Module Handbook
Bachelor Program Mechanical Engineering
SPO 2016, B.Sc.
Valid from Summer Term 2020
Date: 15/02/2020
Table Of Contents

1. About this handbook ... 7
 1.1. Notes and rules .. 7
 1.1.1. Begin and completion of a module ... 7
 1.1.2. Module versions .. 7
 1.1.3. General and partial examinations .. 7
 1.1.4. Types of exams .. 7
 1.1.5. Repeating exams .. 7
 1.1.6. Additional accomplishments .. 8
 1.1.7. Further information ... 8
2. 2015_AB_062_BSc_ab_Okt_2016.pdf ... 9
3. 2019_AB_003_Änderungssatzung_SPO_MACH_BSc.pdf ... 26
4. MACH_Studienplan_BSc_Maschinenbau_SPO_2015__Stand_2020.pdf .. 29
5. BSc-Maschinenbau_2019-2020.pdf ... 36
6. Field of study structure ... 40
 6.1. Orientation Exam .. 40
 6.2. Bachelor Thesis ... 40
 6.3. Fundamentals of Engineering ... 40
 6.4. Specialization in Mechanical Engineering .. 41
 6.5. Interdisciplinary Qualifications ... 41
7. Modules .. 42
 7.1. Advanced Mathematics - M-MATH-102859 ... 42
 7.2. Bachelor Thesis - M-MACH-104494 ... 44
 7.3. Compulsory Elective Module [BSc-Modul WPF] - M-MACH-102746 45
 7.4. Computer Science [BSc-Modul 09, Inf] - M-MACH-102563 ... 47
 7.5. Electrical Engineering - M-ETIT-104801 .. 48
 7.7. Fluid Mechanics [BSc-Modul 12, SL] - M-MACH-102565 ... 51
 7.8. Key Competences [BSc-Modul 07, SQL] - M-MACH-102576 ... 52
 7.9. Machines and Processes [mach13BSc-Modul 13, MuP] - M-MACH-102566 53
 7.10. Major Field: Combustion Engine Techniques [SP 57] - M-MACH-102645 54
 7.16. Major Field: Information Technology - M-MACH-102817 ... 63
 7.18. Major Field: Mechatronics [SP 31] - M-MACH-102820 .. 67
 7.19. Major Field: Modeling and Simulation in Dynamics [SP 61] - M-MACH-104430 69
 7.20. Major Field: Powertrain Systems [SP 02] - M-MACH-102812 .. 70
 7.22. Major Field: Production Systems [SP 38] - M-MACH-102589 .. 73
 7.23. Major Field: Rail System Technology [SP 50] - M-MACH-102638 ... 74
 7.27. Manufacturing Processes - M-MACH-102549 ... 80
 7.28. Materials Science [BSc-Modul 04, WK] - M-MACH-102562 .. 81
 7.30. Mechanical Design [BSc-Modul 06, MKL] - M-MACH-102573 ... 84
 7.31. Orientation Exam - M-MACH-104624 ... 90
 7.32. Physics - M-PHYS-104030 ... 91
 7.33. Production Operations Management - M-MACH-100297 ... 92
 7.34. Technical Thermodynamics [BSc-Modul 05, TTD] - M-MACH-102574 93
8. Courses ... 95
 8.1. Advanced Mathematics I - T-MATH-100275 .. 95
 8.2. Advanced Mathematics II - T-MATH-100276 .. 96
 8.3. Advanced Mathematics III - T-MATH-100277 .. 97
<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines - T-MACH-105173</td>
<td></td>
</tr>
<tr>
<td>Agile Product Innovation Management - Value-driven Planning of New Products - T-MACH-106744</td>
<td></td>
</tr>
<tr>
<td>Airport Logistics - T-MACH-105175</td>
<td></td>
</tr>
<tr>
<td>Alternative Powertrain for Automobiles - T-MACH-105655</td>
<td></td>
</tr>
<tr>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines - T-MACH-105173</td>
<td></td>
</tr>
<tr>
<td>Applied Tribology in Industrial Product Development - T-MACH-105215</td>
<td></td>
</tr>
<tr>
<td>Atomic Simulations and Molecular Dynamics - T-MACH-105308</td>
<td></td>
</tr>
<tr>
<td>Automated Manufacturing Systems - T-MACH-102162</td>
<td></td>
</tr>
<tr>
<td>Automated Manufacturing Systems - T-MACH-108844</td>
<td></td>
</tr>
<tr>
<td>Automated Production Systems (MEI) - T-MACH-106732</td>
<td></td>
</tr>
<tr>
<td>Automotive Engineering I - T-MACH-100092</td>
<td></td>
</tr>
<tr>
<td>Automotive Engineering II - T-MACH-102117</td>
<td></td>
</tr>
<tr>
<td>Automotive Vision - T-MACH-105218</td>
<td></td>
</tr>
<tr>
<td>Bachelor Thesis - T-MACH-109188</td>
<td></td>
</tr>
<tr>
<td>Basics in Measurement and Control Systems - T-MACH-104745</td>
<td></td>
</tr>
<tr>
<td>Basics of Manufacturing Technology - T-MACH-105219</td>
<td></td>
</tr>
<tr>
<td>Basics of Technical Logistics I - T-MACH-109919</td>
<td></td>
</tr>
<tr>
<td>Basics of Technical Logistics II - T-MACH-109920</td>
<td></td>
</tr>
<tr>
<td>Behaviour Generation for Vehicles - T-MACH-105367</td>
<td></td>
</tr>
<tr>
<td>Biomechanics: Design in Nature and Inspired by Nature - T-MACH-105651</td>
<td></td>
</tr>
<tr>
<td>BUS-Controls - T-MACH-102150</td>
<td></td>
</tr>
<tr>
<td>BUS-Controls - Advance - T-MACH-108889</td>
<td></td>
</tr>
<tr>
<td>CAD-NX Training Course - T-MACH-102187</td>
<td></td>
</tr>
<tr>
<td>CAE-Workshop - T-MACH-105212</td>
<td></td>
</tr>
<tr>
<td>CATIA CAD Training Course - T-MACH-102185</td>
<td></td>
</tr>
<tr>
<td>Cognitive Automobiles - Laboratory - T-MACH-105378</td>
<td></td>
</tr>
<tr>
<td>Combustion Engines I - T-MACH-102194</td>
<td></td>
</tr>
<tr>
<td>Combustion Engines I - T-MACH-102194</td>
<td></td>
</tr>
<tr>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies - T-MACH-105535</td>
<td></td>
</tr>
<tr>
<td>Computational Dynamics - T-MACH-105349</td>
<td></td>
</tr>
<tr>
<td>Computational Intelligence - T-MACH-105314</td>
<td></td>
</tr>
<tr>
<td>Computational Vehicle Dynamics - T-MACH-105350</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering - T-MACH-105360</td>
<td></td>
</tr>
<tr>
<td>Computer Science for Engineers - T-MACH-105205</td>
<td></td>
</tr>
<tr>
<td>Computer Science for Engineers, Prerequisite - T-MACH-105206</td>
<td></td>
</tr>
<tr>
<td>Computerized Multibody Dynamics - T-MACH-105384</td>
<td></td>
</tr>
<tr>
<td>Constitution and Properties of Wearresistant Materials - T-MACH-102141</td>
<td></td>
</tr>
<tr>
<td>Control Technology - T-MACH-105185</td>
<td></td>
</tr>
<tr>
<td>Data Analytics for Engineers - T-MACH-105694</td>
<td></td>
</tr>
<tr>
<td>Design and Development of Mobile Machines - T-MACH-105511</td>
<td></td>
</tr>
<tr>
<td>Design and Development of Mobile Machines - Advance - T-MACH-108887</td>
<td></td>
</tr>
<tr>
<td>Design of a Jet Engine Combustion Chamber - T-CIWVT-105780</td>
<td></td>
</tr>
<tr>
<td>Design with Plastics - T-MACH-105330</td>
<td></td>
</tr>
<tr>
<td>Development of hybrid drivetrains - T-MACH-110817</td>
<td></td>
</tr>
<tr>
<td>Development of Oil-Hydraulic Powertrain Systems - T-MACH-105441</td>
<td></td>
</tr>
<tr>
<td>Digital Control - T-MACH-105317</td>
<td></td>
</tr>
<tr>
<td>Dimensioning and Optimization of Power Train System - T-MACH-105536</td>
<td></td>
</tr>
<tr>
<td>Drive Train of Mobile Machines - T-MACH-105307</td>
<td></td>
</tr>
<tr>
<td>Dynamics of the Automotive Drive Train - T-MACH-105226</td>
<td></td>
</tr>
<tr>
<td>Electric Rail Vehicles - T-MACH-102121</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering and Electronics - T-ETIT-109820</td>
<td></td>
</tr>
<tr>
<td>Elements and Systems of Technical Logistics - T-MACH-102159</td>
<td></td>
</tr>
<tr>
<td>Elements and Systems of Technical Logistics - Project - T-MACH-108946</td>
<td></td>
</tr>
<tr>
<td>Energy Efficient Intralogistic Systems - T-MACH-105151</td>
<td></td>
</tr>
<tr>
<td>Energy Storage and Network Integration - T-MACH-105952</td>
<td></td>
</tr>
<tr>
<td>Energy Systems I: Renewable Energy - T-MACH-105408</td>
<td></td>
</tr>
<tr>
<td>Engine Laboratory - T-MACH-105337</td>
<td></td>
</tr>
<tr>
<td>Engine Measurement Techniques - T-MACH-105169</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics I - T-MACH-100282</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics II - T-MACH-100283</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics III & IV - T-MACH-105201</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor Program Mechanical Engineering, Date: 15/02/2020
Module Handbook valid from Summer Term 2020
Table Of Contents

8.65. Exercices in Technical Thermodynamics and Heat Transfer I - T-MACH-105204 ... 184
8.66. Exercices in Technical Thermodynamics and Heat Transfer II - T-MACH-105288 .. 185
8.67. Exercices - Tribology - T-MACH-109303 .. 186
8.68. Exercises for Materials Characterization - T-MACH-107685 ... 188
8.69. Experimental Dynamics - T-MACH-105514 .. 189
8.70. Failure Analysis - T-MACH-105724 .. 190
8.71. Failure of Structural Materials: Deformation and Fracture - T-MACH-102140 .. 192
8.72. Failure of Structural Materials: Fatigue and Creep - T-MACH-102139 .. 194
8.73. Fatigue of Metallic Materials - T-MACH-105354 .. 196
8.74. Flows and Heat Transfer in Energy Technology - T-MACH-105403 .. 197
8.75. Fluid Mechanics 1&2 - T-MACH-105207 .. 198
8.76. Fluid Power Systems - T-MACH-102093 .. 201
8.77. Foundry Technology - T-MACH-105157 .. 202
8.78. Fuels and Lubricants for Combustion Engines - T-MACH-105184 .. 204
8.79. Fundamentals for Design of Motor-Vehicle Bodies I - T-MACH-102116 .. 205
8.80. Fundamentals for Design of Motor-Vehicle Bodies II - T-MACH-102119 .. 206
8.81. Fundamentals in the Development of Commercial Vehicles I - T-MACH-105160 .. 207
8.82. Fundamentals in the Development of Commercial Vehicles II - T-MACH-105161 .. 209
8.83. Fundamentals of Automobile Development I - T-MACH-105162 .. 210
8.84. Fundamentals of Automobile Development II - T-MACH-105163 .. 212
8.85. Fundamentals of Catalytic Exhaust Gas Aftertreatment - T-MACH-105044 .. 214
8.86. Fundamentals of Combustion Engine Technology - T-MACH-105652 .. 215
8.87. Fundamentals of Combustion I - T-MACH-105213 .. 216
8.88. Fundamentals of Combustion II - T-MACH-105325 .. 217
8.89. Fundamentals of Energy Technology - T-MACH-105220 .. 218
8.90. Gasdynamics - T-MACH-105533 .. 220
8.91. Gear Cutting Technology - T-MACH-102148 .. 221
8.92. Global Logistics - T-MACH-105379 .. 223
8.93. Global Production Engineering (MEI) - T-MACH-106731 .. 225
8.94. Großdiesel- und -gasmotoren für Schiffsantriebe - T-MACH-110816 .. 226
8.95. Handling Characteristics of Motor Vehicles I - T-MACH-105152 .. 227
8.96. Handling Characteristics of Motor Vehicles II - T-MACH-105153 .. 228
8.97. Heat and Mass Transfer - T-MACH-105292 .. 229
8.98. Human Factors Engineering I - T-MACH-105518 .. 230
8.100. Human-Machine-Interaction - T-INFO-101266 .. 234
8.102. Hybrid and Electric Vehicles - T-ETIT-100784 .. 236
8.103. Hydraulic Fluid Machinery - T-MACH-105326 .. 237
8.104. I4.0 Systems Platform - T-MACH-106457 .. 239
8.105. Ignition Systems - T-MACH-105985 .. 241
8.106. Industrial Aerodynamics - T-MACH-105375 .. 242
8.107. Information Engineering - T-MACH-102209 .. 243
8.108. Information Processing in Sensor Networks - T-INFO-101466 .. 244
8.109. Information Systems and Supply Chain Management - T-MACH-102128 .. 245
8.110. Integrated Information Systems for Engineers - T-MACH-102083 .. 246
8.111. Integrated Production Planning in the Age of Industry 4.0 - T-MACH-108849 .. 247
8.112. Integrative Strategies in Production and Development of High Performance Cars - T-MACH-105188 .. 249
8.113. Intellectual Property Rights and Strategies in Industrial Companies - T-MACH-105442 .. 251
8.114. Introduction into Mechatronics - T-MACH-100535 .. 253
8.115. Introduction into the Multi-Body Dynamics - T-MACH-105209 .. 254
8.116. Introduction to Ceramics - T-MACH-100287 .. 255
8.117. Introduction to Computational Fluid Dynamics - T-MACH-110362 .. 256
8.118. Introduction to Nonlinear Vibrations - T-MACH-105439 .. 258
8.119. Introduction to Nuclear Energy - T-MACH-105525 .. 260
8.120. Introduction to Numerical Fluid Dynamics - T-MACH-105515 .. 261
8.121. Introduction to the Finite Element Method - T-MACH-110837 .. 262
8.122. IT-Fundamentals of Logistics - T-MACH-105187 .. 263
8.124. Laboratory Exercise in Energy Technology - T-MACH-105331 .. 266
8.125. Laboratory Laser Materials Processing - T-MACH-102154 .. 269
8.126. Laboratory Mechatronics - T-MACH-105370 .. 272

Bachelor Program Mechanical Engineering
Module Handbook valid from Summer Term 2020
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Module Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Production Metrology</td>
<td>T-MACH-108878</td>
<td>273</td>
</tr>
<tr>
<td>Laser in Automotive Engineering</td>
<td>T-MACH-105164</td>
<td>275</td>
</tr>
<tr>
<td>Leadership and Conflict Management</td>
<td>T-MACH-105440</td>
<td>277</td>
</tr>
<tr>
<td>Leadership and Management Development</td>
<td>T-MACH-105231</td>
<td>278</td>
</tr>
<tr>
<td>Lightweight Engineering Design</td>
<td>T-MACH-105221</td>
<td>279</td>
</tr>
<tr>
<td>Machine Dynamics</td>
<td>T-MACH-105210</td>
<td>280</td>
</tr>
<tr>
<td>Machine Dynamics II</td>
<td>T-MACH-105224</td>
<td>281</td>
</tr>
<tr>
<td>Machine Tools and Industrial Handling</td>
<td>T-MACH-109055</td>
<td>282</td>
</tr>
<tr>
<td>Machine Vision</td>
<td>T-MACH-105223</td>
<td>284</td>
</tr>
<tr>
<td>Machines and Processes</td>
<td>T-MACH-105208</td>
<td>285</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>T-MACH-102105</td>
<td>289</td>
</tr>
<tr>
<td>Materials Characterization</td>
<td>T-MACH-107684</td>
<td>293</td>
</tr>
<tr>
<td>Materials of Lightweight Construction</td>
<td>T-MACH-105211</td>
<td>294</td>
</tr>
<tr>
<td>Materials Science and Engineering III</td>
<td>T-MACH-105301</td>
<td>296</td>
</tr>
<tr>
<td>Materials Science I & II</td>
<td>T-MACH-105145</td>
<td>297</td>
</tr>
<tr>
<td>Materials Science Lab Course</td>
<td>T-MACH-105146</td>
<td>301</td>
</tr>
<tr>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>T-MACH-110375</td>
<td>303</td>
</tr>
<tr>
<td>Mathematical Methods in Continuum Mechanics II</td>
<td>T-MACH-110836</td>
<td>304</td>
</tr>
<tr>
<td>Mathematical Methods in Dynamics</td>
<td>T-MACH-105293</td>
<td>305</td>
</tr>
<tr>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>T-MACH-105295</td>
<td>307</td>
</tr>
<tr>
<td>Mathematical Methods of Vibration Theory</td>
<td>T-MACH-105294</td>
<td>309</td>
</tr>
<tr>
<td>Mathématiques appliquées aux sciences de l'ingénieur</td>
<td>T-MACH-105452</td>
<td>310</td>
</tr>
<tr>
<td>Measurement II</td>
<td>T-MACH-105335</td>
<td>311</td>
</tr>
<tr>
<td>Mechanical Design I & II</td>
<td>T-MACH-105286</td>
<td>313</td>
</tr>
<tr>
<td>Mechanical Design I, Prerequisites</td>
<td>T-MACH-105282</td>
<td>316</td>
</tr>
<tr>
<td>Mechanical Design II, Prerequisites</td>
<td>T-MACH-105283</td>
<td>318</td>
</tr>
<tr>
<td>Mechanical Design III & IV</td>
<td>T-MACH-104810</td>
<td>320</td>
</tr>
<tr>
<td>Mechanical Design III, Constructing the Team</td>
<td>T-MACH-105284</td>
<td>322</td>
</tr>
<tr>
<td>Mechanical Design IV, Constructing the Team</td>
<td>T-MACH-105285</td>
<td>324</td>
</tr>
<tr>
<td>Mechanics and Strength of Polymers</td>
<td>T-MACH-105333</td>
<td>326</td>
</tr>
<tr>
<td>Mechanics in Microtechnology</td>
<td>T-MACH-105334</td>
<td>327</td>
</tr>
<tr>
<td>Metallographic Lab Class</td>
<td>T-MACH-105447</td>
<td>328</td>
</tr>
<tr>
<td>Micro- and Nanosystem Integration for Medical, Fluidic and Optical Applications</td>
<td>T-MACH-108809</td>
<td>330</td>
</tr>
<tr>
<td>Microenergy Technologies</td>
<td>T-MACH-105557</td>
<td>332</td>
</tr>
<tr>
<td>Modelling and Simulation</td>
<td>T-MACH-100300</td>
<td>333</td>
</tr>
<tr>
<td>Modelling of Microstructures</td>
<td>T-MACH-105303</td>
<td>335</td>
</tr>
<tr>
<td>Modern Control Concepts I</td>
<td>T-MACH-105539</td>
<td>337</td>
</tr>
<tr>
<td>Novel Actuators and Sensors</td>
<td>T-MACH-102152</td>
<td>338</td>
</tr>
<tr>
<td>Numerical Fluid Mechanics</td>
<td>T-MACH-105338</td>
<td>339</td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>T-ETIT-101939</td>
<td>340</td>
</tr>
<tr>
<td>Physical and Chemical Principles of Nuclear Energy in View of Reactor Accidents and Back-End of Nuclear Fuel Cycle</td>
<td>T-MACH-105537</td>
<td>341</td>
</tr>
<tr>
<td>Physical Basics of Laser Technology</td>
<td>T-MACH-102102</td>
<td>343</td>
</tr>
<tr>
<td>Physics for Engineers</td>
<td>T-MACH-100530</td>
<td>345</td>
</tr>
<tr>
<td>PLM for Product Development in Mechatronics</td>
<td>T-MACH-102181</td>
<td>347</td>
</tr>
<tr>
<td>PLM-CAD Workshop</td>
<td>T-MACH-102153</td>
<td>348</td>
</tr>
<tr>
<td>Polymer Engineering I</td>
<td>T-MACH-102137</td>
<td>349</td>
</tr>
<tr>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>T-MACH-105233</td>
<td>351</td>
</tr>
<tr>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>T-MACH-105216</td>
<td>352</td>
</tr>
<tr>
<td>Practical Training in Measurement of Vibrations</td>
<td>T-MACH-105373</td>
<td>353</td>
</tr>
<tr>
<td>Presentation</td>
<td>T-MACH-109189</td>
<td>354</td>
</tr>
<tr>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td>T-MACH-102111</td>
<td>355</td>
</tr>
<tr>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td>T-MACH-110318</td>
<td>356</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>T-MACH-105147</td>
<td>358</td>
</tr>
<tr>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>T-MACH-102155</td>
<td>359</td>
</tr>
<tr>
<td>Production Operations Management</td>
<td>T-MACH-100304</td>
<td>360</td>
</tr>
<tr>
<td>Production Operations Management-Project</td>
<td>T-MACH-108734</td>
<td>361</td>
</tr>
<tr>
<td>Project Management in Global Product Engineering Structures</td>
<td>T-MACH-105347</td>
<td>362</td>
</tr>
<tr>
<td>Project Management in Rail Industry</td>
<td>T-MACH-104599</td>
<td>363</td>
</tr>
<tr>
<td>Project Workshop: Automotive Engineering</td>
<td>T-MACH-102156</td>
<td>364</td>
</tr>
<tr>
<td>Course Title</td>
<td>Course Code</td>
<td>Credits</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>8.188. Python Algorithm for Vehicle Technology</td>
<td>T-MACH-110796</td>
<td>366</td>
</tr>
<tr>
<td>8.189. Quality Management</td>
<td>T-MACH-102107</td>
<td>367</td>
</tr>
<tr>
<td>8.190. Rail System Technology</td>
<td>T-MACH-106424</td>
<td>369</td>
</tr>
<tr>
<td>8.191. Rail Vehicle Technology</td>
<td>T-MACH-105353</td>
<td>371</td>
</tr>
<tr>
<td>8.192. Railways in the Transportation Market</td>
<td>T-MACH-105540</td>
<td>373</td>
</tr>
<tr>
<td>8.193. Reliability Engineering 1</td>
<td>T-MACH-107447</td>
<td>374</td>
</tr>
<tr>
<td>8.194. Robotics I - Introduction to Robotics</td>
<td>T-INF-108014</td>
<td>376</td>
</tr>
<tr>
<td>8.195. Safety Engineering</td>
<td>T-MACH-105171</td>
<td>377</td>
</tr>
<tr>
<td>8.196. Scientific Computing for Engineers</td>
<td>T-MACH-100532</td>
<td>378</td>
</tr>
<tr>
<td>8.197. Selected Applications of Technical Logics</td>
<td>T-MACH-102160</td>
<td>380</td>
</tr>
<tr>
<td>8.198. Selected Applications of Technical Logistcs - Project</td>
<td>T-MACH-108945</td>
<td>381</td>
</tr>
<tr>
<td>8.199. Selected Problems of Applied Reactor Physics and Exercises</td>
<td>T-MACH-105462</td>
<td>382</td>
</tr>
<tr>
<td>8.200. Seminar for Rail System Technology</td>
<td>T-MACH-108692</td>
<td>383</td>
</tr>
<tr>
<td>8.201. Signals and Systems</td>
<td>T-ETIT-109313</td>
<td>385</td>
</tr>
<tr>
<td>8.203. Simulation of Coupled Systems - Advance</td>
<td>T-MACH-108888</td>
<td>388</td>
</tr>
<tr>
<td>8.204. SmartFactory@Industry (MEI)</td>
<td>T-MACH-106733</td>
<td>389</td>
</tr>
<tr>
<td>8.206. Strategic Product Development - Identification of Potentials of Innovative Products</td>
<td>T-MACH-105696</td>
<td>393</td>
</tr>
<tr>
<td>8.207. Strategic Product Development - Identification of Potentials of Innovative Products - Case Study</td>
<td>T-MACH-110396</td>
<td>394</td>
</tr>
<tr>
<td>8.208. Structural Analysis of Composite Laminates</td>
<td>T-MACH-105970</td>
<td>395</td>
</tr>
<tr>
<td>8.209. Sustainable Product Engineering</td>
<td>T-MACH-105358</td>
<td>396</td>
</tr>
<tr>
<td>8.211. Systematic Materials Selection</td>
<td>T-MACH-100531</td>
<td>398</td>
</tr>
<tr>
<td>8.212. Technical Design in Product Development</td>
<td>T-MACH-105361</td>
<td>400</td>
</tr>
<tr>
<td>8.213. Technical Thermodynamics and Heat Transfer I</td>
<td>T-MACH-104747</td>
<td>401</td>
</tr>
<tr>
<td>8.214. Technical Thermodynamics and Heat Transfer II</td>
<td>T-MACH-105287</td>
<td>402</td>
</tr>
<tr>
<td>8.215. Technology of Steel Components</td>
<td>T-MACH-105362</td>
<td>403</td>
</tr>
<tr>
<td>8.216. Theoretical Description of Mechatronic Systems</td>
<td>T-MACH-105521</td>
<td>405</td>
</tr>
<tr>
<td>8.218. Thermal Solar Energy</td>
<td>T-MACH-105225</td>
<td>407</td>
</tr>
<tr>
<td>8.219. Thermal Turbomachines I</td>
<td>T-MACH-105363</td>
<td>409</td>
</tr>
<tr>
<td>8.220. Thermal Turbomachines II</td>
<td>T-MACH-105364</td>
<td>412</td>
</tr>
<tr>
<td>8.221. Tires and Wheel Development for Passenger Cars</td>
<td>T-MACH-102207</td>
<td>415</td>
</tr>
<tr>
<td>8.222. Tribology</td>
<td>T-MACH-105531</td>
<td>416</td>
</tr>
<tr>
<td>8.223. Turbo Jet Engines</td>
<td>T-MACH-105366</td>
<td>418</td>
</tr>
<tr>
<td>8.224. Tutorial Advanced Mathematics I</td>
<td>T-MATH-100525</td>
<td>420</td>
</tr>
<tr>
<td>8.225. Tutorial Advanced Mathematics II</td>
<td>T-MATH-100526</td>
<td>421</td>
</tr>
<tr>
<td>8.226. Tutorial Advanced Mathematics III</td>
<td>T-MATH-100527</td>
<td>422</td>
</tr>
<tr>
<td>8.233. Value Stream within Enterprises – The Value Chain at Bosch</td>
<td>T-MACH-106375</td>
<td>429</td>
</tr>
<tr>
<td>8.234. Vehicle Comfort and Acoustics I</td>
<td>T-MACH-105154</td>
<td>431</td>
</tr>
<tr>
<td>8.235. Vehicle Comfort and Acoustics II</td>
<td>T-MACH-105155</td>
<td>433</td>
</tr>
<tr>
<td>8.236. Vehicle Ergonomics</td>
<td>T-MACH-108374</td>
<td>435</td>
</tr>
<tr>
<td>8.238. Vehicle Mechatronics I</td>
<td>T-MACH-105156</td>
<td>437</td>
</tr>
<tr>
<td>8.239. Vibration Theory</td>
<td>T-MACH-105290</td>
<td>438</td>
</tr>
<tr>
<td>8.240. Virtual Engineering (Specific Topics)</td>
<td>T-MACH-105381</td>
<td>440</td>
</tr>
<tr>
<td>8.241. Virtual Reality Practical Course</td>
<td>T-MACH-102149</td>
<td>441</td>
</tr>
<tr>
<td>8.242. Warehousing and Distribution Systems</td>
<td>T-MACH-105174</td>
<td>442</td>
</tr>
<tr>
<td>8.243. Wave and Quantum Physics</td>
<td>T-PHYS-108322</td>
<td>443</td>
</tr>
<tr>
<td>8.244. Wave Propagation</td>
<td>T-MACH-105443</td>
<td>444</td>
</tr>
<tr>
<td>8.245. Welding Technology</td>
<td>T-MACH-105170</td>
<td>445</td>
</tr>
<tr>
<td>8.246. Windpower</td>
<td>T-MACH-105234</td>
<td>447</td>
</tr>
<tr>
<td>8.247. Working Methods in Mechanical Engineering</td>
<td>T-MACH-105296</td>
<td>448</td>
</tr>
</tbody>
</table>
1 About this handbook

1.1 Notes and rules

The program exists of several subjects (e.g. Fundamentals of Engineering). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.1.1 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.1.2 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student's "binding declaration" on the choice of the module in the sense of 5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive.

1.1.3 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

1.1.4 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.

1.1.5 Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim.
1.1.6 Additional accomplishments

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam.

1.1.7 Further information

More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).
Amtliche Bekanntmachung

2015
Ausgegeben Karlsruhe, den 06. August 2015
Nr. 62

Inhalt

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau

Seite

381
Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau

vom 04. August 2015

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG iVm. § 32 Absatz 3 Satz 1 LHG am 04. August 2015 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich
§ 2 Ziele des Studiums, Akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
§ 6 Durchführung von Erfolgskontrollen
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
§ 6 b Computergestützte Erfolgskontrollen
§ 7 Bewertung von Studien- und Prüfungsleistungen
§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
§ 10 Abmeldung; Versäumnis, Rücktritt
§ 11 Täuschung, Ordnungsverstoß
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 13 Studierende mit Behinderung oder chronischer Erkrankung
§ 14 Modul Bachelorarbeit
§ 15 Zusatzleistungen
§ 15 a Mastervorzug
§ 16 Überfachliche Qualifikationen
§ 17 Prüfungsausschüsse
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung
§ 20 Umfang und Art der Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich

Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Maschinenbau am KIT.

§ 2 Ziel des Studiums, Akademischer Grad

(1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.

(2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Maschinenbau verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Der Studiengang nimmt teil am Programm „Studienmodelle individueller Geschwindigkeit“. Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg).

(2) Die Regelstudienzeit beträgt sechs Semester. Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 2 Satz 3 bis 5.

Eine qualifizierte Teilnahme liegt vor, wenn die Studierende Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtworkload 10 Semesterwochenstunden) belegt hat. Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.

(6) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutschsprachige Wahlmöglichkeiten gibt.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.

(2) Prüfungsleistungen sind:

1. schriftliche Prüfungen,
2. mündliche Prüfungen oder
3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer

1. in den Bachelorstudiengang Maschinenbau am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
3. nachweist, dass er in dem Bachelorstudiengang Maschinenbau den Prüfungsanspruch nicht verloren hat.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem vom/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichem Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.
Die Zulassung ist abzulehnen, wenn die in Absatz 3 und 4 genannten Voraussetzungen nicht erfüllt sind.

§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 5 zu berücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten. Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet. Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können.

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische und fachliche Betreuung zu gewährleisten. Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen
(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

<table>
<thead>
<tr>
<th>Note</th>
<th>Bewertung/cm Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>sehr gut (very good)</td>
<td>hervorragende Leistung,</td>
</tr>
<tr>
<td>gut (good)</td>
<td>eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,</td>
</tr>
<tr>
<td>befriedigend (satisfactory)</td>
<td>eine Leistung, die durchschnittlichen Anforderungen entspricht,</td>
</tr>
<tr>
<td>ausreichend (sufficient)</td>
<td>eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,</td>
</tr>
<tr>
<td>nicht ausreichend (failed)</td>
<td>eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt,</td>
</tr>
</tbody>
</table>

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

<table>
<thead>
<tr>
<th>Notenbereich</th>
<th>Bewertung/cm Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0; 1,3</td>
<td>sehr gut</td>
</tr>
<tr>
<td>1,7; 2,0; 2,3</td>
<td>gut</td>
</tr>
<tr>
<td>2,7; 3,0; 3,3</td>
<td>befriedigend</td>
</tr>
<tr>
<td>3,7; 4,0</td>
<td>ausreichend</td>
</tr>
<tr>
<td>5,0</td>
<td>nicht ausreichend</td>
</tr>
</tbody>
</table>

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.
(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

\[
\begin{align*}
\text{bis 1,5} & \quad \text{= sehr gut} \\
\text{von 1,6 bis 2,5} & \quad \text{= gut} \\
\text{von 2,6 bis 3,5} & \quad \text{= befriedigend} \\
\text{von 3,6 bis 4,0} & \quad \text{= ausreichend}
\end{align*}
\]

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

(1) Die Teilmodulprüfungen Höhere Mathematik I, Technische Mechanik I, Technische Mechanik II in den Modulen Höhere Mathematik und Technische Mechanik sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

(2) Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Abs. 2 vorliegt. Ohne ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine Fristüberschreitung von

1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von einem Semester nachweist oder

2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von zwei Semestern nachweist.

Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Abs. 2 auszustellende Bescheinigung, die beim Studierendenservice des KIT einzureichen ist. Im Falle von Nr. 1 kann der Vorsitzende des Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Ablegen der Orientierungsprüfung erforderlich ist, insbesondere weil die Module, die Bestandteil der Orientierungsprüfung sind, nur einmal jährlich angeboten werden.

(3) Ist die Bachelorprüfung bis zum Ende des Prüfungszeitraums des neunten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch, Verlust des Prüfungsanspruchs

(4) Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist oder eine Wiederholungsprüfung nach § 9 Abs. 6 nicht rechtzeitig erbracht wurde, es sei denn die Fristüberschreitung ist nicht selbst zu vertreten.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Wiederholung von Prüfungsleistungen hat spätestens bis zum Ende des Prüfungszeitraumes des übernächsten Semesters zu erfolgen.

(7) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(8) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(9) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitreihenerholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(10) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

§ 10 Abmeldung; Versäumnis, Rücktritt

(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmenfällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweils gültigen Gesetzes (Bundeselternzeitgesetz - BEEG) auf Antrag zu berücksichtigen. Der/die Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, dem Prüfungsausschuss, unter Beifügung der erforderlichen Nachweise schriftlich mitein, in welchem Zeitraum die Elternzeit in Anspruch genommen werden soll. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die bei einer Arbeitnehmerin bzw. einem Arbeitnehmer den Anspruch auf Elternzeit auslösen würden, und teilt

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 20 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

(3) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

(5) Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht ange nommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.“ Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5,0) bewertet.

§ 15 Zusatzleistungen

(1) Es können auch weitere Leistungspunkte (Zusatzleistungen) im Umfang von höchstens 30 LP aus dem Gesamtangebot des KIT erworben werden. § 3 und § 4 der Prüfungsordnung bleiben davon unberührt. Diese Zusatzleistungen gehen nicht in die Festsetzung der Gesamt- und Modulnoten ein. Die bei der Festlegung der Modulnote nicht berücksichtigten LP werden als Zusatzleistungen im Rahmen der Bewertung dieser beiden Personen die Note der Bachelorarbeit fest; er kann auch einen weiteren Gutachter bestellen. Die Bewertung hat innerhalb von sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.
§ 15 a Mastervorzug

§ 16 Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschüsse

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/der Vorsitzende des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsrechtliche Person hinzuzuziehen.

§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehr/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem mathematisch-naturwissenschaftlichen oder ingenieurwissenschaftlichen Studiengang oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufskademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung bzw. Prüfungsleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Studiengang Maschinenbau immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschul-
rektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems erworbene Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung

(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14).

(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:
1. Ingenieurwissenschaftliche Grundlagen: Modul(e) im Umfang von 143 LP,
2. Vertiefung im Maschinenbau: Modul(e) im Umfang von 16 LP,
3. Überfachliche Qualifikationen im Umfang von 6 LP gemäß § 16.

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.

§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote

(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen mindestens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit.

Dabei wird die Note des Moduls Bachelorarbeit mit dem doppelten Gewicht gegenüber den Noten der übrigen Fächer berücksichtigt.

(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen

Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 24 Aberkennung des Bachelorgrades

(1) Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung der Zeugnisse bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.
§ 25 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften

(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2016 in Kraft.

Karlsruhe, den 04. August 2015

Professor Dr.-Ing. Holger Hanselka
(Präsident)

Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelor-studiengang Maschinenbau Seite 26
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau

vom 21. Februar 2019

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 21. Februar 2019 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 9 Absatz 11 werden folgende Sätze 3 und 4 angefügt:

„Die Präsentation nach § 14 Absatz 1 a ist eine Studienleistung und kann bei einer Bewertung mit „nicht bestanden (not passed)” (im Gegensatz zu anderen Studienleistungen) nur einmal wiederholt werden. Die Präsentation ist endgültig nicht bestanden, wenn sie zweimal mit „nicht bestanden” (not passed) bewertet wurde.”

2. § 12 Absatz 1 wird wie folgt geändert:

a) Satz 1 wird wie folgt gefasst:

„Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung.”

b) Satz 2 wird aufgehoben.

c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

3. § 14 wird wie folgt geändert:

b) In Absatz 2 Satz 1 werden nach den Wörtern „Hochschullehrer/innen“ das Wort „und“ durch ein Komma ersetzt und nach der Angabe „§ 14 Abs. 3 Ziff. 1 KITG“ die Wörter „und habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau“ eingefügt.

c) In Absatz 7 Satz 1 werden nach den Wörtern „Hochschullehrer/innen“ das Wort „oder“ durch ein Komma ersetzt und nach der Angabe „§ 14 Abs. 3 Ziff. 1 KITG“ die Wörter „oder einem habilitierten Mitglied der KIT-Fakultät für Maschinenbau“ eingefügt.
4. § 17 wird wie folgt geändert:
 a) In Absatz 1 Satz 3 wird das Wort „stammt“ durch die Wörter „stammen soll“ ersetzt.
 b) In Absatz 7 Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.

5. § 18 Absatz 3 wird wie folgt geändert:
 Nach dem Wort „sofern“ werden die Wörter „die KIT-Fakultät eine Prüfungsbefugnis erteilt hat“ und „gestrichen.

6. § 26 Absatz 5 wird aufgehoben und folgender neuer Absatz 5 eingefügt:
 „(5) Für Studierende, die
 1. ihr Studium im Bachelorstudiengang Maschinenbau vor dem Wintersemester 2018/2019 aufgenommen haben oder
 2. ihr Studium im Bachelorstudiengang Maschinenbau ab dem Wintersemester 2018/2019 in einem höheren Fachsemester aufgenommen haben bzw. aufnehmen sofern das Fachsemester über dem Jahrgang der Studienanfänger zum Wintersemester 2018/2019 liegt,

 finden § 9 Abs. 11 und § 14 Abs. 1 a in der Fassung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau vom 04. August 2015 (Amtliche Bekanntmachung des KIT Nr. 62 vom 06. August 2015) weiterhin Anwendung.

 Studierende nach Satz 1 Ziffer 1 und Ziffer 2, können das Modul Bachelorarbeit auf Grundlage der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau in der Fassung vom 04. August 2015 (Amtliche Bekanntmachung des KIT Nr. 62 vom 06. August 2015) letztmalig bis zum 31. März 2023 ablegen“

Artikel 2 – Inkrafttreten

Diese Änderungssatzung tritt zum 01. April 2019 in Kraft.

Karlsruhe, den 21. Februar 2019

gez. Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Inhaltsverzeichnis

0 Abkürzungsverzeichnis .. 2
1 Studienpläne, Module und Prüfungen .. 3
 1.1 Prüfungsmodalitäten .. 3
 1.2 Module des Bachelorstudiums ... 3
 1.3 Studienplan .. 5
 1.4 Bachelorarbeit .. 5
2 Schwerpunkte .. 6
3 Änderungshistorie (ab 20.07.2016) ... 7
0 Abkürzungsverzeichnis

Semester:
WS Wintersemester
SS Sommersemester

Schwerpunkte:
K, KP Teilleistung im Kernbereich, ggf. Pflicht des Schwerpunkts
E Teilleistung im Ergänzungsbereich des Schwerpunkts
EM Teilleistung im Ergänzungsbereich ist nur im Masterstudiengang wählbar
E(P), E/P Teilleistung Praktikum im Ergänzungsbereich des Schwerpunkts, unbenotet

Lehrveranstaltung:
V Vorlesung
Ü Übung
P Praktikum
SWS Semesterwochenstunden

Teilleistung:
LP Leistungspunkte
Pr Prüfung
Pr (h) Prüfungsdauer in Stunden
mPr mündliche Prüfung
sPr schriftliche Prüfung
PraA Prüfungsleistung anderer Art
Üschein Übungsschein, Studienleistung
Pschein Praktikumsschein, Studienleistung
Schein unbenotete Modulleistung, Studienleistung
TL Teilleistung
Gew Gewichtung einer Prüfungsleistung im Modul bzw. in der Gesamtnote

Sonstiges:
SPO Studien- und Prüfungsordnung
w wählbar
p verpflichtend
1 Studienpläne, Module und Prüfungen

Die Angabe der Leistungspunkte (LP) erfolgt gemäß dem „European Credit Transfer and Accumulation System“ (ECTS) und basiert auf dem von den Studierenden zu absolvierenden Arbeitspensum.

1.1 Prüfungsmodalitäten

1.2 Module des Bachelorstudiums

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>LP/Modul</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Koordinator</th>
<th>Art der Erfolgskontrolle</th>
<th>Pr (h)</th>
<th>Gew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhere Mathematik</td>
<td>21</td>
<td>Höhere Mathematik I</td>
<td>7</td>
<td>Kirsch</td>
<td>Übchein sPr 2 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Höhere Mathematik II</td>
<td>7</td>
<td></td>
<td>Übchein sPr 2 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Höhere Mathematik III</td>
<td>7</td>
<td></td>
<td>Übchein sPr 2 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Mechanik</td>
<td>23</td>
<td>Technische Mechanik I</td>
<td>7</td>
<td>Böhlke</td>
<td>Übchein sPr 1,5 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technische Mechanik II</td>
<td>6</td>
<td></td>
<td>Übchein sPr 1,5 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technische Mechanik III & IV</td>
<td>10</td>
<td>Seemann</td>
<td>Übchein sPr 3 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werkstoffkunde</td>
<td>14</td>
<td>Werkstoffkunde I & II</td>
<td>11</td>
<td>Heilmaier</td>
<td>mPr ca. 0,5 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Werkstoffkunde-Praktikum</td>
<td>3</td>
<td></td>
<td>Pschein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Thermodynamik</td>
<td>15</td>
<td>Technische Thermodynamik I</td>
<td>8</td>
<td>Maas</td>
<td>Übchein sPr 3 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technische Thermodynamik II</td>
<td>7</td>
<td></td>
<td>Übchein sPr 3 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strömungslehre</td>
<td>8</td>
<td>Strömungslehre I & II</td>
<td>8</td>
<td>Frohnapfel</td>
<td>sPr 3 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physik</td>
<td>5</td>
<td>Wellen- und Quantenphysik</td>
<td>5</td>
<td>Pilawa</td>
<td>sPr 2 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>8</td>
<td>Elektrotechnik und Elektronik</td>
<td>8</td>
<td>Becker</td>
<td>sPr 3 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mess- und Regelungstechnik</td>
<td>7</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>7</td>
<td>Stiller</td>
<td>sPr 2,5 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>LP/ Modul</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Koordinator</th>
<th>Art der Erfolgskontrolle</th>
<th>Pr (h)</th>
<th>Gew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik</td>
<td>6</td>
<td>Informatik im Maschinenbau</td>
<td>6</td>
<td>Ovtcharova</td>
<td>Prüfungsleistung</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre</td>
<td>20</td>
<td>Maschinenkonstruktionslehre I & II</td>
<td>7</td>
<td>Albers</td>
<td>Prüfungsleistung</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maschinenkonstruktionslehre III & IV</td>
<td>13</td>
<td></td>
<td>Prüfungsleistung</td>
<td>4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Maschinen und Prozesse</td>
<td>7</td>
<td>Maschinen und Prozesse</td>
<td>7</td>
<td>Kubach</td>
<td>Prüfungsleistung</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Fertigungsprozesse</td>
<td>4</td>
<td>Grundlagen der Fertigungstechnik</td>
<td>4</td>
<td>Schulze</td>
<td>Prüfungsleistung</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Betriebliche Produktionswirtschaft</td>
<td>5</td>
<td>Betriebliche Produktionswirtschaft</td>
<td>3</td>
<td>Furmans</td>
<td>Prüfungsleistung</td>
<td>1,5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Betriebliche Produktionswirtschaft Projekt</td>
<td>2</td>
<td></td>
<td>Prüfungsauftritt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwerpunkt</td>
<td>12</td>
<td>Kern- und Ergänzungsbereich, wählbare TL siehe Modulhandbuch</td>
<td>12</td>
<td>SP-Verantwortlicher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td>4</td>
<td>wählbare TL siehe Modulhandbuch</td>
<td>4</td>
<td>Heilmaier</td>
<td>Prüfungsauftritt</td>
<td>0,4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td>6</td>
<td>Arbeitstechniken im Maschinenbau</td>
<td>4</td>
<td>Deml</td>
<td>Schein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wählbare TL von HoC, ZAK bzw. siehe Modulhandbuch</td>
<td>2</td>
<td>N.N.</td>
<td>Schein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>15</td>
<td>Bachelorarbeit</td>
<td>12</td>
<td></td>
<td>Prüfungsauftritt</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Präsentation</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3 Studienplan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhere Mathematik I-III</td>
<td>4 2</td>
<td>4 2</td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Fertigungstechnik</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellen- und Quantenphysik</td>
<td></td>
<td>2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Mechanik I-IV</td>
<td>3 2</td>
<td>3 2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
<tr>
<td>Werkstoffkunde I, II</td>
<td>4 1</td>
<td>2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werkstoffkunde-Praktikum¹</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung I, II</td>
<td></td>
<td>4 2</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre I-IV</td>
<td>2 1</td>
<td>2 2</td>
<td>2 2 1</td>
<td>2 2</td>
</tr>
<tr>
<td>Informatik im Maschinenbau</td>
<td></td>
<td>2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik</td>
<td></td>
<td></td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>Strömungslehre I</td>
<td></td>
<td></td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Arbeitstechniken Maschinenbau</td>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Strömungslehre II</td>
<td></td>
<td>2 1</td>
</tr>
<tr>
<td>Maschinen und Prozesse</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Betriebliche Produktionswirtschaft</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Schlüsselqualifikationen</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td>(2)</td>
<td>2</td>
</tr>
<tr>
<td>Schwerpunkt (6 SWS, variabel)</td>
<td>3 () ()</td>
<td>3 () ()</td>
</tr>
</tbody>
</table>

1.4 Bachelorarbeit

Das Modul Bachelorarbeit besteht aus einer schriftlichen Ausarbeitung (Bachelorarbeit, 12 LP) sowie einer mündlichen Präsentation (3 LP). Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen. Die Präsentation soll ca. 20 Minuten dauern und wird anschließend mit dem anwesenden Fachpublikum diskutiert.

Die Durchführung und Benotung der Bachelorarbeit ist in § 14 der SPO für den Bachelorstudiengang Maschinenbau sowie im Modulhandbuch unter „Modul Bachelorarbeit“ geregelt.

¹ Das Werkstoffkunde-Praktikum findet in der vorlesungsfreien Zeit zwischen SS und WS statt und beansprucht eine Woche.
2 Schwerpunkte

Folgende Schwerpunkte sind derzeit vom Fakultätsrat genehmigt (siehe Angaben im Modulhandbuch):

<table>
<thead>
<tr>
<th>Schwerpunkt</th>
<th>Verantwortlicher</th>
<th>SP-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antriebssysteme</td>
<td>Albers</td>
<td>2</td>
</tr>
<tr>
<td>Bahnsystemtechnik</td>
<td>Gratzfeld</td>
<td>50</td>
</tr>
<tr>
<td>Entwicklung und Konstruktion</td>
<td>Albers</td>
<td>10</td>
</tr>
<tr>
<td>Festigkeitslehre/Kontinuumsmechanik</td>
<td>Böhlike</td>
<td>13</td>
</tr>
<tr>
<td>Grundlagen der Energietechnik</td>
<td>Bauer</td>
<td>15</td>
</tr>
<tr>
<td>Informationsmanagement</td>
<td>Ovtcharova</td>
<td>17</td>
</tr>
<tr>
<td>Informationstechnik</td>
<td>Stiller</td>
<td>18</td>
</tr>
<tr>
<td>Kraftfahrzeugtechnik</td>
<td>Gauterin</td>
<td>12</td>
</tr>
<tr>
<td>Kraft- und Arbeitsmaschinen</td>
<td>Th. Koch</td>
<td>24</td>
</tr>
<tr>
<td>Materialwissenschaft und Werkstofftechnik</td>
<td>Heilmayer</td>
<td>26</td>
</tr>
<tr>
<td>Mechatronik</td>
<td>Hagenmeyer</td>
<td>31</td>
</tr>
<tr>
<td>Modellbildung und Simulation in der Dynamik</td>
<td>Seemann</td>
<td>61</td>
</tr>
<tr>
<td>Production Engineering</td>
<td>Lanza</td>
<td>52</td>
</tr>
<tr>
<td>Produktionssysteme</td>
<td>Schulze</td>
<td>38</td>
</tr>
<tr>
<td>Schwingungstechnik</td>
<td>Fidlin</td>
<td>60</td>
</tr>
<tr>
<td>Technische Logistik</td>
<td>Furmans</td>
<td>44</td>
</tr>
<tr>
<td>Technik des Verbrennungsmotors</td>
<td>Th. Koch</td>
<td>57</td>
</tr>
</tbody>
</table>

Für den Schwerpunkt werden Teilleistungen im Umfang von 12 LP gewählt, davon werden mindestens 8 LP im Kernbereich (K) erworben. „KP“ bedeutet, dass die Teilleistung im Kernbereich Pflicht ist, sofern sie nicht bereits belegt wurde. Die übrigen 4 LP können aus dem Ergänzungs bereich kommen. Dabei dürfen im Rahmen von Praktika höchstens 4 LP erworben werden, die auch als unbenotete Moduleistung erbracht werden können.

Ein Absolvieren des Schwerpunktmodduls mit mehr als 12 LP ist nur im Fall, dass die Addition innerhalb des Schwer punktmodduls nicht auf 12 LP aufgeht, erlaubt. Nicht zulässig ist es jedoch, noch weitere Teilleistungen anzumelden, wenn bereits 12 LP erreicht oder überschritten wurden.

Für die Prüfungsleistungen in den Schwerpunkten gelten folgende Regeln:

Die Prüfungen werden grundsätzlich mündlich abgenommen, bei unvertretbar hohem Prüfungsaufwand kann eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Es wird empfohlen, die Kernbereichsprüfung im Block abzulegen. Bei mündlichen Prüfungen im Schwerpunkt soll die Prü fungsdauer fünf Minuten pro Leistungspunkt betragen. Erstreckt sich eine mündliche Prüfung über mehr als 12 LP, soll die Prüfungsdauer 60 Minuten betragen.

