,5 Stunden (Vorlesung) und 22,5 Stunden (Übung 2142891)
Selbststudium: 97,5 Stunden und 49 Stunden (Übung 2142891)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO).

Die Note ist die Note der schriftlichen Multiple Choice Prüfung.

Literaturhinweise
 - Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
 - Harris, Moderne Physik, Pearson Verlag, 2013
8.150 Teilleistung: Physikalische Grundlagen der Lasertechnik [T-MACH-102102]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehre

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 2181612</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-102102</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (30 min)
keine Hilfsmittel

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105164 - Lasereinsatz im Automobilbau darf nicht begonnen worden sein.

Empfehlungen
grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Physikalische Grundlagen der Lasertechnik
2181612, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Online
Inhalt
Aufbauend auf der Darstellung der physikalischen Grundlagen zur Entstehung und zu den Eigenschaften von Laserlicht werden die wichtigsten, heute industriell eingesetzten Laserstrahlquellen behandelt. Der Schwerpunkt der Vorlesung liegt auf der Darstellung des Lasereinsatzes in der Werkstofftechnik. Weitere Anwendungsgebiete, wie die Mess- und Medizintechnik, werden vorgestellt. Im Rahmen der Vorlesung wird eine Besichtigung des Laserlabors am Institut für Angewandte Materialen (IAM) angeboten.

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Festkörper-, Halbleiter-, Gas-, Flüssigkeits- u.a. Laser)
- Strahleneigenschaften, -führung, -formung
- Laser in der Materialbearbeitung
- Laser in der Messtechnik
- Laser in der Medizintechnik
- Lasersicherheit

Die Vorlesung wird durch eine Übung ergänzt.

Der/die Studierende

- kann die Grundlagen der Lichtentstehung, die Voraussetzungen für die Lichtverstärkung sowie den prinzipiellen Aufbau und die Funktionsweise unterschiedlicher Laserstrahlquellen erläutern.
- kann für die wichtigsten lasergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und auf dieser Basis anwendungsspezifisch geeignete Laserstrahlquellen auswählen.
- kann die Möglichkeiten zum Einsatz von Lasern in der Mess- und Medizintechnik erläutern.
- kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung beschreiben und daraus die erforderlichen Maßnahmen für die Gestaltung von Laseranlagen ableiten.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Präsenzzeit: 33,5 Stunden
Selbststudium: 116,5 Stunden

Die Erfolgskontrolle erfolgt in Form einer ca. 30 min. mündlichen Prüfung (nach §4(2), 2 SPO) zu einem vereinbarten Termin. Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Im Rahmen des Bachelor- und Master-Studiums darf nur eine der beiden Vorlesungen "Lasereinsatz im Automobilbau" (2182642) oder "Physikalische Grundlagen der Lasertechnik" (2181612) gewählt werden.

Organisatorisches
Termine für die Übung werden in der Vorlesung bekannt gegeben!

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.151 Teilleistung: Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung [T-MACH-105537]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2189906</td>
<td>Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung</td>
<td>1</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Dagan, Metz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfungsnummer</th>
<th>Prüfungsart</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105537</td>
<td>Prüfung (PR)</td>
<td>Dagan</td>
</tr>
<tr>
<td>WS 2021</td>
<td>76-T-MACH-105537</td>
<td>Prüfung (PR)</td>
<td>Dagan, Stieglitz</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlich, 30 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung
2189906, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

- Relevante physikalische Begriffe der Kernphysik
- Nachzerfallswärme-Borst-Wheeler Gleichung
- Die Unfälle von Three Mile Island und Fukushima
- Kernspaltung, Kettenreaktion und Reaktor- Kontrollsysteme
- Grundbegriffe der Wirkungsquerschnitte
- Prinzipien der Reaktorkinetik.
- Reaktorvergiftung
- Die Unfälle von Idaho und Tschernobyl
- Grundlagen des Kernbrennstoffkreislauf
- Wiederaufarbeitung ausgedienter Brennelemente und Verglasung von Spaltproduktlösungen
- Zwischenlagerung nuklearer Abfälle in Oberflächenlagern
- Multibarrierenkonzept für Endlagerung in tiefen geologischen Formationen
- Die Situation in den Endlagern Asse II, Konrad und Morsleben

Die Studierenden

- gewinnen das physikalische Verständnis für die bekanntesten nuklearen Unfälle
- können vereinfachte Rechnungen ausführen, um die Ereignisse nachzuvollziehen
- können Sicherheits-relevante Eigenschaften von schwach-, mittel- und hochradioaktiven Abfällen definieren
- sind in der Lage, die Vorgehensweise und Auswirkungen der Wiederaufarbeitung, Zwischenlagerung und Endlagerung nuklearer Abfälle zu bewerten

Präsenzzzeit: 14 Stunden
Selbststudium: 46 Stunden
mündlich, ca. 20 min

Literaturhinweise

AEA öffentliche Dokumentation zu den nuklearen Ereignissen
K. Wirtz: Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton: Nuclear reactor Analysis, J. Wiley $ Sons , Inc. 1975 (in Englisch)
8.152 Teilleistung: PLM für mechatronische Produktentwicklung [T-MACH-102181]

Verantwortung: Prof. Dr.-Ing. Martin Eigner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>SWS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>PLM für mechatronische Produktentwicklung</td>
<td>Vorlesung (V)</td>
<td>Eigner</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>PLM für mechatronische Produktentwicklung</td>
<td>Vorlesung (V)</td>
<td>Eigner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Vorlesung (V)

PLM für mechatronische Produktentwicklung
2122376, SS 2020, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Studierende können

- Produkt Daten Management und Produkt Lifecycle Management gegenüberstellen
- die Komponenten und Kernfunktionen einer PLM-Lösung beschreiben
- Trends aus Forschung und Praxis im Umfeld von PLM für mechatronische Produktentwicklung erläutern.

Organisatorisches
Blockveranstaltung

Literaturhinweise
Vorlesungsskript

V Vorlesung (V)

PLM für mechatronische Produktentwicklung
2122376, WS 20/21, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Studierende können

- Produkt Daten Management und Produkt Lifecycle Management gegenüberstellen
- die Komponenten und Kernfunktionen einer PLM-Lösung beschreiben
- Trends aus Forschung und Praxis im Umfeld von PLM für mechatronische Produktentwicklung erläutern.

Organisatorisches
Blockveranstaltung, Zeit und Ort siehe Homepage oder ILIAS zur Lehrveranstaltung.

Literaturhinweise
Vorlesungsskript
8.153 Teilleistung: PLM-CAD Workshop [T-MACH-102153]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>4 SWS</td>
<td>Projekt (PRO)</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>4 SWS</td>
<td>Projekt (PRO) / 🧩</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet)

Voraussetzungen
Keine

Anmerkungen
Anwesenheitspflicht und Teilnehmerzahl begrenzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V **PLM-CAD Workshop**
2121357, SS 2020, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Ziel des Workshops ist es, den Nutzen der kollaborativen Produktentwicklung mit Methoden des PLM aufzuzeigen und deren Mehrwert gegenüber einer klassischen CAD- Entwicklung hervorzuheben.
Studierende lernen im Team exemplarisch die Entwicklung und Fertigung eines Prototyps mit Hilfe moderner PLM und CAx-Systeme.

Organisatorisches
Siehe Homepage zur Lehrveranstaltung

Literaturhinweise
Workshop-Unterlagen / workshop materials

V **PLM-CAD Workshop**
2121357, WS 20/21, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Ziel des Workshops ist es, den Nutzen der kollaborativen Produktentwicklung mit Methoden des PLM aufzuzeigen und deren Mehrwert gegenüber einer klassischen CAD- Entwicklung hervorzuheben.
Studierende lernen im Team exemplarisch die Entwicklung und Fertigung eines Prototyps mit Hilfe moderner PLM und CAx-Systeme.

Organisatorisches
Termine voraussichtlich Vormittags 09:45 - 13:00. Weitere Informationen siehe ILIAS.
Literaturhinweise
Workshop-Unterlagen / workshop materials
8.154 Teilleistung: Polymerengineering I [T-MACH-102137]

Verantwortung: Prof. Dr.-Ing. Peter Elsner
Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2173590</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Online</td>
<td>Elsner, Liebig</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102137</td>
<td>Prüfung (PR)</td>
<td>Elsner, Liebig, Hüther</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-102137</td>
<td>Prüfung (PR)</td>
<td>Elsner, Liebig, Hüther</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Polymerengineering I
2173590, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Wirtschaftliche Bedeutung der Kunststoffe
2. Einführung in mechanische, chemische und elektrische Eigenschaften
3. Überblick der Verarbeitungsverfahren
4. Werkstoffkunde der Kunststoffe
5. Synthese

Qualifikationsziele:

Der/ die Studierende

- kann Polymere beschreiben und klassifizieren sowie die grundsätzlichen Synthese und Herstellungsverfahren erklären
- kann praxisgerechte Anwendungen für die verschiedenen Verfahren und Materialien finden
- sind fähig die Verarbeitung und Anwendungen von Polymeren und Verbundwerkstoffen auf Basis werkstoffkundlicher Grundlagen zu reflektieren
- kann die speziellen mechanischen, chemischen und elektrischen Eigenschaften von Polymeren bechreiben und mit den Bindungsverhältnissen korrelieren
- kann die Einsatzgebiete und Einsatzgrenzen polymerer Werkstoffe definieren

Organisatorisches
Veranstaltung findet synchron statt, Do 15.45Uhr-17.15Uhr, weitere Informationen siehe ILIAS

Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
8.155 Teilleistung: Praktikum für rechnergestützte Strömungsmesstechnik [T-MACH-106707]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrveranstaltungsart</th>
<th>Prüfung (PR) / Praktikum (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2171488</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>3</td>
<td>Praktikum (P)</td>
<td>Bauer, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2171488</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>3</td>
<td>Praktikum (P) / 🗣</td>
<td>Bauer, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Prüfung (PR) / Praktikum (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-106707</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-106707</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum für rechnergestützte Strömungsmesstechnik
2171488, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
siehe Internet-Seite des Instituts;
Anmeldung erfolgt über Anmeldeformular auf der Internet-Seite des Instituts.
Anmeldung während der Vorlesungszeit über die Webseite.

Lehrinhalt:

Aufbau von Meßsystemen
• Meßaufnehmer und Sensoren
• Analog/Digital-Wandlung
• Programmentwurf und Programmierstil in LabView
• Datenverarbeitung
• Bus-Systeme
• Aufbau eines rechnergestützten Messsystems für Druck, Temperatur und abgeleitete Größen
• Frequenzanalyse

Arbeitsaufwand:
Präsenzzeit: 52,5
Selbststudium: 67,5

Lernziele:
Die Studenten können:
• die wesentlichen Grundlagen der rechnergestützen Messwerterfassung theoretisch beschreiben und praktisch anwenden
• nach jedem Lernabschnitt den vorgestellten Stoff anhand eines Beispiels am PC in die Praxis umsetzen

Nachweis:
Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten

Hilfsmittel: keine

Organisatorisches
Ort und Zeit siehe Institutshomepage

Literaturhinweise
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011
Inhalt
siehe Internet-Seite des Instituts;
Anmeldung erfolgt über Anmeldeformular auf der Internet-Seite des Instituts.

Lerninhalten:

Aufbau von Meßsystemen

• Meßaufnehmer und Sensoren
• Analog/Digital-Wandlung
• Programmentwurf und Programmierstil in LabView
• Datenverarbeitung
• Bus-Systeme
• Aufbau eines rechnergestützten Messsystems für Druck, Temperatur und abgeleitete Größen
• Frequenzanalyse

Präsenzzeit: 52,5
Selbststudium: 67,5

Nachweis:
Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten

Hilfsmittel: keine

Organisatorisches
Ort und Zeit siehe Institutshomepage

Literaturhinweise
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011
8.156 Teilleistung: Praktikum Lasermaterialbearbeitung [T-MACH-102154]

Verantwortung: Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Turnus: Jedes Semester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienleistung</th>
<th>Praktikum "Lasermaterialbearbeitung"</th>
<th>SWS</th>
<th>Praktikum (P)/🧩</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2183640</td>
<td>Praktikum "Lasermaterialbearbeitung"</td>
<td>3</td>
<td>Praktikum (P)</td>
<td>Schneider, Pfleging</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2183640</td>
<td>Praktikum "Lasermaterialbearbeitung"</td>
<td>3</td>
<td>Praktikum (P)/🧩</td>
<td>Schneider, Pfleging</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102154 Praktikum Lasermaterialbearbeitung</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines übergreifenden Abschlusskolloquiums incl. einer 20 minütigen Präsentation.

Voraussetzungen

Keine

Empfehlungen

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum "Lasermaterialbearbeitung"

2183640, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Das Praktikum umfasst acht halbtägige praktische Versuche, die in Gruppen durchgeführt werden. Es werden folgende Themengebiete der Lasermaterialbearbeitung von Metallen, Polymeren und Keramiken behandelt:

- Sicherheit beim Umgang mit Laserstrahlung
- Härten und Umschmelzen
- Schmelz- und Brennschneiden
- Oberflächenmodifizierung durch Dispergieren und Legieren
- Fügen durch Schweßen bzw. Löten
- Materialabtrag (Oberflächenstrukturierung, Beschriften und Bohren)
- Messtechnik

Im Rahmen des Praktikums werden verschiedene Laserstrahlquellen wie CO2-, Nd:YAG-, Excimer- und Hochleistungs-Dioden-Laser vorgestellt und genutzt.

Der/die Studierende

- kann für die wichtigsten lasergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und geeignete Parameter auswählen.
- kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung erläutern.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Die Teilnahme an der Lehrveranstaltung Physikalische Grundlagen der Lasertechnik (2181612) oder Lasereinsatz im Automobilbau (2182642) wird dringend empfohlen.

Präsenzzeit: 34 Stunden
Selbststudium: 86 Stunden

Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines übergreifenden Abschlusskolloquiums inkl. einer 20 minütigen Präsentation.

Organisatorisches
Das Praktikum kann nicht wie geplant stattfinden!
Falls es die Umstände erlauben, wird eine Alternativlösung angeboten. Die Praktikanten*innen werden direkt informiert!
Anmeldung per Email an johannes.schneider@kit.edu
Das Praktikum findet mittwochs in 2 Gruppen von 8:45 bis 11:45 Uhr bzw. von 14:15 bis 17:15 Uhr am IAM-CMS (CS) bzw. IAM-AWP (CN) statt!
Termine: 06.05.2020, 13.05.2020, 20.05.2020, 27.05.2020, 10.06.2020, 17.06.2020, 24.06.2020, 01.07.2020, 08.07.2020

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
Inhalt
Das Praktikum umfasst acht halbtägige praktische Versuche, die in Gruppen durchgeführt werden. Es werden folgende Themengebiete der Lasermaterialbearbeitung von Metallen, Polymeren und Keramiken behandelt:

• Sicherheit beim Umgang mit Laserstrahlung
• Härten und Umschmelzen
• Schmelz- und Brennschneiden
• Oberflächenmodifizierung durch Dispergieren und Legieren
• Fügen durch Schweßen bzw. Löten
• Materialabtrag (Oberflächenstrukturierung, Beschriften und Bohren)
• Messtechnik

Im Rahmen des Praktikums werden verschiedene Laserstrahlquellen wie CO2-, Nd:YAG-, Excimer- und Hochleistungs-Dioden-Laser vorgestellt und genutzt.

Der/die Studierende

• kann für die wichtigsten lasergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und geeignete Parameter auswählen.
• kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung erläutern.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Die Teilnahme an der Lehrveranstaltung Physikalische Grundlagen der Lasertechnik (2181612) oder Lasereinsatz im Automobilbau (2182642) wird dringend empfohlen.

Präsenzzzeit: 34 Stunden
Selbststudium: 86 Stunden

Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines übergreifenden Abschlusskolloquiums incl. einer 20 minütigen Präsentation.

Organisatorisches
Maximal 12 Teilnehmer/innen!
Aktuell sind bereit alle Plätze vergeben! Registrierung für Nachrückliste möglich per Email an johannes.schneider@kit.edu
Praktikum findet in 2 Gruppen semesterbegleitend mittwochs (8:00-11:00 bzw. 14:00-17:00) auf dem Campus Nord am IAM-AWP (Geb. 681) und auf dem Campus Süd am IAM-CMS (Geb. 30.48) statt!

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.157 Teilleistung: Praktikum Produktionsintegrierte Messtechnik [T-MACH-108878]

Verantwortung: Dr.-Ing. Benjamin Häfner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Leiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2150550</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>3</td>
<td>P</td>
<td>Häfner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Lehrveranstaltung</th>
<th>Art</th>
<th>Leiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>PR</td>
<td>Häfner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet): Kolloquium von 15 min zu Beginn und Bewertung der Mitarbeit während der Versuche und Mündliche Prüfung (15 min)

Voraussetzungen
keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Produktionsintegrierte Messtechnik
2150550, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Es werden die folgenden Themen behandelt:

- Klassifikation und Anwendungsfälle relevanter Mess- und Prüfverfahren in der Produktion
- Machine Vision mittels optischer Sensoren
- Informationsfusion am Beispiel optischer Sensoren
- Robotergestützte optische Messungen
- Zerstörungsfreie Prüftechnik am Beispiel von akustischer Sensorik
- Koordinatenmesstechnik
- Industrielle Computertomographie
- Messunsicherheitsermittlung
- Analyse von Messdaten im Produktionsumfeld mittels Data-Mining

Lernziele:
Die Studierenden …

- können verschiedene für die Produktion relevante Mess- und Prüfverfahren nennen, beschreiben und voneinander abgrenzen.
- können grundlegende Messungen mit den behandelten in-line- und Labormessverfahren selbständig durchführen.
- können die Ergebnisse der Messungen analysieren und deren Messunsicherheit bewerten.
- sind in der Lage auf Basis der Messungen im Produktionsumfeld abzuleiten, ob die gemessenen Bauteile die spezifizierten Qualitätsanforderungen erfüllen.
- sind in der Lage, die vorgestellten Mess- und Prüfverfahren für neue Problemstellungen anzuwenden.

Arbeitsaufwand:
Präsenzzzeit: 31,5 Stunden
Selbststudium: 88,5 Stunden

Organisatorisches

The course always takes place on Tuesdays in the afternoon. For organizational reasons the number of participants for the course is limited. Hence an selection process will take place. Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

Literaturhinweise

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/). Additional reference to literature will be provided, as well.
8.158 Teilleistung: Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik [T-MACH-105341]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr.-Ing. Christoph Stiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-MACH-102817 - Schwerpunkt: Informationstechnik</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>No.</th>
<th>Kurzbeschreibung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2137306</td>
<td>Praktikum "Rechnergestützte Verfahren der Mess- und Regelungstechnik"</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Legende:
- Online,
- Präsenz/Online gemischt,
- Präsenz,
- Abgesagt

Erfolgskontrolle(n)

Kolloquien

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum "Rechnergestützte Verfahren der Mess- und Regelungstechnik"

<table>
<thead>
<tr>
<th>Kurzbeschreibung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2137306, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Stiller, Wang</td>
</tr>
</tbody>
</table>

Inhalt

8 Parallelkurse

Lerninhalte:

1. Digitaltechnik
2. Digitales Speicheroszilloskop und digitaler Spektrum-Analysator
3. Ultraschall-Computertomographie
4. Beleuchtung und Bildgewinnung
5. Digitale Bildverarbeitung
6. Bildauswertung
7. Reglersynthese und Simulation
8. Roboter: Sensorik
9. Roboter: Akktorik und Bahnplanung

Das Praktikum umfasst 9 Versuche.

Voraussetzungen: Empfehlungen:

Vorlesung 'Grundlagen der Mess- und Regelungstechnik'

Arbeitsaufwand: 120 Stunden

Lernziele:

Nachweis:

Kolloquien
Literaturhinweise
Übungsanleitungen sind auf der Institutshomepage erhältlich.
Instructions to the experiments are available on the institute's website
8.159 Teilleistung: Präsentation [T-MACH-109189]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-104494 - Bachelorarbeit

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Bachelorarbeit wurde begonnen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-109188 - Bachelorarbeit muss begonnen worden sein.

