Modulhandbuch
Mechanical Engineering International (B.Sc.)
SPO 2017
Gültig ab Wintersemester 2020/2021
Stand 15.09.2020

KIT-FAKULTÄT FÜR MASCHINENBAU
Inhaltsverzeichnis

1. **Über das Modulhandbuch** ... 4
 1.1. Wichtige Regeln .. 4
 1.1.1. Beginn und Abschluss eines Moduls ... 4
 1.1.2. Modul- und Teilleistungsarten .. 4
 1.1.3. Gesamt- oder Teilprüfungen .. 4
 1.1.4. Arten von Prüfungen .. 4
 1.1.5. Wiederholung von Prüfungen .. 4
 1.1.6. Zusatzleistungen ... 5
 1.1.7. Alles ganz genau ... 5

2. **Qualifikationsziele** .. 6

3. **Studienplan** .. 7

4. **Stundentafeln WS 20/21** .. 16

5. **Aufbau des Studiengangs** .. 18
 5.1. Orientierungsprüfung ... 18
 5.2. Bachelorarbeit ... 18
 5.3. Fundamentals of Engineering .. 18
 5.4. Majors in Mechanical Engineering (International) 18
 5.5. International Project Management and Soft Skills 19

6. **Module** ... 20
 6.1. Bachelorarbeit - M-MACH-103722 ... 20
 6.2. Betriebliche Produktionswirtschaft - M-MACH-105108 22
 6.3. Elektrotechnik - M-ETIT-104049 ... 23
 6.4. Fertigungsprozesse (MEI) - M-MACH-104232 24
 6.5. Höhere Mathematik - M-MATH-104022 25
 6.6. Informatik [BSc-Modul 09, Inf] - M-MACH-102563 26
 6.7. Internationales Projektmanagement und Überfachliche Qualifikationen - M-MACH-103322 27
 6.9. Maschinenkonstruktionslehre [BSc-Modul 06, MKL] - M-MACH-102573 .. 30
 6.10. Mess- und Regelungstechnik [BSc-Modul 11, MRT] - M-MACH-102564 .. 33
 6.11. Orientierungsprüfung - M-MACH-104162 35
 6.13. SP A: Globales Produktionsmanagement - M-MACH-103351 37
 6.14. SP B: Energietechnik - M-MACH-103350 38
 6.15. SP C: Kraftfahrzeugtechnik - M-MACH-103349 39
 6.17. Technische Mechanik [BSc-Modul 03, TM] - M-MACH-102572 ... 41
 6.18. Technische Thermodynamik [BSc-Modul 05, TTD] - M-MACH-102574 .. 43

7. **Teilleistungen** ... 47
 7.1. Arbeitstechniken im Maschinenbau - T-MACH-105296 47
 7.2. Ausgewählte Themen virtueller Ingenieursanwendungen - T-MACH-105381 .. 51
 7.3. Automatisierte Produktionssysteme (MEI) - T-MACH-106732 52
 7.4. Bachelorarbeit - T-MACH-108685 ... 53
 7.5. Betriebliche Produktionswirtschaft - T-MACH-110327 54
 7.6. Betriebliche Produktionswirtschaft-Projekt - T-MACH-110326 55
 7.7. Elektrotechnik und Elektronik - T-ETIT-108386 56
 7.8. Fahrzeugkomfort und -akustik I - T-MACH-105154 57
 7.9. Fahrzeugkomfort und -akustik II - T-MACH-105155 59
 7.10. Globale Produktionsplanung (MEI) - T-MACH-106731 62
 7.11. Grundlagen der Energietechnik - T-MACH-105220 63
 7.12. Grundlagen der Fahrzeugtechnik I - T-MACH-100092 65
 7.13. Grundlagen der Fahrzeugtechnik II - T-MACH-102117 67
 7.14. Grundlagen der Fertigungstechnik (MEI) - T-MACH-108747 69
 7.15. Grundlagen der globalen Logistik - T-MACH-105379 71
 7.16. Grundlagen der Mess- und Regelungstechnik - T-MACH-104745 73
 7.17. Grundlagen der technischen Verbrennung I - T-MACH-105213 76
 7.18. Höhere Mathematik II Vorlesung - T-MATH-108267 77
 7.19. Höhere Mathematik III Vorlesung - T-MATH-108269 78
 7.20. Höhere Mathematik I Vorlesung - T-MATH-108265 79
<table>
<thead>
<tr>
<th>Kurs mit Code</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhere Mathematik I</td>
<td>110</td>
</tr>
<tr>
<td>Höhere Mathematik II</td>
<td>110</td>
</tr>
<tr>
<td>Höhere Mathematik III</td>
<td>110</td>
</tr>
<tr>
<td>Informatik im Maschinenbau</td>
<td>110</td>
</tr>
<tr>
<td>Informatik im Maschinenbau, VL</td>
<td>110</td>
</tr>
<tr>
<td>Maschinen und Prozesse</td>
<td>110</td>
</tr>
<tr>
<td>Maschinen und Prozesse, Vorleistung</td>
<td>110</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre I & II</td>
<td>110</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre I, Vorleistung</td>
<td>110</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre II & IV</td>
<td>110</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre III, Vorleistung</td>
<td>110</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre IV, Vorleistung</td>
<td>110</td>
</tr>
<tr>
<td>Präsentation</td>
<td>110</td>
</tr>
<tr>
<td>Projekt und Operations Management</td>
<td>110</td>
</tr>
<tr>
<td>SmartFactory@Industry (MEI)</td>
<td>110</td>
</tr>
<tr>
<td>Strömungslehre 1&2</td>
<td>110</td>
</tr>
<tr>
<td>Technische Mechanik I</td>
<td>110</td>
</tr>
<tr>
<td>Technische Mechanik II</td>
<td>110</td>
</tr>
<tr>
<td>Technische Mechanik III & IV</td>
<td>110</td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>110</td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td>110</td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>110</td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung II, Vorleistung</td>
<td>110</td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik I</td>
<td>110</td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik II</td>
<td>110</td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik III</td>
<td>110</td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik IV</td>
<td>110</td>
</tr>
<tr>
<td>Wärme- und Stoffübertragung</td>
<td>110</td>
</tr>
<tr>
<td>Wellen- und Quantenphysik</td>
<td>110</td>
</tr>
<tr>
<td>Werkstoffkunde I & II</td>
<td>110</td>
</tr>
<tr>
<td>Werkstoffkunde Praktikum</td>
<td>110</td>
</tr>
</tbody>
</table>

8. Zulassungssatzung ... 138
9. SPO ... 147
10. SPO-Änderungssatzung 1 ... 163
11. SPO-Änderungssatzung 2 ... 166
1 Über das Modulhandbuch

1.1 Wichtige Regeln

- die Zusammensetzung der Module,
- die Größe der Module (in LP),
- die Abhängigkeiten der Module untereinander,
- die Qualifikationsziele der Module,
- die Art der Erfolgskontrolle und
- die Bildung der Note eines Moduls.

Das Modulhandbuch gibt somit die notwendige Orientierung im Studium und ist ein hilfreicher Begleiter. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis, das aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) informiert.

1.1.1 Beginn und Abschluss eines Moduls

1.1.2 Modul- und Teilleistungsversionen

1.1.3 Gesamt- oder Teilprüfungen

1.1.4 Arten von Prüfungen

1.1.5 Wiederholung von Prüfungen

1.1.6 Zusatzleistungen

1.1.7 Alles ganz genau ...
Qualifikationsziele des Bachelorstudiengangs Mechanical Engineering International

Im Bereich Betriebswirtschaft finden internationale Standards im Rechnungswesen und internationale Rechtsformen besondere Berücksichtigung.

Mit diesen fundierten Kenntnissen der wissenschaftlichen Theorien, Prinzipien und Methoden können die Absolventinnen und Absolventen genau spezifizierte Probleme des Maschinenbaus mit eindeutigem Lösungsweg erfolgreich bearbeiten.

Im Schwerpunkt und in der Bachelorarbeit werden durch enge Verzahnung von Forschung, Lehre und industrieller Anwendung fachdisziplinübergreifende Forschungs-, Problemlöse- und Planungskompetenzen für technische Systeme entwickelt. Die Kompetenzvermittlung geschieht durchgängig mit Bezug auf internationale Standards.

Die Absolventinnen und Absolventen können in den von ihnen gewählten Bereichen des Maschinenbaus technische Systeme kompetent beurteilen und besitzen die Fähigkeit, Ergebnisse zu verallgemeinern und neue Lösungen zu generieren.
Studienplan der KIT-Fakultät für Maschinenbau für den Bachelorstudiengang Mechanical Engineering (International) gemäß SPO 2017
Fassung vom 27.07.2016

Inhaltsverzeichnis

0 Abkürzungsverzeichnis...2
1 Studienpläne, Module und Prüfungen ..3
 1.1 Prüfungsmodalitäten..3
 1.2 Module des Bachelorstudiums...3
 1.3 Studienplan..7
 1.4 Bachelorarbeit..8
2 Schwerpunkte ...8
 2.1 Wahlmöglichkeiten für den Schwerpunkt ..8
3 Änderungshistorie (ab 20.07.2016) ..9
0 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>SS</td>
</tr>
<tr>
<td>Schwerpunkte:</td>
<td>K, KP</td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Leistung:</td>
<td>LP</td>
</tr>
<tr>
<td></td>
<td>Pr</td>
</tr>
<tr>
<td></td>
<td>mPr</td>
</tr>
<tr>
<td></td>
<td>sPr</td>
</tr>
<tr>
<td></td>
<td>PraA</td>
</tr>
<tr>
<td></td>
<td>Schein</td>
</tr>
<tr>
<td></td>
<td>TL</td>
</tr>
<tr>
<td></td>
<td>Gew</td>
</tr>
<tr>
<td>Sonstiges:</td>
<td>B.Sc.</td>
</tr>
<tr>
<td></td>
<td>SPO</td>
</tr>
<tr>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>w</td>
</tr>
<tr>
<td></td>
<td>p</td>
</tr>
</tbody>
</table>
1 Studienplan, Module und Prüfungen

Die Angabe der Leistungspunkte (LP) erfolgt gemäß dem „European Credit Transfer and Accumulation System“ (ECTS) und basiert auf dem von den Studierenden zu absolvierenden Arbeitspensum.

1.1 Prüfungsmodalitäten

In jedem Semester werden für schriftliche Prüfungen mindestens ein Prüfungstermin und für mündliche Prüfungen mindestens zwei Termine angeboten. Prüfungstermine sowie Termine, zu denen die Anmeldung zu den Prüfungen spätestens erfolgen muss, werden vom Prüfungsausschuss festgelegt. Die Anmeldung für die Prüfungen erfolgt in der Regel mindestens eine Woche vor der Prüfung. Anmelde- und Prüfungstermine werden rechtzeitig durch Anschlag bekanntgegeben, bei schriftlichen Prüfungen mindestens 6 Wochen vor der Prüfung.

Für die Erfolgskontrollen in den Schwerpunkt-Modulen gelten folgende Regeln:

Die konkrete Durchführungsform der Prüfungen ist in der Studien- und Prüfungsordnung § 6 Absatz 3 festgelegt.

1.2 Module des Bachelorstudiums

...
<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>LP/Modul</th>
<th>Teilleistungen (TL)</th>
<th>LP/TL</th>
<th>Koordinator</th>
<th>Art der Erfolgskontrolle (TL)</th>
<th>Pr (h)</th>
<th>G ew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhere Mathematik</td>
<td>Advanced Mathematics</td>
<td>21</td>
<td>Höhere Mathematik I Vorleistungen Advanced Mathematics I prerequisites</td>
<td></td>
<td>Schein</td>
<td>Prüfungsleistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Höhere Mathematik I Advanced Mathematics I</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Höhere Mathematik II Vorleistungen Advanced Mathematics II prerequisites</td>
<td></td>
<td>Schein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Höhere Mathematik II Advanced Mathematics II</td>
<td></td>
<td>sPr</td>
<td></td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Höhere Mathematik III Vorleistungen Advanced Mathematics III prerequisites</td>
<td></td>
<td>Schein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Höhere Mathematik III Advanced Mathematics III</td>
<td></td>
<td>sPr</td>
<td></td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik I Engineering Mechanics I</td>
<td></td>
<td>sPr</td>
<td></td>
<td>1,5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik II Vorleistungen Engineering Mechanics II prerequisites</td>
<td></td>
<td>Schein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik II Engineering Mechanics II</td>
<td></td>
<td>sPr</td>
<td></td>
<td>1,5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik III Vorleistungen Engineering Mechanics III prerequisites</td>
<td></td>
<td>Schein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik III Engineering Mechanics III</td>
<td></td>
<td>Schein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik IV Vorleistungen Engineering Mechanics IV prerequisites</td>
<td></td>
<td>Schein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik IV Engineering Mechanics IV</td>
<td></td>
<td>sPr</td>
<td></td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technische Mechanik III / IV Vorleistungen Engineering Mechanics III / IV</td>
<td></td>
<td>sPr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertigungsprozesse</td>
<td>Manufacturing Processes</td>
<td>4</td>
<td>Grundlagen der Fertigungstechnik Basics in Manufacturing Technology</td>
<td></td>
<td>Schulze</td>
<td></td>
<td>sPr</td>
<td>1</td>
</tr>
<tr>
<td>Werkstoffkunde</td>
<td>Materials Science</td>
<td>14</td>
<td>Werkstoffkunde-Praktikum Materials Science Lab Course</td>
<td></td>
<td>Heilmaier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Werkstoffkunde I & II Materials Science I & II</td>
<td></td>
<td>mPr</td>
<td></td>
<td>ca. 0,5</td>
<td>11</td>
</tr>
<tr>
<td>Fach</td>
<td>Modul</td>
<td>LP/Modul</td>
<td>Teilleistungen (TL)</td>
<td>LP/TL</td>
<td>Koor- di- nator</td>
<td>Art der Erfolgs- kontrolle (TL)</td>
<td>Pr (h)</td>
<td>Gew</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>---------------------</td>
<td>-------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Ingenieurwissenschaftliche Grundlagen Fundamentals in Engineering</td>
<td>Technische Thermodynamik Technical Thermodynamics</td>
<td>15</td>
<td>Thermodynamik und Wärmeübertragung I Vorleistungen Technical Thermodynamics and Heat Transfer I Prerequisites</td>
<td>8</td>
<td>Maas</td>
<td>Schein</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thermodynamik und Wärmeübertragung II Vorleistungen Technical Thermodynamics and Heat Transfer II prerequisites</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thermodynamik und Wärmeübertragung I Technical Thermodynamics and Heat Transfer I</td>
<td>7</td>
<td>Sam</td>
<td>Schein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thermodynamik und Wärmeübertragung II Technical Thermodynamics and Heat Transfer II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strömungslehre Fluid Mechanics</td>
<td>8</td>
<td>Strömungslehre I & II Fluid Mechanics I & II</td>
<td>8</td>
<td>Frohnapfel</td>
<td>sPr</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Physik Physics</td>
<td>5</td>
<td>Wellen- und Quantenphysik Wave and Quantum Physics</td>
<td>5</td>
<td>Goll</td>
<td>sPr</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Elektrotechnik Electrical Engineering</td>
<td>8</td>
<td>Elektrotechnik und Elektronik Electrical Engineering and Electronics</td>
<td>8 Becker</td>
<td>sPr</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mess- und Regelungstechnik Measurement and Control Systems</td>
<td>7</td>
<td>Grundlagen der Mess- und Regelungstechnik Basics in Measurement and Control Systems</td>
<td>7</td>
<td>Stiller</td>
<td>sPr</td>
<td>2.5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Informatik Computer Science</td>
<td>6</td>
<td>Informatik im Maschinenbau Vorleistungen Computer Science in Mechanical Engineering prerequisites</td>
<td>6</td>
<td>Ovtcharova</td>
<td>Schein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Informatik im Maschinenbau Computer Science in Mechanical Engineering</td>
<td>6</td>
<td></td>
<td>sPr</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Maschinenkonstruktionslehre Mechanical Design</td>
<td>20</td>
<td>Maschinenkonstruktionslehre I Vorleistungen Mechanical Design I prerequisites</td>
<td>7</td>
<td>Albers</td>
<td>Schein</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maschinenkonstruktionslehre II Vorleistungen Mechanical Design II prerequisites</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maschinenkonstruktionslehre III Vorleistungen Mechanical Design III prerequisites</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maschinenkonstruktionslehre IV Vorleistungen Mechanical Design IV prerequisites</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maschinenkonstruktionslehre III / IV Mechanical Design III / IV</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3 Studienplan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V Ü P</td>
<td>V Ü P</td>
<td>V Ü P</td>
<td>V Ü P</td>
</tr>
<tr>
<td>Höhere Mathematik I-III Advanced Mathematics I-III</td>
<td>4 2</td>
<td>4 2</td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Fertigungstechnik Basics in Manufacturing Technology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellen- und Quantenphysik Wave and Quantum Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Mechanik I-IV Engineering Mechanics I-IV</td>
<td>3 2</td>
<td>3 2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
<tr>
<td>Werkstoffkunde I, II Materials Science I, II</td>
<td>4 1</td>
<td>3 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werkstoffkunde-Praktikum(^1) Materials Science Lab Course</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung I, II / Technical Thermodynamics and Heat Transfer I, II</td>
<td>4 2</td>
<td>3 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre I-IV Mechanical Design I-IV</td>
<td>2 1</td>
<td>2 2</td>
<td>2 2</td>
<td>1 2</td>
</tr>
<tr>
<td>Informatik im Maschinenbau Computer Science in Mechanical Engineering</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik Electrical Engineering and Electronics</td>
<td>4 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strömungslehre I Fluid Mechanics I</td>
<td>2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maschinen und Prozesse Machines and Processes</td>
<td>(2) (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitstechniken im Maschinenbau Working Methods in Mechanical Engineering</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V Ü P</td>
<td>V Ü P</td>
</tr>
<tr>
<td>Grundlagen der Mess- und Regelungstechnik Basics in Measurement and Control Systems</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Strömungslehre II Fluid Mechanics II</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Maschinen und Prozesse Machines and Processes</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>Betriebliche Produktionswirtschaft + BPW-Projekte Production Operations Management + POM-Projects</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Projekt und Operations Management Project and Operations Management</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Schwerpunkt (8/9 SWS, variabel) / Major Field</td>
<td>4 (5)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Das Werkstoffkunde-Praktikum findet in der vorlesungsfreien Zeit zwischen SS und WS statt und beansprucht eine Woche.
1.4 Bachelorarbeit