Die Beschreibung der Schwerpunkte hinsichtlich der jeweils darin enthaltenen Teilleistungen und den damit verbundenen Lehrveranstaltungen ist im aktuellen Modulhandbuch des Bachelorstudiengangs festgelegt.
3 Änderungshistorie (ab 20.07.2016)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.07.2016</td>
<td>Sprachliche Anpassung an das Eckpunktepapier des KIT, Überarbeitung der Prüfungsmodalitäten</td>
</tr>
<tr>
<td>17.08.2016</td>
<td>Redaktionelle Änderungen, u.a. im Modul Physik</td>
</tr>
<tr>
<td>28.06.2017</td>
<td>Redaktionelle Änderungen, u.a. in den Modulen Technische Thermodynamik und Strömungslehre</td>
</tr>
<tr>
<td>13.07.2016</td>
<td>Anpassung der Schwerpunkte sowie redaktionelle Änderungen</td>
</tr>
<tr>
<td>30.08.2019</td>
<td>Redaktionelle Änderungen, u.a. in Punkt 1</td>
</tr>
<tr>
<td>15.02.2020</td>
<td>Redaktionelle Änderungen, u.a. in Punkt 1.2</td>
</tr>
</tbody>
</table>
WS 2019-2020

B.Sc. Maschinenbau: 1. Fachsemester, Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:45 - 11:15</td>
<td>2161245 Technische Mechanik I</td>
<td>Audimax</td>
<td>2149688 Grundlagen der Fertigungstechnik</td>
<td>Gerthsen</td>
<td></td>
</tr>
<tr>
<td>11:30 - 13:00</td>
<td>0131000 Höhere Mathematik I (Ub)</td>
<td>Audimax</td>
<td>0131000 Höhere Mathematik I</td>
<td></td>
<td>0145185 Maschinenkonstruktionslehre I (Ub)</td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>2173552 Werkstoffkunde I (Ub)</td>
<td>HS a.F.</td>
<td>2149178 Maschinenkonstruktionslehre I</td>
<td>Daimler / Benz</td>
<td></td>
</tr>
<tr>
<td>15:45 - 17:15</td>
<td>2173556 Werkstoffkunde I</td>
<td>Gerthsen</td>
<td>0131000 Höhere Mathematik I</td>
<td>Audimax</td>
<td>2161246 Technische Mechanik I (Ub)</td>
</tr>
<tr>
<td>17:30 - 19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 04.09.2019

WS 2019-2020

B.Sc. Maschinenbau: 3. Fachsemester, Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:45 - 11:15</td>
<td>2066339 Physik und Elektronik (Ub)</td>
<td>Daimler</td>
<td>2165501 Technische Thermodynamik und Wärmeübertragung I</td>
<td>Gerthsen</td>
<td>0131400 Höhere Mathematik III</td>
</tr>
<tr>
<td>11:30 - 13:00</td>
<td>2161203 Technische Mechanik III</td>
<td>HS a.F.</td>
<td>2306339 Elektrotechnik und Elektronik (Ub)</td>
<td>Benz</td>
<td>2145153 MKL III (Ub)</td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>2145154 Workshop zu MKL III</td>
<td>Räume siehe Homepage</td>
<td>2165501 Technische Thermodynamik und Wärmeübertragung I</td>
<td>Gerthsen</td>
<td>2161204 Technische Mechanik III (Ub)</td>
</tr>
<tr>
<td>15:45 - 17:15</td>
<td>2145151 MKL III</td>
<td>Daimler / Benz</td>
<td>0131500 Höhere Mathematik III (Ub)</td>
<td>Räume siehe Homepage</td>
<td></td>
</tr>
<tr>
<td>17:30 - 19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 04.09.2019

Bachelor Program Mechanical Engineering, Date: 15/02/2020
Module Handbook valid from Summer Term 2020

5 BSc-Maschinenbau_2019-2020.pdf
WS 2019-2020

B.Sc. Maschinenbau: 5. Fachsemester; Pflichtmodule, Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:45 - 11:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30 - 13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:45 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30 - 19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 05.09.2019

WS 2019-2020

B.Sc. Maschinenbau: 5. Fachsemester; Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:45 - 11:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30 - 13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:45 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30 - 19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 11.09.2019

Bachelor Program Mechanical Engineering, Date: 15/02/2020
Module Handbook valid from Summer Term 2020
SS 2020 Bachelor Program Mechanical Engineering, Date: 15/02/2020
Module Handbook valid from Summer Term 2020

SS 2020 B.Sc. Maschinenbau: 2. Fachsemester, Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td>0180900 Höhere Mathematik II (Üb)</td>
<td>2146185 MKL II (Üb)</td>
<td>0180800 Höhere Mathematik II</td>
<td>Audimax Daimler, Benz</td>
<td>Audimax</td>
</tr>
<tr>
<td>09:45 - 11:15</td>
<td>0180800 Höhere Mathematik II</td>
<td>2162250 Technische Mechanik II</td>
<td>2121390 Informatik im Maschinenbau</td>
<td>Audimax Gerthsen</td>
<td>Audimax Daimler, Benz</td>
</tr>
<tr>
<td>11:30 - 13:00</td>
<td>2174563 Werkstoffkunde II (Üb)</td>
<td>2174560 Werkstoffkunde II</td>
<td>2162251 Technische Mechanik II (Üb)</td>
<td>Audimax</td>
<td>Audimax Daimler, Benz</td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:45 - 17:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30 - 19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 10.03.2020

2121390 Rechnerpraktikum zu Informatik im Maschinenbau
2162252 Rechenübungen zu Technische Mechanik II
2174597 Experimentelles Praktikum in Werkstoffkunde

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td>2166555 Technische Thermodynamik u. Wärmeü.bertragung II (Üb)</td>
<td>2166526 Technische Thermodynamik u. Wärmeü.bertragung II</td>
<td>2166556 Technische Thermodynamik und Wärmeü.bertragung II (Tu)</td>
<td>Redtenbacher</td>
<td>Hertz</td>
</tr>
<tr>
<td>09:45 - 11:15</td>
<td>2166556 Technische Thermodynamik u. Wärmeü.bertragung II (Tu)</td>
<td>2146184 MKL IV (Üb)</td>
<td>2166556 Technische Thermodynamik und Wärmeü.bertragung II (Tu)</td>
<td>Daimler, Benz</td>
<td>Hertz</td>
</tr>
<tr>
<td>11:30 - 13:00</td>
<td>2166556 Technische Thermodynamik u. Wärmeü.bertragung II (Tu)</td>
<td>2154512 Strömungslage I</td>
<td>2154512 Strömungslage I</td>
<td>Audimax</td>
<td>Audimax</td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>2146187 MKL IV Workshop</td>
<td>2146177 MKL IV</td>
<td>2146187 MKL IV Workshop</td>
<td>Ort und Termin s. Aushang</td>
<td>Ort und Termin s. Aushang</td>
</tr>
<tr>
<td>15:45 - 17:15</td>
<td>2162231 Technische Mechanik IV</td>
<td>2146177 MKL IV</td>
<td>2146187 MKL IV Workshop</td>
<td>Ort und Termin s. Aushang</td>
<td>Ort und Termin s. Aushang</td>
</tr>
<tr>
<td>17:30 - 19:00</td>
<td>2162232 Technische Mechanik IV (Üb)</td>
<td>2146177 MKL IV</td>
<td>2146187 MKL IV Workshop</td>
<td>Ort und Termin s. Aushang</td>
<td>Ort und Termin s. Aushang</td>
</tr>
</tbody>
</table>

Stand: 10.03.2020

Bachelor Program Mechanical Engineering, Date: 15/02/2020
Module Handbook valid from Summer Term 2020

38
SS 2020

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 09:30</td>
<td>2162242</td>
<td>MM d. Schwingungslehre (Üb)</td>
<td>2161225</td>
<td>Maschinendynamik (Üb)</td>
<td>2174576</td>
</tr>
<tr>
<td>09:45 - 11:15</td>
<td>Grashof</td>
<td>HS I Chemie</td>
<td>Redtenbacher</td>
<td>20.29 Pool C</td>
<td></td>
</tr>
<tr>
<td>11:00 - 13:00</td>
<td>2163703</td>
<td>Modellierung und Simulation (Üb)</td>
<td>2162235</td>
<td>Einf. in die Mehrkörperversuch</td>
<td>2162335</td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:30</td>
<td>2121001</td>
<td>Technische Informations-systeme (üB)</td>
<td>2154432</td>
<td>MM der Strömungslehre</td>
<td>2142890</td>
</tr>
<tr>
<td>15:45 - 17:15</td>
<td>09.23 IMI-Seminarraum 5. OG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30 - 19:00</td>
<td>2162241</td>
<td>MM der Schwingungslehre</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 10.03.2020

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Übung</th>
<th>Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>2147175</td>
<td>CAE-Workshop</td>
<td>2161230</td>
</tr>
<tr>
<td>Termin + Ort s. Instituts-Homepage</td>
<td>3122031</td>
<td>Virtual Engineering (Specific Topics)</td>
</tr>
<tr>
<td>Termin + Ort s. Instituts-Homepage</td>
<td>Block-LV</td>
<td>Termin + Ort s. Instituts-Homepage</td>
</tr>
</tbody>
</table>
6 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation Exam</td>
</tr>
<tr>
<td>Bachelor Thesis</td>
</tr>
<tr>
<td>Fundamentals of Engineering</td>
</tr>
<tr>
<td>Specialization in Mechanical Engineering</td>
</tr>
<tr>
<td>Interdisciplinary Qualifications</td>
</tr>
</tbody>
</table>

6.1 Orientation Exam

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104624 Orientation Exam</td>
</tr>
</tbody>
</table>

6.2 Bachelor Thesis

<table>
<thead>
<tr>
<th>Credits 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104494 Bachelor Thesis</td>
</tr>
</tbody>
</table>

6.3 Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits 143</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-102859 Advanced Mathematics</td>
</tr>
<tr>
<td>M-MACH-102572 Engineering Mechanics</td>
</tr>
<tr>
<td>M-MACH-102562 Materials Science</td>
</tr>
<tr>
<td>M-MACH-102574 Technical Thermodynamics</td>
</tr>
<tr>
<td>M-MACH-102565 Fluid Mechanics</td>
</tr>
<tr>
<td>M-PHYS-104030 Physics</td>
</tr>
<tr>
<td>M-ETIT-104801 Electrical Engineering</td>
</tr>
<tr>
<td>M-MACH-102564 Measurement and Control Systems</td>
</tr>
<tr>
<td>M-MACH-102563 Computer Science</td>
</tr>
<tr>
<td>M-MACH-102573 Mechanical Design</td>
</tr>
<tr>
<td>M-MACH-102566 Machines and Processes</td>
</tr>
<tr>
<td>M-MACH-102549 Manufacturing Processes</td>
</tr>
<tr>
<td>M-MACH-100297 Production Operations Management</td>
</tr>
</tbody>
</table>
6.4 Specialization in Mechanical Engineering

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102746 Compulsory Elective Module</td>
<td>4 CR</td>
</tr>
<tr>
<td>Election block: Major Field (1 item)</td>
<td></td>
</tr>
<tr>
<td>M-MACH-102812 Major Field: Powertrain Systems</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102638 Major Field: Rail System Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102815 Major Field: Engineering Design</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102582 Major Field: Continuum Mechanics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102816 Major Field: Fundamentals of Energy Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102583 Major Field: Information Management</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102817 Major Field: Information Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102818 Major Field: Vehicle Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102838 Major Field: Energy Converting Engines</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102819 Major Field: Materials Science and Engineering</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102820 Major Field: Mechatronics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-104430 Major Field: Modeling and Simulation in Dynamics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102644 Major Field: Production Engineering</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102589 Major Field: Production Systems</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-104442 Major Field: Vibration Theory</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102645 Major Field: Combustion Engine Techniques</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102821 Major Field: Technical Logistics</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

6.5 Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102576 Key Competences</td>
<td>6 CR</td>
</tr>
</tbody>
</table>
7 Modules

7.1 Module: Advanced Mathematics [M-MATH-102859]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
<th>MATH-100525</th>
<th>T-MATH-100525</th>
<th>Advanced Mathematics I</th>
<th>0 CR</th>
<th>Arens, Griesmaier, Hettlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>German</td>
<td></td>
<td></td>
<td>T-MATH-100526</td>
<td>Tutorial Advanced Mathematics II</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100527</td>
<td>Tutorial Advanced Mathematics III</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100275</td>
<td>Advanced Mathematics I</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100276</td>
<td>Advanced Mathematics II</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100277</td>
<td>Advanced Mathematics III</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried by three written examinations of length 120 minutes each and by three sets of homework assignments (pre-requisites). A "pass" result on a pre-requisites in Advanced Mathematics I, II and III, respectively, is a requirement for registration for the corresponding written examination.

Competence Goal
The students know the fundamentals of one-dimensional calculus. They can reliably use limits, functions, power series and integrals. They understand central concepts such as continuity, differentiability or integrability and they know important statements about these concepts. The students can follow the arguments leading to these statements as presented in the lectures and are able to independently prove simple assertions based on these statements.

The students know the fundamentals of linear algebra. The are able to use vectors, linear maps and matrices without problems. They have basic knowledge about Fourier series. The students also can theoretically and practically deal with initial value problems of ordinary differential equations. They can make use of classical solution techniques for linear differential equations.

The students know about differential calculus for vector-valued functions of several variables and about techniques of vector calculus such as the definition and application of differential operators, the computation of domain, line and surface integrals and important integral theorems. They have basic knowledge about partial differential equations and know basic facts from stochastics.

Prerequisites
None.

Content
Fundamentals, sequences and convergence, functions and continuity, series, differential calculus of one real variable, integral calculus, vector spaces, linear maps, eigenvalues, Fourier series, differential equations, Laplace transform, multidimensional calculus, domain integrals, vector calculus, partial differential equations, stochastics
Workload
In class: 270 hours
- lectures, tutorials and examinations

Independent study: 360 hours
- independent review of course material
- work on homework assignments
- preparation for written exams

Learning type
Lecture, problem classes, tutorials
7.2 Module: Bachelor Thesis [M-MACH-104494]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr.-Ing. Martin Heilmaier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Mechanical Engineering</td>
</tr>
<tr>
<td>Part of:</td>
<td>Bachelor Thesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109188</td>
</tr>
<tr>
<td>T-MACH-109189</td>
</tr>
</tbody>
</table>

Competence Certificate

The module Bachelor Thesis consists of a written bachelor thesis and an oral presentation of a scientific subject chosen by the student himself/herself or given by the supervisor. The bachelor thesis is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods. The work load of the bachelor thesis corresponds to 12 ECTS. The maximal processing time of the bachelor thesis takes three months.

The date of issue of the subject has to be fixed by the supervisor and the student and to be put on record at the examination board. The subject of the bachelor thesis may be only returned once and only within the first month of processing time.

On a reasoned request of the student, the examination board can extend the processing time by up to one month. If the bachelor thesis is not completed in time, this examination is "failed" (5.0), unless the student is not responsible.

The bachelor thesis is to be evaluated by not less than a professor or a senior scientist according to § 14 Abs. 3 Ziff. 1 KITG. habilitated members of the KIT Faculty of Mechanical Engineering and another examiner. Generally, one of the two examiners is the person who has assigned the thesis. If the examiners do not agree, the bachelor thesis is graded by the examination board within this assessment; another expert can be appointed too. The bachelor thesis has to be graded within a period of six weeks after the submission.

The colloquium presentation must be held within 6 weeks after the submission of the bachelor thesis. The presentation should last around 20 minutes, corresponds to 3 ECTS, and is followed by a scientific discussion with the present expert audience.

Competence Goal

The student is able to work independently on a defined, subject-relevant theme based on scientific criteria within a given period of time. The student is able to do research, to analyze information, to abstract as well as collect and recognize basic principles and regularities on the basis of less structured information. He/she overviews a question, is able to choose scientific methods and techniques, and use them to solve the question or to identify other potentials. In general, this will be carried out in consideration of social and/or ethical aspects.

The student can interpret, evaluate, and if needed plot the results obtained. He/she is able to clearly structure a scientific work and (a) to communicate it in written form using technical terminology as well as (b) to present it in oral form and discuss it with experts.

Prerequisites

The requirement for admission to the bachelor thesis module are 120 ECTS. As to exceptions, the examination board decides on a request of the student (see § 14 (1) SPO).

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 120 credits in the following fields:
 - Fundamentals of Engineering
 - Interdisciplinary Qualifications
 - Specialization in Mechanical Engineering

Content

The student shall be allowed to make suggestions for the topic of his/her bachelor thesis. The topic is set by the supervisor of the thesis in accordance with § 14 (3) SPO.

Workload

The workload for the preparation and presentation of the bachelor thesis is about 450 hours.
7.3 Module: Compulsory Elective Module (BSc-Modul WPF) [M-MACH-102746]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (mandatory)

Election block: Compulsory Elective Module (1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105381</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Introduction into Mechatronics</td>
<td>6 CR</td>
<td>Böhlard, Lorch, Reischl</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>5 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>4 CR</td>
<td>Geimer, Pult</td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>4 CR</td>
<td>Mittwollen, Oellerich</td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>4 CR</td>
<td>Maas, Sommerer</td>
</tr>
<tr>
<td>T-MACH-110377</td>
<td>Advanced Methods in Strength of Materials</td>
<td>4 CR</td>
<td>Böhike, Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105452</td>
<td>Mathématiques appliquées aux sciences de l’ingénieur</td>
<td>5 CR</td>
<td>Dantan</td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>6 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-110375</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>4 CR</td>
<td>Böhike</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>6 CR</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>5 CR</td>
<td>August, Nestler</td>
</tr>
<tr>
<td>T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>5 CR</td>
<td>Gumbsch, Nestler</td>
</tr>
<tr>
<td>T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>5 CR</td>
<td>Dienwiebel, Gumbsch, Nesterov-Müller, Weygand</td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td>5 CR</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td>4 CR</td>
<td>Käger</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>4 CR</td>
<td>Dietrich, Schulze</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>5 CR</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Vibration Theory</td>
<td>5 CR</td>
<td>Fidlin, Seemann</td>
</tr>
<tr>
<td>T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td>4 CR</td>
<td>Bockhorn, Maas</td>
</tr>
<tr>
<td>T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>4 CR</td>
<td>Gumbsch, Weygand</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Module (Tutorial) ()

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110333</td>
<td>Tutorial Continuum Mechanics of Solids and Fluids</td>
<td>1 CR</td>
<td>Böhike, Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-110376</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>2 CR</td>
<td>Böhike</td>
</tr>
</tbody>
</table>

Competence Certificate
oral/written exam

Competence Goal
The elective course serves as a comprehensive, in-depth analysis of fundamentals in selected areas of mechanical engineering. The specific learning outcomes are defined by the respective coordinator of the course.

Prerequisites
None
Annotation
Compulsory elective subjects have to be chosen from the corresponding catalogues as displayed in the bachelor’s program with an amount of 4 credit points (see Studienplan or Module Handbook)

Workload
The work load is about 120 hours, corresponding to 4 credit points. The work load varies from lecture to lecture, for example a lecture consisting of 4 credit points includes 28 h of presence during the lecture and 92 h preparation and rework time at home, 120 hours in total.

Learning type
Lectures, Tutorials
Module: Computer Science (BSc-Modul 09, Inf) [M-MACH-102563]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each summer term</td>
<td>2 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105205</td>
<td>Computer Science for Engineers</td>
<td>6</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105206</td>
<td>Computer Science for Engineers, Prerequisite</td>
<td>0</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination "Computer Science for Engineers", 100%, 180 minutes; Examination prerequisite: passed lap course.

Competence Goal
Students can identify and explain fundamental terms, problems and concepts of computer science. They can apply the basic methods of the OO modeling with UML and implement the object-oriented programming (OOP) with the programming language JAVA.

Module grade calculation
Examination result "Computer Science for Engineers" 100%

Prerequisites
None

Content
Basics: Information representation- and processing, terms and definitions: alphabet, data, signals, information, numeral systems, propositional logic and Boolean algebra, computer architectures, programming paradigms.
Object Orientation: Definition and important characteristics of object orientation, Object-oriented modeling with UML.
Data Structures: Definition, properties and application of graphs, trees, linked lists, queues and stacks.
Algorithms: Characteristics of algorithms, complexity analysis, design methods, important examples.
Database management systems: Relational data model, relational algebra, declarative language SQL. Basics and concepts of JAVA. Introduction to programming using JAVA.

Annotation
For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.
For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
Attendance time: 63 hours
Self-study: 117 hours

Learning type
Lecture and Lab Course
7.5 Module: Electrical Engineering [M-ETIT-104801]

Responsible: Dr.-Ing. Klaus-Peter Becker

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Fundamentals of Engineering (Usage from 3/8/2019)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109820</td>
<td>Electrical Engineering and Electronics</td>
<td>8 CR</td>
<td>Becker</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.6 Module: Engineering Mechanics (BSc-Modul 03, TM) [M-MACH-102572]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Each winter term</td>
<td>4 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td>7 CR</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Engineering Mechanics II</td>
<td>6 CR</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-105201</td>
<td>Engineering Mechanics III & IV</td>
<td>10 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-100528</td>
<td>Tutorial Engineering Mechanics I</td>
<td>0 CR</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-100284</td>
<td>Tutorial Engineering Mechanics II</td>
<td>0 CR</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-105202</td>
<td>Tutorial Engineering Mechanics III</td>
<td>0 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105203</td>
<td>Tutorial Engineering Mechanics IV</td>
<td>0 CR</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisites EM I, II (see T-MACH-100528 "Engineering Mechanics I (Tutorial)" as well as T-MACH-100284 "Engineering Mechanics II (Tutorial)"): they consist of solving problems of the work sheets in four categories: written mandatory homework, written homework, computational homework, colloquia.

Prerequisites EM III, IV

"Engineering Mechanics I", written exam, 90 minutes; graded:
"Engineering Mechanics II", written exam, 90 minutes; graded;
"Engineering Mechanics III/IV", written exam, 180 Minutes; graded;

The final grade of this module is computed as ECTS-based weighted sum of the included exams.

Competence Goal

After having finished the lectures EM I and EM II the students can

- assess stress and strain distributions for the basic load cases within the framework of elasticity and thermoeasticity
- compute and evaluate 3D stress and strain states
- apply the principle of virtual displacements
- apply energy methods and evaluate approximate solutions
- evaluate the stability of equilibrium positions
- solve worksheet problems to topics of the lecture using the computer algebra system MAPLE

In EM III and EM IV the students learn to analyse the motion of points and systems. Based on the axioms of Newton and Euler they know how to derive equations of motion. Besides the synthetic methods they get familiar with analytical methods which are based on energy expressions and can be applied efficiently and formalised. These methods are introduced in the scope of systems of mechanical engineering so that students can determine and analyse motions and the forces which are generated by these motions.

Prerequisites

None
Content
This Module consists of the courses "Engineering Mechanics I (lecture)" up to "Engineering Mechanics IV (lecture)" as well as "Engineering Mechanics I (Tutorial)" up to "Engineering Mechanics IV (Tutorial)"

Contents of "Engineering Mechanics I": basics of vector calculus; force systems; statics of rigid bodies; internal forces and moments in bars and beams; friction; centre of gravity, centre of mass; work, energy, principle of virtual work; statics of inextensible ropes; elastostatics of tension-compression-bars

Contents of "Engineering Mechanics II": bending; shear; torsion; stress and strain state in 3D; Hooke's law in 3D; elasticity theors in 3D; energy methods in elastostatics; approximation methods; stability

Contents of "Engineering Mechanics III":

Kinetics of a particle:
Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems

Systems of particles:
Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.

Plain motion of rigid bodies:

Contents of "Engineering Mechanics IV":
Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption

Annotation
For the Bachelor's program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor's program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
lectures and exercises: 204h
homework and preparation of examination: 486h

Learning type
Lectures, Tutorials, Lab course groups, attestation of solved work sheets, colloquium, consultation hours (optional)
7.7 Module: Fluid Mechanics (BSc-Modul 12, SL) [M-MACH-102565]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each summer term</td>
<td>2 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105207 Fluid Mechanics 1&2 8 CR Frohnapfel

Competence Certificate

Common examination of "Fluid Mechanics I" and "Fluid Mechanics II"; written exam, 3 hours (graded)

Competence Goal

After having completed this module the student is capable of deriving the mathematical equations that describe the motion of fluids and can determine flow quantities for generic problems. He/she can name characteristic properties of fluids and distinguish different flow states. The student is capable of determining fluid quantities in fundamental applications. This includes the calculation of

- static and dynamic forces acting from the fluid onto the solid
- two-dimensional viscous flows
- one-dimensional incompressible and compressible flows without losses
- lossy flows through pipes

Module grade calculation

result of exam

Prerequisites

none

Content

properties of fluids, surface tension, hydro- and aerostatics, kinematics, stream tube theory (compressible and incompressible), losses in pipeline systems, dimensional analysis, dimensionless numbers

tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Annotation

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload

regular attendance: 64 hours self-study: 176 hours

Learning type

Lectures + tutorials

Literature

Zierep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg

Kuhlmann, H.: Strömungsmechanik, Pearson Studium

Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag

M 7.8 Module: Key Competences (BSc-Modul 07, SQL) [M-MACH-102576]

Responsible: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Martin Heilmayer

Organisation: KIT Department of Mechanical Engineering

Part of: Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each term</td>
<td>2 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105296</td>
<td>Working Methods in Mechanical Engineering</td>
<td>4 CR</td>
<td>Each term</td>
<td></td>
</tr>
</tbody>
</table>

Election block: Key Competences (at least 2 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106375</td>
<td>Value Stream within Enterprises – The Value Chain at Bosch</td>
<td>2 CR</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Success is monitored within the framework of academic achievements. Amount, type and scope of the success control can vary according to the individually choice.

Competence Goal

After completing the module Key Competences students can:

- determine and coordinate work steps, projects and goals, proceed systematically and purposefully, set priorities as well as assess the feasibility of a task,
- apply methods for the planning of a specific task under given framework conditions in a goal- and resource-oriented way,
- describe methods for scientific research and selection of technical information according to pre-established quality criteria and apply them to given problems,
- discuss empirical methods and apply them to selected examples,
- present technical information in a clear, readable, and convincingly argued manner in various forms of presentation (e.g. poster, exposé, abstract) in writing and appropriately visualize it graphically (e.g. engineering drawings, flowcharts),
- present and stand up for technical content in a convincing and appealing way,
- work as a team in a task-oriented manner, handle any conflicts on their own and take responsibility for themselves and others,
- communicate as a team in an objective, goal-oriented and interpersonal manner, represent their own interests, reflect and take into account the interests of others in their own words, and successfully organize the course of the conversation.

Module grade calculation

non graded

Prerequisites

none

Content

The module Key Competences consists “Working Methods in Mechanical Engineering” and a freely selectable courses offered by the KIT-House of Competence (HoC), the KIT Language Centre (SPZ) and the Centre for Cultural and General Studies (ZAK) with a work load corresponding to a total of 2 ECTS. Upon request, the examination board may approve further courses as freely selectable subjects in the module “Key Competences”.

Annotation

Only HoC/SPZ/ZAK courses can be chosen.

Workload

The work load is about 180 hours, corresponding to 6 credit points in the Bachelor of Science program.

Learning type

The teaching and learning methods depend on the respectively chosen courses. The courses can be lectures, seminars, tutorials, or lab courses.
7.9 Module: Machines and Processes (mach13BSc-Modul 13, MuP) [M-MACH-102566]

Responsible: Dr.-Ing. Heiko Kubach
Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105208</td>
<td>Machines and Processes</td>
<td>7 CR</td>
</tr>
<tr>
<td>T-MACH-105232</td>
<td>Machines and Processes, Prerequisite</td>
<td>0 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (2 h)

Competence Goal
The students can name and describe basic energy conversion processes and energy converting machines. They can explain the application of these energy conversion processes in various machines. They can analyze and evaluate the processes and machines in terms of functionality and efficiency and they are able to solve basic technical problems in terms of operating the machines.

Module grade calculation
Grade out of written exam (100%)

Prerequisites
None.

Content

- Internal combustion engines
- Hydraulic fluid machinery
- Thermal turbo machines
- Thermodynamics

Annotation
For the Bachelor's program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.
For the Bachelor's program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
regular attendance: 48 h
self-study: 162 h

Learning type
Lecture+Tutorial
Lab Course
7.10 Module: Major Field: Combustion Engine Techniques (SP 57) [M-MACH-102645]

Responsible: Prof. Dr. Thomas Koch

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>5 CR</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
</tr>
<tr>
<td>T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>4 CR</td>
<td>Gohl</td>
</tr>
<tr>
<td>T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>4 CR</td>
<td>Kehrwald, Kubach</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>4 CR</td>
<td>Bernhardt</td>
</tr>
</tbody>
</table>

Election block: Combustion Engine Techniques (K) (at least 3 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Election block: Combustion Engine Techniques (E) ()

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110817</td>
<td>Development of hybrid drivetrains</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105985</td>
<td>Ignition Systems</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Election block: Combustion Engine Techniques (P) (at most 4 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105337</td>
<td>Engine Laboratory</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, written exam, lab course reports (see description of bricks)

Competence Goal

After completion of this „Schwerpunkt“ students are able to

- Describe and explain the working principal of different engine types
- Name the challenges in engine development
- Describe the correlations between engine operation, application parameters and emissions

Prerequisites

None

Content

The focus of this "Schwerpunkt" are the basic design and the working principle of internal combustion engines. Different types of engines such as gasoline engine, diesel engine and gas engine are subject. The fundamental thermodynamic aspects as well as the mechanical aspects are discussed. The influence of application parameters and the correlation of engine concepts, fuels and emissions are addressed.

Workload

The work load is 360 hours, corresponding to 12 credit points.

Learning type

Lectures, Exercises, Lab Courses
7.11 Module: Major Field: Continuum Mechanics (SP 13) [M-MACH-102582]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110835</td>
<td>Advanced Methods in Strength of Materials</td>
<td>4</td>
<td>Böhlke, Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-110836</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>4</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Election block: Continuum Mechanics (E) ()

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110362</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>4</td>
<td>Frohnapfel, Stroh</td>
</tr>
<tr>
<td>T-MACH-110837</td>
<td>Introduction to the Finite Element Method</td>
<td>4</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Competence Certificate

see different bricks

Competence Goal

After having finished this major field the students can:

- list important concepts and models of continuum mechanics both for solids and fluids including field equations and boundary conditions
- apply these models in given problems
- apply methods of tensor algebra and tensor analysis in given problems of continuum mechanics
- classify the basic numerical tools and apply them in given problems of continuum mechanics

Prerequisites

none

Content

The comprehensive topic of the major field are the basics of continuum mechanics that the students acquire within the compulsory parts (8 credit points). Moreover, there is a supplementary area covering the corresponding numerical methods which the students can choose according to their interests.

Recommendation

Students of Mechanical Engineering (Bachelor) having chosen the Major Field "Continuum Mechanics" are recommended to chose one of the following courses as Compulsory Elective Course: "Scientific Computing for Engineers" (Prof. Gumbsch, Dr. Weygand, winter term)

Annotation

Due to capacity reasons, it can not be guaranteed that all students can take part in the corresponding computer tutorials of these courses.

All students having chosen the Major Field "Continuum Mechanics" (No 13) will be allowed to take part in the computer tutorials.

Workload

The work load is about 360 hours in the Bachelor of Science program, whereof the presence time is 125 h.

Learning type

lectures, tutorials, computer tutorial, consultation hours

Literature

see different bricks
7.12 Module: Major Field: Energy Converting Engines [M-MACH-102838]

Responsible: Prof. Dr. Thomas Koch
Organisation: KIT Department of Mechanical Engineering
Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Energy Converting Engines (K) (at least 8 credits)

- T-MACH-105326 Hydraulic Fluid Machinery
 8 CR Pritz
- T-MACH-105363 Thermal Turbomachines I
 6 CR Bauer
- T-MACH-102194 Combustion Engines I
 4 CR Koch, Kubach

Election block: Energy Converting Engines (E) ()

- T-CIWVT-105780 Design of a Jet Engine Combustion Chamber
 6 CR Zarzalis
- T-MACH-105184 Fuels and Lubricants for Combustion Engines
 4 CR Kehrwald, Kubach
- T-MACH-102093 Fluid Power Systems
 4 CR Geimer, Pult
- T-MACH-105533 Gasdynamics
 4 CR Magagnato
- T-MACH-105044 Fundamentals of Catalytic Exhaust Gas Aftertreatment
 4 CR Deutschmann, Grunwaldt, Kubach, Lox
- T-MACH-105213 Fundamentals of Combustion I
 4 CR Maas, Sommerer
- T-MACH-105325 Fundamentals of Combustion II
 4 CR Maas
- T-MACH-105338 Numerical Fluid Mechanics
 4 CR Magagnato
- T-MACH-105441 Development of Oil-Hydraulic Powertrain Systems
 4 CR Ays, Geerling
- T-MACH-107447 Reliability Engineering I
 3 CR Konnov
- T-MACH-105364 Thermal Turbomachines II
 6 CR Bauer
- T-MACH-105366 Turbo Jet Engines
 4 CR Bauer
- T-MACH-105234 Windpower
 4 CR Lewald

Election block: Energy Converting Engines (P) (at most 4 credits)

- T-MACH-105515 Introduction to Numerical Fluid Dynamics
 4 CR Pritz

Competence Certificate
refer to different brick descriptions of SP24

Competence Goal
The students acquire broad and well-founded knowledge of the scientific theories, principles and methods of engines and work machines in the mandatory part of this major field. The aim is to design, apply and evaluate these machines.

Building on this, the students deepen selected fields of application in the election block, so that they are then able to independently analyze and evaluate problems from this field of application and to develop solutions based on this. After completing the specialization, students can in particular

- name the function and use of engines and working machines,
- describe the state of the art and the resulting fields of application of the engines and work machines and apply them using the example,
- Name the basic theories, methods and properties for the various fields of application of the engines and work machines and use and evaluate them.

Prerequisites
None

Content
Energy-converting machines are a core topic in mechanical engineering. This major field deals with the design and functioning of various energy-converting machines. Essentially, this involves hydraulic flow machines, thermal turbo machinery and internal combustion engines. In the election block, additional basics, sub-points and detailed questions of the above machines are treated. The spectrum ranges from basic numerical simulation of the processes to application-oriented project planning and system development.
Recommendation
Recommended compulsory optional subject: Heat and mass transfer

Workload
The work load is 360 hours, corresponding to 12 credit points.

Learning type
Lectures and Exercises
Module: Major Field: Engineering Design (SP 10) [M-MACH-102815]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Engineering Design (K) (at least 8 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105233</td>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>4</td>
<td>Albers, Matthiesen, Ott</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>4</td>
<td>Albers, Matthiesen, Ott</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>4</td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
</tbody>
</table>

Election block: Engineering Design (E) ()

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105215</td>
<td>Applied Tribology in Industrial Product Development</td>
<td>4</td>
<td>Albers, Lorentz, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105311</td>
<td>Design and Development of Mobile Machines</td>
<td>4</td>
<td>Geimer, Siebert</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108374</td>
<td>Vehicle Ergonomics</td>
<td>4</td>
<td>Heine</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>8</td>
<td>Schulze, Zanger</td>
<td></td>
</tr>
<tr>
<td>T-MACH-100092</td>
<td>Automotive Engineering I</td>
<td>8</td>
<td>Gauterin, Unrau</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>2</td>
<td>Bardehle</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>2</td>
<td>Bardehle</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105160</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>2</td>
<td>Zürn</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105161</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>2</td>
<td>Zürn</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>2</td>
<td>Frech</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>2</td>
<td>Frech</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>4</td>
<td>Schlichtenmayer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105330</td>
<td>Design with Plastics</td>
<td>4</td>
<td>Liedel</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4</td>
<td>Albers, Matthiesen, Ploch</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105440</td>
<td>Leadership and Conflict Management</td>
<td>4</td>
<td>Hatzl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>4</td>
<td>Ays, Geerling</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>4</td>
<td>Albers, Gutzmer, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Quality Management</td>
<td>4</td>
<td>Lanzka</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105171</td>
<td>Safety Engineering</td>
<td>4</td>
<td>Kany</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products</td>
<td>3</td>
<td>Albers, Matthiesen, Siebe</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products - Case Study</td>
<td>1</td>
<td>Albers, Matthiesen, Siebe</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4</td>
<td>Albers, Matthiesen, Ziegahn</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105361</td>
<td>Technical Design in Product Development</td>
<td>4</td>
<td>Albers, Matthiesen, Schmid</td>
<td></td>
</tr>
<tr>
<td>T-MACH-109055</td>
<td>Machine Tools and Industrial Handling</td>
<td>8</td>
<td>Fleischer</td>
<td></td>
</tr>
</tbody>
</table>

Election block: Engineering Design (P) (at most 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105370</td>
<td>Laboratory Mechatronics</td>
<td>4</td>
<td>Lorch, Seemann, Stiller</td>
<td></td>
</tr>
</tbody>
</table>

Election block: Engineering Design (Ü) ()
Competence Goal
The students are able to transfer their knowledge und abilities in product engineering to mechanical systems in research and industrial practice.

Prerequisites
None

Content
see courses of the SP10

Workload
The work load is about 360 hours, corresponding to 12 credit points.

Learning type
lectures
auditorium exercises
workshops
Module: Major Field: Fundamentals of Energy Technology [M-MACH-102816]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>8 CR</td>
<td>Badea, Cheng</td>
</tr>
</tbody>
</table>

Election block: Fundamentals of Energy Technology (K) ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105525</td>
<td>Introduction to Nuclear Energy</td>
<td>4 CR</td>
<td>Cheng</td>
</tr>
<tr>
<td>T-MACH-105325</td>
<td>Fundamentals of Combustion II</td>
<td>4 CR</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105326</td>
<td>Hydraulic Fluid Machinery</td>
<td>8 CR</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Election block: Fundamentals of Energy Technology (E) ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105462</td>
<td>Selected Problems of Applied Reactor Physics and Exercises</td>
<td>4 CR</td>
<td>Dagan</td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems</td>
<td>4 CR</td>
<td>Braun, Schönung</td>
</tr>
<tr>
<td>T-MACH-105952</td>
<td>Energy Storage and Network Integration</td>
<td>4 CR</td>
<td>Jäger, Stieglitz</td>
</tr>
<tr>
<td>T-MACH-105533</td>
<td>Gasdynamics</td>
<td>4 CR</td>
<td>Magagnato</td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4 CR</td>
<td>Kohl</td>
</tr>
<tr>
<td>T-ETIT-101939</td>
<td>Photovoltaics</td>
<td>6 CR</td>
<td>Powalla</td>
</tr>
<tr>
<td>T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>4 CR</td>
<td>Dagan</td>
</tr>
<tr>
<td>T-MACH-105403</td>
<td>Flows and Heat Transfer in Energy Technology</td>
<td>4 CR</td>
<td>Cheng</td>
</tr>
<tr>
<td>T-MACH-105225</td>
<td>Thermal Solar Energy</td>
<td>4 CR</td>
<td>Stieglitz</td>
</tr>
<tr>
<td>T-MACH-105234</td>
<td>Windpower</td>
<td>4 CR</td>
<td>Lewald</td>
</tr>
<tr>
<td>T-MACH-105338</td>
<td>Numerical Fluid Mechanics</td>
<td>4 CR</td>
<td>Magagnato</td>
</tr>
</tbody>
</table>

Election block: Fundamentals of Energy Technology (P) (at most 4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105331</td>
<td>Laboratory Exercise in Energy Technology</td>
<td>4 CR</td>
<td>Bauer, Maas, Wirbser</td>
</tr>
<tr>
<td>T-MACH-106707</td>
<td>Workshop on Computer-based Flow Measurement Techniques</td>
<td>4 CR</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam

Competence Goal

After completion of SP 15 students are able:

- to describe the elements of an energy system and their complex interactions,
- to list different conventional energy sources and assess their static range,
- to name the fluctuating supply of renewable energies such as wind, solar radiation, ocean currents and tides etc. and describe its effects on the energy system,
- to assess the effects of external and internal economic, ecological and technical boundary conditions of energy systems and to derive approaches for an optimal mix of different energy technologies,
- to explain the operational principle of well-established power plants as well as of power plants based on renewable energies.

Prerequisites

None
Content
Fundamentals of energy technology offers sound knowledge on the subject of energy conversion, storage and transport as well as the necessary thermodynamic principles. The topics covered include conventional, fossil-fired power plants, combined heat and power generation, nuclear energy, renewable energy sources such as solar energy, wind power and hydropower, as well as energy storage and grid integration. The election block offers opportunities for in-depth study of the listed energy conversion types as well as practical modules in which the fundamentals can be applied in practice. Furthermore, there is the possibility to extend the knowledge of the fundamentals and to get an insight into numerical methods of flow simulation. Progress and challenges of energy system transformation and the latest findings from energy research are also discussed.

Workload
360 hours

Learning type
Lectures, Tutorials
7.15 Module: Major Field: Information Management (SP 17) [M-MACH-102583]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Information Management (K) (at least 8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106457</td>
<td>I4.0 Systems Platform</td>
<td>4 CR</td>
<td>Maier, Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Election block: Information Management (E) ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106744</td>
<td>Agile Product Innovation Management - Value-driven Planning of New Products</td>
<td>4 CR</td>
<td>Kläger</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-102209</td>
<td>Information Engineering</td>
<td>3 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>3 CR</td>
<td>Kilger</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>3 CR</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-102181</td>
<td>PLM for Product Development in Mechatronics</td>
<td>4 CR</td>
<td>Eigner</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>4 CR</td>
<td>Mbang</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>4 CR</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
</tbody>
</table>

Election block: Information Management (P) (at most 4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102185</td>
<td>CATIA CAD Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102187</td>
<td>CAD-NX Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of other kind and oral and/or written examination: duration 2 hours.

Competence Goal
The students should:
Understand the relevance of information management in product development in consideration of increasing product and process complexity.
Gain basic knowledge in handling information, which is generated by product development activities along the lifecycle.

Prerequisites
None

Content
Generation and management of information
Architecture and functionality of information systems
CAX-systems, Industry 4.0

Workload
360 hours
7.16 Module: Major Field: Information Technology [M-MACH-102817]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Information Technology (K) (at least 8 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4 CR</td>
<td>Jakob, Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105694</td>
<td>Data Analytics for Engineers</td>
<td>5 CR</td>
<td>Ludwig, Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digital Control</td>
<td>4 CR</td>
<td>Knoop</td>
</tr>
<tr>
<td>T-MACH-105223</td>
<td>Machine Vision</td>
<td>8 CR</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105335</td>
<td>Measurement II</td>
<td>4 CR</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-105360</td>
<td>Computer Engineering</td>
<td>6 CR</td>
<td>Keller, Lorch</td>
</tr>
</tbody>
</table>

Election block: Information Technology (E) ()

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
<td>6 CR</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Controls</td>
<td>4 CR</td>
<td>Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>3 CR</td>
<td>Kilger</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>3 CR</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>4 CR</td>
<td>Bernhardt</td>
</tr>
<tr>
<td>T-MACH-107447</td>
<td>Reliability Engineering 1</td>
<td>3 CR</td>
<td>Konnov</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Control Technology</td>
<td>4 CR</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td>4 CR</td>
<td>Stiller, Werling</td>
</tr>
<tr>
<td>T-INFO-101466</td>
<td>Information Processing in Sensor Networks</td>
<td>6 CR</td>
<td>Hanebeck</td>
</tr>
</tbody>
</table>

Election block: Information Technology (P) (at most 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105370</td>
<td>Laboratory Mechatronics</td>
<td>4 CR</td>
<td>Lorch, Seemann, Stiller</td>
</tr>
<tr>
<td>T-MACH-105341</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
<td>4 CR</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-108889</td>
<td>BUS-Controls - Advance</td>
<td>0 CR</td>
<td>Dais, Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exams: duration approx 5 min. per credit point.

However, amount, type and scope of the success control can vary according to the individually choice.

Competence Goal

Students are able to

- explain fundamentals of information technology for given problems in mechanical engineering and mechatronics.
- explain major methods for acquisition, processing and exploitation of information in technical systems.
- outline and to explain alternative methods to determine and to represent measurement uncertainties and their propagation in technical systems.
- explain information filters and fusion methods and understand their application to given problems.

Prerequisites

none

Content

- Techniques of information and data processing in mechanical engineering
- Techniques of sensor data processing
- Concepts of control theory
- Electronic devices for data processing
Workload
The workload is about 360 hours, corresponding to 12 credit points.

Learning type
lecture, practical training, exercise, prakticat training in laboratory
7.17 Module: Major Field: Materials Science and Engineering (SP 26) [M-MACH-102819]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering
Part of: Specialization in Mechanical Engineering (Major Field)

Credits: 12
Recurrence: Each term
Language: German/English
Level: 3
Version: 4

Election notes
In the core area of Major Field at least 8 ECTS have to be chosen.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105301</td>
<td>Materials Science and Engineering III</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Election block: Materials Science and Engineering (E) ()

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105308</td>
<td>Atomic Simulations and Molecular Dynamics</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-102141</td>
<td>Constitution and Properties of Wearresistant Materials</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105157</td>
<td>Foundry Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-102111</td>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-100287</td>
<td>Introduction to Ceramics</td>
<td>6 CR</td>
</tr>
<tr>
<td>T-MACH-105330</td>
<td>Design with Plastics</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Laser in Automotive Engineering</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105333</td>
<td>Mechanics and Strength of Polymers</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>5 CR</td>
</tr>
<tr>
<td>T-MACH-102137</td>
<td>Polymer Engineering I</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105724</td>
<td>Failure Analysis</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105170</td>
<td>Welding Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105354</td>
<td>Fatigue of Metallic Materials</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105362</td>
<td>Technology of Steel Components</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-102139</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-107684</td>
<td>Materials Characterization</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105211</td>
<td>Materials of Lightweight Construction</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Election block: Materials Science and Engineering (P) (at most 4 credits)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105651</td>
<td>Biomechanics: Design in Nature and Inspired by Nature</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-105447</td>
<td>Metallographic Lab Class</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-102154</td>
<td>Laboratory Laser Materials Processing</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Election block: Materials Science and Engineering (Ü) ()

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-107685</td>
<td>Exercises for Materials Characterization</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exams: duration approx. 5 min. per credit point.
However, amount, type and scope of the success control can vary according to the individual choice.

Competence Goal

As part of a major field a specific subdomain of mechanical engineering is made accessible in breadth and depth. Students gain comprehensive knowledge in the core subjects and detailed knowledge in the supplementary subjects of the selected subdomain. They are able to generate new (scientific) solutions within this subdomain.
The specific learning outcomes are defined by the respective coordinator of the major field.
Prerequisites
None

Content
The comprehensive topic of the major field are the thermodynamical and kinetic basics of materials science that the students acquire within the compulsory parts (8 credit points). Moreover, there is a supplementary area of materials science and engineering which offers different subjects according to the students’ interests.

Annotation
The module Materials Science and Engineering consists of 12 credit points in the bachelor’s program. Within the compulsory parts, at least 8 credits are to be chosen. Within the supplementary area, the students can select from a broad variation of courses. For the bachelor’s program, a reduced catalogue exists (see Studienplan).

Workload
The work load is about 360 hours in the Bachelor of Science program, whereof the presence time is 66 h.

Learning type
Within the compulsory parts of the major field Materials Science and Engineering the students choose from a small number of lectures and tutorials (obligatory).
Within the supplementary area students can choose not only lectures and tutorials but also lab courses and seminars.
7.18 Module: Major Field: Mechatronics (SP 31) [M-MACH-102820]

Responsible: Prof. Dr. Veit Hagenmeyer
Organisation: KIT Department of Mechanical Engineering
Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Mechatronics (K) (at least 8 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4 CR</td>
<td>Jakob, Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105694</td>
<td>Data Analytics for Engineers</td>
<td>5 CR</td>
<td>Ludwig, Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Introduction into Mechatronics</td>
<td>6 CR</td>
<td>Böhland, Lorch, Reischl</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>5 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
<td>6 CR</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105539</td>
<td>Modern Control Concepts I</td>
<td>4 CR</td>
<td>Groell, Matthes</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td>4 CR</td>
<td>Stiller, Werling</td>
</tr>
</tbody>
</table>

Election block: Mechatronics (E) ()

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Controls</td>
<td>4 CR</td>
<td>Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthesien</td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digital Control</td>
<td>4 CR</td>
<td>Knoop</td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimental Dynamics</td>
<td>5 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
<td>Becker</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>3 CR</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>4 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105334</td>
<td>Mechanics in Microtechnology</td>
<td>4 CR</td>
<td>Greiner, Gruber</td>
</tr>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
<td>6 CR</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-MACH-105335</td>
<td>Measurement II</td>
<td>4 CR</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4 CR</td>
<td>Kohl</td>
</tr>
<tr>
<td>T-MACH-108809</td>
<td>Micro- and Nanosystem Integration for Medical, Fluidic and Optical Applications</td>
<td>4 CR</td>
<td>Gengenbach, Hagenmeyer, Koker, Sieber</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>4 CR</td>
<td>Albers, Matthesien, Zacharias</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>4 CR</td>
<td>Albers, Gutzmer, Matthesien</td>
</tr>
<tr>
<td>T-INFO-108014</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
<td>Asfour</td>
</tr>
<tr>
<td>T-ETIT-109313</td>
<td>Signals and Systems</td>
<td>6 CR</td>
<td>Puente León</td>
</tr>
<tr>
<td>T-MACH-105372</td>
<td>Theory of Stability</td>
<td>6 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Albers, Matthesien, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-105521</td>
<td>Theoretical Description of Mechatronic Systems</td>
<td>4 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105555</td>
<td>System Integration in Micro- and Nanotechnology</td>
<td>4 CR</td>
<td>Gengenbach</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Vibration Theory</td>
<td>5 CR</td>
<td>Fidlin, Seemann</td>
</tr>
</tbody>
</table>

Election block: Mechatronics (P) (at most 4 credits)
Competence Certificate

Written exam and oral exam.

Competence Goal

Students of the topic mechatronics know the future-oriented procedures. They are able to individually and creatively solve interdisciplinary questions and learn to effectively combine tools from the individual disciplines.

Prerequisites

none

Content

The topic mechatronics offers a broad, multidisciplinary body of knowledge. The graduates are qualified to solve essential mechatronic questions. In particular the following disciplines are covered by the major mechatronics:

- Mechanics and fluidics
- Electronics
- Information processing
- Automation.

Workload

The work load is about 360 hours, corresponding to 12 credit points.

Learning type

The contents of this major field are taught in form of lectures, exercises and practical experiences.
Module: Major Field: Modeling and Simulation in Dynamics (SP 61) [M-MACH-104430]

- **Responsible:** Prof. Dr.-Ing. Wolfgang Seemann
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** Specialization in Mechanical Engineering (Major Field)

Credits
- **12**

Recurrence
- **Each term**

Language
- **German**

Level
- **3**

Version
- **3**

| Election block: Modeling and Simulation in Dynamics (K) (at least 8 credits) |
|---|---|---|
| T-MACH-105209 | Introduction into the Multi-Body Dynamics | 5 CR Seemann |
| T-MACH-105210 | Machine Dynamics | 5 CR Proppe |
| T-MACH-105293 | Mathematical Methods in Dynamics | 6 CR Proppe |
| T-MACH-105226 | Dynamics of the Automotive Drive Train | 5 CR Fidlin |
| T-MACH-105290 | Vibration Theory | 5 CR Fidlin, Seemann |

| Election block: Modeling and Simulation in Dynamics (E) (at most 5 credits) |
|---|---|---|
| T-MACH-105308 | Atomistic Simulations and Molecular Dynamics | 4 CR Brandl, Gumbsch, Schneider |
| T-MACH-105514 | Experimental Dynamics | 5 CR Fidlin |
| T-MACH-105224 | Machine Dynamics II | 4 CR Proppe |
| T-MACH-105294 | Mathematical Methods of Vibration Theory | 6 CR Seemann |
| T-MACH-105349 | Computational Dynamics | 4 CR Proppe |
| T-MACH-105350 | Computational Vehicle Dynamics | 4 CR Proppe |
| T-MACH-105384 | Computerized Multibody Dynamics | 4 CR Seemann |
| T-MACH-105172 | Simulation of Coupled Systems | 4 CR Geimer, Xiang |
| T-MACH-108888 | Simulation of Coupled Systems - Advance | 0 CR Geimer, Xiang |

Competence Certificate
- **oral examination**

Competence Goal
The module provides modeling competences and continues thus the compulsory courses in dynamics. To this end analytical methods for the modeling and examination of dynamical systems are presented. The simulation of the systems enables the students to do simulation studies in typical applications in dynamical systems of mechanical engineering to be able to evaluate and interpret the results.

Prerequisites
- None

Content
This module deals with procedures, methods and applications for mechanical dynamical systems. Subjects are different methods to describe kinematics of multibody systems and to derive the equations of motion for such systems. Solutions of the equations of motion are obtained analytically by mathematical methods or approximately by numerical integration. Applications range from industrial systems like machines and cars down to atomistic simulation.

Workload
- **360 h**

Learning type
- Lectures, tutorials
7.20 Module: Major Field: Powertrain Systems (SP 02) [M-MACH-102812]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German/English</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Election notes

In the core area of each Major Field at least 8 ECTS have to be chosen.

Election block: Powertrain Systems (K) (at least 8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105307</td>
<td>Drive Train of Mobile Machines</td>
<td>4 CR</td>
<td>Geimer, Wydra</td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>5 CR</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Election block: Powertrain Systems (E) ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105215</td>
<td>Applied Tribology in Industrial Product Development</td>
<td>4 CR</td>
<td>Albers, Lorentz, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105536</td>
<td>Dimensioning and Optimization of Power Train System</td>
<td>4 CR</td>
<td>Albers, Faust, Kirchner, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>5 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems</td>
<td>4 CR</td>
<td>Braun, Schöning</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
<td>Becker</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>3 CR</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ploch</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>4 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>4 CR</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>4 CR</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Control Technology</td>
<td>4 CR</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products</td>
<td>3 CR</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products - Case Study</td>
<td>1 CR</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-105531</td>
<td>Tribology</td>
<td>8 CR</td>
<td>Dienwiebel, Scherge</td>
</tr>
<tr>
<td>T-MACH-102194</td>
<td>Combustion Engines I</td>
<td>4 CR</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>4 CR</td>
<td>Gumbsch, Weygand</td>
</tr>
</tbody>
</table>

Election block: Powertrain Systems (Ü) ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109303</td>
<td>Exercices - Tribology</td>
<td>0 CR</td>
<td>Dienwiebel</td>
</tr>
</tbody>
</table>
Competence Goal
The students know and understand the technical and physical basics and systematic connections of drive systems. The lecture deals vehicle drive systems as well as drive systems for stationary and mobile work machines. They are able to choose, describe and use complex dimensioning- and design methods for drive systems under consideration of the interactions of the system.

Prerequisites
none

Content
See courses of the SP02

Workload
The work load is about 360 hours, corresponding to 12 credit points.

Learning type
lectures
auditorium exercises
workshops
Module: Major Field: Production Engineering (SP 52) [M-MACH-102644]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Production Engineering (K) (at least 8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106731</td>
<td>Global Production Engineering (MEI)</td>
<td>4</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-105379</td>
<td>Global Logistics</td>
<td>4</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

**Election block: Production Engineering (E) ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106732</td>
<td>Automated Production Systems (MEI)</td>
<td>4</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-106733</td>
<td>SmartFactory@Industry (MEI)</td>
<td>4</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exams: duration approx. 5 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Competence Goal

After completion of this module, the students are able

- to analyse and solve planning and layout problems on the level of the enterprise, production, processes and work tasks,
- to plan and control a production,
- to evaluate and configure the quality and efficiency of production, processes and products.

Prerequisites

none

Content

The students acquire in the compulsory core subjects profound knowledge about the scientific theories, principles and methods of Production Engineering. Afterwards they are able to evaluate and design complex production systems according to problems of manufacturing and process technologies, materials handling, handling techniques, information engineering as well as production organisation and management.

Workload

The work load is about 360 hours, corresponding to 12 credit points.