Anmerkungen
Für die Präsentation der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 90 Stunden gerechnet.
8.160 Teilleistung: Product Lifecycle Management [T-MACH-105147]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement
M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

| Vorlesung (V) | 2121350 | Product Lifecycle Management | 2 SWS | Vorlesung (V) / 🖥 | Ovtcharova |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105147 | Product Lifecycle Management | Prüfung (PR) | Ovtcharova |

Legende: 🖥 Online, 🔄 Präsenz/Online gemischt, 🖇 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung 90 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Product Lifecycle Management
2121350, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Die Lehrveranstaltung beinhaltet:

• Grundlagen für das Produktdatenmanagement und den Datenaustausch
• IT-Systemlösungen für Product Lifecycle Management (PLM)
• Wirtschaftlichkeitsbetrachtung und Einführungsproblematik
• Anschauungsszenario für PLM am Beispiel des Institutseigenen I4.0Lab

Nach erfolgreichem Besuch der Lehrveranstaltung können Studierende:

• die Herausforderungen beim Datenmanagement und -austausch benennen und Lösungskonzepte hierfür beschreiben.
• das Managementkonzept PLM und seine Ziele verdeutlichen und den wirtschaftlichen Nutzen herausstellen.
• die Prozesse die zur Unterstützung des Produktlebenszyklus benötigt werden erläutern und die wichtigsten betrieblichen Softwaresysteme (PDM, ERP, ...) und deren Funktionen beschreiben.

Literaturhinweise
Vorlesungsfolien.

8.161 Teilleistung: Produkt- und Produktionskonzepte für moderne Automobile [T-MACH-110318]

Verantwortung: Dr. Stefan Kienzle
Dr. Dieter Steegmüller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Lehrveranstaltung</th>
<th>Modulnummer</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>2149670</td>
<td>2</td>
<td>Vorlesung (V) / 🗤</td>
<td>Steegmüller, Kienzle</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (20 min)

Voraussetzungen

Die Teilleistung T-MACH-105166 – Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produkt- und Produktionskonzepte für moderne Automobile

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Lehrveranstaltung</th>
<th>Modulnummer</th>
<th>SWS</th>
<th>Sprache</th>
<th>Vorlesung (V)</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>2149670</td>
<td>2</td>
<td>Deutsch</td>
<td>🗤</td>
<td>🗤</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen
Inhalt

Die Vorlesung beleuchtet die praktischen Herausforderungen des modernen Automobilbaus. Die Dozenten nehmen als ehemalige Führungsfiguren der Automobilindustrie Bezug auf aktuelle Perspektiven der automobilen Produktentwicklung und Produktion.

Die behandelten Themen sind im Einzelnen:

- Rahmenbedingungen der Fahrzeug- und Karosserieentwicklung
- Integration neuer Antriebstechnologien
- Funktionale Anforderungen (Crashsicherheit etc.), auch an Elektrofahrzeuge
- Entwicklungsprozess an der Schnittstelle Produkt & Produktion, CAE/ Simulation
- Energiespeicher und Versorgungsinfrastruktur
- Aluminium- und Stahleichtbau
- FVK und Hybride Bauteile
- Batterie- Brennstoffzellen- und Elektromotorenproduktion
- Fügetechnik im modernen Karosseriebau
- Moderne Fabriken und Fertigungsverfahren, Industrie 4.0

Lernziele:

Die Studierenden …

- können die vorgestellten Rahmenbedingungen der Fahrzeugentwicklung nennen und können die Einflüsse dieser auf das Produkt Anhand von Beispielen verdeutlichen.
- können die unterschiedlichen Leichtbauansätze benennen und mögliche Anwendungsfelder aufzeigen.
- sind fähig, die verschiedenen Fertigungsverfahren für die Herstellung von Fahrzeugkomponenten anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, mittels der kennengelernten Verfahren und deren Eigenschaften eine Prozessauswahl durchzuführen.

Arbeitsaufwand:

Präsenzzzeit: 25 Stunden
Selbststudium: 95 Stunden

Organisatorisches

Termine werden über Ilias bekannt gegeben.

Bei der Vorlesung handelt es sich um eine Blockveranstaltung. Eine Anmeldung über Ilias ist erforderlich.

The lecture is a block course. An application in Ilias is mandatory.

Literaturhinweise

Medien:

Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.162 Teilleistung: Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung [T-MACH-102155]

Verantwortung: Prof. Dr.-Ing. Sama Mbang
Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102583 - Schwerpunkt: Informationsmanagement
 M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2123364</th>
<th>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Mbang</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-102155</th>
<th>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung</th>
<th>Prüfung (PR)</th>
<th>Mbang</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2123364, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

- Überblick zur Fahrzeugentstehung (Prozess- und Arbeitsabläufe, IT-Systeme)
- Integrierte Produktmodelle in der Fahrzeugindustrie (Produkt, Prozess und Ressource Sichten)
- Neue CAx-Modellierungsmethoden (intelligente Feature-Technologie, Template- & Skelett-Methodik, funktionale Modellierung)
- Automatisierung und wissensbasierte Mechanismen in der Konstruktion und Produktionsplanung
- Anforderungs- und Prozessgerechte Fahrzeugentstehung (3D-Master Prinzip, Toleranzmodelle)
- Concurrent Engineering, verteiltes Arbeiten
- Erweiterte Konzepte: Prinzip der digitalen und virtuellen Fabrik (Einsatz virtueller Techniken und Methoden in der Fahrzeugentstehung)

Organisatorisches
Blockveranstaltung

Literaturhinweise
Vorlesungsfolien
Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Janna Hofmann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2150605</th>
<th>Produktionstechnik für die Elektromobilität</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Fleischer, Hofmann</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung 20 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Produktionstechnik für die Elektromobilität
2150605, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden sollen im Rahmen der Lehrveranstaltung Produktionstechnik für die Elektromobilität durch den Einsatz forschungsorientierter Lehre befähigt werden Produktionsprozesse zur Herstellung der Komponenten eines elektrischen Antriebsstrangs (Elektromotor, Batteriezellen, Brennstoffzellen) auslegen, auswählen und neu entwickeln zu können.

Lernziele:
Die Studierenden können:

- den Aufbau und die Funktion einer Brennstoffzelle, eines Elektromotors und einer Batterie beschreiben.
- die Prozessketten für die Herstellung der Komponenten Brennstoffzelle, Batterie und Elektromotor wiedergeben.
- methodische Werkzeuge anwenden um Problemstellungen entlang der Prozesskette zu lösen.
- die Herausforderungen bei der Herstellung von Elektromotoren für die Elektromobilität ableiten.
- anhand der Prozesskette von Li-Ionen Batteriezellen die Einflussfaktoren der einzelnen Prozessschritte aufeinander beschreiben.
- die notwendigen Prozessparameter um den Einflussfaktoren der Prozessschritte bei der Li-Ionen Batteriezellproduktion entgegenzuwirken aufzählen bzw. beschreiben.
- methodische Werkzeuge anwenden um Problemstellungen entlang der Prozesskette zur Herstellung von Li-Ionen Batteriezellen zu lösen.
- die Herausforderung bei der Montage und Demontage von Batteriemoendulen ableiten.
- die Herausforderungen bei der Herstellung von Brennstoffzellen für die Anwendung in der Mobilität ableiten.

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 78 Stunden

Organisatorisches
Die Lehrveranstaltung wird erstmalig im Sommersemester 2021 angeboten.

Literaturhinweise
Skript zur Veranstaltung wird über Ilias bereitgestellt (https://ilias.studium.kit.edu/).
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.164 Teilleistung: Project Workshop: Automotive Engineering [T-MACH-102156]

Verantwortung: Dr.-Ing. Michael Frey
Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
6

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulsemester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltungsname</th>
<th>Lehrveranstaltungsart</th>
<th>Fachbereich</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin, Gießler, Frey</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin, Gießler, Frey</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Modulsemester</th>
<th>Prüfungsnummer</th>
<th>Prüfungsveranstaltungsname</th>
<th>Prüfungspunkt</th>
<th>Fachbereich</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Project Workshop: Automotive Engineering

2115817, SS 2020, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V)

Inhalt

Im Rahmen des Workshops Automotive Engineering wird in einem Team von ca. 6 Personen eine von einem deutschen Industriepartner gestellte Aufgabe bearbeitet. Die Aufgabe stellt für den jeweiligen Partner ein geschäftssrelevantes Thema dar und soll nach dem Abschluss des Workshops im Unternehmen umgesetzt werden.

Das Team erarbeitet dazu eigenständig Lösungsansätze und entwickelt diese zu einer praktikablen Lösung weiter. Hierbei wird das Team sowohl von Mitarbeitern des Unternehmens als auch des Instituts begleitet.

Lernziele:

Die Studierenden kennen den Entwicklungsprozess und die Arbeitsweise in Industriunternehmen und können das im Studium erworbenen Wissen praktisch anwenden. Sie sind befähigt, komplexe Zusammenhänge analysieren und beurteilen zu können. Sie sind in der Lage, sich selbständig mit einer Aufgabe auseinanderzusetzen, unterschiedliche Entwicklungsmethoden anzuwenden und Lösungsansätze auszuarbeiten, um Produkte oder Verfahren praxisgerecht zu entwickeln.

Organisatorisches

Begrenzte Teilnehmerzahl mit Auswahlverfahren, die Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.

Raum und Termine: s. Aushang
Literaturhinweise

Skripte werden beim Start-up Meeting ausgegeben.

Project Workshop: Automotive Engineering
2115817, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Im Rahmen des Workshops Automotive Engineering wird in einem Team von ca. 6 Personen eine von einem deutschen Industriepartner gestellte Aufgabe bearbeitet. Die Aufgabe stellt für den jeweiligen Partner ein geschäftsrelevantes Thema dar und soll nach dem Abschluss des Workshops im Unternehmen umgesetzt werden.

Das Team erarbeitet dazu eigenständig Lösungsansätze und entwickelt diese zu einer praktikablen Lösung weiter. Hierbei wird das Team sowohl von Mitarbeitern des Unternehmens als auch des Instituts begleitet.

Lernziele:
Die Studierenden kennen den Entwicklungsprozess und die Arbeitsweise in Industrieunternehmen und können das im Studium erworben Wissen praktisch anwenden. Sie sind befähigt, komplexe Zusammenhänge analysieren und beurteilen zu können. Sie sind in der Lage, sich selbständig mit einer Aufgabe auseinanderzusetzen, unterschiedliche Entwicklungsmethoden anzuwenden und Lösungsansätze auszuarbeiten, um Produkte oder Verfahren praxisgerecht zu entwickeln.

Organisatorisches
Begrenzte Teilnehmerzahl mit Auswahlverfahren, in deutscher Sprache. Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Termin und Raum: siehe Institutshomepage.
Limited number of participants with selection procedure, in German language. Please send the application at the end of the previous semester
Date and room: see homepage of institute.

Literaturhinweise

Skripte werden beim Start-up Meeting ausgegeben.
The scripts will be supplied in the start-up meeting.
8.165 Teilleistung: Projektierung und Entwicklung ölhydraulischer Antriebssysteme [T-MACH-105441]

Verantwortung: Dr.-Ing. Isabelle Ays
Dr.-Ing. Gerhard Geerling

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2113072</th>
<th>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</th>
<th>2 SWS</th>
<th>Block (B) / 🗣</th>
<th>Geerling, Geiger</th>
</tr>
</thead>
</table>

Legende: 🕵 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n):
mündliche Prüfung (20 min)

Voraussetzungen:
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektierung und Entwicklung ölhydraulischer Antriebssysteme

2113072, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

In der am Institutsteil Mobile Arbeitsmaschinen (Mobima) angebotenen Blockveranstaltung werden die Grundlagen der Projektierung und der Entwicklung mobiler und stationärer hydrostatischer Systeme vermittelt. Der Dozent kommt aus einem marktführenden Unternehmen der fluidtechnischen Antriebs- und Steuerungstechnik und gibt vertiefte Einblicke in den Projektierungs- und Entwicklungsprozess hydrostatischer Systeme an Hand praktischer Beispiele. Die Inhalte der Vorlesung sind:

- Marketing, Planung, Projektierung
- Kreislaufarten Öl-Hydrostatik
- Wärmeaushalt, Hydrospeicher
- Filtration, Geräuschminderung
- Auslegungsübungen + Praxislabor

Kenntnisse in der Fluidtechnik

- Präsenzzeit: 19 Stunden
- Selbststudium: 90 Stunden

Organisatorisches

siehe Homepage

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
8.166 Teilleistung: Projektmanagement in globalen Produktentwicklungsstrukturen [T-MACH-105347]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Peter Gutzmer
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
- M-MACH-102583 - Schwerpunkt: Informationsmanagement
- M-MACH-102812 - Schwerpunkt: Antriebssysteme
- M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 2145182</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>2 SWS</td>
<td>Jedes Wintersemester</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- mündliche Prüfung (20 min)

Hilfsmittel: Keine

Voraussetzungen
- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektmanagement in globalen Produktentwicklungsstrukturen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Sprache</th>
<th>Ort</th>
<th>Vorlesung/Vorlesungsteilnehmer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145182, WS 20/21 2 SWS</td>
<td>Deutsch</td>
<td>Vorlesung (V) / Online Gutzmer</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt
- Termine und Ort siehe IPEK-Homepage/Aushang.

Organisatorisches
- Weitere Informationen siehe IPEK-Homepage.
- https://www.ipek.kit.edu/2976_2859.php

Literaturhinweise
- Vorlesungsumdruck
Teileistung: Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils [T-MACH-110960]

Verantwortung: Dr.-Ing. Frederik Zanger

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 4

Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 20/21 | 2149700 | Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils | 2 SWS | Praktikum (P) / 🗣 | Zanger, Lubkowitz |

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet):

- Meilensteinbasierte Vorstellung der Ergebnisse in Präsentationsform (10 min) und Abgabe der Präsentationsdatei mit Gewichtung 30%
- Mündliche Prüfung (15 min) mit Gewichtung 40%
- Projektarbeit mit Gewichtung 30%

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils
2149700, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierenportal anzeigen

Praktikum (P) Präsenz
Inhalt
Die Lehrveranstaltung „Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils“ verbindet die Grundlagen des metallischen pulverbettbasierten Laserschmelzens (engl. LPBF) mit einem Entwicklungsprojekt in Zusammenarbeit mit einem Industrieunternehmen.
Die Studierenden lernen dabei in der projektbegleitenden Lehrveranstaltung die Grundlagen zu folgenden Themen:

- Einflusses verschiedener Prozesststellgrößen auf die Bauteilqualität im LPBF-Prozess gefertigter Teile
- Vorbereitung und Simulation des LPBF-Prozesses
- Herstellung additiver metallischer Bauteile
- Prozessüberwachung und Qualitätssicherung in der additiven Fertigung
- Topologieoptimierung
- CAM für die subtraktive Nacharbeit

Die in der Lehrveranstaltung angeschnittenen Themen werden in verschiedenen Workshops zu den einzelnen Themen praktisch angewandt und in Eigenarbeit auf die Entwicklungsaufgabe übertragen. Abschließend werden die Ergebnisse der Ausarbeitungen additiv hergestellt und subtraktiv nachbearbeitet.

Lernziele:
Die Studierenden …

- können die Charakteristika und Einsatzgebiete der additiven Herstellverfahren pulverbettbasiertes Laserschmelzen (engl. LPBF) und Lithography-based Ceramic Manufacturing (LCM) beschreiben.
- sind in der Lage, das passende Fertigungsverfahren für eine technische Anwendung auszuwählen.
- können die Entstehung eines Produkts entlang der vollständigen additiven Prozesskette (CAD, Simulation, Baujob Vorbereitung, CAM) von der ersten Idee bis zur Fertigung beschreiben und umsetzen.
- sind in der Lage, zu erörtern, wie der Entwicklungsprozess für Bauteile aussieht, die für die additive Fertigung optimiert sind.
- sind in der Lage, eine Topologieoptimierung durchzuführen.
- sind in der Lage, den additiven Prozess zu simulieren, den prozessbedingten Verzug zu kompensieren und die ideale Ausrichtung auf der Bauplattform festzulegen.
- sind in der Lage, notwendige Stützstrukturen für den additiven Prozess zu erstellen und eine Baujobdatei abzuleiten.
- sind in der Lage, ein CAM-Modell für die subtraktive Nacharbeit additiver Bauteile zu erstellen.

Arbeitsaufwand:
Präsenzzzeit: 12 Stunden
Selbststudium: 108 Stunden

Organisatorisches
Termine werden über Ilias bekannt gegeben.
Bei der Vorlesung handelt es sich um eine Blockveranstaltung.
Eine Anmeldung über Ilias ist erforderlich.

Dates will be announced via Ilias.
The lecture is a block event.
A registration via Ilias is required.

Literaturhinweise
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
8.168 Teilleistung: Python Algorithmus für Fahrzeugtechnik [T-MACH-110796]

Verantwortung: Stephan Rhode
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
4
Turnus
Jedes Sommersemester
Version
1

Lehrveranstaltungen
SS 2020
2114862
Python Algorithmen für Fahrzeugtechnik
2 SWS
Vorlesung (V)
Rhode

Prüfungsveranstaltungen
SS 2020
76-T-MACH-110796
Python Algorithmus für Fahrzeugtechnik
Prüfung (PR)
Rhode

Erfolgskontrolle(n)

schriftliche Prüfung

Dauer: 90 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Python Algorithmen für Fahrzeugtechnik
2114862, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

Lehrinhalt:

- Einführung in Python und nützliche Tools und Bibliotheken zur Algorithmenerstellung, grafischen Darstellung, Optimierung, symbolischen Rechnen und Maschinellem Lernen
 - Anaconda, Pycharm, Jupyter
 - NumPy, Matplotlib, SymPy, Sciki-Learn
- Methoden und Tools zur Erstellung von Software
 - Versionsverwaltung GitHub, git
 - Testen von Software pytest, Pylint
 - Dokumentation Sphinx
 - Continuous Integration (CI) Travis CI
 - Workflow in Open Source und Inner Source, Kanban, Scrum
- Praktische Programmierprojekte zur:
 - Erkennung von Straßenschildern
 - Schätzung von Fahrzeugzuständen
 - Kalibrierung von Fahrzeugmodellen durch Mathematische Optimierung
 - Datenbasierte Modellierung des Antriebsstranges eines Elektrofahrzeuges

Lernziele:

Organisatorisches
Campus Ost, Geb. 70.04, Raum 219
Termine siehe Institutshomepage
Bitte bringen Sie Ihren Laptop mit zu den Vorlesungen!
Please bring your laptop to the lecture!