Die Durchführung und Benotung der Bachelorarbeit ist in § 14 der Studien- und Prüfungsordnung für den Bachelorstudiengang Mechanical Engineering (International) geregelt. Weitere Informationen können der Modulbeschreibung im Modulhandbuch entnommen werden.

2 Schwerpunkte

Die vom Fakultätsrat genehmigten Schwerpunkte sind im Modulhandbuch angegeben.

2.1 Wahlmöglichkeiten für den Schwerpunkt

Für den Schwerpunkt werden Teilleistungen im Umfang von 16 LP gewählt, davon werden mindestens 8 LP im Kernbereich (K) erworben. „KP“ bedeutet, dass die Teilleistung im Kernmodulbereich Pflicht ist, sofern sie nicht bereits belegt wurde. Die übrigen 8 Leistungspunkte können aus dem Ergänzungsbe- reich kommen. Dabei dürfen im Rahmen von Praktika höchstens 4 LP als Studienleistungen erbracht werden, falls dies in einem Schwerpunkt als Möglichkeit vorgesehen ist.

Ein Absolvieren des Schwerpunktmoduls mit mehr als 16 LP ist nur im Fall, dass die Addition der Leistungspunkte der gewählten Teilmodulprüfungen innerhalb des Schwerpunktmoduls nicht auf 16 LP aufgeht, erlaubt. Nicht zulässig ist die Teilnahme an weiteren Teilmodulprüfungen, wenn bereits 16 LP erreicht oder überschritten wurden.

3 Änderungshistorie (ab 20.07.2016)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Änderungsbemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.05.2017</td>
<td>Teilung des Faches Internationales Projektmanagement und Überfachliche Qualifikationen in zwei Module (1.2), redaktionelle Änderungen</td>
</tr>
<tr>
<td>13.11.2017</td>
<td>Änderungen im Abkürzungsverzeichnis, Entfernung des doppelt aufgeführten Moduls „Grundlagen der Fertigungstechnik“ (1.2), Anpassung der Art der Erfolgskontrolle und der Prüfungszeit im Ergänzungsbereich (1.2), Anpassung der Gewichtung und Art der Erfolgskontrolle im Modul „Bachelorarbeit“ (1.2), redaktionelle Änderungen</td>
</tr>
<tr>
<td>27.07.2018</td>
<td>SWS für Schwerpunkt (1.3) von 16 SWS auf 8 SWS korrigiert, weitere redaktionelle Änderungen</td>
</tr>
</tbody>
</table>
Winter Term 2020-2021

B.Sc. Mechanical Engineering International: Basic Courses, 1st year

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am - 9:30 am</td>
<td>3145187 Mechanical Design I (Tu)</td>
<td>3173008 Materials Science and Engineering I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 am - 11:30 am</td>
<td>3145186 Mechanical Design I</td>
<td>3140000 Advanced Mathematics I</td>
<td>3173009 Materials Science and Engineering I (Tu) (every 2 weeks)</td>
<td>3161011 Engineering Mechanics I (Tu)</td>
<td></td>
</tr>
<tr>
<td>12:00 - 1:30 pm</td>
<td>3161010 Engineering Mechanics I</td>
<td>3161010 Engineering Mechanics I</td>
<td>3173008 Materials Science and Engineering I</td>
<td>3145187 Mechanical Design I (Tu)</td>
<td></td>
</tr>
<tr>
<td>2:00 pm - 3:30 pm</td>
<td>3145187 Mechanical Design I (Tu)</td>
<td></td>
<td></td>
<td>3140000 Advanced Mathematics I</td>
<td></td>
</tr>
<tr>
<td>4:00 pm - 5:30 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3118092 Grundlagen der Fertigungstechnik (MEI)</td>
</tr>
<tr>
<td>6:00 pm - 7:30 pm</td>
<td></td>
<td></td>
<td></td>
<td>3150000 Advanced Mathematics I (Tu)</td>
<td></td>
</tr>
</tbody>
</table>

Winter Term 2020-2021

B.Sc. Mechanical Engineering International: Basic Courses, 2nd year

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am - 9:30 am</td>
<td>3146016 Mechanical Design II (Lecture)</td>
<td>3165014 Technical Thermodynamics and Heat Transfer I</td>
<td></td>
<td>3168015 Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td></td>
</tr>
<tr>
<td>10:00 am - 11:30 am</td>
<td>3165014 Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>3168013 Engineering Mechanics III (Tutorials)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 - 1:30 pm</td>
<td>2306351 Electrical Engineering and Electronics (Tutorial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 pm - 3:30 pm</td>
<td>3161012 Engineering Mechanics III (Lecture)</td>
<td>3145017 Mechanical Design III (Tutorial, every 2 weeks)</td>
<td>3160002 Advanced Mathematics III (Lecture)</td>
<td>3145018 Mechanical Design III (Workshops)</td>
<td></td>
</tr>
<tr>
<td>4:00 pm - 5:30 pm</td>
<td>2306355 Electrical Engineering and Electronics (Lecture)</td>
<td>3145017 Mechanical Design III (Tutorial, every 2 weeks)</td>
<td>3160002 Advanced Mathematics III (Lecture)</td>
<td>3145018 Mechanical Design III (Workshops)</td>
<td></td>
</tr>
<tr>
<td>6:00 pm - 7:30 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8:00 am - 9:30 am</td>
<td>3118031 Production Operations Management</td>
<td>3137020 Measurement and Control Systems</td>
<td>3137021 Measurement and Control Systems (Tutorial)</td>
<td>3153511 Fluid Mechanics II</td>
<td></td>
</tr>
<tr>
<td>10:00 am - 11:30 am</td>
<td>3118031 Production Operations Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 pm - 1:30 pm</td>
<td>3137020 Measurement and Control Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 pm - 3:30 pm</td>
<td>3118031 Production Operations Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 pm - 5:30 pm</td>
<td>3137020 Measurement and Control Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00 pm - 7:30 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

05/10/2020

<table>
<thead>
<tr>
<th>Basic Courses</th>
<th>Tutorial</th>
<th>Block course / Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>3118032 Betriebliche Produktionswirtschaft Projekt</td>
<td>2550489 Projekt und Operations Management (block course)</td>
<td></td>
</tr>
</tbody>
</table>
5 Aufbau des Studiengangs

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierungsprüfung</td>
<td>15 LP</td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>15 LP</td>
</tr>
<tr>
<td>Fundamentals of Engineering</td>
<td>143 LP</td>
</tr>
<tr>
<td>Majors in Mechanical Engineering (International)</td>
<td>16 LP</td>
</tr>
<tr>
<td>International Project Management and Soft Skills</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

5.1 Orientierungsprüfung

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104162 Orientierungsprüfung</td>
<td>0 LP</td>
</tr>
</tbody>
</table>

5.2 Bachelorarbeit

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103722 Bachelorarbeit</td>
<td>15 LP</td>
</tr>
</tbody>
</table>

5.3 Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-104022 Höhere Mathematik</td>
<td>21 LP</td>
</tr>
<tr>
<td>M-MACH-102572 Technische Mechanik</td>
<td>23 LP</td>
</tr>
<tr>
<td>M-MACH-104232 Fertigungsprozesse (MEI)</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102562 Werkstoffkunde</td>
<td>14 LP</td>
</tr>
<tr>
<td>M-MACH-102574 Technische Thermodynamik</td>
<td>15 LP</td>
</tr>
<tr>
<td>M-MACH-102565 Strömungslehre</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-PHYS-104030 Physik</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-ETIT-104049 Elektrotechnik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-102564 Mess- und Regelungstechnik</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-102563 Informatik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-102573 Maschinenkonstruktionslehre</td>
<td>20 LP</td>
</tr>
<tr>
<td>M-MACH-102566 Maschinen und Prozesse</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-105106 Betriebliche Produktionswirtschaft</td>
<td>5 LP</td>
</tr>
</tbody>
</table>

Die Erstverwendung ist ab 11.07.2019 möglich.

5.4 Majors in Mechanical Engineering (International)

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Majors in Mechanical Engineering (International) (1 Bestandteil)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103351 SP A: Globales Produktionsmanagement</td>
<td>16 LP</td>
</tr>
<tr>
<td>M-MACH-103350 SP B: Energietechnik</td>
<td>16 LP</td>
</tr>
<tr>
<td>M-MACH-103349 SP C: Kraftfahrzeugtechnik</td>
<td>16 LP</td>
</tr>
</tbody>
</table>
5.5 International Project Management and Soft Skills

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103322</td>
<td>Internationales Projektmanagement und Überfachliche Qualifikationen</td>
</tr>
</tbody>
</table>
6 Module

6.1 Modul: Bachelorarbeit [M-MACH-103722]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Bachelorarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108685</td>
<td>Bachelorarbeit</td>
<td>12 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-108684</td>
<td>Präsentation</td>
<td>3 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Der Zeitpunkt der Ausgabe der Bachelorarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Auf begründeten Antrag des Studenten kann der Prüfungsausschuss die Bearbeitungszeit um maximal einen Monat verlängern. Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen. Die Präsentation soll ca. 20 Minuten dauern, entspricht im Umfang 3 LP und wird anschließend mit dem anwesenden Fachpublikum diskutiert.

Qualifikationsziele

Der/die Studierende kann selbstständig ein abgegrenztes, fachrelevantes Thema in einem vorgegebenen Zeitrahmen nach wissenschaftlichen Kriterien bearbeiten. Er/sie ist in der Lage, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammentragen und zu erkennen. Er/sie überblickt eine Fragestellung, kann wissenschaftliche Methoden und Verfahren auswählen und diese zur Lösung einsetzen bzw. weitere Potentiale aufzeigen. Dies erfolgt grundsätzlich auch unter Berücksichtigung von gesellschaftlichen und/oder ethischen Aspekten. Die gewonnenen Ergebnisse kann er/sie interpretieren, evaluieren und bei Bedarf grafisch darstellen. Er/sie ist in der Lage, eine wissenschaftliche Arbeit klar zu strukturieren und sie (a) in schriftlicher Form unter Verwendung der Fachterminologie zu kommunizieren, sowie (b) in mündlicher Form zu präsentieren und mit Fachleuten zu diskutieren.

Voraussetzungen

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (vgl. §14 (1) der SPO).

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht werden:
 - Fundamentals of Engineering
 - International Project Management and Soft Skills
 - Majors in Mechanical Engineering (International)
Inhalt
Das Thema der Bachelorarbeit kann vom Studierenden selbst vorgeschlagen werden. Es wird vom Betreuer der Bachelorarbeit unter Beachtung von § 14 (3) der SPO festgelegt.

Arbeitsaufwand
Für die Ausarbeitung und Präsentation der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 450 Stunden gerechnet.
6.2 Modul: Betriebliche Produktionswirtschaft [M-MACH-105106]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Leistungspunkte 5
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Englisch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>LP</th>
<th>Ersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110327</td>
<td>Betriebliche Produktionswirtschaft</td>
<td>3</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-110326</td>
<td>Betriebliche Produktionswirtschaft-Projekt</td>
<td>2</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
Nach erfolgreichem Abschluss der Lehrveranstaltung sind Sie in der Lage alleine und im Team

- die behandelten Fachbegriffe in den Bereichen Produktion, Logistik, und Betriebswirtschaft zu benennen,
- in einem Gespräch mit Fachkundigen die Zusammenhänge zwischen diesen Bereichen zutreffend zu beschreiben,
- die wichtigsten Entscheidungsprobleme in diesem Gebiet qualitativ und quantitativ zu beschreiben,
- die entsprechenden qualitativen und quantitativen Entscheidungsmodelle zu nutzen,
- deren Ergebnisse kritisch zu beurteilen und daraus Schlüsse zu ziehen,
- sowie durch eigene Recherche die behandelten Methoden und Modelle zu erweitern.

Voraussetzungen
keine

Inhalt
Es werden grundlegende Kompetenzen über die Planung und den Betrieb eines Produktionsbetriebes vermittelt. Inhalt der Vorlesung sind die Grundlagen des Operations- und Supply Chain Managements sowie betriebswirtschaftliche Grundlagen zu Rechnungswesen, Investitionsrechnung und Rechtsformen.

Anmerkungen
Es handelt sich um ein gemeinsames Modul des Instituts für Fördertechnik und Logistiksysteme (IFL), und des Instituts für Produktionstechnik (WBK). Die Institute wechseln sich bei jedem Zyklus ab.

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzzeit: 42 Stunden,
Selbststudium: 108 Stunden

Lehr- und Lernformen
1. Vorlesungen (Pflicht)
2. Übungen (Pflicht)
3. Gruppenarbeit (Pflicht)
4. Mündliche Verteidigung der Gruppenarbeit (Pflicht)
6.3 Modul: Elektrotechnik [M-ETIT-104049]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-108386 | Elektrotechnik und Elektronik | 8 LP | Becker |

Erfolgskontrolle(n)
Written exam, duration 3 hours.