Learning type

Lectures, seminars, workshops, excursions
Module: Major Field: Production Systems (SP 38) [M-MACH-102589]

Responsibility: Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

Credits: 12 **Recurrence:** Each term **Language:** German **Level:** 3 **Version:** 3

Election block: Production Systems (K) (at least 8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105518</td>
<td>Human Factors Engineering I</td>
<td>4 CR</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td>4 CR</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>8 CR</td>
<td>Schulze, Zanger</td>
</tr>
<tr>
<td>T-MACH-108849</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>8 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
<td>9 CR</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-109055</td>
<td>Machine Tools and Industrial Handling</td>
<td>8 CR</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Election block: Production Systems (E) ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102162</td>
<td>Automated Manufacturing Systems</td>
<td>9 CR</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Quality Management</td>
<td>4 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Election block: Production Systems (P) (at most 4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108878</td>
<td>Laboratory Production Metrology</td>
<td>4 CR</td>
<td>Häfner</td>
</tr>
</tbody>
</table>

Competence Certificate

- Oral exams: duration approx. 5 min per credit point
- Written exams: duration approx. 20 - 25 min per credit point

Amount, type and scope of the success control can vary according to the individually choice.

Competence Goal

The students:

- are able to choose methods of production science target-oriented in familiar situations and are able to justify their selection.
- are able to describe and compare production processes exemplarily.
- are able to transfer known solutions to given problems in the field of production science under consideration of scientific theories, principles and methods.
- are able to solve tasks in the field of production science team oriented and proceed responsible and adequate to the situation.
- are able to integrate results of others at the solution of given problems.
- have the ability to present their own results in written form and are able to interpret them.
- are able to identify, dissect and develop further systems and processes and apply given sets of criteria under consideration of technical, economic and social conditions.

Prerequisites

None

Content

Within this module the students will get to know and learn about production science. Manifold lectures and excursions as part of several lectures provide specific insights into the field of production science.

Workload

The work load is about 360 hours, corresponding to 12 credit points.

Learning type

Lectures, seminars, workshops, excursions
7.23 Module: Major Field: Rail System Technology (SP 50) [M-MACH-102638]

Responsible: Prof. Dr.-Ing. Peter Gratzfeld

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

- T-MACH-106424 Rail System Technology 4 CR Gratzfeld
- T-MACH-105353 Rail Vehicle Technology 4 CR Gratzfeld

Election block: Rail System Technology (E) ()

- T-MACH-105540 Railways in the Transportation Market 4 CR Gratzfeld
- T-MACH-102121 Electric Rail Vehicles 4 CR Gratzfeld
- T-MACH-105237 Vehicle Lightweight Design - Strategies, Concepts, Materials 4 CR Henning
- T-MACH-105218 Automotive Vision 6 CR Lauer, Stiller
- T-MACH-105535 Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies 4 CR Henning
- T-MACH-104599 Project Management in Rail Industry 4 CR Gratzfeld
- T-MACH-105350 Computational Vehicle Dynamics 4 CR Proppe
- T-MACH-108692 Seminar for Rail System Technology 3 CR Gratzfeld

Competence Certificate

Oral exams: duration approx. 5 minutes per credit point.

However, amount, type and scope of the success control can vary according the individual choice.

Competence Goal

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- Based on operating requirements and legal framework they derive the requirements concerning a capable infrastructure and suitable concepts of rail vehicles.
- They recognize the impact of alignment, understand the important function of the wheel-rail-contact and estimate the impact of driving dynamics on the operating program.
- They evaluate the impact of operating concepts on safety and capacity of a rail system.
- They know the infrastructure to provide power supply to rail vehicles with different drive systems.
- The students learn the role of rail vehicles and understand their classification. They understand the basic structure and know the functions of the main systems. They understand the overall tasks of vehicle system technology.
- They learn functions and requirements of car bodies and judge advantages and disadvantages of design principles. They know the functions of the car body’s interfaces.
- They know about the basics of running dynamics and bogies.
- The students learn about advantages and disadvantages of different types of traction drives and judge, which one fits best for each application.
- They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
- They know the basic setup of train control management system and understand the most important functions.
- They specify and define suitable vehicle concepts based on requirements for modern rail vehicles.
- Supplementary lectures present further major aspects of a rail system.

Prerequisites

None
Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. Vehicle system technology: structure and main systems of rail vehicles
9. Car body: functions, requirements, design principles, crash elements, interfaces
10. Bogies: forces, running gears, axle configuration
11. Drives: vehicle with/without contact wire, dual-mode vehicle
12. Brakes: tasks, basics, principles, blending, brake control
13. Train control management system: definitions, networks, bus systems, components, examples
15. History (optional)
16. Further contents in supplementary lectures

Annotation
A bibliography is available for download (Ilias-platform).

Workload

- Total effort at 12 ECTS (B.Sc.): about 360 hours
- Regular attendance: 63 hours
- Self-study: 63 hours
- Exam and preparation: 234 hours

Learning type
Lectures in the core part.
Lectures and seminars are offered in the supplementary part.
7.24 Module: Major Field: Technical Logistics (SP 44) [M-MACH-102821]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

- **T-MACH-109919** Basics of Technical Logistics I
 4 CR Mittwollen, Oellerich
- **T-MACH-109920** Basics of Technical Logistics II
 5 CR Hochstein

Election block: Technical Logistics (E)

- **T-MACH-102160** Selected Applications of Technical Logistics
 4 CR Milushev, Mittwollen
- **T-MACH-108945** Selected Applications of Technical Logistics - Project
 2 CR Milushev, Mittwollen
- **T-MACH-102159** Elements and Systems of Technical Logistics
 4 CR Fischer, Mittwollen
- **T-MACH-108946** Elements and Systems of Technical Logistics - Project
 2 CR Fischer, Mittwollen
- **T-MACH-105174** Warehousing and Distribution Systems
 3 CR Furmans
- **T-MACH-105151** Energy Efficient Intralogistic Systems
 4 CR Braun, Schönung
- **T-MACH-105175** Airport Logistics
 3 CR Richter
- **T-MACH-105187** IT-Fundamentals of Logistics
 3 CR Thomas
- **T-MACH-105171** Safety Engineering
 4 CR Kany
- **T-MACH-102107** Quality Management
 4 CR Lanza
- **T-MACH-108844** Automated Manufacturing Systems
 8 CR Fleischer
- **T-MACH-105378** Cognitive Automobiles - Laboratory
 6 CR Kitt, Lauer, Stiller
- **T-MACH-105367** Behaviour Generation for Vehicles
 4 CR Stiller, Werling

Competence Certificate

Written and oral exams, see brick courses

Competence Goal

Students are able to:

- Describe main functional elements of technical logistics,
- Determine the main parameters necessary for functionality,
- Combines those functional elements to solve material handling tasks appropriate, and
- Evaluate resulting material handling installations.

Prerequisites

None

Content

The emphasis module *Technical Logistics* provides in-depth basics on the main topics of technical logistics. The module focuses on technical characteristics of material handling technology. To gain a deeper understanding, the course is accompanied by exercises.

Workload

The work load is about 360 hours, corresponding to 12 credit points.

Learning type

Lectures and practices; self-study
Module: Major Field: Vehicle Technology (SP 12) [M-MACH-102818]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

Credits
<table>
<thead>
<tr>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Automotive Technology (K) (at least 8 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100092</td>
<td>Automotive Engineering I</td>
<td>8</td>
<td></td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105655</td>
<td>Alternative Powertrain for Automobiles</td>
<td>4</td>
<td></td>
<td>Noreikat</td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>4</td>
<td></td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105536</td>
<td>Dimensioning and Optimization of Power Train System</td>
<td>4</td>
<td></td>
<td>Albers, Faust, Kirchner, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>5</td>
<td></td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>4</td>
<td></td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-105153</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>4</td>
<td></td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-108374</td>
<td>Vehicle Ergonomics</td>
<td>4</td>
<td></td>
<td>Heine</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>4</td>
<td></td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>4</td>
<td></td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105237</td>
<td>Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td>4</td>
<td></td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-105156</td>
<td>Vehicle Mechatronics I</td>
<td>4</td>
<td></td>
<td>Ammon</td>
</tr>
<tr>
<td>T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>4</td>
<td></td>
<td>Leister</td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
<td>6</td>
<td></td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>4</td>
<td></td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Automotive Engineering II</td>
<td>4</td>
<td></td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>4</td>
<td></td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>2</td>
<td></td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>2</td>
<td></td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-105160</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>2</td>
<td></td>
<td>Züm</td>
</tr>
<tr>
<td>T-MACH-105161</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>2</td>
<td></td>
<td>Züm</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>2</td>
<td></td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>2</td>
<td></td>
<td>Frech</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4</td>
<td></td>
<td>Becker</td>
</tr>
<tr>
<td>T-MACH-105375</td>
<td>Industrial Aerodynamics</td>
<td>4</td>
<td></td>
<td>Breitling, Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>4</td>
<td></td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>4</td>
<td></td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Laser in Automotive Engineering</td>
<td>4</td>
<td></td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>4</td>
<td></td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>4</td>
<td></td>
<td>Mbang</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>6</td>
<td></td>
<td>Frey, Gauterin, Gießler</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>4</td>
<td></td>
<td>Ays, Geerling</td>
</tr>
</tbody>
</table>
Competence Certificate

Valid for all degree programmes, for which no value is indicated in the following.

The assessment is carried out as partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. Amount, type and scope of the success control can vary according to the individually choice. Oral exams: duration approx. 5 min. per credit point. Within the scope of lab courses maximum 4 credits may be acquired.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- knows the most important components of a vehicle,
- knows and understands the functioning and the interaction of the individual components,
- knows the basics of dimensioning the components,
- knows and understands the procedures in automobile development,
- knows and understands the technical specifications at the development procedures,
- is aware of notable boundaries like legislation,
- is ready to analyze and judge vehicle concepts and to participate competently in the development of vehicles.

Prerequisites

None

Content

In the module Automotive Technology the basics are taught, which are important for the development, the design, the production and the operation of vehicles. Particularly the primary important aggregates like engine, gear, drive train, chasis and auxiliary equipment are explained, but also all technical equipment, which make the operation safer and easier. Additionally the interior equipment is examined, which shall provide a preferably comfortable, optimum ambience to the user.

In the module Automotive Technology the focus is on passenger cars and commercial vehicles, which are designed for road applications.

Workload

The work load is about 360 hours, corresponding to 12 credit points.

Learning type

The teaching and learning procedures (lecture, lab course, workshop) are described for each course of the module separately.
7.26 Module: Major Field: Vibration Theory [M-MACH-104442]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Vibration Theory (K) (at least 8 credits)

- T-MACH-105290 Vibration Theory 5 CR Fidlin, Seemann
- T-MACH-105210 Machine Dynamics 5 CR Proppe
- T-MACH-105294 Mathematical Methods of Vibration Theory 6 CR Seemann
- T-MACH-105372 Theory of Stability 6 CR Fidlin
- T-MACH-105439 Introduction to Nonlinear Vibrations 7 CR Fidlin

Election block: Vibration Theory (E) (at most 1 item)

- T-MACH-105224 Machine Dynamics II 4 CR Proppe
- T-MACH-105443 Wave Propagation 4 CR Seemann
- T-MACH-105226 Dynamics of the Automotive Drive Train 5 CR Fidlin
- T-MACH-105514 Experimental Dynamics 5 CR Fidlin
- T-MACH-105154 Vehicle Comfort and Acoustics I 4 CR Gauterin
- T-MACH-105155 Vehicle Comfort and Acoustics II 4 CR Gauterin
- T-MACH-105349 Computational Dynamics 4 CR Proppe

Election block: Vibration Theory (P) (at most 4 credits)

- T-MACH-105373 Practical Training in Measurement of Vibrations 4 CR Fidlin

Competence Certificate
oral examination

Prerequisites
None

Content
The students know different methods which may be applied for the analysis of investigation of vibration problems. They are able to treat one or multiple degree of freedom systems as well as vibrating continua. The goal is to establish a chain from physical modeling via mathematical solution to an interpretation of the results. Based on the courses which are chosen the knowledge has emphasis on theoretical investigations, approximation methods or experimental methods and applications in automotive engineering.
7.27 Module: Manufacturing Processes [M-MACH-102549]

Responsible: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105219 | Basics of Manufacturing Technology | 4 CR | Schulze, Zanger |

Competence Certificate
written exam (duration: 60 min)

Competence Goal
The students …

- are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
- have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
- are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
- have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
- are enabled to perform a selection of suitable manufacturing processes for given components.
- are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

Prerequisites
none

Content
The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects.

The following topics will be covered:

- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment

Workload
regular attendance: 21 hoursself-study: 99 hours

Learning type
Lecture
7.28 Module: Materials Science (BSc-Modul 04, WK) [M-MACH-102562]

Responsible: Prof. Dr.-Ing. Martin Heilmair
Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105145</td>
<td>Materials Science I & II</td>
<td>11 CR</td>
<td>Gibmeier, Heilmair, Pundt</td>
</tr>
<tr>
<td>T-MACH-105146</td>
<td>Materials Science Lab Course</td>
<td>3 CR</td>
<td>Gibmeier, Heilmair, Pundt</td>
</tr>
</tbody>
</table>

Competence Certificate
not graded: participation in 10 lab experiments, introductory colloquia must be passed and 1 short presentation must be presented. The lab course must be finished successfully prior to the registration for the oral exam;
graded: oral exam covering the whole module, about 25 minutes.

Competence Goal
Within this Module the students should

- gain knowledge of basics about structural and functional materials
- be able to draw relationships between atomic structure, microstructure and properties
- be able to apply appropriate methods to determine mechanical and other relevant properties as well as to characterize the microstructure of materials
- be able to assess material properties and corresponding applications

Prerequisites
none

Content
WK I
Structure of atoms and atomic bonding
Crystalline solids
Defects in crystalline solids
Amorphous and partially crystalline solids
Constitution of alloys and materials
Diffusion and phase transformation in the solid state
Microscopic characterization method
Characterization with X-Rays and neutrons
Non-destructive Testing
Mechanical Testing
WK II
Iron based alloys
Non-iron based alloys
Ceramics
Glases
Polymers
Composite Materials
Annotation
For the Bachelor's program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.
For the Bachelor's program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
The workload of the module is about 420 hours.
The workload for the lab course Materials Science is 90 h in total and consists of the presence during the 10 experiments (one week half-time, 4 hours per day) as well as preparation and rework time at home.
The workload for the lecture Materials Science I & II is 165 h per semester and consists of the presence during the lectures (WS: 4 SWS, SS: 2SWS) and the exercises (1 SWS per WS and 1 SWS per SS) as well as preparation and rework time at home.

Learning type
The module "Materials Science" consists of the lectures "Materials Science I and II" with additional tutorials for small groups and a one week materials science laboratory course.
7.29 Module: Measurement and Control Systems (BSc-Modul 11, MRT) [M-MACH-102564]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-104745 | Basics in Measurement and Control Systems | 7 CR | Stiller |

Competence Certificate

- **Type of Examination:** written exam
- **Duration of Examination:** 150 minutes

Competence Goal

- Students are able to name, describe and explain control principles applied to physical quantities.
- They are able to name, analyze and assess system theoretic characteristics of dynamical systems.
- Students are able to represent real systems in a system theoretic model and to assess the suitability of a given model.
- Students are able to apply methods for controller design and to analyze their properties.
- Students are able to select appropriate principles of metrology and to model, analyze and assess measurement setups.
- Students are able to quantify and assess measurement uncertainties.

Module grade calculation

result of exam

Prerequisites

none

Content

1. Dynamic systems
2. Properties of important systems and modeling
3. Transfer characteristics and stability
4. Controller design
5. Fundamentals of measurement
6. Estimation
7. Sensors
8. Introduction to digital measurement

Annotation

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.
For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload

84 hours presence time, 126 hours selfstudies

Learning type

Lecture
Tutorials
7.30 Module: Mechanical Design (BSc-Modul 06, MKL) [M-MACH-102573]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Each winter term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105286</td>
<td>Mechanical Design I & II</td>
<td>5 CR</td>
<td>Albers, Burkardt, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-104810</td>
<td>Mechanical Design III & IV</td>
<td>13 CR</td>
<td>Albers, Burkardt, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105282</td>
<td>Mechanical Design I, Prerequisites</td>
<td>1 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105283</td>
<td>Mechanical Design II, Prerequisites</td>
<td>1 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105284</td>
<td>Mechanical Design III, Constructing the Team</td>
<td>0 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105285</td>
<td>Mechanical Design IV, Constructing the Team</td>
<td>0 CR</td>
<td>Albers, Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

Mechanical Design I & II:
- Preliminary examination: Successful participation in workshops in the field of mechanical Design I, as well as successful processing of output power in mechanical design II
- Written examination in the field of mechanical engineering I and II: duration 60 min plus reading time

Mechanical Design III & IV:
- Preliminary examination: Successful participation in workshops in the field of mechanical Design III & IV
 - Examination in the field of mechanical Design III & IV consisting of written part with duration 60 min plus reading time and
 - constructive part with duration 180 min plus reading time
Competence Goal
Learning object springs:
- be able to recognize spring types and explain stress
- Identify and describe the properties of a resilient LSS in machine elements presented later on
- Understanding and explaining the principle of action
- Know and list areas of application for springs
- graphically illustrate the load and the resulting stresses
- be able to describe the degree of species usefulness as a means of lightweight construction
- be able to analyse different solution variants with regard to lightweight construction (use species efficiency)
- Being able to explain several springs as a circuit and calculate total spring stiffness

Learning objects Technical Systems:
- Being able to explain what a technical system is
- "Thinking in systems.*
- Using system technology as an abstraction tool for handling complexity
- Recognizing functional relationships of technical systems
- Getting to know the concept of function
- be able to use C&C²-A as a means of system technology

Learning objects Visualization:
- Ability to create and interpret schematics
- Using freehand technical drawing as a means of communication
- To be able to apply the technical basics of freehand drawing
- Derivation of 2D representations into different perspective representations of technical structures and vice versa
- Master reading of technical drawings
- Dedicated dimensioning of technical drawings
- Create sectional views of technical systems as a technical sketch

Learning objects Bearings:
- be able to recognize bearings in machine systems and explain their basic functions
- name bearings (type/type/function) and recognize them in machine systems and technical drawings
- Being able to name areas of application and selection criteria for the various bearings and bearing arrangements and explain interrelationships
- Ability to functionally explain the design of the bearing definitions in different directions radially/axially and circumferentially
- Know and describe selection as an iterative process as an example
- be able to perform dimensioning of bearing arrangements as an example of the engineer’s approach to dimensioning machine elements
- Develop first ideas for probabilities in predicting the life of machine elements
- Recognise from the damage pattern whether static or dynamic overload was the cause of material failure
- Calculate equivalent static and dynamic bearing loads from the catalogue and given external forces on the bearing
- Being able to name, explain and transfer the basic equation of the dimensioning to the bearing dimensioning

Learning objectives seals:
The students…
- can discuss the basic functions of seals
- can describe the physical causes for mass transfer
- can apply the C&C-Model on seals
- can name, describe and apply the three most important classification criteria of seals
- can explain the function of a contacting seal and a non-contacting seal.
- can differentiate the seal types and organize them to the classification criteria.
- can discuss the structure and the effect of a radial shaft seal
- can evaluate radial shaft seals, compression packings, mechanical seals, gap seals and labyrinth seals
- can describe and apply the constructional principle of selffortification
- can describe the stick-slip phenomenon during the movement sequences of a reciprocating seal

Learning design:
The students…
- understand the meaning of design
- are able to recognize and implement basic rules and principles of design
- are able to design the connection of partial systems into the total system
- can name requirements of design and take them into account
- know the main groups of manufacturing methods
- are able to explain the manufacturing processes
- are able to depict a casted design in a drawing clearly, e.g. draft of the mold, no material accumulation, …
- know how components are designed
- Know how the production of the components has an effect on
 their design
- Know the requirements and boundary conditions on design

Learning bolted connections:
The students...
- can list and explain various bolt applications.
- can recognize bolt types and explain their function
- can build a C&C² model of a bolted joint and discuss the influences on its function
- can explain the function of a bolted connection with the help of a spring model
- can reproduce, apply and discuss the screw equation.
- Can estimate the load-bearing capacity of low-loaded bolted joints for dimensioning purposes
- Can indicate which bolted joint is to be calculated and which only roughly dimensioned.
- Can carry out the dimensioning of bolted connections as flange connections
- Can create, explain and discuss the force deflection diagram of a bolted connection

Learning objectives tolerances and fits:
The students...
- know the importance of the microstructure of working surfaces on technical surfaces on the function. They are familiar with a system for describing the surface microstructure in technology and parameters for describing the surface fine structure of working surfaces both in their definition and in their statement and in the quantitative order of magnitude.
- know and can explain surface measurement principles.
- know the relationship between the surface structure and the manufacturing processes and the costs.
- know the purpose of standards, standard types and preferred numbers.
- know and can define tolerances as a description of the geometry of working surfaces. They know the ISO fitting systems in type and structure and can apply it.
- can explain the different types of toleration and their significance for the economic product development process.

Learning objectives component connections:
The students...
- can generally explain basic functions of shaft-hub-connections.
- know and can explain a selection of different component connections to the respective working principles.
- can explain the component connection "centering" in its function and draw it in a technical drawing.
- understand form-closing and force-closing shaft-hub connections and can explain them. They can dimension a cylindrical interference fit (calculation and dimensioning criteria) and understand the stresses on a cylindrical interference fit and can display them graphically.

Learning objectives gears:
The students...
- Understand the function of gearboxes in the context of drive systems.
- are familiar with different operating principles of gearboxes and different types of gearboxes.
- know and understand the law of gearing. They know names on the gear and different flank curves.
- Understand engagement of gears, application limits and damage to gears. They know the basic ideas of gear dimensioning.
- know and understand planetary gearboxes. They understand the operating principle of hydraulic transmissions.

Learning objects dimensioning
Students can...
- Explain the target values of the economic dimensioning
- explain what are the main results of a dimensioning process
- Explain the scope of the dimensioning (economic and legal significance)
- Explain the basic sizing procedure and record it as a generic flowchart
- Explain uncertainties in dimensioning
- specify the different basic procedures, both for dimensioning and for determining the influencing variables, e.g. loads, as well as their advantages or disadvantages in relation to each other
- explain different types of calculation methods and their characteristics (static/dynamic, local vs. nominal voltages)
- Name different types of failure (implies the definition of failure)
- Explain possible causes of failure
- provide suitable replacement models for simple subsystems of technical systems as a basis for dimensioning
- Explain different basic load types for given examples Dominant load types relevant to design
- Use the basics of elastostatics for all basic load cases to design components that can be modeled as linear structures according to the nominal stress concept.
- describe the dimensioning parameters presented in the VL and their use (shape number, shape yield strength, shape yield strength ratio)
- explain the purpose of strength hypotheses
Learning objectives:

Module: Mechanical Design (BSc-Modul 06, MKL) [M-MACH-102573]

- explain the strength hypotheses for metallic materials presented in the VL and select them according to the specific situation
- explain the principal effects of notches, including the factors affecting the magnitude of these effects
- describe how notches can be taken into account in the dimensioning process
- notched components that can be modeled as linear load-bearing structures for static loads
- Explain possibilities for determining the strength of a material or component
- Name influencing variables on the loadability and derive measures from them in order to influence the loadability of a component if necessary.
- describe different types of material behaviour under overelastic stressing of metallic materials
- Describe dynamic loads
- from Wöhler, Haigh- or Smith diagrams determine material characteristics for the loadability under given load conditions
- construct the Smith chart approximately with the given characteristic values
- explain the difference between strength and fatigue strength
- Components that can be modeled as linear structures according to the nominal stress concept for dynamic loads in base load cases and combined loads in the same phase
- for components that can be modeled as linear structures, explain the design approach presented in the lecture for any combined, dynamic loads
- Perform strength analyses in accordance with DIN 743, in the course of which even failure-critical points in the component can be identified and, if the result is negative, appropriate measures can be derived and evaluated.
- Name factors influencing the safety factors to be selected and explain what type of influence this is

Learning objectives shaft couplings:

Students can...

- Name the reasons for using shaft couplings (in short: "Couplings")
- name exemplary applications of couplings
- List basic functions of clutches and delimit clutches to transmissions
- indicate the basic power balance of a coupling
- mention various ancillary functions that occur with clutches
- name various criteria for classifying couplings
- describe the embodiment-function relationship for a given coupling for both main and secondary functions
- If necessary, derive the main and auxiliary functions required for the application, select a suitable coupling (and if necessary also a specific size) or combine several couplings if necessary.
- Explain interactions of couplings with adjacent subsystems, possibly specific to certain designs or groups of couplings
- Specify selection criteria for couplings
- explain central design principles for different groups of couplings, including the designation of key design targets
- for frictionally engageable clutches, slip time, transferable torque and thermal resistance should be designed roughly under the assumptions and simplifications dealt with in the lecture, estimate the relevant loads by the surrounding technical system and, if necessary, influence the specified target values by design measures.
- Apply relevant standards for the design of couplings
- Name possible failure modes for given couplings
- specify which design measures on a coupling can be used to influence the dynamic behaviour of the surrounding system in a desired direction
- explain the various possible actuation types for switchable clutches and give examples of corresponding clutch designs

Learning Objectives Fundamentals of Fluid Technology:

Students can...

- differentiate between different areas of fluid technology on the basis of essential aspects of the operating principles
- Identify properties/ special features of fluid technology systems and the resulting areas of application
- explain basic approaches for the design of hydraulic systems
- differentiate the flow types shown in the lecture
- with the basic equations (continuity equation, Bernoulli,...) of hydrostatics and hydrodynamics explained in the lecture.
- Identify sources of pressure losses in hydraulic systems and influencing factors
- designate basic subsystems of a hydraulic system
- Assign system and component examples shown in the lecture to components of a hydraulic system
- name the symbols shown in the lecture and assign them to the respective system/component
- use symbols to explain the function of simple hydraulic systems
- Draw up function diagrams for hydraulic systems that are similar in complexity to the systems shown in the lecture.

Prerequisites

None
Content
MKL I:
Introduction to mechanical design
Tools for visualization (technical drawing)
Product Development as a problem solution
Technical Systems Product Development
 • Systems theory
 • Contact and Channel Approach C&C²-A
Basics of selected construction and machine elements
 • springs
 • Bearing and fence
The lecture is accompanied by exercises with the following content:
gear workshop
Exercises for visualization tools (technical drawing)
Exercise on Technical Systems Product Creation
 • Systems theory
 • Contact and Channel Approach C&C²-A
Exercise on the spring module
Exercise on the bearing and fence Module
MKL II:
 • Basics bearings
 • Sealings
 • Design
 • Tolerances and fits
 • component connections
 • The lecture is accompanied by exercises to deepen the contents of the lecture.
MKL III:
 • component connections
 • tolerances and fits
 • gears
MKL IV:
Elementary component connections - Part 2
Basics of clutches
 • Function and operating principles
 • Characteristic features and classification
 • Non-engaging shaft clutches
 • Switchable shaft clutches
 • Flexible clutches
Basics of gearboxes
 • Function and operating principles
 • Basics of gear drives
 • Characteristic features and classification
 • selection criteria
 • Basics of other transmissions
 • Fundamentals of lubrication and lubricants
Basics of gearing
 • Function and operating principles
 • Types of thoothing
 • Cycloid as flank curve
 • Involute as flank curve
 • Method of manufacturing gears
 • Profil overlap
 • Profil offset
 • Limits of application and damage
• Dimensioning
• Tooth strength
• Pitting resistance

Basics of hydraulics

• Basic functions and operating principles
• Characteristic features and classification
• Types and properties
• Sample
• Application
• Design calculation

Annotation

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload

MKL 1:
Attendance at lectures (15 VL): 22.5h
Presence exercises (8 exercises): 12h
Attendance (3x 2h) and preparation (3x3h) Workshop sessions: 15h
Preparation and execution of online test: 6h
Personal preparation and follow-up of lecture and exercise: 34.5h

MKL 2:
Attendance lectures (15 VL): 22.5h
Presence exercises (7 ÜB): 10.5h
Personal preparation and follow-up of lecture and exercise, incl. prerequisite and preparation for the exam: 117h

MKL 3:
Attendance lectures (15 L): 22.5h
Presence exercises (4 exercises): 6h
Attendance milestones project work (3x 4h): 12h
Project work in a team: 80h
Personal preparation and follow-up of lecture and exercise: 29.5h

MKL 4:
Attendance lectures (13 L): 19.5h
Presence exercises (6 exercises): 9h
Attendance milestones project work (3x 4h): 12h
Project work in a team: 120h
Personal preparation and follow-up of lecture and exercise, incl. preparation for the exam: 82.5h

Learning type

Lecture
Tutorial
Project work during the semester
Module: Orientation Exam [M-MACH-104624]

Organisation: University

Part of: Orientation Exam

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100275</td>
<td>Advanced Mathematics I</td>
<td>7</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td>7</td>
<td>Böhike, Langhoff</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Engineering Mechanics II</td>
<td>6</td>
<td>Böhike, Langhoff</td>
</tr>
</tbody>
</table>

Modelled deadline

This module must be passed until the end of the **3. term**.
7.32 Module: Physics [M-PHYS-104030]

Responsible: Prof. Dr. Gernot Goll
Prof. Dr. Bernd Pilawa

Organisation: KIT Department of Physics
Part of: Fundamentals of Engineering

Credits: 5
Recurrence: Each summer term
Language: German/English
Level: 3
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108322</td>
<td>Wave and Quantum Physics</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Competence Goal

The students

- are familiar with the properties of waves and can discuss those
- can reflect on the principles of relativity
- comprehend the coherence of the particle and wave description of light and matter
- can explain the limits of wave physics
- are able the apply the Schrödinger-equation to basic problems in quantum mechanics
- can explain the basic properties of atoms, especially for the hydrogen atom
- can discuss fundamental aspects of the electronic properties of solids

Prerequisites

None

Content

- Properties of waves
- Acoustic and electromagnetic waves
- Interference and diffraction
- Relativity
- Wave-particle dualism
- Basic properties of atoms
- Basic electronic properties of solids

Annotation

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload

150 hours, consisting of attendance times (45), follow-up of the lecture including exam preparation and preparation of exercises (105)

Learning type

Lecture and Tutorial
7.33 Module: Production Operations Management [M-MACH-100297]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Each winter term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100304</td>
<td>Production Operations Management</td>
</tr>
<tr>
<td>T-MACH-108734</td>
<td>Production Operations Management-Project</td>
</tr>
</tbody>
</table>

Competence Certificate
The success control takes place in the form of partial examinations in the individual courses of the module. These are a written exam (duration: 90 minutes) and a different type of examination. The module grade is made up of the grades of the courses in the module weighted by credit points.

Competence Goal
If you successfully passed this course you will be able to:

- state the relevant technical terms of business administration, logistics and production engineering
- describe the interrelation between these technical terms
- describe the most important decision problems qualitatively and quantitatively
- apply the appropriate decision models to solve the respective decision problems
- critically evaluate the results and draw appropriate conclusions
- extend the learned methods and models by researching on you own

Prerequisites
none

Content
The institutes alternate with each cycle. Basic skills about the planning and operation of a production plant are taught. The lecture covers the basics of operations and supply chain management as well as business management basics in accounting, investment calculation and legal forms.

Annotation
It is a joint module of the Institute of Materials Handling and Logistics (IFL) and the Institute of Production Science (WBK).

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
Attendance time: 42 hours,
Self-study: 108 hours

Learning type
1. Lectures (Obligatory)
2. Tutorials (Obligatory)
3. Group work (Obligatory)
4. Oral defense of the group work (Obligatory)
Module: Technical Thermodynamics (BSc-Modul 05, TTD) [M-MACH-102574]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>CR</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104747</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8</td>
<td>CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>7</td>
<td>CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105204</td>
<td>Excercises in Technical Thermodynamics and Heat Transfer I</td>
<td>0</td>
<td>CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105288</td>
<td>Excercises in Technical Thermodynamics and Heat Transfer II</td>
<td>0</td>
<td>CR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisite: attestation each semester by homework assignments

Thermodynamics I: Written exam, graded, 3 hours

Thermodynamics II: Written exam, graded, 3 hours

Competence Goal

The students acquire the competency to master the fundamentals of thermodynamics and the ability to apply the knowledge an problem-solving in various branches of mechanical engineering and especially in the Energy Technology sector.

An integral part of the model is that students can define the fundamental laws of thermodynamics and their application. The students are competent in describing and comparing the main processes in energy conversion. Using tools also applied in Industry they are capable of analysing and rating the efficiency of processes. The students are capable of discussing the thermodynamical correlation of ideal gas mixtures, real gases and of humid air as well analysing them with the help of the laws of thermodynamic. Furthermore the students are capable of defining and applying the heat transfer mechanisms.

Module grade calculation

weight according to CP

Prerequisites

None

Content

Thermodynamics I:

- System, properties of state
- Chemical and thermodynamic properties of pure components
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moved systems Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes

Thermodynamics II:

- Repetition of the topics of “Thermodynamics and Heat Transfer I”
- Mixtures of ideal gases
- Moist air
- Behaviour of real substances described by equations of state
- Applications of the laws of thermodynamics to chemical reactions

Annotation

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.
Workload
lectures and exercises: 150h
homework and preparation of examination: 300h

Learning type
Lecture
Exercise course
Tutorial
8 Courses

8.1 Course: Advanced Mathematics I [T-MATH-100275]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of:
M-MACH-104624 - Orientation Exam
M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0131000</td>
<td>Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4</td>
<td>Lecture (V)</td>
<td>Arens</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0131200</td>
<td>Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4</td>
<td>Lecture (V)</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6700007</td>
<td>Advanced Mathematics I</td>
<td>Prüfung (PR)</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A “pass” result on the pre-requisite in AM I is a requirement for registration for the examination in AM I.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100525 - Tutorial Advanced Mathematics I must have been passed.
8.2 Course: Advanced Mathematics II [T-MATH-100276]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 0180800 Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td>Hettlich</td>
</tr>
<tr>
<td>SS 2020 0181000 Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6700008 Advanced Mathematics II</td>
<td>Prüfung (PR)</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A "pass" result on the pre-requisite in AM II is a requirement for registration for the examination in AM II.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100526 - Tutorial Advanced Mathematics II must have been passed.
8.3 Course: Advanced Mathematics III [T-MATH-100277]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0131400</td>
<td>Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau</td>
<td>4</td>
<td>Lecture (V)</td>
<td>Griesmaier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6700009</td>
<td>Advanced Mathematics III</td>
<td>Prüfung (PR)</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites

A “pass” result on the pre-requisite in AM III is a requirement for registration for the examination in AM III.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MATH-100527 - Tutorial Advanced Mathematics III must have been passed.
8.4 Course: Advanced Methods in Strength of Materials [T-MACH-110835]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Organisation:

Part of: M-MACH-102582 - Major Field: Continuum Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161252</td>
<td>Continuum mechanics of solids and fluids</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Competence Certificate

written examination (90 min); Additives as announced

There are no prerequisites within the Major Field 13 (Continuum Mechanics)

Annotation

This brick can only be chosen within the Major field 13 (Continuum Mechanics) of the Bachelor studies in Mechanical Engineering

Below you will find excerpts from events related to this course:

V Continuum mechanics of solids and fluids

2161252, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

- introduction into tensor calculus
- kinematics
- balance laws of mechanics and thermodynamics
- material theory of solids and fluids
- field equations for solids and fluids
- thermomechanical couplings
- dimensional analysis

Literature

Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
8.5 Course: Advanced Methods in Strength of Materials [T-MACH-110377]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination (90 min). Additives as announced
prerequisites to the exam: passing the corresponding Tutorial Continuum Mechanics of Solids and Fluids (T-MACH-110333)

Prerequisites
passing the corresponding Tutorial Continuum Mechanics of Solids and Fluids (T-MACH-110333)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110333 - Tutorial Continuum Mechanics of Solids and Fluids must have been passed.

Below you will find excerpts from events related to this course:

Continuum mechanics of solids and fluids

2161252, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

- introduction into tensor calculus
- kinematics
- balance laws of mechanics and thermodynamics
- material theory of solids and fluids
- field equations for solids and fluids
- thermomechanical couplings
- dimensional analysis

Literature

Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
8.6 Course: Agile Product Innovation Management - Value-driven Planning of New Products [T-MACH-106744]

Responsible: Dr.-Ing. Roland Kläger
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination, 20 min.

Prerequisites
None
8.7 Course: Airport Logistics [T-MACH-105175]

Responsible: Dr.-Ing. André Richter
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2117056</td>
<td>Airport logistics</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td>Richter</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105175</td>
<td>Airport Logistics</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Airport logistics
2117056, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

Media
Presentations

Learning content

- Introduction
- Airport installations
- Luggage transport
- Passenger transport
- Security on the airport
- Legal bases of the air traffic
- Freight on the airport

Learning goals

The students are able to:

- Describe material handling and informations technology activities on airports,
- Evaluate processes and systems on airports as the law stands, and
- Choose appropriate processes and material handling systems for airports.

Recommendations

None

Workload

Regular attendance: 21 hours
Self-study: 99 hours

Note

Limited number of participants: allocation of places in sequence of registration (first come first served). Registration via "ILIAS" mandatory.
Personal presence during lectures mandatory.

Literature

8.8 Course: Alternative Powertrain for Automobiles [T-MACH-105655]

Responsible: Prof. Dipl.-Ing. Karl Ernst Noreikat
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2133132</td>
<td>2 SWS</td>
<td>Alternative Powertrains for Automobiles</td>
<td>Noreikat</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 76-T-MACH-105655</td>
<td>Alternative Powertrain for Automobiles</td>
<td>Prüfung (PR)</td>
<td>Noreikat</td>
<td></td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105655</td>
<td>Alternative Powertrain for Automobiles</td>
<td>Prüfung (PR)</td>
<td>Noreikat</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam

Below you will find excerpts from events related to this course:

Alternative Powertrains for Automobiles
2133132, WS 19/20, 2 SWS, Open in study portal

Content

History
Infrastructure
Market Situation
Legislation
Alternative Fuels
Innovative Drivetrains
Hybrids
Plug-In Hybrids
BEV
Fuel Cells
8.9 Course: Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines [T-MACH-105173]

Responsible: Dr.-Ing. Marcus Gohl
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102645 - Major Field: Combustion Engine Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134150</td>
<td>Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines</td>
<td>Gohl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>Koch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76--T-Mach-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>Gohl</td>
</tr>
</tbody>
</table>

Competence Certificate
Letter of attendance or oral exam (25 minutes, no auxiliary means)

Prerequisites
none

Below you will find excerpts from events related to this course:

V Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines

2134150, SS 2020, 2 SWS, Language: German, Open in study portal

Literature
Die Vorlesungsunterlagen werden vor jeder Veranstaltung an die Studenten verteilt.
8.10 Course: Applied Tribology in Industrial Product Development [T-MACH-105215]

Responsible: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Benoit Lorentz
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Lorentz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td>Lorentz, Albers</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (20 min)

Prerequisites
None

Below you will find excerpts from events related to this course:

Applied Tribology in Industrial Product Development

2145181, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Content
The aim of the lecture is to discuss tribological problems, tribological features and the tribological variety on examples of the industry.

The students are able to

- define a tribological system,
- design a tribological system,
- discuss wear and damage impacts,
- explain measurement techniques to investigate tribological systems and
- show the limits of a tribological system.

Further content:

- Friction, Wear, Wear Measurement
- Lubricant (Oil, Grease, etc.)
- Hydrodynamic and elastohydrodynamic Lubrication
- Design of Tribologic Working Surface Pairs
- Technique of Measurement in Lubricated Contacts
- Prevention of Maschine Failure
- Protective Surface Layers
- Journal Bearings, Roller Bearings
- Gear Wheels and Transmissions

Regular attendance: 21 h
Self-study: 99 h
Exam: oral exam
Literature
Vorlesungsfolien werden im Ilias veröffentlicht.
The lecture script will be allocated at Ilias.
Atomistic Simulations and Molecular Dynamics [T-MACH-105308]

- **Responsible:** Dr. Christian Brandl, Prof. Dr. Peter Gumbsch, Dr.-Ing. Johannes Schneider
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering
 M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Event Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2181740</td>
<td>Atomistic simulations and molecular dynamics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2181741</td>
<td>Lab for ‘Atomistic simulations and molecular dynamics’</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Gumbsch, Weygand</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Event Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105308</td>
<td>Atomistic Simulations and Molecular Dynamics</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Gumbsch</td>
</tr>
</tbody>
</table>

Competence Certificate

- **oral exam ca. 30 minutes**

Prerequisites

- **none**

Recommendation

- **preliminary knowledge in mathematics, physics and materials science**

Below you will find excerpts from events related to this course:

Lecture (V)

- **Atomistic simulations and molecular dynamics**
 - Course Code: 2181740, SS 2020, 2 SWS, Language: English, [Open in study portal](#)
Content
The lecture introduces the foundation of particle based simulation methods focussing on molecular dynamics:

1. Introduction
2. Physics of Materials
3. MD Basics, Atom-Billard
 * particle, position, energy, forces, pair potentials
 * initial and boundary conditions
 * time integration
4. algorithms
5. statics, dynamics, thermodynamics
6. MD output
7. interaction between particles
 * pair potential -- many body potentials
 * principles of quantum mechanics
 * tight binding methods
 * dissipative particle dynamics
8. application of particle based methods

Exercises (2181741, 2 SWS) are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

* describe the physical foundation of particle based simulation method (e.g. molecular dynamics)
* apply particle based simulation methods to problems in materials science

preliminary knowledge in mathematics, physics and materials science recommended

regular attendance: 22,5 hours
exercise: 22,5 hours
self-study: 75 hours
oral exam ca. 30 minutes

Literature

V Lab for 'Atomistic simulations and molecular dynamics'
2181741, SS 2020, 2 SWS, Language: English, Open in study portal

Content
Introduction to the basic usage of the MD software package IMD:

* generating initial structures
* energy calculations
* defects in lattices
* visualization of MD structures

The students will be able to use a standard molecular dynamics software package.

Literature
siehe Voprlesung
8.12 Course: Automated Manufacturing Systems [T-MACH-102162]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>2150904</th>
<th>Automated Manufacturing Systems</th>
<th>6 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Fleischer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>WS 19/20</td>
<td>76-T-MACH-102162</td>
<td>Automated Manufacturing Systems</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (120 minutes)

Prerequisites
"T-MACH-108844 - Automatisierte Produktionsanlagen" must not be commenced.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-108844 - Automated Manufacturing Systems must not have been started.

Below you will find excerpts from events related to this course:
Content
The lecture provides an overview of the structure and functioning of automated manufacturing systems. In the introduction chapter the basic elements for the realization of automated manufacturing systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- Quality assurance in automated manufacturing
- automatic machines, cells, centers and systems for manufacturing and assembly
- structures of multi-machine systems
- planning of automated manufacturing systems

An interdisciplinary view of these subareas enables Industry 4.0 solutions.
In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components (chassis and drive technology). The analysis of automated manufacturing systems for manufacturing of defined components is also included.
In the field of vehicle power train both, the automated manufacturing process for the production of the conventional internal-combustion engine and the automated manufacturing process for the production of the prospective electric power train (electric motor and battery) are considered. In the field of car body, the focus is on the analysis of the process chain for the automated manufacturing of conventional sheet metal body parts, as well as for automated manufacturing of body components made out of fiber-reinforced plastics.
Within tutorials, the contents from the lecture are advanced and applied to specific problems and tasks.

Learning Outcomes:
The students …

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: "Handling Technology", "Industrial Robotics", "Sensory" and "Controls".
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.13 Course: Automated Manufacturing Systems [T-MACH-108844]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of:
- MMACH-102818 - Major Field: Vehicle Technology
- MMACH-102820 - Major Field: Mechatronics
- MMACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2150904</td>
<td>Automated Manufacturing Systems</td>
<td>6 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (40 minutes)

Prerequisites
"T-MACH-102162 - Automatisierte Produktionsanlagen" must not be commenced.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-102162 - Automated Manufacturing Systems must not have been started.

Below you will find excerpts from events related to this course:

Automated Manufacturing Systems

2150904, SS 2020, 6 SWS, Language: German, [Open in study portal](#)
Lecture / Practice (VÜ)
Content
The lecture provides an overview of the structure and functioning of automated manufacturing systems. In the introduction chapter the basic elements for the realization of automated manufacturing systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- Quality assurance in automated manufacturing
- automatic machines, cells, centers and systems for manufacturing and assembly
- structures of multi-machine systems
- planning of automated manufacturing systems

An interdisciplinary view of these subareas enables Industry 4.0 solutions.

In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components (chassis and drive technology). The analysis of automated manufacturing systems for manufacturing of defined components is also included.

In the field of vehicle power train both, the automated manufacturing process for the production of the conventional internal-combustion engine and the automated manufacturing process for the production of the prospective electric power train (electric motor and battery) are considered. In the field of car body, the focus is on the analysis of the process chain for the automated manufacturing of conventional sheet metal body parts, as well as for automated manufacturing of body components made out of fiber-reinforced plastics.

Within tutorials, the contents from the lecture are advanced and applied to specific problems and tasks.

Learning Outcomes:
The students …

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: "Handling Technology", "Industrial Robotics", "Sensory" and "Controls".
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.14 Course: Automated Production Systems (MEI) [T-MACH-106732]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102644 - Major Field: Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3150012</td>
<td>Automated Production Systems (MEI)</td>
<td>2 SWS</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-106732</td>
<td>Automated Production Systems (MEI)</td>
<td>Prüfung (PR)</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (20 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Automated Production Systems (MEI)

3150012, SS 2020, 2 SWS, Language: English, [Open in study portal](#)

Content

The lecture provides an overview of the structure and functioning of automated production systems. In the introduction chapter the basic elements for the realization of automated production systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- automatic machines, cells, centers and systems for manufacturing and assembly
- planning of automated manufacturing systems

In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components. The analysis of automated manufacturing systems for manufacturing of defined components is also included.

Learning Outcomes:

The students …

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
8.15 Course: Automotive Engineering I [T-MACH-100092]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>8</td>
<td>Each winter term</td>
<td>1 terms</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture (V)</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2113805</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Gauterin, Unrau</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 2113809</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Gauterin, Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture (PR)</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-100092</td>
<td>Automotive Engineering</td>
<td>Prüfung (PR)</td>
<td>Unrau, Gauterin</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination

Duration: 120 minutes

Auxiliary means: none

Prerequisites

The brick "T-MACH-102203 - Automotive Engineering I" is not started or finished. The bricks "T-MACH-100092 - Grundlagen der Fahrzeugtechnik I" and "T-MACH-102203 - Automotive Engineering I" can not be combined.

Below you will find excerpts from events related to this course:

Automotive Engineering I

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2113805</td>
<td>4 SWS</td>
<td>German</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Content

1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performance, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardan joints, differentials

Learning Objectives:

The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

Literature

Bachelor Program Mechanical Engineering . Date: 15/02/2020
Module Handbook valid from Summer Term 2020
Automotive Engineering I

2113809, WS 19/20, 4 SWS, Language: English, Open in study portal

Lecture (V)

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

Literature
8.16 Course: Automotive Engineering II [T-MACH-102117]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114835</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2114855</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102117</td>
<td>Automotive Engineering II</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76T-MACH-102117-2</td>
<td>Automotive Engineering II</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Examination

- **Duration:** 90 minutes
- **Auxiliary means:** none

Prerequisites

- none

Below you will find excerpts from events related to this course:

Automotive Engineering II

2114835, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of designs

Learning Objectives:

The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Literature

Automotive Engineering II
2114855, SS 2020, 2 SWS, Language: English, [Open in study portal]

Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of the designs

Learning Objectives:
The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Literature

Elective literature:

8.17 Course: Automotive Vision [T-MACH-105218]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102638 - Major Field: Rail System Technology
M-MACH-102817 - Major Field: Information Technology
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2138340</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>Lauer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105218</td>
<td>Prüfung (PR)</td>
<td>Stiller, Lauer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Type of Examination: written exam
Duration of Examination: 60 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Automotive Vision
2138340, SS 2020, 3 SWS, Language: German, Open in study portal

Content
Lernziele (EN):
Machine perception and interpretation of the environment for the basis for the generation of intelligent behaviour. Especially visual perception opens the door to novel automotive applications. First driver assistance systems can already improve safety, comfort and efficiency in vehicles. Yet, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on ‘seeing vehicles’. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

Lehrinhalt (EN):
1. Driver assistance systems
2. Binocular vision
3. Feature point methods
4. Optical flow/tracking in images
5. Tracking and state estimation
6. Self-localization and mapping
7. Lane recognition
8. Behavior recognition

Nachweis: Written examination 60 minutes

Arbeitsaufwand (EN): 120 hours

Literature
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
8.18 Course: Bachelor Thesis [T-MACH-109188]

Responsible: Prof. Dr.-Ing. Martin Heilmaier

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104494 - Bachelor Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>12</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competition Certificate
The bachelor thesis is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

The work load of the bachelor thesis corresponds to 12 ECTS. The maximal processing time of the bachelor thesis takes three months. The date of issue of the subject has to be fixed by the supervisor and the student and to be put on record at the examination board. The subject of the bachelor thesis may be only returned once and only within the first month of processing time.

On a reasoned request of the student, the examination board can extend the processing time by up to one month. If the bachelor thesis is not completed in time, this examination is "failed" (5.0), unless the student is not responsible.

The bachelor thesis is to be evaluated by not less than a professor or a senior scientist according to § 14 Abs. 3 Ziff. 1 KITG and another examiner. Generally, one of the two examiners is the person who has assigned the thesis. If the examiners do not agree, the bachelor thesis is graded by the examination board within this assessment; another expert can be appointed too. The bachelor thesis has to be graded within a period of six weeks after the submission.

Prerequisites
The requirement for admission to the bachelor thesis module are 120 ECTS. As to exceptions, the examination board decides on a request of the student (see § 14 (1) SPO).

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 120 credits in the following fields:
 - Fundamentals of Engineering
 - Interdisciplinary Qualifications
 - Specialization in Mechanical Engineering

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline** 3 months
- **Maximum extension period** 1 months
- **Correction period** 6 weeks

Annotation
The workload for the preparation of the bachelor thesis is about 360 hours.
8.19 Course: Basics in Measurement and Control Systems [T-MACH-104745]

Responsible: Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102564 - Measurement and Control Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Lecture Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2137301</td>
<td>Measurement and Control Systems</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Stiller</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2137302</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Stiller, Kroeper, Fischer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3137020</td>
<td>Measurement and Control Systems</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Stiller</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3137021</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Stiller, Kroeper, Fischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Lecture Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-104745</td>
<td>Basis of Measurement and Control Systems</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam

2.5 hours

Prerequisites

none

Below you will find excerpts from events related to this course:

Measurement and Control Systems

2137301, WS 19/20, 3 SWS, Language: German, [Open in study portal](#)
Content
Lehrinhalt (EN):
1 Dynamic systems
2 Properties of important systems and modeling
3 Transfer characteristics and modeling
4 Controller design
5 Fundamentals of measurement
6 Estimation
7 Sensors
8 Introduction to digital measurement

Lernziele (EN):
Measurement and control of physical entities is a vital requirement in most technical applications. Such entities may comprise e.g. pressure, temperature, flow, rotational speed, power, voltage and electrical current, etc.. From a general perspective, the objective of measurement is to obtain information about the state of a system while control aims to influence the state of a system in a desired manner. This lecture provides an introduction to this field and general systems theory. The control part of the lecture presents classical linear control theory. The measurement part discusses electrical measurement of non-electrical entities.

Voraussetzungen (EN)
Fundamentals in physics and electrical engineering; ordinary linear differential equations; Laplace transform

Nachweis (EN)
written exam; duration 2,5 h; paper reference materials only (no calculator)

Arbeitsaufwand (EN):
210 hours

Literature
Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

- Measurement and Control Systems:
 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

- Regelungstechnische Bücher:
 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

- Messtechnische Bücher:
 E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Measurement and Control Systems
3137020, WS 19/20, 3 SWS, Language: English, Open in study portal

Lecture (V)
Content
Lehrinhalt (EN):
1 Dynamic systems
2 Properties of important systems and modeling
3 Transfer characteristics and stability
4 Controller design
5 Fundamentals of measurement
6 Estimation
7 Sensors
8 Introduction to digital measurement

Lernziele (EN):
Measurement and control of physical entities is a vital requirement in most technical applications. Such entities may comprise e.g. pressure, temperature, flow, rotational speed, power, voltage and electrical current, etc.. From a general perspective, the objective of measurement is to obtain information about the state of a system while control aims to influence the state of a system in a desired manner. This lecture provides an introduction to this field and general systems theory. The control part of the lecture presents classical linear control theory. The measurement part discusses electrical measurement of non-electrical entities.

Nachweis (EN): written exam; duration 2,5 h; paper reference materials only (no calculator)
Arbeitsaufwand (EN): 180 hours

Literature
• Measurement and Control Systems:
 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:
 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Measurement and Control Systems (Tutorial)
3137021, WS 19/20, 1 SWS, Language: English, Open in study portal

Content
Tutorial for Event 3137020
8.20 Course: Basics of Manufacturing Technology [T-MACH-105219]

Responsible: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102549 - Manufacturing Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149658</td>
<td>Basics of Manufacturing Technology</td>
<td>2</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schulze, Zanger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105219</td>
<td>Fundamentals of Manufacturing Technology</td>
<td>Prüfung (PR)</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam (duration: 60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Basics of Manufacturing Technology

2149658, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)
Content
The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects. Regard is paid to classic manufacturing processes as well as new developments like additive manufacturing processes.