Literaturhinweise

- A Whirlwind Tour of Python, Jake VanderPlas, Publisher: O'Reilly Media, Inc. Release Date: August 2016, ISBN: 9781492037859
- Introduction to Machine Learning with Python, Sarah Guido, Andreas C. Müller, Publisher: O'Reilly Media, Inc., Release Date: October 2016, ISBN: 9781449369880
8.169 Teilleistung: Qualitätsmanagement [T-MACH-102107]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102821 - Schwerpunkt: Technische Logistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
WS 20/21 2149667 Qualitätsmanagement 2 SWS Vorlesung (V) / 🖥 Lanza

Prüfungsveranstaltungen
SS 2020 76-T-MACH-102107 Qualitätsmanagement Prüfung (PR) Lanza

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Qualitätsmanagement
2149667, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Inhaltliche Schwerpunkte der Vorlesung:
- Der Begriff "Qualität"
- Total Quality Management (TQM)
- Six-Sigma und universelle Methoden im DMAIC-Zyklus
- QM in frühen Produktphasen – Ermittlung und Umsetzung des Kundenbedarfs
- QM in der Produktentwicklung
- Fertigungsmesstechnik
- QM in der Produktion - Statistische Methoden
- Künstliche Intelligenz und Machine Learning im Qualitätsmanagement
- Betriebsverhalten und Zuverlässigkeit
- Rechtliche Aspekte im QM

Lernziele:
Die Studierenden …
- sind fähig, die vorgestellten Inhalte zu erläutern.
- sind in der Lage, die wesentlichen Qualitätssphilosophien zu erläutern und voneinander abzugrenzen.
- können die in der Vorlesung erlernten Werkzeuge und Methoden des QM auf neue Problemstellungen aus dem Kontext der Vorlesung anwenden.
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Vorlesungstermine montags 9:45 Uhr
Übung erfolgt während der Vorlesung

Literaturhinweise
Medien:

Media:
Lecture slides and notes will be provided in ILIAS (https://ilias.studium.kit.edu/).
8.170 Teilleistung: Rechnergestützte Dynamik [T-MACH-105349]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik
M-MACH-104442 - Schwerpunkt: Schwingungslehre

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2020 2162246 Rechnergestützte Dynamik 2 SWS Veranstaltung (Veranst.) Proppe
WS 20/21 2162246 Rechnergestützte Dynamik 2 SWS Vorlesung (V) / Proppe

Prüfungsveranstaltungen
SS 2020 76-T-MACH-105349 Rechnergestützte Dynamik Prüfung (PR) Proppe

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 30 'min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnergestützte Dynamik
2162246, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Grundlagen der Elastokinematik (Verschiebungsdifferentialgleichung, Prinzip von Hamilton und Hellinger-Reissner)
2. Schwingungsdifferentialgleichungen für Strukturelemente (Stäbe, Platten)
3. Numerische Lösung der Bewegungsgleichungen
4. Numerische Algorithmen
5. Stabilitätsanalysen

Organisatorisches
Fr., 15:45-17:15, Geb. 10.91, Grashof-Hörsaal

Literaturhinweise
1. Ein Vorlesungsskript wird bereitgestellt!

Rechnergestützte Dynamik
2162246, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Grundlagen der Elastokinematik (Verschiebungsdifferentialgleichung, Prinzip von Hamilton und Hellinger-Reissner)
2. Schwingungsdifferentialgleichungen für Strukturelemente (Stäbe, Platten)
3. Numerische Lösung der Bewegungsgleichungen
4. Numerische Algorithmen
5. Stabilitätsanalysen
Organisatorisches
Vorlesung wird ausschließlich online gehalten.

Literaturhinweise
1. Ein Vorlesungsskript wird bereitgestellt!
8.171 Teilleistung: Rechnergestützte Fahrzeugdynamik [T-MACH-105350]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2020 2162256 Rechnergestützte Fahrzeugdynamik 2 SWS Vorlesung (V) Proppe

Prüfungsveranstaltungen
SS 2020 76-T-MACH-105350 Rechnergestützte Fahrzeugdynamik Prüfung (PR) Proppe

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnergestützte Fahrzeugdynamik
2162256, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Einleitung
1.1. Modelle für Trag- und Führsysteme
1.2. Kontaktkräfte zwischen Rad und Fahrweg
1.3. Fahrwegsanregungen
1.4. Gesamtfahrzeugmodelle
1.5. Berechnungsmethoden
1.6. Beurteilungskriterien

Organisatorisches
Vorlesung wird im SS 2020 nicht angeboten.

Literaturhinweise
8.172 Teilleistung: Rechnergestützte Mehrkörperdynamik [T-MACH-105384]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, 30 min.

Voraussetzungen
keine

Empfehlungen
Kenntnisse in TM III/IV
8.173 Teilleistung: Reliability Engineering 1 [T-MACH-107447]

Verantwortung: Dr.-Ing. Alexei Konnov
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102817 - Schwerpunkt: Informationstechnik
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Reliability Engineering 1
2169550, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches

Die LV wird nicht mehr angeboten.

Literaturhinweise

Lesson script (link will be available)

Recommended books:
- Birolini, Alessandro: Reliability Engineering Theory and Practice
- Pham, Hoang: Handbook of reliability engineering
8.174 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik

Lehrveranstaltungen

| WS 20/21 | 2424152 | Robotik I - Einführung in die Robotik | 3/1 SWS | Vorlesung (V) / 🖥 | Asfour |

Prüfungsveranstaltungen

| SS 2020 | 7500218 | Robotik I - Einführung in die Robotik | Prüfung (PR) | Asfour |
| WS 20/21 | 7500106 | Robotik I - Einführung in die Robotik | Prüfung (PR) | Asfour |

Legende: 🖥 Online, 🗂 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Empfehlungen

Anmerkungen

Dieses Modul darf nicht geprüft werden, wenn im Bachelor-Studiengang Informatik SPO 2008 die Lehrveranstaltung Robotik I mit 3 LP im Rahmen des Moduls Grundlagen der Robotik geprüft wurde.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt

In der Übung finden die theoretischen Inhalte aus der Vorlesung an praxisnahen Beispielen aus der Robotik Anwendung. Die Studierenden vertiefen ihr Wissen über die Methoden, in dem Sie eigenständig Problemstellungen bearbeiten und deren Lösung in der Übung diskutieren. Insbesondere können die Studierenden praktische Programmiererfahrung mit in der Robotik üblichen Werkzeugen und Bibliotheken sammeln.

Empfehlungen:

Arbeitsaufwand:
Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
ca. 45 Std. Vorlesungsbesuch,
c.a. 15 Std. Übungsbesuch,
ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungslösungen
ca. 30 Std. Prüfungsvorbereitung

Lernziele:

Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Literaturhinweise
Weiterführende Literatur
Corke, Peter: Robotics, Vision and Control: Fundamental Algorithms in MATLAB
Fu, Gonzalez, Lee: Robotics - Control, Sensing, Vision, and Intelligence
8.175 Teilleistung: Schadenskunde [T-MACH-105724]

Verantwortung: Dr. Christian Greiner, Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau, KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

Semester	Vorlesungs-Nummer	Veranstaltungsart	Leistungspunkte	Prüfungsmethoden	Leser(in)
WS 20/21	2182572	Vorlesung (V)	2 SWS	Online	Greiner, Schneider

Prüfungsveranstaltungen

Semester	Prüfung-Nummer	Veranstaltungsart	Prüfungsmethode	Prüfer(in)
SS 2020	76-T-MACH-105724	Prüfung (PR)	Prüfungsnachweis	Schneider

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min

Voraussetzungen
keine

Empfehlungen
Grundkenntnisse Werkstoffkunde (z.B. durch die Vorlesung Werkstoffkunde I und II)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Schadenskunde

2182572, WS 20/21, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Ziel, Ablauf und Inhalt von Schadensanalysen
Untersuchungsmethoden
Schadensarten
Schäden durch mechanische Beanspruchung
Versagen durch Korrosion in Elektrolyten
Versagen durch thermische Beanspruchung
Versagen durch tribologische Beanspruchung
Grundzüge der Versagensbetrachtung

Grundkenntnisse Werkstoffkunde (z.B. durch die Vorlesung Werkstoffkunde I und II) empfohlen

Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
mündliche Prüfung, Dauer: ca. 30 Minuten
Hilfsmittel: keine

Literaturhinweise

8.176 Teilleistung: Schienenfahrzeugtechnik [T-MACH-105353]

Verantwortung: Prof. Dr.-Ing. Peter Gratzfeld

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von:
- M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte: 4

Turnus: Jedes Semester

Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Prüfungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2115996</td>
<td>Schienenfahrzeugtechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105353</td>
<td>Schienenfahrzeugtechnik</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105353</td>
<td>Schienenfahrzeugtechnik</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105353</td>
<td>Schienenfahrzeugtechnik</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- Prüfung: mündlich
- Dauer: ca. 20 Minuten
- Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schienenfahrzeugtechnik

2115996, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

V Vorlesung (V)

Organisatorisches

Die Vorlesung "Schienenfahrzeugtechnik" im SS 2020 findet bis auf weiteres als asynchrone Online-Veranstaltung statt.

Literaturhinweise

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).

Schienenfahrzeugtechnik

2115996, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

V Vorlesung (V)
Inhalt

1. Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystemtechnik
2. Wagenkasten: Funktionen, Anforderungen, Bauprinzipien, Bauweisen, Energieverzehrelemente, Schnittstellen
3. Fahrwerke: Kräfte am Rad, Achsanordnungen, Laufwerke
4. Antrieb: Fahrzeuge am Fahrdraht, Fahrzeuge ohne Fahrdraht, Zweikraftfahrzeuge
5. Bremsen: Aufgaben, Grundlagen, Wirkprinzipien, Blending, Bremssteuerung
6. Fahrzeugleitungstechnik: Definitionen, Netzwerkstrukturen, Bussysteme, Komponenten, Beispiele

Organisatorisches
Die Vorlesung "Schienenfahrzeugtechnik" im WS 20/21 findet als asynchrone Online-Veranstaltung statt.

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
8.177 Teilleistung: Schweißtechnik [T-MACH-105170]

Verantwortung: Dr. Majid Farajian
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2173571</th>
<th>Schweißtechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗷️</th>
<th>Farajian</th>
</tr>
</thead>
</table>

Legende: 🖥️ Online, 🗷️ Präsenz/Online gemischt, 🗷️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 20 Minuten

Voraussetzungen

keine

Empfehlungen

Grundlagen der Werkstoffkunde (Eisen und NE-Legierungen), Werkstoffe, Verfahren und Fertigung, Konstruktive Gestaltung der Bauteile.

Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

- **Schweißtechnik**
 2173571, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
 Vorlesung (V)
 Präsenz/Online gemischt
Inhalt
Definition, Anwendung und Abgrenzung: Schweißen, Schweißverfahren, alternative Fügeverfahren.
Geschichte der Schweißtechnik
Energiequellen der Schweißverfahren
Übersicht: Schmelzschweiß- und Pressschweißverfahren.
Nahtvorbereitung / Nahtformen
Schweißpositionen
Schweißbarkeit
Gasschmelzschweißen, Thermisches Trennen
Lichtbogenhandschweißen
Unterpulverschweißen
Metallschutzgasschweißen
Rührreibschweißen/Laserstrahlschweißen
Elektronenstrahlschweißen
Sonstige Schmelz- und Pressschweißverfahren
Statische und zyklische Festigkeit von Schweißverbindungen
Maßnahmen zur Steigerung der Lebensdauer von Schweißverbindungen

Qualifikationsziele:
Die Studierenden können die wichtigsten Schweißverfahren und deren Einsatz/Anwendung in Industrie und Handwerk nennen, beschreiben und miteinander vergleichen.
Sie kennen, verstehen und beherrschen wesentliche Probleme bei Anwendung der verschiedenen Schweißtechnologien in Bezug auf Konstruktion, Werkstoffe und Fertigung.
Sie verstehen die Einordnung und Bedeutung der Schweißtechnik im Rahmen der Fügetechnik und können Vorteile/Nachteile und Alternativen nennen, analysieren und beurteilen.
Die Studierenden bekommen auch einen Einblick in die Schweißnahtqualität und deren Einfluss auf die Performance und Verhalten von Schweißverbindungen unter statischer und zyklischer Beanspruchung.
Wie die Lebensdauer von Schweißverbindungen erhöht werden kann, ist auch ein Bestandteil dieser Lehrveranstaltung.

Organisatorisches
Blockveranstaltung im Februar. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail (majid.farajian@kit.edu) bis 30.11.2020 erforderlich. Voraussichtlich wird die Vorlesung online stattfinden.
Ganztägige Vorlesungstermine:
04.02.2021
05.02.2021
11.02.2021
12.02.2021

Literaturhinweise
Für ergänzende, vertiefende Studien gibt das
Handbuch der Schweißtechnik von J. Ruge, Springer Verlag Berlin, mit seinen vier Bänden
Band I: Werkstoffe
Band II: Verfahren und Fertigung
Band III: Konstruktive Gestaltung der Bauteile
Band IV: Berechnung der Verbindungen
einen umfassenden Überblick. Der Stoff der Vorlesung Schweißtechnik findet sich in den Bänden I und II. Einen kompakten Einblick in die Lichtbogenschweißverfahren bietet das Bändchen
Nies: Lichtbogenschweißtechnik, Bibliothek der Technik Band 57, Verlag moderne Industrie AG und Co., Landsberg / Lech
Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.
8.178 Teilleistung: Schwingfestigkeit metallischer Werkstoffe [T-MACH-105354]

Verantwortung: Dr.-Ing. Stefan Guth
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Programm</th>
<th>Lehrveranstaltungsform</th>
<th>Prüfungsleistung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Vorlesung (V)</td>
<td>Prüfung (PR)</td>
<td>Guth</td>
</tr>
<tr>
<td>2173585</td>
<td>Schwingfestigkeit metallischer Werkstoffe</td>
<td>Prüfung (PR)</td>
<td>Lang, Guth</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Programm</th>
<th>Lehrveranstaltungsform</th>
<th>Prüfungsleistung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Prüfung (PR)</td>
<td>Prüfung (PR)</td>
<td>Guth</td>
</tr>
<tr>
<td>76-T-MACH-105354</td>
<td>Schwingfestigkeit metallischer Werkstoffe</td>
<td>Prüfung (PR)</td>
<td>Lang, Guth</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 Minuten

Voraussetzungen
keine

Empfehlungen
Grundkenntnisse in Werkstoffkunde sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schwingfestigkeit metallischer Werkstoffe

2173585, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Einleitung: einige "interessante" Schadenfälle
- Zyklisches Spannungs-Dehnungs-Verhalten
- Rissbildung
- Rissausbreitung
- Lebensdauer bei zyklischer Beanspruchung
- Kerbermüdung
- Eigenspannungen
- Betriebsfestigkeit

Qualifikationsziele:

Literaturhinweise
Ein Manuskript, das auch aktuelle Literaturhinweise enthält, wird in der Vorlesung verteilt.
8.179 Teilleistung: Schwingungstechnisches Praktikum [T-MACH-105373]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
- M-MACH-102820 - Schwerpunkt: Mechatronik
- M-MACH-104442 - Schwerpunkt: Schwingungslehre

Teilleistungsart Studienleistung

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Sommersemester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2162208</th>
<th>Schwingungstechnisches Praktikum</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Fidlin, Keller</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105373</th>
<th>Schwingungstechnisches Praktikum</th>
<th>Prüfung (PR)</th>
<th>Fidlin</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Kolloquium zu jedem Versuch, 10 von 10 Kolloquien müssen bestanden sein

Voraussetzungen
Kann nicht mit Experimentelle Dynamik (T-MACH-105514) kombiniert werden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105514 - Experimentelle Dynamik darf nicht begonnen worden sein.

Empfehlungen
Technische Schwingungslehre, Mathematische Methoden der Schwingungslehre, Stabilitätstheorie, Nichtlineare Schwingungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schwingungstechnisches Praktikum
2162208, SS 2020, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)

Inhalt
1. Erzwungene Schwingungen eines deterministisch angeregten Systems mit einem Freiheitsgrad
2. Erzwungene Schwingungen eines stochastisch angeregten Systems mit einem Freiheitsgrad
3. Grundlagen der digitalen Verarbeitung von Messdaten
4. Biegekritische Drehzahlen eines elastisch gelagerten Läufers
5. Experimentelle Modalanalyse
6. Instabilitätserscheinungen eines parametererregten Drehschwingers
7. Zwangsschwingungen eines Duffing'schen Drehschwingers
8. Reibungserregte Schwingungen
9. Ausbreitung von Biegewellen; Messung durch Laservibrometrie

Organisatorisches
siehe Aushang/Internet
8.180 Teilleistung: Seminar für Bahnsystemtechnik [T-MACH-108692]

Verantwortung: Prof. Dr.-Ing. Peter Gratzfeld
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik
Bestandteil von: M-MACH-102638 - Schwerpunkt: Bahnsystemtechnik

Teilleistungsart
Prüfungsleistung anderer Art
Leistungspunkte 3
Turnus Jedes Semester
Version 2

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrveranstaltungstyp</th>
<th>Lehrveranstaltungstermin</th>
<th>Veranstaltungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2115009</td>
<td>Seminar für Bahnsystemtechnik</td>
<td>1 SWS</td>
<td>Seminar (S)</td>
<td>Gratfeld</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2115009</td>
<td>Seminar für Bahnsystemtechnik</td>
<td>1 SWS</td>
<td>Seminar (S) / 🖥</td>
<td>Gratfeld</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Prüfung (PR)</th>
<th>Lehrveranstaltungstermin</th>
<th>Lehrveranstaltungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-2115009</td>
<td>Seminar für Bahnsystemtechnik</td>
<td>Prüfung (PR)</td>
<td>Gratfeld</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-00002</td>
<td>Seminar für Bahnsystemtechnik</td>
<td>Prüfung (PR)</td>
<td>Gratfeld</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 😷 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Prüfung besteht aus einer schriftlichen Ausarbeitung (Seminararbeit) und einem Vortrag über die Ausarbeitung.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar für Bahnsystemtechnik
2115009, SS 2020, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn, Geschichte, Herausforderungen und Zukunftsentwicklungen im Kontext der Megatrends
- Betrieb: Transportaufgaben, ÖPNV, Regional-, Fern-, Güterverkehr, Betriebsplanung
- Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystematik
- Projektmanagement: Definition eines Projektes, Projektmanagement, Haupt- und Nebenprozesse, Übertrag in die Praxis
- Wissenschaftliches Arbeiten: Strukturierung und Schreiben einer wissenschaftlichen Ausarbeitung, Literaturrecherche, Zeitplanung (Meilensteine), Selbstmanagement, Präsentationskenntnisse, Citavi als Literatur- und Wissensmanagementtool, Arbeiten mit einer Word-Vorlage, Feedback geben/nehmen
- Ihr erlerntes Wissen wenden die Studierenden durch die praktische Ausarbeitung einer Seminararbeit an. Hierzu erstellen sie weiterhin einen Vortrag, über diesen mithilfe von Feedbackmethoden ein und tragen diesen vor einem Auditorium vor.

Organisatorisches
Teilnehmerzahl ist auf 10 begrenzt. Die Prüfung besteht aus einer schriftlichen Ausarbeitung (Seminararbeit) und einem Vortrag über die Ausarbeitung. Weitere Infos siehe Institutshomepage.
Max. 10 participants. Examination: Writing a Seminararbeit, final presentation. Please check the homepage for further information.

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Inhalt

- Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn, Geschichte, Herausforderungen und Zukunftsentwicklungen im Kontext der Megatrends
- Betrieb: Transportaufgaben, ÖPNV, Regional-, Fern-, Güterverkehr, Betriebsplanung
- Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystematik
- Projektmanagement: Definition eines Projektes, Projektmanagement, Haupt- und Nebenprozesse, Übertrag in die Praxis
- Wissenschaftliches Arbeiten: Strukturierung und Schreiben einer wissenschaftlichen Ausarbeitung, Literaturrecherche, Zeitplanung (Meilensteine), Selbstmanagement, Präsentationskenntnisse, Citavi als Literatur- und Wissensmanagementtool, Arbeiten mit einer Word-Vorlage, Feedback geben/nehmen
- Ihr erlerntes Wissen wenden die Studierenden durch die praktische Ausarbeitung einer Seminararbeit an. Hierzu erstellen sie weiterhin einen Vortrag, üben diesen mithilfe von Feedbackmethoden ein und tragen diesen vor einem Auditorium vor.

Organisatorisches

Teilnehmerzahl ist auf 10 begrenzt. Die Prüfung besteht aus einer schriftlichen Ausarbeitung (Seminararbeit) und einem Vortrag über die Ausarbeitung. Weitere Infos siehe Institutshomepage.