Voraussetzungen
keine

Anmerkungen
Exam and Lecture will be held in English.
6.4 Modul: Fertigungsprozesse (MEI) [M-MACH-104232]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MACH-108747 | Grundlagen der Fertigungstechnik (MEI) | 4 LP | Schulze |

Erfolgskontrolle(n)

schriftliche Prüfung (Dauer: 60 min)

Qualifikationsziele

Die Studierenden …

- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der sechs Hauptgruppen (DIN 8580) klassifizieren.
- sind fähig, die wesentlichen Fertigungsverfahren der sechs Hauptgruppen (DIN 8580) anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, die charakteristischen Verfahrensmerkmale (Geometrie, Werkstoffe, Genauigkeit, Werkzeuge, Maschinen) der wesentlichen Fertigungsverfahren der sechs Hauptgruppen nach DIN 8580 zu beschreiben.
- sind fähig, aus den charakteristischen Verfahrensmerkmalen die relevanten prozessspezifischen technischen Vor- und Nachteile abzuleiten.
- sind in der Lage, für vorgegebene Bauteil eine Auswahl geeigneter Fertigungsprozesse durchzuführen.
- sind in der Lage, die für die Herstellung vorgegebener Beispielprodukte erforderlichen Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen.

Voraussetzungen

keine

Inhalt

Die Themen im Einzelnen sind:

- Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung

Arbeitsaufwand

Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Lehr- und Lernformen

Vorlesung
6.5 Modul: Höhere Mathematik [M-MATH-104022]

Verantwortung: Prof. Dr. Maria Aksenovich
Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td>Jedes Wintersemester</td>
<td>3 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-108266</td>
<td>Höhere Mathematik I</td>
<td>7 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-108268</td>
<td>Höhere Mathematik II</td>
<td>7 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-108270</td>
<td>Höhere Mathematik III</td>
<td>7 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-108265</td>
<td>Höhere Mathematik I Vorleistung</td>
<td>0 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-108267</td>
<td>Höhere Mathematik II Vorleistung</td>
<td>0 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-108269</td>
<td>Höhere Mathematik III Vorleistung</td>
<td>0 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Drei schriftliche Prüfungen zu den Vorlesungen Teil I-III von jeweils 120 Minuten Dauer.

Qualifikationsziele
Die Studierenden beherrschen die Grundlagen der Analysis in einer und in mehreren Variablen, Linearer Algebra, der Theorie der Differentialgleichungen und der Wahrscheinlichkeitsrechnung. Sie kennen Techniken aus diesen Bereichen und können diese anwenden.

Zusammensetzung der Modulnote
Die Modulnote berechnet sich als arithmetisches Mittel der drei Klausurnoten in Höherer Mathematik I-III.

Voraussetzungen
Keine.

Inhalt
Grundbegriffe der Mengenlehre, Beweise, Folgen und Konvergenz, Funktionen und Stetigkeit, Reihen, Differentialrechnung einer reellen Veränderlichen, Integralrechnung, Vektorräume, Differentialgleichungen, Laplacetransformation, Funktionen mehrerer Variabler, Anwendungen der mehrdimensionalen Analysis, Fourierrechnung, Differentialgleichungen, Stochastik

Arbeitsaufwand
Präsenzzeit: 270 Stunden
- Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 360 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vorbereitung auf die studienbegleitenden Modulprüfungen

Literatur
- Skript zur Vorlesung
6.6 Modul: Informatik (BSc-Modul 09, Inf) [M-MACH-102563]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105205</td>
<td>Informatik im Maschinenbau</td>
<td>6 LP</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105206</td>
<td>Informatik im Maschinenbau, VL</td>
<td>0 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftlich: "Informatik im Maschinenbau", 100%, 180 Minuten; Prüfungszulassung durch bestandenes Rechnerpraktikum.

Qualifikationsziele

Zusammensetzung der Modulnote
Prüfungsergebnis "Informatik im Maschinenbau" 100%

Voraussetzungen
Keine

Inhalt
Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzzeit: 63 Stunden
Selbststudium: 117 Stunden

Lehr- und Lernformen
Vorlesung und Rechnerpraktikum
6.7 Modul: Internationales Projektmanagement und Überfachliche Qualifikationen [M-MACH-103322]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: International Project Management and Soft Skills

Leistungspunkte: 6
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Englisch
Level: 3
Version: 2

Wahlpflichtblock: Schlüsselqualifikationen ()

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Gewichtung</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105296 Arbeitstechniken im Maschinenbau</td>
<td>4 LP</td>
<td>Deml</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108295 Projekt und Operations Management</td>
<td>2 LP</td>
<td>Nickel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen von Studienleistungen.

Qualifikationsziele

- Der/die Studierende erwirbt Wissen über die Prinzipien und verschiedene Werkzeuge des Projektmanagements und der Projektplanung, sowie die Fähigkeit, Projekte eigenständig zu planen und mit geeigneten Steuerungssystemen zu überwachen.
- Der/die Studierende führt Analysen im Multi-Projektmanagement und Projektcontrolling mithilfe unterschiedlicher Methoden und Prozeduren in einem globalen Umfeld durch.
- Der/die Studierende macht sich Kenntnisse über den Produktentstehungsprozess sowie wichtiger Parameter hierzu und Entwicklungsmethoden im Projektmanagement zu eigen.

Voraussetzungen
Keine

Inhalt
Arbeitstechnik im Maschinenbau:
1. Zeit- und Selbstmanagement
2. Teamarbeit
3. Literaturrecherche
4. Wissenschaftliches Schreiben
5. Wissenschaftliches Präsentieren

Project and Operations Management:

Themenschwerpunkte der Vorlesung sind:

- Einführung in die mathematische Optimierung
- Netzwerkplanstechniken (CPM, PERT, Stochastische Zeitanalyse etc.)
- Bestandsmanagement (Ein- und mehr-periodische Modelle etc.)
- Operative Ablaufsteuerung (Reihenfolgeplanung auf mehreren Maschinen etc.)

Arbeitsaufwand

Lehr- und Lernformen
Vorlesungen
Workshops
Literatur
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
6.8 Modul: Maschinen und Prozesse (mach13BSc-Modul 13, MuP) [M-MACH-102566]

Verantwortung: Dr.-Ing. Heiko Kubach
Einhrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Lehrer/Lehrerin</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105208</td>
<td>Maschinen und Prozesse</td>
<td>7 LP</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
<tr>
<td>T-MACH-105232</td>
<td>Maschinen und Prozesse, Vorleistung</td>
<td>0 LP</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Klausur (2 h)

Qualifikationsziele

Die Studenten können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen.

Zusammensetzung der Modulnote

Notenbildung zu 100% aus o.g. schriftl. Prüfung

Voraussetzungen

Keine.

Inhalt

- Verbrennungsmotoren
- thermische Strömungsmaschinen
- hydraulische Strömungsmaschinen
- Thermodynamik

Anmerkungen

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

Präsenz: 48 h
Selbststudium: 162 h

Lehr- und Lernformen

Vorlesung+Übung
Praktikum
6 MODULE

Modul: Maschinenkonstruktionslehre (BSc-Modul 06, MKL) [M-MACH-102573]

6.9 Modul: Maschinenkonstruktionslehre (BSc-Modul 06, MKL) [M-MACH-102573]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Jedes Wintersemester</td>
<td>4 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Lehrgebiet</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105286</td>
<td>Maschinenkonstruktionslehre I & II</td>
<td>5 LP</td>
<td>Jedes Wintersemester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-104810</td>
<td>Maschinenkonstruktionslehre III & IV</td>
<td>11 LP</td>
<td>Jedes Wintersemester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105282</td>
<td>Maschinenkonstruktionslehre I, Vorleistung</td>
<td>1 LP</td>
<td>Jedes Wintersemester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105283</td>
<td>Maschinenkonstruktionslehre II, Vorleistung</td>
<td>1 LP</td>
<td>Jedes Wintersemester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110955</td>
<td>Maschinenkonstruktionslehre III, Vorleistung</td>
<td>1 LP</td>
<td>Jedes Wintersemester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110956</td>
<td>Maschinenkonstruktionslehre IV, Vorleistung</td>
<td>1 LP</td>
<td>Jedes Wintersemester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Maschinenkonstruktionslehre I & II:

- Prüfungsvorleistung: Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre I, sowie erfolgreiche Bearbeitung von Abgabeleistungen in Maschinenkonstruktionslehre II
- Schriftliche Prüfung über das Lehrgebiet Maschinenkonstruktionslehre I und II: Dauer 60 min

Maschinenkonstruktionslehre III & IV:

- Prüfungsvorleistung: Erfolgreiche Teilnahme an Workshops im Lehrgebiet Maschinenkonstruktionslehre III und IV
- Prüfung über das Lehrgebiet Maschinenkonstruktionslehre III und IV bestehend aus
 - schriftlichem Teil mit Dauer 60 min zzgl. Einlesezeit und
 - konstruktivem Teil mit Dauer 180 min zzgl. Einlesezeit

Qualifikationsziele

Voraussetzungen

Keine
Inhalt
MKL I:
- Einführung in die Produktentwicklung
- Federn
- Werkzeuge zur Visualisierung (Techn. Zeichnen)
- Technische Systeme
- Lagerungen und Führungen

MKL II:
- Grundlagen der Gestaltung
- Grundlagen Schraubenverbindungen
- Grundlagen Dichtungen

MKL III:
- Bauteilverbindungen
- Toleranzen und Passungen
- Getriebe

MKL IV:
- Kupplungen
- Fluidtechnik
- Dimensionierung
- Elektrische Maschinen

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.
Arbeitsaufwand

MKL1:
Präsenz: 33,5 h
Anwesenheit in Vorlesungen: 15 * 1,5 h = 22,5 h
Anwesenheit in Übungen: 8 * 1,5 h = 12 h
Selbststudium: 56,5 h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die Klausur: 56,5 h
Insgesamt: 90 h = 3 LP

MKL2:
Präsenz: 33 h
Anwesenheit in Vorlesungen: 15 * 1,5 h = 22,5 h
Anwesenheit in Übungen: 7 * 1,5 h = 10,5 h
Selbststudium: 57 h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die Klausur: 87h
Insgesamt: 120 h = 4 LP

MKL3:
Präsenz: 45h
Anwesenheit Vorlesungen (15 VL): 22,5h
Anwesenheit Übungen (7 ÜB): 10,5h
Anwesenheit Meilensteine Projektarbeit (3x 4h): 12h
Selbststudium: 135h
Projektarbeit im Team: 90h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung: 45h
Insgesamt: 180 h = 6 LP

MKL4:
Präsenz: 40,5h
Anwesenheit Vorlesungen (13 VL): 19,5h
Anwesenheit Übungen (6 ÜB): 9h
Anwesenheit Meilensteine Projektarbeit (3x 4h): 12h
Selbststudium: 169,5h
Projektarbeit im Team: 105h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung, inkl. Vorbereitung auf die Klausur: 64,5h
Insgesamt: 210 h = 7 LP

Lehr- und Lernformen
Vorlesungen
Hörsaalübungen
Semesterbegleitende Projektarbeit
6.10 Modul: Mess- und Regelungstechnik (BSc-Modul 11, MRT) [M-MACH-102564]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: Fundamentals of Engineering

Leistungspunkte 7
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 3
Version 2

Pflichtbestandteile
T-MACH-104745 Grundlagen der Mess- und Regelungstechnik 7 LP Stiller

Erfolgskontrolle(n)
Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 150 Minuten

Qualifikationsziele
- Die Studierenden können mess- und regelungstechnische Prinzipien für physikalische Größen benennen, beschreiben und an Beispielen erläutern.
- Sie können systemtheoretische Eigenschaften von dynamischen Systemen benennen, analysieren und bewerten.
- Sie können reale Systeme systemtheoretisch modellieren und die Eignung aufgestellter Modellen bewerten.
- Sie können Methoden zur Synthese von Reglern anwenden und so parametrisierte Regler analysieren und bewerten.
- Sie können Messprinzipien auswählen und Messeinrichtungen zur Messung nicht-elektrischer Größen modellieren, analysieren und bewerten.
- Sie können die Messunsicherheiten von Messgrößen quantifizieren und beurteilen.

Zusammensetzung der Modulnote
Note der Prüfung

Voraussetzungen
keine

Inhalt
1. Dynamische Systeme
2. Eigenschaften wichtiger Systeme und Modellbildung
3. Übertragungsverhalten und Stabilität
4. Synthese von Reglern
5. Grundbegriffe der Messtechnik
6. Estimation
7. Messaufnehmer
8. Einführung in digitale Messverfahren

Empfehlungen
Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace Transformation

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
84 Stunden Präsenzzeit, 126 Stunden Selbststudium.

Lehr- und Lernformen
Vorlesung
Übungen
Literatur
Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

• Measurement and Control Systems:
R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:
J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
O. Föllinger: Regelungstechnik, Hüthig-Verlag
W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:
E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Measurement and Control Systems
Modul: Orientierungsprüfung [M-MACH-104162]

Einrichtung: Universität gesamt
Bestandteil von: Orientierungsprüfung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Autor*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Technische Mechanik I</td>
<td>7 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Technische Mechanik II</td>
<td>6 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MATH-108266</td>
<td>Höhere Mathematik I</td>
<td>7 LP</td>
<td>Aksenovich, Kühnlein</td>
</tr>
</tbody>
</table>

Modellierte Fristen
Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen
keine

Anmerkungen
Aufgrund der Auswirkungen der Corona-Pandemie 2020 auf den Studienbetrieb hat das KIT für Studienanfänger*innen des WS 18/19 und Studienanfänger*innen des WS 19/20 eine Fristverlängerung für die Orientierungsprüfung um ein Semester beschlossen.
Modul: Physik [M-PHYS-104030]

Verantwortung:
apl. Prof. Dr. Gernot Goll
Prof. Dr. Bernd Pilawa

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-PHYS-108322</th>
<th>Wellen- und Quantenphysik</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 LP</td>
<td>Goll, Pilawa</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4(2), 1 SPO).

Qualifikationsziele

Die Studierenden

- sind mit den Eigenschaften von Wellen vertraut und können diese diskutieren
- können die Gesetzmäßigkeiten der Relativitätstheorie wiedergeben
- sind mit den Wellen- und Teilchen-basierten Beschreibungen von Licht und Masse vertraut
- können die Grenzen der Wellenphysik erklären
- können die Schrödinger-Gleichung auf einfache Probleme der Quantenphysik anwenden
- sind in der Lage, die grundlegenden Eigenschaften von Atomen zu erklären, insbesondere für das H-Atom
- können grundlegende Aspekte der elektronischen Eigenschaften von Festkörpern diskutieren

Voraussetzungen

Keine

Inhalt

- Eigenschaften von Wellen
- Schallwellen und elektromagnetische Wellen
- Interferenz und Beugung
- Relativitätstheorie
- Welle-Teilchen Dualismus
- Grundlegende Eigenschaften von Atomen
- Grundlegende elektronische Eigenschaften von Festkörpern

Anmerkungen

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

150 Stunden, bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (105)

Lehr- und Lernformen

Vorlesung und Übung
6.13 Modul: SP A: Globales Produktionsmanagement [M-MACH-103351]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: Majors in Mechanical Engineering (International)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile
- T-MACH-106731 Globale Produktionsplanung (MEI) 4 LP Lanza
- T-MACH-105379 Gründlagen der globalen Logistik 4 LP Furmans

Wahlpflichtblock: SP A: Globales Produktionsmanagement (mind. 8 LP)
- T-MACH-106733 SmartFactory@Industry (MEI) 4 LP Lanza
- T-MACH-105381 Ausgewählte Themen virtueller Ingenieursanwendungen 4 LP Ovtcharova
- T-MACH-106732 Automatisierte Produktionssysteme (MEI) 4 LP Fleischer

Erfolgskontrolle(n)
Mündliche Prüfungen: ca. 5 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Qualifikationsziele

Nach Abschluss dieses Moduls sind die Studierenden in der Lage
- Planungs- und Layoutprobleme auf der Ebene von Unternehmen, Produktion, Prozessen und Arbeitsaufgaben zu analysieren und zu lösen,
- eine Produktion zu planen und zu steuern,
- die Qualität und Effizienz von Produktion, Prozessen und Produkten zu bewerten und zu konfigurieren.