The following topics will be covered:

- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment

Learning Outcomes:
The students ...

- are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
- have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
- are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
- have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
- are enabled to perform a selection of suitable manufacturing processes for given components.
- are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
8.21 Course: Basics of Technical Logistics I [T-MACH-109919]

Responsible: Dr.-Ing. Martin Mittwollen
Jan Oellerich

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module
M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2117095 Basics of Technical Logistics</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Mittwollen, Oellerich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-109919 Basics of Technical Logistics I</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge of the basics of technical mechanics preconditioned.

Below you will find excerpts from events related to this course:

V Basics of Technical Logistics
2117095, WS 19/20, 3 SWS, Language: German, Open in study portal Lecture / Practice (VÜ)

Content

- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

Students are able to:

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines
- Model real machines applying knowledge from lessons and calculate their dimensions.

Literature
Empfehlungen in der Vorlesung / Recommendations during lessons
8.22 Course: Basics of Technical Logistics II [T-MACH-109920]

Responsible: Maximilian Hochstein
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Hochstein</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Hochstein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

none

Recommendation

Knowledge of the basics of technical mechanics and out of "Basic of Technical Logistics I" (T-MACH-109919) preconditioned.
8.23 Course: Behaviour Generation for Vehicles [T-MACH-105367]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Dr. Moritz Werling

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102817 - Major Field: Information Technology
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-102820 - Major Field: Mechatronics
M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2138336 Behaviour Generation for Vehicles 2 SWS Lecture (V) Werling, Stiller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2138336 Behaviour Generation for Vehicles 2 SWS Lecture (V) Werling, Stiller</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Exams | | |
| WS 19/20 76-T-MACH-105367 Behaviour Generation for Vehicles Prüfung (PR) Stiller |

Competence Certificate
written examination
60 min.
Simple calculators are allowed, programmable or graphical ones are prohibited.

Prerequisites
none

Below you will find excerpts from events related to this course:

Behaviour Generation for Vehicles
2138336, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Content
Lernziele (EN):
Modern vehicle control systems like ABS or ESP transform the intention of the driver into a corresponding behaviour of the vehicle. This is achieved by compensating disturbances like a varying traction for example. Within the recent years, vehicles have been increasingly equipped with sensors that gather information about the environment (Radar, Lidar and Video for example). This enables the vehicles to generate an 'intelligent' behaviour and transform this behaviour into control signals for actors. Several so called 'driver assistance systems' have already achieved remarkable improvements as far as comfort, safety and efficiency are concerned. But nevertheless, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator ('the driver'). The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Information technology, control theory and kinematic aspects are treated to provide a broad overview over vehicle guidance. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.
Nachweis: written exam
Arbeitsaufwand: 120 hours

Literature
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
Content

Lernziele (EN):
Modern vehicle control systems like ABS or ESP transform the intention of the driver into a corresponding behaviour of the vehicle. This is achieved by compensating disturbances like a varying traction for example. Within the recent years, vehicles have been increasingly equipped with sensors that gather information about the environment (Radar, Lidar and Video for example). This enables the vehicles to generate an 'intelligent' behaviour and transform this behaviour into control signals for actors. Several so called 'driver assistance systems' have already achieved remarkable improvements as far as comfort, safety and efficiency are concerned. But nevertheless, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator ('the driver'). The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Information technology, control theory and kinematic aspects are treated to provide a broad overview over vehicle guidance. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

Nachweis: written exam 60 minutes
Arbeitsaufwand: 120 hours

Literature
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
Course: Biomechanics: Design in Nature and Inspired by Nature [T-MACH-105651]

Responsible: Prof. Dr. Claus Mattheck
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Completed coursework</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Biomechanics: Design in Nature and Inspired by Nature</td>
<td>3 SWS</td>
<td>Mattheck</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Biomechanics: design in nature and inspired by nature</td>
<td>Prüfung (PR)</td>
<td>Mattheck</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Colloquium, ungraded.

Prerequisites
The number of participants is limited. Prior registration through ILIAS is necessary. In case of too many registrations, a selection (in accordance with SPO) will take place.
Before the registration in SP 26 (ME) or SP 01 (MSMT) the participation at the seminar must be confirmed.

Below you will find excerpts from events related to this course:

Biomechanics: Design in Nature and Inspired by Nature
2181708, WS 19/20, 3 SWS, Language: German, Open in study portal

Content
- mechanics and growth laws of trees
- failure criteria and safety factors
- computer simulation of adaptive growth
- notches and damage case studies
- optimization inspired by nature
- structural shape optimization without computers
- universal shapes of nature
- fibre reinforces materials
- failure of trees, hillsides, dikes, walls and pipes

The students know and understand mechanical optimization schemes which are realized in nature. The students can analyze the derived thinking tools and can apply them for simple technical cases.

regular attendance: 30 hours
self-study: 90 hours
8.25 Course: BUS-Controls [T-MACH-102150]

Responsible:
Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Organisation:
KIT Department of Mechanical Engineering

Part of:
- M-MACH-102817 - Major Field: Information Technology
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>BUS-Controls</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Geimer, Daiß</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>BUS-Controls</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>WS 20/20</td>
<td>BUS-Controls</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>BUS-Controls</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108889 must have been passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-108889 - BUS-Controls - Advance must have been passed.

Recommendation
Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

The number of participants is limited. A registration is mandatory; the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

Annotation
The students will get an overview of the theoretic and practical functioning of different bus systems.

After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system. Hereunto the students program in the practical orientated lessons IFM-controllers using the programming environment CoDeSys.

Content:
- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Literature:

Below you will find excerpts from events related to this course:
BUS-Controls
2114092, SS 2020, 2 SWS, Language: German, Open in study portal

Content

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

- regular attendance: 21 hours
- self-study: 92 hours

Literature

Weiterführende Literatur:

8.26 Course: BUS-Controls - Advance [T-MACH-108889]

Responsible: Kevin Dalß
 Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102817 - Major Field: Information Technology
 M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>Exam Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-108889</td>
<td>BUS-Controls - Advance</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-108889</td>
<td>BUS-Controls - Advance</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

Creation of control program

Prerequisites

none
8.27 Course: CAD-NX Training Course [T-MACH-102187]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Practical examination on CAD computer, duration: 60 min.

Prerequisites
None

Recommendation
Dealing with technical drawings is required.

Annotation
For the practical course compulsory attendance exists.

Below you will find excerpts from events related to this course:

CAD-NX training course
2123357, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Practical course (P)

Content
- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Students are able to:
- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

Literature
Praktikumsskript
Content

- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Students are able to:

- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

Literature
Praktikumsskript
8.28 Course: CAE-Workshop [T-MACH-105212]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102583 - Major Field: Information Management
M-MACH-102746 - Compulsory Elective Module
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>CAE-Workshop</td>
<td>3 SWS</td>
<td>Block (B)</td>
<td>Albers, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>CAE-Workshop</td>
<td>3 SWS</td>
<td>Block (B)</td>
<td>Albers, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>CAE-Workshop</td>
<td>76-T-MACH-105212</td>
<td>Prüfung (PR)</td>
<td>Albers</td>
</tr>
</tbody>
</table>

Competence Certificate

Written test (with practical part on the computer), duration 60 min.

Prerequisites

None

Annotation

For a successful participation in the examination a continuous attendance at the workshop days is necessary. Limited number of participants. Selection is made according to a selection procedure.

Below you will find excerpts from events related to this course:

CAE-Workshop

2147175, WS 19/20, 3 SWS, Language: German, Open in study portal

Content

Content:

- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:

- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Exam: 1h Regularly written
Regular attendance: 31.5 h
Self-study: 58 h

Literature

Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.
Content

- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:

- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Exam: 1h Regularly written
Regular attendance: 31.5 h
Self-study: 58 h

Literature
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.
8.29 Course: CATIA CAD Training Course [T-MACH-102185]

- **Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2123358</td>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020 2123358</td>
<td>Completed coursework (practical)</td>
<td>3</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-102185</td>
<td>CATIA CAD Training Course</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Practical examination on CAD computer, duration: 60 min.

Prerequisites

None

Recommendation

Dealing with technical drawings is required.

Annotation

For the practical course attendance is compulsory.

Below you will find excerpts from events related to this course:

CATIA CAD training course

2123358, WS 19/20, 2 SWS, Language: German, Open in study portal

Practical course (P)

Content

- Basics of CATIA such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

Students are able to:

- create their own 3D geometric models in the CAD system CATIA and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of CATIA to automate the creation of geometry and thus to ensure the reusability of the models.

Literature

Praktikumskript
Content

- Basics of CATIA such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

Students are able to:

- create their own 3D geometric models in the CAD system CATIA and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of CATIA to automate the creation of geometry and thus to ensure the reusability of the models.

Literature

Praktikumskript
8 COURSES

Course: Cognitive Automobiles - Laboratory [T-MACH-105378]

8.30 Course: Cognitive Automobiles - Laboratory [T-MACH-105378]

Responsible: Bernd Kitt
Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

Type: Oral examination
Credits: 6
Recurrence: Each summer term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Cognitive Automobiles - Laboratory</td>
<td>3 SWS</td>
<td>Stiller, Lauer, Kamran</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam
30 minutes

Prerequisites
none

Annotation
The number of participants is limited. A registration is mandatory, the details are announced on the webpages of the institute of measurement and control systems (mrt). In case of too many interested students a subset will be selected (see website).

Below you will find excerpts from events related to this course:

Competence Certificate
oral exam
30 minutes

Prerequisites
none

Annotation
The number of participants is limited. A registration is mandatory, the details are announced on the webpages of the institute of measurement and control systems (mrt). In case of too many interested students a subset will be selected (see website).

Below you will find excerpts from events related to this course:

Content
Lehrinhalt (EN):
1. Lane recognition
2. Object detection
3. Vehicle lateral control
4. Vehicle longitudinal control
5. Collision avoidance

Lernziele (EN):
The laboratory accompanies the lectures "Automotive Vision" and "Behaviour Generation for Vehicles". It will provide the opportunity of turning theoretical skills taught in the lecture to practice. The laboratory is divided into four groups with a maximum number of five students in each group. During the lessons you will be supervised by scientific staff.
The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on "seeing vehicles". Each group is given the task to extract lane markings from video images and generate a suitable trajectory which the vehicle should follow. Apart from technical aspects in a highly innovative field of automotive technology, participants have the opportunity of gathering important qualifications as i.e. implementation skills, acquisition and comprehension of suitable literature, project and team work.

Nachweis: Colloquia, final race

Arbeitsaufwand: 120 hours

Literature
Dokumentation zur SW und HW werden als pdf bereitgestellt.
8.31 Course: Combustion Engines I [T-MACH-102194]

Responsible: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2133113</td>
<td>Combustion Engines I</td>
<td>4 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102194</td>
<td>Combustion Engines I</td>
<td>Prüfung (PR)</td>
<td>Kubach, Koch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102194</td>
<td>Combustion Engines I</td>
<td>Prüfung (PR)</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Combustion Engines I

2133113, WS 19/20, 4 SWS, Language: German, [Open in study portal]

Content
Introduction, History, Concepts
Working Principle and Applications
Characteristic Parameters
Engine Parts
Drive Train
Fuels
Gasoline Engines
Diesel Engines
Exhaust Gas Aftertreatment
8 COURSES

Course: Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies [T-MACH-105535]

Responsible: Prof. Dr.-Ing. Frank Henning
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102638 - Major Field: Rail System Technology
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>Composite Manufacturing – Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Henning</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>WS 19/20</th>
<th>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</th>
<th>Prüfung (PR)</th>
<th>Henning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>Prüfung (PR)</td>
<td>Henning</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam 90 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Composite Manufacturing – Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies
2114053, SS 2020, 2 SWS, Language: German, Open in study portal

Literature
Litteratur Leichtbau II

[1-7]

8.33 Course: Computational Dynamics [T-MACH-105349]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course</th>
<th>Type</th>
<th>Language</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162246</td>
<td>Computational Dynamics</td>
<td>2 SWS</td>
<td>German</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 30 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Computational Dynamics

2162246, SS 2020, 2 SWS, Language: German, Open in study portal

Content

1. Fundamentals of elasto-kinetics (Equations of motion, principle of Hamilton and principle of Hellinger-Reissner)
2. Differential equations for the vibration of structure elements (bars, plates)
3. Numerical solutions of the equations of motion
4. Numerical algorithms
5. Stability analyses

Literature

1. Ein Vorlesungsskript wird bereitgestellt!
8.34 Course: Computational Intelligence [T-MACH-105314]

Responsible: Dr. Wilfried Jakob
Prof. Dr. Ralf Mikut
PD Dr.-Ing. Markus Reischl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102817 - Major Field: Information Technology
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>2 SWS</td>
<td>Mikut</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (Duration: 1h)

Prerequisites
none

Below you will find excerpts from events related to this course:

Computational Intelligence
2105016, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Content:

- Terms and definitions Computational Intelligence, application fields and examples
- Fuzzy logic: fuzzy sets; fuzzification and membership functions; inference: T-norms and -conorms, operators, aggregation, activation, accumulation; defuzzification methods, structures for fuzzy control
- Artificial Neural Nets: biology of neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
- Evolutionary Algorithms: Basic algorithm, Genetic Algorithms and Evolution Strategies, Evolutionary Algorithm GLEAM, integration of local search strategies, memetic algorithms, application examples

Learning objectives:
The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Literature
Kroll, A.: Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätssverlag Karlsruhe; 2008 (PDF frei im Internet)
8.35 Course: Computational Vehicle Dynamics [T-MACH-105350]

Responsible: Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102638 - Major Field: Rail System Technology
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162256</td>
<td>Lecture (V)</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105350</td>
<td>Prüfung (PR)</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 30 min.

Prerequisites

none

*Below you will find excerpts from events related to this course:

Computational Vehicle Dynamics

2162256, SS 2020, 2 SWS, Language: German, Open in study portal

Content

1. Introduction
2. Models of load bearing systems
3. Contact forces between wheels and roadway
4. Simulation of roadways
5. Vehicle models
6. Methods of calculation
7. Performance indicators

Literature

8 COURSES

Course: Computer Engineering [T-MACH-105360]

Responsible: Dr. Hubert Keller
Dr.-Ing. Maik Lorch

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2106002</td>
<td>Computer Engineering</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105360</td>
<td>Computer Engineering</td>
<td></td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam (Duration: 2 hours)

Prerequisites

none

Below you will find excerpts from events related to this course:

Computer Engineering

2106002, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

Introduction: definitions, basic concepts, introductory examples

Information coding on finite automata: numbers, characters, commands, examples

Algorithm design: definitions, complexity of algorithms, complexity classes P and NP, examples

Sorting algorithms: relevance, algorithms, simplifications, examples

Software quality assurance: terms and measures, errors, phases of quality assurance, constructive measures, analytical measures, certification

Lectures are complemented by an exercise course.

Learning objectives:
The students possess essential knowledge about information processing in digital computers. Based on information representation and calculations of complexity, students are capable to design algorithms efficiently. The students are able to apply the knowledge about efficient algorithm design to important numerical computation methods in mechanical engineering. Students have basic knowledge of real-time systems and their development. Students can use the knowledge to develop real-time systems for reliable automation of technological systems in mechanical engineering.
Literature
Vorlesungsskript (Ilias)

8.37 Course: Computer Science for Engineers [T-MACH-105205]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102563 - Computer Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2121390</td>
<td>Computer Science for Engineers</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3121034</td>
<td>Computer Science for Engineers</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105205</td>
<td>Computer Science for Engineers - German</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105205-English</td>
<td>Computer Science for Engineers - English</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam [180 min]

Prerequisites

Computer Science for Engineers, passed

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105206 - Computer Science for Engineers, Prerequisite must have been passed.

Below you will find excerpts from events related to this course:

Computer Science for Engineers

2121390, SS 2020, 4 SWS, Language: German, Open in study portal

Content

- Basics: Information representation- and processing, terms and definitions: alphabet, data, signals, information, numeral systems, propositional logic and Boolean algebra, computer architectures, programming paradigms.
- Object Orientation: Definition and important characteristics of object orientation, Object-oriented modeling with UML.
- Data Structures: Definition, properties and application of graphs, trees, linked lists, queues and stacks.
- Algorithms: Characteristics of algorithms, complexity analysis, design methods, important examples.
- Database management systems: Relational data model, relational algebra, declarative language SQL.

Literature

- „Grundkurs Programmieren in Java“ Carl Hanser Verlag GmbH & CO. KG; Auflage 6, ISBN 10: 3446426639
Content
Basics: Information representation- and processing, terms and definitions: alphabet, data, signals, information, numeral systems, propositional logic and Boolean algebra, computer architectures, programming paradigms.
Object Orientation: Definition and important characteristics of object orientation, Object-oriented modeling with UML.
Data Structures: Definition, properties and application of graphs, trees, linked lists, queues and stacks.
Algorithms: Characteristics of algorithms, complexity analysis, design methods, important examples.
Database management systems: Relational data model, relational algebra, declarative language SQL.

Literature
8.38 Course: Computer Science for Engineers, Prerequisite [T-MACH-105206]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102563 - Computer Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>0</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2121392 | Computer Lab for Computer Science in Mechanical Engineering | 2 SWS | Ovtcharova, Mitarbeiter |
| SS 2020 | 3121036 | Computer Science for Engineers Lab Course | 2 SWS | Ovtcharova, Elstermann |

Competence Certificate

Programming assignments, that are to be implemented at the computer, are given every two weeks. The students are supervised by tutors while they work on the assignments. Therefore online tests must be solved by the students to assess the understanding of the tasks and the lecture material. All assignments have to be handed in, before they can take part in the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

Computer Lab for Computer Science in Mechanical Engineering

2121392, SS 2020, 2 SWS, Language: German, Open in study portal

Content

JAVA programming assignments, that are to be implemented at the computer, are given every two weeks. The students are supervised by tutors while they work on the assignments. Therefore online tests must be solved by the students to assess the understanding of the tasks and the lecture material. All assignments have to be handed in, before they can take part in the exam.

Literature

Übungsblätter / exercise sheets

Computer Science for Engineers Lab Course

3121036, SS 2020, 2 SWS, Language: English, Open in study portal

Content

JAVA programming assignments, that are to be implemented at the computer, are given every two weeks. The students are supervised by tutors while they work on the assignments. Therefore online tests must be solved by the students to assess the understanding of the tasks and the lecture material. All assignments have to be handed in, before they can take part in the exam.

Literature

Exercise sheets / Übungsblätter
Course: Computerized Multibody Dynamics [T-MACH-105384]

8.39

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, 30 min.

Prerequisites
none

Recommendation
Knowledge of EM III/IV
8.40 Course: Constitution and Properties of Wearresistant Materials [T-MACH-102141]

Responsible: Prof. Dr. Sven Ulrich
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2194643</td>
<td>Constitution and Properties of Wear resistant materials</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102141</td>
<td>Constitution and Properties of Wearresistant Materials</td>
<td>Prüfung (PR)</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Competence Certificate

oral examination (about 30 min)

no tools or reference materials

Prerequisites

none

Below you will find excerpts from events related to this course:

Constitution and Properties of Wear resistant materials

2194643, SS 2020, 2 SWS, Language: German, Open in study portal
Content
The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Teaching Content:
introduction

materials and wear

unalloyed and alloyed tool steels

high speed steels

stellite and hard alloys

hard materials

hard metals

ceramic tool materials

superhard materials

new developments

regular attendance: 22 hours

self-study: 98 hours

Basic understanding of constitution of wear-resistant materials, of the relations between constitution, properties and performance, of principles of increasing of hardness and toughness of materials as well as of the characteristics of the various groups of wear-resistant materials.

Recommendations: none

Literature

Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995

Kopien der Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
8.41 Course: Control Technology [T-MACH-105185]

Responsible: Christoph Gönnheimer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2150683</th>
<th>Control Technology</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Gönnheimer</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>76-T-MACH-105185</th>
<th>Control Technology</th>
<th>Prüfung (PR)</th>
<th>Gönnheimer</th>
</tr>
</thead>
</table>

Competence Certificate
Written Exam (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Control Technology
2150683, SS 2020, 2 SWS, Language: German, Open in study portal
Lecture (V)
Content
The lecture control technology gives an integral overview of available control components within the field of industrial production systems. The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states. The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems. The lecture is very practice-oriented and illustrated with numerous examples from different branches.

The following topics will be covered:

• Signal processing
• Control peripherals
• Programmable logic controls
• Numerical controls
• Controls for industrial robots
• Distributed control systems
• Field bus
• Trends in the area of control technology

Learning Outcomes:
The students …

• are able to name the electrical controls which occur in the industrial environment and explain their function.
• can explain fundamental methods of signal processing. This involves in particular several coding methods, error protection methods and analog to digital conversion.
• are able to choose and to dimension control components, including sensors and actors, for an industrial application, particularly in the field of plant engineering and machine tools. Thereby, they can consider both, technical and economical issues.
• can describe the approach for projecting and writing software programs for a programmable logic control named Simatic S7 from Siemens. Thereby they can name several programming languages of the IEC 1131.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature

Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Data Analytics for Engineers [T-MACH-105694]

Course: Data Analytics for Engineers
Type: Written examination
Credits: 5
Recurrence: Each summer term
Version: 2

Responsible: Nicole Ludwig
Organisation: KIT Department of Mechanical Engineering
Part of:
- M-MACH-102817 - Major Field: Information Technology
- M-MACH-102820 - Major Field: Mechatronics

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Written examination</td>
<td>5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Data Analytics for Engineers</td>
<td>Mikut</td>
</tr>
</tbody>
</table>

Prerequisites

- none

Competence Certificate

Written exam (Duration: 1h)

Below you will find excerpts from events related to this course:

Content

Content:

- Introduction and motivation
- Terms and definitions (types of multidimensional features - time series and images, problem classes)
- Scenario: Problem formulation, feature extraction, evaluation, selection and transformation, distance measures, Bayes classifiers, Support-Vector-Machines, decision trees, clustering, regression, validation
- Biweekly computer exercises (Software practice with SciXMiner): Data import, benchmark datasets, control of hand prostheses, energy prediction
- 2 hours per week lectures, 1 hour per week computer training

Learning objectives:

The students are able to apply the methods of data analysis efficiently. They know the basic mathematical data mining foundations for the analysis of single features and time series using classifiers, clustering and regression approaches. They are able to use various relevant methods as Bayes classifiers, Support Vector Machines, decision trees, fuzzy rulebases and they can adapt application scenarios (with data preprocessing and validation techniques) to real-world applications.

Literature

- Vorlesungsunterlagen (ILIAS)
 Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe.
 2008 (PDF frei im Internet)
8.43 Course: Design and Development of Mobile Machines [T-MACH-105311]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WS 19/20</td>
<td>Design and Development of Mobile Machines</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Geimer, Siebert, Lehr, Geiger</td>
</tr>
<tr>
<td></td>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 19/20</td>
<td>76-T-MACH-105311 Design and Development of Mobile Machines</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
<tr>
<td></td>
<td>SS 2020</td>
<td>76-T-MACH-105311 Design and Development of Mobile Machines</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

A registration is mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

The course will be replenished by interesting lectures of professionals from leading hydraulic companies.

Prerequisites

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108887 must have been passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-108887 - Design and Development of Mobile Machines - Advance must have been passed.

Recommendation

Knowledge in Fluid Power Systems (LV 2114093)

Annotation

After completion of the lecture, students can:

- design working and travel drive train hydraulics of mobile machines and can derive characteristic key factors.
- choose and apply suitable state of the art designing methods successfully.
- analyse a mobile machines and build its structure down from a complex system to subsystems with reduced complexity.
- identify and describe interactions and links between subsystems of a mobile machine.
- present and document solutions of a technical problem according to R&D standards.

The number of participants is limited.

Content:

The working scenario of a mobile machine depends strongly on the machine itself. Highly specialised machines, e.g. pavers are also as common as universal machines with a wide range of applications, e.g. hydraulic excavators. In general, all mobile machines are required to do their intended work in an optimal way and satisfy various criteria at the same time. This makes designing mobile machines to a great and interesting challenge. Nevertheless, usually key factors can be derived for every mobile machine, which affect all other machine parameters. During this lecture, those key factors and designing mobile machines accordingly will be addressed. To do so, an exemplary mobile machine will be discussed and designed in the lecture as a semester project.

Literature:

See German recommendations.
Below you will find excerpts from events related to this course:

Design and Development of Mobile Machines

2113079, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

Wheel loaders and excavators are highly specialized mobile machines. Their function is to detach, pick up and deposit materials near by. Significant size for dimensioning of the machines is the content of their standard shovel. In this lecture the main steps in dimensioning a wheel loader or excavator are being thought. This includes among others:

- Defining the size and dimensions,
- the dimensioning of the electric drive train,
- the dimensioning of the primary energy supply,
- Determining the kinematics of the equipment,
- the dimension of the working hydraulics and
- Calculations of strength

The entire design process of these machines is strongly influenced by the use of standards and guidelines (ISO/DIN-EN). Even this aspect is dealt with.

The lecture is based on the knowledge from the fields of mechanics, strength of materials, machine elements, propulsion and fluid technique. The lecture requires active participation and continued collaboration.

Recommendations:

Knowledge in Fluid Technology (SoSe, LV 21093)

- regular attendance: 21 hours
- self-study: 99 hours

Literature

Keine.
Course: Design and Development of Mobile Machines - Advance [T-MACH-108887]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Exam Type</th>
<th>Exam Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate
Preparation of semester report

Prerequisites
none
8.45 Course: Design of a Jet Engine Combustion Chamber [T-CIWVT-105780]

Responsible: Prof. Dr.-Ing. Nikolaos Zarzalis
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>6</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>22527</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>SWS</td>
<td>Zarzalis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination on lecture 22527 with a duration of 20 minutes.

Prerequisites
None
8.46 Course: Design with Plastics [T-MACH-105330]

Responsible: Markus Liedel

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2174571</th>
<th>Design with Plastics</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Liedel</th>
</tr>
</thead>
</table>

Competence Certificate

Oral exam, about 20 minutes

Prerequisites

none

Recommendation

Poly I

Below you will find excerpts from events related to this course:

Design with Plastics

2174571, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Content
Structure and properties of plastics materials,
Processing of plastics,
Behavior of plastics under environmental impacts,
Classic strength dimensioning,
Geometric dimensioning,
Plastic appropriate design,
Failure examples,
Joining of plastic parts,
Supporting simulation tools,
Structural foams,
Plastics Technology trends.

learning objectives:
Students will be able to

• distinguish polymer compounds from other construction materials regarding chemical differences, thermal behavior and solid conditions.
• discuss main plastics processes regarding advantages and disadvantages of materials selection and part geometry design and to make appropriate selections.
• analyze complex application requirements concerning material impacts on strength and to use the classic dimensioning method specific to the application to evaluate the lifetime part strength limit.
• evaluate part tolerances and geometry by appropriate methods considering molding shrinkage, production tolerances, post shrinkage, heat expansion, swelling, elastic and creep deformation.
• design plastic specific joining geometries like snap fits, screw bosses, weld seams and film hinges.
• detect classic molding failures and understand potential causes as well as to reduce the probability of molding failures by defining an optimized design.
• understand benefits and limits of selected simulation tools in the plastic technology discipline (strength, deformation, filling, warpage).
• assess polymer classes and plastic part designs with respect to suitable recycling concepts and ecological consequences.

requirements:
none,
recommendation: Polymerengineering I

workload:
The workload for the lecture Design with Plastics is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).

Literature
Materialien werden in der Vorlesung ausgegeben.
Literaturhinweise werden in der Vorlesung gegeben.
8.47 Course: Development of hybrid drivetrains [T-MACH-110817]

Responsible: Prof. Dr. Thomas Koch
Organization: KIT Department of Mechanical Engineering

Part of: M-MACH-102645 - Major Field: Combustion Engine Techniques

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>2134155</td>
<td>Lecture (V)</td>
<td>Koch, Doppelbauer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Prüfung (PR)</th>
<th>Koch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-110817</td>
<td>Development of hybrid drivetrains</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 1 hour

Prerequisites
None

Below you will find excerpts from events related to this course:

Development of Hybrid Powertrains
2134155, SS 2020, 2 SWS, Language: German, Open in study portal
Lecture (V)

Content

1. Introduction and Goal
2. Alternative Powertrains
3. Fundamentals of Hybrid Powertrains
4. Fundamentals of Electric Components of Hybrid Powertrains
5. Interactions in Hybrid Powertrain Development
6. Overall System Optimization
8.48 Course: Development of Oil-Hydraulic Powertrain Systems [T-MACH-105441]

Responsible: Isabelle Ays
Dr.-Ing. Gerhard Geerling

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2113072</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>2 SWS</td>
<td>Block (B)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (20 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Development of Oil-Hydraulic Powertrain Systems

2113072, WS 19/20, 2 SWS, Language: German, Open in study portal

Block (B)

Content
The block course offered by the Chair of Mobile Machines (Mobima) conveys the basics of planning and development of mobile and industrial hydrostatic systems. The lecturer works for a market leading company producing fluid power drives and controls and gives a deep view into the process of planning and development using real life examples. The contents of the course are:

- marketing, project planning
- hydrostatic circuits
- heat balance, hydraulic accumulators
- filtration, noise lowering
- development exercises + laboratory tutorial

knowledge in the fluidics

- regular attendance: 19 hours
- self-study: 90 hours
8.49 Course: Digital Control [T-MACH-105317]

Responsible: Dr.-Ing. Michael Knoop

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102817 - Major Field: Information Technology
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Type: Written examination
Credits: 4
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2137309</td>
<td>Digital Control</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105317</td>
<td>Digital Control</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
- written exam
- 60 min.

Prerequisites
- none

Below you will find excerpts from events related to this course:

Digital Control

- 2137309, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Content

Lehrinhalt (EN):
1. Introduction into digital control: Motivation for digital implementation of controllers
2. State space analysis and design:
 - Discretisation of continuous-time systems
 - Discrete-time state space equations
 - Stability - definition and criteria
 - State feedback design by eigenvalue assignment
 - PI state feedback controller
 - Luenberger observer, separation theorem
 - Systems with dead-time
3. Analysis and design based on z-transform:
 - z-transform - definition and theorems
 - Control loop description in the z domain
 - Stability criteria
 - Root locus controller design
 - Transfer of continuous-time controllers into discrete-time controllers

Voraussetzungen (EN):
- Basic studies and preliminary examination
- Basic lectures in automatic control

Lernziele (EN):
- The lecture introduces key methods for the analysis and design of digital feedback control systems. Starting point is the discretisation of linear, continuous-time models. State space based and z-transform based controller design techniques are presented for discrete-time, single-input single-output systems. Furthermore, plants with dead-time and deadbeat design are covered.
- Nachweis: written examination; duration: 60 minutes; no tools or reference materials may be used during the exam.
- Arbeitsaufwand: 120 hours

Literature

- Föllinger, O.: Lineare Abtastsysteme. 4. Auflage, R. Oldenbourg Verlag, München Wien 1990
Course: Dimensioning and Optimization of Power Train System [T-MACH-105536]

Responsible: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Hartmut Faust
Dr. Eckhard Kirchner
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102818 - Major Field: Vehicle Technology

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Event Code</th>
<th>Description</th>
<th>WS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2146208</td>
<td>Design & Optimization of Conventional & Electrified Automotive Transmissions</td>
<td>2</td>
<td>Faust</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (20 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Design & Optimization of Conventional & Electrified Automotive Transmissions

Content

- Transmission types: Manual (MT) & automated manual transmissions (AMT), planetary torque converter machines (AT), double clutch (DCT), continuously variable (CVT) and geared neutral transmissions (IVT), hybrid transmissions (serial, parallel, multimode, Powersplit hybrid), E-axles
- Torsional vibration damper: damped clutch disc, dual mass flywheel, centrifugal pendulum (FKP), lock-up damper for torque converter
- Starting elements: dry single clutch, dry and wet double clutch, hydrodynamic torque converter, special shapes, e-motor
- Power transmission: countershaft transmission, planetary gear set, CVT variator, chain, synchronization, shift and claw clutches, reversing, differentials and locking systems, coaxial and axially parallel E-axis drives
- Transmission control: shift systems for MT, actuators for clutches and gear shifting, hydraulic control, electronic control, software application, comfort and sportiness
- Special designs: drive trains of commercial vehicles, hydrostat with power split, torque vectoring
- E-mobility: Classification into 5 stages of electrification, 4 hybrid configurations, 7 parallel hybrid architectures, hybridized transmissions (P2, P2.5, P3, P4), dedicated hybrid transmissions (DHT: serial / parallel / multimode, powersplit, new ones Concepts), gearbox for electric vehicles (E-axle gearbox, coaxial and axially parallel)
8.51 Course: Drive Train of Mobile Machines [T-MACH-105307]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Marco Wydra

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Drive Train of Mobile Machines</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Geimer, Herr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Drive Train of Mobile Machines</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Geimer, Herr</td>
</tr>
</tbody>
</table>

Competence Certificate
The final assessment will be an oral examination (20 min) taking place during the recess period. The examination will be offered in every semester and can be repeated at any regular examination date.

Prerequisites
one

Recommendation
- General principles of mechanicals engineering
- Basic knowledge of hydraulics
- Interest in mobile machinery

Annotation
At the end of the lecture, participants can explain the structure and function of all discussed drive trains of mobile machines. They can analyze complex gearbox schematics and synthesize simple transmission functions using rough calculations.

Content:
In this course the different drive trains of mobile machinery will be discussed. The focus of this course is:
- mechanical gears
- torque converter
- hydrostatic drives
- power split drives
- electrical drives
- hybrid drives
- axles
- terra mechanics

Media: projector presentation

Literature: Download of lecture slides from ILIAS. Further literature recommendations during lectures.

*Below you will find excerpts from events related to this course:

Drive Train of Mobile Machines
2113077, WS 19/20, 2 SWS, Language: German, Open in study portal
Content
In this course will be discussed the different drive train of mobile machineries. The fokus of this course is:
- improve knowledge of fundamentals
- mechanical gears
- torque converter
- hydrostatic drives
- continuous variable transmission
- electrical drives
- hybrid drives
- axles
- terra mechanic

Recommendations:
- general basics of mechanical engineering
- basic knowledge in hydraulics
- interest in mobile machines
- regular attendance: 21 hours
- self-study: 89 hours

Literature
Skriptum zur Vorlesung downloadbar über ILIAS
8.52 Course: Dynamics of the Automotive Drive Train [T-MACH-105226]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Oral examination</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Practice (Ü)</td>
<td>2 SWS</td>
<td>Fidlin, Yüzbasıoglu</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination, 30 min.

Prerequisites
none

Recommendation
Powertrain Systems Technology A: Automotive SystemsMachine DynamicsVibration Theory

Below you will find excerpts from events related to this course:

Dynamics of the Automotive Drive Train
2163111, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
- Main components of the vehicle powertrain and their modelling
- Typical driving situations
- Problem-oriented models for particular driving situations
- System analysis and optimization with respect to dynamic behavior

Literature
- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Übungen zu Dynamik des Kfz-Antriebsstrangs
2163112, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
Exercises related to the lecture
8.53 Course: Electric Rail Vehicles [T-MACH-102121]

Responsible: Prof. Dr.-Ing. Peter Gratzfeld
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102638 - Major Field: Rail System Technology

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

- **Oral examination**
- **Duration:** ca. 20 minutes
- **No tools or reference materials may be used during the exam.**

Prerequisites

- **none**

Below you will find excerpts from events related to this course:

Electric Rail Vehicles

2114346, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Content

1. Introduction: history of electric traction in railway vehicles, economic impact
2. Wheel-rail-contact: carrying of vehicle mass, adhesion, current return
3. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
4. Electric drives: purpose of electric drive and basic configurations, traction motors (induction machine, synchronous machine with permanent magnets), drives for vehicles at dc and ac lines, drives for vehicle without contact wire, hybrids, conventional drives for existing vehicles
5. Train control management system: definitions, networks, bus systems, components, examples
6. Vehicle concepts: modern vehicle concepts for mass transit and electric main line
7. Traction power supply: dc and ac networks, energy management, design aspects

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
8.54 Course: Electrical Engineering and Electronics [T-ETIT-109820]

Responsible:	Dr.-Ing. Klaus-Peter Becker
Organisation:	KIT Department of Electrical Engineering and Information Technology
Part of:	M-ETIT-104801 - Electrical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>ID</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2306339</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>4</td>
<td>Lecture</td>
<td>Becker</td>
</tr>
<tr>
<td></td>
<td>2306340</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>2</td>
<td>Lecture</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>ID</th>
<th>Course Description</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7306351</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>Prüfung</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Annotation

Exam will be held in german language
Course: Elements and Systems of Technical Logistics [T-MACH-102159]

Responsible: Georg Fischer
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2117096</th>
<th>Elements and systems of Technical Logistics</th>
<th>3 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Mittwollen, Rauscher</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>76-T-MACH-102159</th>
<th>Elements and Systems of Technical Logistics</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Recommendation

Knowledge out of "Basics of Technical Logistics I" (T-MACH-109919) preconditioned.

Below you will find excerpts from events related to this course:

Elements and systems of Technical Logistics

2117096, WS 19/20, 3 SWS, Language: German, Open in study portal

Content

Learning goals:

Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively
- Equip material flow systems with appropriate machines.

Content of teaching:

- material flow systems and their (conveying) technical components
- mechanical behaviour of conveyors;
- structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
- sample applications and calculations in addition to the lectures inside practical lectures

Presence: 36h
Rework: 84h

Annotations:

- Knowledge out of Basics of Technical Logistics (LV 2117095) preconditioned.
- The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.
Literature
Empfehlungen in der Vorlesung.
Recommendations during lectures.
8.56 Course: Elements and Systems of Technical Logistics - Project [T-MACH-108946]

Responsible: Georg Fischer
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

Type	**Credits**	**Recurrence**	**Version**
Examination of another type | 2 | Each winter term | 1

Events

Events	Code	Description	SWS	Type	Lecturer
WS 19/20	2117097	Elements and systems of Technical Logistics - project	SWS	Project (PRO)	Mittwollen, Rauscher
WS 19/20	76-T-MACH-108946	Elements and Systems of Technical Logistics - Project	Prüfung (PR)	Mittwollen	

Exams

Competence Certificate
Presentation of performed project and defense (30min) according to §4 (2). No. 3 of the examination regulation

Prerequisites
T-MACH-102159 (Elements and Systems of Technical Logistics) must have been started

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-102159 - Elements and Systems of Technical Logistics must have been started.

Recommendation
Knowledge out of "Basics of Technical Logistics I" (T-MACH-109919) preconditioned.

Below you will find excerpts from events related to this course:
Content

Learning goals:

Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively,
- Equip material flow systems with appropriate machines
- Judge about systems in place and justify it in front of subject related persons.

Content of teaching:

- mechanical behaviour of conveyors;
- structure and function of conveyor machines;
- elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
- sample applications and calculations in addition to the lectures inside practical lectures
- Self manufacturing of a project report to recesses the topic.

Media:

supplementary sheets, presentations, blackboard

Prerequisites:

T-MACH-102159 (Elements and Systems of technical logistics) must have been started.

Annotations:

- Knowledge out of Basics of Technical Logistics (LV 2117095) preconditioned.
- Presentation of performed project and defense (30min) according to $4 (2)$, No. 3 of the examination regulation.
8.57 Course: Energy Efficient Intralogistic Systems [T-MACH-105151]

Responsible: Dr.-Ing. Meike Braun
Dr. Frank Schönung

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102816 - Major Field: Fundamentals of Energy Technology
M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Braun, Schönung</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Braun</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral, 30 min. examination dates after the end of each lesson period.

Prerequisites
none

Recommendation
The content of course “Basics of Technical Logistics I” (T-MACH-109919) should be known.

Annotation
Visit the IFL homepage of the course for the course dates and/or possible limitations of course participation.

Below you will find excerpts from events related to this course:

Energy efficient intralogistic systems

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117500, WS 19/20</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Content
The content of course “Basics of Technical Logistics” should be knownn.

Literature
Keine.
8.58 Course: Energy Storage and Network Integration [T-MACH-105952]

Responsible: Dr.-Ing. Wadim Jäger
Prof. Dr. Robert Stieglitz

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Course Code</th>
<th>Course Title</th>
<th>ECTS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2189487</td>
<td>Energy Storage and Grid Integration</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Jäger, Stieglitz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105952</td>
<td>Energiespeicher und Netzintegration</td>
<td>Prüfung (PR)</td>
<td>Jäger, Stieglitz</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105952</td>
<td>Energiespeicher und Netzintegration</td>
<td>Prüfung (PR)</td>
<td>Jäger, Stieglitz</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, about 30 minutes

Prerequisites
The courses T-MACH-105952 Energiespeicher und Netzintegration and T-ETIT-104644 - Energy Storage and Network Integration can not be combined.

Below you will find excerpts from events related to this course:

Energy Storage and Grid Integration

Content
The lecture provides an overview of the different storage types and their fundamental integration into the power supply grid. Thereby, within the scope of this lecture, the necessity and the motivation for converting and storing energy will be given. Starting from the definition of fundamental terms different physical and chemical storage types along with their theoretical and practical basis are described. In particular, the decoupling of energy production and energy consumption, and the provision of different energy scales (time, power, density) will be discussed. Furthermore, the challenge of energy transport and re-integration into the different grid types is considered.

Students understand the different types of energy storage and apply their knowledge for the selection and principal dimensioning of relevant energy storage tasks.

Furthermore, students can reflect the state-of-the-art of most important energy storage types, their fundamental characteristics and viability at given boundary conditions and they are enabled to elaborate and apply basic integration issues dependent on the grid structure for the different network types.

Oral exam, duration approximately 30 min, tools: non

Responsible: Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Prüfung (PR)</td>
<td>Dagan</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 1/2 hour

Prerequisites
none

Below you will find excerpts from events related to this course:

Energy Systems I - Renewable Energy
2129901, WS 19/20, 3 SWS, Language: German, Open in study portal

Content
The course deals with fundamental aspects of renewable energies.

1. The first part deals with the basic concepts of absorbing solar beans, in an efficient manner accounting for the minimization of heat losses. In this context, selective topics on thermodynamics as well as fluid dynamics are introduced. In the second part few applications are discussed and optimizations techniques of solar collectors construction and their heat transfer are presented.
2. The use of solar energy as a source for heat generation is followed by the idea of electricity generation. Introductive aspects of Photovoltaic technologies are illuminated.
3. The last part presents additional regenerative energy sources such as wind and geothermal energy.

The student knows the principles of the feasibility of energy gain by means of renewable energies, in particular the solar energy. regular attendance: 34 hours self-study: 146 hours

Oral examination – as an elective course 30 minutes, in combination with Energiesysteme-II or other courses within the energy courses, as a major course 1 hour
8.60 Course: Engine Laboratory [T-MACH-105337]

Responsible: Dr.-Ing. Uwe Wagner
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102645 - Major Field: Combustion Engine Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134001</td>
<td>Engine Laboratory</td>
<td>2 SWS</td>
<td>Practical course (P)</td>
</tr>
<tr>
<td>Exams</td>
<td>76-T-MACH-105337</td>
<td>Engine Laboratory</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Competence Certificate
written documentation of every experiment, certificate of successful attendance, no grading

Prerequisites
none

Below you will find excerpts from events related to this course:

Engine Laboratory
2134001, SS 2020, 2 SWS, Language: German, Open in study portal

Practical course (P)

Literature
Versuchsbeschreibungen
8.61 Course: Engine Measurement Techniques [T-MACH-105169]

Responsible: Dr.-Ing. Sören Bernhardt

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102645 - Major Field: Combustion Engine Techniques
- M-MACH-102817 - Major Field: Information Technology

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134137</td>
<td>Engine measurement techniques</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 0,5 hours, no auxiliary means

Prerequisites
none

Recommendation
T-MACH-102194 Combustion Engines I

Below you will find excerpts from events related to this course:

Literature

1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102572 - Engineering Mechanics
M-MACH-104624 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Lecture Type (V)</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161245</td>
<td>Engineering Mechanics I</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Böhlke</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3161010</td>
<td>Engineering Mechanics I (Lecture)</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecture Type (PR)</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td>Prüfung (PR)</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100282-englisch</td>
<td>Engineering Mechanics I</td>
<td>Prüfung (PR)</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 90 min, graded

Prerequisites

successful participation in "Engineering Mechanics I (Tutorial)" (see T-MACH-100528)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-100528 - Tutorial Engineering Mechanics I must have been passed.

Below you will find excerpts from events related to this course:

Engineering Mechanics I

2161245, WS 19/20, 3 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

- Basics of vector calculus
- Force systems
- Statics of rigid bodies
- Internal forces and moments in bars and beams
- Friction
- Centre of gravity, centre of mass
- Work, energy, principle of virtual work
- Statics of inextensible ropes
- Elastostatics of tension-compression bars

Literature

- Vorlesungsskript
- Hibbeler, R.C: Technische Mechanik 1 - Statik. Prentice Hall. Pearson Studium 2005
8.63 Course: Engineering Mechanics II [T-MACH-100283]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102572 - Engineering Mechanics
M-MACH-104624 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162250</td>
<td>Engineering Mechanics II</td>
<td>Lecture (V)</td>
<td>3 SWS</td>
<td>Böhlke</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>3162010</td>
<td>Engineering Mechanics II (Lecture)</td>
<td>Lecture (V)</td>
<td>3 SWS</td>
<td>Langhoff, Pallicity</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100283</td>
<td>Engineering Mechanics II</td>
<td>Prüfung (PR)</td>
<td>3 SWS</td>
<td>Böhlke, Langhoff</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100283-englisch</td>
<td>Engineering Mechanics II</td>
<td>Prüfung (PR)</td>
<td>3 SWS</td>
<td>Böhlke, Langhoff</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 90 min, graded

Prerequisites
successful participation in "Engineering Mechanics II (Tutorial)" (see T-MACH-100284)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-100284 - Tutorial Engineering Mechanics II must have been passed.

Below you will find excerpts from events related to this course:

Engineering Mechanics II

2162250, SS 2020, 3 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke’s law in 3D
- elasticity theories in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars

Literature

Vorlesungsskript
Content

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theorems in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars
Course: Engineering Mechanics III & IV [T-MACH-105201]

8.64 Course: Engineering Mechanics III & IV [T-MACH-105201]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>10</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>ECTS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161203</td>
<td>Engineering Mechanics III</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>2</td>
<td>Seemann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3161012</td>
<td>Engineering Mechanics III (Lecture)</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>2</td>
<td>Seemann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2162231</td>
<td>Engineering Mechanics IV</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>2</td>
<td>Seemann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3162012</td>
<td>Engineering Mechanics IV</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>2</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105201</td>
<td>Engineering Mechanics III & IV</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105201</td>
<td>Engineering Mechanics III & IV</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (3 h), graded

Prerequisites

Successful accomplishment of the exercise sheets in Engineering Mechanics III (T-MACH-105202) and of the exercise sheets in Engineering Mechanics IV (T-MACH-105203).

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105202 - Tutorial Engineering Mechanics III must have been passed.
2. The course T-MACH-105203 - Tutorial Engineering Mechanics IV must have been passed.

Below you will find excerpts from events related to this course:

Engineering Mechanics III

2161203, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Lecture (V)

Content

Kinetics of a particle:

Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems.

Systems of particles:

Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.

Plain motion of rigid bodies:

Content

Kinetics of a particle: Newton's axiom, principle of d'Alembert, work of force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems

Systems of particles: principle of center of mass, principle of moment of momentum, impacts between particles, systems with variable mass, applications

Course: Engineering Mechanics IV

Content

Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption

Course: Engineering Mechanics 4

Content

The students know some possibilities to describe the position and orientation of a rigid body for an arbitrary 3d motion. They realize that the rotational velocity is a vector which may change both magnitude and orientation. They can apply the principle of linear momentum and the principle of moment of momentum to a spatial motion of a rigid boy and notice that this is much more complicated compared to a plain motion. The students can calculate the coordinates of the inertia tensor. They see that many effects which may be seen with gyroscopes can be explained by the principle of moment of momentum. For systems with many particles or bodies but only few degrees of freedom the students know that the application of analytical methods like the principle of D'Alembert in Lagrangian form or the Lagrange equations may be advantageous. They can apply these principles to simple problems. For vibration problems the students can interpret the most important expressions like eigenfrequency, resonance or eigenvalue problem. Forced vibration of systems with the degree of freedom can be investigated by the students.
8.65 Course: Exercises in Technical Thermodynamics and Heat Transfer I [T-MACH-105204]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102574 - Technical Thermodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2165502</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Maas</td>
</tr>
<tr>
<td>Exercise course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Thermodynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Heat Transfer I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 3165015</td>
<td>2 SWS</td>
<td>Tutorial (Tu)</td>
<td>Schießl, Maas</td>
</tr>
<tr>
<td>Technical Thermodynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Heat Transfer I (Tutorial)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105204</td>
<td>1</td>
<td>Prüfung (PR)</td>
<td>Maas</td>
</tr>
<tr>
<td>Exercises in Technical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamics and Heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Homework is mandatory.
8.66 Course: Exercices in Technical Thermodynamics and Heat Transfer II [T-MACH-105288]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102574 - Technical Thermodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code Name</th>
<th>Type</th>
<th>Practice (Ü)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2166556</td>
<td>Technical Thermodynamics and Heat Transfer II (Tutorial)</td>
<td>2 SWS</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>3166033</td>
<td>Technical Thermodynamics and Heat Transfer II (Tutorial)</td>
<td>2 SWS</td>
<td>Schießl, Maas</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Course Name</th>
<th>Practice (PR)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105288</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer II</td>
<td>Maas</td>
<td></td>
</tr>
</tbody>
</table>

 Competence Certificate

Homework is mandatory.

Prerequisites

none

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II (Tutorial)

2166556, SS 2020, 2 SWS, Language: German, Open in study portal

Practice (Ü)

Content

Calculation of thermodynamical problems

Literature

Vorlesungsskriptum

8.67 Course: Exercices - Tribology [T-MACH-109303]

Responsible: Prof. Dr. Martin Dienwiebel
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>0</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2181114 Tribology</td>
<td>5 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Dienwiebel, Scherge</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-109303</td>
<td>5 SWS</td>
<td>Prüfung (PR)</td>
<td>Dienwiebel</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

successful solving of all exercises

Prerequisites

none

Below you will find excerpts from events related to this course:

Tribology

2181114, WS 19/20, 5 SWS, Language: German, Open in study portal
Content

- Chapter 1: Friction
 - adhesion, geometrical and real area of contact, Friction experiments, friction powder, tribological stressing, environmental influences, tribological age, contact models, Simulation of contacts, roughness.
- Chapter 2: Wear
 - plastic deformation at the asperity level, dissipation modes, mechanical mixing, Dynamics of the third body, running-in, running- in dynamics, shear stress.
- Chapter 3: Lubrication
 - base oils, Strubeck plot, lubrication regimes (HD, EHD, mixed lubrication), additives, oil characterization, solid lubrication.
- Chapter 4: Measurement Techniques
 - friction measurement, tribometer, dissipated frictional power, conventional wear measurement, continuous wear measurement(RNT)
- Chapter 5: Roughness
 - profilometry, surface roughness parameters, evaluation length and filters, bearing ratio curve, measurement error
- Chapter 6: Accompanying Analysis
 - multi-scale topography measurement, chemical surface analysis, structural analysis, mechanical analysis

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

- describe the fundamental friction and wear mechanisms, which occur in tribologically stressed systems
- evaluate the friction and wear behavior of tribological systems
- explain the effects of lubricants and their most important additives
- identify suitable approaches to optimize tribological systems
- explain the most important experimental methods for the measurement of friction and wear, and is able to use them for the characterisation of tribo pairs
- choose suitable methods for the evaluation of roughness and topography from the nm-scale to the mm-scale and is able to interpret the determined values in respect to their effect on the tribological behavior
- describe the most important surface-analytical methods and their physical principles for the characterization of tribologically stressed sliding surfaces

preliminary knowledge in mathematics, mechanics and materials science recommended
regular attendance: 45 hours
self-study: 195 hours
oral examination (ca. 40 min)
no tools or reference materials
admission to the exam only with successful completion of the exercises

Literature

Course: Exercises for Materials Characterization [T-MACH-107685]

Responsible: Dr.-Ing. Jens Gibmeier
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Completed coursework</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td>3</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Regular attendance

Prerequisites
none

Below you will find excerpts from events related to this course:

V materials characterization
2174586, WS 19/20, 2 SWS, Language: German, Open in study portal Lecture (V)

Content
The following methods will be introduced within this lecture:

- microscopic methods: optical microscopy, electron microscopy (SEM/TEM), atomic force microscopy
- material and microstructure analyses by means of X-ray, neutron and electron beams
- analysis methods at SEM/TEM (e.g. EELS)
- spectroscopic methods (e.g. EDS / WDS)

Learning objectives:
The students have fundamental knowledge about methods of material analysis. They have a basic understanding to transfer this fundamental knowledge on problems in engineering science. Furthermore, the students have the ability to describe technical material by its microscopic and submicroscopic structure.

Requirements:
none

Workload:
The workload for the module "Materials Characterization" is 180 h per semester and consists of the presence during the lectures (21 h) and tutorials (12 h) as well as self-study for the lecture (99 h) and for the tutorials (48 h).