Literaturhinweise

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
8.181 Teilleistung: Sicherheitstechnik [T-MACH-105171]

Verantwortung: Hans-Peter Kany
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102821 - Schwerpunkt: Technische Logistik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte
4
Turnus
Jedes Wintersemester
Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2117061</th>
<th>Sicherheitstechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Kany</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🎧 Präsenz/Online gemischt, 🗣️ Präsenz; X Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V

Sicherheitstechnik
2117061, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Medien
Präsentationen
Lehrinhalte

Lernziele
Die Studierenden können:

- relevante Sicherheitskonzepte der Sicherheitstechnik benennen und beschreiben,
- Grundlagen von Gesundheit am Arbeitsplatz und Arbeitssicherheit in Deutschland erläutern,
- mit Hilfe der nationalen und europäischen Sicherheitsregeln und den Grundlagen sicherheitsgerechter Maschinenkonstruktionen Systeme beurteilen und
- diese Aspekte an Beispielen aus der Förder- und Lagertechnik umsetzen.

Empfehlungen
Keine

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Anmerkungen
Termine: siehe IFL-Homepage
Organisatorisches
Termine: siehe IFL-Homepage/ILIAS

Literaturhinweise
Defren/Wickert: Sicherheit für den Maschinen- und Anlagenbau, Druckerei und Verlag: H. von Ameln, Ratingen
8.182 Teilleistung: Signale und Systeme [T-ETIT-109313]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2302109 | Signale und Systeme | 2 SWS | Vorlesung (V) / 🖥 | Heizmann |
| WS 20/21 | 2302111 | Übungen zu 2302109 Signale und Systeme | 2 SWS | Übung (Ü) / 🖥 | Heizmann, Leven |

Prüfungsveranstaltungen

| SS 2020 | 7302109 | Signale und Systeme | Prüfung (PR) | Heizmann |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen

Keine

Empfehlungen

Höhere Mathematik I + II
8.183 Teilleistung: Simulation gekoppelter Systeme [T-MACH-105172]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Yusheng Xiang

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2020 2114095 Simulation gekoppelter Systeme 2 SWS Vorlesung (V) Geimer, Xiang, Daß

Prüfungsveranstaltungen

SS 2020 76T-MACH-105172 Simulation gekoppelter Systeme Prüfung (PR) Geimer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Eine vorherige Anmeldung ist erforderlich, die Details werden auf den Webseiten des Instituts für Fahrzeugsystemtechnik / Teilinstitut Mobile Arbeitsmaschinen angekündigt. Bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten nach Qualifikation statt.

Voraussetzungen

Voraussetzung zur Teilnahme an der Prüfung ist die Erstellung eines Berichts während des Semesters. Die Teilleistung mit der Kennung T-MACH-108888 muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-108888 - Simulation gekoppelter Systeme - Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Empfehlungswerte sind:

- Kenntnisse in ProE (idealerweise in der aktuellen Version)
- Grundkenntnisse in Matlab/Simulink
- Grundkenntnisse Maschinendynamik
- Grundkenntnisse Hydraulik
Anmerkungen
Lernziele:
Nach Abschluss der Veranstaltung können die Studierenden:

- eine gekoppelte Simulation aufbauen
- Modelle parametrieren
- Simulation durchführen
- Troubleshooting
- Ergebnisse auf Plausibilität kontrollieren

Die Anzahl der Teilnehmer ist begrenzt.

Inhalt:

- Erlernen der Grundlagen von Mehrkörper- und Hydrauliksimulationsprogrammen
- Möglichkeiten einer gekoppelten Simulation
- Durchführung einer Simulation am Beispiel des Radladers
- Darstellung der Ergebnisse in einem kurzen Bericht

Literatur:
Diverse Handbücher zu den Softwaretools in PDF-Form
Informationen zum verwendeten Radlader

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Simulation gekoppelter Systeme
2114095, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Erlernen der Grundlagen von Mehrkörper- und Hydrauliksimulationsprogrammen
- Möglichkeiten einer gekoppelten Simulation
- Durchführung einer Simulation am Beispiel des Radladers
- Darstellung der Ergebnisse in einem kurzen Bericht

Empfehlenswert sind:

- Kenntnisse in ProE (idealerweise in der aktuellen Version)
- Grundkenntnisse in Matlab/Simulink
- Grundkenntnisse Maschinendynamik
- Grundkenntnisse Hydraulik
- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literaturhinweise
Weiterführende Literatur:

- Diverse Handbücher zu den Softwaretools in PDF-Form
- Informationen zum verwendeten Radlader
8.184 Teilleistung: Simulation gekoppelter Systeme - Vorleistung [T-MACH-108888]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Yusheng Xiang

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-108888</th>
<th>Simulation gekoppelter Systeme - Vorleistung</th>
<th>Prüfung (PR)</th>
<th>Geimer</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

- Anfertigung Semesterbericht

Voraussetzungen

keine
8.185 Teilleistung: Solar Thermal Energy Systems [T-MACH-106493]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studiengang</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2189400</td>
<td>Solar Thermal Energy Systems</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studiengang</th>
<th>Veranstaltungstitel</th>
<th>Veranstaltungstyp</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>Prüfung (PR)</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, X Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen

Literatur

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Solar Thermal Energy Systems

2189400, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
The course deals with fundamental aspects of solar energy
1. Introduction to solar energy – global energy panorama
2. Solar energy resource-
 Structure of the sun, Black body radiation, solar constant, solar spectral distribution
 Sun-Earth geometrical relationship
3. Passive and active solar thermal applications.
4. Solar thermal systems- solar collector-types, concentrating collectors, solar towers,
 Heat losses, efficiency
5. Selected topics on thermodynamics and heat transfer which are relevant for solar systems.
6. Introduction to Solar induced systems: Wind , Heat pumps, Biomass , Photovoltaic
7. Energy storage
The course deals with fundamental aspects of solar energy. Starting from a global energy panorama the course deals with the sun as a thermal energy source. In this context, basic issues such as the sun’s structure, blackbody radiation and solar–earth geometrical relationship are discussed. In the next part, the lectures cover passive and active thermal applications and review various solar collector types including concentrating collectors and solar towers and the concept of solar tracking. Further, the collector design parameters determination is elaborated, leading to improved efficiency. This topic is augmented by a review of the main laws of thermodynamics and relevant heat transfer mechanisms.
The course ends with an overview on energy storage concepts which enhance practically the benefits of solar thermal energy systems.
The students get familiar with the global energy demand and the role of renewable energies learn about improved designs for using efficiently the potential of solar energy gain basic understanding of the main thermal hydraulic phenomena which support the work on future innovative applications will be able to evaluate quantitatively various aspects of the thermal solar systems.
Total 120 h, hereof 30 h contact hours and 90 h homework and self-studies
mündliche Prüfung ca. 30 min.

Literaturhinweise
• “Fundamentals of classical Thermodynamics”, G. Van Wylen & R. E. Sonntag. Published by Wiley & Sons
8.186 Teilleistung: Stabilitätstheorie [T-MACH-105372]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik
M-MACH-104442 - Schwerpunkt: Schwingungslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungslehre mündlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Fortbildungsmodul</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2163113</td>
<td>Stabilitätstheorie</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Fidlin</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2163114</td>
<td>Übungen zu Stabilitätstheorie</td>
<td>2 SWS</td>
<td>Übung (U)</td>
<td>Fidlin, Aramendiz, Fuentes</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105372</td>
<td>Stabilitätstheorie</td>
<td>Prüfung (PR)</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105372</td>
<td>Stabilitätstheorie</td>
<td>Prüfung (PR)</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, 30 min.

Voraussetzungen
keine

Empfehlungen
Technische Schwingungslehre, Mathematische Methoden der Schwingungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Stabilitätstheorie
2163113, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Grundbegriffe der Stabilität
- Lyapunov'sche Funktionen
- Direkte Lyapunov'sche Methode
- Stabilität der Gleichgewichtslage
- Einzugsgebiet einer stabilen Lösung
- Stabilität nach der ersten Näherung
- Systeme mit parametrischer Anregung
- Stabilitätskriterien in der Regelungstechnik

Literaturhinweise

Verantwortung: Dr. Rudolf Maier

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-102576 - Schlüsselqualifikationen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Studiennummer</th>
<th>Veranstaltungstitel</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2149663</td>
<td>Steuerung eines global agierenden Unternehmens - Am Beispiel der Robert BOSCH GmbH</td>
<td>2 SWS</td>
<td>Seminar (S) / 🖥</td>
<td>Maier</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Studienleistung (unbenotet):
- Anwesenheit an mindestens 12 Vorlesungseinheiten

Voraussetzungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Steuerung eines global agierenden Unternehmens - Am Beispiel der Robert BOSCH GmbH

2149663, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
Inhalt

Die Themen im Einzelnen sind:

- Einführung, Strategie, Innovation
- F&E, Produktentstehungsprozess
- Produktion
- Qualitätssicherung
- Markt, Marketing, Vertrieb
- Aftermarket, Service
- Finanzen, Controlling
- Logistik
- Einkauf, Supply Chain
- IT
- HR, Führung, Compliance

Lernziele:
Die Studierenden ...

- sind in der Lage den Aufbau eines global agierenden Industrieunternehmens zu erkennen, zu verstehen und zu beurteilen.
- können die Abläufe in einem global agierenden Industrieunternehmen identifizieren und vergleichen.
- sind in der Lage, die von den Experten benannten Probleme bei Schnittstellen zwischen Funktions- und Organisationsbereichen zu erkennen, zu beurteilen und Lösungsansätze basierend auf dem Expertenwissen zu erarbeiten, um diese Probleme zu überwinden.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 39 Stunden

Organisatorisches
Die Anmeldung zum Seminar erfolgt über Ilias. (https://ilias.studium.kit.edu/)
Das Passwort wird im ersten Termin bekanntgegeben.

The registration for the seminar is via Ilias. (https://ilias.studium.kit.edu/)
The password will be announced in the first appointment.

Literaturhinweise
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.188 Teilleistung: Steuerungstechnik [T-MACH-105185]

Verantwortung: Hon.-Prof. Dr. Christoph Gönnheimer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102817 - Schwerpunkt: Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2150683, Steuerungstechnik</td>
<td>2</td>
<td>Gönnheimer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105185, Steuerungstechnik</td>
<td>Prüfung</td>
<td>Gönnheimer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (60 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Steuerungstechnik

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Anzeigemöglichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150683, SS 2020</td>
<td>2</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
Die Vorlesung Steuerungstechnik gibt einen ganzheitlichen Überblick über den Einsatz steuerungstechnischer Komponenten in der industriellen Produktion.
Der erste Teil der Vorlesung befasst sich mit den Grundlagen der Signalverarbeitung und mit Steuerungsperipherie in Form von Sensoren und Aktoren, die in Produktionsanlagen für die Detektion und Beeinflussung von Prozesszuständen benötigt werden.
Der zweite Teil beschäftigt sich mit der Funktions-/Arbeitsweise elektrischer Steuerungen im Produktionsumfeld. Gegenstand der Betrachtung sind hier insbesondere die speicherprogrammierbare Steuerung, die CNC-Steuerung und die Robotersteuerung.
Den Abschluss der Lehrveranstaltung bildet das Thema Vernetzung und Dezentralisierung mithilfe von Bussystemen.
Die Vorlesung ist stark praxisorientiert und mit zahlreichen Beispielen aus der Produktionslandschaft unterschiedlicher Branchen versehen.
Die Themen im Einzelnen sind:

- Signalverarbeitung
- Steuerungsperipherie
- Speicherprogrammierbare Steuerungen
- NC-Steuerungen
- Steuerungen für Industrieroboter
- Verteilte/vernetzte Steuerungssysteme
- Feldbussysteme
- Trends im Bereich der Steuerungstechnik

Lernziele:
Die Studierenden …

- sind fähig, die in der Industrie vorkommenden elektrischen Steuerungen wie SPS, CNC und RC zu nennen und deren Funktions- und Arbeitsweise zu erläutern.
- können die Vorgehensweise zur Projektierung und Programmierung einer Speicherprogrammierbaren Steuerung des Typs Siemens Simatic S7 beschreiben und dabei verschiedene Programmiersprachen der IEC 1131 verdeutlichen.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Start: 23.04.2020

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
8.189 Teilleistung: Strategische Potenzialfindung zur Entwicklung innovativer Produkte [T-MACH-105696]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Andreas Siebe

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Semester</th>
<th>Studienkursnummer</th>
<th>Inhalt</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2146198</td>
<td>SWS</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Siebe</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Semester</th>
<th>Studienkursnummer</th>
<th>Inhalt</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 76-T-MACH-105696</td>
<td>SWS</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td>Prüfung (PR)</td>
<td>Siebe, Albers</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung in Kleingruppen (30 Minuten)

Voraussetzungen
Die Voraussetzung der Teilleistung ist die erfolgreiche Bearbeitung einer Case-Study (T-MACH-110396): Dokumentation und Präsentation der Gesamtergebnisse (15 Minuten)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Die Teilleistung T-MACH-110396 - Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strategische Potenzialfindung zur Entwicklung innovativer Produkte
2146198, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches
Anmeldung erforderlich; Termine/Ort und weitere Informationen siehe IPEK-Homepage
8.190 Teilleistung: Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study [T-MACH-110396]

Verantwortung: Prof. Dr.-Ing. Albert Albers
 Prof. Dr.-Ing. Sven Matthiesen
 Dr.-Ing. Andreas Siebe

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
 M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
 M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Version</th>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltung</th>
<th>SS 2020</th>
<th>Prüfungsveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Sommersemester</td>
<td>2</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>Vorlesung (V)</td>
<td>2146198</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td></td>
<td>Siebe</td>
<td></td>
<td>Siebe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erfolgreiche Bearbeitung einer Case-Study(T-MACH-110396): Dokumentation und Präsentation der Gesamtergebnisse (15 Minuten)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strategische Potenzialfindung zur Entwicklung innovativer Produkte
2146198, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches
Anmeldung erforderlich; Termine/ Ort und weitere Informationen siehe IPEK-Homepage
8.191 Teilleistung: Strömungen und Wärmeübertragung in der Energietechnik [T-MACH-105403]

Verantwortung: Prof. Dr.-Ing. Xu Cheng

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Übungen zu 'Strömungen und Wärmeübertragung in der Energietechnik'</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2189911</td>
<td></td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Cheng, Mitarbeiter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, 20 Minuten

Voraussetzungen

keine
8.192 Teilleistung: Strömungslehre 1&2 [T-MACH-105207]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-102565 - Strömungslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Schwerpunkt</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2154512</td>
<td>Strömungslehre I</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3154510</td>
<td>Fluid Mechanics I</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2153512</td>
<td>Strömungslehre II</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3153511</td>
<td>Fluid Mechanics II</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung (1+2)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105207</td>
<td>Strömungslehre (1+2)</td>
<td>Frohnapfel, Kriegseis</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🤑 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

<table>
<thead>
<tr>
<th>Art</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Stunden</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strömungslehre I

2154512, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Inhalt

Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
 - Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik
Literaturhinweise

Fluid Mechanics I
3154510, SS 2020, 3 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]

Inhalt
Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik

Literaturhinweise

Strömungslehre II
2153512, WS 20/21, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet die sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton’scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise
Inhalt
Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet die sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluids in the Continuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton’scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise
8.193 Teilleistung: Strukturberechnung von Faserverbundlaminaten [T-MACH-105970]

Verantwortung: Dr.-Ing. Luise Kärger

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbautechnologie

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte 4</th>
<th>Turnus Jedes Wintersemester</th>
<th>Version 1</th>
</tr>
</thead>
</table>

Lehrveranstaltungen

| Lehrveranstaltungen | 2113106 Strukturberechnung von Faserverbundlaminaten | 2 SWS | Vorlesung / Übung (VÜ) / 🧩 Kärger |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🧩 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strukturberechnung von Faserverbundlaminaten
2113106, WS 20/21, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt
Mikromechanik und Homogenisierung des Faser-Matrix-Verbundes
Makromechanisches Verhalten der Einzelschicht
Verhalten des Mehrschichtverbunds
FE-Formulierungen
Versagenskriterien
Schädigungsanalyse
Auslegung von FVK-Bauteilen

Lernziele:
Literaturhinweise
8.194 Teilleistung: Sustainable Product Engineering [T-MACH-105358]

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2146192 Sustainable Product Engineering 2 SWS Vorlesung (V) Ziegahn</td>
<td></td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105358 Sustainable Product Engineering Prüfung (PR) Ziegahn, Albers</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- schriftliche Prüfung (60 min)

Voraussetzungen
- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Sustainable Product Engineering
- 2146192, SS 2020, 2 SWS, [Im Studierendenportal anzeigen](#)
- Vorlesung (V)

Inhalt
Verständnisses der Nachhaltigkeitsziele und ihrer Bedeutung bei der Produktentwicklung, den Wechselwirkungen zwischen technischen Erzeugnissen und ihrer Umwelt, dem ganzheitlichen Ansatz und der Gleichrangigkeit von wirtschaftlichen, sozialen und ökologischen Aspekten sowie umweltbezogenen Leistungsmerkmalen

Vermittlung von Fähigkeiten zur lebenszyklusbezogenen Produktauslegung am Beispiel von komplexen Fahrzeugkomponenten wie Airbag-Systemen und anderen aktuellen Produkten

Verständnis von praxisrelevanten Produktbeanspruchungen durch Umgebungsbedingungen am Beispiel technikintensiver Komponenten; Robustheit und Lebensdauer von Produkten als Basis für eine nachhaltige Produktentwicklung; Entwicklung von Fähigkeiten zur Anwendung der Umweltsimulation im Entstehungsgang technischer Erzeugnisse

Förderung der Entwicklung von Schlüsselqualifikationen wie Teamfähigkeit / Projektplanung / Selbstorganisation / Präsentation anhand realitätsnaher Projekte

Ziel der Lehrveranstaltung ist die Vermittlung von Eckpunkten einer nachhaltigen Produktentwicklung im wirtschaftlichen, sozialen und ökologischen Kontext.

Die Studierenden sind fähig ...

- Lebenszyklusbezogene Produktauslegung am Beispiel von komplexen Fahrzeugkomponenten wie Airbag-Systemen und anderen aktuellen Produkten zu erörtern.
- praxisrelevanten Produktbeanspruchungen durch Umgebungsbedingungen am Beispiel technikintensiver Komponenten; Robustheit und Lebensdauer von Produkten als Basis für eine nachhaltige Produktentwicklung; Entwicklung von Fähigkeiten zur Anwendung der Umweltsimulation im Entstehungsgang technischer Erzeugnisse zu verstehen.
- Schlüsselqualifikationen wie Teamfähigkeit / Projektplanung / Selbstorganisation / Präsentation anhand realitätsnaher Projekte zu entwickeln.
Organisatorisches
Die zusätzliche Vorlesungstermine für Blockvorlesung finden in Räumen des IPEKs statt.
26. Mai 2020 – Blockvorlesung von 9:00 bis 17:00 Uhr
16. Juni 2020 – Blockvorlesung von 9:00 bis 17:00 Uhr
22. Juni 2020 – Blockvorlesung 14:00h-17:00h
Weitere Info siehe IPEK-Homepage
https://www.ipek.kit.edu/70_2831.php
8.195 Teilleistung: Systematische Werkstoffauswahl [T-MACH-100531]

Verantwortung: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Prüfungsleistung schriftlich
Leistungspunkte 4
Turnus Jedes Sommersemester
Version 4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2174576</td>
<td>Systematische Werkstoffauswahl</td>
<td>3 SWS</td>
<td>Dietrich</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2174577</td>
<td>Übungen zu 'Systematische Werkstoffauswahl'</td>
<td>1 SWS</td>
<td>Dietrich, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
<th>Prüfung (PR)</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>Dietrich</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>Dietrich</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung mit einer Dauer von 2 h.