Voraussetzungen
Keine

Inhalt

Die Themen im Einzelnen sind:
- Rahmenbedingungen und Einflussfaktoren Globaler Produktion (Historische Entwicklung, Ziele, Chancen und Risiken)
- Standortwahl
- Standortgerechte Produktionsanpassung
- Aufbau eines neuen Produktionsstandortes
- Gestaltung und Management globaler Produktionsnetzwerke
- Integration von Industrie 4.0 Methoden und Technologien

Empfehlungen
keine

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 480 Zeitstunden, entsprechend 16 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen, Seminare, Workshops, Exkursionen
6.14 Modul: SP B: Energietechnik [M-MACH-103350]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: Majors in Mechanical Engineering (International)

Leistungspunkte 16
Turnus Jedes Semester
Dauer 2 Semester
Sprache Englisch
Level 3
Version 1

Pflichtbestandteile
T-MACH-105220 Grundlagen der Energietechnik 8 LP Badea, Cheng

Wahlpflichtblock: SP B: Energietechnik (mind. 8 LP)
T-MACH-105213 Grundlagen der technischen Verbrennung I 4 LP Maas, Sommerer
T-MACH-105292 Wärme- und Stoffübertragung 4 LP Bockhorn, Maas

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 Min. je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Qualifikationsziele
Nach Abschluss des SP B sind die Studierenden in der Lage

• die Komponenten eines Energiesystems und deren Wechselwirkungen zu beschreiben,
• verschiedene konventionellen Energieträger aufzulisten und deren statische Reichweite zu bewerten,
• das schwankende Angebot an erneuerbaren Energien wie Wind, Sonneneinstrahlung, Meeres- und Gezeitenströme, etc. zu benennen und
• deren Auswirkungen auf das Energiesystem zu beschreiben,
• technische Rahmenbedingungen von Energiesystemen zu bewerten,
• Ansätze für ein optimalen Mix verschiedener Energietechnologien abzuleiten,
• das Funktionsprinzip von etablierten Kraftwerken sowie von Kraftwerken auf Basis erneuerabaren Energien zu erläutern,
• die physikalischen und chemischen Prozesse bei der Energieumwandlung zu kennen.

Voraussetzungen
Keine

Inhalt
Ziel des SP B "Energy Engineering" ist es, den Studierenden die Herausforderungen moderner Energiesysteme näherzubringen. Die Funktionsprinzipien konventioneller und regenerativer Kraftwerkstypen werden vorgestellt und die zugrundeliegenden physikalischen Prinzipien der technischen Verbrennung und der Wärme- und Stoffübertragung vermittelt. Die Studierenden erlernen die Grundlagen, um Energiesysteme auf technischer und wirtschaftlicher Basis zu bewerten. Die Themen umfassen:

• Energieformen
• Energiequellen: fossile Brennstoffe, Kernenergie, regenerative Energien
• Energiebedarfsstrukturen
• Prinzipien thermischer und elektrischer Kraftwerke (konventionell und erneuerbar)
• Physikalische Grundlagen der technischen Verbrennung
• Stationäre und instationäre Wärme- und Stoffübertragungsphänomene
• Umweltaspekte bei der Energieerzeugung
• Rolle der erneuerbaren Energien
• Umwandlung, Transport und Speicherung von Energie
• Wirtschaftlichkeitsbetrachtung von Energiesystemen
• Zukunft des Energiesektors

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 480 Zeitstunden, entsprechend 16 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen
Übungen
6.15 Modul: SP C: Kraftfahrzeugtechnik [M-MACH-103349]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: Majors in Mechanical Engineering (International)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Lehrkörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100092 Grundlagen der Fahrzeugtechnik I</td>
<td>8 LP</td>
<td>Gauterin, Unrau</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: SP C: Kraftfahrzeugtechnik (mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Lehrkörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102117 Grundlagen der Fahrzeugtechnik II</td>
<td>4 LP</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105154 Fahrzeugkomfort und -akustik I</td>
<td>4 LP</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155 Fahrzeugkomfort und -akustik II</td>
<td>4 LP</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105210 Maschinendynamik</td>
<td>5 LP</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 Min. je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Qualifikationsziele
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsräden sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.
Weitere Lernziele entsprechend der im Ergänzungsbereich gewählten Lehrveranstaltungen.

Voraussetzungen
keine

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmehanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanisches Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differential

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 480 Zeitstunden, entsprechend 16 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen
Übungen
6.16 Modul: Strömungslehre (BSc-Modul 12, SL) [M-MACH-102565]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: Fundamentals of Engineering

Leistungspunkte: 8
Turnus: Jedes Sommersemester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 1

Pflichtbestandteile
T-MACH-105207 Strömungslehre 1&2

Erfolgskontrolle(n)
gemeinsame Erfolgskontrolle der LV "Strömungslehre I" und "Strömungslehre II"; schriftliche Prüfung, 3. Std. (benotet)

Qualifikationsziele
Nach Abschluss dieses Moduls ist der/die Studierende in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, herzuleiten und auf Beispiele anzuwenden. Er/Sie kann die charakteristischen Eigenschaften von Fluiden benennen und Strömungszustände unterscheiden. Der/Die Studierende ist in der Lage, Strömungsgrößen für grundlegende Anwendungsfälle zu bestimmen. Dies beinhaltet die Berechnung von
- statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken
- zweidimensionalen viskosen Strömungen
- verlustfreien inkompressiblen und kompressiblen Strömungen (Stromfadentheorie)
- verlustbehafteten technischen Rohrströmungen

Zusammensetzung der Modulnote
Note der Prüfung

Voraussetzungen
Keine

Inhalt
Eigenschaften von Fluiden, Oberflächenspannung, Hydro- und Aerostatik, Kinematik, Stromfadentheorie (kompressibel und inkompressibel), Verluste in Rohrströmungen, Dimensionsanalyse, dimensionslose Kennzahlen
Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton’scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzeit: 64 StundenSelbststudium: 176 Stunden

Lehr- und Lernformen
Vorlesungen + Übungen

Literatur
Zirep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg
Kuhlmann, H.: Strömungsmechanik, Pearson Studium
Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag
6.17 Modul: Technische Mechanik (BSc-Modul 03, TM) [M-MACH-102572]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Fundamentals of Engineering

Leistungspunkte 23

Turnus Jedes Wintersemester

Dauer 4 Semester

Sprache Deutsch/Englisch

Level 3

Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Technische Mechanik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Technische Mechanik II</td>
<td>6 LP</td>
</tr>
<tr>
<td>T-MACH-105201</td>
<td>Technische Mechanik III & IV</td>
<td>10 LP</td>
</tr>
<tr>
<td>T-MACH-100528</td>
<td>Übungen zu Technische Mechanik I</td>
<td>0 LP</td>
</tr>
<tr>
<td>T-MACH-100284</td>
<td>Übungen zu Technische Mechanik II</td>
<td>0 LP</td>
</tr>
<tr>
<td>T-MACH-105202</td>
<td>Übungen zu Technische Mechanik III</td>
<td>0 LP</td>
</tr>
<tr>
<td>T-MACH-105203</td>
<td>Übungen zu Technische Mechanik IV</td>
<td>0 LP</td>
</tr>
</tbody>
</table>

Böhlke, Langhoff
Seemann

Erfolgskontrolle(n)

Prüfungsvorleistung in TM III, IV

Teilleistung "Technische Mechanik I", schriftliche Prüfung (Klausur), 90 Minuten; benotet
Teilleistung "Technische Mechanik II", schriftliche Prüfung (Klausur), 90 Minuten; benotet
Teilleistung "Technische Mechanik III/IV", schriftliche Prüfung (Klausur), 180 Minuten; benotet

Die Modulnote berechnet sich aus dem LP-gewichteten Mittel der enthaltenen benoteten Teilleistungen.

Qualifikationsziele

Nach Abschluss der Vorlesungen TM I und TM II können die Studierenden

- Spannungs- und Verzerrungsverteilungen für die Grundlastfälle im Rahmen der Elastizität und Thermoelastizität bewerten
- 3D-Spannungs- und Verzerrungszustände berechnen und bewerten
- das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- Energiemethoden anwenden und Näherungslösungen bewerten
- die Stabilität von Gleichgewichtslagen bewerten
- Übungsaufgaben zu den Themen der Vorlesungen unter Verwendung des Computeralgebrasystems MAPLE lösen

Voraussetzungen

Keine
Inhalt
Das Modul besteht aus den Lehrveranstaltungen "Technische Mechanik I" bis "Technische Mechanik IV" sowie den "Übungen zu Technische Mechanik I" bis "Übungen zu Technische Mechanik IV".

Inhalte "Technische Mechanik I": Grundzüge der Vektorrechnung; Kraftsysteme; Statik starrer Körper; Schnittgrößen in Stäben u. Balken; Haftung und Gleitreibung; Schwerpunkt u. Massenmittelpunkt; Arbeit, Energie, Prinzip der virtuellen Verschiebungen; Statik der unendbaren Seile; Elastostatik der Zug-Druck-Stäbe

Inhalte "Technische Mechanik II": Balkenbiegung; Querkraftschub; Torsionstheorie; Spannungs- und Verzerrungszustand in 3D; Hooke'sches Gesetz in 3D; Elastizitätstheorie in 3D; Energiemethoden der Elastostatik; Näherungsverfahren; Stabilität elastischer Stäbe

Inhalte "Technische Mechanik III": Kinematik: kartesische, zylindrische und natürliche Koordinaten, Ableitungen in verschiedenen Bezugssystemen, Winkelgeschwindigkeiten.

Inhalte "Technische Mechanik IV": Kinematik des starren Körpers bei räumlicher Bewegung, Euler Winkel, Winkelgeschwindigkeit des starren Körpers bei Verwendung von Euler Winkeln, Eulersche Kreisellagen, Kräfte- und nicht kräftefreie Kreisel, Bewegung von Starrkörpersystemen, Prinzip von d'Alambert, Lagrangesche Gleichungen erster und zweiter Art, verallgemeinerte Koordinaten, freie und erzwungene Schwingungen von Einfreiheitsgradsystemen, Frequenzgangrechnung, Mehrfreiheitsgradschwinger, Tilgung

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzeit: 204h
Selbststudium: 486h

Lehr- und Lernformen
Vorlesungen, Übungen, Kleingruppenübungen am Rechner, Bewertung bearbeiteter Übungsblätter, Kolloquien, Sprechstunden (freiwillige Teilnahme)
Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbeschreibung</th>
<th>LP</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104747</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>8</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105287</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>7</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105204</td>
<td>Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td>0</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105288</td>
<td>Technische Thermodynamik und Wärmeübertragung II, Vorleistung</td>
<td>0</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern
Thermodynamik I: Prüfungsleistung schriftlich, benotet; Dauer ca. 3h
Thermodynamik II: Prüfungsleistung schriftlich, benotet; Dauer ca. 3h

Qualifikationsziele
Die Studierenden erwerben Fähigkeiten die Grundlagen der Thermodynamik zu benennen und auf Problemstellungen in verschiedenen Bereichen des Maschinenbaus, insbesondere der Energieotechnik anzuwenden.

Zusammensetzung der Modulnote
Gewichtung nach LP

Voraussetzungen
Keine

Inhalt
Thermodynamik I:
- System, Zustandsgrößen
- Chemische und thermodynamische Eigenschaften von reinen Stoffen
- Absolute Temperatur, Modellsysteme
- 1. Hauptsatz für ruhende und bewegte Systeme Entropie und 2. Hauptsatz
- Verhalten realer Stoffe beschrieben durch Tabellen, Diagramme und Zustandsgleichungen
- Maschinenprozesse
- Mischung idealer Gase

Thermodynamik II:
- Wiederholung des Stoffes von “Thermodynamik und Wärmeübertragung I”
- Verhalten von Mischungen
- Feuchte Luft
- Einfluss molekularer Eigenschaften auf thermodynamische Größen
- Verhalten realer Stoffe beschrieben durch Zustandsgleichungen
- Anwendung der Hauptsätze auf chemische Reaktionen
- 3. Hauptsatz der Thermodynamik
- Wärmeübertragung
Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzeit: 150h
Selbststudium: 300h

Lehr- und Lernformen
Vorlesungen
Übungen
Tutorien
6.19 Modul: Werkstoffkunde (BSc-Modul 04, WK) [M-MACH-102562]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MACH-105145</th>
<th>Werkstoffkunde I & II</th>
<th>11 LP</th>
<th>Gibmeier, Heilmaier, Pundt</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105146</td>
<td>Werkstoffkunde Praktikum</td>
<td>3 LP</td>
<td>Gibmeier, Heilmaier, Pundt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Unbenotet: Teilnahme an 10 Praktikumsversuchen, erfolgreiche Eingangskolloquien und 1 Kurzvortrag. Das Praktikum muss vor der Anmeldung zur Prüfung erfolgreich abgeschlossen werden;
Benotet: mündliche Prüfung über Inhalte des gesamten Moduls, ca. 25 Minuten.

Qualifikationsziele
Die Studierenden sollen in diesem Modul die folgenden Fähigkeiten erreichen:

- Vertiefte Kenntnisse über Konstruktionswerkstoffe (auch als Struktur- oder Ingenieurswerkstoffe bezeichnet) und weniger ausführlich Funktionswerkstoffe
- Erkennen der Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten
- Kennenlernen sowie sicheres Anwenden der geeigneten Methoden zur Ermittlung von Kennwerten sowie zur Charakterisierung der Mikrostruktur von Werkstoffen
- Beurteilung von Werkstoffeigenschaften und den daraus resultierenden Verwendungsmöglichkeiten

Voraussetzungen
keine

Inhalt
WK I
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung
WK II
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe
Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Der Arbeitsaufwand des Moduls umfasst ca. 420 Stunden.
Der Arbeitsaufwand für das Praktikum Werkstoffkunde beträgt insgesamt 90 h und besteht aus Präsenzpflicht in den 10 Versuchen (eine Woche halbtags, je 4 Zeitstunden pro Tag) und Vor- und Nachbearbeitungszeit zuhause.
Der Arbeitsaufwand für die Vorlesung Werkstoffkunde 1 und 2 beträgt pro Semester 165 h und besteht aus Präsenz in den Vorlesungen (WS: 4 SWS, SS: 2SWS) und Übungen (je 1 SWS im WS und SS) sowie Vor- und Nachbearbeitungszeit zuhause.