Literature
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
8.69 Course: Experimental Dynamics [T-MACH-105514]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102820 - Major Field: Mechatronics
M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Lecture Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162225</td>
<td>Experimental Dynamics</td>
<td>3</td>
<td>Lecture (V)</td>
<td>5</td>
<td>Each summer term</td>
<td>Fidlin</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2162228</td>
<td>Übungen zu Experimentelle Dynamik</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>5</td>
<td>Each summer term</td>
<td>Fidlin, Keller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Lecture Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105514</td>
<td>Experimental Dynamics</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105514</td>
<td>Experimental Dynamics</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 30 min.

Prerequisites

Can not be combined with Practical Training in Measurement of Vibrations (T-MACH-105373).

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105373 - Practical Training in Measurement of Vibrations must not have been started.

Below you will find excerpts from events related to this course:

Experimental Dynamics

2162225, SS 2020, 3 SWS, Language: German, Open in study portal

Content

1. Introduction
2. Measurement principles
3. Sensors as coupled multi-physical systems
4. Digital signal processing, measurements in frequency domain
5. Forced non-linear vibrations
6. Stability problems (Mathieu oscillator, friction induces vibrations)
7. Elementary rotor dynamics
8. Modal analysis
8.70 Course: Failure Analysis [T-MACH-105724]

Responsible: Dr. Christian Greiner
Dr.-Ing. Johannes Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>Greiner, Schneider</td>
</tr>
<tr>
<td>Exams</td>
<td>Failure Analysis</td>
<td>Prüfung (PR)</td>
<td>Schneider, Greiner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Failure Analysis</td>
<td>Prüfung (PR)</td>
<td>Schneider, Greiner</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Failure Analysis</td>
<td>Prüfung (PR)</td>
<td>Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, ca. 30 min

Prerequisites
none

Recommendation
basic knowledge in materials science (e.g. lecture materials science I and II)

Below you will find excerpts from events related to this course:

Failure Analysis

2182572, WS 19/20, 2 SWS, [Open in study portal]

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
</table>
| Aim, procedure and content of examining failure
Examination methods
Types of failure:
Failure due to mechanical loads
Failure due to corrosion in electrolytes
Failure due to thermal loads
Failure due to tribological loads
Damage systematics
The students are able to discuss damage evaluation and to perform damage investigations. They know the common necessary investigation methods and can regard failures considering load and material resistance. Furthermore they can describe and discuss the most important types of failure and damage appearance.

basic knowledge in materials science (e.g. lecture materials science I and II) recommended

regular attendance: 21 hours
self-study: 99 hours
oral exam, duration: ca. 30 minutes
no notes
Literature

8.71 Course: Failure of Structural Materials: Deformation and Fracture [T-MACH-102140]

Responsible: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2181711</td>
<td>Failure of structural materials: deformation and fracture</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>76-T-MACH-102140</th>
<th>Failure of Structural Materials: Deformation and Fracture</th>
<th>Prüfung (PR)</th>
<th>Weygand, Gumbsch, Kraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 76-T-MACH-102140</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>Prüfung (PR)</td>
<td>Kraft, Weygand, Gumbsch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam ca. 30 minutes
no tools or reference materials

Prerequisites

none

Recommendation

preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:
Content

1. Introduction
2. linear elasticity
3. classification of stresses
4. Failure due to plasticity
 ◦ tensile test
 ◦ dislocations
 ◦ hardening mechanisms
 ◦ guidelines for dimensioning
5. composite materials
6. fracture mechanics
 ◦ hypotheses for failure
 ◦ linear elastic fracture mechanics
 ◦ crack resistance
 ◦ experimental measurement of fracture toughness
 ◦ defect measurement
 ◦ crack propagation
 ◦ application of fracture mechanics
 ◦ atomistics of fracture

The student

- has the basic understanding of mechanical processes to explain the relationship between externally applied load and materials strength.
- can explain the foundation of linear elastic fracture mechanics and is able to determine if this concept can be applied to a failure by fracture.
- can describe the main empirical materials models for deformation and fracture and can apply them.
- has the physical understanding to describe and explain phenomena of failure.

preliminary knowledge in mathematics, mechanics and materials science recommended
regular attendance: 22.5 hours
self-study: 97.5 hours

The assessment consists of an oral examination (ca. 30 min) according to Section 4(2), 2 of the examination regulation.

Literature

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
8.72 Course: Failure of Structural Materials: Fatigue and Creep [T-MACH-102139]

Responsible: Dr. Patric Gruber
Prof. Dr. Peter Gumbsch

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2181715</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102139</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>Prüfung (PR)</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam ca. 30 minutes
no tools or reference materials

Prerequisites

none

Recommendation

preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:

Failure of Structural Materials: Fatigue and Creep

2181715, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)
Content
1 Fatigue
 1.1 Introduction
 1.2 Lifetime
 1.3 Fatigue Mechanisms
 1.4 Material Selection
 1.5 Notches and Shape Optimization
 1.6 Case Studies: ICE-Accidents

2 Creep
 2.1 Introduction
 2.2 High Temperature Plasticity
 2.3 Phänomenological Description of Creep
 2.4 Creep Mechanisms
 2.5 Alloying Effects

The student
- has the basic understanding of mechanical processes to explain the relationships between externally applied load and materials strength.
- can describe the main empirical materials models for fatigue and creep and can apply them.
- has the physical understanding to describe and explain phenomena of failure.
- can use statistical approaches for reliability predictions.
- can use its acquired skills, to select and develop materials for specific applications.

preliminary knowledge in mathematics, mechanics and materials science recommended
regular attendance: 22.5 hours
self-study: 97.5 hours

The assessment consists of an oral examination (ca. 30 min) according to Section 4(2), 2 of the examination regulation.

Literature
- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
- Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); Standardwerk über Ermüdung, alle Materialklassen, umfangreich, für Einsteiger und Fortgeschrittene
8.73 Course: Fatigue of Metallic Materials [T-MACH-105354]

Responsibilities: Dr.-Ing. Stefan Guth
Dr. Karl-Heinz Lang

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4</td>
<td>Each winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, about 20 minutes

Prerequisites
none

Recommendation
Basic knowledge in Materials Science will be helpful.

Below you will find excerpts from events related to this course:

Fatigue of Metallic Materials
2173585, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
Introduction: some interesting cases of damage
Cyclic Stress Strain Behaviour
Crack Initiation
Crack Propagation
Lifetime Behaviour under Cyclic Loading
Fatigue of Notched Components
Influence of Residual Stresses
Structural Durability

Learning objectives:
The students are able to recognise the deformation and the failure behaviour of metallic materials under cyclic loading and to assign it to the basic microstructural processes. They know the sequence and the development of fatigue damages and can evaluate the initiation and the growth of fatigue cracks.
The students can assess the cyclic strength behaviour of metallic materials and components both qualitatively and quantitatively and know the procedures for the assessment of single-stage, multistage and stochastic cyclical loadings. Furthermore, they can take into account the influence of residual stresses.

Requirements:
none, basic knowledge in Material Science will be helpful

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Ein Manuskript, das auch aktuelle Literaturhinweise enthält, wird in der Vorlesung verteilt.
Course: Flows and Heat Transfer in Energy Technology [T-MACH-105403]

8.74 Course: Flows and Heat Transfer in Energy Technology [T-MACH-105403]

Responsible: Prof. Dr.-Ing. Xu Cheng
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2189911</td>
<td>Tutorial 'Flows and Heat Transfer in Energy Technology'</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Cheng, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Exam Name</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105403</td>
<td>Flows and Heat Transfer in Energy Technology</td>
<td>Prüfung (PR)</td>
<td>Cheng</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 20 min

Prerequisites

none
Below you will find excerpts from events related to this course:

Fluid Mechanics II

2153512, WS 19/20, 3 SWS, Language: German, [Open in study portal](#)

Content

The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

- tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Literature

Bachelor Program Mechanical Engineering, Date: 15/02/2020
Module Handbook valid from Summer Term 2020
Content
The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

- Tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Literature

Fluid Mechanics I
2154512, SS 2020, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Content
Introduction to the fundamentals of fluid mechanics for students of mechanical engineering and related fields, physics and mathematics. The lecture is complemented by a tutorial.

- Introduction
- Flows in Nature and Technologie
- Fundamentals of Fluid Mechanics
- Properties of Fluids and Characteristic Fluid Regimes
- Fundamental Equations of Fluid Mechanics (Conservation of Mass, Momentum and Energy)
 - Continuity equation
 - Navier-Stokes equations (Euler Equations)
 - Energy equation
- Hydro- und Aerostatics
- Flows without dissipation (lossless)
- Technical Flows with Losses
- Introduction to Similarity Analysis
- Two-Dimensional Viscous Flows
- Integral Form of the Governing Equations
- Introduction to Gas Dynamics

Literature

Fluid Mechanics I
3154510, SS 2020, 3 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ)
Content
Introduction to the fundamentals of fluid mechanics for students of mechanical engineering and related fields, physics and mathematics. The lecture is complemented by a tutorial.

- Introduction
- Flows in Nature and Technology
- Fundamentals of Fluid Mechanics
- Properties of Fluids and Characteristic Fluid Regimes
- Fundamental Equations of Fluid Mechanics (Conservation of Mass, Momentum and Energy)
 - Continuity equation
 - Navier-Stokes equations (Euler Equations)
 - Energy equation
- Hydro- und Aerostatics
- Flows without dissipation (lossless)
- Technical Flows with Losses
- Introduction to Similarity Analysis
- Two-Dimensional Viscous Flows
- Integral Form of the Governing Equations
- Introduction to Gas Dynamics

Literature
8.76 Course: Fluid Power Systems [T-MACH-102093]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Felix Pult

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102746 - Compulsory Elective Module
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Content</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Fluid Technology</td>
<td>2 SWS Lecture (V)</td>
<td>Geimer, Pult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Fluid Power Systems</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Fluid Power Systems</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
none

Below you will find excerpts from events related to this course:

Fluid Technology
2114093, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Content
In the range of hydrostatics the following topics will be introduced:

- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:

- Compressors
- Motors
- Valves
- Pneumatic circuits.

- regular attendance: 21 hours
- self-study: 92 hours

Literature
Skriptum zur Vorlesung *Fluidtechnik*
Institut für Fahrzeugsystemtechnik
downloadbar
8.77 Course: Foundry Technology [T-MACH-105157]

Responsible: Dr.-Ing. Christian Wilhelm
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2174575</td>
<td>Foundry Technology</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam; about 25 minutes

Prerequisites
M-MACH-102562 - Materials Science must be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-MACH-102562 - Materials Science must have been passed.

Below you will find excerpts from events related to this course:

Foundry Technology
2174575, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)
Content
- Moulding and casting processes
- Solidifying of melts
- Castability
- Fe-Alloys
- Non-Fe-Alloys
- Moulding and additive materials
- Core production
- Sand reclamation
- Design in casting technology
- Casting simulation
- Foundry Processes

learning objectives:
The students know the specific moulding and casting techniques and are able to describe them in detail. The students know the application of moulding and casting techniques concerning castings and metals, their advantages and disadvantages in comparison, their application limits and are able to describe these in detail.

The students know the applied metals and are able to describe advantages and disadvantages as well as the specific range of use.

The students are able, to describe detailed mould and core materials, technologies, their application focus and mould-affected casting defects.

The students know the basics of casting process of any casting parts concerning the above mentioned criteria and are able to describe detailed.

requirements:
Required: Material Science and Engineering I and II

workload:
The workload for the lecture Foundry Technology is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).

Literature
Literaturhinweise werden in der Vorlesung gegeben

Reference to literature, documentation and partial lecture notes given in lecture
8.78 Course: Fuels and Lubricants for Combustion Engines [T-MACH-105184]

Responsibility: Dr.-Ing. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102645 - Major Field: Combustion Engine Techniques
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2133108</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>Prüfung (PR)</td>
<td>Kehrwald</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>Prüfung (PR)</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: ca. 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

V Fuels and Lubricants for Combustion Engines

2133108, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Content

Introduction and basics

Fuels for Gasoline and Diesel engines

Hydrogen

Lubricants for Gasoline and Diesel engines

Coolants for combustion engines

Literature

Skript
8.79 Course: Fundamentals for Design of Motor-Vehicle Bodies I [T-MACH-102116]

Responsible: Horst Dietmar Bardehle

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
<td>1</td>
</tr>
<tr>
<td>2113814</td>
<td></td>
<td>Bardehle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th>Prüfung (PR)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Unrau, Bardehle</td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral group examination

Duration: 30 minutes

Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals for Design of Motor-Vehicle Bodies I

Lecture (V)

2113814, WS 19/20, 1 SWS, Language: German, [Open in study portal](#)

Content

1. History and design
2. Aerodynamics
3. Design methods (CAD/CAM, FEM)
4. Manufacturing methods of body parts
5. Fastening technology
6. Body in white / body production, body surface

Learning Objectives:
The students have an overview of the fundamental possibilities for design and manufacture of motor-vehicle bodies. They know the complete process, from the first idea, through the concept to the dimensioned drawings (e.g., with FE-methods). They have knowledge about the fundamentals and their correlations, to be able to analyze and to judge relating components as well as to develop them accordingly.

Literature

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
8.80 Course: Fundamentals for Design of Motor-Vehicle Bodies II [T-MACH-102119]

Responsible: Horst Dietmar Bardehle
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
<td>Bardehle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Bardehle</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral group examination

Duration: 30 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals for Design of Motor-Vehicle Bodies II

2114840, SS 2020, 1 SWS, Language: German, Open in study portal

Lecture (V)

Content

1. Body properties/testing procedures
2. External body-parts
3. Interior trim
4. Compartment air conditioning
5. Electric and electronic features
6. Crash tests
7. Project management aspects, future prospects

Learning Objectives:

The students know that, often the design of seemingly simple detail components can result in the solution of complex problems. They have knowledge in testing procedures of body properties. They have an overview of body parts such as bumpers, window lift mechanism and seats. They understand, as well as, parallel to the normal electrical system, about the electronic side of a motor vehicle. Based on this they are ready to analyze and to judge the relation of these single components. They are also able to contribute competently to complex development tasks by imparted knowledge in project management.

Literature

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
8.81 Course: Fundamentals in the Development of Commercial Vehicles I [T-MACH-105160]

Responsible: Prof. Dr. Jörg Zürn
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102818 - Major Field: Vehicle Technology

Type
- Oral examination

Credits
- 2

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lecture Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (V)</td>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
<td>Zürn</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Lecture Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung (PR)</td>
<td>76-T-MACH-105160</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td></td>
<td>Zürn</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral group examination

- **Duration:** 30 minutes
- **Auxiliary means:** none

Prerequisites

- none

Below you will find excerpts from events related to this course:

Lecture (V)

Fundamentals in the Development of Commercial Vehicles I

2113812, WS 19/20, 1 SWS, Language: German, [Open in study portal](#)

Content
1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodyshell work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Learning Objectives:

The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

The students are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.
Literature

Course: Fundamentals in the Development of Commercial Vehicles II [T-MACH-105161]

Responsible: Prof. Dr. Jörg Zürn
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
<td>Zürn</td>
</tr>
<tr>
<td>Exams</td>
<td>Prüfung (PR)</td>
<td>Zürn</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral group examination

Duration: 30 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals in the Development of Commercial Vehicles II
2114844, SS 2020, 1 SWS, Language: German, Open in study portal

Lecture (V)

Content
1. Gear boxes of commercial vehicles
2. Intermediate elements of the drive train
3. Axle systems
4. Front axles and driving dynamics
5. Chassis and axle suspension
6. Braking System
7. Systems
8. Excursion

Learning Objectives:
The students know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application.

Literature
8.83 Course: Fundamentals of Automobile Development I [T-MACH-105162]

Responsible: Dipl.-Ing. Rolf Frech
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology

Course Details:
- **Type:** Written examination
- **Credits:** 2
- **Recurrence:** Each winter term
- **Version:** 1

Events
- **WS 19/20 2113810**
 Fundamentals of Automobile Development I
 1 SWS
 Lecture (V)
 Frech
- **WS 19/20 2113851**
 Principles of Whole Vehicle Engineering I
 1 SWS
 Lecture (V)
 Frech

Exams
- **WS 19/20 76-T-MACH-105162**
 Fundamentals of Automobile Development I
 Prüfung (PR)
 Frech, Unrau

Competence Certificate
- Written examination
 Duration: 90 minutes
 Auxiliary means: none

Prerequisites
- none

Below you will find excerpts from events related to this course:

Fundamentals of Automobile Development I
2113810, WS 19/20, 1 SWS, Language: German, [Open in study portal]

Lecture (V)

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aerodynamics and design of an automobile I
5. Aerodynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Literature
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons

Principles of Whole Vehicle Engineering I
2113851, WS 19/20, 1 SWS, Language: English, [Open in study portal]

Lecture (V)

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Literature
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons
Course: Fundamentals of Automobile Development II [T-MACH-105163]

Responsible: Dipl.-Ing. Rolf Frech
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Weekly Hours</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114842</td>
<td>Fundamentals of Automobile Development II</td>
<td>1</td>
<td>Lecture (V)</td>
<td>Frech</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2114860</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>1</td>
<td>Frech</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>Prüfung (PR)</td>
<td>Unrau, Frech</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of Automobile Development II
2114842, SS 2020, 1 SWS, Language: German, Open in study portal

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Literature
Skript zur Vorlesung ist über ILIAS verfügbar.

Principles of Whole Vehicle Engineering II
2114860, SS 2020, 1 SWS, Language: English, Open in study portal
Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Literature
Das Skript zur Vorlesung ist über ILIAS verfügbar.
Course: Fundamentals of Catalytic Exhaust Gas Aftertreatment [T-MACH-105044]

Responsible: Prof. Dr. Olaf Deutschmann
Prof. Dr. Jan-Dierk Grunwaldt
Dr.-Ing. Heiko Kubach
Prof. Dr.-Ing. Egbert Lox

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102645 - Major Field: Combustion Engine Techniques
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-102838 - Major Field: Energy Converting Engines

Type
Oral examination

Credits
4

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134138</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Lox, Grunwaldt, Deutschmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>Prüfung (PR)</td>
<td>Lox</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>Prüfung (PR)</td>
<td>Lox</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of catalytic exhaust gas aftertreatment

<table>
<thead>
<tr>
<th>SWS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>German</td>
<td></td>
</tr>
</tbody>
</table>

Literature

Skrift, erhältlich in der Vorlesung

8.86 Course: Fundamentals of Combustion Engine Technology [T-MACH-105652]

Responsible: Dr.-Ing. Sören Bernhardt
Dr.-Ing. Heiko Kubach
Jürgen Pfeil
Dr.-Ing. Olaf Toedter
Dr.-Ing. Uwe Wagner

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102645 - Major Field: Combustion Engine Techniques
M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2133123</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Kubach, Wagner, Toedter, Pfeil, Bernhardt, Velji</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>Prüfung (PR)</td>
<td>Kubach</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>Prüfung (PR)</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 30 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Combustion Engine Technology

2133123, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

Fundamentals of engine processes
Components of combustion engines
Mixture formation systems
Gas exchange systems
Injection systems
Exhaust Gas Aftertreatment Systems
Cooling systems
Ignition Systems
8.87 Course: Fundamentals of Combustion I [T-MACH-105213]

Responsible: Prof. Dr. Ulrich Maas
Dr. Jörg Sommerer

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102746 - Compulsory Elective Module
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>ID</th>
<th>Name</th>
<th>Type</th>
<th>Weekly Hours (SWS)</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2165515</td>
<td>Fundamentals of Combustion I</td>
<td>Lecture (V)</td>
<td>2</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2165517</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>Practice (Ü)</td>
<td>1</td>
<td>Bykov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3165016</td>
<td>Fundamentals of Combustion I</td>
<td>Lecture (V)</td>
<td>2</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3165017</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>Practice (Ü)</td>
<td>1</td>
<td>Bykov</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>ID</th>
<th>Name</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Maas</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105464</td>
<td>Fundamentals of Combustion I</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, 3 h

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Combustion I
2165515, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Literature

Vorlesungsskript,

Fundamentals of Combustion I (Tutorial)
2165517, WS 19/20, 1 SWS, [Open in study portal](#)

Literature

- Vorlesungsskript
Course: Fundamentals of Combustion II [T-MACH-105325]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology
M-MACH-102838 - Major Field: Energy Converting Engines

Type	Credits	Recurrence	Version
Oral examination | 4 | Each summer term | 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2166538</td>
<td>Fundamentals of combustion II</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Maas</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2166539</td>
<td>Übung zu Grundlagen der technischen Verbrennung II</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 20 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of combustion II
2166538, SS 2020, 2 SWS, Language: German, Open in study portal

Content

- Three dimensional Navier-Stokes equations for reacting flows
- Tubulent reactive flows
- Turbulent non-premixed flames
- Turbulent premixed flames
- Combustion of liquid and solid fuels
- Engine knock
- NOx formation
- Formation of hydrocarbons and soot
- Thermodynamics of combustion processes
- Transport phenomena

Literature
Vorlesungsskript;

Übung zu Grundlagen der technischen Verbrennung II
2166539, SS 2020, 1 SWS, Language: German, Open in study portal

Content
Calculation and Simulation of combustion processes

Literature
Skript Grundlagen der technischen Verbrennung (I+II) von Prof. Dr. rer. nat. habil. U. Maas
Course: Fundamentals of Energy Technology [T-MACH-105220]

Responsible: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2130927</td>
<td>Fundamentals of Energy Technology 3 SWS</td>
<td>Lecture (V) Cheng, Badea</td>
</tr>
<tr>
<td>SS 2020 3190923</td>
<td>Fundamentals of Energy Technology 3 SWS</td>
<td>Lecture (V) Badea</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Prüfung (PR) Badea</td>
</tr>
<tr>
<td>WS 19/20 76-T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Prüfung (PR) Badea, Cheng</td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Prüfung (PR) Cheng, Badea</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination, 90 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Energy Technology

2130927, SS 2020, 3 SWS, Language: German, [Open in study portal]

Lecture (V)

Content

The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy demand and energy situation
- Energy types and energy mix
- Basics. Thermodynamics relevant to the energy sector
- Conventional fossil-fired power plants
- Combined Cycle Power Plants
- Cogeneration
- Nuclear energy
- Regenerative energies: hydropower, wind energy, solar energy, other energy systems
- Energy storage
- Transport of energy
- Power generation and environment. Future of the energy industry
Content
The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy forms
- Thermodynamics relevant to energy industry
- Energy sources: fossil fuels, nuclear energy, renewable sources
- Energy industry in Germany, Europe and worldwide
- Power generation and environment
- Evaluation of energy conversion processes
- Thermal/electrical power plants and processes
- Transport of energy / energy carriers
- Energy storage
- Systems utilizing renewable energy sources
- Basics of economic efficiency and calculus / Optimisation
- Future of the energy industry
Below you will find excerpts from events related to this course:

The student can describe the governing equations of Gas Dynamics and the associated basics in Thermodynamics. He will know different flow phenomena of applied Gas Dynamics. He can calculate compressible flows analytically. He is familiar with the Rankine-Hugoniot curve. They can derive the continuity-, the momentum- and the energy equations in differential form. With the help of the stationary flow filament theory they can calculate the normal shock wave and the associated increase of the entropy along past the shock wave. They are able to calculate the stagnation values of the Gas Dynamical variables and to determine their critical values. The students can apply the flow filament theory for variable cross-sectional areas and can distinguish between the different flow fields inside the Laval nozzle that forms with different boundary conditions. He can calculate the values behind an oblique shock wave and can distinguish between detached and attached shock waves. The student can calculate the Prandtl-Meyer expansion wave.

This lecture covers the following topics:

- Introduction to gas dynamics
- Numerical and experimental examples
- Governing equations of gas dynamics
- The transport equations in differential and integral form
- Stationary flow filament theory with and without normal shock waves
- Discussion of the energy equation: Stagnation and critical values
- Flow filament theory at variable cross-sectional area. Flow inside a Laval nozzle
- Oblique shock waves, detached shock waves
- Prandtl-Meyer expansion wave
- Viscous flows (Fanno flow)

Literature

Zierep, J.: Theoretische Gasdynamik, Braun Verlag, Karlsruhe. 1991

8.91 Course: Gear Cutting Technology [T-MACH-102148]

Responsible: Dr.-Ing. Markus Klaiber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td>2149655</td>
<td>Gear Technology</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam (20 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Gear Technology
2149655, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

Learning Outcomes:
The students …

- can describe the basic terms of gearings and are able to explain the imparted basics of the gearwheel and gearing theory.
- are able to specify the different manufacturing processes and machine technologies for producing gearings. Furthermore they are able to explain the functional principles and the dis-/advantages of these manufacturing processes.
- can apply the basics of the gearing theory and manufacturing processes on new problems.
- are able to read and interpret measuring records for gearings. are able to make an appropriate selection of a process based on a given application.
- can describe the entire process chain for the production of toothed components and their respective influence on the resulting workpiece properties.

Workload:
regular attendance: 21 hours
self-study: 99 hours
Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.92 Course: Global Logistics [T-MACH-105379]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102644 - Major Field: Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 3118095 | Global Logistics | 2 SWS | Furmans, Fleischer-Dörr, Mittwollen, Jacobi |

Competence Certificate
oral exam (20 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Global Logistics
3118095, SS 2020, 2 SWS, Language: English, Open in study portal
Content

Conveyor Systems

- Basic elements of conveyor systems
- Key figures
- Branching elements
- continuous/partially-continuous
- deterministic/stochastic switch
- Integration elements
- continuous/partially-continuous
- dispatching rules

Queueing Theory and Production Logistics

- Basic queueing systems
- Distributions
- M|M|1 and M|G|1 model
- Application on production logistics

Distribution Centers and Order Picking

- The location problem
- Distribution centers
- Inventory management
- Order picking

Vehicle Routing

- Types of vehicle routing problems
- Linear programming model and graph theoretic model
- Heuristics
- Supporting technologies

Optimization of Logistical Networks

- Objectives
- Cooperative strategies
- Supply chain management
- Implementation

Literature

Arnold, Dieter; Furmans, Kai : Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg
8.93 Course: Global Production Engineering (MEI) [T-MACH-106731]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102644 - Major Field: Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

SS 2020 3150040 Global Production Engineering (MEI) 2 SWS Lecture (V) Lanza, Stricker

Exams

WS 19/20 76-T-MACH-106731 Global Production Engineering (MEI) Prüfung (PR) Lanza

Competence Certificate

oral exam (45 min group examination with 3 students)

Prerequisites

none

Below you will find excerpts from events related to this course:

Global Production Engineering (MEI)

3150040, SS 2020, 2 SWS, Language: English, [Open in study portal]

Lecture (V)

Content

Target of the lecture is to depict the challenges of global operating companies and to give an overview of central aspects and methods in production planning. The lecture will regard site-related production factors and give the basic steps in site-selection, before the planning of manufacturing systems is focused. Herein, not only the planning phases are regarded, but also the methods used.

The topics are:

- Challenges of global production
- Establishing of new production sites
- The basic steps in manufacturing system planning
- Steps and methods of factory planning
- Manufacturing and assembly planning. Assembly panning will be focused
- Layout and material flow of production sites
- Production planning and control basics

Learning Outcomes:

The students …

- can explain the challenges of global production.
- can explain site-related production factors.
- can name the basic steps in site-selection.
- can explain the basic steps in planning a production site.
- are able to explain methods of production analysis, layout planning, production planning and control, etc.
- can apply the methods to new problems.
- can explain links between different planning steps.
8.94 Course: Großdiesel- und -gasmotoren für Schiffsantriebe [T-MACH-110816]

Responsible: Dr.-Ing. Heiko Kubach
Organisation: Part of: M-MACH-102645 - Major Field: Combustion Engine Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2134154 | Large Diesel and Gas Engines for Ship Propulsions | 2 SWS | Lecture (V) | Kubach |

Exams

| SS 2020 | 76-T-MACH-110816 | Großdiesel- und -gasmotoren für Schiffsantriebe | Prüfung (PR) |

Competence Certificate
oral exam, 20 minutes

Prerequisites
None

Below you will find excerpts from events related to this course:

Large Diesel and Gas Engines for Ship Propulsions

<table>
<thead>
<tr>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2134154, SS 2020, 2 SWS, Language: German, Open in study portal</td>
</tr>
</tbody>
</table>

Content

- Introduction and History
- Types of Ships and Propulsion Systems
- Thermodynamic
- Boosting
- Design
- Fuels
- Lubricants
- Injection of liquid Fuels
- Combustions Processes for liquid Fuels
- Injection of Gaseous Fuels
- Combustion Processes for Gaseous Fuels
- Emissions
- Integration of Engines in Ships
- Large Engines in other Applications
8.95 Course: Handling Characteristics of Motor Vehicles I [T-MACH-105152]

Responsible: Dr.-Ing. Hans-Joachim Unrau
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Content</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2113807</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Content</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>Prüfung (PR)</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Competence Certificate

Verbally

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Handling Characteristics of Motor Vehicles I

2113807, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Learning Objectives:
The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Literature

8.96 Course: Handling Characteristics of Motor Vehicles II [T-MACH-105153]

Responsible: Dr.-Ing. Hans-Joachim Unrau
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>Prüfung (PR)</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Handling Characteristics of Motor Vehicles II

2114838, SS 2020, 2 SWS, Language: German, [Open in study portal]

Lecture (V)

Content

1. Vehicle handling: Bases, steady state cornering, steering input step, single sine, double track switching, slalom, cross-wind behavior, uneven roadway

2. Stability behavior: Basics, stability conditions for single vehicles and for vehicles with trailer

Learning Objectives:

The students have an overview of common test methods, with which the handling of vehicles is gauged. They are able to interpret results of different stationary and transient testing methods. Apart from the methods, with which e.g. the driveability in curves or the transient behaviour from vehicles can be registered, also the influences from cross-wind and from uneven roadways on the handling characteristics are well known. They are familiar with the stability behavior from single vehicles and from vehicles with trailer. Consequently they are ready to judge the driving behaviour of vehicles and to change it by specific vehicle modifications.

Literature

8.97 Course: Heat and Mass Transfer [T-MACH-105292]

Responsible: Prof. Dr.-Ing. Henning Bockhorn
Prof. Dr. Ulrich Maas

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Concert</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Heat and mass transfer</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Maas</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Heat and Mass Transfer</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Bockhorn</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Concert</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Heat and Mass Transfer</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, 3 h

Prerequisites

none

Below you will find excerpts from events related to this course:

Heat and mass transfer

2165512, WS 19/20, 2 SWS, Language: German, Open in study portal

Literature

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"
Course: Human Factors Engineering I [T-MACH-105518]

Responsible: Prof. Dr.-Ing. Barbara Deml

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2109035</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>Written examination</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105518</td>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105518</td>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 60 minutes

The exams are only offered in German!

Prerequisites

none

Below you will find excerpts from events related to this course:

Human Factors Engineering I: Ergonomics

2109035, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

The course "Human Factors Engineering I: Ergonomics" takes place in the first half of the semester, until 2019/12/05, on Wednesday and Thursday.

In the second half of the semester, beginning with 2019/12/11, the course "Human Factors Engineering II: Work Organisation" takes place on Wednesday and Thursday.

Content of teaching:

1. Principles of human work
2. Behavioural-science data acquisition
3. workplace design
4. work environment design
5. work management
6. labour law and advocacy groups

Learning target:

The students acquire a basic knowledge in the field of ergonomics:

- They are able to consider cognitive, physiological, anthropometric, and safety technical aspects in order to design workplaces ergonomically.
- Just as well they know physical and psycho-physical fundamentals (e. g. noise, lighting, climate) in the field of work-environmental design.
- Furthermore the students are able to evaluate workplaces by knowing and being able to apply essential methods of time studies and payment systems.
- Finally, they get a first, overall insight into the German labour law as well as into the organisation of advocacy groups beyond companies.

Further on the participants get to know basic methods of behavioral-science data acquisition (e. g. eye-tracking, ECG, dual-task-paradigm).
Literature
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
8.99 Course: Human Factors Engineering II [T-MACH-105519]

Responsible: Prof. Dr.-Ing. Barbara Deml
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester/Year</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2109036</td>
<td>Human Factors Engineering II: Work Organisation</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester/Year</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td>Prüfung (PR)</td>
<td>Deml</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td>Prüfung (PR)</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, 60 minutes
The exams are only offered in German!

Prerequisites

None

Below you will find excerpts from events related to this course:

Human Factors Engineering II: Work Organisation

2109036, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Content

Content of teaching:

1. Fundamentals of work organization
2. Empirical research methods
3. Individual level
 - personnel selection
 - personnel development
 - personnel assessment
 - work satisfaction/motivation
4. Group level
 - interaction and communication
 - management of employees
 - team work
5. Organizational level
 - structural organization
 - process organization
 - production organization

Learning target:

The students gain a first insight into empirical research methods (e.g. experimental design, statistical data evaluation). Particularly, they acquire a basic knowledge in the field of work organisation:

- **Organizational level.** Within this module the students gain also a fundamental knowledge in the field of structural, process, and production organization.
- **Group level.** Besides, they get to know basic aspects of industrial teamwork and they know relevant theories in the field of interaction and communication, the management of employees as well as work satisfaction and motivation.
- **Individual level.** Finally, the students get to know also methods in the field of personnel selection, development, and assessment.
Literature
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
8.100 Course: Human-Machine-Interaction [T-INFO-101266]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 24659 | Human-Computer-Interaction | 2 SWS | Lecture (V) | Exler, Beigl |

Exams

| WS 19/20 | 7500076 | Human-Machine-Interaction | Prüfung (PR) | Beigl |
| SS 2020 | 7500048 | Human-Machine-Interaction | Prüfung (PR) | Beigl |

Modelled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-106257 - Human-Machine-Interaction Pass must have been passed.
8.101 Course: Human-Machine-Interaction Pass [T-INFO-106257]

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-MACH-102820 - Major Field: Mechatronics

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2400095</th>
<th>Human-Computer-Interaction</th>
<th>1 SWS</th>
<th>Practice (Ü)</th>
<th>Beigl, Exler</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>24659</td>
<td>Human-Computer-Interaction</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Exler, Beigl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>7500121</th>
<th>Human-Machine-Interaction</th>
<th>Prüfung (PR)</th>
<th>Beigl</th>
</tr>
</thead>
</table>
8.102 Course: Hybrid and Electric Vehicles [T-ETIT-100784]

Responsible: Dr.-Ing. Klaus-Peter Becker
Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>2306321</th>
<th>Hybrid and Electric Vehicles</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Doppelbauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2306323</td>
<td>Tutorial for 2306323 Hybrid and Electric Vehicles</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Exams

| WS 19/20 | 7306321 | Hybrid and Electric Vehicles | Prüfung (PR) | Doppelbauer |

Prerequisites

none
8.103 Course: Hydraulic Fluid Machinery [T-MACH-105326]

Responsible: Dr. Balazs Pritz

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102816 - Major Field: Fundamentals of Energy Technology
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2157432</td>
<td>Hydraulic Fluid Machinery</td>
<td>4</td>
<td>Lecture (V)</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7600010</td>
<td>Hydraulic Fluid Machinery</td>
<td>Prüfung (PR)</td>
<td>Pritz</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7600004</td>
<td>Hydraulic Fluid Machinery</td>
<td>Prüfung (PR)</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 40 min.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Hydraulic Fluid Machinery

2157432, SS 2020, 4 SWS, Language: German, [Open in study portal](#)
Content

1. Introduction
2. Basic equations
3. System analysis
4. Elementary Theory (Euler's equation of Fluid Machinery)
5. Operation and Performance Characteristics
6. Similarities, Specific Values
7. Control technics
8. Wind Turbines, Propellers
9. Cavitation
10. Hydrodynamic transmissions and converters

2157432 (Hydraulic Machinery) can not be combined with the event 2157451 (Wind and Hydropower)

Recommendations:
2153412 Fluid mechanics

Students get to know the basics of hydraulic fluid machinery (pumps, fans, hydroturbines, windturbines, hydrodynamic transmissions) in general. Application of the knowledge in different fields of engineering.

The lecture introduces the basics of Hydraulic Fluid Machinery. The different types and shapes are presented. The basic equations for the preservation of mass, momentum and energy are discussed. Velocity schemes in typical cascades are shown, the Euler equation of fluid machinery and performance characteristics are deduced.

Similarities and dimensionless parameters are discussed. Fundamental aspects of operation and cavitation are shown.

Students are able to understand the working principle of Hydraulic Fluid Machinery as well as the interaction with typical systems, in which they are integrated.

regular attendance: 56 hours
self-study: 150 hours
preparation for exam: 40 hours

Oral or written examination (see announcement)

No tools or reference materials may be used during the exam.

Literature

1. Fister, W.: Fluidenergiemaschinen I & II, Springer-Verlag
2. Bohl, W.: Strömungsmaschinen I & II, Vogel-Verlag
5. Carolus, T.: Ventilatoren, Teubner-Verlag
6. Kreiselpumpenlexikon, KSB Aktiengesellschaft
7. Zierep, J., Bühler, K.: Grundzüge der Strömungslehre, Teubner-Verlag
8.104 Course: I4.0 Systems Platform [T-MACH-106457]

Responsible: Dipl.-Ing. Thomas Maier
Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>I4.0 Systems platform</td>
<td>4 SWS</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova, Maier</td>
</tr>
<tr>
<td>SS 2020</td>
<td>I4.0 Systems platform</td>
<td>4 SWS</td>
<td>Project (PRO)</td>
<td>Ovtcharova, Maier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>I4.0 Systems platform</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (project work)

Prerequisites
None

Annotation
Limited number of participants.

Below you will find excerpts from events related to this course:

I4.0 Systems platform

WS 19/20 | Prüfung (PR)

Content
Industry 4.0, IT systems for fabrication (e.g.: CAx, PDM, CAM, ERP, MES), process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Students can

• describe the fundamental concepts, challenges, and objectives of Industrie 4.0 and name the essential terms in context of information management
• explain the necessary information flow between the different IT systems. They get practically knowledge about using current IT systems in context of I4.0, from order to production.
• map and analyze processes in the context of Industry 4.0 with special methods of process modelling
• collaboratively grasp practical I4.0 issues using existing hardware and software and work out solutions for a continuous improvement process in a team
• prototypically implement the self-developed solution proposal with the given IT systems and the existing hardware equipment and finally present the results

Literature
None

I4.0 Systems platform

SS 2020 | Project (PRO)

Bachelor Program Mechanical Engineering Date: 15/02/2020
Module Handbook valid from Summer Term 2020
Content
Industry 4.0, IT systems for fabrication (e.g.: CAx, PDM, CAM, ERP, MES), process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Students can

• describe the fundamental concepts, challenges, and objectives of Industrie 4.0 and name the essential terms in context of information management
• explain the necessary information flow between the different IT systems. They get practically knowledge about using current IT systems in context of I4.0, from order to production.
• map and analyze processes in the context of Industry 4.0 with special methods of process modelling
• collaboratively grasp practical I4.0 issues using existing hardware and software and work out solutions for a continuous improvement process in a team
• prototypically implement the self-developed solution proposal with the given IT systems and the existing hardware equipment and finally present the results

Literature
Keine / None
8.105 Course: Ignition Systems [T-MACH-105985]

Responsible: Dr.-Ing. Olaf Toedter
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102645 - Major Field: Combustion Engine Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Type</th>
<th>Schedule</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2133125</td>
<td>Ignition systems</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Exams</td>
<td>76-T-MACH-105985</td>
<td>Ignition systems</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105985</td>
<td>Ignition systems</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 20 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Ignition systems
2133125, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

- Ignition Process
- Spark Ignition
- Principle of Spark Ignition Systems
- Limits of Spark Ignition
- New Developments of Spark Ignition Systems
- New an Alternative Ignition Systems
8.106 Course: Industrial Aerodynamics [T-MACH-105375]

Responsible: Prof. Dr.-Ing. Thomas Breitling
Prof. Dr.-Ing. Bettina Frohnapfel

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam - 30 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Industrial aerodynamics
2153425, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Content
This compact lecture deals with flow, mixing and combustion phenomena with significance in vehicle development. A special focus is set on the optimization of external car and truck aerodynamics, thermal comfort in passenger compartments, analyses of cooling flows and improvement of charge motion, mixing and combustion in piston engines. These fields are explained in their phenomenology, the corresponding theories are discussed and the tools for measurement and simulation are introduced and demonstrated. The focus of this lecture is on industry relevant methods for analyses and description of forces, flow structures, turbulence, flows with heat transfer and phase transition and reactive flows. In addition an introduction to modern methods in accuracy control and efficiency improvement of numerical methods for industrial use is given. The integration and interconnection of the methods in the development processes are discussed exemplary.

An excursion to the Daimler AG wind tunnel and the research and development centers is planned.

- Industrial flow measurement techniques
- Flow simulation and control of numerical errors, turbulence modeling
- Cooling flows
- Flow mixing and combustion at direct injected Diesel engines
- Flow mixing and combustion at gasoline engine
- Vehicle aerodynamics
- HVAC-Systems and thermal comfort
- Aeroacoustics

Students can describe the different challenges of aerodynamical flow that occur in vehicles. They are qualified to analyze external flows around the vehicles, flows in the passenger compartments (thermal comfort), as well as cooling flows, charge motion, mixing and combustion processes in the engine.

Literature
Vorlesungsskript
8.107 Course: Information Engineering [T-MACH-102209]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (written composition and speech)

Prerequisites
None

Below you will find excerpts from events related to this course:

Information Engineering
2122014, SS 2020, 2 SWS, Language: German/English, Open in study portal

Content
Seminar papers on current research topics of the Institute for Information Management in Engineering. The respective topics are presented at the beginning of each semester.

Literature
Themenspezifische Literatur
8.108 Course: Information Processing in Sensor Networks [T-INFO-101466]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
<th>Weekly Sessions</th>
<th>Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24102</td>
<td>Information Processing in Sensor Networks</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>Noack, Mayer, Hanebeck</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500030</td>
<td>Information Processing in Sensor Networks</td>
<td>Prüfung (PR)</td>
<td>Noack, Hanebeck</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500011</td>
<td>Information Processing in Sensor Networks</td>
<td>Prüfung (PR)</td>
<td>Hanebeck, Noack</td>
</tr>
</tbody>
</table>
8.109 Course: Information Systems and Supply Chain Management [T-MACH-102128]

Responsible: Dr. Christoph Kilger

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management
M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2118094</td>
<td>Information Systems in Logistics and Supply Chain Management</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Kilger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Description</th>
<th>Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Information Systems in Logistics and Supply Chain Management

2118094, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Literature

8.110 Course: Integrated Information Systems for Engineers [T-MACH-102083]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102583 - Major Field: Information Management
M-MACH-102589 - Major Field: Production Systems
M-MACH-102746 - Compulsory Elective Module

Type
Oral examination
Credits
4
Recurrence
Each summer term
Version
2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2121001</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination 20 min.

Prerequisites
None

*Below you will find excerpts from events related to this course:

Integrated Information Systems for engineers
2121001, SS 2020, 3 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)

Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- Illustrate the structure and operating mode of information systems
- Describe the structure of relational databases
- Describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- Describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- Explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature

Vorlesungsfolien / lecture slides
8.111 Course: Integrated Production Planning in the Age of Industry 4.0 [T-MACH-108849]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice (VÜ)</th>
<th>Lanza</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6 SWS</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td></td>
</tr>
<tr>
<td>2150660</td>
<td></td>
<td>Lecture / Practice (VÜ)</td>
<td>Lanza</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Lecture / Practice (VÜ)</th>
<th>Lanza</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-108849</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfung (PR)</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (40 min)

Prerequisites

"T-MACH-109054 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" as well as "T-MACH-102106 Integrierte Produktionsplanung" must not be commenced.

Below you will find excerpts from events related to this course:

Integrated Production Planning in the Age of Industry 4.0

2150660, SS 2020, 6 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
Content
Integrated production planning in the age of industry 4.0 will be taught in the context of this engineering science lecture. In addition to a comprehensive introduction to Industry 4.0, the following topics will be addressed at the beginning of the lecture:

- Basics, history and temporal development of production
- Integrated production planning and integrated digital engineering
- Principles of integrated production systems and further development with Industry 4.0

Building on this, the phases of integrated production planning are taught in accordance with VDI Guideline 5200, whereby special features of parts production and assembly are dealt with in the context of case studies:

- Factory planning system
- Definition of objectives
- Data collection and analysis
- Concept planning (structural development, structural dimensioning and rough layout)
- Detailed planning (production planning and control, fine layout, IT systems in an industry 4.0 factory)
- Preparation and monitoring of implementation
- Start-up and series support

The lecture contents are rounded off by numerous current practical examples with a strong industry 4.0 reference. Within the exercises the lecture contents are deepened and applied to specific problems and tasks.

Learning Outcomes:
The students …

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours
WING:
regular attendance: 63 hours
self-study: 207 hours

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.112 Course: Integrative Strategies in Production and Development of High Performance Cars [T-MACH-105188]

Responsible: Dr. Karl-Hubert Schlichtenmayer
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2150601</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Integrative Strategies in Production and Development of High Performance Cars
2150601, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:

- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Learning Outcomes:
The students …

- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.113 Course: Intellectual Property Rights and Strategies in Industrial Companies

Course: Intellectual Property Rights and Strategies in Industrial Companies
T-MACH-105442

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Frank Zacharias

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102583 - Major Field: Information Management
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2147161</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Zacharias</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2147160</td>
<td>Patents and Patentstrategies in innovative companies</td>
<td>2</td>
<td></td>
<td>Zacharias</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7600012</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>Prüfung (PR)</td>
<td>Zacharias</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam (20 min)

Prerequisites

none

Recommendation

None

Below you will find excerpts from events related to this course:

Intellectual Property Rights and Strategies in Industrial Companies

2147161, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Patents and Patentstrategies in innovative companies

2147160, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Content

Attendance at lectures (5 L): 24h

Personal preparation and follow-up of lecture and exercise: 5h

Preparation exam: 31h

The students understand and are able to describe the basics of intellectual property, particularly with regard to the filing and obtaining of property rights. They can name the criteria of project-integrated intellectual property management and strategic patenting in innovative companies. Students are also able to describe the key regulations of the law regarding employee invention and to illustrate the challenges of intellectual properties with reference to examples.

The lecture will describe the requirements to be fulfilled and how protection is obtained for patents, design rights and trademarks, with a particular focus on Germany, Europe and the EU. Active, project-integrated intellectual property management and the use of strategic patenting by technologically oriented companies will also be discussed. Furthermore, the significance of innovations and intellectual property for both business and industry will be demonstrated using practical examples, before going on to consider the international challenges posed by intellectual property and current trends in the sector. Within the context of licensing and infringement, insight will be provided as to the relevance of communication, professional negotiations and dispute resolution procedures, such as mediation for example. The final item on the agenda will cover those aspects of corporate law that are relevant to intellectual property.

Lecture overview:

1. Introduction to intellectual property
2. The profession of the patent attorney
3. Filing and obtaining intellectual property rights
4. Patent literature as a source of knowledge and information
5. The law regarding employee inventions
6. Active, project-integrated intellectual property management
7. Strategic patenting
8. The significance of intellectual property
9. International challenges and trends
10. Professional negotiations and dispute resolution procedures
11. Aspects of corporate law
8.114 Course: Introduction into Mechatronics [T-MACH-100535]

Responsible: Moritz Böhland
Dr.-Ing. Maik Lorch
PD Dr.-Ing. Markus Reischl

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102746 - Compulsory Elective Module
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Introduction into Mechatronics</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Reischl, Lorch, Böhland</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Introduction into Mechatronics</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>Reischl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam (Duration: 2h)

Prerequisites

none

Below you will find excerpts from events related to this course:

Introduction into Mechatronics

Lecture (V)

2105011, WS 19/20, 3 SWS, Language: German, [Open in study portal](#)

Content

Content:

- Introduction
- Structure of mechatronic systems
- Mathematical treatment of mechatronic systems
- Sensors and actuators
- Measurements: acquisition and interpretation
- Modelling of mechatronic systems
- Control and feedback control systems
- Information processing

Learning objectives:

The student has knowledge about the specific challenge of interdisciplinary collaboration within the framework of mechatronics. He is able to explain the origin, necessity and methodic implementation of interdisciplinary collaboration, to name the main difficulties as well as the special features within the development of mechatronic products from the point of view of development methodic.

The student has fundamental knowledge of modeling mechanical, hydraulically and electrically part systems and about suitable optimization methods.

The student knows the difference in use of the term "system" in mechatronic and mechanical use.

Literature

Course: Introduction into the Multi-Body Dynamics [T-MACH-105209]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102746 - Compulsory Elective Module
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102820 - Major Field: Mechatronics
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162235</td>
<td>Introduction into the multi-body dynamics</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination, 180 min.

Prerequisites
none

Recommendation
Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

Introduction into the multi-body dynamics
2162235, SS 2020, 3 SWS, Language: German, [Open in study portal](#)

Content
The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d'Alembert, principle of virtual power, Lagrange's equations, Kane's equations, structure of the equations of motion

Literature
- Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
- de Ja'lon, J. G., Bayo, E.: Kinematik and Dynamic Simulation of Multibody Systems.
- Kane, T.: Dynamics of rigid bodies.
8.116 Course: Introduction to Ceramics [T-MACH-100287]

Responsible: Prof. Dr. Michael Hoffmann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Hoffmann, Schell, Wagner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Hoffmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (30 min) taking place at a specific date.
The re-examination is offered at a specific date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Introduction to Ceramics
2125757, WS 19/20, 3 SWS, Language: German, Open in study portal

Literature
- Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
- S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier
8.117 Course: Introduction to Computational Fluid Dynamics [T-MACH-110362]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Alexander Stroh

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102582 - Major Field: Continuum Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2154533</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Stroh, Frohnapfel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2154534</td>
<td>Tutorial Introduction to Computational Fluid Dynamics</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Stroh, Frohnapfel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-110362</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>Prüfung (PR)</td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Competence Certificate
written 90min

Annotation
The content of the lecture "continuum mechanics of solids and fluids" is expected to be known.

*Below you will find excerpts from events related to this course:

Introduction to Computational Fluid Dynamics

2154533, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

- Introduction and Motivation, Fundamental Equations and Dimensionless Numbers
- Turbulence and Modelling (DNS, LES, RANS);
- Numerical Solution of the Navier Stokes Equations: Discretization and Solution Approaches (FDM, FVM), boundary and initial conditions, stability, mistakes in numerics and modelling
- Set-up of a numerical simulation: pre- and postprocessing, validation, result evaluation, discussion of results
- Introduction to open-source toolbox OpenFOAM: set-up of simulation, generation of numerical grid with different tools, data evaluation within OpenFOAM and with python;
- Introduction to a research oriented toolbox for turbulent flows (DNS based o Incompact3d): set-up of simulation, statistical evaluation and analysis with MATLAB and python;
- visualisation of simulation results in ParaView

This course includes a lecture and a computer course. The limited places in the computer course will be distributed by the institute.

Literature

Wird in der Vorlesung bekannt gegeben.

Tutorial Introduction to Computational Fluid Dynamics

2154534, SS 2020, 2 SWS, [Open in study portal](#)

Practice (Ü)
Content

- Introduction and Motivation, Fundamental Equations and Dimensionless Numbers
- Turbulence and Modelling (DNS, LES, RANS);
- Numerical Solution of the Navier Stokes Equations;
 Discretization and Solution Approaches (FDM, FVM), boundary and initial conditions, stability, mistakes in numerics and modelling
- Set-up of a numerical simulation: pre- and postprocessing, validation, result evaluation, discussion of results
- Introduction to open-source toolbox OpenFOAM:
 set-up of simulation, generation of numerical grid with different tools, data evaluation within OpenFOAM and with python;
- Introduction to a research oriented toolbox for turbulent flows (DNS based o Incompact3d): set-up of simulation, statistical evaluation and analysis with MATLAB und python;
- Visualisation of simulation results in ParaView

This course includes a lecture and a computer course. The limited places in the computer course will be distributed by the institute.
8.118 Course: Introduction to Nonlinear Vibrations [T-MACH-105439]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Oral examination</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Course: Introduction to Nonlinear Vibrations</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language: German, Open in study portal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>Prüfung (PR)</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language: German, Open in study portal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compentence Certificate
oral exam, 30 min.