Voraussetzungen

M-MACH-102562 - Werkstoffkunde muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-102562 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Einfache Grundlagen in Werkstoffkunde, Mechanik und Konstruktionslehre wie sie in der Vorlesung Werkstoffkunde I/II vermittelt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systematische Werkstoffauswahl

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2174576, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
Die wichtigsten Aspekte und Kriterien der Werkstoffauswahl werden behandelt und Leitlinien für eine systematische Vorgehensweise beim Auswahlprozess erarbeitet. Dabei werden u.a. folgende Themen angesprochen:

- Informationen und Einleitung
- Erforderliche Grundlagen der Werkstoffkunde
- Ausgewählte Methoden / Herangehensweisen der Werkstoffauswahl
- Beispiele für Materialindices und Werkstoffeigenschaftsschaubilder
- Zielkonflikt und Formfaktoren
- Verbundwerkstoffe und Werkstoffverbunde
- Hoctemperaturwerkstoffe
- Berücksichtigung von Fertigungseinflüssen
- Werkstoffauswahl für eine bestehende Produktionslinie
- Fehlerhafte Werkstoffauswahl und abzuleitende Konsequenzen
- Zusammenfassung und Fragerunde

Lernziele:

Voraussetzungen:
Wing SPO 2007 (B.Sc.)
Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein
Wing (M.Sc.)
Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (30 h) sowie Vor- und Nachbearbeitungszeit zuhause (30 h) und Prüfungsvorbereitungszeit (60 h).

Literaturhinweise
Vorlesungsskriptum; Übungsbänder; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7

Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
8.196 Teilleistung: Systemintegration in der Mikro- und Nanotechnik [T-MACH-105555]

Verantwortung: Dr. Ulrich Gengenbach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik

Lehrveranstaltungen

| SS 2020 | 2106033 | Systemintegration in der Mikro- und Nanotechnik I | 2 SWS | Vorlesung (V) | Gengenbach |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105555 | Systemintegration in der Mikro- und Nanotechnik | Prüfung (PR) | Gengenbach |

Erfolgskontrolle(n)
Mündliche Prüfung (Dauer: 30 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systemintegration in der Mikro- und Nanotechnik I
2106033, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

- Einführung in die Systemintegration (Grundlagen)
- Kurzeinführung MEMS-Prozesse
- Festkörpergelenke
- Oberflächen und Plasmaverfahren für die Oberflächenbehandlung
- Technisches Kleben
- Aufbau- und Verbindungstechnik in der Elektronik
- Molded Interconnect devices (MID)
- Funktionelles Drucken
- Low temperature cofired ceramics in der Systemintegration
- 3D-Integration in der Halbleitertechnik

Lernziele:
Die Studierenden eignen sich grundlegende Kenntnisse der Herausforderungen von Systemintegrationstechnologien aus Maschinenbau, Feinwerktechnik und Elektronik an.

Literaturhinweise

- J. Franke, Räumliche elektronische Baugruppen (3D-MID), Carl Hanser-Verlag München, 2013
8.197 Teilleistung: Systemintegration in der Mikro- und Nanotechnik 2 [T-MACH-110272]

Verantwortung: Dr. Ulrich Gengenbach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Systemintegration in der Mikro- und Nanotechnik II</td>
<td>2</td>
<td>Vorlesung (V) / Online</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 15 Min.

Voraussetzungen
Keine

Anmerkungen
Achtung: Die Vorlesung sowie Prüfung wird erstmalig im WS20/21 angeboten!

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systemintegration in der Mikro- und Nanotechnik II
2105040, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Einführung in die Systemintegration (neue Verfahren und Anwendungen)
Montage hybrider Mikrosysteme
Packaging Verfahren
Anwendungen:
- Mikroverfahrenstechnik
- Lab-on-Chip-Systeme
- Mikrooptische Systeme
- Silicon Photonics

Neue Integrationsverfahren:
- Direct Laser Writing
- Self Assembly

Lernziele
Die Studierenden eignen sich Kenntnisse neuer System-integrationstechnologien und ihrer Anwendung in mikrooptischen und mikrofluidischen Systemen an.

Organisatorisches
Die Vorlesung wird erstmals im WS 2020/21 angeboten.

Literaturhinweise
N.-T. Nguyen, Fundamentals and Applications of Microfluidics, Artech House
G. T. Reed, Silicon Photonics: An Introduction, Wiley
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systemtheorie der Mechatronik

2161117, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
8.199 Teilleistung: Technische Grundlagen des Verbrennungsmotors [T-MACH-105652]

Verantwortung:
Dr.-Ing. Sören Bernhardt
Dr.-Ing. Heiko Kubach
Jürgen Pfeil
Dr.-Ing. Olaf Toedter
Dr.-Ing. Uwe Wagner

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors
M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart:
Prüfungsleistung mündlich

Leistungspunkte:
5

Turnus:
Jedes Wintersemester

Version:
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistungsnr.</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Modulart</th>
<th>Vorlesung/Vorlesung (V)</th>
<th>Prüfungsart</th>
<th>Prüfungsrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2133123</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Kubach, Wagner, Toedter, Pfeil, Bernhardt, Velji</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistungsnr.</th>
<th>Bezeichnung</th>
<th>Prüfungsart</th>
<th>Prüfungsrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors (alle Module außer SP57)</td>
<td>Prüfung (PR)</td>
<td>Kubach</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105652(SP)</td>
<td>Technische Grundlagen des Verbrennungsmotors (Prüfung im SP57)</td>
<td>Prüfung (PR)</td>
<td>Kubach</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>Prüfung (PR)</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Grundlagen des Verbrennungsmotors
2133123, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Grundlagen der Motorprozesse
Bauteile von Verbrennungsmotoren
Gemischbildungssysteme
Ladungswechselsysteme
Einspritzsysteme
Abgasnachbehandlungssysteme
Kühlssysteme
Zündsysteme

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
8.200 Teilleistung: Technische Informationssysteme [T-MACH-102083]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von:
- M-MACH-102583 - Schwerpunkt: Informationsmanagement
- M-MACH-102589 - Schwerpunkt: Produktionssysteme
- M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Veranstalungsart</th>
<th>SWS</th>
<th>Sprache</th>
<th>Ort</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>3</td>
<td>Deutsch</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>3</td>
<td>Deutsch</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Ort</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,🗙 Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Informationssysteme

2121001, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Inhalt

- Informationssysteme und Informationsmanagement
- Datenbanken
- Wissensmanagement und Ontologie
- Prozess Modellierung
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme

Studierende können:

- den Aufbau und die Funktionsweise von Informationssystemen erläutern
- die Struktur von relationalen Datenbanken beschreiben
- die Grundlagen des Wissensmanagements und deren Einsatz im Ingenieurwesen beschreiben und Ontologie als Wissensrepräsentation anwenden
- unterschiedliche Prozessmodellierungsarten und deren Verwendung beschreiben und mit ausgewählten Werkzeugen exemplarisch einfache Workflows und Prozesse abbilden und zur Ausführung bringen
- die unterschiedlichen Ziele spezifischer IT-Systemen in der Produktentstehung (CAD, CAP, CAM, PPS, ERP, PDM) verdeutlichen und dem Produktentstehungsprozess zuordnen

Literaturhinweise

Vorlesungsschulung / lecture slides
Inhalt

- Informationssysteme und Informationsmanagement
- Datenbanken
- Wissensmanagement und Ontologie
- Prozess Modellierung
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme

Studierende können:

- den Aufbau und die Funktionsweise von Informationssystemen erläutern
- die Struktur von relationalen Datenbanken beschreiben
- die Grundlagen des Wissensmanagements und deren Einsatz im Ingenieurwesen beschreiben und Ontologie als Wissensrepräsentation anwenden
- unterschiedliche Prozessmodellierungsmethoden und deren Verwendung beschreiben und mit ausgewählten Werkzeugen exemplarisch einfache Workflows und Prozesse abbilden und zur Ausführung bringen
- die unterschiedlichen Ziele spezifischer IT-Systemen in der Produktentstehung (CAD, CAP, CAM, PPS, ERP, PDM) verdeutlichen und dem Produktentstehungsprozess zuordnen

Literaturhinweise
Vorlesungsfolien / lecture slides
8.201 Teilleistung: Technische Mechanik I [T-MACH-100282]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102572 - Technische Mechanik
M-MACH-104624 - Orientierungsprüfung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2161245</td>
<td>Technische Mechanik I</td>
<td>3</td>
<td>V(V)</td>
<td>Böhlke, Kehrer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3161010</td>
<td>Engineering Mechanics I (Lecture)</td>
<td>3</td>
<td>V(V)</td>
<td>Langhoff, Pallicity, Böhlke</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung-ID</th>
<th>Veranstaltungstitel</th>
<th>Form</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-100282</td>
<td>Technische Mechanik I</td>
<td>PR</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-100282-englisch</td>
<td>Engineering Mechanics I</td>
<td>PR</td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗺️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 min, benotet

Voraussetzungen

Bestehen der "Übungen zur Technischen Mechanik I" (siehe Teilleistung T-MACH-100528)

Modellisierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100528 - Übungen zu Technische Mechanik I muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Mechanik I
2161245, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

- Grundzüge der Vektorrechnung
- Kraftsysteme
- Statik starrer Körper
- Schnittgrößen in Stäben u. Balken
- Haftung und Gleitreibung
- Schwerpunkt u. Massenmittelpunkt
- Arbeit, Energie, Prinzip der virtuellen Verschiebungen
- Statik der undehnbaren Seile
- Elastostatik der Zug-Druck-Stäbe

Literaturhinweise

- Vorlesungsskript
- Hibbeler, R.C: Technische Mechanik 1 - Statik. Prentice Hall, Pearson Studium 2005
8.202 Teilleistung: Technische Mechanik II [T-MACH-100283]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102572 - Technische Mechanik
M-MACH-104624 - Orientierungsprüfung

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen
SS 2020 2162250 Technische Mechanik II 3 SWS Vorlesung (V) Böhlke
SS 2020 3162010 Engineering Mechanics II (Lecture) 3 SWS Vorlesung (V) Langhoff, Pallicity

Prüfungsveranstaltungen
SS 2020 76-T-MACH-100283 Technische Mechanik II Prüfung (PR) Böhlke, Langhoff

Erfolgskontrolle(n)
Schriftliche Prüfung (Klausur), 90 min, benotet

Voraussetzungen
Bestehen der "Übungen zur Technischen Mechanik II" (siehe Teilleistung T-MACH-100284)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100284 - Übungen zu Technische Mechanik II muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Mechanik II
2162250, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
• Balkenbiegung
• Querkraftschub
• Torsionstheorie
• Spannungs- und Verzerrungszustand in 3D
• Hooke'sches Gesetz in 3D
• Elastizitätstheorie in 3D
• Energiemethoden der Elastostatik
• Näherungsverfahren
• Stabilität elastischer Stäbe

Literaturhinweise
Vorlesungsskript
Inhalt

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theorems in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars
Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102572 - Technische Mechanik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte: 10
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>ECTS</th>
<th>Sprache</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Technische Mechanik IV</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Engineering Mechanics 4</td>
<td>2 SWS</td>
<td>Englisch</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Technische Mechanik III</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Engineering Mechanics III (Lecture)</td>
<td>2 SWS</td>
<td>Englisch</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Technische Mechanik III & IV</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (3 h), benotet

Voraussetzungen
Erfolgreiche Bearbeitung der Übungsblätter in TM III Ü (T-MACH-105202) sowie der Übungsblätter in TM IV Ü (T-MACH-105203).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105202 - Übungen zu Technische Mechanik III muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-MACH-105203 - Übungen zu Technische Mechanik IV muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Mechanik IV
2162231, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Literaturhinweise
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin, 1971
Klotter: Technische Schwingungslehre, 1. Bd. Teil A, Heidelberg

Engineering Mechanics 4
3162012, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt

Technische Mechanik III
2161203, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Kinematik: kartesische, zylindrische und natürliche Koordinaten, Ableitungen in verschiedenen Bezugssystemen, Winkelgeschwindigkeiten.

Ebene Bewegung starrer Körper:

Literaturhinweise
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
Hagedorn: Technische Mechanik III.
8.204 Teilleistung: Technische Schwingungslehre [T-MACH-105290]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
 Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
 M-MACH-102820 - Schwerpunkt: Mechatronik
 M-MACH-104430 - Schwerpunkt: Modellbildung und Simulation in der Dynamik
 M-MACH-104442 - Schwerpunkt: Schwingungslehre

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 5
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2161212</th>
<th>Technische Schwingungslehre</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 📚</th>
<th>Fidlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2161213</td>
<td>Übungen zu Technische Schwingungslehre</td>
<td>2 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Fidlin, Schröders</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105290 | Technische Schwingungslehre | Prüfung (PR) | Fidlin |

Legende: 📚 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 180 min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Schwingungslehre
2161212, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Grundbegriffe bei Schwingungen, Überlagerung von Schwingungen, komplexe Frequenzgangrechnung.

Einführung in die Rotordynamik: Lavalrotor in starren und elastischen Lagern, Berücksichtigung innerer Dämpfung, Lavalrotor in anisotroper Lagerung, Gleich- und Gegenlauf, Rotoren mit unrunder Welle.

Literaturhinweise

Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

<table>
<thead>
<tr>
<th>Übung (Ü)</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übungen zu Technische Schwingungslehre</td>
<td></td>
</tr>
<tr>
<td>2161213, WS 20/21, 2 SWS, Sprache: Deutsch, [im Studierendenportal anzeigen]</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Übung des Vorlesungsstoffs
8.205 Teilleistung: Technische Thermodynamik und Wärmeübertragung I [T-MACH-104747]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102574 - Technische Thermodynamik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
8

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2165501</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>4 SWS</td>
<td>Vorlesung (V) / Online</td>
<td>Maas</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3165014</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltung</th>
<th>Veranstaltungsbezeichnung</th>
<th>Prüfung</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-104747</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>Prüfung (PR)</td>
<td>Maas</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-104747-englisch</td>
<td>Technische Thermodynamik und Wärmeübertragung I, englisch</td>
<td>Prüfung (PR)</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
Erfolgreiche Teilnahme an der Übung (T-MACH-105204 - Technische Thermodynamik und Wärmeübertragung I, Vorleistung)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105204 - Technische Thermodynamik und Wärmeübertragung I, Vorleistung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Thermodynamik und Wärmeübertragung I
2165501, WS 20/21, 4 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Literaturhinweise
Vorlesungsskriptum
8.206 Teilleistung: Technische Thermodynamik und Wärmeübertragung I, Vorleistung [T-MACH-105204]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102574 - Technische Thermodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2165502</th>
<th>Übungen zu Technische Thermodynamik und Wärmeübertragung I</th>
<th>2 SWS</th>
<th>Übung (Ü)</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>3165015</td>
<td>Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>2 SWS</td>
<td>Tutorium (Tu)</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105204 | Technische Thermodynamik und Wärmeübertragung I, Vorleistung | Prüfung (PR) | Maas |

Legende: 🌐 Online, 🖥 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Erfolgreiche Bearbeitung der Übungsblätter.

Voraussetzungen
keine
Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102574 - Technische Thermodynamik

Lehrveranstaltungen

SS 2020 2166526 Technische Thermodynamik und Wärmeübertragung II 3 SWS Vorlesung (V) Maas
SS 2020 3166526 Technical Thermodynamics and Heat Transfer II 3 SWS Vorlesung (V) Schießl

Prüfungsveranstaltungen

SS 2020 76-T-MACH-105287 Technische Thermodynamik und Wärmeübertragung II Prüfung (PR) Maas
SS 2020 76-T-MACH-105287-englisch Technische Thermodynamik und Wärmeübertragung II, englisch Prüfung (PR) Maas

Erfolgskontrolle(n)
Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
Erfolgreiche Teilnahme an der Übung (T-MACH-105288 - Technische Thermodynamik und Wärmeübertragung II, Vorleistung)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Thermodynamik und Wärmeübertragung II
2166526, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Wiederholung des Stoffes von "Thermodynamik und Wärmeübertragung I"
Mischung idealer Gase
Feuchte Luft
Verhalten realer Stoffe beschrieben durch Zustandsgleichungen
Anwendung der Hauptsätze auf chemische Reaktionen

Literaturhinweise
Vorlesungs-skriptum
8.208 Teilleistung: Technische Thermodynamik und Wärmeübertragung II, Vorleistung [T-MACH-105288]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102574 - Technische Thermodynamik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2166556 | Tutorien zu Technische Thermodynamik und Wärmeübertragung II | 2 SWS | Übung (Ü) | Maas |
| SS 2020 | 3166033 | Technical Thermodynamics and Heat Transfer II (Tutorial) | 2 SWS | Übung (Ü) | Schießl, Maas |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105288 | Technische Thermodynamik und Wärmeübertragung II, Vorleistung | Prüfung (PR) | Maas |

Erfolgskontrolle(n)
Erfolgreiche Bearbeitung der Übungsblätter.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Tutorien zu Technische Thermodynamik und Wärmeübertragung II
2166556, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Übung (Ü)

Inhalt
Berechnung thermodynamischer Problemstellungen

Literaturhinweise
Vorlesungsskriptum
8.209 Teilleistung: Technisches Design in der Produktentwicklung [T-MACH-105361]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Markus Schmid

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2146179</th>
<th>Technisches Design in der Produktentwicklung</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Schmid</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105361-KA</th>
<th>Technisches Design in der Produktentwicklung (Prüfung Karlsruhe)</th>
<th>Prüfung (PR)</th>
<th>Schmid, Albers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105361-S</td>
<td>Technisches Design in der Produktentwicklung (Prüfung Stuttgart)</td>
<td>Prüfung (PR)</td>
<td>Schmid, Albers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (60 min)
Hilfsmittel: nur Deutsche Wörterbücher

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technisches Design in der Produktentwicklung
2146179, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt
Einleitung
Wertrelevante Parameter des Technischen Design
Grundlagen Interface-Design
Makroergonomie: Planung- u. Konzeptphase
Mikroergonomie: Konzept- u. Entwurfspahse
Mikroergonomie: Ausarbeitsungsphase
Best Practice

Im Modul Technisches Design besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung.

Die Studierenden ...

- erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer.
- beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen.
- beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung, haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

Organisatorisches
Erster Vorlesungstermin: Montag, 27.04.2020
Literaturhinweise
Markus Schmid, Thomas Maier
Technisches Interface Design
Anforderungen, Bewertung, Gestaltung.
2017
Hartmut Seeger
Design technischer Produkte, Produktprogramme und -systeme
Industrial Design Engineering.
2., bearb. und erweiterte Auflage.
ISBN: 3540236538
September 2005 - gebunden - 396 Seiten
8.210 Teilleistung: Technologie der Stahlbauteile [T-MACH-105362]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2174579</th>
<th>Technologie der Stahlbauteile</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Schulze</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105362</th>
<th>Technologie der Stahlbauteile</th>
<th>Prüfung (PR)</th>
<th>Schulze</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105362</td>
<td>Technologie der Stahlbauteile</td>
<td>Prüfung (PR)</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 minutes

Voraussetzungen
M-MACH-102562 - Werkstoffkunde muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-102562 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technologie der Stahlbauteile
2174579, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Bedeutung, Entstehung und Charakterisierung von Bauteilzuständen
Beschreibung der Auswirkungen von Bauteilzuständen
Stabilität von Bauteilzuständen
Stahlgruppen
Bauteilzustände nach Umformprozessen
Bauteilzustände nach durchgreifenden Wärmebehandlungen
Bauteilzustände nach Randschichthärtungen
Bauteilzustände nach Zerspanprozessen
Bauteilzustände nach Oberflächenbehandlungen
Bauteilzustände nach Fügeprozessen
Zusammenfassende Bewertung

Lernziele:

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Skript wird in der Vorlesung ausgegeben
VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984
V. Schulze: Modern Mechanical Surface Treatments, Wiley, Weinheim, 2005
8.211 Teilleistung: Thermische Solarenergie [T-MACH-105225]

Verantwortung: Prof. Dr. Robert Stieglitz
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
- WS 20/21 2169472 Thermische Solarenergie 2 SWS Vorlesung (V) / Online Stieglitz

Prüfungsveranstaltungen
- SS 2020 76-T-MACH-105225 Thermische Solarenergie Prüfung (PR) Stieglitz
- WS 20/21 76-T-MACH-105225 Thermische Solarenergie Prüfung (PR) Stieglitz

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Solarenergie
2169472, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Online
Inhalt
Grundlagen der thermischen Solarenergie (Strahlung, Leitung, Speicherung, Wirkungsgrad). Aktive und passive Nutzung der Solarenergie, Solarkollektoren (Bauformen, Wirkungsgrad, Systemtechnik), Solarkraftwerke (Heliostate, Parabolrinnen, Aufwindtypen), Solare Klimatisierung.
Im Detail:
5. Impuls- und Wärmetransport: Grundgleichungen des ein- u. mehrphasigen Transports, Berechnungsverfahren, Stabilitätsgrenzen.
Optional
Am Ende
Speicher: Energieinhalte, Speichertypen, Speichermaterialien, Koste
Solare Klimatisierung: Kühleistungsbestimmung, Raumklima, solare Kühlverfahren und Bewertung der Klimatisierung.
Empfehlung /Vorkenntnisse:
Grundlagen der Wärme-Stoffübertragung, der Werkstoffkunde und Strömungsmechanik, wünschenswert sind sichere Grundkenntnisse der Physik in Optik sowie Thermodynamik
Mündliche Prüfung, Dauer: ca. 25 Minuten, Hilfsmittel: keine
Literaturhinweise
Bereitstellung des Studienmaterials in gedruckter und elektronischer Form.
8.212 Teilleistung: Thermische Turbomaschinen I [T-MACH-105363]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 2169453</td>
<td>Thermische Turbomaschinen I (auf Deutsch)</td>
<td>3 SWS Vorlesung / Übung (VÜ) / 🖥</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 20/21 2169454</td>
<td>Übungen zu Thermische Turbomaschinen I</td>
<td>2 SWS Übung (Ü) / 🖥</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 20/21 2169553</td>
<td>Thermische Turbomaschinen I (auf Englisch)</td>
<td>3 SWS Vorlesung / Übung (VÜ) / 🖥</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 76-T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>Prüfung (PR)</td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2020 76T-Mach-105363-Wdh</td>
<td>Thermische Turbomaschinen I (für Wiederholer)</td>
<td>Prüfung (PR)</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 20/21 76-T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>Prüfung (PR)</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 20/21 76-T-MACH-105363-Wdh</td>
<td>Thermische Turbomaschinen I (für Wiederholer)</td>
<td>Prüfung (PR)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕺 Präsenz/Online gemischt, 🕺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Turbomaschinen I (auf Deutsch)
2169453, WS 20/21, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Vorlesung / Übung (VÜ) Online
Inhalt
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Energie transfer in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine und radiales Gleichgewicht
Verdichterstufen und Ausblick

Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.

Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h

Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.
Prüfung:
mündlich
Dauer: 30 min

Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Inhalt
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Energieübergang in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine und radiales Gleichgewicht
Verdichterstufen und Ausblick
Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.
Lernziele:
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.
Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h
Prüfung:
müdlich
Dauer: 30 min
Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
8.213 Teilleistung: Thermische Turbomaschinen II [T-MACH-105364]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkt(e)</th>
<th>Art</th>
<th>Uhrzeit</th>
<th>Ort</th>
<th>Dozent, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2170476</td>
<td>Thermische Turbomaschinen II</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Bauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2170477</td>
<td>Tutorial - Thermal Turbomachines II (Übung - Thermische Turbomaschinen II)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Bauer, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2170553</td>
<td>Thermische Turbomaschinen II (auf Englisch)</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Bauer, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105364</td>
<td>Thermische Turbomaschinen II</td>
<td>Prüfung (PR)</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105364</td>
<td>Thermische Turbomaschinen II</td>
<td>Prüfung (PR)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕒 Präsenz/Online gemischt, 🕒 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Turbomaschinen II

<table>
<thead>
<tr>
<th>Veranstaltung-ID</th>
<th>Semester</th>
<th>Leistungspunkt(e)</th>
<th>Art</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>2170476</td>
<td>SS 2020</td>
<td>3 SWS</td>
<td>🖥 V</td>
<td>Online</td>
</tr>
<tr>
<td>2170477</td>
<td>SS 2020</td>
<td>2 SWS</td>
<td>🕒 Ü</td>
<td>Bauer, Mitarbeiter</td>
</tr>
<tr>
<td>2170553</td>
<td>SS 2020</td>
<td>3 SWS</td>
<td>🕒 VÜ</td>
<td>Bauer, Mitarbeiter</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen
Inhalt
Lehrinhalt:
Allgemeine Einführung, Entwicklungs-
tendenzen bei Turbomaschinen

Vergleich Turbine - Verdichter

Zusammenfassende Betrachtung der Verluste

Berechnungsgrundlagen und Korelationsansätze für die Turbinen- und Verdichterauslegung, Stufen-kennlinien

Betriebsverhalten mehrstufiger Turbomaschinen bei Abweichungen vom Auslegungspunkt

Regelung und Überwachung von Dampf- und Gasturbinenanlagen

Maschinenelemente

Hochbeanspruchte Bauteile

Werkstoffe für Turbinenschaufeln

Gekühlte Gasturbinenschaufeln (Luft, Flüssigkeit)

Kurzer Überblick über Betriebserfahrungen

Brennkammern und Umwelteinflüsse

Lernziele:
Ausgehend von den in 'Thermische Turbomaschinen I' erworbenen Kenntnissen können die Studenten Turbinen und Verdichter auslegen und deren Betriebsverhalten analysieren.

Empfehlungen:
Empfohlene Hauptfachkombination mit 'Thermische Turbomaschinen I'

Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h

Prüfung:
mündlich (nur in Verbindung mit 'Thermische Turbomaschinen I')
Dauer: 30 Min (-→ 1 Stunde inkl. Thermische Turbomaschinen I)

Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993

V Thermische Turbomaschinen II (auf Englisch)
2170553, SS 2020, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
8 TEILLEISTUNGEN

Teilleistung: Thermische Turbomaschinen II [T-MACH-105364]

Inhalt
Lehrinhalt:
Allgemeine Grundlagen der Thermischen Strömungsmaschinen

Dampfturbinen Systemanalyse

Gasturbinen Systemanalyse

Kombikraftwerke und Heizkraftanlagen

Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick

Arbeitsverfahren von Turbinen: Energie-transfer in der Stufe

Bauarten und Ausführungsbeispiele von Turbinen

Ebene gerade Schaufelgitter

Räumliche Strömung in der Turbine und radiales Gleichgewicht

Verdichterstufen und Ausblick

Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.

Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h

Lernziele:
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.

Prüfung:
müdlich
Dauer: 30 min
Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)

Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993

8.214 Teilleistung: Tribologie [T-MACH-105531]

Verantwortung: Prof. Dr. Martin Dienwiebel
Prof. Dr.-Ing. Matthias Scherge

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Professoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribologie 2181114</td>
<td>5 SWS</td>
<td>Präsenz</td>
<td>Dienwiebel, Scherge</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 40 min)

keine Hilfsmittel

Voraussetzungen

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen [T-MACH-109303]

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-109303 - Übungen - Tribologie muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Vorkenntnisse in Mathematik, Mechanik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Tribologie

2181114, WS 20/21, 5 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

- Kapitel 1: Reibung
 Adhäsion, Geometrischer und realer Kontakt, Reibungsexperiment, Reibung und Kontaktfläche, Reibleistung, Tribologische Beanspruchung, Umwelteinflüsse, Tribologisches Lebensalter, Reibleistungsdichte, Kontaktmodelle, Simulation realer Kontakte, Rauheit
- Kapitel 2: Verschleiß
 plastisches Fließen, Fließen von Mikrorauheiten, Dissipationspfade, Mechanische Vermischung, Dynamik dritter Körper, Einlauf, Einlaufsdynamik, Tangentiale Scherung
- Kapitel 3: Schmierung
 Strieberkurve, Reibungsregimes (HD, EHD, Mischreibung), Ölarten, Additive, Ölanalytik, Feststoffschmierung
- Kapitel 4: Messtechnik
 Reibungsmessung, Tribometer, Leistungsumsatz, konventionelle Verschleißmessung, kontinuierliche Verschleißmessung (RNT)
- Kapitel 5: Rauheit
 Profilometrie, Profilkenngrößen, Messstrecken und -filter, Traganteilkurve, Messfehler
- Kapitel 6: Begleitende Analytik
 skalenübergreifende Topographiemessung, chemische Analytik, Strukturanalyse, mechanische Analyse

Übungen dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für die Beantwortung weitergehender Rückfragen der Studierenden.

Der/die Studierende kann

- die grundlegenden Reibungs- und Verschleißmechanismen beschreiben, die in tribologisch beanspruchten Systemen auftreten
- das Reibungs- und Verschleißverhalten von mechanischen Systemen beurteilen
- die Wirkung von Schmierstoffen sowie der wichtigsten Additive erläutern
- Lösungsansätze für die Optimierung von tribologisch beanspruchten Systemen identifizieren
- die wichtigsten Messmethoden zur Bestimmung tribologischen Kenngrößen beschreiben und zur Charakterisierung von Reibpaarungen anwenden
- geeignete Messmethoden für die skalenumübergreifende Ermittlung von Oberflächenrauheit und -topographie auswählen und die ermittelten Kennwerte hinsichtlich ihre Wirkung auf das tribologische Verhalten interpretieren
- die wichtigsten Verfahren und deren physikalische Messprinzipien zur oberflächenanalytischen Charakterisierung tribologisch belasteter Wirkflächen erläutern

Vorkenntnisse in Mathematik, Mechanik und Werkstoffkunde empfohlen

Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden
mündliche Prüfung (ca. 40 min)
keine Hilfsmittel
Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

8.215 Teilleistung: Turbinen-Luftstrahl-Triebwerke [T-MACH-105366]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Klasse</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Bauer, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2170478</td>
<td>Turbinen-Luftstrahl-Triebwerke</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Bauer, Mitarbeiter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
</tr>
<tr>
<td>WS 20/21</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, Dauer 20 Min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Turbinen-Luftstrahl-Triebwerke
2170478, SS 2020, 2 SWS, Sprache: Deutsch, *Im Studierendenportal anzeigen*

Inhalt

Einführung, Flugantriebe und ihre Komponenten
Forderungen an Flugantriebe, Vortriebswirkungsgrad
Thermodynamische und gasdynamische Grundlagen, Aus-legungsrechnung, Schubtriebwerk
Komponenten von luftsaugenden Triebwerken
Auslegung und Projektierung von Flugtriebwerken
Konstruktive Gestaltung des Triebwerkes und seine Komponenten, ausgewählte Kapitel und aktuelle Entwicklung

Lernziele:

Die Studenten können:

- den Aufbau moderner Strahltriebwerke vergleichen
- den Betrieb moderner Strahltriebwerke analysieren
- die thermodynamischen und strömungsmechanischen Grundlagen von Flugtriebwerken anwenden
- die Hauptkomponenten Einlauf, Verdichter, Brennkammer, Turbine und Schubdüse erläutern und nach entsprechenden Kriterien auswählen
- Lösungsansätze zur Reduzierung von Schadstoffemissionen, Lärm und Brennstoffverbrauch beurteilen

Arbeitsaufwand:

Präsenzzeit: 21 h
Selbststudium: 42 h
Prüfung: mündlich
Dauer: 30 Minuten
Hilfsmittel: keine

 Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 20/21
Literaturhinweise
Hagen, H.: Fluggasturbinen und ihre Leistungen, G. Braun Verlag, 1982
Hünnecke, K.: Flugtriebwerke, ihre Technik und Funktion, Motorbuch Verlag, 1993
8.216 Teilleistung: Übungen - Tribologie [T-MACH-109303]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Martin Dienwiebel

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2181114</th>
<th>Tribologie</th>
<th>5 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🗣</th>
<th>Dienwiebel, Scherge</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

erfolgreiches Bearbeiten aller Übungsaufgaben

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Tribologie

<table>
<thead>
<tr>
<th>2181114, WS 20/21, 5 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenz</td>
</tr>
</tbody>
</table>
Inhalt

- Kapitel 1: Reibung
 - Adhäsion, Geometrischer und realer Kontakt, Reibungsexperiment, Reibung und Kontaktfläche, Reibleistung,
 - Tribologische Beanspruchung, Umwelteinflüsse, Tribologisches Lebensalter, Reibleistungsdichte, Kontaktmodelle,
 - Simulation realer Kontakte, Rauheit
- Kapitel 2: Verschleiß
 - plastisches Fließen, Fließen von Mikrorauheiten, Dissipationspfade, Mechanische Vermischung, Dynamik dritter Körper,
 - Einlauf, Einlaufsdynamik, Tangentiale Scherung
- Kapitel 3: Schmierung
 - Striebeckkurve, Reibungsexempire (HD, EHD, Mischreibung), Ölarten, Additive, Ölanalytik, Feststoffschmierung
- Kapitel 4: Messtechnik
 - Reibungsmessung, Tribometer, Leistungsumsatz, konventionelle Verschleißmessung, kontinuierliche Verschleißmessung (RNT)
- Kapitel 5: Rauheit
 - Profilometrie, Profilkenngrößen, Messstrecken und -filter, Traganteilkurve, Messfehler
- Kapitel 6: Begleitende Analytik
 - skalenübergreifende Topographiemessung, chemische Analytik, Strukturanalyse, mechanische Analyse

Übungen dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für die Beantwortung weitergehender Rückfragen der Studierenden.

Der/die Studierende kann

- die grundlegenden Reibungs- und Verschleißmechanismen beschreiben, die in tribologisch beanspruchten Systemen auftreten
- das Reibungs- und Verschleißverhalten von mechanischen Systemen beurteilen
- die Wirkung von Schmierstoffen sowie der wichtigsten Additive erläutern
- Lösungsansätze für die Optimierung von tribologisch beanspruchten Systemen identifizieren
- die wichtigsten Messmethoden zur Bestimmung tribologischen Kenngrößen beschreiben und zur Charakterisierung von Reibpaarungen anwenden
- geeignete Messmethoden für die skalenübergreifende Ermittlung von Oberflächenrauheit und –topographie auswählen und die ermittelten Kennwerte hinsichtlich ihre Wirkung auf das tribologische Verhalten interpretieren
- die wichtigsten Verfahren und deren physikalische Messprinzipien zur oberflächenanalytischen Charakterisierung tribologisch belasteter Wirkflächen erläutern

Vorkenntnisse in Mathematik, Mechanik und Werkstoffkunde empfohlen

Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden
mündliche Prüfung (ca. 40 min)
keine Hilfsmittel
Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102582 - Schwerpunkt: Kontinuumsmechanik
M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen
SS 2020 2162257 Übungen zu Einführung in die Finite-Elemente-Methode 1 SWS Übung (Ü) Dyck, Langhoff, Böhlke

Prüfungsveranstaltungen
SS 2020 76-T-MACH-110330 Übungen zu Einführung in die Finite-Elemente-Methode Prüfung (PR) Böhlke, Langhoff

Erfolgskontrolle(n)
Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Einführung in die Finite-Elemente-Methode" (siehe Teilleistung 76-T-MACH-105320)

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, bestehen die Klausurvorsprüche in der erfolgreichen Bearbeitung der schriftlichen Übungsblätter und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, und für Studierende anderer Fachrichtungen bestehen die Klausurvorsprüche in der Bearbeitung der schriftlichen Übungsauflagen.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Einführung in die Finite-Elemente-Methode
2162257, SS 2020, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"

Literaturhinweise
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"
Teileistung: Übungen zu Einführung in die Numerische Strömungsmechanik [T-MACH-111033]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
 Dr.-Ing. Alexander Stroh

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102582 - Schwerpunkt: Kontinuumsmechanik
 M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2154534</th>
<th>Übung zu Einführung in die Numerische Strömungsmechanik</th>
<th>2 SWS</th>
<th>Übung (Ü)</th>
<th>Stroh, Frohnapfel</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht in der erfolgreichen Bearbeitung der Hausaufgaben am Rechner.

Voraussetzungen
keine

Anmerkungen
Das Bestehen dieser Teilleistung berechtigt zur Anmeldung für die Klausur: Einführung in die numerische Strömungsmechanik (siehe Teilleistung T-MACH-110362).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übung zu Einführung in die Numerische Strömungsmechanik

2154534, SS 2020, 2 SWS, [Im Studierendenportal anzeigen](#)

Inhalt

- Einführung und Motivation, Grundgleichungen und Kennzahlen,
- Turbulenz und deren Modellierung (DNS, LES, RANS);
- Numerische Lösung der Navier-Stokes Gleichungen: Diskretisierung und Lösungsverfahren (FDM, FVM), Randbedingungen, Initialbedingungen, Stabilität, Fehler der Numerik und der Modellierung
- Aufbau einer numerischen Strömungssimulation: Pre- und Postprocessing, Validierung, Darstellung der Rechenergebnisse, kritische Bewertung
- Einführung in open-source Simulationstoolbox OpenFOAM: Simulationsaufbau, Netzgenerierung mit OpenFOAM-Werkzeugen, Netzgenerierung mit kommerziellen Softwarepaketen, OpenFOAM-Auswertewerkzeuge, Auswertung in python;
- Einführung in einen forschungsorientierten Strömungslöser für turbulente Strömungen (DNS mit Incompact3d), Simulationsaufbau, statistische Auswertung und Analyse turbulerter Strömungen in MATLAB und python;
- Visualisierung von Simulationsergebnissen in ParaView, Interpretation der Simulationsergebnisse

Die Veranstaltung umfasst eine Vorlesung und ein Rechnerpraktikum. Über die Vergabe der beschränkten Plätze in den begleitenden Rechnerübungen entscheidet das Institut.
8.219 Teilleistung: Übungen zu Höhere Mathematik I [T-MATH-100525]

Verantwortung: PD Dr. Tilo Arens
PD Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 0131100 | Übungen zu 0131000 | 2 SWS | Übung (Ü) / Arens |
| WS 20/21 | 0131300 | Übungen zu 0131200 | 2 SWS | Übung (Ü) / Arens |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine
8.220 Teilleistung: Übungen zu Höhere Mathematik II [T-MATH-100526]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 0180900 | Übungen zu 0180800 | 2 SWS | Übung (U) | Hettlich |
| SS 2020 | 0181100 | Übungen zu 0181000 | 2 SWS | Übung (U) | Hettlich |

Prüfungsveranstaltungen

| SS 2020 | 7700024 | Übungen zu Höhere Mathematik II | Prüfung (PR) | Hettlich, Arens, Griesmaier |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine
8.221 Teilleistung: Übungen zu Höhere Mathematik III [T-MATH-100527]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102859 - Höhere Mathematik

Teilleistungsart
- Studienleistung schriftlich

Leistungspunkte
- 0

Turnus
- Jedes Wintersemester

Version
- 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>0131500</th>
<th>Übungen zu 0131400</th>
<th>2 SWS</th>
<th>Übung (Ü) / 🖥</th>
<th>Griesmaier</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine.
8.222 Teilleistung: Übungen zu Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110333]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
M-MACH-102582 - Schwerpunkt: Kontinuumsmechanik
M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Accessibilität</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Übungen zu Kontinuumsmechanik der Festkörper und Fluide</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📝</td>
<td>Dyck, Karl, Böhlke</td>
</tr>
</tbody>
</table>

Legende: 📱 Online, 📝 Präsenz/Online gemischt, 📝 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgreiches Bestehen der Übungen ist Voraussetzung für die Teilnahme an der Klausur "Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110377).

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, und für Studierende der Fachrichtung MATWERK bestehen die Klausurvoraussetzungen in der erfolgreichen Bearbeitung der schriftlichen Übungsaufgaben und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, bestehen die Klausurvoraussetzungen in der erfolgreichen Bearbeitung der schriftlichen Übungsaufgaben.

Voraussetzungen
Keine

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Kontinuumsmechanik der Festkörper und Fluide

<table>
<thead>
<tr>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>

Inhalt
Siehe Vorlesung " Kontinuumsmechanik der Festkörper und Fluide "

Literaturhinweise
Siehe Vorlesung " Kontinuumsmechanik der Festkörper und Fluide ".