Lehr- und Lernformen
Das Modul "Werkstoffkunde" besteht aus den Vorlesungen "Werkstoffkunde I und II" mit zugehörigen Übungen in Kleingruppen und einem einwöchigen Laborpraktikum in Kleingruppen.
Teilleistungen

7.1 Teilleistung: Arbeitstechniken im Maschinenbau [T-MACH-105296]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-103322 - Internationales Projektmanagement und Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2110969</td>
<td>Arbeitstechniken im Maschinenbau (englisch)</td>
<td>1 SWS</td>
<td>Deml</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2174970</td>
<td>Arbeitstechniken im Maschinenbau</td>
<td>1 SWS</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Kursbezeichnung</th>
<th>Prüfung</th>
<th>Prüfender</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105296</td>
<td>Arbeitstechniken im Maschinenbau</td>
<td>Prüfung (PR)</td>
<td>Deml</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105296-englisch</td>
<td>Arbeitstechniken im Maschinenbau</td>
<td>Prüfung (PR)</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Arbeitstechniken im Maschinenbau (englisch)

2110969, SS 2020, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt

Contents:
The aim of the course is to acquire basic knowledge about scientific work and the practical completion of a scientific thesis. The theoretical basis will be trained in the following six modules of the e-learning course „Competence of information in the natural and engineering sciences: planning, researching, writing“:

- Modul A Introduction to the content of the course
- Modul B Planning of the research process
- Modul C Methods of literature research
- Modul D Execution of literature research
- Modul E Review of scientific literature
- Modul F Scientific writing

In addition to the e-learning course, the practical process of a scientific thesis will be learned over the whole semester period in a group on current topics by the institutes of the KIT-department of Mechanical Engineering. The groups are supervised by the respective institutes and the theoretical basics are trained in further exercises.

Learning Objects:
On completion of the course the students are able:

- to structure and formulate a research question,
- to plan projects in a task- and resource-oriented way,
- to apply creativity techniques within a team,
- to investigate and to evaluate scientific resources and to derive information,
- to summarize work results in a well-structured written report,
- to present scientific problems/results in an oral presentation,
- to work actively in a team in a task-oriented and constructive manner.

Examinations:

- Module tests within the e-learning course
- Completion of four group exercises
 1. Structuring of a formulate research question
 2. Development of a milestone plan
 3. Preparation of a list of scientific literature
 4. Structuring of the scientific thesis
- Preparation of a scientific thesis of at least 30 pages according to a given guideline
- Preparation and execution of a scientific presentation of maximum 30 minutes

The course will be passed, if:

- the exam registration in KIT-Campus is done until 2020/07/24.
- all e-learning module tests are passed and the certification is submitted until 2020/05/20.
- all group exercises submit on deadline:
 2020/05/22: Research question and milestone plan
 2020/06/12: A list of scientific literature
 2020/06/19: Structuring of the scientific thesis
- the complete scientific thesis is submitted until 2020/07/17.
- the scientific presentation is submitted until 2020/07/26 and you have to present your work until the end of the examination period at the supervised institute.

If you have not submitted the respective exercises by the deadline, you will have further three days for the completion. If you have not submitted the exercises after the additional time, the course will be failed and must be repeated in one of the following semesters.

Organisatorisches
The course addresses students in the Bachelor programme Mechanical Engineering in the fourth semester. Students in the Bachelor programme Mechanical Engineering in the second semester, as well as students in the Master programme Mechanical Engineering or other programmes, may participate in case of vacancies. The lecture consists of an e-learning course with a workload of approx. 9 hours and an accompanying self-study over the entire semester period.

The amount of work accounts for 120 h (=4 ECTS).
Inhalt

- Modul A: Inhaltliche Einführung in den Kurs
- Modul B: Planen des Rechercheprozesses
- Modul C: Methoden der Literaturrecherche
- Modul D: Durchführung der Literaturrecherche
- Modul E: Umgang mit der gefundenen Literatur
- Modul F: Die schriftliche Ausarbeitung

Lernziele:

Die Studierende können nach erfolgreicher Teilnahme an der Veranstaltung:

- eigenständig eine Forschungsfrage strukturieren und aufstellen
- Aufgaben ressourcen- und zielorientiert planen
- geeignete Datenquellen finden, bewerten und Informationen extrahieren
- selbstständig eine wissenschaftliche Arbeit strukturieren und gliedern
- Informationen und Ergebnisse in einer schriftlichen Form aussagekräftig festhalten
- eine wissenschaftliche Fragestellung und Ergebnisse visuell aufbereiten, mündlich präsentieren sowie verteidigen
- aktiv im Team aufgabenorientiert und konstruktiv zusammenarbeiten

Erfolgskontrollen:

- Modul-Testate innerhalb des e-Learning Kurses
- Durchführung von insgesamt vier Hausarbeiten
 1. Strukturierung einer Forschungsfrage
 2. Erstellung eines Meilensteinplans
 3. Anfertigung eines Literaturreferat
 4. Gliederung der wissenschaftlichen Arbeit
- Anfertigung einer wissenschaftlichen Arbeit in einem Umfang von mindestens 30 Seiten nach einer vorgegebenen Richtlinie
- Erstellung und Durchführung einer maximal 30-minütigen wissenschaftlichen Präsentation

Die Veranstaltung ist bestanden, wenn:

- Sie sich bis Ende 07./2020 im KIT-Campus zur Prüfung angemeldet haben.
- Sie alle Modul-Testate des e-Learning Kurses bestehen und den Nachweis bis zum 05./2020 erbringen.
- Sie alle Hausarbeiten fristgerecht einreichen:
 22.05.2020: Forschungsfrage & Meilensteinplan
 12.06.2020: Literaturreferat
 19.06.2020: Gliederung der wissenschaftlichen Arbeit
- Sie die wissenschaftliche Arbeit bis Ende 07./2020 vollständig abgegeben haben.
- Sie eine wissenschaftliche Präsentation bis Ende 07./2020 abgeben und bis zum Ende der Prüfungszeit gehalten haben.

Sollten Sie die einzelnen Erfolgskontrollen nicht fristgerecht eingereicht haben, erhalten Sie jeweils weitere drei Tage Bearbeitungszeit. Sollten Sie auch nach der zusätzlichen Zeit keine Erfolgskontrolle abgeben haben, wird die Veranstaltung als nicht bestanden bewertet und muss in einem der folgenden Semester wiederholt werden.
Organisatorisches
7.2 Teilleistung: Ausgewählte Themen virtueller Ingenieursanwendungen [T-MACH-105381]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-103351 - SP A: Globales Produktionsmanagement

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>SS 2020</th>
<th>3122031</th>
<th>Virtual Engineering (Specific Topics)</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Ovtcharova, Maier</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105381</th>
<th>Virtual Engineering (Specific Topics)</th>
<th>Prüfung (PR)</th>
<th>Ovtcharova</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Engineering (Specific Topics)
3122031, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt
Studierende können
- die Grundlagen des Virtual Engineerings erläutern und exemplarisch Modellierungswerkzeuge benennen und den entsprechenden Methoden und Prozessen zuordnen
- Validierungsfragestellungen im Produktentstehungsprozess formulieren und naheliegende Lösungsmethoden benennen
- die Grundlagen des Systems Engineering erläutern und den Zusammenhang zum Produktentstehungsprozess herstellen
- einzelne Methoden der Digitalen Fabrik erläutern sowie die Funktionen der Digitalen Fabrik im Kontext des Produktentstehungsprozesses darstellen
- die theoretischen und technischen Grundlagen der Virtual Reality Technologie erläutern und den Zusammenhang zum Virtual Engineering aufzeigen

Literaturhinweise
Lecture slides / Vorlesungsfolien
7.3 Teilleistung: Automatisierte Produktionssysteme (MEI) [T-MACH-106732]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-103351 - SP A: Globales Produktionsmanagement

Lehrveranstaltungen
SS 2020 3150012 Automatisierte Produktionssysteme (MEI) 2 SWS Vorlesung (V) Fleischer

Prüfungsveranstaltungen
SS 2020 76-T-MACH-106732 Automatisierte Produktionssysteme (MEI) Prüfung (PR) Fleischer

Ergebniskontrolle(n)
mündliche Prüfung (20 min)

Voraussetzungen
T-MACH-102162 - Automatisierte Produktionsanlagen darf nicht begonnen sein.
T-MACH-108844 - Automatisierte Produktionsanlagen darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Automatisierte Produktionssysteme (MEI) 3150012, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen Vorlesung (V)

Inhalt
The lecture provides an overview of the structure and functioning of automated production systems. In the introduction chapter the basic elements for the realization of automated production systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- automatic machines, cells, centers and systems for manufacturing and assembly
- planning of automated manufacturing systems

In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components. The analysis of automated manufacturing systems for manufacturing of defined components is also included.

Learning Outcomes:
The students …

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.

Organisatorisches
Die genauen Termine und Raum werden über die wbk-Homepage bekannt gegeben.
7.4 Teilleistung: Bachelorarbeit [T-MACH-108685]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103722 - Bachelorarbeit

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschlussarbeit</td>
<td>12</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Studierenden sollen in der Bachelorarbeit zeigen, dass sie in der Lage sind, ein Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten.
Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Auf begründeten Antrag des Studenten kann der Prüfungsausschuss die Bearbeitungszeit um maximal einen Monat verlängern. Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

Voraussetzungen
Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/den Studierende/n Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (vgl. §14 (1) der SPO).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht werden:
 - Fundamentals of Engineering
 - International Project Management and Soft Skills
 - Majors in Mechanical Engineering (International)

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

<table>
<thead>
<tr>
<th>Bearbeitungszeit</th>
<th>3 Monate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Verlängerungsfrist</td>
<td>1 Monate</td>
</tr>
<tr>
<td>Korrekturfrist</td>
<td>6 Wochen</td>
</tr>
</tbody>
</table>

Anmerkungen
Für die Ausarbeitung der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 360 Stunden gerechnet.
7.5 Teilleistung: Betriebliche Produktionswirtschaft [T-MACH-110327]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-105106 - Betriebliche Produktionswirtschaft

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 90 min)

Voraussetzungen
T-MACH-110326- Betriebliche Produktionswirtschaft-Projekt muss erfolgreich abgeschlossen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110326 - Betriebliche Produktionswirtschaft-Projekt muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebliche Produktionswirtschaft
3118031, WS 20/21, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
T-MACH-110326 - Betriebliche Produktionswirtschaft-Projekt muss bei Anmeldung zu dieser Veranstaltung erfolgreich abgeschlossen sein.

Es handelt sich um eine gemeinsame Vorlesung des Instituts für Fördertechnik und Logistiksysteme (IFL), und des Instituts für Produktionstechnik (wbk). Die Institute wechseln sich bei jedem Zyklus ab.

Es werden grundlegende Kompetenzen über die Planung und den Betrieb eines Produktionsbetriebes vermittelt. Inhalt der Vorlesung sind die Grundlagen des Operations- und Supply Chain Managements sowie betriebswirtschaftliche Grundlagen zu Rechnungswesen, Investitionsrechnung und Rechtsformen.

Nach erfolgreichem Abschluss der Lehrveranstaltung sind Sie in der Lage alleine und im Team

• die behandelten Fachbegriffe in den Bereichen Produktion, Logistik, und Betriebswirtschaft zu benennen,
• in einem Gespräch mit Fachkundigen die Zusammenhänge zwischen diesen Bereichen zutreffend zu beschreiben,
• die wichtigsten Entscheidungsprobleme in diesem Gebiet qualitativ und quantitativ zu beschreiben,
• die entsprechenden qualitativen und quantitativen Entscheidungsmodelle zu nutzen,
• deren Ergebnisse kritisch zu beurteilen und daraus Schlüsse zu ziehen,
• sowie durch eigene Recherche die behandelten Methoden und Modelle zu erweitern.

Präsenzzzeit: 25 Stunden,
Selbststudium: 65 Stunden

Organisatorisches
Räume werden vom Institut bekannt gegeben
7.6 Teilleistung: Betriebliche Produktionswirtschaft-Projekt [T-MACH-110326]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-105106 - Betriebliche Produktionswirtschaft

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
</tr>
<tr>
<td>3118032</td>
</tr>
<tr>
<td>Betriebliche Produktionswirtschaft-Projekt</td>
</tr>
<tr>
<td>1 SWS</td>
</tr>
<tr>
<td>Projekt (PRO) / 🖥</td>
</tr>
<tr>
<td>Furmans, Lanza</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗑 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Semesterleistung bestehend aus Bearbeitung von 4 und Verteidigung von 1 Fallstudien, die sich wie folgt Aufteilen:
- 80% Bewertung der Fallstudie als Gruppenleistung
- 20% Bewertung der Verteidung der Fallstudien als Einzelleistung

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebliche Produktionswirtschaft-Projekt
3118032, WS 20/21, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Projekt (PRO) Online

Inhalt
Für diese Veranstaltung werden die Studierenden in Gruppen eingeteilt. In diesen Gruppen werden vier Fallstudien bearbeitet. Voraussetzung für die Teilnahme an der Fallstudie ist die vorherige erfolgreiche Teilnahme an einem Multiple Choice Test, der online in einem gegeben Zeitraum mehrfach wiederholt werden kann. Das Ergebnis der Gruppenarbeit wird schriftlich vorgelegt und bewertet. Außerdem werden ausgewählte Gruppen ihre Ergebnisse vorstellen und verteidigen.

Nach erfolgreichem Abschluss der Lehrveranstaltung sind Sie in der Lage alleine und im Team
- die behandelten Fachbegriffe in den Bereichen Produktion, Logistik, und Betriebswirtschaft zu benennen,
- in einem Gespräch mit Fachkundigen die Zusammenhänge zwischen diesen Bereichen zutreffend zu beschreiben,
- die wichtigsten Entscheidungsprobleme in diesem Gebiet qualitativ und quantitativ zu beschreiben,
- die entsprechenden qualitativen und quantitativen Entscheidungsmodelle zu nutzen,
- deren Ergebnisse kritisch zu beurteilen und daraus Schlüsse zu ziehen,
- sowie durch eigene Recherche die behandelten Methoden und Modelle zu erweitern.

Die Teilnahme aller Mitglieder der ausgewählten Gruppen an den mündlichen Verteidigungen ist Pflicht und wird kontrolliert. Es müssen vier schriftliche Abgaben bestanden werden. Für die schriftliche Abgabe erhält die Gruppe eine gemeinsame Note, in der Verteidigung wird jedes Gruppenmitglied einzeln bewertet. Die Verteidigungen gehen vollständig in die Bewertung ein, sie müssen jedoch nicht bestanden werden, um die Gesamtveranstaltung zu bestehen. Die Endnote der Veranstaltung bildet sich zu 80% aus den schriftlichen Abgaben sowie zu 20% aus der Bewertung der Verteidigungen.

Es handelt sich um eine gemeinsame Vorlesung des Instituts für Fördertechnik und Logistiksysteme (IFL), und des Instituts für Produktionstechnik (wbk)). Die Institute wechseln sich bei jedem Zyklus ab.

Präsenzzeit: 17 Stunden,
Selbststudium: 43 Stunden
7.7 Teilleistung: Elektrotechnik und Elektronik [T-ETIT-108386]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104049 - Elektrotechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2306350</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>De Carne</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2306351</td>
<td>Tutorial for 2306339 Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>2</td>
<td>Übung (Ü)</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7306350</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>Becker</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Written exam, duration 3 hours.

Voraussetzungen

keine

Anmerkungen

Exam will be held in english language.
7.8 Teilleistung: Fahrzeugkomfort und -akustik I [T-MACH-105154]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103349 - SP C: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsteam</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Gauterin</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Gauterin</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Form</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündlich

Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen

Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics I T-MACH-102206 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vehicle Ride Comfort & Acoustics I
2114856, SS 2020, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Inhalt

1. Wahrnehmung von Geräuschen und Schwingungen

2. Grundlagen Akustik und Schwingungen

3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seitens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsphänomenen beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analyseren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.
Organisatorisches
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]
Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.

Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

V Fahrzeugkomfort und -akustik I
2113806, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seitens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsphänomenen beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analysieren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.