Prerequisites
none

Recommendation
Vibration theory, Mathematical Methods of Vibration Theory, Dynamic Stability

Below you will find excerpts from events related to this course:

Introduction to Nonlinear Vibrations

2162247, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

- dynamic systems
- basic ideas of asymptotic methods
- perturbation methods: Linstedt-Poincare, averaging, multiple scales
- limit cycles
- nonlinear resonance
- basics of the bifurcation analysis, bifurcation diagrams
- types of bifurcations
- discontinuous systems
- dynamic chaos
Literature

Introduction into the nonlinear vibrations (Tutorial)
2162248, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
Exercises related to the lecture
8.119 Course: Introduction to Nuclear Energy [T-MACH-105525]

Responsible: Prof. Dr.-Ing. Xu Cheng
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

Type
Oral examination

Credits
4

Recurrence
Each winter term

Version
1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2189903</td>
<td>Introduction to Nuclear Energy</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105525</td>
<td>Introduction to Nuclear Energy</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 30 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Nuclear Energy
2189903, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
This lecture is dedicated to students of mechanical engineering and other engineering Bachelor or Master degree courses. Goal of the lecture is the fundamental knowledge of nuclear energy and nuclear reactors. After the lecture the students understand the principle of the usage of nuclear energy, the structure and operation of nuclear power plants and nuclear safety measures. Furthermore, the students are capable of giving technical assessment of the usage of nuclear energy with respect to its safety and sustainability.
8.120 Course: Introduction to Numerical Fluid Dynamics [T-MACH-105515]

Responsible: Dr. Balazs Pritz
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2157444</td>
<td>Introduction to numerical fluid dynamics</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7600009</td>
<td>Introduction to Numerical Fluid Dynamics</td>
<td>Prüfung (PR)</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Competence Certificate
Certificate of participation

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to numerical fluid dynamics

2157444, WS 19/20, 2 SWS, Language: German, Open in study portal

Practical course (P)

Literature

Praktikumsskript
8.121 Course: Introduction to the Finite Element Method [T-MACH-110837]

Responsible:
- Prof. Dr.-Ing. Thomas Böhlke
- Dr.-Ing. Tom-Alexander Langhoff

Organisation:
- **Part of:** M-MACH-102582 - Major Field: Continuum Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- Written exam.
8.122 Course: IT-Fundamentals of Logistics [T-MACH-105187]

Responsible: Prof. Dr.-Ing. Frank Thomas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management
M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102817 - Major Field: Information Technology
M-MACH-102820 - Major Field: Mechatronics
M-MACH-102821 - Major Field: Technical Logistics

Type: Oral examination Credits: 3 Recurrence: Each summer term Version: 2

Events

| SS 2020 | 2118184 | IT-Fundamentals of Logistics: Opportunities for Digital Transformation | 2 SWS | Lecture (V) | Thomas |

Exams

| WS 19/20 | 76-T-MACH-105187 | IT-Fundamentals of Logistics | Prüfung (PR) | Furmans, Mittwollen |

Competence Certificate

The assessment consists of an oral exam (30min) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Annotation

1) Detailed script can be downloaded online (www.tup.com), updated and enhanced annually.
2) CD-ROM with chapters and exercises at the end of the semester available from the lecturer, also updated and enhanced annually.

Below you will find excerpts from events related to this course:

V IT-Fundamentals of Logistics: Opportunities for Digital Transformation
2118184, SS 2020, 2 SWS, Language: German, Open in study portal Lecture (V)
8.123 Course: Lab Computer-Aided Methods for Measurement and Control [T-MACH-105341]

Responsible: Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lab Computer-aided methods for measurement and control</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Stiller, Richter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
<td>Prüfung (PR)</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Competence Certificate

Colloquia

Prerequisites

none

Bellow you will find excerpts from events related to this course:

Lab Computer-aided methods for measurement and control

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course (P)</td>
<td>3 SWS</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Content

Lerninhalt (EN):

1. Digital technology
2. Digital storage oscilloscope and digital spectrum analyzer
3. Supersonic computer tomography
4. Lighting and image acquisition
5. Digital image processing
6. Image interpretation
7. Control synthesis and simulation
8. Robot: Sensors
9. Robot: Actuating elements and path planning

The lab comprises 9 experiments.

Voraussetzungen: Recommendations:

Basic studies and preliminary examination; basic lectures in automatic control

Arbeitsaufwand (EN): 120 hours

Lernziele (EN):

Powerful and cheap computation resources have led to major changes in the domain of measurement and control. Engineers in various fields are nowadays confronted with the application of computer-aided methods. This lab tries to give an insight into the modern domain of measurement and control by means of practically oriented and flexible experiments. Based on experiments on measurement instrumentation and digital signal processing, elementary knowledge in the domain of visual inspection and image processing will be taught. Thereby, commonly used software like MATLAB/Simulink will be used in both simulation and realization of control loops. The lab closes with selected applications, like control of a robot or supersonic computer tomography.

Nachweis (EN):

Colloquia

Literature

Übungsanleitungen sind auf der Institutshomepage erhältlich.

Instructions to the experiments are available on the institute's website.
8.124 Course: Laboratory Exercise in Energy Technology [T-MACH-105331]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Prof. Dr. Ulrich Maas
Heiner Wirbser

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2171487</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Bauer, Maas, Bykov</td>
</tr>
<tr>
<td>SS 2020 2171487</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Bauer, Maas, Bykov</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105331</td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105331</td>
</tr>
</tbody>
</table>

Competence Certificate
1 report, approx. 12 pages

Discussion of the documented results with the assistants

Prerequisites
none

Below you will find excerpts from events related to this course:

Laboratory Exercise in Energy Technology
2171487, WS 19/20, 3 SWS, Language: German, [Open in study portal]
Content
Online registration within the first two weeks of the lecture period at: http://www.its.kit.edu

- Micro gas turbine
- Several test rigs for the investigation of heat transfer at thermally high loaded components
- Optimization of components of the internal air and oil system
- Characterization of spray nozzles
- Investigation of pollutant and noise emission as well as reliability and material deterioration
- Exhaust gas treatment
 - Exhaust gas turbocharger
 - Cooling Tower
 - Heat pump
 - Plant oil stove
 - Heat capacity
 - Wood combustion

Regular attendance: 42h
Self-study: 78h

Attending this course enables the students to:

- accomplish experimental and design related as well as theoretical tasks in a scientific background
- perform a correct evaluation of the obtained results
- adequately document and present their results in a scientific framework

1 report, approx. 12 pages
Discussion of the documented results with the assistants

Duration: 30 minutes

No tools or reference materials may be used
Content
Online registration within the first two weeks of the lecture period at: http://www.its.kit.edu

- Micro gas turbine
- Several test rigs for the investigation of heat transfer at thermally high loaded components
- Optimization of components of the internal air and oil system
- Characterization of spray nozzles
- Investigation of pollutant and noise emission as well as reliability and material deterioration
- Exhaust gas treatment
- Exhaust gas turbocharger
- Cooling Tower
- Heat pump
- Plant oil stove
- Heat capacity
- Wood combustion

Regular attendance: 42h
self-study: 78h

Attending this course enables the students to:

- accomplish experimental and design related as well as theoretical tasks in a scientific background
- perform a correct evaluation of the obtained results
- adequately document and present their results in a scientific framework

1 report, approx. 12 pages
Discussion of the documented results with the assistants

Duration: 30 minutes

no tools or reference materials may be used
8.125 Course: Laboratory Laser Materials Processing [T-MACH-102154]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2183640</td>
<td>Laboratory "Laser Materials Processing"</td>
<td>3</td>
<td>Practical course (P)</td>
<td>Schneider, Pfleging</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2183640</td>
<td>Laboratory "Laser Materials Processing"</td>
<td>3</td>
<td>Practical course (P)</td>
<td>Schneider, Pfleging</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102154</td>
<td>Laboratory Laser Materials Processing</td>
<td>Prüfung (PR)</td>
<td>Schneider</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102154</td>
<td>Laboratory Laser Materials Processing</td>
<td>Prüfung (PR)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Prerequisites

None

Recommendation

Basic knowledge of physics, chemistry and material science is assumed.

Below you will find excerpts from events related to this course:

Laboratory "Laser Materials Processing"

2183640, WS 19/20, 3 SWS, Language: German, Open in study portal

Practical course (P)
Content
The laboratory compromises 8 half-day experiments, which address the following laser processing topics of metals, ceramics and polymers:

- safety aspects
- surface hardening and remelting
- melt and reactive cutting
- surface modification by dispersing or alloying
- welding
- surface texturing
- metrology

There are used CO2-, excimer-, Nd:YAG- and high power diode-laser sources within the laboratory.

The student

- can describe the influence of laser, material and process parameters and can choose suitable parameters for the most important methods of laser-based processing in automotive engineering.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

The attendance to one of the courses Physical Basics of Laser Technology (2181612) or Laser Application in Automotive Engineering (2182642) is strongly recommended.

regular attendance: 34 hours
self-study: 86 hours

The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer

Laboratory "Laser Materials Processing"
2183640, SS 2020, 3 SWS, Language: German, Open in study portal

Practical course (P)
Content
The laboratory compromises 8 half-day experiments, which address the following laser processing topics of metals, ceramics and polymers:

- safety aspects
- surface hardening and remelting
- melt and reactive cutting
- surface modification by dispersing or alloying
- welding
- surface texturing
- metrology

There are used CO2-, excimer-, Nd:YAG- and high power diode-laser sources within the laboratory.

The student

- can describe the influence of laser, material and process parameters and can choose suitable parameters for the most important methods of laser-based processing in automotive engineering.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

The attendance to one of the courses Physical Basics of Laser Technology (2181612) or Laser Application in Automotive Engineering (2182642) is strongly recommended.

regular attendance: 34 hours
self-study: 86 hours

The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.126 Course: Laboratory Mechatronics [T-MACH-105370]

Responsible: Dr.-Ing. Maik Lorch
Prof. Dr.-Ing. Wolfgang Seemann
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102817 - Major Field: Information Technology
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>2105014</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Laboratory mechatronics</td>
</tr>
<tr>
<td></td>
<td>3 SWS</td>
</tr>
<tr>
<td></td>
<td>Practical course (P)</td>
</tr>
<tr>
<td></td>
<td>Seemann, Stiller, Lorch, Böhland, Burgert, Bitner</td>
</tr>
</tbody>
</table>

Competence Certificate
certificate of successful attendance

Prerequisites
None

Below you will find excerpts from events related to this course:

Laboratory mechatronics
2105014, WS 19/20, 3 SWS, Language: German, Open in study portal

Practical course (P)

Content

Part I
- Control, programming and simulation of robots
- CAN-Bus communication
- Image processing / machine vision
- Dynamic simulation of robots in ADAMS

Part II
- Solution of a complex problem in team work

Learning objectives:
The student is able to ...

- use his knowledge about mechatronics and microsystems technology to solve a practical problem. The laboratory course comprises simulation, bus communication, measurement instrumentation, control engineering and programming.
- integrate the different subsystems from a manipulator to a working compound system in teamwork.

Nachweis (EN): certificate of successful attendance

Voraussetzung (EN): none

Arbeitsaufwand (EN):
- regular attendance: 33.5 h
- self-study: 88.5 h

Literature
- Materialien zum Mechatronik-Praktikum
- Manuals for the laboratory course on Mechatronics
8.127 Course: Laboratory Production Metrology [T-MACH-108878]

Responsible: Dr.-Ing. Benjamin Häfner
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td></td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2150550</th>
<th>Laboratory Production Metrology</th>
<th>3 SWS</th>
<th>Practical course (P)</th>
<th>Häfner</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>76-T-MACH-108878</th>
<th>Laboratory Production Metrology</th>
<th>Prüfung (PR)</th>
<th>Häfner</th>
</tr>
</thead>
</table>

Competence Certificate

Alternative Test Achievement: Group presentation of 15 min at the beginning of each experiment and evaluation of the participation during the experiments
and
Oral Exam (15 min)

Prerequisites

none

Annotation

For organizational reasons the number of participants for the course is limited. Hence a selection process will take place. Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

Below you will find excerpts from events related to this course:

| Laboratory Production Metrology | 2150550, SS 2020, 3 SWS, Language: German, [Open in study portal](http://www.wbk.kit.edu/studium-und-lehre.php) | Practical course (P) |
Content
During this course, students get to know measurement systems that are used in a production system. In the age of Industry 4.0, sensors are becoming more important. Therefore, the application of in-line measurement technology such as machine vision and non-destructive testing is focussed. Additionally, laboratory based measurement technologies such as computed tomography are addressed. The students learn the theoretical background as well as practical applications for industrial examples. The students use sensors by themselves during the course. Additionally, they are trained on how to integrate sensors in production processes and how to analyze measurement data with suitable software.

The following topics are addressed:

- Classification and examples for different measurement technologies in a production environment
- Machine vision with optical sensors
- Information fusion based on optical measurements
- Robot-based optical measurements
- Non-destructive testing by means of acoustic measurements
- Coordinate measurement technology
- Industrial computed tomography
- Measurement uncertainty evaluation
- Analysis of production data by means of data mining

Learning Outcomes:
The students …

- are able to name, describe and mark out different measurement technologies that are relevant in a production environment.
- are able to conduct measurements with the presented in-line and laboratory based measurement systems.
- are able to analyze measurement results and assess the measurement uncertainty of these.
- are able to deduce whether a work piece fulfills quality relevant specifications by analysing measurement results.
- are able to use the presented measurement technologies for a new task.

Workload:
regular attendance: 31,5 hours
self-study: 88,5 hours

Literature

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/). Additional reference to literature will be provided, as well.
8.128 Course: Laser in Automotive Engineering [T-MACH-105164]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-102819 - Major Field: Materials Science and Engineering

Type
- Oral examination

Credits
- 4

Recurrence
- Each summer term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2182642</td>
<td>Laser in automotive engineering</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105164</td>
<td>Laser in Automotive Engineering</td>
<td>Schneider</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105164</td>
<td>Laser in Automotive Engineering</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Competence Certificate

oral examination (30 min)

no tools or reference materials

Prerequisites

It is not possible, to combine this brick with brick Physical Basics of Laser Technology [T-MACH-109084] and brick Physical Basics of Laser Technology [T-MACH-102102]

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102102 - Physical Basics of Laser Technology must not have been started.

Recommendation

preliminary knowlegde in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

Laser in automotive engineering

2182642, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)
Content
Based on a short description of the physical basics of laser technology the lecture reviews the most important high power lasers and their various applications in automotive engineering. Furthermore the application of laser light in metrology and safety aspects will be addressed.

- physical basics of laser technology
- laser beam sources (Nd:YAG-, CO2-, high power diode-laser)
- beam properties, guiding and shaping
- basics of materials processing with lasers
- laser applications in automotive engineering
- economical aspects
- safety aspects

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of Nd:YAG-, CO2- and high power diode-laser sources.
- can describe the most important methods of laser-based processing in automotive engineering and illustrate the influence of laser, material and process parameters
- can analyse manufacturing problems and is able to choose a suitable laser source and process parameters.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.
It is not possible, to combine this lecture with the lecture Physical basics of laser technology [2181612].

regular attendance: 22.5 hours
self-study: 97.5 hours
oral examination (ca. 30 min)

no tools or reference materials

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.129 Course: Leadership and Conflict Management [T-MACH-105440]

Responsible: Hans Hatzl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2110017</td>
<td></td>
<td></td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Leadership and Conflict Management (in German)</td>
<td></td>
<td>Hatzl</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105440</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>Leadership and Conflict Management</td>
<td></td>
<td>Deml, Hatzl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (approx. 30 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Leadership and Conflict Management (in German)

2110017, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Content

In this compact event, management and leadership techniques are taught which are among the key qualifications for management tasks. Furthermore, you will be prepared for management and leadership tasks.

The course consists of the following course contents:

1. Introduction to the topic
 - Goal setting and goal achievement
 - Management techniques in planning
 - Communication and information
 - Decision Theory
 - Leadership and cooperation
 - Self Management
 - Conflict management and strategy
 - Case studies

It passes:

- Obligatory attendance

Recommendations:

- Knowledge of work and economic science is advantageous

Literature

Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
8.130 Course: Leadership and Management Development [T-MACH-105231]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Andreas Ploch

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Leadership and Product Development</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Ploch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Leadership and Management Development</td>
<td>Prüfung (PR)</td>
<td>Ploch, Albers</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam (20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Leadership and Product Development

2145184, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

Leadership theories

Management tools

Communication as a management tool

Change management

Management development and MD programs

Assessment center and management audits

Teamwork, team development and team roles

Intercultural Competence

Leadership and ethics, corporate governance

Executive coaching

Presentations Practice

Literature

Vorlesungsumdruck
8.131 Course: Lightweight Engineering Design [T-MACH-105221]

Responsible: Prof. Dr.-Ing. Albert Albers
Norbert Burkardt

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2146190</th>
<th>Lightweight Engineering Design</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Albers, Burkardt</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>76-T-MACH-105221</th>
<th>Lightweight Engineering Design</th>
<th>Prüfung (PR)</th>
<th>Albers, Burkardt</th>
</tr>
</thead>
</table>

Competence Certificate

Written examination (90 min)

Prerequisites

None

Below you will find excerpts from events related to this course:

Lightweight Engineering Design

2146190, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

- General aspects of lightweight design, lightweight strategies, construction methods, design principles, lightweight construction, stiffening techniques, lightweight materials, virtual product engineering, bionics, joining techniques, validation, recycling

Additionally, guest speakers from industry will present lightweight design from an practical point of view.

The students are able to ...

- evaluate the potential of central lightweight strategies and their application in design processes.
- apply different stiffing methods qualitatively and to evaluate their effectiveness.
- evaluate the potential of computer-aided engineering as well as the related limits and influences on manufacturing.
- reflect the basics of lightweight construction from a system view in the context of the product engineering process.

Literature

8.132 Course: Machine Dynamics [T-MACH-105210]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102746 - Compulsory Elective Module
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102820 - Major Field: Mechatronics
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
- M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2161224 Machine Dynamics 2 SWS Lecture (V) Proppe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2161225 Machine Dynamics (Tutorial) 1 SWS Practice (Ü) Proppe, Fischer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105210 Machine Dynamics Prüfung (PR) Proppe</td>
<td></td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105210 Machine Dynamics Prüfung (PR) Proppe</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 180 min.

Prerequisites
one

Below you will find excerpts from events related to this course:

Machine Dynamics
2161224, SS 2020, 2 SWS, Language: English, [Open in study portal](#)
Lecture (V)

Content
1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Literature
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989

Machine Dynamics (Tutorial)
2161225, SS 2020, 1 SWS, Language: English, [Open in study portal](#)
Practice (Ü)

Content
Exercises related to the lecture
8.133 Course: Machine Dynamics II [T-MACH-105224]

Responsible: Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102820 - Major Field: Mechatronics
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
- M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2162220</td>
<td>Machine Dynamics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 SWS Lecture (V)</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 30 min.

Prerequisites

none

Recommendation

Machine Dynamics

Below you will find excerpts from events related to this course:

Machine Dynamics II

2162220, WS 19/20, 2 SWS, Language: English, Open in study portal

Content

hydrodynamic bearings

- rotating shafts in hydrodynamic bearings
- belt drives
- vibration of turbine blades

Literature

8.134 Course: Machine Tools and Industrial Handling [T-MACH-109055]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102589 - Major Field: Production Systems
M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Semester</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149902</td>
<td>Machine Tools and Industrial Handling</td>
<td>6 SWS</td>
<td>Lecture / Practice (VÜ) Fleischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-109055</td>
<td>Machine Tools and Industrial Handling</td>
<td>Prüfung (PR) Fleischer</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam (40 minutes)

Prerequisites

"T-MACH-102158 - Werkzeugmaschinen und Handhabungstechnik" must not be commenced.

Below you will find excerpts from events related to this course:

Machine Tools and Industrial Handling

2149902, WS 19/20, 6 SWS, Language: German, [Open in study portal](#)
Content
The lecture gives an overview of the construction, use and application of machine tools and industrial handling equipment. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools is conveyed. First, the main components of the machine tools are systematically explained and their design principles as well as the integral machine tool design are discussed. Subsequently, the use and application of machine tools will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0.

The individual topics are:

- Frames and frame components
- Feed axes
- Spindles
- Peripheral equipment
- Control unit
- Metrological evaluation and machine testing
- Process monitoring
- Maintenance of machine tools
- Safety assessment of machine tools
- Machine examples

Learning Outcomes:
The students ...

- are able to assess the use and application of machine tools and handling equipment and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of the machine tool (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of a machine tool.
- are capable of selecting and evaluating machine tools according to technical and economic criteria.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Literature
Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu).
8.135 Course: Machine Vision [T-MACH-105223]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2137308</td>
<td>Machine Vision</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lauer, Quehl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105223</td>
<td>Machine Vision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stiller, Lauer</td>
</tr>
</tbody>
</table>

Competence Certificate
Type of Examination: written exam
Duration of Examination: 60 minutes

Prerequisites
None

Below you will find excerpts from events related to this course:

Machine Vision
2137308, WS 19/20, 4 SWS, Language: English, Open in study portal

Content
Lernziele (EN):
Machine vision (or computer vision) describes all kind of techniques that can be used to extract information from camera images in an automated way. Considerable improvements of machine vision techniques throughout recent years, e.g. by the advent of deep learning, have caused growing interest in these techniques and enabled applications in various domains, e.g. robotics, autonomous driving, gaming, production control, visual inspection, medicine, surveillance systems, and augmented reality.
The participants should gain an overview over the basic techniques in machine vision and obtain hands-on experience.
Nachweis: written exam, 60 min.
Arbeitsaufwand: 240 hours
Voraussetzungen: none

Literature
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
8.136 Course: Machines and Processes [T-MACH-105208]

Responsible:
- Prof. Dr.-Ing. Hans-Jörg Bauer
- Dr.-Ing. Heiko Kubach
- Prof. Dr. Ulrich Maas
- Dr. Balazs Pritz

Organisation:
- KIT Department of Mechanical Engineering

Part of:
- M-MACH-102566 - Machines and Processes

Type
- Written examination

Credits
- 7

Recurrence
- Each term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2185000</td>
<td>Machines and Processes</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Bauer, Kubach, Maas, Pritz</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>3134140</td>
<td>Machines and Processes</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Bauer, Maas, Kubach, Pritz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105208</td>
<td>Machines and Processes</td>
<td>Prüfung (PR)</td>
<td>Kubach, Maas, Bauer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105208e</td>
<td>Machines and Processes</td>
<td>Prüfung (PR)</td>
<td>Kubach, Maas, Bauer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105208</td>
<td>Machines and Processes, Prerequisite</td>
<td>Prüfung (PR)</td>
<td>Kubach, Gabi, Bauer, Maas</td>
</tr>
</tbody>
</table>

Competence Certificate
- written exam (duration: 120 min)

Prerequisites
- Taking part at the exam is possible only when lab course has been successfully completed

Modeled Conditions
- The following conditions have to be fulfilled:
 1. The course T-MACH-105232 - Machines and Processes, Prerequisite must have been passed.

Below you will find excerpts from events related to this course:

Machines and Processes
- 2185000, WS 19/20, 4 SWS, Open in study portal
- Lecture / Practice (VÜ)
Content
basics of thermodynamics
thermal fluid machines
 • steam turbines
 • gas turbines
 • combined-cycle plants
 • turbines and compressors
 • aircraft engines
hydraulic fluid machines
 • operating performance
 • characterization
 • control
 • cavitation
 • wind turbines, propellers
internal combustion engines
 • characteristic parameters
 • engine parts
 • kinematics
 • engine processes
 • emissions
Course: Machines and Processes, Prerequisite [T-MACH-105232]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Heiko Kubach
Prof. Dr. Ulrich Maas
Dr. Balazs Pritz

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102566 - Machines and Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2187000</td>
<td>Machines and Processes</td>
<td>1 SWS</td>
<td>Practical course (P)</td>
<td>Bauer, Kubach, Maas, Pritz, Schmidt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2187000</td>
<td>Machinery and Processes</td>
<td>1 SWS</td>
<td>Practical course (P)</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105232</td>
<td>Prüfung (PR)</td>
<td>Kubach, Maas, Bauer, Gabi</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105232</td>
<td>Prüfung (PR)</td>
<td>Kubach, Gabi, Bauer, Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

Successful completed training course

Prerequisites

none

Below you will find excerpts from events related to this course:

Machines and Processes

2187000, WS 19/20, 1 SWS, Open in study portal

Content

Lab Course Experiment

Machinery and Processes

2187000, SS 2020, 1 SWS, Open in study portal
Course: Machines and Processes, Prerequisite [T-MACH-105232]

Content
successful lab course and written exam (2 h)
Taking part at the exam is possible only when lab course has been successfully completed
Lab course and lecture take place in summer and winter semester.
In the SS the lecture is held in English. The lab course is always bilingual.

Media:
slides to download
Documentation of the labcourse
basics of thermodynamics
thermal fluid machines
- steam turbines
- gas turbines
- combined-cycle plants
- turbines and compressors
- aircraft engines
hydraulic fluid machines
- operating performance
- characterization
- control
- cavitation
- wind turbines, propellers
internal combustion engines
- characteristic parameters
- engine parts
- kinematics
- engine processes
- emissions

regular attendance: 48 h, self-study: 160 h
The students can name and describe basic energy conversion processes and energy converting machines. They can explain the application of these energy conversion processes in various machines. They can analyze and evaluate the processes and machines in terms of functionality and efficiency and they are able to solve basic technical problems in terms of operating the machines.
8.138 Course: Manufacturing Technology [T-MACH-102105]

Responsible: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems
M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149657</td>
<td>Manufacturing Technology</td>
<td>6 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (180 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Manufacturing Technology

2149657, WS 19/20, 6 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
Content
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:

- Quality control
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming, plastics engineering)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment
- Process chains in manufacturing

This lecture provides an excursion to an industry company.

Learning Outcomes:
The students ...

- are capable to specify the different manufacturing processes and to explain their functions.
- are able to classify the manufacturing processes by their general structure and functionality according to the specific main groups.
- have the ability to perform a process selection based on their specific characteristics.
- are enabled to identify correlations between different processes and to select a process regarding possible applications.
- are qualified to evaluate different processes regarding specific applications based on technical and economic aspects.
- are experienced to classify manufacturing processes in a process chain and to evaluate their specific influence on surface integrity of workpieces regarding the entire process chain.

Workload:
regular attendance: 63 hours
self-study: 177 hours

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu).
8.139 Course: Material Flow in Logistic Systems [T-MACH-102151]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems

Type
Examination of another type

Credits
9

Recurrence
Each winter term

Version
3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6 SWS</td>
<td>2117051</td>
<td>Material flow in logistic systems</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
</tr>
</tbody>
</table>

Prerequisites
none

Recommendation
Recommended elective subject: Probability Theory and Statistics

Annotation
Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Below you will find excerpts from events related to this course:

Material flow in logistic systems

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117051</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.
Content

Learning Content:

- Elements of material flow systems (conveyor elements, fork, join elements)
- Models of material flow networks using graph theory and matrices
- Queueing theory, calculation of waiting time, utilization
- Warehousing and order-picking
- Shuttle systems
- Sorting systems
- Simulation
- Calculation of availability and reliability
- Value stream analysis

After successful completion of the course, you are able (alone and in a team) to:

- Accurately describe a material handling system in a conversation with an expert.
- Model and parameterize the system load and the typical design elements of a material handling system.
- Design a material handling system for a task.
- Assess the performance of a material handling system in terms of the requirements.
- Change the main lever for influencing the performance.
- Expand the boundaries of today’s methods and system components conceptually if necessary.

Literature:
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 2009

Description:

Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. During the colloquia, the results of the case study is presented and the understanding of the group work and the models dealt with in the course are tested in an oral defense. The participation in the colloquia is compulsory and will be controlled. For the written submission and the presentation the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

We strongly recommend to attend the introductory session at 16.10.2019. In this session, the teaching concept of "Materialfluss in Logistiksystemen" is explained and outstanding issues are clarified.

Workload:

- Regular attendance: 35 h
- Self-study: 135 h
- Group work: 100 h

Competence Certificate:

The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result and the presentation of the case studies as group work,
 - 20% assessment of the oral examination during the colloquia as individual performance.
8.140 Course: Materials Characterization [T-MACH-107684]

Responsible: Dr.-Ing. Jens Gibmeier
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Type: Oral examination
Credits: 4
Recurrence: Each winter term
Version: 3

Events
WS 19/20 2174586 materials characterization 2 SWS Lecture (V) Schneider, Gibmeier

Exams
WS 19/20 76-T-MACH-107684 Materials Characterization Prüfung (PR) Heilmaier, Gibmeier
SS 2020 76-T-MACH-107684 Materials Characterization Prüfung (PR) Heilmaier, Gibmeier

Competence Certificate
Oral exam, about 25 minutes

Prerequisites
Successful participation in Exercises for Materials Characterization is the condition for the admittance to the oral exam in Materials Characterization.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-107685 - Exercises for Materials Characterization must have been passed.

Below you will find excerpts from events related to this course:

V materials characterization 2174586, WS 19/20, 2 SWS, Language: German, Open in study portal Lecture (V)

Content
The following methods will be introduced within this lecture:

- microscopic methods: optical microscopy, electron microscopy (SEM/TEM), atomic force microscopy
- material and microstructure analyses by means of X-ray, neutron and electron beams
- analysis methods at SEM/TEM (e.g. EELS)
- spectroscopic methods (e.g. EDS / WDS)

Learning objectives:
The students have fundamental knowledge about methods of material analysis. They have a basic understanding to transfer this fundamental knowledge on problems in engineering science. Furthermore, the students have the ability to describe technical material by its microscopic and submicroscopic structure.

Requirements:
none

Workload:
The workload for the module “Materials Characterization” is 180 h per semester and consists of the presence during the lectures (21 h) and tutorials (12 h) as well as self-study for the lecture (99 h) and for the tutorials (48 h).

Literature
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
8.141 Course: Materials of Lightweight Construction [T-MACH-105211]

Responsible: Prof. Dr.-Ing. Peter Elsner
Dr.-Ing. Wilfried Liebig

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Type
Oral examination

Credits
4

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Contact Hours</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2174574</td>
<td>Materials for Lightweight Construction</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Liebig, Elsner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105211</td>
<td>Materials of Lightweight Construction</td>
<td>Prüfung (PR)</td>
<td>Liebig, Weidenmann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105211</td>
<td>Materials of Lightweight Construction</td>
<td>Prüfung (PR)</td>
<td>Liebig</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, about 25 minutes

Prerequisites
none

Recommendation
Materials Science I/II

Below you will find excerpts from events related to this course:

Materials for Lightweight Construction
2174574, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)
Content
Introduction
Constructive, production-orientied and material aspects of lightweight construction
Aluminium-based alloys
Aluminium wrought alloys
Aluminium cast alloys
Magnesium-based alloys
Magnesium wrought alloys
Magnesium cast alloys
Titanium-based alloys
Titanium wrought alloys
Titanium cast alloys
High-strength steels
High-strength structural steels,
Heat-treatable steels, press-hardening and hardenable steels
Composites - mainly PMC
Matrices
Reinforcements
Basic mechanical principles of composites
Hybrid composites
Special materials for lightweight design
Beryllium alloys
Metallic Glasses
Applications

learning objectives:
The students are capable to name different lightweight materials and can describe their composition, properties and fields of application. They can describe the hardening mechanisms of lightweight materials and can transfer this knowledge to applied problems. The students can apply basic mechanical models of composites and can depict differences in the mechanical properties depending on composition and structure. The students can describe the basic principle of hybrid material concepts and can judge their advantages in comparison to bulk materials. The students can name special materials for lightweight design and depict differences to conventional materials. The students have the ability to present applications for different lightweight materials and can balance reasons for their use.

requirements:
Werkstoffkunde I/II (recommended)

workload:
The workload for the lecture “Materials for Lightweight Construction” is 120 h per semester and consists of the presence during the lectures (24 h), preparation and rework time at home (48 h) and preparation time for the oral exam (48 h).

Literature
Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung
8.142 Course: Materials Science and Engineering III [T-MACH-105301]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8</td>
<td>Oral examination</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>8</td>
<td>Lecture (V)</td>
<td>Heilmaier, Lang</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Heilmaier, Kauffmann</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4</td>
<td>Materials Science III</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>4</td>
<td>Materials Science III</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, about 35 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Materials Science and Engineering III

2173553, WS 19/20, 4 SWS, Language: German, Open in study portal

Content

Properties of pure iron; thermodynamic foundations of single-component and of binary systems; nucleation and growth; diffusion processes in crystalline iron; the phase diagram Fe-Fe3C; effects of alloying on Fe-C-alloys; nonequilibrium microstructures; multicomponent iron-based alloys; heat treatment technology; hardenability and hardenability tests.

learning objectives:

The students are familiar with the thermodynamic foundations of phase transformations, the kinetics of phase transformations in the solid states (nucleation and growth phenomena), the mechanisms of microstructure formation and microstructure-property relationships and can apply them to metallic materials. They can assess the effects of heat treatments and of alloying on the microstructure and the properties of iron-based materials (steels in particular). The can select steels for structural applications in mechanical engineering and subject them to appropriate heat treatments.

requirements:

Basic knowledge in materials science and engineering (Werkstoffkunde I/II)

workload:

regular attendance: 53 hours
self-study: 187 hours

Literature

Vorlesungsskript; Übungsaufgaben; Bhadeshia, H.K.D.H. & Honeycombe, R.W.K.
Steels – Microstructure and Properties
8.143 Course: Materials Science I & II [T-MACH-105145]

Responsible:
- Dr.-Ing. Jens Gibmeier
- Prof. Dr.-Ing. Martin Heilmaier
- Prof. Dr. Astrid Pundt

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-102562 - Materials Science

### Type	Credits	Recurrence	Version
Oral examination | 11 | Each winter term | 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2173550</td>
<td>Materials Science and Engineering I for mach, phys</td>
<td>Lecture (V)</td>
<td>4</td>
<td>Pundt, Heilmaier</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3173008</td>
<td>Materials Science and Engineering I (Lecture)</td>
<td>Lecture (V)</td>
<td>4</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3173009</td>
<td>Materials Science and Engineering I (Tutorial)</td>
<td>Practice (Ü)</td>
<td>1</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2174560</td>
<td>Materials Science and Engineering II for mach, phys</td>
<td>Lecture (V)</td>
<td>3</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3174015</td>
<td>Materials Science and Engineering II (Lecture)</td>
<td>Lecture (V)</td>
<td>3</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3174026</td>
<td>Materials Science and Engineering II (Tutorials)</td>
<td>Practice (Ü)</td>
<td>1</td>
<td>Gibmeier, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credit</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105145</td>
<td>Materials Science I, II</td>
<td>Prüfung (PR)</td>
<td>1</td>
<td>Heilmaier</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, about 25 minutes

Prerequisites
Lab course must be finished successfully prior to the registration for the oral exam.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105146 - Materials Science Lab Course must have been passed.

Annotation
The workload for the lecture Materials Science I & II is 165 h per semester and consists of the presence during the lectures (WS: 4 SWS, SS: 2SWS) and the exercises (1 SWS per WS and 1 SWS per SS) as well as preparation and rework time at home.

Below you will find excerpts from events related to this course:

Materials Science and Engineering I for mach, phys

- Code: 2173550, WS 19/20, 4 SWS, Language: German, [Open in study portal](#)
Content
Atomic structure and atomic bonds

Structures of crystalline solids

Defects in crystalline solids

Structure of amorphous and semi-crystalline solids

Alloys
Transport and transformation phenomena in the solid state

Microscopy methods

Characterization by means of X-rays, Neutrons and Electrons

Nondestructive testing of materials

Mechanical testing of materials

learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can describe the typical property profiles and can name applications for the most important engineering materials.

The students are able to describe standard materials characterization methods and can explain the evaluation of these methods. They can judge materials on base of the data obtained by these methods.

requirements:
None, Recommendations: None.

workload:
regular attendance: 53 hours
self-study: 157 hours

Literature
Vorlesungsskript; Übungsaufgabenblätter;

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
Content
Ferrous materials
Non-ferrous metals and alloys
Engineering ceramics
Glasses
Polymers
Composites

learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name representative materials for different material classes and can describe the differences.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to asses materials on base of the data obtained by these methods.

requirements:
Materials Science and Engineering I

workload:
regular attendance: 42 hours
self-study: 108 hours

examination:
Combined with 'Materials Science and Engineering I'; oral; about 30 minutes

The successful participation in the lab course is obligatory for the admission to the examination.

Literature
Vorlesungsskript; Übungsaufgabenblätter;

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering II (Lecture)
3174015, SS 2020, 3 SWS, Language: English, Open in study portal
Content

Ferrous materials
Non-ferrous metals and alloys
Engineering ceramics
Glasses
Polymers
Composites

Learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.
The students can name representative materials for different material classes and can describe the differences.
The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.
The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.
The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.
The students know about standard materials characterization methods and are able to asses materials on base of the data obtained by these methods.

Requirements:
Materials Science and Engineering I

Workload:
regular attendance: 42 hours
self-study: 108 hours

Examination:
Combined with 'Materials Science and Engineering I'; oral; about 30 minutes
The successful participation in the lab course is obligatory for the admission to the examination.

Literature
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Content

Exemplary calculations

Learning objectives:
The students can apply the knowledge gained through the lecture as well as self-studies and transfer this knowledge to problems given.
They can carry out calculations independantly dealing with different subjects of materials science. Therefore, they are able to decide which formulas allow the calculation based on the question given.
They are able to discuss aspects of materials science both quantitatively and qualitatively and can present these results orally.

Requirements:
Lecture Materials Science and Engineering II

Workload:

Literature
see lecture notes
8.144 Course: Materials Science Lab Course [T-MACH-105146]

- **Responsible:** Dr.-Ing. Jens Gibmeier
 Prof. Dr.-Ing. Martin Heilmaier
 Prof. Dr. Astrid Pundt

- **Organisation:** KIT Department of Mechanical Engineering

- **Part of:** M-MACH-102562 - Materials Science

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2174597</td>
<td>Completed coursework (practical)</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020 3174016</td>
<td>Materials Science and Engineering Lab Course</td>
<td>3</td>
<td>Practical course (P)</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral colloquium at the beginning of each topic; certificate of successful attendance.

Prerequisites
none

Annotation
The workload for the lab course Materials Science is 90 h in total and consists of the presence during the 10 experiments (one week half-time, 4 hours per day) as well as preparation and rework time at home.

Below you will find excerpts from events related to this course:

Experimental Lab Course in Material Science
2174597, SS 2020, 3 SWS, Language: German, Open in study portal

Content
Performing and evaluating of laboratory experiments in the following topics:

- Mechanical testing of materials
- Nonmetallic materials
- Microstructure and properties
- Cyclic loading / fatigue
- Influence of manufacturing technique on materials

Learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name standard materials characterization methods and can describe the execution of the tests as well as the evaluation of the results. The students are able to asses materials on base of the data obtained by these methods.

The students are capable to select appropriate experiments to clarify problems regarding the materials behaviour. They can describe the experimental procedures and can carry out experiments. They can derive material properties from data gained in experiments. They can interpret these properties regarding microstructure-propety-relations.

Requirements:
Materials Science and Engineering I & II

Workload:
regular attendance: 22 hours
self-study: 68 hours
Literature
Praktikumsskriptum

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering Lab Course
3174016, SS 2020, 3 SWS, Language: English, Open in study portal

Content
Performing and evaluating of laboratory experiments in the following topics:

Mechanical testing of materials
Nonmetallic materials
Microstructure and properties
Cyclic loading / fatigue
Influence of manufacturing technique on materials

learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name standard materials characterization methods and can describe the execution of the tests as well as the evaluation of the results. The students are able to asses materials on base of the data obtained by these methods.

The students are capable to select appropriate experiments to clarify problems regarding the materials behaviour. They can describe the experimental procedures and can carry out experiments. They can derive material properties from data gained in experiments. They can interpret these properties regarding microstructure-propety-relations.

requirements:
Materials Science and Engineering I & II

workload:
regular attendance: 22 hours
self-study: 68 hours

Literature
Praktikumsskriptum

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
8.145 Course: Mathematical Methods in Continuum Mechanics [T-MACH-110375]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2161254</td>
<td></td>
<td>Lecture (V)</td>
<td>Böhlke</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Böhlke</td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-110375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Methods in Continuum Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (90 min). Additives as announced.

Prerequisites
Passing the Tutorial to Mathematical Methods of Continuum Mechanics (T-MACH-110376)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110376 - Tutorial Mathematical Methods in Continuum Mechanics must have been passed.

Below you will find excerpts from events related to this course:

V Mathematical Methods in Continuum Mechanics

Lecture (V)

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161254</td>
<td></td>
<td>2 SWS</td>
<td>Language: German</td>
<td></td>
</tr>
</tbody>
</table>

Content
Tensor algebra

- vectors; basis transformation; dyadic product; tensors of 2nd order
- properties of 2nd order tensors: symmetry, anti-symmetry, orthogonality etc.
- eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order
- tensor algebra in curvilinear coordinate systems
- tensor analysis in curvilinear coordinate systems
- Differentiation of tensor functions

Application of tensor calculus in strength of materials

- kinematics of infinitesimal and finite deformations
- transport theorem, balance equations, stress tensor
- constitutive equations for solids and fluids
- Formulation of initial-boundary-value problems

Literature
Vorlesungsskript
Schade, H: Strömungslehre, de Gruyter 2013
8.146 Course: Mathematical Methods in Continuum Mechanics [T-MACH-110836]

Responsible: Prof. Dr.-Ing. Thomas Böhlke

Organisation:

Part of: M-MACH-102582 - Major Field: Continuum Mechanics

Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161254</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Böhlke</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam (90 min). Additives as announced.

There are no prerequisites within the Major Field 13 (Continuum Mechanics)

Annotation

This brick can only be chosen within Major Field 13 of Bachelor studies Mechanical Engineering. There are no prerequisites for the exam.

Below you will find excerpts from events related to this course:

Content

Tensor algebra

- vectors; basis transformation; dyadic product; tensors of 2nd order
- properties of 2nd order tensors: symmetry, anti-symmetry, orthogonality etc.
- eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order
- tensor algebra in curvilinear coordinate systems
- tensor analysis in curvilinear coordinate systems
- Differentiation of tensor functions

Application of tensor calculus in strength of materials

- kinematics of infinitesimal and finite deformations
- transport theorem, balance equations, stress tensor
- constitutive equations for solids and fluids
- Formulation of initial-boundary-value problems

Literature

Vorlesungsskript
Schade, H: Strömungslehre, de Gruyter 2013
Course: Mathematical Methods in Dynamics [T-MACH-105293]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102746 - Compulsory Elective Module
M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

Course Details

Type
Written examination
Credits
6
Recurrence
Each winter term
Version
2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161206</td>
<td>Mathematical Methods in Dynamics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Proppe</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2161207</td>
<td>Übungen zu Mathematische Methoden der Dynamik</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Proppe, Oestringer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>Prüfung (PR)</td>
<td>Proppe</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>Prüfung (PR)</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Competence Certificate
written examination, 180 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Mathematical Methods in Dynamics
2161206, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content
Dynamics of continua:
Concept of continuum, geometry of continua, kinematics and kinetics of continua

Dynamics of rigid bodies:
Kinematics and kinetics of rigid bodies

Variational principles:
Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
Methods of weighted residuals, method of Ritz

Applications

Literature
Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994

P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000

M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

<table>
<thead>
<tr>
<th>Übungen zu Mathematische Methoden der Dynamik</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161207, WS 19/20, 1 SWS, Language: German, Open in study portal</td>
</tr>
</tbody>
</table>

Practice (Ü)

Content
Exercises related to the lecture

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2154432</td>
<td>Mathematical Methods in Fluid Mechanics 2 SWS Lecture (V) Frohnapfel, Gatti</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2154433</td>
<td>Tutorial in Mathematical Methods of Fluid Mechanics 1 SWS Practice (Ü) Frohnapfel, Gatti, Magagnato</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2154540</td>
<td>Mathematical Methods in Fluid Mechanics SWS Lecture (V) Magagnato</td>
<td></td>
</tr>
</tbody>
</table>

Exams
WS 19/20 | 76-T-MACH-105295 | Mathematical Methods in Fluid Mechanics Prüfung (PR) Frohnapfel |

Competence Certificate
written examination - 3 hours

Prerequisites
none

Recommendation
Basic Knowledge about Fluid Mechanics

Below you will find excerpts from events related to this course:

Mathematical Methods in Fluid Mechanics
2154432, SS 2020, 2 SWS, Language: German/English, Open in study portal Lecture (V)

Content
The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Potential flow theory
- Creeping flows
- Lubrication theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.
Literature

V Tutorial in Mathematical Methods of Fluid Mechanics

2154433, SS 2020, 1 SWS, Language: German, [Open in study portal](#)

Content

The exercises will practise the lecture topics:

- Curvilinear coordinates and tensor calculus
- Potential flow theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

Literature

V Mathematical Methods in Fluid Mechanics

2154540, SS 2020, SWS, Language: English, [Open in study portal](#)

Content

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Potential flow theory
- Creeping flows
- Lubrication theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.
Course: Mathematical Methods of Vibration Theory [T-MACH-105294]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102746 - Compulsory Elective Module
- M-MACH-102820 - Major Field: Mechatronics
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
- M-MACH-104442 - Major Field: Vibration Theory

Type
- Written examination

Credits
- 6

Recurrence
- Each summer term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162241</td>
<td>Mathematical methods of vibration theory</td>
<td>2 SWS</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2162242</td>
<td>Mathematical methods of vibration theory (Tutorial)</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
written examination, 180 min.

Prerequisites
none

Recommendation
Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

Mathematical methods of vibration theory
2162241, SS 2020, 2 SWS, Language: German, Open in study portal

Content
Linear, time-invariant, ordinary single differential equations: homogeneous solution; harmonic, periodic and non-periodic excitations; Duhamel's integral; Fourier and Laplace transform; introduction into the theory of distributions; Systems of ordinary differential equations: matrix notation, eigenvalue theory, fundamental matrix, forced vibrations via modal expansion and transition matrix; Introduction into the dynamic stability theory; Partial differential equations: solution in product form, eigenvalue theory, modal expansion using Ritz series; Variational methods, Hamilton's principle, boundary value problems representing vibrating continua; Perturbation methods

Literature
Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik

Mathematical methods of vibration theory (Tutorial)
2162242, SS 2020, 2 SWS, Language: German, Open in study portal

Content
Seven tutorials with examples of the contents of the course

Literature
Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
8.150 Course: Mathématiques appliquées aux sciences de l'ingénieur [T-MACH-105452]

Responsible: Prof. Dr. Jean-Yves Dantan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Each term</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161230</td>
<td>Mathématiques appliquées aux sciences de l'ingénieur</td>
<td>Lecture / Practice (VÜ)</td>
<td>4 SWS</td>
<td>Dantan</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2161230</td>
<td>Mathématiques appliquées aux sciences de l'ingénieur</td>
<td>Lecture / Practice (VÜ)</td>
<td>4 SWS</td>
<td>Dantan</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 30 min.

Prerequisites
one

Below you will find excerpts from events related to this course:

Mathématiques appliquées aux sciences de l'ingénieur
2161230, WS 19/20, 4 SWS, Language: French, [Open in study portal](#)
Lecture / Practice (VÜ)

Content
Courses are taught in French.
First block course at the KIT:
Basics of probability theory and Laplace transformation
Second block course at the Arts et Métiers ParisTech, centre Metz, France
Application of mathematics in the fields of functional safety of structural components, reliability of components and systems, vibrations and control systems.
A visit to an industry partner in the vicinity of Metz will be planned.

Mathématiques appliquées aux sciences de l'ingénieur
2161230, SS 2020, 4 SWS, Language: French, [Open in study portal](#)
Lecture / Practice (VÜ)

Content
Courses are taught in French.
First block course at the KIT:
Basics of probability theory and Laplace transformation
Second block course at the Arts et Métiers ParisTech, centre Metz, France
Application of mathematics in the fields of functional safety of structural components, reliability of components and systems, vibrations and control systems.
A visit to an industry partner in the vicinity of Metz will be planned.
8.151 Course: Measurement II [T-MACH-105335]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102817 - Major Field: Information Technology
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lerninhalt (EN)</th>
<th>Lernziele (EN):</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2138326</td>
<td>Measurement II</td>
<td>The capabilities of modern sensor technology pave the way for novel applications in engineering. Especially digital measurement techniques may be used even in very complex environments and thus have strong impact on technological progress. Stochastic models of measurement processes form the basis for meaningful information processing and provide a valuable tool for engineering. This interdisciplinary lecture addresses students in mechanical engineering and related subjects. The lecture gives an overview of digital technology and stochastics. These areas form the basics of estimation methods that can be embedded elegantly in the theory of state observers. Applications in signal processing for modern environmental perception (video, Lidar, Radar) illustrate the discussed subjects.</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Lecture (V)</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Content

Lerninhalt (EN):
1. Amplifiers
2. Digital technology
3. Stochastic modeling for measurement applications
4. Estimation
5. Kalman Filter
6. Environmental perception

Lernziele (EN):
The capabilities of modern sensor technology pave the way for novel applications in engineering. Especially digital measurement techniques may be used even in very complex environments and thus have strong impact on technological progress. Stochastic models of measurement processes form the basis for meaningful information processing and provide a valuable tool for engineering. This interdisciplinary lecture addresses students in mechanical engineering and related subjects. The lecture gives an overview of digital technology and stochastics. These areas form the basics of estimation methods that can be embedded elegantly in the theory of state observers. Applications in signal processing for modern environmental perception (video, Lidar, Radar) illustrate the discussed subjects.

Nachweis:
Written exam
60 minutes
Individual sheet of formulas

Arbeitsaufwand:
120 hours
Literature
Skript und Foliensatz zur Veranstaltung werden als kostenlose pdf-Dateien bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.

Idealerweise haben Sie zuvor 'Grundlagen der Mess- und Regelungstechnik' gehört oder verfügen aus einer Vorlesung anderer Fakultäten über grundlegende Kenntnisse der Mess- und Regelungstechnik und der Systemtheorie.
8.152 Course: Mechanical Design I & II [T-MACH-105286]

Responsible: Prof. Dr.-Ing. Albert Albers
Norbert Burkardt
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2145178</td>
<td>Mechanical Design I</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Albers, Matthiesen, Behrendt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3145186</td>
<td>Mechanical Design I</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2146178</td>
<td>Mechanical Design II</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Albers, Matthiesen, Behrendt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146017</td>
<td>Mechanical Design II Lecture</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76T-MACH-105286</td>
<td>Mechanical Design I & II</td>
<td>Prüfung (PR)</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76T-MACH-105286_EN</td>
<td>Mechanical Design I & II (english)</td>
<td>Prüfung (PR)</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, graded, duration: 60 min

Prerequisites

Admission to the exam only with successful completion of the T-MACH-105282 - Mechanical Design I, prerequisites and T-MACH-105283 - Mechanical Design II, prerequisites.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105282 - Mechanical Design I, Prerequisites must have been passed.
2. The course T-MACH-105283 - Mechanical Design II, Prerequisites must have been passed.

Below you will find excerpts from events related to this course:

Mechanical Design I

2145178, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Literature

Vorlesungsumdruck:

Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
Mechanical Design I (Lecture)
3145186, WS 19/20, 2 SWS, Language: English, Open in study portal

Literature
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Mechanical Design II
2146178, SS 2020, 2 SWS, Language: German, Open in study portal

Content
Lecture content:
Bearings
Sealings
Design
Bolted Connections

Prerequisites
Concomitant to the lecture 2 online tests were carried out and the knowledge from the lecture will be tested. The knowledge from mechanical design I and II will further be controlled with a design and a CAD task.
Further information's will be announced at Ilias and at the beginning of the lecture mechanical design II.

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Vorlesungsumdruck:
Über die Ilias-Plattform des RZ werden alle relevanten Inhalte (Folien zu Vorlesung und Saalübung, sowie Übungsblätter) entsprechend den Vorlesungsblöcken gebündelt zur Verfügung gestellt.

Mechanical Design II Lecture
3146017, SS 2020, 2 SWS, Language: English, Open in study portal

Content
Bearings
Sealings
Design
Bolted Connections

Tutorials take place in concomitant to the lectures.

Prerequisites
Concomitant to the lecture 2 online tests were carried out and the knowledge from the lecture will be tested. The knowledge from mechanical design I and II will further be controlled with a design and a CAD task.
Further information's will be announced at Ilias and at the beginning of the lecture mechanical design II.
Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
8.153 Course: Mechanical Design I, Prerequisites [T-MACH-105282]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Tutorials Mechanical Design I</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Albers, Matthiesen, Behrendt, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Mechanical Design I (Tutorial)</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Mechanical Design I</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Furthermore an online test is carried out.

Prerequisites

none

Below you will find excerpts from events related to this course:

V Tutorials Mechanical Design I

2145185, WS 19/20, 1 SWS, Language: German, [Open in study portal](#)

Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

V Mechanical Design I (Tutorial)

3145187, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)
Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.154 Course: Mechanical Design II, Prerequisites [T-MACH-105283]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146185</td>
<td>Tutorials Mechanical Design II</td>
<td>Practice (Ü)</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>Albers, Matthiesen, Behrendt, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146018</td>
<td>Mechanical Design II Tutorials</td>
<td>Practice (Ü)</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>Albers, Mitarbeiter</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Mechanical Design II</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105283</td>
<td>Mechanical Design II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Concomitant to the lecture, 2 online tests are carried out and the knowledge from the lecture will be tested. The knowledge from mechanical design I and II will further be controlled with a design and a CAD task.

Prerequisites
None

Below you will find excerpts from events related to this course:

Tutorials Mechanical Design II

2146185, SS 2020, 2 SWS, Language: German, Open in study portal

Content
Bearings
Sealings
Designing
Bolted connections
tutorials: 10,5 h
prerequisites and preparation to exam: 55 h

Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design II Tutorials

3146018, SS 2020, 2 SWS, Language: English, Open in study portal
Content
Bearings
Sealings
Design
Bolted Connections

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.155 Course: Mechanical Design III & IV [T-MACH-104810]

Responsible: Prof. Dr.-Ing. Albert Albers
Norbert Burkardt
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2145151</td>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albers, Matthiesen,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 3145016</td>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
<tr>
<td>SS 2020 2146177</td>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>SS 2020 3146020</td>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-104810</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 76T-MACH-104810_EN</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam consisting of:

- written part duration 60 min and
- design part duration 180 min

Sum: 240 min

Prerequisites

Admission to the exam only with successful completion of the T-MACH-105284 - Mechanical Design III, Constructing the Team and T-MACH-105285 - Mechanical Design IV, Constructing the Team.