Please refer to the lecture "Continuum mechanics of solids and fluids".
8.223 Teilleistung: Übungen zu Mathematische Methoden der Kontinuumsmechanik [T-MACH-110376]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr.-Ing. Thomas Böhlke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Maschinenbau</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-MACH-102746 - Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2161255</th>
<th>Übungen zu Mathematische Methoden der Kontinuumsmechanik</th>
<th>2 SWS</th>
<th>Übung (Ü)</th>
<th>Wicht, Gajek, Böhlke</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung der Übungsblätter. Details werden in der ersten Vorlesung bekanntgegeben.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Mathematische Methoden der Kontinuumsmechanik

2161255, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Siehe "Mathematische Methoden der Kontinuumsmechanik"

Literaturhinweise

Siehe "Mathematische Methoden der Kontinuumsmechanik"
8.224 Teilleistung: Übungen zu Technische Mechanik I [T-MACH-100528]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102572 - Technische Mechanik

Erfolgskontrolle(n)

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflicht-Hausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als drei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-100282)

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik I
2161246, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Siehe Vorlesung Technische Mechanik I.

Literaturhinweise
Siehe Vorlesung Technische Mechanik I
8.225 Teilleistung: Übungen zu Technische Mechanik II [T-MACH-100284]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102572 - Technische Mechanik

Teilleistungsart Studienleistung schriftlich
Leistungspunkte 0
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstyp</th>
<th>Veranstaltungscode</th>
<th>Wöchentliche Stunden</th>
<th>Veranstalungsbezeichnung</th>
<th>Übungsmethode</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Übung (Ü)</td>
<td>2162251</td>
<td>2</td>
<td>Übungen zu Technische Mechanik II</td>
<td>Übung (U)</td>
<td>Dyck, Gajek, Böhlke</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Übung (Ü)</td>
<td>3162011</td>
<td>2</td>
<td>Engineering Mechanics II (Tutorial)</td>
<td>Übung (U)</td>
<td>Pallicity, Langhoff</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Prüfung (PR)</td>
<td>76-T-MACH-100284</td>
<td></td>
<td>Übungen zu Technische Mechanik II</td>
<td>Prüfung (PR)</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Prüfung (PR)</td>
<td>76-T-MACH-100284-englisch</td>
<td></td>
<td>Tutorial Engineering Mechanics II</td>
<td>Prüfung (PR)</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Prüfung (PR)</td>
<td>76-T-MACH-100284</td>
<td></td>
<td>Übungen zu Technische Mechanik II</td>
<td>Prüfung (PR)</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Prüfung (PR)</td>
<td>76-T-MACH-100284-englisch</td>
<td></td>
<td>Tutorial Engineering Mechanics II</td>
<td>Prüfung (PR)</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflicht-Hausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als zwei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-100283).

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik II
2162251, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Siehe Vorlesung Technische Mechanik II

Literaturhinweise
Siehe Vorlesung Technische Mechanik II

Engineering Mechanics II (Tutorial)
3162011, SS 2020, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]

Inhalt
see lecture "Engineering Mechanics II"

Literaturhinweise
see lecture "Engineering Mechanics II"
8.226 Teilleistung: Übungen zu Technische Mechanik III [T-MACH-105202]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102572 - Technische Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2161204</th>
<th>Übungen zu Technische Mechanik III</th>
<th>2 SWS</th>
<th>Übung (Ü) / Online</th>
<th>Seemann, Altoé, Bitner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>3161013</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü) / Online</td>
<td>Seemann, Altoé, Bitner</td>
</tr>
</tbody>
</table>

Legende: 📲 Online, 🗺 Präsenz/Online gemischt, 🗺 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Testate, erfolgreiche Bearbeitung von Übungsblättern

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik III
2161204, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Übungsblätter müssen zu Hause bearbeitet und zur Korrektur abgegeben werden. Die erfolgreiche Bearbeitung ist Voraussetzung zur Teilnahme an der Klausur.

Literaturhinweise
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
Hagedorn: Technische Mechanik III.
Teilleistung: Übungen zu Technische Mechanik IV [T-MACH-105203]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102572 - Technische Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2162232</th>
<th>Übungen zu Technische Mechanik 4 für mach, tema</th>
<th>2 SWS</th>
<th>Übung (Ü)</th>
<th>Seemann, Bitner, Schröders</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3162013</td>
<td>Engineering Mechanics 4 (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Seemann, Bitner, Schröders</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105203 | Übungen zu Technische Mechanik IV | Prüfung (PR) | Seemann |

Erfolgskontrolle(n)
Testate, erfolgreiche Bearbeitung von Übungsblättern

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik 4 für mach, tema
2162232, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)

Inhalt

Die Übungsblätter müssen zu Hause bearbeitet und zur Korrektur abgegeben werden. Die erfolgreiche Bearbeitung ist Voraussetzung zur Teilnahme an der Klausur.

Literaturhinweise
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin, 1971
Klotter: Technische Schwingungslehre, 1. Bd. Teil A, Heidelberg
8.228 Teilleistung: Übungen zu Werkstoffanalytik [T-MACH-107685]

Verantwortung: Dr.-Ing. Jens Gibmeier
apl. Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Vorlesung (V) / 🖥</th>
<th>Hochschulmitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2174586</td>
<td>2</td>
<td>Vorlesung (V) / 🖥</td>
<td>Schneider, Gibmeier</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfung (PR) / 🖥</th>
<th>Hochschulmitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Übungen zu Werkstoffanalytik</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Übungen zu Werkstoffanalytik</td>
<td>Gibmeier</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛡 Präsenz/Online gemischt, 🗣 Präsenz, ☠ Abgesagt

Erfolgskontrolle(n)

Regelmäßige Teilnahme

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkstoffanalytik

2174586, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

In dieser Veranstaltung werden folgende Methoden vorgestellt:
- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Literaturhinweise

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
8.229 Teilleistung: Übungsschein Mensch-Maschine-Interaktion [T-INFO-106257]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2020 2400095 Mensch-Maschine-Interaktion 1 SWS Übung (Ü) Beigl, Exler
SS 2020 24659 Mensch-Maschine-Interaktion 2 SWS Vorlesung (V) Exler, Beigl

Prüfungsveranstaltungen
SS 2020 7500121 Übungsschein Mensch-Maschine-Interaktion Prüfung (PR) Beigl

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO (unbenoteter Übungsschein).

Voraussetzungen
Keine.

Anmerkungen
Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mensch-Maschine-Interaktion
24659, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt
Beschreibung:

Lehrinhalt:
Themenbereiche sind:
1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse).
2. Designgrundlagen und Designmethoden, Ein- und Ausgabeeinheiten für Computer, eingebettete Systeme und mobile Geräte,
3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
4. Technische Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen (Textdialoge und Formulare, Menüsyste, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Aktivität

Arbeitsaufwand

Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min

Präsenzzeit: Besuch der Übung
8 x 90 min
12 h 00 min

Vor- / Nachbereitung der Vorlesung
15 x 150 min
37 h 30 min

Vor- / Nachbereitung der Übung
8 x 360 min
48 h 00 min

Foliensatz/Skriptum 2x durchgehen
2 x 12 h
24 h 00 min

Prüfung vorbereiten
36 h 00 min

SUMME
180 h 00 min

Arbeitsaufwand für die Lerneinheit "Mensch-Maschine-Interaktion"

Lernziele:
Die Vorlesung führt in Grundlagen der Mensch-Maschine Kommunikation ein. Nach Abschluss der Veranstaltung können die Studierenden

• grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
• grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
• grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
• existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Organisatorisches
Die Vorlesung ist ein Stammmodul und wird entweder mündlich oder schriftlich abgeprüft (Klausur). Dabei wird zu Semesterbeginn entschieden, welche der beiden Formen der Prüfung angeboten wird.
Literaturhinweise
8.230 Teilleistung: Verbrennungsmotoren I [T-MACH-102194]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung / Übung</th>
<th>Thema</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Verbrennungsmotoren, Wasserstoffmotoren und CO2-neutrale Kraftstoffe I</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfung (PR)</th>
<th>Thema</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Prüfung (PR)</td>
<td>Verbrennungsmotoren I</td>
<td>Koch, Kubach</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Prüfung (PR)</td>
<td>Verbrennungsmotoren I</td>
<td>Kubach, Koch</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n):
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen:
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt

- Einleitung, Historie, Konzepte
- Prinzip und Anwendungsfallte
- Charakteristische Kenngrößen
- Bauteile
- Kurbeltrieb
- Brennstoffe
- Ottomotorische Betriebsarten
- Dieselmotorische Betriebsarten
- Abgasnachbehandlung
8.231 Teilleistung: Verhaltensgenerierung für Fahrzeuge [T-MACH-105367]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Dr. Moritz Werling

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von:
M-MACH-102817 - Schwerpunkt: Informationstechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102820 - Schwerpunkt: Mechatronik
M-MACH-102821 - Schwerpunkt: Technische Logistik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfungform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2138336</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Werling, Stiller</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2138336</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>2</td>
<td>Vorlesung (V) / 🖥</td>
<td>Werling, Stiller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung

60 Minuten

Hilfsmittel: einfache wissenschaftliche Taschenrechner / programmierbare oder graphische Taschenrechner sind nicht erlaubt

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verhaltensgenerierung für Fahrzeuge

2138336, SS 2020, 2 SWS, Sprache: Deutsch,
Im Studierendenportal anzeigen
Inhalt
Kurzbeschreibung

Lernziele:

Nachweis: schriftliche Prüfung 60 Minuten

Arbeitsaufwand: 120 Stunden

Organisatorisches

Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.

Verhaltensgenerierung für Fahrzeuge
2138336, WS 20/21, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt
Kurzbeschreibung

Lernziele:

Nachweis: schriftliche Prüfung
Arbeitsaufwand: 120 Stunden

Organisatorisches
Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.

Verantwortung: Dr. Patric Gruber
Prof. Dr. Peter Gumbsch

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Biomechanik

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2181715 | Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen | 2 SWS | Vorlesung (V) / 🖥 | Gruber, Gumbsch |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-102139 | Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen | Prüfung (PR) | Gruber, Gumbsch |

Legende: 🖥 Online, ⬠ Präsenz/Online gemischt, ⬡ Präsenz, ⌠ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen
2181715, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
1 Ermüdung, Ermüdungsmechanismen
 1.1 Einführung
 1.2 Lebensdauer
 1.3 Stadien der Ermüdung
 1.4 Materialwahl
 1.5 Kerben und Kerbformoptimierung
 1.6 Fallbeispiele: ICE-Unglücke
2 Kriechen
 2.1 Einführung
 2.2 Hochtemperaturplastizität
 2.3 Phänomenologische Beschreibung
 2.4 Kriechmechanismen
 2.5 Legierungseinflüsse

Der/die Studierende
- besitzt das grundlegende Verständnis der mechanischen Vorgänge, um die Zusammenhänge zwischen äußerer Belastung und Werkstoffwiderstand zu erklären.
- kann die wichtigsten empirische Werkstoffmodelle für Ermüdung und Kriechen erläutern und anwenden.
- besitzt das physikalische Verständnis, um Versagensphänomene beschreiben und erklären zu können.
- kann statistische Ansätze zur Zuverlässigkeitsbeurteilung nutzen
- kann seine im Rahmen der Veranstaltung erworbenen Fähigkeiten nutzen, um Werkstoffe anwendungsspezifisch auszuwählen und zu entwickeln

Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Die Erfolgskontrolle erfolgt in Form einer ca. 30 min. mündlichen Prüfung (nach §4 (2), 2 SPO).

Literaturhinweise
- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
- Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); Standardwerk über Ermüdung, alle Materialklassen, umfangreich, für Einsteiger und Fortgeschrittene
8.233 Teilleistung: Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch [T-MACH-102140]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Lehrveranstaltungen

| WS 20/21 | 2181711 | Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch | 3 SWS | Vorlesung / Übung (VÜ) | Gumbsch, Weygand |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-102140 | Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch | Prüfung (PR) | Kraft, Weygand, Gumbsch |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen

keine

Empfehlungen

Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch

2181711, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

1. Einführung
2. Grundlagen der Elastizitätstheorie
3. Klassifizierung von Spannungen
4. Versagen durch plastische Verformung
 ◦ Zugversuch
 ◦ Versetzungen
 ◦ Verfestigungsmechanismen
 ◦ Dimensionierungsrichtlinien
5. Verbundwerkstoffe
6. Bruchmechanik
 ◦ Bruchhypothesen
 ◦ Linear elastische Bruchmechanik
 ◦ Risswiderstand
 ◦ Experimentelle Bestimmung der Riβzähigkeit
 ◦ Fehlerfeststellung
 ◦ Risswachstum
 ◦ Anwendungen der Bruchmechanik
 ◦ Atomistik des Bruchs

Der/die Studierende

- besitzt das grundlegende Verständnis der mechanischen Vorgänge, um die Zusammenhänge zwischen äußerer Belastung und Werkstoffwiderstand zu erklären.
- kann die Grundlagen der linearen elastischen Bruchmechanik erläutern und entscheiden, ob diese bei einem Versagensfall angewandt werden können.
- kann die wichtigsten empirischen Werkstoffmodelle für Verformung und Bruch beschreiben und anwenden.
- besitzt das physikalische Verständnis, um Versagensphänomene beschreiben und erklären zu können.

Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde empfohlen

Präsenzzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Die Erfolgskontrolle erfolgt in Form einer ca. 30 min. mündlichen Prüfung (nach §4 (2), 2 SPO).

Organisatorisches

Übungstermine werden in der Vorlesung bekannt gegeben!

Literaturhinweise

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
8.234 Teilleistung: Verzahntechnik [T-MACH-102148]

Verantwortung: Dr.-Ing. Markus Klaiber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
M-MACH-102812 - Schwerpunkt: Antriebssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Veranstaltungskennzahl</th>
<th>Semesterwochenstunden (SWS)</th>
<th>Modulverantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Verzahntechnik</td>
<td>2</td>
<td>2149655</td>
<td>2 SWS</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Veranstaltungskennzahl</th>
<th>Prüfung (PR)</th>
<th>Modulverantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102148</td>
<td>76</td>
<td>Verzahntechnik</td>
<td>Prüfung (PR)</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verzahntechnik
2149655, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt

- Anwendungsbeispiele und Notwendigkeit von Getrieben
- Grundlagen der Zahnrad- und Getriebetechnik
- Zahnradbelastung und Prozessketten
- Fertigungsverfahren
- Wärmebehandlung
- Qualitätssicherung
- Simulationstechniken

Lernziele:
Die Studierenden …

- kennen die Grundbegriffe einer Verzahnung und können die in der Vorlesung vermittelten Grundlagen der Zahnrad- und Getriebetechnik erläutern.
- sind fähig, die verschiedenen Fertigungsverfahren und deren Maschinentechniken zur Herstellung von Verzahnungen anzuzeigen und deren Funktionsweise sowie Vor- und Nachteile zu erläutern.
- können Messschritte zur Beurteilung von Verzahnungsqualitäten lesen und entsprechend interpretieren.
- sind in der Lage auf Basis einer vorgegebenen Anwendung eine geeignete Prozesskette für die Herstellung der Verzahnung auszuwählen und dabei die jeweiligen Haupteinflüsse einzelner Prozessschritte zu beurteilen.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise

Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.235 Teilleistung: Virtual Reality Praktikum [T-MACH-102149]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von:
- M-MACH-102583 - Schwerpunkt: Informationsmanagement
- M-MACH-102820 - Schwerpunkt: Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2123375 | Virtual Reality Praktikum | 3 SWS | Projekt (PRO) / 📖 | Ovtcharova, Mitarbeiter |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-102149 | Virtual Reality Praktikum | Prüfung (PR) | Ovtcharova |

Legende: 🖥 Online, 📖 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet)

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Reality Praktikum

| 2123375, WS 20/21, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen | Projekt (PRO) Präsenz/Online gemischt |

Inhalt

- Grundlagen und Einführung in VR (Hardware, Software, Anwendungen)
- Einarbeitung in die Entwicklungsumgebungen (PolyVR, Blender, ...)
- Erstellen eigener VR-Anwendungen in Kleingruppen

Organisatorisches
Siehe Homepage zur Lehrveranstaltung

Literaturhinweise
Keine / None
8.236 Teilleistung: Wärme- und Stoffübertragung [T-MACH-105292]

Verantwortung: Prof. Dr.-Ing. Henning Bockhorn
Prof. Dr. Ulrich Maas

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Versuchsstunden (V)</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3122512 Heat and Mass Transfer</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Bockhorn</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2165512 Wärme- und Stoffübertragung</td>
<td>2 SWS</td>
<td>Präsenz/Online gemischt</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105292 Wärme- und Stoffübertragung</td>
<td>Maas</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Prüfungsleistung schriftlich; Dauer ca. 3 h

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wärme- und Stoffübertragung

2165512, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise

- Maas; Vorlesungsskript "Wärme- und Stoffübertragung"
8.237 Teilleistung: Wellen- und Quantenphysik [T-PHYS-108322]

Verantwortung: apl. Prof. Dr. Gernot Goll
Prof. Dr. Bernd Pilawa

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104030 - Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Semester</th>
<th>Module-Code</th>
<th>Module-Name</th>
<th>WS</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Doz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td></td>
<td>4040411</td>
<td>Wellen und Quantenphysik (für Maschinenbauer)</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Pilawa</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td></td>
<td>4040412</td>
<td>Übungen zu Wellen und Quantenphysik</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Pilawa, NN</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td></td>
<td>4040431</td>
<td>Wave and Quantum Physics</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Goll</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td></td>
<td>4040432</td>
<td>Exercises to Wave and Quantum Physics</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Goll, Loïc</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Semester</th>
<th>Module-Code</th>
<th>Module-Name</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td></td>
<td>7800123</td>
<td>Wellen- und Quantenphysik (deutschsprachige Prüfung)</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td></td>
<td>7800124</td>
<td>Wave and Quantum Physics (englischsprachige Prüfung)</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen
keine
8.238 Teilleistung: Wellenausbreitung [T-MACH-105443]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104442 - Schwerpunkt: Schwingungslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung (V/PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2161219</td>
<td>Wellenausbreitung</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105443</td>
<td>Wellenausbreitung</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105443</td>
<td>Wellenausbreitung</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wellenausbreitung

2161219, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Organisatorisches

Vorlesung wird im WS 2020/2021 nicht angeboten.

Literaturhinweise

8.239 Teilleistung: Werkstoffanalytik [T-MACH-107684]

Verantwortung: Dr.-Ing. Jens Gibmeier
 apl. Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Namensangabe</th>
<th>Vorlesung (V) / Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2174586</td>
<td>Schneider, Gibmeier</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Namensangabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-107684 Gibmeier</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-107684 Gibmeier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

Die erfolgreiche Teilnahme an Übungen zu Werkstoffanalytik ist Voraussetzung für die Zulassung zur mündlichen Prüfung Werkstoffanalytik.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107685 - Übungen zu Werkstoffanalytik muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffanalytik

2174586, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Literaturhinweise

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
8.240 Teilleistung: Werkstoffe für den Leichtbau [T-MACH-105211]

Verantwortung: Prof. Dr.-Ing. Peter Elsner
Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 4

Turnus
- Jedes Sommersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kurzbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2174574</td>
<td>Werkstoffe für den Leichtbau</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Liebig, Elsner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kurzbezeichnung</th>
<th>Prüfungstyp (PR)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105211</td>
<td>Werkstoffe für den Leichtbau</td>
<td>Prüfung (PR)</td>
<td>Liebig</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105211</td>
<td>Werkstoffe für den Leichtbau</td>
<td>Prüfung (PR)</td>
<td>Liebig</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
- keine

Empfehlungen
- Werkstoffkunde I/II

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffe für den Leichtbau

<table>
<thead>
<tr>
<th>Kurscode</th>
<th>SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2174574</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>
Inhalt
Einführung
Konstruktive, fertigungstechnische und werkstoffkundliche Aspekte des Leichtbaus
Aluminiumbasislegierungen
Aluminiumknetlegierungen
Aluminiumgusslegierungen
Magnesiumbasislegierungen
Magnesiumknetlegierungen
Magnesiumgusslegierungen
Titanbasislegierungen
Titanknetlegierungen
Titanusslegierungen
Hochfeste Stähle
Hochfeste Baustähle
Vergütungsstähle, pressgehärtete Stähle
Aushärtbare Stähle
Verbundwerkstoffe, insbesondere mit polymerer Matrix
Matrixsysteme
Verstärkungswerkstoffe
Grundlagen der Verbundmechanik
Hybride Werkstoffsysteme
Sonderwerkstoffe des Leichtbaus
Berylliumlegierungen
Metallische Gläser
Anwendungen

Lernziele:

Voraussetzungen:
Werkstoffkunde I/II (empfohlen)

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung „Werkstoffe für den Leichtbau“ beträgt pro Semester 120 h und besteht aus Präsenz in den Vorlesungen (24 h), Vor- und Nachbearbeitungszeit zuhause (48 h) und Prüfungsvorbereitungszeit (48 h)

Nachweis:
Mündliche Prüfung, Dauer ca. 25 min

Organisatorisches
Teilnehmerzahl ist begrenzt. Informationen zur Teilnahme/Anmeldung in der Vorlesung.

Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung
8.241 Teilleistung: Werkstoffkunde I & II [T-MACH-105145]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102562 - Werkstoffkunde

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>11</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2174560</td>
<td>Werkstoffkunde II für mach, phys</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3174015</td>
<td>Materials Science and Engineering II (Lecture)</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3174026</td>
<td>Materials Science and Engineering II (Tutorials)</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Gibmeier, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2173550</td>
<td>Werkstoffkunde I für mach, phys</td>
<td>4</td>
<td>Vorlesung (V) / 🕵️‍♀️</td>
<td>Pundt</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3173008</td>
<td>Materials Science and Engineering I (Lecture)</td>
<td>4</td>
<td>Vorlesung (V) / 🕵️‍♀️</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3173009</td>
<td>Materials Science and Engineering I (Tutorial)</td>
<td>1</td>
<td>Übung (Ü) / 🕵️‍♀️</td>
<td>Gibmeier</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105145</td>
<td>Werkstoffkunde I, II</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105145-2</td>
<td>Werkstoffkunde I, II</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105145-English</td>
<td>Werkstoffkunde I & II (Exam in English)</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Gibmeier</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105145-W</td>
<td>Werkstoffkunde I & II (Wiederholer)</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105145</td>
<td>Werkstoffkunde I, II</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Pundt</td>
</tr>
</tbody>
</table>

Legende: 🕵️ Online, 🕵️ Präsenz/Online gemischt, 🕵️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
Vorbedingung für mündliche Modulprüfung: Erfolgreiche Teilnahme am "Praktikum in Werkstoffkunde" (unbenoteter Schein).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105146 - Werkstoffkunde Praktikum muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Der Arbeitsaufwand für die Vorlesung Werkstoffkunde 1 und 2 beträgt pro Semester 165 h und besteht aus Präsenz in den Vorlesungen (WS: 4 SWS, SS: 2SWS) und Übungen (je 1 SWS im WS und SS) sowie Vor- und Nachbearbeitungszeit zuhause.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffkunde II für mach, phys

2174560, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können typische Vertreter der einzelnen Werkstoffhauptgruppen nennen und die grundsätzlichen Unterschiede zwischen den einzelnen Vertreter beschreiben.

Die Studierenden sind in der Lage die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.

Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ablesen und daraus die Gefügeentwicklung ableiten.

Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Voraussetzungen:
Werkstoffkunde I

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Nachweis:
Kombiniert mit Werkstoffkunde I, mündlich; ca. 30 Minuten
Voraussetzung für die Zulassung zur Prüfung ist eine erfolgreiche Teilnahme am Werkstoffkundepraktikum.

Organisatorisches
Aktuelle Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehrveranstaltungen.php

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering II (Lecture)
3174015, SS 2020, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können typische Vertreter der einzelnen Werkstoffhauptgruppen nennen und die grundsätzlichen Unterschiede zwischen den einzelnen Vertretern beschreiben.

Die Studierenden sind in der Lage, die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.

Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ablesen und daraus die Gefügeentwicklung ableiten.

Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Voraussetzungen:
Werkstoffkunde I
Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Nachweis:
Kombiniert mit Werkstoffkunde I, mündlich; ca. 30 Minuten

Voraussetzung für die Zulassung zur Prüfung ist eine erfolgreiche Teilnahme am Werkstoffkundepraktikum.

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering II (Tutorials)
3174026, SS 2020, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Beispielhafte Aufgaben

Lernziele:
Die Studierenden sind in der Lage, die gesamte Vorlesung und im Selbststudium erarbeitete Wissen anzuwenden und auf gegebene Fragestellungen zu übertragen.

Sie können selbständig auf Basis grundlegender mathematischer Zusammenhänge Berechnungen zu werkstoffkundlichen Fragestellungen ausführen, wobei Sie in der Lage sind, zu erkennen, welche mathematischen Formeln für die Berechnungen herangezogen werden müssen.

Die Studierenden können werkstoffkundliche Zusammenhänge qualitativ und quantitativ diskutieren und sind in der Lage, diese Zusammenhänge mit eigenen Worten wiederzugeben und zu präsentieren.

Voraussetzungen:
Vorlesung Werkstoffkunde II

Arbeitsaufwand:

Organisatorisches
Ort: ID SR 201 Raum 201 Geb. 02.10
Inhalt
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung

Qualifikationsziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.
Die Studierenden können die Eigenschaftsprofile beschreiben und Anwendungsgebiete der wichtigsten Ingenieurswerkstoffe nennen.
Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung beschreiben und deren Auswertung erläutern. Sie können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Organisatorisches
asynchrone Videos

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
Inhalt
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung

Qualifikationsziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die Eigenschaftsprofile beschreiben und Anwendungsgebiete der wichtigsten Ingenieurswerkstoffe nennen.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung beschreiben und deren Auswertung erläutern. Sie können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
8.242 Teilleistung: Werkstoffkunde III [T-MACH-105301]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 2173553 | Werkstoffkunde III | 4 SWS | Vorlesung (V) / 🖥 | Heilmaier, Guth |
| WS 20/21 | 2173554 | Übungen zu Werkstoffkunde III | 1 SWS | Übung (Ü) / 🖥 | Kauffmann, Heilmaier |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105301 | Werkstoffkunde III | Prüfung (PR) | Heilmaier, Lang |
| WS 20/21 | 76-T-MACH-105301 | Werkstoffkunde III | Prüfung (PR) | Heilmaier |

Legende: 🖥 Online, 🕰️ Präsenz/Online gemischt, 🕰️ Präsenz, X Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 35 Minuten

Voraussetzungen
T-MACH-110818 - Plasticity of Metals and Intermetallics darf nicht begonnen sein

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkstoffkunde III
2173553, WS 20/21, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Eigenschaften von reinem Eisen; Thermodynamische Grundlagen ein- und zweikomponentiger Systeme; Keimbildung und Keimwachstum; Diffusionsprozesse in kristallinem Eisen; Zustandsschaubild Fe-Fe3C; Auswirkungen von Legierungselementen auf Fe-C-Legierungen; Nichtgleichgewichtsgefüge; Mehrkomponentige Eisenbasislegierungen; Wärmebehandlungsverfahren; Härbarkeit und Härtebarkeitsprüfung

Qualifikationsziele:

Organisatorisches
asynchrone Videos

Literaturhinweise
Steels – Microstructure and Properties

V Übungen zu Werkstoffkunde III
2173554, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Bachelorstudiengang Maschinenbau (Stand 15.09.2020)
Modulhandbuch gültig ab Wintersemester 2020/2021
Inhalt
Die Übung umfasst zunächst eine Wiederholungsveranstaltung zu WKI/II. Anschließend werden prüfungsorientiert Fragen zu den Teilgebieten der Vorlesung:
- Eigenschaften von reinem Eisen
- Thermodynamische Grundlagen ein- und zweikomponentiger Systeme
- Keimbildung und Keimwachstum
- Diffusionsprozesse in kristallinem Eisen
- Zustandsschaubild Fe-Fe3C
- Auswirkungen von Legierungselementen auf Fe-C-Legierungen
- Nichtgleichgewichtsgefüge
- Mehrkomponentige Eisenbasislegierungen
- Wärmebehandlungsverfahren
diskutiert. Die Veranstaltung wird durch Konsultationen zur mündlichen Prüfung abgeschlossen.

Qualifikationsziele:

Organisatorisches
8.243 Teilleistung: Werkstoffkunde Praktikum [T-MACH-105146]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102562 - Werkstoffkunde

Lehrveranstaltungen

| SS 2020 | 2174597 | Experimentelles Praktikum in Werkstoffkunde | 3 SWS | Praktikum (P) | Heilmaier, Pundt, Dietrich, Gibmeier, Guth, Lang |
| SS 2020 | 3174016 | Materials Science and Engineering Lab Course | 3 SWS | Praktikum (P) | Gibmeier, Heilmaier, Pundt, Dietrich, Lang |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105146 | Werkstoffkunde Praktikum | Prüfung (PR) | Heilmaier, Pundt |

Erfolgskontrolle(n)
Mündliches Kolloquium zu Beginn jedes Themenblocks; unbenotete Bescheinigung der erfolgreichen Teilnahme.

Voraussetzungen
keine

Anmerkungen
Der Arbeitsaufwand für das Praktikum Werkstoffkunde beträgt insgesamt 90 h und besteht aus Präsenzpflicht in den 10 Versuchen (eine Woche halbtags, je 4 Zeitstunden pro Tag) und Vor- und Nachbearbeitungszeit zuhause.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelles Praktikum in Werkstoffkunde
2174597, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Durchführung und Auswertung von Laborversuchen zu folgenden fünf Themenblöcken:

Mechanische Werkstoffprüfung
Nichtmetallische Werkstoffe
Gefüge und Eigenschaften
Schwingende Beanspruchung / Ermüdung
Fertigungstechnische Werkstoffbeeinflussung

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung benennen, ihre Durchführung und die notwendigen Auswertemethoden beschreiben und können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Die Studierenden sind in der Lage zur Klärung werkstoffkundlicher Fragestellungen geeignete Versuche auszuwählen, sie können die praktischen Versuchsabläufe beschreiben und diese Versuche selbst durchführen und können aus den gemessenen und erhobenen Daten entsprechende Kennwerte berechnen und diese interpretieren.

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzeit: 22 Stunden
Selbststudium: 68 Stunden

Organisatorisches
Blockveranstaltung in KW 37/38. Infos durch Aushang am IAM-WK und in der VL WK II. Anmeldung erforderlich.

Literaturhinweise
Praktikumsskriptum
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering Lab Course
3174016, SS 2020, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Praktikum (P)

Inhalt
Durchführung und Auswertung von Laborversuchen zu folgenden fünf Themenblöcken:

Mechanische Werkstoffprüfung
Nichtmetallische Werkstoffe
Gefüge und Eigenschaften
Schwingende Beanspruchung / Ermüdung
Fertigungstechnische Werkstoffbeeinflussung

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung benennen, ihre Durchführung und die notwendigen Auswertemethoden beschreiben und können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Die Studierenden sind in der Lage zur Klärung werkstoffkundlicher Fragestellungen geeignete Versuche auszuwählen, sie können die praktischen Versuchsabläufe beschreiben und diese Versuche selbst durchführen und können aus den gemessenen und erhobenen Daten entsprechende Kennwerte berechnen und diese interpretieren.

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzeit: 22 Stunden
Selbststudium: 68 Stunden

Organisatorisches
Registration required. Note announcements (MSE lecture and IAM-WK bulletin board)
Literaturhinweise
Praktikumsskriptum

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
8.244 Teilleistung: Werkstoffrecycling und Nachhaltigkeit [T-MACH-110937]

Verantwortung: Prof. Dr.-Ing. Peter Elsner
 Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102819 - Schwerpunkt: Materialwissenschaft und Werkstofftechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Werkstoffrecycling und Nachhaltigkeit</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Liebig, Hüther</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Lehrveranstaltung</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Werkstoffrecycling und Nachhaltigkeit</td>
<td>Liebig</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗺️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 25 Min.)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkstoffrecycling und Nachhaltigkeit

2173520, WS 20/21, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt

1. Rechtliche und Geschichtliche Grundlagen
2. Klimawandel, Ökologie und Stoffströme
3. Nachhaltigkeit im Allgemeinen
4. Produktverantwortung, recyclinggerechte Konstruktion und geplante Obsoleszenz
5. Allgemeine und rechtliche Grundlagen des Recyclings und Materialkreisläufe
6. Materialtrennung, Sortierung und Aufbereitung
7. Recycling von Metallen
8. Recycling von Polymeren und Verbundwerkstoffen
9. Recycling von Alltagsmaterialien
10. Alternative Materialien und Konstruktionen
11. Materialien für erneuerbare Energien
12. ggf. Fallstudien

Organisatorisches

Veranstaltung findet synchron statt, Mo 11.30Uhr-13.00Uhr, weitere Informationen siehe ILIAS

Literaturhinweise

Skript wird in der Vorlesung ausgegeben
8.245 Teilleistung: Werkzeugmaschinen und hochpräzise Fertigungssysteme [T-MACH-110962]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102815 - Schwerpunkt: Entwicklung und Konstruktion

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 8
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Übung</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2149910</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>6 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🧩</td>
<td>Jedes Wintersemester</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🧩 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (40 Minuten)

Voraussetzungen
T-MACH-102158 - Werkzeugmaschinen und Handhabungstechnik darf nicht begonnen sein.
T-MACH-109055 - Werkzeugmaschinen und Handhabungstechnik darf nicht begonnen sein.
T-MACH-110963 - Werkzeugmaschinen und hochpräzise Fertigungssystem darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkzeugmaschinen und hochpräzise Fertigungssysteme
2149910, WS 20/21, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt

Die Themen im Einzelnen sind:

- Strukturelemente dynamischer Fertigungssysteme
- Vorschubachsen: Hochpräzise Positionierung
- Hauptantriebe spanender Werkzeugmaschinen
- Periphere Einrichtungen
- Maschinensteuerung
- Messtechnische Beurteilung
- Instandhaltungsstrategien und Zustandsüberwachung
- Prozessüberwachung
- Entwicklungsprozess für Fertigungsmaschinen
- Maschinenbeispiele

Lernziele:
Die Studierenden …

- sind in der Lage, den Einsatz und die Verwendung von Werkzeugmaschinen und hochpräzisen Fertigungssystemen zu beurteilen und diese hinsichtlich ihrer Eigenschaften sowie ihres Aufbaus zu unterscheiden.
- können die wesentlichen Elemente von Werkzeugmaschinen und hochpräzisen Fertigungssystemen (Gestell, Hauptspindel, Vorschubachsen, Periphere Einrichtungen, Steuerung und Regelung) beschreiben und erörtern.
- sind in der Lage, die wesentlichen Komponenten von Werkzeugmaschinen und hochpräzisen Fertigungssystemen auszuwählen und auszulegen.
- sind befähigt, Werkzeugmaschinen und hochpräzise Fertigungssysteme nach technischen und wirtschaftlichen Kriterien auszuwählen und zu beurteilen.

Arbeitsaufwand:

MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING/TVWL:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches

Lectures on Mondays and Wednesdays, tutorial on Thursdays. The tutorial dates will be announced in the first lecture.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.246 Teilleistung: Windkraft [T-MACH-105234]

Verantwortung: Dr. Norbert Lewald
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102838 - Schwerpunkt: Kraft- und Arbeitsmaschinen

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2157381 Windkraft</td>
<td>2 SWS</td>
<td>Veranstaltung (Veranst.)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Windkraft</td>
<td>Prüfung (PR)</td>
<td>Lewald, Pritz</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105234 Windkraft</td>
<td>Prüfung (PR)</td>
<td>Lewald, Pritz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 120 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Windkraft
2157381, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Veranstaltung (Veranst.)
8.247 Teilleistung: Wissenschaftliches Programmieren für Ingenieure [T-MACH-100532]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung/Übung</th>
<th>Bemerkung</th>
</tr>
</thead>
</table>
| WS 20/21 | 2181738 | *Wissenschaftliches Programmieren für Ingenieure*
2 SWS
Vorlesung (V) / 🖥
Weygand, Gumbsch |
| WS 20/21 | 2181739 | Übungen zu Wissenschaftliches Programmieren für Ingenieure
2 SWS
Übung (Ü) / 🖥
Weygand |

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Bemerkung</th>
</tr>
</thead>
</table>
| SS 2020 | 76-T-MACH-100532 | *Wissenschaftliches Programmieren für Ingenieure*
Prüfung (PR)
Weygand, Gumbsch |

Legende: 🖥 Online, 📝 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung, 90 Minuten

Voraussetzungen

Die Teilleistung kann nicht mit der Teilleistung "Anwendung höherer Programmiersprachen im Maschinenbau" (T-MACH-105390) kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wissenschaftliches Programmieren für Ingenieure

2181738, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Online
Inhalt
1. Einführung: warum wissenschaftliches Rechnen
2. Rechnerarchitekturen
3. Einführung in Unix/Linux
4. Grundlagen der Programmiersprache C++
 * Programmstruktur
 * Datentypen, Operatoren, Steuerstrukturen
 * dynamische Speicherverwaltung
 * Funktionen
 * Klassen, Vererbung
 * OpenMP Parallelisierung
5. Numerik / Algorithmen
 * finite Differenzen
 * MD Simulation: Lösung von Differenzialgleichungen 2ter Ordnung
 * Partikelsimulation
 * lineare Gleichungslöser

Der/die Studierende kann

- die Programmiersprache C++ anwenden, um Programme für das wissenschaftliche Rechnen zu erstellen
- Programme zur Nutzung auf Parallelrechnern anpassen
- geeignete numerische Methoden zur Lösung von Differentialgleichungen auswählen.

Die Vorlesung kann nicht mit der Vorlesung "Anwendung höherer Programmiersprachen im Maschinenbau" (2182735) kombiniert werden.

Präsenzzeit: 22,5 Stunden
Übung: 22,5 Stunden (freiwillig)
Selbststudium: 75 Stunden

schriftliche Prüfung 90 Minuten

Literaturhinweise

1. C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München
2. C++ and object-oriented numeric computing for Scientists and Engineers, Daoqui Yang, Springer Verlag.
3. The C++ Programming Language, Bjarne Stroustrup, Addison-Wesley
4. Die C++ Standardbibothek, S. Kuhlins und M. Schader, Springer Verlag

Numerik:

1. Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
2. Numerische Mathematik, H.R. Schwarz, Teubner Stuttgart
3. Numerische Simulation in der Moleküldynamik, Griebel, Knaepk, Zumbusch, Caglar, Springer Verlag

Übungen zu Wissenschaftliches Programmieren für Ingenieure

2181739, WS 20/21, 2 SWS, Sprache: Deutsch, [im Studierendenportal anzeigen]

Inhalt
Übungen zu den Themen der Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)

Präsenzzeit: 22,5 Stunden

Organisatorisches
Veranstaltungsort (RZ Pool Raum) wird in Vorlesung bekannt gegeben

Literaturhinweise
Skript zur Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)
8.248 Teilleistung: Zündsysteme [T-MACH-105985]

Verantwortung: Dr.-Ing. Olaf Toedter
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-102645 - Schwerpunkt: Technik des Verbrennungsmotors

Teilleistungsart	Prüfungsleistung mündlich	Leistungspunkte	Version

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 2133125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 76-T-MACH-105985</td>
</tr>
<tr>
<td>WS 20/21 76-T-MACH-105985</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Zündsysteme 2133125, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Zündvorgang
- Funkenzündung
- Aufbau einer Funkenzündung
- Grenzen der Funkenzündung
- Weiterentwicklung der Funkenzündung
- Neue und Alternative Zündverfahren