Organisatorisches
Kann nicht mit der Veranstaltung [2114856] kombiniert werden.
Can not be combined with lecture [2114856]

Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
7.9 Teilleistung: Fahrzeugkomfort und -akustik II [T-MACH-105155]

Verantwortung:
Prof. Dr. Frank Gauterin

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
M-MACH-103349 - SP C: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Modus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114825</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>Modus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- mündlich

Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen
Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics II T-MACH-102205 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugkomfort und -akustik II

<table>
<thead>
<tr>
<th>Veranstaltungs-ID</th>
<th>Semester</th>
<th>SWS</th>
<th>Sprache</th>
<th>Anzeigen</th>
</tr>
</thead>
</table>
| 2114825 | SS 2020 | 2 | Deutsch | Im Studierendenportal anzeigen | Vorlesung (V)
Inhalt
1. Zusammenfassung der Grundlagen Akustik und Schwingungen
2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
3. Geräuschemission von Kraftfahrzeugen
 - Geräuschbelastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

Lernziele:

Organisatorisches
Kann nicht mit der Veranstaltung [2114857] kombiniert werden.

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

V Vehicle Ride Comfort & Acoustics II
2114857, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Zusammenfassung der Grundlagen Akustik und Schwingungen
2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
3. Geräuschemission von Kraftfahrzeugen
 - Geräuschbelastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

Lernziele:
Organisatorisches
Genaue Termine entnehmen Sie bitte der Institushomepage.
Kann nicht mit der Veranstaltung [2114825] kombiniert werden.
Scheduled dates:
see homepage of the institute.
Can not be combined with lecture [2114825].

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
7.10 Teilleistung: Globale Produktionsplanung (MEI) [T-MACH-106731]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-103351 - SP A: Globales Produktionsmanagement

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3150040</td>
<td>Globale Produktionsplanung (MEI)</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Lanza, Stricker</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-106731</td>
<td>Globale Produktionsplanung (MEI)</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (45 min Gruppenprüfungen mit 3 Studierenden)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Globale Produktionsplanung (MEI)
3150040, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Target of the lecture is to depict the challenges of global operating companies and to give an overview of central aspects and methods in production planning. The lecture will regard site-related production factors and give the basic steps in site-selection, before the planning of manufacturing systems is focused. Herein, not only the planning phases are regarded, but also the methods used.

The topics are:

- Challenges of global production
- Establishing of new production sites
- The basic steps in manufacturing system planning
- Steps and methods of factory planning
- Manufacturing and assembly planning. Assembly panning will be focused
- Layout and material flow of production sites
- Production planning and control basics

Learning Outcomes:
The students …

- can explain the challenges of global production.
- can explain site-related production factors.
- can name the basic steps in site-selection.
- can explain the basic steps in planning a production site.
- are able to explain methods of production analysis, layout planning, production planning and control, etc.
- can apply the methods to new problems.
- can explain links between different planning steps.

Organisatorisches
Die genauen Termine und Raum werden über die wbk-Homepage bekannt gegeben.
7.11 Teilleistung: Grundlagen der Energietechnik [T-MACH-105220]

Verantwortung: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-103350 - SP B: Energietechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 8
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistung</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2130927 Grundlagen der Energietechnik</td>
<td>3 SWS</td>
<td>Vorlesung (V) Cheng, Badea</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3190923 Fundamentals of Energy Technology</td>
<td>3 SWS</td>
<td>Vorlesung (V) Badea</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105220 Grundlagen der Energietechnik</td>
<td>Prüfung (PR) Cheng, Badea</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105220 Fundamentals of Energy Technology Grundlagen der Energietechnik</td>
<td>Prüfung (PR) Badea</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 90 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Energietechnik

Inhalt
Das Ziel des Kurses ist es, die Studierenden mit dem neuesten Stand der Technik in den anspruchsvollen Bereichen der Energiewirtschaft und dem permanenten Wettbewerb zwischen wirtschaftlicher Rentabilität und langfristiger Nachhaltigkeit vorzubereiten. Die Studierenden erwerben grundlegende Kenntnisse über die für die Energiebranche relevante Thermodynamik und umfassende Kenntnisse über die Energiebranche: Nachfrage, Energiemix, Anlagen zur Energieerzeugung (konventionelle, nukleare und erneuerbare), Transport und Energiespeicherung, Umweltauswirkungen und künftige Tendenzen. Die Studierenden sind in der Lage Methoden der Wirtschaftlichkeitsoptimierung für die Energiebranche kreativ, praxisorientiert - im dazugehörigen Tutorium gezielt vertieft - anzuwenden. Die Studierenden sind für die Weiterbildung in energietechnischen Bereichen und für die (auch forschungsbezogene) berufliche Tätigkeit im Energiesektor qualifiziert.

Die Vorlesung umfasst folgende Themengebiete:
- Energiebedarf und Energiesituation
- Energietypen und Energiemix
- Grundlagen. Thermodynamik relevant für den Energiesektor
- Konventionelle Fossil befeuerte Kraftwerke, inkl. GuD
- Kraft-Wärme-Kopplung
- Kernenergie
- Regenerative Energien: Wasserkraft, Windenergie, Solarenergie, andere Energiesysteme
- Energiebedarfsstrukturen. Grundlagen der Kostenrechnung / Optimierung
- Energiespeicher
- Transport von Energie
- Energieerzeugung und Umwelt. Zukunft des Energiesektors
Inhalt

Die Vorlesung umfasst folgende Themengebiete:
- Energieformen
- Thermodynamik relevant für den Energiesektor
- Energiequellen: fossile Brennstoffe, Kernenergie, regenerative Energien
- Energiebedarf, -versorgung, -reserven; Energiebedarfsstrukturen
- Energieerzeugung und Umwelt
- Energiewandlung
- Prinzip thermisch/elektrischer Kraftwerke
- Transport von Energie
- Energiespeicher
- Systemen zur Nutzung regenerativer Energiequellen
- Grundlagen der Kostenrechnung / Optimierung
- Zukunft des Energiesektors
7.12 Teilleistung: Grundlagen der Fahrzeugtechnik I [T-MACH-100092]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-103349 - SP C: Kraftfahrzeugtechnik

Lehrveranstaltungen

| WS 20/21 | 2113805 | Grundlagen der Fahrzeugtechnik I | 4 SWS | Vorlesung (V) / Online | Gauterin, Unrau |
| WS 20/21 | 2113809 | Automotive Engineering I | 4 SWS | Vorlesung (V) / Online | Gauterin, Gießler |

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-100092 | Grundlagen der Fahrzeugtechnik I | Prüfung (PR) | Gauterin, Unrau |
| WS 20/21 | 76-T-MACH-100092 | Grundlagen der Fahrzeugtechnik I | Prüfung (PR) | Unrau, Gauterin |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
schriftlich

Dauer: 120 Minuten
Hilfsmittel: keine

Voraussetzungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik I

2113805, WS 20/21, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanische Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differentiale

Lernziele:

Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsrä dern sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches

Kann nicht mit der Veranstaltung [2113809] kombiniert werden.
Can not be combined with lecture [2113809].
Literaturhinweise

Automotive Engineering I
2113809, WS 20/21, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanisches Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differential

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsräder sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches
Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literaturhinweise
7.13 Teilleistung: Grundlagen der Fahrzeugtechnik II [T-MACH-102117]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-103349 - SP C: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2114835</th>
<th>Grundlagen der Fahrzeugtechnik II</th>
<th>Vorlesung (V)</th>
<th>Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2114855</td>
<td>Automotive Engineering II</td>
<td>Vorlesung (V)</td>
<td>Gießler</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-102117</th>
<th>Grundlagen der Fahrzeugtechnik II</th>
<th>Prüfung (PR)</th>
<th>Unrau, Gauterin</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-102117</td>
<td>Grundlagen der Fahrzeugtechnik II</td>
<td>Prüfung (PR)</td>
<td>Unrau, Gauterin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftlich

Dauer: 90 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik II

Vorlesung (V)

2114835, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele:

Organisatorisches

Kann nicht mit der Veranstaltung [2114855] kombiniert werden.
Can not be combined with lecture [2114855]
Teilleistung: Grundlagen der Fahrzeugtechnik II [T-MACH-102117]

Literaturhinweise

Automotive Engineering II

2114855, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele:

Literaturhinweise

Elective literature:

7.14 Teilleistung: Grundlagen der Fertigungstechnik (MEI) [T-MACH-108747]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104232 - Fertigungsprozesse (MEI)

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungsveranstaltung</th>
<th>Veranstaltungsangabe</th>
<th>SWS</th>
<th>Type</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>3118092</td>
<td>Grundlagen der Fertigungstechnik (MEI)</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Online</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfungsveranstaltung</th>
<th>Veranstaltungsangabe</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-108747</td>
<td>Grundlagen der Fertigungstechnik (MEI)</td>
<td>Schulze</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung (Dauer: 60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fertigungstechnik (MEI)
3118092, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt

Die Themen im Einzelnen sind:

- Urfomnen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung

Lernziele:
Die Studierenden ...

- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der sechs Hauptgruppen (DIN 8580) klassifizieren.
- sind fähig, die wesentlichen Fertigungsverfahren der sechs Hauptgruppen (DIN 8580) anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, die charakteristischen Verfahrensmerkmale (Geometrie, Werkstoffe, Genauigkeit, Werkzeuge, Maschinen) der wesentlichen Fertigungsverfahren der sechs Hauptgruppen nach DIN 8580 zu beschreiben.
- sind fähig, aus den charakteristischen Verfahrensmerkmalen die relevanten prozessspezifischen technischen Vor- und Nachteile abzuleiten.
- sind in der Lage, für vorgegebene Bauteil eine Auswahl geeigneter Fertigungsprozesse durchzuführen.
- sind in der Lage, für die Herstellung vorgegebener Beispielprodukte erforderlichen Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Vorlesungstermine, Vorlesungsunterlagen und weitere Informationen werden über Ilias bekannt gegeben. The lecture notes and further information on organisation of the lecture will be available on ILIAS.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
7.15 Teilleistung: Grundlagen der globalen Logistik [T-MACH-105379]

Verantwortung:
Prof. Dr.-Ing. Kai Furmans

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-103351 - SP A: Globales Produktionsmanagement

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lerneinheit</th>
<th>Kursangabe</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Verantwortlicher(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3118095</td>
<td>Grundlagen der globalen Logistik</td>
<td>2 SWS</td>
<td>Block-Vorlesung (BV)</td>
<td>Furmans, Kivelä, Jacobi</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lerneinheit</th>
<th>Kursangabe</th>
<th>Prüfungstyp</th>
<th>Verantwortlicher(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105379</td>
<td>Global Logistics</td>
<td>Prüfung (PR)</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung (20 Min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der globalen Logistik
3118095, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)
Inhalt

Fördererzeugnisse

- Grundelemente von Förderanlagen
- Wesentliche Kennzahlen
- Verweigungs-Elemente
- kontinuierlich/teilkontinuierlich
- deterministisch/stochastischer Richtungswechsel
- Zusammenführung
- kontinuierlich/teilkontinuierlich
- Vorfahrtregeln

Warteschlangen-Theorie und Produktionslogistik

- Grundlegende Bedienserien
- Verteilungsfunktionen und Umgang mit diesen
- Modell M|M|1 und M|G|1 Modelle

Anwendung auf Produktionslogistik Distributionsszenen und Kommissionierung

- Standortwahl-Probleme
- Distributionsszenen
- Bestandsmanagement
- Auftragszusammenstellung und Kommissionierung

Tourenplanung und Arten von Tourenplanungsproblemen

- Lineare (optimierungs-)Modelle und Graphentheorie
- Heuristiken
- Unterstützende Technologien

Optimierung in logistischen Netzwerken

- Ziele und Nebenbedingungen
- Kooperation
- Supply Chain Management
- Umsetzung und Anwendung

Organisatorisches

Attendance during lecture is required. Admission to the exam is only possible when attending the lecture.

Literaturhinweise

Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg
7.16 Teilleistung: Grundlagen der Mess- und Regelungstechnik [T-MACH-104745]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-102564 - Mess- und Regelungstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2137301</th>
<th>Grundlagen der Mess- und Regelungstechnik</th>
<th>3 SWS</th>
<th>Vorlesung (V) / Online</th>
<th>Stiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2137302</td>
<td>Übungen zu Grundlagen der Mess- und Regelungstechnik</td>
<td>1 SWS</td>
<td>Übung (Ü) / Online</td>
<td>Stiller, Fischer, Pauls</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3137020</td>
<td>Measurement and Control Systems</td>
<td>3 SWS</td>
<td>Vorlesung (V) / Online</td>
<td>Stiller</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3137021</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1 SWS</td>
<td>Übung (Ü) / Online</td>
<td>Stiller, Fischer, Pauls</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-104745 | Grundlagen der Mess- und Regelungstechnik | Prüfung (PR) | Stiller |

Legende: 🖥 Online, 🕱 Präsenz/Online gemischt, 🕱 Präsenz, 🕱 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung
2,5 Stunden

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mess- und Regelungstechnik

<table>
<thead>
<tr>
<th>2137301, WS 20/21, 3 SWS, Sprache: Deutsch,</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Studierendenportal anzeigen</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt

Lehrinhalt
1. Dynamische Systeme
2. Eigenschaften wichtiger Systeme und Modellbildung
3. Übertragungsverhalten und Stabilität
4. Synthese von Reglern
5. Grundbegriffe der Messtechnik
6. Estimation
7. Messaufnehmer
8. Einführung in digitale Messverfahren

Lernaufgaben:

Voraussetzungen:
Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace-Transformation

Arbeitsaufwand:
210 Stunden

Literaturhinweise

Buch zur Vorlesung:
C. Stillier: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

- Measurement and Control Systems:
 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

- Regelungstechnische Bücher:
 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

- Messtechnische Bücher:
 E. Schröter: Elektrische Messtechnik, Hanser-Verlag, München, 5. Aufl., 1992
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Übungen zu Grundlagen der Mess- und Regelungstechnik
2137302, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz/Online gemischt

Inhalt
Übung zu Veranstaltung 2137301

Measurement and Control Systems
3137020, WS 20/21, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Literaturhinweise

• Measurement and Control Systems:

R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:

 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:

 E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
7.17 Teilleistung: Grundlagen der technischen Verbrennung I [T-MACH-105213]

Verantwortung: Prof. Dr. Ulrich Maas
Dr. Jörg Sommerer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-103350 - SP B: Energietechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Prüfungsleistung</th>
<th>Vorlesung/Vorlesung (V)</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Grundlagen der technischen Verbrennung I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Übungen zu Grundlagen der technischen Verbrennung I</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Bykov</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Fundamentals of Combustion I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Bykov</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105213 Grundlagen der technischen Verbrennung I Prüfung (PR) Maas |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Verbrennung I

2165515, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise

Vorlesungsskript,

Übungen zu Grundlagen der technischen Verbrennung I

2165517, WS 20/21, 1 SWS, Im Studierendenportal anzeigen

Übung (Ü) Online

Literaturhinweise

- Vorlesungsskript
Teilleistung: Höhere Mathematik II Vorleistung [T-MATH-108267]

Verantwortung: Prof. Dr. Maria Aksenovich
Dr. Stefan Kühnlein
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-104022 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 0120020 | Advanced Mathematics II (Problem Session) | 2 SWS | Übung (Ü) | Dahmen |

Prüfungsveranstaltungen

| SS 2020 | 7700080 | Höhere Mathematik II Vorleistung | Prüfung (PR) | Dahmen |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form schriftlich zu bearbeitender Übungsblätter und eines Mid-Term Tests. Die genauen Bedingungen werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine.
7.19 Teilleistung: Höhere Mathematik III Vorleistung [T-MATH-108269]

Verantwortung: Prof. Dr. Maria Aksenovich
Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-104022 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 20/21 | 0170000 | Advanced Mathematics III (Tutorial) | 2 SWS | Übung (Ü) | Thäter, Caspart |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form schriftlich zu bearbeitender Übungsblätter und eines Mid-Term Tests. Die genauen Bedingungen werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.
7.20 Teilleistung: Höhere Mathematik I Vorleistung [T-MATH-108265]