Modeled Conditions

You have to fulfill one of 2 conditions:

1. The course T-MACH-105284 - Mechanical Design III, Constructing the Team must have been passed.
2. The course T-MACH-105285 - Mechanical Design IV, Constructing the Team must have been passed.

Below you will find excerpts from events related to this course:

Mechanical Design III

2145151, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)
Literatur

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

V Mechanical Design III (Lecture)

3145016, WS 19/20, 2 SWS, Language: English, Open in study portal

Literatur

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.156 Course: Mechanical Design III, Constructing the Team [T-MACH-105284]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Description</th>
<th>Language</th>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2145153</td>
<td>Tutorials Mechanical Design III</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>German</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2145154</td>
<td>Mechanical Design III Workshop</td>
<td>1</td>
<td>Practical course (P)</td>
<td>German</td>
<td>Albers, Matthiesen, Albers Assistenten</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3145017</td>
<td>Mechanical Design III (Tutorial)</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>German</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3145018</td>
<td>Mechanical Design III (Workshop)</td>
<td>SWS</td>
<td></td>
<td>German</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Language</th>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105284</td>
<td>Mechanical Design III, Constructing with Team</td>
<td>German</td>
<td>Albers, Burkardt, Matthiesen</td>
</tr>
</tbody>
</table>

Prerequisites

None

Competence Certificate

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single CAD-workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Below you will find excerpts from events related to this course:

Tutorials Mechanical Design III

2145153, WS 19/20, 2 SWS, Language: German, Open in study portal

Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III Workshop

2145154, WS 19/20, 1 SWS, Open in study portal
Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III (Tutorial)
3145017, WS 19/20, 2 SWS, Language: English, Open in study portal

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III (Workshop)
3145018, WS 19/20, SWS, Language: English, Open in study portal

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Course: Mechanical Design IV, Constructing the Team [T-MACH-105285]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102573 - Mechanical Design

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Type
- Completed coursework

Credits
- 0

Recurrence
- Each summer term

Version
- 2

Competence Certificate

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites

None

Below you will find excerpts from events related to this course:

Mechanical Design IV Tutorials

3146021, SS 2020, 1 SWS, Language: English, Open in study portal

Practice (Ü)

Content

- Basic connections - part 2
 - Coupling fundamentals
 - Dimensioning fundamentals
 - Hydraulic fundamentals

Literature

- Konstruktionselemente des Maschinenbaus - 1 und 2
 Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

- Grundlagen von Maschinenelementen für Antriebsaufgaben;
 Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

- Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design IV Workshop

3146022, SS 2020, 1 SWS, Language: English, Open in study portal
Content
Interrogation of the purchased knowledge in mechanical design by means of the workshop task.
The students are able to develop technical solutions in a team, to implement their ideas in technical solutions and to illustrate their own working- and decision process by using protocols and diagrams.
The students are able to:
- choose and design a functional clutch system.
- apply and conduct a stress analysis.
- design simple hydraulic facilities.
- make technical drawings.
- construct CAD- models with regard to the top-down method.

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.158 Course: Mechanics and Strength of Polymers [T-MACH-105333]

Responsible: Prof. Dr.-Ing. Bernd-Steffen von Bernstorff
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2173580</td>
<td>Mechanics and Strengths of Polymers</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>2 SWS</td>
<td>von Bernstorff</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105333</td>
<td>Mechanics and Strengths of Polymers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfung (PR)</td>
<td>von Bernstorff</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, about 25 minutes

Prerequisites
none

Recommendation
Basic knowledge in materials science (e.g. lecture materials science I and II)

Below you will find excerpts from events related to this course:

V Mechanics and Strengths of Polymers
2173580, WS 19/20, 2 SWS, Language: German, Open in study portal Lecture (V)

Content
Molecular structure and morphology of polymers, temperature- and time dependency of mechanical behavior, viscoelasticity, time/temperature- superposition principle, yielding, crazing and fracture of polymers, failure criterions, impact and dynamic loading, corresponding principle, tough/brittle-transition, introduction to the principles of fiber reinforcement and multiple cracking in composites

learning objectives:
The students are prepared to
- repeat the calculus on strength and design of engineering parts exposed to complex loadings,
- estimate the influence of time and temperature on the strength of polymeric materials,
- relate the strength of materials to their molecular structure, morphology and processing parameters and
- derive failure mechanisms for homogenous polymers and composite materials therefrom.

requirements:
basic knowledge in materials science (e.g. lecture materials science I and II)

workload:
The workload for the lecture Mechanics and Strengths of Polymers is 120 h per semester and consists of the presence during the lecture (28 h) as well as preparation and rework time at home (92 h).

Literature
Literaturliste, spezielle Unterlagen und ein Teilmanuskript werden in der Vorlesung ausgegeben
Course: Mechanics in Microtechnology [T-MACH-105334]

Responsible: Dr. Christian Greiner
Dr. Patric Gruber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2181710</td>
<td>Mechanics in Microtechnology</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Gruber, Greiner</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105334</td>
<td>Mechanics in Microtechnology</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Gruber</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105334-W</td>
<td>Mechanics in Microtechnology</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Gruber</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination, ca. 30 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Mechanics in Microtechnology

2181710, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

1. Introduction: Application and Processing of Microsystems
2. Scaling Effects
3. Fundamentals: Stress and Strain, (anisotropic) Hooke's Law
4. Fundamentals: Mechanics of Beams and Membranes
5. Thin Film Mechanics: Origin and Role of Mechanical Stresses
6. Characterization of Mechanical Properties of Thin Films and Small Structures: Measurement of Stresses and Mechanical Parameters such as Young's Modulus and Yield Strength; Thin Film Adhesion and Stiction
7. Transduction: Piezo-resistivity, Piezo-electric Effect, Electrostatics,...
8. Aktuation: Inverse Piezo-electric Effect, Shape Memory, Electromagnetic Actuation,...

The students know and understand size and scaling effects in micro- and nanosystems. They understand the impact of mechanical phenomena in small dimensions. Based on this they can judge how they determine material processing as well as working principles and design of microsensors and microactuators.

regular attendance: 22.5 hours
self-study: 97.5 hours
oral exam ca. 30 minutes

Literature

Folien,
2. L.B. Freund and S. Suresh: "Thin Film Materials"
8.160 Course: Metallographic Lab Class [T-MACH-105447]

Responsible: Ulla Hauf
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2175590</td>
<td>3 SWS</td>
<td>Practical course (P) Mühl</td>
</tr>
<tr>
<td>SS 2020 2175590</td>
<td>3 SWS</td>
<td>Practical course (P) Mühl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105447</td>
<td></td>
<td>Prüfung (PR) Heilmaier</td>
</tr>
</tbody>
</table>

Competence Certificate
Colloquium for every experiment, about 60 minutes, protocol

Prerequisites
M-MACH-102562 - Materials Science must be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-MACH-102562 - Materials Science must have been passed.

Below you will find excerpts from events related to this course:

Metallographic Lab Class
2175590, WS 19/20, 3 SWS, Language: German, Open in study portal Practical course (P)

Content
Light microscope in metallography
metallographic sections of metallic materials
Investigation of the microstructure of unalloyed steels and cast iron
Microstructure development of steels with accelerated cooling from the austenite area
Investigation of microstructures of alloyed steels
Investigation of failures quantitative microstructural analysis
Microstructural investigation of technically relevant non-ferrous metals
Application of Scanning electron microscope

learning objectives:
The students in this lab class gain are able to perform standard metallographic preparations and are able to apply standard software for quantitative microstructural analyses. Based on this the student can interpret unetched as well as etched microstructures with respect to relevant microstructural features. They can draw concluding correlations between heat treatments, ensuing microstructures and the resulting mechanical as well as physical properties of the investigated materials.

requirements:
Material Science I/II

workload:
The workload for the Metallographic Lab Class is 120 h per semester and consists of the presence during the lab course (25 h) as well as preparation and rework time at home (95 h).
Literature
Macherauch, E.: Praktikum in Werkstoffkunde, 10. Aufl., 1992
Literaturliste wird zu jedem Versuch ausgegeben

Metallographic Lab Class
2175590, SS 2020, 3 SWS, Language: German, Open in study portal

Content

learning objectives:
requirements:
workload:

Literature
Macherauch, E.: Praktikum in Werkstoffkunde, 10. Aufl., 1992
Literaturliste wird zu jedem Versuch ausgegeben
8.161 Course: Micro- and Nanosystem Integration for Medical, Fluidic and Optical Applications [T-MACH-108809]

Responsible: Dr. Ulrich Gengenbach
Prof. Dr. Veit Hagenmeyer
Dr. Liane Koker
PD Dr.-Ing. Ingo Sieber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module Code</th>
<th>Module Name</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2105032</td>
<td>Micro- and nanosystem integration for medical, fluidic and optical applications</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Koker, Gengenbach, Sieber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module Code</th>
<th>Module Name</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-108809</td>
<td>Micro- and nanosystem integration for medical, fluidic and optical applications</td>
<td>Prüfung (PR)</td>
<td>Gengenbach, Koker</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam (Duration: 30min)

Prerequisites

T-MACH-105695 "Selected topics of system integration for micro- and nanotechnology" must not be started.

Below you will find excerpts from events related to this course:

Micro- and nanosystem integration for medical, fluidic and optical applications
2105032, WS 19/20, 2 SWS, Language: German, Open in study portal
Content

Content:

- Introduction to the role of system integration in the product development process
- Simplistic modeling and use of analogies in system design
- Introduction to modeling and simulation in system design
- Mechanics simulation
- Optics simulation
- Fluidics simulation
- Coupling of simulation tools
- Requirements for system integration of active implants
- Design of active implants
- Approaches to system integration of active implants
- Test methods (hermeticity, accelerated aging etc.)
- Micro-optical subsystems
- Micro-fluidic subsystems
- Self-assembly as integration process at micro and nano scale

Learning objectives:

The students …:

- have a fundamental understanding of modeling using analogies
- know the basics of modeling and simulation in design of mechanical, optical, and fluidic subsystems
- can assess the need for inter-domain simulations
- understand the challenges in the design of active implants
- have an overview of different active implants and their applications
- know approaches to system integration and packaging of active implants
- are familiar with different methods of testing with the focus on hermeticity
- have an overview of processes for the integration of micro-optical and micro-fluidic subsystems
- gain insight into technical applications of self-assembly processes
8.162 Course: Microenergy Technologies [T-MACH-105557]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2142897</td>
<td>Microenergy Technologies</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Microenergy Technologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-T-MACH-105557</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kohl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination (30 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

Microenergy Technologies
2142897, SS 2020, 2 SWS, Language: English, Open in study portal

Content
- Basic physical principles of energy conversion
- Layout and design optimization
- Technologies
- Selected devices
- Applications
The lecture includes amongst others the following topics:
Micro energy harvesting of vibrations
Thermal micro energy harvesting
Microtechnical applications of energy harvesting
Heat pumps in micro technology
Micro cooling

Literature
- Folienskript "Micro Energy Technologies"
8.163 Course: Modelling and Simulation [T-MACH-100300]

Responsible: Prof. Dr. Peter Gumbsch
Prof. Dr. Britta Nestler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Lecture / Practice (VÜ)</td>
<td>Nestler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Lecture / Practice (VÜ)</td>
<td>Nestler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Written exam, 90 min</td>
<td>5</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>76-T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>Prüfung (PR)</td>
<td>Nestler</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none

Recommendation

preliminary knowlegde in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

Numerical methods and simulation techniques

2183703, WS 19/20, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Content

The course gives an introduction to modelling and simulation techniques.
The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises

The student can

- explain the basic algorithms and numerical methods which are beside other applications relevant for materials simulations.
- describe and apply numerical solution methods for partial differential equations and dynamical systems
- apply numerical methods to solve heat and mass diffusion problems which can also be used to model microstructure formation processes
- has experiences in how to implement and program the introduced numerical methods from an integrated computer lab.

preliminary knowlegde in mathematics, physics and materials science recommended

regular attendance: 22,5 hours lecture, 11,5 hours exercises

self-study: 116 hours

We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.
written examination: 90 minutes
Content
The course gives an introduction to modelling and simulation techniques. The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises

The student can

- explain the basic algorithms and numerical methods which are beside other applications relevant for materials simulations.
- describe and apply numerical solution methods for partial differential equations and dynamical systems
- apply numerical methods to solve heat and mass diffusion problems which can also be used to model microstructure formation processes
- has experiences in how to implement and program the introduced numerical methods from an integrated computer lab.

preliminary knowlegde in mathematics, physics and materials science recommended
regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours

We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.
written examination: 90 minutes

Literature
8.164 Course: Modelling of Microstructures [T-MACH-105303]

Responsible: Dr. Anastasia August
Prof. Dr. Britta Nestler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module
M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type (VÜ)</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2183702</td>
<td>Modelling of Microstructures</td>
<td>3</td>
<td>Lecture / Practice</td>
<td>August, Nestler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Type</th>
<th>Type (PR)</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>Prüfung</td>
<td>August, Nestler, Weygand</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam 30 min

Prerequisites

none

Recommendation

materials science
fundamental mathematics

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Modelling of Microstructures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2183702, WS 19/20, 3 SWS, Language: German, Open in study portal</td>
</tr>
</tbody>
</table>
Content

- Brief Introduction in thermodynamics
- Statistical interpretation of entropy
- Gibbs free energy and phase diagrams
- Free energy functional
- Phasefield equation
- Gibbs-Thomson-equation
- Driving forces
- Grand chemical potential functional and the evolution equations
- For compare: Free energy functional with driving forces

The student can

- explain the thermodynamic and statistical foundations for liquid-solid and solid-solid phase transition processes and apply them to construct phase diagrams.
- describe the specific characteristics of dendritic, eutectic and peritectic microstructures.
- explain the mechanisms of grain and phase boundary motion induced by external fields
- use the phase-field method for simulation of microstructure formation processes using modeling approaches and challenges of current research
- has experiences in computing and conduction simulations of microstructure formation from an integrated computer lab.

knowledge in materials science and in fundamental mathematics recommended

regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours

We regularly hand out exercise sheets. The individual solutions will be corrected.

oral exam ca. 30 min

Literature

4. Gaskell, D.R., Introduction to the thermodynamics of materials
5. Übungsblätter
8.165 Course: Modern Control Concepts I [T-MACH-105539]

Responsible: Dr. Lutz Groell
PD Dr.-Ing. Jörg Matthes

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2105024</td>
<td>Modern Control Concepts I</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>Matthes, Groell</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105539</td>
<td>Modern Control Concepts I</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td>Matthes</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (Duration: 1 h)

Prerequisites

none

Below you will find excerpts from events related to this course:

Modern Control Concepts I

2105024, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Literature

8.166 Course: Novel Actuators and Sensors [T-MACH-102152]

Responsible: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102820 - Major Field: Mechatronics

Type
- Written examination

Credits
- 4

Recurrence
- Each winter term

Version
- 3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2141865</td>
<td>Novel actuators and sensors</td>
<td>2 SWS</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td></td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Competence Certificate
- written exam, 60 minutes

Prerequisites
- none

Below you will find excerpts from events related to this course:

V Novel actuators and sensors
- 2141865, WS 19/20, 2 SWS, Language: German, Open in study portal

Literature
- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
8.167 Course: Numerical Fluid Mechanics [T-MACH-105338]

Responsible: Dr.-Ing. Franco Magagnato

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102816 - Major Field: Fundamentals of Energy Technology
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2153441</td>
<td>Numerical Fluid Mechanics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Magagnato</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>Lecture</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76T-Mach-105338</td>
<td>Numerical Fluid Mechanics</td>
<td>Prüfung (PR)</td>
<td>Frohnapfel, Magagnato</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam - 30 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Numerical Fluid Mechanics

2153441, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

The students can describe the modern numerical simulation methods for fluid flows and can explain their relevance for industrial projects. They can choose appropriate boundary and initial conditions as well as turbulence models. They are qualified to explain the meaning of suitable meshes for processed examples. Convergence acceleration techniques like multi grid, implicit methods etc. as well as the applicability of these methods to parallel and vector computing can be described by the students. They can identify problems that occur during application of these methods and can discuss strategies to avoid them. The students are qualified to apply commercial codes like Fluent, Star-CD, CFX etc. as well as the research code SPARC. They can describe the differences between conventional methods (RANS) and more advanced approaches like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

1. Governing Equations of Fluid Dynamics
2. Discretization
3. Boundary and Initial conditions
4. Turbulence Modelling
5. Mesh Generation
6. Numerical Methods
7. LES, DNS and Lattice Gas Methods
8. Pre- and Postprocessing
9. Examples of Numerical Methods for Industrial Applications

Literature

8.168 Course: Photovoltaics [T-ETIT-101939]

Responsible: Prof. Dr.-Ing. Michael Powalla
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events
- SS 2020: 2313737 Photovoltaics 4 SWS Lecture (V) Powalla, Lemmer

Exams
- WS 19/20: 7313737 Photovoltaics Prüfung (PR) Powalla, Lemmer

Prerequisites
"M-ETIT-100524 - Solar Energy" must not have started.

Responsible: Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2189906</td>
<td>Physical and chemical principles of nuclear energy in view of reactor accidents and back-end of nuclear fuel cycle</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Competence Certificate
oral exam, 30 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Physical and chemical principles of nuclear energy in view of reactor accidents and back-end of nuclear fuel cycle

Lecture (V)

2189906, WS 19/20, 1 SWS, Language: German, Open in study portal
Content

- Relevant physical terms of nuclear physics
- Decay heat removal- Borst-Wheeler equation
- The accidents in TMI- Three Mile Island, and Fukushima.
- Fission , chain reaction and reactor control systems
- Basics of nuclear cross sections
- Principles of reactor dynamics
- Reactor poisoning
- The Idaho and Chernobyl accidents
- Principles of the nuclear fuel cycle
- Reprocessing of irradiated fuel elements and vitrification of fission product solutions
- Interim storage of nuclear residues in surface facilities
- Multi barrier concepts for final disposal in deep geological formations
- The situation in the repositories Asse II, Konrad and Morsleben

The students

- understand the physical explanations of the known nuclear accidents
- can perform simplified calculations to demonstrate the accidents outcome.
- Define safety relevant properties of low/ intermediate / high level waste products
- Are able to evaluate principles and implications of reprocessing, storage and disposal options for nuclear waste.

Regular attendance: 14 h
self study 46 h
oral exam about 20 min.

Literature

AEA öffentliche Dokumentation zu den nuklearen Ereignissen
K. Wirtz: Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton: Nuclear reactor Analysis, J. Wiley & Sons , Inc. 1975 (in English)
R.C. Ewing: The nuclear fuel cycle: a role for mineralogy and geochemistry. Elements vol. 2, p.331-339, 2006 (in English)
J. Bruno, R.C. Ewing: Spent nuclear fuel. Elements vol. 2, p.343-349, 2006 (in English)
8.170 Course: Physical Basics of Laser Technology [T-MACH-102102]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2181612</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102102</td>
<td>Prüfung (PR)</td>
<td>Schneider</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102102</td>
<td>Prüfung (PR)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination (30 min)

no tools or reference materials

Prerequisites
It is not possible, to combine this brick with brick Laser Application in Automotive Engineering [T-MACH-105164] and brick Physical Basics of Laser Technology [T-MACH-109084]

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105164 - Laser in Automotive Engineering must not have been started.

Recommendation
Basic knowledge of physics, chemistry and material science

Below you will find excerpts from events related to this course:

Physical basics of laser technology
2181612, WS 19/20, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
Content
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focuses on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned. An excursion to the laser laboratory of the Institute for Applied Materials (IAM) will be offered.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
- safety aspects

The lecture is complemented by a tutorial.

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- can describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- can illustrate the possible applications of laser sources in measurement and medicine technology
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

regular attendance: 33,5 hours
self-study: 116,5 hours

The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2). 2 of the examination regulation). The re-examination is offered upon agreement.

It is allowed to select only one of the lectures "Laser in automotive engineering" (2182642) or "Physical basics of laser technology" (2181612) during the Bachelor and Master studies.

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.171 Course: Physics for Engineers [T-MACH-100530]

Responsible: Prof. Dr. Martin Dienwiebel
Prof. Dr. Peter Gumbsch
Prof. Dr. Alexander Nesterov-Müller
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>2142890</th>
<th>Physics for Engineers</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Weygand, Dienwiebel, Nesterov-Müller, Gumbsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>WS 19/20</th>
<th>76-T-MACH-100530</th>
<th>Physics for Engineers</th>
<th>Prüfung (PR)</th>
<th>Gumbsch, Dienwiebel, Nesterov-Müller, Weygand</th>
</tr>
</thead>
</table>

Competence Certificate
written exam 90 min

Prerequisites
none

Below you will find excerpts from events related to this course:

\[V \] Physics for Engineers
2142890, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)
Content
1) Foundations of solid state physics
 - Wave particle dualism
 - Tunnelling
 - Schrödinger equation
 - H-atom

2) Electrical conductivity of solids
 - solid state: periodic potentials
 - Pauli Principle
 - band structure
 - metals, semiconductors and isolators
 - p-n junction / diode

3) Optics
 - quantum mechanical principles of the laser
 - linear optics
 - non-linear optics

Exercises (2142891, 2 SWS) are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students and for testing progress in learning of the topics.

The student
 - has the basic understanding of the physical foundations to explain the relationship between the quantum mechanical principles and the optical as well as electrical properties of materials
 - can describe the fundamental experiments, which allow the illustration of these principles

regular attendance: 22,5 hours (lecture) and 22,5 hours (exercises 2142891)
self-study: 97,5 hours and 49 hours (exercises 2142891)

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Literature
 - Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
 - Harris, Moderne Physik, Pearson Verlag, 2013
8.172 Course: PLM for Product Development in Mechatronics [T-MACH-102181]

Responsible: Prof. Dr.-Ing. Martin Eigner
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2122376</td>
<td>PLM for product development in mechatronics</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td>Eigner</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2122376</td>
<td>PLM for product development in mechatronics</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td>Eigner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102181</td>
<td>PLM for Product Development in Mechatronics</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination 20 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

PLM for product development in mechatronics
2122376, WS 19/20, SWS, Language: German, [Open in study portal](#)
Lecture (V)

Content
Students are able to

- compare product data management and product lifecycle management.
- describe the components and core functions of a PLM solution
- explain trends from research and practice in the field of PLM for mechatronic product development

Literature
Vorlesungsfolien / lecture slides

PLM for product development in mechatronics
2122376, SS 2020, SWS, Language: German, [Open in study portal](#)
Lecture (V)

Content
Students are able to

- compare product data management and product lifecycle management.
- describe the components and core functions of a PLM solution
- explain trends from research and practice in the field of PLM for mechatronic product development

Literature
Vorlesungsfolien / lecture slides
8 COURSES
Course: PLM-CAD Workshop [T-MACH-102153]

8.173 Course: PLM-CAD Workshop [T-MACH-102153]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>SWS</th>
<th>Module</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>Project</td>
<td>4</td>
<td>PRO</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>Project</td>
<td>4</td>
<td>PRO</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (graded)

Prerequisites
None

Annotation
Number of participants is limited, compulsory attendance

Below you will find excerpts from events related to this course:

PLM-CAD Workshop
2121357, WS 19/20, 4 SWS, Language: German, Open in study portal

Content
The aim of the workshop is to demonstrate the benefits of collaborative product development using PLM methods and to emphasize their added value compared to classical CAD development.

Students learn how to develop and produce a prototype with the help of modern PLM and CAx systems.

Literature
Workshop-Unterlagen / workshop materials

PLM-CAD Workshop
2121357, SS 2020, 4 SWS, Language: German, Open in study portal

Content
The aim of the workshop is to demonstrate the benefits of collaborative product development using PLM methods and to emphasize their added value compared to classical CAD development.

Students learn how to develop and produce a prototype with the help of modern PLM and CAx systems.

Literature
Workshop-Unterlagen / workshop materials
Course: Polymer Engineering I [T-MACH-102137]

Responsible: Prof. Dr.-Ing. Peter Elsner
Dr.-Ing. Wilfried Liebig

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type: Oral examination

Credits: 4

Recurrence: Each winter term

Version: 1

Courses

- 8.174 Course: Polymer Engineering I [T-MACH-102137]

Competence Certificate

- Oral exam, about 25 minutes

Prerequisites

- none

Below you will find excerpts from events related to this course:

Polymer Engineering I

2173590, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

1. Economical aspects of polymers
2. Introduction of mechanical, chemical and electrical properties
3. Processing of polymers (introduction)
4. Material science of polymers
5. Synthesis

learning objectives:

The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material "polymer" meeting its requirements in an economical and ecological way.

The students

- are able to describe and classify polymers based on the fundamental synthesis processing techniques
- can find practical applications for state-of-the-art polymers and manufacturing technologies
- are able to apply the processing techniques, the application of polymers and polymer composites regarding to the basic principles of material science
- can describe the special mechanical, chemical and electrical properties of polymers and correlate these properties to the chemical bindings.
- can define application areas and the limitation in the use of polymers

requirements:

- none

workload:

- regular attendance: 21 hours
- self-study: 99 hours
Literatur
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
8.175 Course: Powertrain Systems Technology A: Automotive Systems [T-MACH-105233]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Sascha Ott

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Albers, Ott</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written examination: 60 min duration

Prerequisites
None

Below you will find excerpts from events related to this course:

V Powertrain Systems Technology A: Automotive Systems
2146180, SS 2020, 2 SWS, Language: German, Open in study portal

Content

Students acquire the basic skills needed to develop future energy-efficient and at the same time comfortably drivable powertrains. This includes holistic development methods and evaluations of powertrain systems. The main topics can be divided into the following chapters:

- Powertrain System
- Driver System
- Environment System
- System Components
- Development Process

Recommendations for additional courses:

- Power Train Systems Technology B: Stationary Machinery

Literature

Kirchner, E.; "Leistungsübertragung in Fahrzeuggetrieben: Grundlagen der Auslegung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten", Springer Verlag Berlin Heidelberg 2007

Naunheimer, H.; "Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion", Springer Verlag Berlin Heidelberg 2007

Bachelor Program Mechanical Engineering , Date: 15/02/2020
Module Handbook valid from Summer Term 2020
8.176 Course: Powertrain Systems Technology B: Stationary Machinery [T-MACH-105216]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Sascha Ott

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2145150</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Type: Written examination

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105216</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Compence Certificate
written examination: 60 min duration

Prerequisites
None

Below you will find excerpts from events related to this course:

Powertrain Systems Technology B: Stationary Machinery
2145150, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

Students acquire the basic skills needed to develop future energy-efficient and safe drive system solutions for use in industrial environments. The course considers holistic development methods and evaluations of drive systems. The focal points can be divided into the following chapters:

- Powertrain System
- Operator System
- Environment System
- System Components
- Development Process

Recommendations:

- Powertrain Systems Technology A: Automotive Systems

Literature
VDI-2241: "Schaltare fremdbetätigte Reibkupplungen und -bremsen", VDI Verlag GmbH, Düsseldorf
8.177 Course: Practical Training in Measurement of Vibrations [T-MACH-105373]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102820 - Major Field: Mechatronics
M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2162208</th>
<th>Schwingungstechnisches Praktikum</th>
<th>SWS</th>
<th>Practical course (P)</th>
<th>Fidlin, Keller</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105373</th>
<th>Practical Training in Measurement of Vibrations</th>
<th>Prüfung (PR)</th>
<th>Fidlin</th>
</tr>
</thead>
</table>

Competence Certificate
Colloquium to each session, 10 out of 10 colloquiums must be passed

Prerequisites
Can not be combined with Experimental Dynamics (T-MACH-105514).

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105514 - Experimental Dynamics must not have been started.

Recommendation
Vibration Theory, Mathematical Methods of Vibration Theory, Dynamic Stability, Nonlinear Vibrations
8.178 Course: Presentation [T-MACH-109189]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104494 - Bachelor Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The colloquium presentation must be held within 6 weeks after the submission of the bachelor thesis. The presentation should last around 20 minutes followed by a scientific discussion with the present expert audience. The students should show that they are able to independently present and discuss the content of their bachelor thesis according to scientific criteria.

Prerequisites
Bachelor Thesis has been started

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-109188 - Bachelor Thesis must have been started.

Annotation
The workload for the presentation of the bachelor thesis is about 90 hours.
Course: Principles of Ceramic and Powder Metallurgy Processing [T-MACH-102111]

Responsible: Dr. Günter Schell
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2193010</td>
<td>Basic principles of powder metallurgical and ceramic processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Schell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102111</td>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
<td>Schell</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20-30 min) taking place at the agreed date. The re-examination is offered upon agreement.

Prerequisites

none

Below you will find excerpts from events related to this course:

Basic principles of powder metallurgical and ceramic processing

2193010, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Literature

- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005

Responsible: Dr. Stefan Kienzle
Dr. Dieter Steegmüller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>SW</th>
<th>Lecture</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149670</td>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Steegmüller, Kienzle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>SW</th>
<th>Prüfung</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-110318</td>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Steegmüller, Kienzle</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (20 min)

Prerequisites

T-MACH-105166 - Materials and Processes for Body Lightweight Construction in the Automotive Industry must not have been started.

Below you will find excerpts from events related to this course:

Product- and Production-Concepts for modern Automobiles

2149670, WS 19/20, 2 SWS, Language: German, Open in study portal
Content
The lecture illuminates the practical challenges of modern automotive engineering. As former leaders of the automotive industry, the lecturers refer to current aspects of automotive product development and production.

The aim is to provide students with an overview of technological trends in the automotive industry. In this context, the course also focuses on changes in requirements due to new vehicle concepts, which may be caused by increased demands for individualisation, digitisation and sustainability. The challenges that arise in this context will be examined from both a production technology and product development perspective and will be illustrated with practical examples thanks to the many years of industrial experience of both lecturers.

The topics covered are:

- General conditions for vehicle and body development
- Integration of new drive technologies
- Functional requirements (crash safety etc.), also for electric vehicles
- Development Process at the Interface Product & Production, CAE/Simulation
- Energy storage and supply infrastructure
- Aluminium and lightweight steel construction
- FRP and hybrid parts
- Battery, fuel cell and electric motor production
- Joining technology in modern car bodies
- Modern factories and production processes, Industry 4.0.

Learning Outcomes:
The students ...

- are able to name the presented general conditions of vehicle development and are able to discuss their influences on the final product using practical examples.
- are able to name the various lightweight approaches and identify possible areas of application.
- are able to identify the different production processes for manufacturing lightweight structures and explain their functions.
- are able to perform a process selection based on the methods and their characteristics.

Workload:
regular attendance: 25 hours
self-study: 95 hours

Literature
Medien:
Skrift zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.181 Course: Product Lifecycle Management [T-MACH-105147]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102583 - Major Field: Information Management
- M-MACH-102589 - Major Field: Production Systems
- M-MACH-102746 - Compulsory Elective Module

Type
- Written examination
Credits
- 4
Recurrence
- Each winter term
Version
- 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2121350</td>
<td>Product Lifecycle Management</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination 90 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

Product Lifecycle Management
2121350, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Content
The course includes:

- Basics for product data management and data exchange
- IT system solutions for Product Lifecycle Management (PLM)
- Economic viability analysis and implementation problems
- Illustrative scenario for PLM using the example of the institute’s own I4.0Lab

After successful attendance of the course, students can:

- identify the challenges of data management and exchange and describe solution concepts for these challenges.
- clarify the management concept PLM and its goals and highlight the economic benefits.
- explain the processes required to support the product life cycle and describe the most important business software systems (PDM, ERP, ...) and their functions.

Literature
Vorlesungsfolien.
8.182 Course: Product, Process and Resource Integration in the Automotive Industry [T-MACH-102155]

Responsible: Dr.-Ing. Sama Mbang

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102583 - Major Field: Information Management
- M-MACH-102818 - Major Field: Vehicle Technology

Type: Oral examination

Credits: 4

Recurrence: Each summer term

Version: 2

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2123364</th>
<th>Product, Process and Resource Integration in the Automotive Industry</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Mbang</th>
</tr>
</thead>
</table>

Competence Certificate

Oral examination 20 min.

Prerequisites

None

Annotation

Limited number of participants.

Below you will find excerpts from events related to this course:

Product, Process and Resource Integration in the Automotive Industry

<table>
<thead>
<tr>
<th>2123364, SS 2020, 2 SWS, Language: German</th>
<th>Lecture (V)</th>
</tr>
</thead>
</table>

Content

- Overview of product development in the automotive sector (process- and work cycle, IT-Systems)
- Integrated product models in the automotive industry (product, process and resource)
- New CAx modeling methods (intelligent feature technology, templates & functional modeling)
- Automation and knowledge-based mechanism for product design and production planning
- Product development in accordance with defined process and requirement (3D-master principle, tolerance models)
- Concurrent Engineering, shared working
- Enhanced concepts: the digital and virtual factory (application of virtual technologies and methods in the product development)

Literature

Vorlesungsfolien
8.183 Course: Production Operations Management [T-MACH-100304]

Responsible: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Gisela Lanza
Prof. Dr. Frank Schultmann

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100297 - Production Operations Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2110085</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Production Operations Management</th>
<th>Prüfung (PR)</th>
<th>Furmans, Lanza, Deml</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-100304</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (duration: 90 min)

Prerequisites
T-MACH-108734 - Production Operations Management-Project must have been completed successfully.

Modeled Conditions
The following conditions have to be fulfilled:
1. The course T-MACH-108734 - Production Operations Management-Project must have been passed.

Below you will find excerpts from events related to this course:

Production Operations Management
2110085, WS 19/20, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Content
It is a joint lecture of the Institute of Materials Handling and Logistics (IFL) and the Institute of Production Science (WBK). The institutes alternate with each cycle.

The lecture covers the basics of operations and supply chain management as well as business management basics in accounting, investment calculation and legal forms.

If you successfully passed this course you will be able to:

- state the relevant technical terms of business administration, logistics and production engineering
- describe the interrelation between these technical terms
- describe the most important decision problems qualitatively and quantitatively
- apply the appropriate decision models to solve the respective decision problems
- critically evaluate the results and draw appropriate conclusions
- extend the learned methods and models by researching on you own

The brick "Production Operations Management-Project" must be successfully completed before the course "Production Operations Management" can be completed.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
regular attendance: 25 hours
self-study: 65 hours

Literature
8.184 Course: Production Operations Management-Project [T-MACH-108734]

Responsible: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Gisela Lanza

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100297 - Production Operations Management

Type
- Examination of another type

Credits
- 2

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Production Operations Management-Project</td>
<td>1 SWS</td>
<td>Project (PRO)</td>
<td>Furmans, Lanza</td>
</tr>
<tr>
<td>Exams</td>
<td>Production Operations Management-Project</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Furmans, Lanza</td>
</tr>
</tbody>
</table>

Competence Certificate

Assignments during the semester consisting of solving 4 and presenting 2 case studies, whereof:

- 80% assessment of the case study as group work
- 20% evaluation of the defense of the case studies as an individual grade

Prerequisites

none

Below you will find excerpts from events related to this course:

Production Operations Management-Project

2110086, WS 19/20, 1 SWS, Language: German, Open in study portal

Project (PRO)

Content

Students are divided into groups for this course. Four case studies will be carried out in these groups. The results of the group work will be presented and evaluated in writing. Prerequisite for the participation in the case study is the previous successful participation in a multiple choice test, which can be repeated online several times in a given period. The result of the group work is presented and evaluated in writing. In addition, selected groups will present and defend their results.

After successful completion of the lecture you will be able to work alone and in a team

- to name the treated **technical terms** in the areas of production, logistics and business administration,
- to accurately **describe** the connections between these areas in a discussion with experts,
- to describe **qualitatively** and **quantitatively** the most important decision-making problems in this field,
- to use the corresponding qualitative and quantitative decision models,
- to critically **evaluate** their results and draw conclusions from them,
- as well as to expand the methods and models discussed through **own research**.

The participation of all members of the selected groups in the oral defenses is compulsory and will be controlled. Four written submissions must be passed. For the written submission the group receives a common grade, in the defense each group member is evaluated individually. The defenses are fully included in the grade, but they do not have to be passed in order to pass the entire event. The final score of the event consists of 80% of the written submissions and 20% of the defense evaluation.

It is a joint lecture of the Institute of Materials Handling and Logistics (IFL) and the Institute of Production Science (WBK). The institutes alternate with each cycle.

Attendance time:
17 hours,

Self-study:
43 hours

Literature

8.185 Course: Project Management in Global Product Engineering Structures [T-MACH-105347]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Peter Gutzmer
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management
M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-102820 - Major Field: Mechatronics

Type: Oral examination
Credits: 4
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2145182</td>
<td>Project management in Global Product Engineering Structures</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gutzmer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>Prüfung (PR)</td>
<td>Gutzmer, Albers</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam (20 min)
Aids: None

Prerequisites
none

Below you will find excerpts from events related to this course:

Project management in Global Product Engineering Structures
2145182, WS 19/20, 2 SWS, Language: German, Open in study portal

Literature

Vorlesungsumdruck
8.186 Course: Project Management in Rail Industry [T-MACH-104599]

Responsible: Prof. Dr.-Ing. Peter Gratzfeld
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102638 - Major Field: Rail System Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2115995</td>
<td>Project Management in Rail Industry</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-104599</td>
<td>Project Management in Rail Industry</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-104599</td>
<td>Project Management in Rail Industry</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination

Duration: ca. 20 minutes
No tools or reference materials may be used during the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

Project Management in Rail Industry

2115995, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

Rail vehicles are capital-intensive goods which are manufactured in small series (like aircraft). The work to done at industry and customers is organized in "projects". This is completely different to the way of working in large-scale production (like car industry). Everybody working in this type of business is part of a project and should be aware of the typical processes.

The lecturer provides a comprehensive overview about modern project management for small series of capital-intensive goods. The content is valid not for rail vehicle business but also for other areas with similar business processes. The following topics will be discussed:

1. Introduction: definition of project and project management
2. Project management system: project phases, main processes and supporting processes, governance
3. Organization: organizational structure within a company, project organization, roles in a project organization
4. Main processes: project start, project plan, work brake down structure, detailed project schedule, risk and opportunity management, change management, project closure
5. Governance

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
8.187 Course: Project Workshop: Automotive Engineering [T-MACH-102156]

Responsible: Dr.-Ing. Michael Frey
Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

- Oral examination
 Duration: 30 up to 40 minutes
 Auxiliary means: none

Prerequisites

- none

Below you will find excerpts from events related to this course:

Project Workshop: Automotive Engineering
2115817, WS 19/20, 3 SWS, Language: German, [Open in study portal]

Content

During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Learning Objectives:

During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.
Literature

Skripte werden beim Start-up Meeting ausgegeben.
The scripts will be supplied in the start-up meeting.

Content
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by a German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Learning Objectives:
The students are familiar with typical industrial development processes and working style. They are able to apply knowledge gained at the university to a practical task. They are able to analyze and to judge complex relations. They are ready to work self-dependently, to apply different development methods and to work on approaches to solve a problem, to develop practice-oriented products or processes.

Literature

Skripte werden beim Start-up Meeting ausgegeben.
8.188 Course: Python Algorithm for Vehicle Technology [T-MACH-110796]

Responsible: Stephan Rhode
Organisation: Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Rhode</td>
</tr>
</tbody>
</table>

Competence Certificate
Written Examination
Duration: 90 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Python Algorithms for Automotive Engineering
2114862, SS 2020, 2 SWS, Language: German, Open in study portal

Content
Teaching content:

- Introduction to Python and useful tools and libraries for creating algorithms, graphical representation, optimization, symbolic arithmetic and machine learning
 - Anaconda, Pycharm, Jupyter
 - NumPy, Matplotlib, SymPy, Scikit-Learn
- Methods and tools for creating software
 - Version management GitHub, git
 - Testing software pytest, Pylint
 - Documentation Sphinx
 - Continuous Integration (CI) Travis CI
 - Workflows in Open Source and Inner Source, Kanban, Scrum
- Practical programming projects to:
 - Road sign recognition
 - Vehicle state estimation
 - Calibration of vehicle models by mathematical optimization
 - Data-based modelling of the powertrain of an electric vehicle

Objectives:
The students have an overview of the programming language Python and important Python libraries to solve automotive engineering problems with computer programs. The students know current tools around Python to create algorithms, to apply them and to interpret and visualize their results. Furthermore, the students know basics in the creation of software to be used in later programming projects in order to develop high-quality software solutions in teamwork. Through practical programming projects (road sign recognition, vehicle state estimation, calibration, data-based modelling), the students can perform future complex tasks from the area of driver assistance systems.

Literature

8.189 Course: Quality Management [T-MACH-102107]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102589 - Major Field: Production Systems
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149667</td>
<td>Quality Management</td>
<td>Lanza</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102107</td>
<td>Quality Management</td>
<td>Lanza</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written Exam (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Quality Management
2149667, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:
- The term "Quality"
- Total Quality Management (TQM) and Six Sigma
- Universal methods and tools
- QM during early product stages – product definition
- QM during product development and in procurement
- QM in production – manufacturing metrology
- QM in production – statistical methods
- QM in service
- Quality management systems
- Legal aspects of QM

Learning Outcomes:
The students …
- are capable to comment on the content covered by the lecture.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu) bereitgestellt:

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu).
8 COURSES

Course: Rail System Technology [T-MACH-106424]

8.190 Course: Rail System Technology [T-MACH-106424]

| Responsible: | Prof. Dr.-Ing. Peter Gratzfeld |
| Organisation: | KIT Department of Mechanical Engineering |

Part of: M-MACH-102638 - Major Field: Rail System Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-106424</td>
<td>Rail System Technology</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-106424</td>
<td>Rail System Technology</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination

Duration: ca. 20 minutes

No tools or reference materials may be used during the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

Rail System Technology

2115919, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. History (optional)

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).

Rail System Technology

2115919, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)
Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. History (optional)

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
8.191 Course: Rail Vehicle Technology [T-MACH-105353]

Responsible: Prof. Dr.-Ing. Peter Gratzfeld
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102638 - Major Field: Rail System Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type (V)</th>
<th>Gratzfeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type (PR)</th>
<th>Gratzfeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination
Duration: ca. 20 minutes
No tools or reference materials may be used during the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

Rail Vehicle Technology
2115996, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, interfaces
3. Bogies: forces, running gears, axle configuration
4. Drives: vehicle with/without contact wire, dual-mode vehicle
5. Brakes: tasks, basics, principles, blending, brake control
6. Train control management system: definitions, networks, bus systems, components, examples
7. Vehicle concepts: trams, metros, regional trains, intercity trains, high speed trains, double deck coaches, locomotives, freight wagons

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).

Rail Vehicle Technology
2115996, SS 2020, 2 SWS, Language: German, Open in study portal
Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, interfaces
3. Bogies: forces, running gears, axle configuration
4. Drives: vehicle with/without contact wire, dual-mode vehicle
5. Brakes: tasks, basics, principles, blending, brake control
6. Train control management system: definitions, networks, bus systems, components, examples
7. Vehicle concepts: trams, metros, regional trains, intercity trains, high speed trains, double deck coaches, locomotives, freight wagons

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Course: Railways in the Transportation Market [T-MACH-105540]

T8.192 Course: Railways in the Transportation Market [T-MACH-105540]

Responsible: Prof. Dr.-Ing. Peter Gratzfeld
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102638 - Major Field: Rail System Technology

Type
Oral examination

Credits
4

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114914</td>
<td>Railways in the Transportation Market</td>
<td>2 SWS</td>
<td>Block (B)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Exam Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105540</td>
<td>Railways in the Transportation Market</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105540</td>
<td>Railways in the Transportation Market</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination

Duration: ca. 20 minutes

No tools or reference materials may be used during the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

Railways in the Transportation Market

2114914, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Block (B)

Content

The lecture conveys the entrepreneurial view on chances and challenges of rail systems in the market. Following items will be discussed:

- Introduction and basics
- Rail reform in Germany
- Overview of Deutsche Bahn
- Financing and development of infrastructure
- Regulation of railways
- Intra- and intermodal competition
- Field of actions in transport policy
- Railways and environment
- Trends in the transportation market
- Future of Deutsche Bahn
- Digitalization

Qualification aims:

The students learn about the entrepreneurial perspective of transport authorities and can follow their fields of action. They understand regulative policies and learn to assess intra- and intermodal competition.

Literature

keine
8 COURSES

Course: Reliability Engineering 1 [T-MACH-107447]

8.193 Course: Reliability Engineering 1 [T-MACH-107447]

Responsible: Dr.-Ing. Alexei Konnov
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102817 - Major Field: Information Technology
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2169550</td>
<td>Reliability Engineering 1</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Konnov</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam

Prerequisites

none

Below you will find excerpts from events related to this course:

Reliability Engineering 1

2169550, WS 19/20, 2 SWS, Language: English, Open in study portal

Lecture (V)

Content

This module should provide an introduction to the theoretical and practical aspects of the reliability engineering using the example of availability and safety analysis of the power plant digital control system (DCS).

It contains the necessary basics of the probability and dependability theory as well as a general introduction to the digital control systems (DCS).

In the next step, the principal approach of the availability and safety analysis of the complex systems will be explained.

The main point of the module is "the balance between safety and process related functions" and their influence on the economic effectiveness of the technical installation.

Technical background: instrumentation and control systems in power plants

Introduction to reliability theory
Introduction to probability theory
Introduction to formal logic
Introduction to statistic

Basic knowledge in formal logic, KV-maps, probability calculus.

Recommendation:

In combination with lesson "Combined Cycle Power Plants" - Lesson No. 2170490

After having successfully completed the course, the students should

- have a general understanding of the structure and operating principal of the digital control systems,
- have an understanding of availability and safety importance in modern technical systems (e.g. DCS),
- understand and be able to use the fundamental concepts of availability and safety analysis,
- be aware of the necessity of finding an optimum balance between safety and availability in a technical installation,
- be able to use the appropriate terminology in English

regular attendance: 25 h
self-study: 65 h
written exam
duration: 90 min.

Auxiliary: no tools or reference materials may be used during the exam
Literature
Lesson script (link will be available)
Recommended books:
- Birolini, Alessandro: *Reliability Engineering Theory and Practice*
- Pham, Hoang: *Handbook of reliability engineering*
Course: Robotics I - Introduction to Robotics [T-INFO-108014]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2424152</td>
<td>Robotics I - Introduction to Robotics</td>
<td>Lecture (V)</td>
<td>3/1 SWS</td>
<td>Asfour, Paus</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500106</td>
<td>Robotics I - Introduction to Robotics</td>
<td>Prüfung (PR)</td>
<td>Asfour</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500218</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>Prüfung (PR)</td>
<td>Asfour</td>
</tr>
</tbody>
</table>
8.195 Course: Safety Engineering [T-MACH-105171]

Responsible: Hans-Peter Kany

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2117061</td>
<td>Safety Engineering</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Kany</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7600004</td>
<td>Safety Engineering</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Kany</td>
</tr>
</tbody>
</table>

Exams

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Content

Media

Presentations

Learning content

The course provides basic knowledge of safety engineering. In particular the basics of health at the working place, job safety in Germany, national and European safety rules and the basics of safe machine design are covered. The implementation of these aspects will be illustrated by examples of material handling and storage technology. This course focuses on: basics of safety at work, safety regulations, basic safety principles of machine design, protection devices, system security with risk analysis, electronics in safety engineering, safety engineering for storage and material handling technique, electrical dangers and ergonomics. So, mainly, the technical measures of risk reduction in specific technical circumstances are covered.

Learning goals

The students are able to:

- Name and describe relevant safety concepts of safety engineering,
- Discuss basics of health at work and labour protection in Germany,
- Evaluate the basics for the safe methods of design of machinery with the national and European safety regulations and
- Realize these objectives by using examples in the field of storage and material handling systems.

Recommendations

None

Workload

Regular attendance: 21 hours
Self-study: 99 hours

Note

Dates: See IFL-Homepage

Literature

Defren/Wickert: Sicherheit für den Maschinen- und Anlagenbau, Druckerei und Verlag: H. von Ameln, Ratingen
8.196 Course: Scientific Computing for Engineers [T-MACH-100532]

Responsible: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2181738</td>
<td>Scientific computing for Engineers</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2181739</td>
<td>Exercises for Scientific Computing for Engineers</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Weygand</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>Prüfung (PR)</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>Prüfung (PR)</td>
<td>Weygand, Gumbsch</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (90 minutes)

Prerequisites

The brick can not be combined with the brick "Application of advanced programming languages in mechanical engineering" (T-MACH-105390).

Below you will find excerpts from events related to this course:

Scientific computing for Engineers

2181738, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)
Content
1. Introduction: why scientific computing
2. computer architectures
3. Introduction to Unix/Linux
4. Foundations of C++
 * program organization
 * data types, operator, control structures
 * dynamic memory allocation
 * functions
 * class
 * OpenMP parallelization
5. numeric algorithms
 * finite differences
 * MD simulations: 2nd order differential equations
 * algorithms for particle simulations
 * solver for linear systems of eqns.

The student can

- apply the programming language C++ for scientific computing in the field of materials science
- adapt programs for use on parallel platforms
- choose suitable numerical methods for the solution of differential equations.

The lecture can not be combined with the lecture "Application of advanced programming languages in mechanical engineering" (2182735).

regular attendance: 22.5 hours
Lab: 22.5 hours (optional)
self-study: 75 hours
written exam 90 minutes

Literature

1. C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München
2. C++ and object-oriented numeric computing for Scientists and Engineers, Daoqui Yang, Springer Verlag.
3. The C++ Programming Language, Bjarne Stroustrup, Addison-Wesley
4. Die C++ Standardbibliothek, S. Kuhlins und M. Schader, Springer Verlag

Numerik:

1. Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
2. Numerische Mathematik, H.R. Schwarz, Teubner Stuttgart
3. Numerische Simulation in der Moleküldynamik, Griebel, Knaepk, Zumbusch, Caglar, Springer Verlag

Exercises for Scientific Computing for Engineers
2181739, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
Exercises for the different topics of the lecture "Scientific computing for Engineers" (2181738)
regular attendance: 22.5 hours

Literature
Skript zur Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)
8 COURSES
Course: Selected Applications of Technical Logistics [T-MACH-102160]

8.197 Course: Selected Applications of Technical Logistics [T-MACH-102160]

Responsible: Viktor Milushev
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td>2118087</td>
<td></td>
<td>Mittwollen, Milushev</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Prüfung (PR)</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Mittwollen</td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-102160</td>
<td>Selected Applications of Technical Logistics</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge out of Basics of Technical Logistics I (T-MACH-109919) / Elements and Systems of Technical Logistics (T-MACH-102159) preconditioned.

Below you will find excerpts from events related to this course:

Selected Applications of Technical Logistics
2118087, SS 2020, 3 SWS, Language: German, Open in study portal

Lecture (V)

Content

- design and dimension of machines from intralogistics
- static and dynamic behaviour
- operation properties and specifics
- Inside practical lectures: sample applications and calculations in addition to the lectures

Details according schedule will be published

Literature
Empfehlungen in der Vorlesung
Course: Selected Applications of Technical Logistics - Project [T-MACH-108945]

Responsible: Viktor Milushev
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Module Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2118088</td>
<td>Selected Applications of Technical Logistics - Project</td>
<td>1 SWS</td>
<td>Project (PRO)</td>
<td>Milushev, Mittwollen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Module Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-108945</td>
<td>Selected Applications of Technical Logistics - Project</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

presentation of performed project and defense (30min) according to §4 (2), No. 3 of the examination regulation

Prerequisites

T-MACH-102160 (selected applications of technical logistics) must have been started

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102160 - Selected Applications of Technical Logistics must have been started.

Recommendation

Knowledge out of Basics of Technical Logistics I (T-MACH-109919) / Elements and Systems of Technical Logistics (T-MACH-102159) preconditioned.

Below you will find excerpts from events related to this course:

Selected Applications of Technical Logistics - Project

2118088, SS 2020, 1 SWS, Language: German, [Open in study portal](#)

Literature

Empfehlungen in der Vorlesung
8.199 Course: Selected Problems of Applied Reactor Physics and Exercises [T-MACH-105462]

Responsible: Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 1/2 hour

Prerequisites
none

Below you will find excerpts from events related to this course:

Selected Problems of Applied Reactor Physics and Exercises
2190411, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

- Nuclear energy and forces
- Radioactive decay
- Nuclear processes
- Fission and the importance of delayed neutrons
- Basics of nuclear cross sections
- Principles of chain reaction
- Static theory of mono energetic reactors
- Introduction to reactor kinetic
- Student laboratory

The students

- have solid understanding of the basic reactor physics
- are able to estimate processes of growth and decay of radionuclides; out of it, they can perform dose calculation and introduce their biological hazards
- can calculate the relationship of basic parameters which are needed for a stable reactor operation
- understand important dynamical processes of nuclear reactors.

Regular attendance: 26 h
self study 94 h
oral exam about 30 min.