Verantwortung: Prof. Dr. Maria Aksenovich
Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-104022 - Höhere Mathematik

Teilleistungsart: Studienleistung schriftlich
Leistungspunkte: 0
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>0150000</th>
<th>Advanced Mathematics I (Tutorial)</th>
<th>2 SWS</th>
<th>Übung (Ü)</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aksenovich</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☣ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form schriftlich zu bearbeitender Übungsblätter und eines Mid-Term Tests. Die genauen Bedingungen werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.
7.21 Teilleistung: Höhere Mathematik I [T-MATH-108266]

Verantwortung: Prof. Dr. Maria Aksenovich
Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
M-MACH-104162 - Orientierungsprüfung
M-MATH-104022 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>0140000</td>
<td>Advanced Mathematics I (Lecture)</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 📲</td>
<td>Aksenovich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7700095</td>
<td>Höhere Mathematik I</td>
<td>Prüfung (PR)</td>
<td>Dahmen</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online, 📲 Präsenz/Online gemischt, 📚 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Ausreichende Punktzahlen in den Übungsblättern und im Mid-Term Test sind Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

7.22 Teilleistung: Höhere Mathematik II [T-MATH-108268]

Verantwortung: Prof. Dr. Maria Aksenovich
Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-104022 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstaltungsmodus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0120010</td>
<td>Advanced Mathematics II</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Dahmen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7700044</td>
<td>Höhere Mathematik II</td>
<td>Aksenovich</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>7700083</td>
<td>Höhere Mathematik II</td>
<td>Dahmen</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Ausreichende Punktzahlen in den Übungsblättern und im Mid-Term Test sind Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-108267 - Höhere Mathematik II Vorleistung muss erfolgreich abgeschlossen worden sein.
7.23 Teilleistung: Höhere Mathematik III [T-MATH-108270]

Verantwortung: Prof. Dr. Maria Aksenovich
Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-104022 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>0160000</th>
<th>Advanced Mathematics III (Lecture)</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Thäter</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>00012</th>
<th>Advanced Mathematics III</th>
<th>Prüfung (PR)</th>
<th>Schrödl-Baumann</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Ausreichende Punktzahlen in den Übungsblättern und im Mid-Term Test sind Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

7.24 Teilleistung: Informatik im Maschinenbau [T-MACH-105205]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102563 - Informatik

<table>
<thead>
<tr>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Modul</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2121390</td>
<td>Informatik im Maschinenbau</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3121034</td>
<td>Computer Science for Engineers</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>Prüfungstitel</th>
<th>Prüfungstitel (PR)</th>
<th>Prüfungsleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105205</td>
<td>Informatik im Maschinenbau</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105205-english</td>
<td>Informatik im Maschinenbau - Englisch</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung [180 min]

Voraussetzungen
Prüfungsvoraussetzung: T-MACH-105206 „Informatik im Maschinenbau, VL“ muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105206 - Informatik im Maschinenbau, VL muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Informatik im Maschinenbau

2121390, SS 2020, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt
Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.
Algorithmen: Eigenschaften von Algorithmen, Abschätzung der Komplexität, Entwurfsmethoden, wichtige Beispiele.
Datenverwaltungssysteme: Relationales Datenmodell, relationale Algebra, deklarative Sprache SQL.

Literaturhinweise
„Grundkurs Programmieren in Java“ Carl Hanser Verlag GmbH & CO. KG; Auflage 6, ISBN 10: 3446426639
Inhalt
Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.
Algorithmen: Eigenschaften von Algorithmen, Abschätzung der Komplexität, Entwurfsmethoden, wichtige Beispiele.
Datenverwaltungssysteme: Relationales Datenmodell, relationale Algebra, deklarative Sprache SQL.

Organisatorisches
Location/time see lecture homepage

Literaturhinweise
7.25 Teilleistung: Informatik im Maschinenbau, VL [T-MACH-105206]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102563 - Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2121392</th>
<th>Rechnerpraktikum zu Informatik im Maschinenbau</th>
<th>2 SWS</th>
<th>Praktische Übung (PÜ)</th>
<th>Ovtcharova, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3121036</td>
<td>Computer Science for Engineers Lab Course</td>
<td>2 SWS</td>
<td>Praktische Übung (PÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105206</th>
<th>Informatik im Maschinenbau, VL</th>
<th>Prüfung (PR)</th>
<th>Ovtcharova</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnerpraktikum zu Informatik im Maschinenbau
2121392, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt

Literaturhinweise

Übungsblätter / exercise sheets

Computer Science for Engineers Lab Course
3121036, SS 2020, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)
Inhalt

Literaturhinweise

Exercise sheets / Übungsbänder
7.26 Teilleistung: Maschinen und Prozesse [T-MACH-105208]

Verantwortung:
- Prof. Dr.-Ing. Hans-Jörg Bauer
- Dr.-Ing. Heiko Kubach
- Prof. Dr. Ulrich Maas
- Dr. Balazs Pritz

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
- KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
- KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von:
- M-MACH-102566 - Maschinen und Prozesse

Leihveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>3134140</th>
<th>Machines and Processes</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Bauer, Maas, Kubach, Pritz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2185000</td>
<td>Maschinen und Prozesse</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105208</th>
<th>Maschinen und Prozesse (Exam in German Language)</th>
<th>Prüfung (PR)</th>
<th>Kubach, Bauer, Maas, Pritz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105208e</td>
<td>Machines and Processes (Exam in English Language)</td>
<td>Prüfung (PR)</td>
<td>Kubach, Bauer, Maas, Pritz</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105208</td>
<td>Maschinen und Prozesse (Klausur in deutscher Sprache)</td>
<td>Prüfung (PR)</td>
<td>Kubach, Maas, Bauer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105208e</td>
<td>Machines and Processes (exam in English language)</td>
<td>Prüfung (PR)</td>
<td>Kubach, Maas, Bauer</td>
</tr>
</tbody>
</table>

Legende:
- 🖥 Online
- 🧩 Präsenz/Online gemischt
- 🗣 Präsenz
- ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 120 min)

Voraussetzungen

Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105232 - Maschinen und Prozesse, Vorleistung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Maschinen und Prozesse</th>
<th>2185000, WS 20/21, 4 SWS, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung / Übung (VÜ)</td>
<td>Online</td>
</tr>
</tbody>
</table>
Inhalt
Grundlagen der Thermodynamik

Thermische Strömungsmaschinen

• Dampfturbinen
• Gasturbinen
• GuD Kraftwerke
• Turbinen und Verdichter
• Flugtriebwerke

Hydraulische Strömungsmaschinen

• Betriebsverhalten
• Charakterisierung
• Regelung
• Kavitation
• Windturbinen, Propeller

Verbrennungsmotoren

• Kenngrößen
• Konstruktionselemente
• Kinematik
• Motorprozesse
• Emissionen
7.27 Teilleistung: Maschinen und Prozesse, Vorleistung [T-MACH-105232]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Heiko Kubach
Prof. Dr. Ulrich Maas
Dr. Balazs Pritz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-102566 - Maschinen und Prozesse

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungsart</th>
<th>SWS</th>
<th>Turnus</th>
<th>Lehrperson(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2187000</td>
<td>Praktikum</td>
<td>1</td>
<td>Jedes Semester</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2187000</td>
<td>Praktikum</td>
<td>1</td>
<td>Jedes Semester</td>
<td>Bauer, Kubach, Maas, Pritz, Schmidt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Lehrperson(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105232</td>
<td>Prüfung (PR)</td>
<td>Kubach, Bauer, Maas, Pritz</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>76-T-MACH-105232</td>
<td>Prüfung (PR)</td>
<td>Kubach, Maas, Bauer, Gabi</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

erfolgreich absolvieter Praktikumsversuch

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinen und Prozesse (Praktikum)

2187000, SS 2020, 1 SWS, Im Studierendenportal anzeigen

Praktikum (P)
Inhalt
Nachweis:
erfolgreich absolviert Praktikumsversuch und schriftliche Klausur (2 h)
Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein
Anmerkung:
Praktikum und Vorlesung finden im Sommer- und Wintersemester statt.
Im SS findet die VL auf englisch statt. Das Praktikum ist immer zweisprachig.
Medien:
Folien zum Download
Dokumentation des Praktikumsversuchs
Lehrinhalte:
Grundlagen der Thermodynamik
Thermische Strömungsmaschinen
 • Dampfturbinen
 • Gasturbinen
 • GuD Kraftwerke
 • Turbinen und Verdichter
 • Flugtriebwerke
Hydraulische Strömungsmaschinen
 • Betriebsverhalten
 • Charakterisierung
 • Regelung
 • Kavitation
 • Windturbinen, Propeller
Verbrennungsmotoren
 • Kenngrößen
 • Konstruktionselemente
 • Kinematik
 • Motorprozesse
 • Emissionen
Arbeitsaufwand: Präsenzzeit: 48 h, Selbststudium 160 h
Lernziele:
Die Studenten können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen

Maschinen und Prozesse (Praktikum)
2187000, WS 20/21, 1 SWS, Im Studierendenportal anzeigen

Inhalt
Praktisches Experiment
7 TEILLEISTUNGEN

7.28 Teilleistung: Maschinendynamik [T-MACH-105210]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-103349 - SP C: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2161224</td>
<td>Maschinendynamik</td>
<td>2</td>
<td>Englisch</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2161225</td>
<td>Übungen zu Maschinendynamik</td>
<td>1</td>
<td>Englisch</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2161224</td>
<td>Maschinendynamik</td>
<td>2</td>
<td>Englisch</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>Prüfung (PR)</td>
<td>Englisch</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung, 180 min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Maschinendynamik

2161224, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

1. Zielsetzung
2. Maschinen als mechatronische Systeme
3. Starre Rotoren: Bewegungsgleichungen, instationäres Anfahren, stationärer Betrieb, Auswuchten (mit Schwingungen)
4. Elastische Rotoren (Lavalrotor, Bewegungsgleichungen, stationärer und stationärer Betrieb, biegekritische Drehzahl, Zusatzeinflüsse), mehrfach und kontinuierlich besetzte Wellen, Auswuchten
5. Dynamik der Hubkolbenmaschine: Kinematik und Bewegungsgleichungen, Massen- und Leistungsausgleich

Course Language: English / Vorlesungssprache: Englisch

Literaturhinweise

Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953

Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979

Dresig, Vulfson: Dynamik der Mechanismen, 1989

V Übungen zu Maschinendynamik

2161225, SS 2020, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Übung des Vorlesungsstoffs

Course Language: English / Vorlesungssprache: Englisch

V Maschinendynamik

2161224, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Course Language: English / Vorlesungssprache: Englisch
Inhalt

1. Zielsetzung
2. Maschinen als mechatronische Systeme
3. Starre Rotoren: Bewegungsgleichungen, instationäres Anfahren, stationärer Betrieb, Auswuchten (mit Schwingungen)
4. Elastische Rotoren (Lavalrotor, Bewegungsgleichungen, instationärer und stationärer Betrieb, biegekritische Drehzahl, Zusatzeinflüsse), mehrfach und kontinuierlich besetzte Wellen, Auswuchten
5. Dynamik der Hubkolbenmaschine: Kinematik und Bewegungsgleichungen, Massen- und Leistungsausgleich

Organisatorisches
Vorlesung wird ausschließlich online gehalten.

Literaturhinweise
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989
7.29 Teilleistung: Maschinenkonstruktionslehre I & II [T-MACH-105286]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2020	2146178	Maschinenkonstruktionslehre II (mach)	2 SWS	Vorlesung (V)	Albers, Matthiesen, Behrendt
SS 2020	3146017	Mechanical Design II Lecture	2 SWS	Vorlesung (V)	Albers, Burkardt
WS 20/21	2145178	Maschinenkonstruktionslehre I	2 SWS	Vorlesung (V)	Albers, Matthiesen, Behrendt
WS 20/21	3145186	Mechanical Design I (Lecture)	2 SWS	Vorlesung (V)	Albers, Burkardt

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105286 | Maschinenkonstruktionslehre I & II | Prüfung (PR) | Albers, Matthiesen |
| SS 2020 | 76T-MACH-105286_EN | Maschinenkonstruktionslehre I & II (englisch) | Prüfung (PR) | Albers, Matthiesen |

Erfolgskontrolle(n)
schriftliche Prüfung, benotet, Dauer: 60 min

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinenkonstruktionslehre II (mach)
2146178, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V)
Inhalt
Für Studierende des Maschinenbaus

Lehrinhalte:
Lagerungen
Dichtungen
Gestaltung
Schraubenverbindungen

Erfolgskontrollen:

Weitere Informationen sind im Ilias hinterlegt und werden in der Vorlesung Maschinenkonstruktionslehre II bekannt gegeben.

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;

Vorlesungsumdruck:
Über die ILIAS-Plattform des RZ werden alle relevanten Inhalte (Folien zu Vorlesung und Saalübung, sowie Übungsblätter) entsprechend den Vorlesungsbloeken gebündelt zur Verfügung gestellt.

Mechanical Design II Lecture
3146017, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Grundlagen Lagerung
Dichtungen
Gestaltung
Schraubenverbindungen
Begleitend zur Vorlesung finden Übungen zur Vertiefung der Vorlesungsinhalte statt.

Erfolgskontrollen:

Weitere Informationen sind im Ilias hinterlegt und werden in der Vorlesung Maschinenkonstruktionslehre II bekannt gegeben.

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;

Maschinenkonstruktionslehre I
2145178, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Literaturhinweise
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

V Mechanical Design I (Lecture)
3145186, WS 20/21, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Vorlesung (V)
Präsenz/Online gemischt

Literaturhinweise
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
7.30 Teilleistung: Maschinenkonstruktionslehre I, Vorleistung [T-MACH-105282]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

Lehrveranstaltungen

| WS 20/21 | 2145185 | Übungen zu Maschinenkonstruktionslehre I | 1 SWS | Übung (Ü) / Online | Albers, Matthiesen, Behrendt, Mitarbeiter |
| WS 20/21 | 3145187 | Mechanical Design I (Tutorial) | 2 SWS | Übung (Ü) / Online | Albers, Burkardt |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Des weiteren wird ein Onlinetest zur Wissensüberprüfung durchgeführt.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre I
2145185, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Mechanical Design I (Tutorial)
3145187, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
7.31 Teilleistung: Maschinenkonstruktionslehre II, Vorleistung [T-MACH-105283]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2146185</th>
<th>Übungen zu Maschinenkonstruktionslehre II (mach)</th>
<th>2 SWS</th>
<th>Übung (Ü)</th>
<th>Albers, Matthiesen, Behrendt, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3146018</td>
<td>Mechanical Design II Tutorials</td>
<td>2 SWS</td>
<td>Übung (Ü) / Online</td>
<td>Albers, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105283 | Maschinenkonstruktionslehre II, Vorleistung | Prüfung (PR) | Albers, Matthiesen |

Erfolgskontrolle(n)

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre II (mach)
2146185, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalte:
Lagerungen
Dichtungen
Gestaltung
Schraubenverbindungen

Arbeitsaufwand:
Präsenzzeit: 10,5 h
Selbststudium: 55 h

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Inhalt
Lager
Dichtungen
Gestaltung
Schraubverbindungen

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2

Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
7.32 Teilleistung: Maschinenkonstruktionslehre III & IV [T-MACH-104810]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Lehnveranstaltungen</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2146177</td>
<td>Maschinenkonstruktionslehre IV</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>SS 2020 3146020</td>
<td>Mechanical Design IV Lecture</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 20/21 2145151</td>
<td>Maschinenkonstruktionslehre III</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21 3145016</td>
<td>Mechanical Design III (Lecture)</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
SS 2020 76-T-MACH-104810 | Maschinenkonstruktionslehre III & IV | Prüfung (PR) | Albers, Matthiesen |
SS 2020 76-T-MACH-104810_EN | Maschinenkonstruktionslehre III & IV (englisch) | Prüfung (PR) | Albers, Matthiesen |

Legende: 🥂 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung bestehend aus:
- schriftlichem Teil mit Dauer 60 min und
- konstruktivem Teil mit Dauer 180 min

Insgesamt: 240 min

Voraussetzungen
Für die Zulassung zur Prüfung ist die erfolgreiche Teilnahme an T-MACH-110955 Maschinenkonstruktionslehre III, Vorleistung und T-MACH-110956 Maschinenkonstruktionslehre IV, Vorleistung erforderlich.