Literature

K. Wirtz Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton, Nuclear reactor Analysis, J. Wiley $ Sons, Inc. 1975 (in English)
8.200 Course: Seminar for Rail System Technology [T-MACH-108692]

Responsible: Prof. Dr.-Ing. Peter Gratzfeld
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102638 - Major Field: Rail System Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2115009</td>
<td>Seminar for Rail System Technology</td>
<td>1</td>
<td>Seminar (S)</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2115009</td>
<td>Seminar for Rail System Technology</td>
<td>1</td>
<td>Seminar (S)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-00002</td>
<td>Seminar for Rail System Technology</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-00002</td>
<td>Seminar for Rail System Technology</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination: Writing a Seminararbeit, final presentation

Prerequisites
none

Below you will find excerpts from events related to this course:

Seminar for Rail System Technology
2115009, WS 19/20, 1 SWS, Language: German, Open in study portal

Content
• Railway system: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact, history, challenges and future developments in the context of mega trends
• Operation: Transportation, public/regional/long-distance transport, freight service, scheduling
• System structure of railway vehicles: Tasks and classification, main systems
• Project management: definitions, project management, main and side processes, transfer to practice
• Scientific working: structuring and writing of scientific papers, literature research, scheduling (mile stones), self-management, presentation skills, using the software Citavi for literature and knowledge management, working with templates in Word, giving and taking feedback
• The learnt knowledge regarding scientific writing is used to elaborate a Seminararbeit. To this the students create a presentation, train and reflect it and finally present it to an auditorium.

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Content

- Railway system: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact, history, challenges and future developments in the context of mega trends
- Operation: Transportation, public/regional/long-distance transport, freight service, scheduling
- System structure of railway vehicles: Tasks and classification, main systems
- Project management: definitions, project management, main and side processes, transfer to practice
- Scientific working: structuring and writing of scientific papers, literature research, scheduling (mile stones), self-management, presentation skills, using the software Citavi for literature and knowledge management, working with templates in Word, giving and taking feedback
- The learnt knowledge regarding scientific writing is used to elaborate a Seminararbeit. To this the students create a presentation, train and reflect it and finally present it to an auditorium.

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
8.201 Course: Signals and Systems [T-ETIT-109313]

Responsible: Prof. Dr.-Ing. Fernando Puente León
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2302109</td>
<td>Signals and Systems</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Puente León</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7302109</td>
<td>Signals and Systems</td>
<td>Prüfung (PR)</td>
<td>Puente León, Jäschke</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
8.202 Course: Simulation of Coupled Systems [T-MACH-105172]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Yusheng Xiang

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Geimer, Xiang</td>
</tr>
</tbody>
</table>

Exams

WS 19/20	76T-MACH-105172	Simulation of Coupled Systems	Prüfung (PR)	Geimer
WS 19/20	76-T-MACH-105172	Simulation of Coupled Systems	Prüfung (PR)	Geimer
SS 2020	76T-MACH-105172	Simulation of Coupled Systems	Prüfung (PR)	Geimer

Competence Certificate

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at very ordinary examination date.

A registration is mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

Prerequisites

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108888 must have been passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-108888 - Simulation of Coupled Systems - Advance must have been passed.

Recommendation

- Knowledge of ProE (ideally in actual version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

Annotation

After completion of course, students are able to:

- build a coupled simulation
- parametrize models
- perform simulations
- conduct troubleshooting
- check results for plausibility

The number of participants is limited.

Content:

- Basics of multi-body and hydraulics simulation programs
- Possibilities of coupled simulations
- Modelling and Simulation of Mobile Machines using a wheel loader
- Documentation of the result in a short report

Literature:

Software guide books (PDFs)

Information about wheel-type loader specifications
Below you will find excerpts from events related to this course:

Simulation of Coupled Systems
2114095, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Content
- Knowledge of the basics of multi-body and hydraulic simulation programs
- Possibilities of coupled simulations
- Development of a simulation model by using the example of a wheel loader
- Documentation of the result in a short report

It is recommended to have:
- Knowledge of ProE (ideally in current version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics
- regular attendance: 21 hours
- total self-study: 92 hours

Literature
Weiterführende Literatur:
- Diverse Handbücher zu den Softwaretools in PDF-Form
- Informationen zum verwendeten Radlader
8.203 Course: Simulation of Coupled Systems - Advance [T-MACH-108888]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Yusheng Xiang

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

Preparation of semester report

Prerequisites

none
8.204 Course: SmartFactory@Industry (MEI) [T-MACH-106733]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102644 - Major Field: Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 3150044</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-106733</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
alternative test achievement (graded)
- colloquium (approx. 15 min)
- presentation (approx. 20 min)

Prerequisites
Successful completion of the following courses:
- M-MACH-102563 - Computer Science
- MACH-102573 - Mechanical Design

Modeled Conditions
The following conditions have to be fulfilled:
1. The module M-MACH-102563 - Computer Science must have been passed.
2. The module M-MACH-102573 - Mechanical Design must have been passed.

Below you will find excerpts from events related to this course:

SmartFactory@Industry
3150044, SS 2020, 2 SWS, Language: English, Open in study portal
Content
The students will get to know different real industrial tasks and problems and will learn how to address them with the methods they got to know and even beyond these.

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- automatic machines, cells, centers and systems for manufacturing and assembly
- planning of automated manufacturing systems

In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components. The analysis of automated manufacturing systems for manufacturing of defined components is also included.

Learning Goals:
The students …

- know about different processes in industry
- can accomplish industrial tasks on their-own and in groups
- can summarize their work in a comprehensive presentation for industrial receivers

Prerequisites:
S. Modul
Successful completion of the following courses:
Mechanical Design I-IV
Computer Science
8.205 Course: Solar Thermal Energy Systems [T-MACH-106493]

Responsible: Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Dagan, Stieglitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Prüfung (PR)</td>
<td>Dagan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none

Recommendation

Literature

Competence Certificate

oral exam of about 30 minutes

Below you will find excerpts from events related to this course:

Solar Thermal Energy Systems

2189400, WS 19/20, 2 SWS, Language: English, Open in study portal
Content
The course deals with fundamental aspects of solar energy
1. Introduction to solar energy – global energy panorama
2. Solar energy resource-
 Structure of the sun, Black body radiation, solar constant, solar spectral distribution
 Sun-Earth geometrical relationship
3. Passive and active solar thermal applications.
4. Solar thermal systems- solar collector-types, concentrating collectors, solar towers,
 Heat losses, efficiency
5. Selected topics on thermodynamics and heat transfer which are relevant for solar systems.
6. Introduction to Solar induced systems: Wind , Heat pumps, Biomass , Photovoltaic
7. Energy storage

The course deals with fundamental aspects of solar energy. Starting from a global energy panorama the course deals with the sun as a thermal energy source. In this context, basic issues such as the sun's structure, blackbody radiation and solar–earth geometrical relationship are discussed. In the next part, the lectures cover passive and active thermal applications and review various solar collector types including concentrating collectors and solar towers and the concept of solar tracking. Further, the collector design parameters determination is elaborated, leading to improved efficiency. This topic is augmented by a review of the main laws of thermodynamics and relevant heat transfer mechanisms.

The course ends with an overview on energy storage concepts which enhance practically the benefits of solar thermal energy systems.

The students get familiar with the global energy demand and the role of renewable energies learn about improved designs for using efficiently the potential of solar energy gain basic understanding of the main thermal hydraulic phenomena which support the work on future innovative applications will be able to evaluate quantitatively various aspects of the thermal solar systems.

Total 120 h, hereof 30 h contact hours and 90 h homework and self-studies
oral exam about 30 min.

Literature
8.206 Course: Strategic Product Development - Identification of Potentials of Innovative Products [T-MACH-105696]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Andreas Siebe

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2</td>
<td>Strategic product development - identification of potentials of innovative products</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam in small groups (30 minutes)

Prerequisites
The precondition of this partial work is the successful processing of a case study(T-MACH-110396): written elaboration & presentation of the results (15 minutes)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110396 - Strategic Product Development - Identification of Potentials of Innovative Products - Case Study must have been passed.

Below you will find excerpts from events related to this course:

V
Strategic product development - identification of potentials of innovative products
2146198, SS 2020, 2 SWS, Language: German, Open in study portal

Content
Introduction into future management, Development of scenarios, scenario-based strategy development, trend management, strategic early detection, innovation- and technology management, scenarios in product development, from profiles of requirements to new products, examples out of industrial praxis.
8.207 Course: Strategic Product Development - Identification of Potentials of Innovative Products - Case Study [T-MACH-110396]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Andreas Siebe

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>1</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Strategic product development - identification of potentials of innovative products</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Siebe</td>
</tr>
</tbody>
</table>

Competence Certificate
Successful processing of a case study (T-MACH-110396): written elaboration & presentation of the results (15 minutes)

Below you will find excerpts from events related to this course:

Strategic product development - identification of potentials of innovative products

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2146198</td>
<td>Lecture (V)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content
Introduction into future management, Development of scenarios, scenario-based strategy development, trend management, strategic early detection, innovation- and technology management, scenarios in product development, from profiles of requirements to new products, examples out of industrial praxis.
8.208 Course: Structural Analysis of Composite Laminates [T-MACH-105970]

Responsible: Dr.-Ing. Luise Kärger
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102746 - Compulsory Elective Module
M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2113106</td>
<td>Structural Analysis of Composite Laminates</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Kärger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH 105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td>Prüfung (PR)</td>
<td>Kärger</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 20 min

Prerequisites

none

Below you will find excerpts from events related to this course:

V Structural Analysis of Composite Laminates

2113106, WS 19/20, 2 SWS, Language: German, [Open in study portal](Lecture (V))
8.209 Course: Sustainable Product Engineering [T-MACH-105358]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr. Karl-Friedrich Ziegahn

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102583 - Major Field: Information Management
M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146192</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Sustainable Product Engineering

2146192, SS 2020, 2 SWS, Open in study portal

Lecture (V)

Content

understanding of sustainability objectives and their role in product development, the interaction between technical products and their environment, the holistic approach and the equality of economic, social and environmental aspects and environmental aspects

skills for life-cycle product design using the example of complex automotive components such as airbag systems and other current products

understanding of product environmental stresses with relevancy to praxis at the example of technology-intensive components, robustness and durability of products as the basis for a sustainable product development, development of skills for the application of environmental simulation during the process of development of technical products

delivery of key skills such as team skills / project / self / presentation based on realistic projects

The goal of the lecture is to convey the main elements of sustainable product development in the economic, social and ecological context.

The students are able to …

- identify und describe the sustainability objectives and their role in product development, the interaction between technical products and their environment, the holistic approach and the equality of economic, social and environmental aspects and environmental aspects.
- discuss the skills for life-cycle product design using the example of complex automotive components such as airbag systems and other current products.
- understand the product environmental stresses with relevancy to praxis at the example of technology-intensive components, robustness and durability of products as the basis for a sustainable product development, development of skills for the application of environmental simulation during the process of development of technical products.
- develop skills such as team skills / project / self / presentation based on realistic projects.
Course: System Integration in Micro- and Nanotechnology [T-MACH-105555]

Responsible: Dr. Ulrich Gengenbach
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>System Integration in Micro- and Nanotechnology</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

Compentence Certificate
oral exam (Duration: 30 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

System Integration in Micro- and Nanotechnology
2106033, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

Content:

- Introduction
- Definition system integration
- Integration of mechanical functions (flexures)
- Plasma treatment of surfaces
- Adhesive bonding
 - Packaging
 - Low Temperature Cofired Ceramics (LTCC)
 - Assembly of hybrid systems
- Monolithic/hybrid system integration
- Modular system integration
- Integration of electrical/electronic functions
- Mounting techniques
- molded Interconnect Devices (MID)
- Functional printing
- Coating
- Capping
- Housing

First steps towards system integration nanotechnology

Learning objectives:
Students acquire fundamental knowledge about challenges and system integration processes.

Literature

- J. Franke, Räumliche elektronische Baugruppen (3D-MID), Carl Hanser-Verlag München, 2013
8.211 Course: Systematic Materials Selection [T-MACH-100531]

Responsible: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2174576 Systematic Materials Selection 3 SWS Lecture (V) Dietrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2174577 Übungen zu 'Systematische Werkstoffauswahl' 1 SWS Practice (Ü) Dietrich, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-100531 Systematic Materials Selection Prüfung (PR) Dietrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as a written exam of 2 h.

Prerequisites
M-MACH-102562 - Materials Science must be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-MACH-102562 - Materials Science must have been passed.

Recommendation
Basic knowledge in materials science, mechanics and mechanical design due to the lecture Materials Science I/II.

Below you will find excerpts from events related to this course:

Systematic Materials Selection
2174576, SS 2020, 3 SWS, Language: German, Open in study portal Lecture (V)
Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered:

- Information and introduction
- Necessary basics of materials
- Selected methods / approaches of the material selection
- Examples for material indices and materials property charts
- Trade-off and shape factors
- Sandwich materials and composite materials
- High temperature alloys
- Regard of process influences
- Material selection for production lines
- Incorrect material selection and the resulting consequences
- Abstract and possibility to ask questions

learning objectives:
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

requirements:
Wiling SPO 2007 (B.Sc.)
The course Material Science I [21760] has to be completed beforehand.

Wiling (M.Sc.)
The course Material Science I [21760] has to be completed beforehand.

workload:
The workload for the lecture is 120 h per semester and consists of the presence during the lecture (30 h) as well as preparation and rework time at home (30 h) and preparation time for the oral exam (60 h).

Literature
Vorlesungsskriptum; Übungblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7

Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
8.212 Course: Technical Design in Product Development [T-MACH-105361]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Markus Schmid

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146179</td>
<td>Technical Design in Product Development</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Schmid</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (60 min)
Only dictionary is allowed

Prerequisites

none

Below you will find excerpts from events related to this course:

Technical Design in Product Development

2146179, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Literature

Hexact (R) Lehr- und Lernportal
8.213 Course: Technical Thermodynamics and Heat Transfer I [T-MACH-104747]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102574 - Technical Thermodynamics

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence term</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Written examination</td>
<td>8</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td>Maas</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Exams			
WS 19/20	Technical Thermodynamics and Heat Transfer I	Prüfung (PR)	Maas
WS 19/20	Technical Thermodynamics and Heat Transfer I	Prüfung (PR)	Maas
WS 19/20	Technical Thermodynamics and Heat Transfer I	Prüfung (PR)	Maas

Competence Certificate
Written exam [duration: 180 min]

Prerequisites
Successful participation in the tutorial (T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer I
2165501, WS 19/20, 4 SWS, Language: German, Open in study portal

Literature
Vorlesungsskriptum
8.214 Course: Technical Thermodynamics and Heat Transfer II [T-MACH-105287]

- **Responsible:** Prof. Dr. Ulrich Maas
- **Organisation:** KIT Department of Mechanical Engineering

Part of: M-MACH-102574 - Technical Thermodynamics

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>2166526</th>
<th>Technical Thermodynamics and Heat Transfer II</th>
<th>3 SWS</th>
<th>Lecture (V)</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>Schießl</td>
<td></td>
</tr>
</tbody>
</table>

Exams

WS 19/20	76-T-MACH-105287	Technical Thermodynamics and Heat Transfer II	Prüfung (PR)	Maas
WS 19/20	76-T-MACH-105287-english	Technical Thermodynamics and Heat Transfer II	Prüfung (PR)	Maas
WS 19/20	76-T-MACH-105287-Wiederholer	Technical Thermodynamics and Heat Transfer II	Prüfung (PR)	Maas

Competence Certificate

Written exam [duration: 180 min]

Prerequisites

Successful participation in the tutorial (T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II

2166526, SS 2020, 3 SWS, Language: German, [Open in study portal](#)

- **Content**
 - Repetition of the topics of "Thermodynamics and Heat Transfer I"
 - Mixtures of ideal gases
 - Moist air
 - Behaviour of real substances described by equations of state
 - Applications of the laws of thermodynamics to chemical reactions

- **Literature**
 - Vorlesungsskriptum
Course: Technology of Steel Components [T-MACH-105362]

Responsible: Prof. Dr.-Ing. Volker Schulze
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Type

<table>
<thead>
<tr>
<th></th>
<th>Oral examination</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>Technology of steel components</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Schulze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>WS 19/20</td>
<td>Technology of Steel Components</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

M-MACH-102562 - Materials Science must be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-MACH-102562 - Materials Science must have been passed.

Below you will find excerpts from events related to this course:

Technology of steel components

2174579, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

Meaning, Development and characterization of component states
Description of the influence of component state on mechanical properties
Stability of component states
Steel manufacturing
Component states due to forming
Component states due to heat treatments
Component states due to surface hardening
Component states due to machining
Component states due to mechanical surface treatments
Component states due to joining
Summarizing evaluation

Learning objectives:

The students have the background to evaluate the influence of manufacture processes on the compound state of metallic compounds. The students can assess the influence and the stability of compound state under mechanical load. The students are capable to describe the individual aspects of interaction of the compound state of steel components due to forming, heat treatment, mechanical surface treatment and joining processes.

Requirements:

Materials Science and Engineering I & II

Workload:

regular attendance: 21 hours
self-study: 99 hours
Literature

Skript wird in der Vorlesung ausgegeben

VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984

V. Schulze: Modern Mechanical Surface Treatments, Wiley, Weinheim, 2005
8.216 Course: Theoretical Description of Mechatronic Systems [T-MACH-105521]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102820 - Major Field: Mechatronics

Type: Oral examination
Credits: 4
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161117</td>
<td>Theoretical Description of Mechatronic Systems</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105521</td>
<td>Theoretical Description of Mechatronic Systems</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105521</td>
<td>Theoretical Description of Mechatronic Systems</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, approx. 30 min..

Prerequisites
none

Below you will find excerpts from events related to this course:

Theoretical Description of Mechatronic Systems
2161117, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
Aim of the course is to provide principles and tools to derive the mathematical models of mechatronic systems. The students are able to generate physical models of mechatronic systems. They know the description by across and through variables. With the help of energy principles variational methods can be applied to electromechanic systems. The basics of applied mechanics and of electric systems are known. The students are able to complete the mechatronic system by a corresponding tool.
8.217 Course: Theory of Stability [T-MACH-105372]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102820 - Major Field: Mechatronics
M-MACH-104442 - Major Field: Vibration Theory

Type: Oral examination Credits: 6 Recurrence: Each summer term Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>2 SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2163113</td>
<td>Theory of Stability</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>6</td>
<td>Fidlin</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2163114</td>
<td>Übungen zu Stabilitätstheorie</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>6</td>
<td>Fidlin, Aramendiz, Fuentes</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105372</td>
<td>Theory of Stability</td>
<td>Prüfung (PR)</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105372</td>
<td>Theory of Stability</td>
<td>Prüfung (PR)</td>
<td>Fidlin</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 30 min.

Prerequisites
none

Recommendation
Vibration theory, Mathematical Methods of Vibration Theory

Below you will find excerpts from events related to this course:

Theory of Stability
2163113, SS 2020, 2 SWS, Language: German, Open in study portal

Content
- Basic concepts of stability
- Lyapunov's functions
- Direct lyapunov's methods
- Stability of equilibria positions
- Attraction area of a stable solution
- Stability according to the first order approximation
- Systems with parametric excitation
- Stability criteria in the control theory

Literature
Below you will find excerpts from events related to this course:

Thermal Solar Energy

2169472, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Content

In detail:

1. Introduction to energy requirements and evaluation of the potential use of solar thermal energy.
2. Primary energy source SUN: sun, solar constant, radiation (direct, diffuse scattering, absorption, impact angle, radiation balance).
5. Momentum and heat transport: basic equations of single and multiphase transport, calculation methods, stability limits.

optional

6. Low temperature solar thermal systems: collector types, methods for system simulation, planning and dimensioning of systems, system design and stagnation scenarios.
7. High temperature solar thermal systems: solar towers and solar-farm concept, loss mechanisms, chimney power plants and energy production processes

The lecture elaborates the basics of the solar technology and the definition of the major wordings and its physical content such as radiation, thermal use, insulation etc.. Further the design of solar collectors for different purposes is discussed and analyzed. The functional principle of solar plants is elaborated before at the end the ways for solar cooling is discussed.

The aim of the course is to provide the basic physical principles and the derivation of key parameters for the individual solar thermal use. This involves in addition to the selective absorber, mirrors, glasses, and storage technology. In addition, a utilization of solar thermal energy means an interlink of the collector with a thermal-hydraulic circuit and a storage. The goal is to capture the regularities of linking to derive efficiency correlations as a function of their use and evaluate the performance of the entire system.

Recommendations / previous knowledge

Basics in heat and mass transfer, material science and fluid mechanics, desirable are reliable knowledge in physics in optics and thermodynamics

Oral exam of about 25 minutes, no tools or reference materials may be used during the exam
Literatur
Bereitstellung des Studienmaterials in gedruckter und elektronischer Form.
8.219 Course: Thermal Turbomachines I [T-MACH-105363]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

WS 19/20 2169453 Thermal Turbomachines I 3 SWS Lecture / Practice (VÜ) Bauer

WS 19/20 2169454 Tutorial - Thermal Turbomachines I (Übungen zu Thermische Turbomaschinen I) 2 SWS Practice (Ü) Bauer

WS 19/20 2169553 Thermal Turbomachines I (in English) 3 SWS Lecture / Practice (VÜ) Bauer

Exams

WS 19/20 76-T-MACH-105363 Thermal Turbomachines I Prüfung (PR) Bauer

WS 19/20 76-T-MACH-105363-Wdh Thermal Turbomachines I (for repeaters) Prüfung (PR) Bauer

SS 2020 76-T-MACH-105363 Thermal Turbomachines I Prüfung (PR) Bauer

Competence Certificate
oral exam, duration 30 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Thermal Turbomachines I
2169453, WS 19/20, 3 SWS, Language: German, Open in study portal
Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to describe and analyse not only the individual components but also entire assemblies. The students can assess and evaluate the effects of physical, economical and ecological boundary conditions.

regular attendance: 31,50 h
self-study: 64,40 h

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines II'.

Examination:
oral
Duration: approximately 30 min

no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Content
Basic concepts of thermal turbomachinery

Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines II'.
The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to describe and analyse not only the individual components but also entire assemblies. The students can assess and evaluate the effects of physical, economical and ecological boundary conditions.

regular attendance: 31,50 h
self-study: 64,40 h

Exam:
oral
Duration: approximately 30 min

no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
8.220 Course: Thermal Turbomachines II [T-MACH-105364]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credit</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2170476</td>
<td>Thermal Turbomachines II</td>
<td>3</td>
<td>Lecture (V)</td>
<td>6</td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2170477</td>
<td>Tutorial - Thermal Turbomachines II (Übung - Thermische Turbomaschinen II)</td>
<td>2</td>
<td>Practice (Ü)</td>
<td></td>
<td>Bauer, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2170553</td>
<td>Thermal Turbomachines II (in English)</td>
<td>3</td>
<td>Lecture / Practice (VÜ)</td>
<td>6</td>
<td>Bauer, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Credit</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105364</td>
<td>Thermal Turbomachines II</td>
<td></td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105364</td>
<td>Thermal Turbomachines II</td>
<td></td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, duration: 30 min.

Prerequisites
none

Below you will find excerpts from events related to this course:
Content
General overview, trends in design and development

Comparison turbine - compressor

Integrating resume of losses

Principal equations and correlations in turbine and compressor design, stage performance

Off-design performance of multi-stage turbomachines

Control system considerations for steam and gas turbines

Components of turbomachines

Critical components

Materials for turbine blades

Cooling methods for turbine blades (steam and air cooling methods)

Short overview of power plant operation

Combustion chamber and environmental issues

Based on the fundamental skills learned in 'Thermal Turbomachines I' the students have the ability to design turbines and compressors and to analyse the operational behavior of these machines.

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines I'.
regular attendance: 31,50 h
self-study: 64,40 h

Exam:
oral (can only be taken in combination with 'Thermal Turbomachines I')
Duration: 30 min (→ 1 hour including Thermal Turbomachines I)

Auxiliary: no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines II'.
regular attendance: 31,50 h
self-study: 64,40 h
The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to describe and analyse not only the individual components but also entire assemblies. The students can assess and evaluate the effects of physical, economical and ecological boundary conditions.
Exam:
oral
Duration: approximately 30 min
no tools or reference materials may be used during the exam.

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Course: Tires and Wheel Development for Passenger Cars [T-MACH-102207]

Responsible: Dr.-Ing. Günter Leister

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114845</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>2 SWS</td>
<td>Leister</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Prüfung (PR)</td>
<td>Leister</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Tires and Wheel Development for Passenger Cars

2114845, SS 2020, 2 SWS, Open in study portal

Lecture (V)

Content

1. The role of the tires and wheels in a vehicle
2. Geometrie of Wheel and tire, Package, load capacity and endurance, Book of requirement
3. Mobility strategy, Minispare, runflat systems and repair kit.
4. Project management: Costs, weight, planning, documentation
5. Tire testing and tire properties
6. Wheel technology including Design and manufacturing methods, Wheeltesting
7. Tire pressure: Indirect and direct measuring systems
8. Tire testing subjective and objective

Learning Objectives:

The students are informed about the interactions of tires, wheels and chassis. They have an overview of the processes regarding the tire and wheel development. They have knowledge of the physical relationships.

Literature

Manuskript zur Vorlesung

Manuscript to the lecture
8.222 Course: Tribology [T-MACH-105531]

Responsible: Prof. Dr. Martin Dienwiebel
Prof. Dr.-Ing. Matthias Scherge

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems

Type: Oral examination
Credits: 8
Recurrence: Each winter term
Version: 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2181114</td>
<td>Tribology</td>
<td>5</td>
<td>Lecture / Practice (VÜ)</td>
<td>Dienwiebel, Scherge</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105531</td>
<td>Tribology</td>
<td>Prüfung (PR)</td>
<td>Dienwiebel</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination (ca. 40 min)
no tools or reference materials

Prerequisites
admission to the exam only with successful completion of the exercises [T-MACH-109303]

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-109303 - Exercises - Tribology must have been passed.

Recommendation
preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:

Tribology
2181114, WS 19/20, 5 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ)
Content

- Chapter 1: Friction
 adhesion, geometrical and real area of contact, Friction experiments, friction powder, tribological stressing, environmental influences, tribological age, contact models, Simulation of contacts, roughness.
- Chapter 2: Wear
 plastic deformation at the asperity level, dissipation modes, mechanical mixing, Dynamics of the third body, running-in, running-in dynamics, shear stress.
- Chapter 3: Lubrication
 base oils, Strieber plot, lubrication regimes (HD, EHD, mixed lubrication), additives, oil characterization, solid lubrication.
- Chapter 4: Measurement Techniques
 friction measurement, tribometer, dissipated frictional power, conventional wear measurement, continuous wear measurement (RNT)
- Chapter 5: Roughness
 profilometry, surface roughness parameters, evaluation length and filters, bearing ratio curve, measurement error
- Chapter 6: Accompanying Analysis
 multi-scale topography measurement, chemical surface analysis, structural analysis, mechanical analysis

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

- describe the fundamental friction and wear mechanisms, which occur in tribologically stressed systems
- evaluate the friction and wear behavior of tribological systems
- explain the effects of lubricants and their most important additives
- identify suitable approaches to optimize tribological systems
- explain the most important experimental methods for the measurement of friction and wear, and is able to use them for the characterisation of tribo pairs
- choose suitable methods for the evaluation of roughness and topography from the nm-scale to the mm-scale and is able to interpret the determined values in respect to their effect on the tribological behavior
- describe the most important surface-analytical methods and their physical principles for the characterization of tribologically stressed sliding surfaces

preliminary knowledge in mathematics, mechanics and materials science recommended

regular attendance: 45 hours
self-study: 195 hours
oral examination (ca. 40 min)
no tools or reference materials
admission to the exam only with successful completion of the exercises

Literature

8.223 Course: Turbo Jet Engines [T-MACH-105366]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Activities

- Introduction to jet engines and their components
- Demands on engines and propulsive efficiency
- Thermodynamic and gas dynamic fundamentals and design calculations
- Components of air breathing engines
- Jet engine design and development process
- Engine and component design
- Current developments in the jet engines industry

The students have the ability to:

- compare the design concepts of modern jet engines
- analyse the operation of modern jet engines
- apply the thermodynamic and fluidmechanic basics of jet engines
- choose the main components intake, compressor, combustor, turbine and thrust nozzle based on given criteria
- comment on different methods for the reduction of pollutant emissions, noise and fuel consumption

Prerequisites

- none

Competence Certificate

- oral exam, duration: 20 min.

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>2</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exam:

- oral
- Duration: approximately 30 minutes

- no tools or reference materials may be used during the exam
Literature
Hagen, H.: Fluggasturbinen und ihre Leistungen, G. Braun Verlag, 1982
Hünnecke, K.: Flugtriebwerke, ihre Technik und Funktion, Motorbuch Verlag, 1993
8.224 Course: Tutorial Advanced Mathematics I [T-MATH-100525]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 0131100</td>
<td>Übungen zu 0131000</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Arens</td>
</tr>
<tr>
<td>WS 19/20 0131300</td>
<td>Übungen zu 0131200</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6700005</td>
<td>Problem Class for Advanced Mathematics I</td>
<td>Prüfung (PR)</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites

None.
8.225 Course: Tutorial Advanced Mathematics II [T-MATH-100526]

Responsible:
PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 0180900 | Übungen zu 0180800 | 2 SWS | Practice (Ü) | Hettlich |
| SS 2020 | 0181100 | Übungen zu 0181000 | 2 SWS | Practice (Ü) | Hettlich |

Competence Certificate
Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites
None.
8.226 Course: Tutorial Advanced Mathematics III [T-MATH-100527]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 0131500 Übungen zu 0131400</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Griesmaier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6700006 Tutorial Advanced Mathematics III</td>
<td>Prüfung (PR)</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites
None.
8.227 Course: Tutorial Continuum Mechanics of Solids and Fluids [T-MACH-110333]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161253</td>
<td>1 SWS</td>
<td>1</td>
</tr>
<tr>
<td>Practice (Ü)</td>
<td>Dyck, Böhlke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-110333</td>
<td>Prüfung (PR)</td>
<td>1</td>
</tr>
<tr>
<td>Tutorial Continuum Mechanics of solids and fluids</td>
<td>Böhlke, Frohnapfel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Successfully passing the Tutorial is a prerequisite for taking part in the exam "Continuum Mechanics of Solids and Fluids" (T-MACH-110377)

For students of Mechanical Engineering (Bachelor) that have chosen the Major Field "Continuum Mechanics", the prerequisites consist of successfully solving the written homework sheets as well as the computational homework sheets using the commercial Finite Element Program Abaqus during the associated Lab Course.

For students of Mechanical Engineering (Bachelor) that have chosen a different Major Field of students from different fields of study the prerequisites consist of successfully solving only the written homework sheets. For organizational matters these students can not take part into the Lab Course.

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorial Continuum mechanics of solids and fluids

2161253, WS 19/20, 1 SWS, Language: German, Open in study portal

Practice (Ü)

Content

Please refer to the lecture "Continuum mechanics of solids and fluids".

Literature

Siehe Vorlesung "Kontinuumsmechanik der Festkörper und Fluide".

Please refer to the lecture "Continuum mechanics of solids and fluids".
8.228 Course: Tutorial Engineering Mechanics I [T-MACH-100528]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102572 - Engineering Mechanics

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161246</td>
<td>Tutorial Engineering Mechanics I</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3161011</td>
<td>Engineering Mechanics I (Tutorial)</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100528</td>
<td>Tutorial Engineering Mechanics I</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100528-englisch</td>
<td>Tutorial Engineering Mechanics I</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

Attestations have to be achieved in the following four categories: mandatory written homework problems, written homework problems, computational homework problems, colloquia.

This course is passed if all mandatory written homework problems are passed and if in the other three categories (written homework problems, computational homework problems, colloquia) in total at most three attestations have been finally not passed, at most one in each of the three categories.

Successful participation in this course allows for registration to the Exam "Engineering Mechanics I" (see T-MACH-100282)

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorial Engineering Mechanics I

2161246, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Practice (Ü)

Content

Please refer to the lecture Engineering Mechanics I.

Literature

Siehe Vorlesung Technische Mechanik I
Course: Tutorial Engineering Mechanics II [T-MACH-100284]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Practice (Ü)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162251</td>
<td>Tutorial Engineering Mechanics II</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Dyck, Gajek, Böhlke</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3162011</td>
<td>Engineering Mechanics II (Tutorial)</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Pallicity, Langhoff</td>
</tr>
</tbody>
</table>

Competence Certificate

Attestations have to be achieved in the following four categories: mandatory written homework problems, written homework problems, computational homework problems, colloquia.

This course is passed if all mandatory written homework problems are passed and if in the other three categories (written homework problems, computational homework problems, colloquia) in total at most two attestations have been finally not passed, at most one in each of the three categories.

Successful participation in this course allows for registration to the Exam "Engineering Mechanics II" (see T-MACH-100283)

Prerequisites
None

Below you will find excerpts from events related to this course:

Tutorial Engineering Mechanics II

2162251, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Content
see lecture Engineering Mechanics II

Literature
Siehe Vorlesung Technische Mechanik II

Engineering Mechanics II (Tutorial)

3162011, SS 2020, 2 SWS, Language: English, [Open in study portal](#)

Content
see lecture "Engineering Mechanics II"

Literature
see lecture "Engineering Mechanics II"

- **Responsible:** Prof. Dr.-Ing. Wolfgang Seemann
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2161204</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Engineering Mechanics III (Tutorial)</td>
<td></td>
<td>Seemann, Keller, N.N.</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3161013</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Mechanics III (Tutorial)</td>
<td></td>
<td>Seemann, Keller</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105202</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tutorial Engineering Mechanics III</td>
<td></td>
<td>Seemann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Attestations, successful accomplishment of exercise sheets

Prerequisites
None

Below you will find excerpts from events related to this course:

Engineering Mechanics III (Tutorial)
2161204, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Content
In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the tutorial exercises are presented and instructions for those exercises are given which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.

Literature
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
Hagedorn: Technische Mechanik III.

Engineering Mechanics III (Tutorial)
3161013, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Content
Exercises related to the lecture
8.231 Course: Tutorial Engineering Mechanics IV [T-MACH-105203]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162232</td>
<td>Engineering Mechanics IV (Tutorial)</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Seemann, Bitner, Schröders</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3162013</td>
<td>Engineering Mechanics 4 (Tutorial)</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Seemann, Bitner, Schröders</td>
</tr>
</tbody>
</table>

Competence Certificate
Attestations, successful accomplishment of exercise sheets

Below you will find excerpts from events related to this course:

Engineering Mechanics IV (Tutorial)
2162232, SS 2020, 2 SWS, Language: German, Open in study portal

Content
In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the exercises are presented and instructions are given for those exercises which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.

Literature
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin,

Responsible: Prof. Dr.-Ing. Thomas Böhlke

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Expansion</td>
<td>1 terms</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>2161255</th>
<th>Tutorial Mathematical Methods in Continuum Mechanics</th>
<th>2 SWS</th>
<th>Practice (Ü)</th>
<th>Wicht, Böhlke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>76-T-MACH-110376</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>Prüfung (PR)</td>
<td>Böhlke</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Successfully solving the homework sheets. Details are announced in the first lecture.

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorial Mathematical Methods in Continuum Mechanics

2161255, WS 19/20, 2 SWS, Language: German, Open in study portal

Content

See "Mathematical Methods in Continuum Mechanics"*

Literature

Siehe "Mathematische Methoden der Kontinuumsmechanik"
8.233 Course: Value Stream within Enterprises – The Value Chain at Bosch [T-MACH-106375]

Responsible: Dr. Rudolf Maier
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102576 - Key Competences

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Completed coursework</td>
<td>2</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>2149661</th>
<th></th>
<th>Seminar (S)</th>
<th>Maier</th>
</tr>
</thead>
<tbody>
<tr>
<td>The value stream in an industrial company - The value chain at BOSCH as an example</td>
<td>2 SWS</td>
<td>Semina (S)</td>
<td>Maier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>76-T-MACH-106375</th>
<th></th>
<th>Prüfung (PR)</th>
<th>Fleischer, Maier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value stream within enterprises – The value chain at Bosch</td>
<td>Prüfung (PR)</td>
<td>Fleischer, Maier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
alternative achievement (ungraded):
- attendance on at least 12 lecture units

Prerequisites
none

Below you will find excerpts from events related to this course:

The value stream in an industrial company - The value chain at BOSCH as an example
2149661, WS 19/20, 2 SWS, Language: German, Open in study portal
Content
The seminar provides an insight into the main functional units of a company and their typical processes by using Bosch as an example. Furthermore it is based on discussions with the students. Former Bosch top managers explain the essential business processes and functions of the individual departments as well as the classic tasks of an engineer in a worldwide operating automotive supplier. The seminar also provides an insight into the careers of the Bosch directors. In addition to the company processes, the seminar will therefore focus on reports of challenges, successes, failures and product and process innovations.

The topics are as follows:

- Introduction, strategy, innovation
- R&D, product development process
- Production
- Quality management
- Market, marketing, sales
- Aftermarket, service
- Finance, controlling
- Logistics
- Purchasing, supply chain
- IT
- HR, leadership, compliance

Learning Outcomes:
The students …

- are able to deduce, understand and assess the structure of a global operating enterprise.
- are capable to identify and compare the work flows and processes within a global operating enterprise.
- are able to recognize and assess the problems within interfaces between functional and organizational units which are identified by the experts. Furthermore the students can develop solutions based on this knowledge in order to overcome these problems.

Workload:
regular attendance: 21 hours
self-study: 39 hours

Literature
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.234 Course: Vehicle Comfort and Acoustics I [T-MACH-105154]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology
 M-MACH-104442 - Major Field: Vibration Theory

Type: Oral examination
Credits: 4
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2113806</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2114856</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Examination
Duration: 30 up to 40 minutes
Auxiliary means: none

Prerequisites
Can not be combined with lecture T-MACH-102206

Below you will find excerpts from events related to this course:

Vehicle Comfort and Acoustics I
2113806, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
1. Perception of noise and vibrations
2. Fundamentals of acoustics and vibrations
3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations
4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:
The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chassis regarding driving comfort and acoustic under consideration of goal conflicts.

Literature
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
Content

1. Perception of noise and vibrations

3. Fundamentals of acoustics and vibrations

3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations

4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:

The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chassis regarding driving comfort and acoustic under consideration of goal conflicts.

Literature

2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
8.235 Course: Vehicle Comfort and Acoustics II [T-MACH-105155]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2114825 | Vehicle Comfort and Acoustics II | 2 SWS | Lecture (V) | Gauterin |
| SS 2020 | 2114857 | Vehicle Ride Comfort & Acoustics II | 2 SWS | Lecture (V) | Gauterin |

Exams

| WS 19/20 | 76-T-MACH-105155 | Vehicle Comfort and Acoustics II | Prüfung (PR) | Gauterin |

Competence Certificate
Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites
Can not be combined with lecture T-MACH-102205

Below you will find excerpts from events related to this course:

Vehicle Comfort and Acoustics II

| 2114825, SS 2020, 2 SWS, Language: German, Open in study portal | Lecture (V) |
Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Learning Objectives:
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

Vehicle Ride Comfort & Acoustics II
2114857, SS 2020, 2 SWS, Language: English, Open in study portal

Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Learning Objectives:
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
8.236 Course: Vehicle Ergonomics [T-MACH-108374]

Responsible: Dr.-Ing. Tobias Heine
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design
 M-MACH-102818 - Major Field: Vehicle Technology

Type
Written examination

Credits
4

Recurrence
Each summer term

Version
1

Events

SS 2020 2110050 Vehicle Ergonomics 2 SWS Lecture (V) Heine

Exams

SS 2020 76-T-MACH-108374 Vehicle Ergonomics Prüfung (PR) Deml

Competence Certificate
written exam, 60 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Vehicle Ergonomics
2110050, SS 2020, 2 SWS, Language: German, Open in study portal

Content
- Basics of physical-body related ergonomics
- Basics of cognitive ergonomics
- Theories of driver behaviour
- Interface design
- Usability testing

Learning objective:
An ergonomic vehicle is best adapted to the requirements, needs and characteristics of its users and thus enables effective, efficient and satisfying interaction. After attending the lecture, students are able to analyse and evaluate the ergonomic quality of various vehicle concepts and derive design recommendations. They can consider aspects of both physical and cognitive ergonomics. Students are familiar with basic ergonomic methods, theories and concepts as well as with theories of human information processing, especially theories of driver behaviour. They are capable of critically reflecting this knowledge and applying it in a flexible way within the user-centered design process.

Literature
Die Literaturliste wird in der Vorlesung ausgegeben. Die Folien zur Vorlesung stehen auf ILIAS zum Download zur Verfügung.
Course: Vehicle Lightweight Design - Strategies, Concepts, Materials [T-MACH-105237]

Responsible: Prof. Dr.-Ing. Frank Henning
Organisation: KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2</td>
<td>Lecture(V)</td>
<td>Henning</td>
<td>2113102</td>
<td>Vehicle Lightweight design – Strategies, Concepts, Materials</td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam, 90 minutes

Prerequisites
none

Recommendation
none

Below you will find excerpts from events related to this course:

Literature

Bachelor Program Mechanical Engineering, Date: 15/02/2020
Module Handbook valid from Summer Term 2020
8.238 Course: Vehicle Mechatronics I [T-MACH-105156]

Responsible: Prof. Dr.-Ing. Dieter Ammon
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>76-T-MACH-105156</td>
<td>Vehicle Mechatronics I</td>
<td>Prüfung (PR)</td>
<td>Ammon</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites
none
8.239 Course: Vibration Theory [T-MACH-105290]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
 Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module
 M-MACH-102820 - Major Field: Mechatronics
 M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
 M-MACH-104442 - Major Field: Vibration Theory

Table:

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WS 19/20 | 2161212 | Vibration Theory | 2 SWS | Lecture (V) | Fidlin, Römer |
| WS 19/20 | 2161213 | Übungen zu Technische Schwingungslehre | 2 SWS | Practice (Ü) | Fidlin, Römer, Burgert |

Exams

| WS 19/20 | 76-T-MACH-105290 Vibration Theory | Prüfung (PR) | Fidlin |
| SS 2020 | 76-T-MACH-105290 Vibration Theory | Prüfung (PR) | Fidlin |

Competence Certificate

written exam, 180 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Vibration Theory

2161212, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

Concept of vibration, superposition of vibration with equal and with different frequencies, complex frequency response.

Vibration of systems with one dof: Free undamped and damped vibration, forced vibration for harmonic, periodic and arbitrary excitation. Excitation of undamped vibration in resonance.

Vibration of systems with distributed parameters: Partial differential equations as equations of motion, wave propagation, d’Alembert’s solution, Ansatz for separation of time and space, eigenvalue problem, infinite number of eigenvalues and eigenfunctions.

Introduction to rotor dynamics: Laval rotor in rigid and elastic bearings, inner damping, Laval rotor in anisotropic bearings, synchronous and asynchronous whirl, rotors with asymmetric shaft.

Literature

Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Übungen zu Technische Schwingungslehre
2161213, WS 19/20, 2 SWS, Language: German, Open in study portal

Content
Exercises related to the lecture
Course: Virtual Engineering (Specific Topics) [T-MACH-105381]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 3122031 | Virtual Engineering (Specific Topics) | 2 SWS | Lecture (V) | Ovtcharova, Maier |

Competence Certificate
oral exam, 20 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Virtual Engineering (Specific Topics)
3122031, SS 2020, 2 SWS, Language: English, Open in study portal

Content
Students can

- explain the basics of virtual engineering and name exemplary modeling tools and assign them to the corresponding methods and processes
- Formulate validation questions in the product development process and name obvious solution methods
- explain the basics of systems engineering and establish the connection to the product development process
- explain individual methods of the digital factory and present the functions of the digital factory in the context of the product creation process
- explain the theoretical and technical basics of Virtual Reality technology and show the connection to Virtual Engineering

Literature
Lecture slides / Vorlesungsfolien
8.241 Course: Virtual Reality Practical Course [T-MACH-102149]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Assessment of another type (graded)

Prerequisites
None

Annotation
Number of participants is limited

Below you will find excerpts from events related to this course:

Virtual Reality Practical Course
2123375, WS 19/20, 3 SWS, Language: German/English, Open in study portal

Content
- Introduction in Virtual Reality (hardware, software, applications)
- Exercises in the task specific software systems
- Autonomous project work in the area of Virtual Reality in small groups

Literature
Keine / None
Course: Warehousing and Distribution Systems [T-MACH-105174]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

Events	Credits	Recurrence		
-----------------	---------	------------		
SS 2020 2118097	2 SWS	Lecture (V)	Furmans	

Competence Certificate

The assessment consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

Prerequisites

none

Below you will find excerpts from events related to this course:

Warehousing and distribution systems

2118097, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Literature

ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluß in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag

ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag

Warehouse Science

GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISSER, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag

Eine ausführliche Übersicht wissenschaftlicher Paper findet sich bei:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature
8.243 Course: Wave and Quantum Physics [T-PHYS-108322]

Responsible: Prof. Dr. Gernot Goll
Prof. Dr. Bernd Pilawa

Organisation: KIT Department of Physics
Part of: M-PHYS-104030 - Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>4040411</td>
<td>Wellen und Quantenphysik</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Pilawa</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040412</td>
<td>Übungen zu Wellen und Quantenphysik</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Pilawa, NN</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040431</td>
<td>Wave and Quantum Physics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Goll</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040432</td>
<td>Exercises to Wave and Quantum Physics</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Goll, Loïc</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7800123</td>
<td>Wellen- und Quantenphysik (Exam in German)</td>
<td>Prüfung (PR)</td>
<td>Pilawa</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7800124</td>
<td>Wave and Quantum Physics (Exam in English)</td>
<td>Prüfung (PR)</td>
<td>Goll</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (usually about 180 min)

Prerequisites
none
8.244 Course: Wave Propagation [T-MACH-105443]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2161219 Wave Propagation 2 SWS Lecture (V) Seemann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105443 Wave Propagation Prüfung (PR) Seemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105443 Wave Propagation Prüfung (PR) Seemann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 30 min.

Below you will find excerpts from events related to this course:

Wave Propagation

2161219, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Content

The course gives an introduction into wave propagation phenomena. This contains both one-dimensional continua (beams, rods, strings) as well as two- and three-dimensional continua. Initial condition problems are treated. Fundamental effects like velocity, group velocity or dispersion are explained. Wave propagation is used to show the limits of structural models like beams. In addition surface waves and acoustic waves are covered.

Literature

8.245 Course: Welding Technology [T-MACH-105170]

Responsible: Dr. Majid Farajian
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Type: Oral examination Credits: 4 Recurrence: Each winter term Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2173571</td>
<td>Welding Technology</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105170</td>
<td>Welding Technology</td>
<td>Prüfung (PR)</td>
<td>Farajian</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, about 20 minutes

Prerequisites
none

Recommendation
Basics of material science (iron- and non-iron alloys), materials, processes and production, design.
All the relevant books of the German Welding Institute (DVS: Deutscher Verband für Schweißen und verwandte Verfahren) in the field of welding and joining is recommended.

Below you will find excerpts from events related to this course:

V Welding Technology
2173571, WS 19/20, 2 SWS, Language: German, Open in study portal
Content
definition, application and differentiation: welding, welding processes, alternative connecting technologies.
history of welding technology
sources of energy for welding processes
Survey: Fusion welding, pressure welding.
weld seam preparation/design
welding positions
weldability
gas welding, thermal cutting, manual metal-arc welding
submerged arc welding
gas-shielded metal-arc welding, friction stir welding, laser beam and electron beam welding, other fusion and pressure welding processes
static and cyclic behavior of welded joints,
fatigue life improvement techniques
learning objectives:
The students have knowledge and understanding of the most important welding processes and its industrial application.
They are able to recognize, understand and handle problems occurring during the application of different welding processes relating to design, material and production.
They know the classification and the importance of welding technology within the scope of connecting processes (advantages/disadvantages, alternatives).
The students will understand the influence of weld quality on the performance and behavior of welded joints under static and cyclic load.
How the fatigue life of welded joints could be increased, will be part of the course.
requirements:
basics of material science (iron- and non-iron alloys), of electrical engineering, of production processes.
workload:
The workload for the lecture Welding Technology is 120 h per semester and consists of the presence during the lecture (18 h) as well as preparation and rework time at home (102 h).
exam:
oral, ca. 20 minutes, no auxiliary material
Literature
Für ergänzende, vertiefende Studien gibt das Handbuch der Schweißtechnik von J. Ruge, Springer Verlag Berlin, mit seinen vier Bänden
Band I: Werkstoffe
Band II: Verfahren und Fertigung
Band III: Konstruktive Gestaltung der Bauteile
Band IV: Berechnung der Verbindungen
 einen umfassenden Überblick. Der Stoff der Vorlesung Schweißtechnik findet sich in den Bänden I und II. Einen kompakten Einblick in die Lichtbogenschweißverfahren bietet das Bändchen
Nies: Lichtbogenschweißtechnik, Bibliothek der Technik Band 57, Verlag moderne Industrie AG und Co., Landsberg / Lech
Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.
8.246 Course: Windpower [T-MACH-105234]

Responsible: Dr. Norbert Lewald
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102816 - Major Field: Fundamentals of Energy Technology
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Exam Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7600008</td>
<td>Windpower</td>
<td>Prüfung (PR) Lewald</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 120 minutes

Prerequisites
none
8.247 Course: Working Methods in Mechanical Engineering [T-MACH-105296]

Responsible: Prof. Dr.-Ing. Barbara Deml
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102576 - Key Competences

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2110969</td>
<td>Completed coursework</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020 2114990</td>
<td>Completed coursework</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020 2174970</td>
<td>Completed coursework</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
- e-learning module certificates, group exercises, submission of a scientific thesis of at least 30 pages and submission and execution of a maximal 30 minutes scientific presentation.

Prerequisites
- none

Below you will find excerpts from events related to this course:

Working Methods in Mechanical Engineering
2110969, SS 2020, 1 SWS, Language: English, [Open in study portal](#)

Workshop 'Working Methods in Mechanical Engineering' (FAST - Bahnsystemtechnik)
2114990, SS 2020, 1 SWS, Language: German, [Open in study portal](#)

Content
- Workshop 1: work organisation, teamwork
- Workshop 2: literature research
- Workshop 3: scientific writing
- Workshop 4: scientific presentation

Attendance and active collaboration in all four workshops is mandatory!

After the workshop the students should be able:

- to plan a definite task under the consideration of specific regulations in a goal- and resource-oriented way
- to find and choose scientific information according to predefined quality criteria
- to write a precise and conclusive scientific abstract and to evaluate scientific papers
- to prepare a poster and an oral presentation in order to present scientific information
- to work in a team in a motivating and team-oriented way.

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2171488</td>
<td>Workshop on computer-based flow measurement techniques</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2171488</td>
<td>Workshop on computer-based flow measurement techniques</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-106707</td>
<td>Workshop on computer-based flow measurement techniques</td>
<td>Prüfung (PR)</td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-106707</td>
<td>Workshop on computer-based flow measurement techniques</td>
<td>Prüfung (PR)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Competence Certificate
Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Prerequisites
none

Below you will find excerpts from events related to this course:

Workshop on computer-based flow measurement techniques
2171488, WS 19/20, 3 SWS, Language: German, [Open in study portal](#)
Content
Registration during the lecture period via the website.

The laboratory course offers an introduction into the acquisition of basic test data in fluid mechanics applications as well as a basic hands-on training for the application of modern PC based data acquisition methods. The combination of lectures about measurement techniques, sensors, signal converters, I/O systems, bus systems, data acquisition, handling and control routines and tutorials for typical fluid mechanics applications allows the participant to get a comprehensive insight and a sound knowledge in this field. The graphical programming environment LabVIEW from National Instruments is used in this course as it is one of the standard software tools for data acquisition worldwide.

Basic design of measurements systems

- Logging devices and sensors
- Analog to digital conversion
- Program design and programming methods using LabView
- Data handling
- Bus systems
- Design of a computer aided data acquisition system for pressure, temperature and derived parameters
- Frequency analysis

regular attendance: 52.5
self-study: 67.5

Lernziele:

Die Studenten können:

- die wesentlichen Grundlagen der rechnergestützten Messwerterfassung theoretisch beschreiben und praktisch anwenden
- nach jedem Lernabschnitt den vorgestellten Stoff anhand eines Beispiels am PC in die Praxis umsetzen

The students are able to:

- theoretically describe and explain the fundamentals of computer aided measurements and and adopt them practically
- apply the basics learned during the lecture to a practical problem in the form of a PC exercise

Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Literature
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011
Content
Registration during the lecture period via the website.

The laboratory course offers an introduction into the acquisition of basic test data in fluid mechanics applications as well as a basic hands-on training for the application of modern PC based data acquisition methods. The combination of lectures about measurement techniques, sensors, signal converters, I/O systems, bus systems, data acquisition, handling and control routines and tutorials for typical fluid mechanics applications allows the participant to get a comprehensive insight and a sound knowledge in this field. The graphical programming environment LabVIEW from National Instruments is used in this course as it is one of the standard software tools for data acquisition worldwide.

Basic design of measurements systems

- Logging devices and sensors
- Analog to digital conversion
- Program design and programming methods using LabView
- Data handling
- Bus systems
- Design of a computer aided data acquisition system for pressure, temperature and derived parameters
- frequency analysis

regular attendance: 52.5
self-study: 67.5

The students are able to:

- theoretically describe and explain the fundamentals of computer aided measurements and and adopt them practically
- apply the basics learned during the lecture to a practical problem in the form of a PC excercise

Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Literature
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl. , 2011