Modellierte Voraussetzungen
Es muss eine von 2 Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Elementare Bauteilverbindungen - Teil 2

- Grundlagen der Kupplungen
- Grundlagen der Hydraulik
- Grundlagen der Dimensionierung

Die Studierenden können ...

- verschiedene Kupplungssysteme einordnen, deren Funktion benennen, systemspezifische Phänomene erklären und die Grundsätze der Kupplungsauslegung anwenden.
- unterschiedliche Kupplungssysteme anwendungsgerecht einsetzen und gestalten.
- unterschiedliche Arten der Dimensionierung und relevante Einflussparameter der Beanspruchung und Beanspruchbarkeit benennen.
- die Festigkeitshypothesen benennen, anwenden und Festigkeitsberechnungen selbstständig durchführen.
- Festigkeitsrechnungen selbstständig durchführen und anwenden
- die grundlegenden Eigenschaften von hydraulischen Systemen benennen, grundlegende Sinnbilder der Fluidtechnik benennen und Funktionsdiagramme interpretieren, sowie einfache hydraulische Anlagen mit Hilfe eines Schaltplans gestalten und auslegen.
- im Team unkonventionelle technische Lösungsideen entwickeln, deren prinzipielle Machbarkeit bewerten, die Ideen in technische Lösungen umsetzen und die eigenen Arbeits- und Entscheidungsprozesse mit Hilfe von Protokollen und Diagrammen gegenüber Dritten darstellen, planen und beurteilen.
- technische Zeichnungen normgerecht anfertigen.
- von technischen Systemen mit Hilfe der Top-Down-Methode ein CAD-Modell erstellen

Organisatorisches
Nachweis:
Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn des Workshops das Wissen aus der Vorlesung abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Weitere Informationen sind im ILIAS hinterlegt und werden in der Vorlesung Maschinenkonstruktionslehre IV bekannt gegeben.

Vorlesungsumdruck:
Registrierten Studierenden wird die Produktentwicklung Knowledge Base PKB als digitale Wissensbasis zur Verfügung gestellt.

Über die ILIAS-Plattform des RZ werden alle relevanten Inhalte (Folien zu Vorlesung und Saalübung sowie Übungsblätter) entsprechend den Vorlesungsblöcken gebündelt zur Verfügung gestellt.

Medien:
- Beamer
- Visualizer
- Mechanische Bauteilmodelle

Vorraussetzungen: Erfolgreiche Teilnahme an Maschinenkonstruktionslehre I, Maschinenkonstruktionslehre II und Maschinenkonstruktionslehre III.

Präsenzzeit: 42 h
Selbststudium: 80 h
Literaturhinweise
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Lecture notes:
The lecture notes can be downloaded via the eLearning platform Ilias.

Literature:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder per full text access provided by university library
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

V Mechanische Konstruktion IV Vorlesung (V)
3146020, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Literaturhinweise
Lecture notes:
The lecture notes can be downloaded via the eLearning platform Ilias.

Literature:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder per full text access provided by university library
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

V Maschinenkonstruktionslehre III Vorlesung (V)
2145151, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Mechanical Engineering International (B.Sc.)
Modulhandbuch gültig ab WS 20/21, Stand: 15.09.2020
Literaturhinweise

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III (Lecture)

3145016, WS 20/21, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Literaturhinweise

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
7.33 Teilleistung: Maschinenkonstruktionslehre III, Vorleistung [T-MACH-110955]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Übung (Ü) / Praktikum (P)</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Übungen zu Maschinenkonstruktionslehre III</td>
<td>2 SWS</td>
<td>Übung (Ü) / Praktikum (P)</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Workshop zu Maschinenkonstruktionslehre III</td>
<td>1 SWS</td>
<td>Praktikum (P) / Seminar (S/P)</td>
<td>Albers, Matthiesen, Albers Assistenten</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Mechanical Design III (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü) / Seminar (S/P)</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Mechanical Design III (Workshop)</td>
<td>SWS</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre III
2145153, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Übung (Ü) Online

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Workshop zu Maschinenkonstruktionslehre III
2145154, WS 20/21, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Praktikum (P) Online
Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

V Mechanical Design III (Tutorial)
3145017, WS 20/21, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches
Termine siehe Lehrveranstaltung 2145154

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
7.34 Teilleistung: Maschinenkonstruktionslehre IV, Vorleistung [T-MACH-110956]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102573 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>SKU</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146184</td>
<td>Übungen zu Maschinenkonstruktionslehre IV</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2146187</td>
<td>Workshop zu Maschinenkonstruktionslehre IV</td>
<td>1</td>
<td>Praktische Übung (PÜ)</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146021</td>
<td>Mechanical Design IV Tutorials</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Albers, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146022</td>
<td>Mechanical Design IV Workshop</td>
<td>1</td>
<td>Praktische Übung (PÜ)</td>
<td>Albers, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>SKU</th>
<th>Veranstaltung</th>
<th>Prüfungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105285</td>
<td>Maschinenkonstruktionslehre IV, Vorleistung</td>
<td>Prüfung (PR)</td>
<td>Albers, Matthiesen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn des Workshops das Wissen aus der Vorlesung abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre IV

2146184, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Elementare Bauteilverbindungen - Teil 2

- Grundlagen der Kupplungen
- Grundlagen der Dimensionierung
- Grundlagen der Hydraulik

Organisatorisches

Voraussetzungen: Teilnahme Maschinenkonstruktionslehre I-III.

Arbeitsaufwand:

- Präsenzzeit: 10,5 h
- Selbststudium: 49,5 h
7 TEILLEISTUNGEN

Teileistung: Maschinenkonstruktionslehre IV, Vorleistung [T-MACH-110956]

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Workshop zu Maschinenkonstruktionslehre IV
2146187, SS 2020, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches
Anmeldung erforderlich; Termine/Ort siehe IPEK-Homepage

Mechanical Design IV Tutorials
3146021, SS 2020, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches
Bonus
The student can achieve an extra bonus for the mechanical design exam.
The bonus amounts to 0.3 exam points and it can only be achieved in case of passed MD-exam (lowest passing grade 4.0).
More details will announce in mechanical design IV.
A prosperous participation is compulsory to attend the exam.

Lectures: 10.5 h
Preparation to exam: 19.5 h
Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
7.35 Teilleistung: Präsentation [T-MACH-108684]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103722 - Bachelorarbeit

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Bachelorarbeit wurde begonnen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-108685 - Bachelorarbeit muss begonnen worden sein.

Anmerkungen
Für die Präsentation der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 90 Stunden gerechnet.
7.36 Teilleistung: Projekt und Operations Management [T-WIWI-108295]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-103322 - Internationales Projektmanagement und Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Module</th>
<th>Vorlesung (V) / 📚</th>
<th>Online/Präsenz/Online gemischt</th>
<th>Präsenz</th>
<th>Abgesagt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Projekt und Operations Management</td>
<td>2 SWS</td>
<td>🖥 Sayah</td>
<td>Vorlesung (V) / 📚</td>
<td>Online/Präsenz/Online gemischt</td>
<td>Präsenz</td>
<td>Abgesagt</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt unbenotet, die Bewertung setzt sich zusammen aus:

- 50% schriftliche Klausur
- 25% Workshop
- 25% Fallstudie

Voraussetzungen

Keine
Anmerkungen
Beschreibung:
Im zweiten Teil (OM) der Vorlesung, werden zwei wesentliche Themenkomplexe des OM, das Bestandsmanagement und die operative Ablaufsteuerung, diskutiert. Die Studierenden lernen die diesen Planungsaufgaben zugrundeliegenden Entscheidungen und typische Restriktionen (z.B. hinsichtlich der gegebenen Kundennachfrage und Produktionskapazität), unter welchen diese Entscheidungen in der Praxis zu treffen sind, kennen.
Die Vorlesung POM gibt den Studierenden Gelegenheit, um Problemlösungskompetenz zu erwerben, indem kurze Fallstudien und Übungsaufgaben zur Bearbeitung angeboten werden. Außerdem werden sie im Umgang mit Modellierungssprachen und Software-Tools geschult, so dass insbesondere Modelle der gemisch-t-ganzzahligen Optimierung umgesetzt und computergestützt gelöst werden können.

Geplante Lehrinhalte:

Themenschwerpunkte der Vorlesung sind:

- Einführung in die mathematische Optimierung
- Netzwerkplantechniken (CPM, PERT, Stochastische Zeitanalyse etc.)
- Bestandsmanagement (Ein- und mehr-periodische Modelle etc.)
- Operative Ablaufsteuerung (Reihenfolgeplanung auf mehreren Maschinen etc.)

Lernziele:
Die Studierenden sind in der Lage,

- grundlegende mathematische Optimierungsprobleme im POM Kontext (z.B. Linear und ganzzahlige Programme, Dynamische Programme) zu formulieren.
- Arten und Nutzen von Beständen sowie relevante Bestandskosten zu differenzieren.
- grundlegende Optimierungskalküle im Bestandsmanagement zu benennen.
- Bestellmengen bei konstanter und dynamischer Nachfrage zu berechnen.
- Arten von Problemen der operativen Reihenfolgeplanung zu klassifizieren.
- Prioritätsgesetz-basierte Maschinenbelegungen zu planen.
- Ablaufpläne für einzelne und mehrere (parallelle) Maschinen zu erstellen.
7.37 Teilleistung: SmartFactory@Industry (MEI) [T-MACH-106733]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-103351 - SP A: Globales Produktionsmanagement

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsaufgabener anderer Art</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>3150044</th>
<th>SmartFactory@Industry</th>
<th>2 SWS</th>
<th>Seminar / Praktikum (S/P)</th>
<th>Lanza</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-106733</th>
<th>SmartFactory@Industry (MEI)</th>
<th>Prüfung (PR)</th>
<th>Lanza</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Prüfungsaufgabener anderer Art (benotet)

- Kolloquium (ca. 15 min)
- Präsentation (ca. 20 min)

Voraussetzungen
Erfolgreich absolvierte Module:

- M-MACH-102563 - Informatik
- M-MACH-102573 - Maschinenkonstruktionslehre

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-102563 - Informatik muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-MACH-102573 - Maschinenkonstruktionslehre muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V SmartFactory@Industry
3150044, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Seminar / Praktikum (S/P)
Inhalt
The students will get to know different real industrial tasks and problems and will learn how to address them with the methods they got to know and even beyond these.

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- automatic machines, cells, centers and systems for manufacturing and assembly
- planning of automated manufacturing systems

In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components. The analysis of automated manufacturing systems for manufacturing of defined components is also included.

Learning Goals:
The students …

- know about different processes in industry
- can accomplish industrial tasks on their-own and in groups
- can summarize their work in a comprehensive presentation for industrial receivers

Prerequisites:
S. Modul
Successful completion of the following courses:
Mechanical Design I-IV
Computer Science

Organisatorisches
For organizational reasons the number of participants for the course is limited. Hence a selection process will take place. The course is held as block modules.

Die Veranstaltung wird partiiell beim Industriepartner stattfinden. Die genauen Termine werden rechtzeitig vor Beginn der Veranstaltung über die wbk-Homepage bekannt gegeben.
7.38 Teilleistung: Strömungslehre 1&2 [T-MACH-105207]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-102565 - Strömungslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 8
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsnummer</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Prüfungsleistung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Strömungslehre I</td>
<td>2154512</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td></td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Fluid Mechanics I</td>
<td>3154510</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td></td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Strömungslehre II</td>
<td>2153512</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ) / Online</td>
<td></td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Fluid Mechanics II</td>
<td>3153511</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ) / Online</td>
<td></td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsveranstaltung</th>
<th>Prüfungstitel</th>
<th>Prüfungstitelnummer</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Strömungslehre (1+2)</td>
<td>76-T-MACH-105207</td>
<td>Prüfung (PR)</td>
<td>Frohnapfel, Kriegseis</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Strömungslehre (1+2)</td>
<td>76-T-MACH-105207</td>
<td>Prüfung (PR)</td>
<td>Frohnapfel</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung 3 Stunden

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strömungslehre I

2154512, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Inhalt

Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik
Literaturhinweise

die Strömungslehre 1 & 2

Fluid Mechanics I

3154510, SS 2020, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik

Literaturhinweise

Strömungslehre II

2153512, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massenerhaltung und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detailliertere Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton'scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise

Inhalt
Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet die sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton'scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise
7.39 Teilleistung: Technische Mechanik I [T-MACH-100282]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
M-MACH-102572 - Technische Mechanik
M-MACH-104162 - Orientierungsprüfung

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 2161245</td>
<td>Technische Mechanik I</td>
<td>3 SWS</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>WS 20/21 3161010</td>
<td>Engineering Mechanics I (Lecture)</td>
<td>3 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen			
SS 2020 76-T-MACH-100282	Technische Mechanik I		
SS 2020 76-T-MACH-100282-englisch	Engineering Mechanics I		

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Klausur), 90 min, benotet

Voraussetzungen

Bestehen der "Übungen zur Technischen Mechanik I" (siehe Teilleistung T-MACH-100528)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100528 - Übungen zu Technische Mechanik I muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Mechanik I

- Vorlesung (V)
- Präsenz/Online gemischt

- 2161245, WS 20/21, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Grundzüge der Vektorrechnung
- Kraftsysteme
- Statik starrer Körper
- Schnittgrößen in Stäben u. Balken
- Haftung und Gleitreibung
- Schwerpunkt u. Massenmittelpunkt
- Arbeit, Energie, Prinzip der virtuellen Verschiebungen
- Statik der undehnbaren Seile
- Elastostatik der Zug-Druck-Stäbe

Literaturhinweise

- Vorlesungsskript
- Hibbeler, R.C: Technische Mechanik 1 - Statik. Prentice Hall, Pearson Studium 2005
7.40 Teilleistung: Technische Mechanik II [T-MACH-100283]

Verantwortung:
Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
M-MACH-102572 - Technische Mechanik
M-MACH-104162 - Orientierungsprüfung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2020 2162250 Technische Mechanik II 3 SWS Vorlesung (V) Böhlke
SS 2020 3162010 Engineering Mechanics II (Lecture) 3 SWS Vorlesung (V) Langhoff, Pallicity

Prüfungsveranstaltungen
SS 2020 76-T-MACH-100283 Technische Mechanik II Prüfung (PR) Böhlke, Langhoff

Erfolgskontrolle(n)
schriftliche Prüfung (Klausur), 90 min, benotet

Voraussetzungen
Bestehen der "Übungen zur Technischen Mechanik II" (siehe Teilleistung T-MACH-100284)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100284 - Übungen zu Technische Mechanik II muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Technische Mechanik II
2162250, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Balkenbiegung
- Querkraftschub
- Torsionstheorie
- Spannungs- und Verzerrungszustand in 3D
- Hooke'sches Gesetz in 3D
- Elastizitätstheorie in 3D
- Energiemethoden der Elastostatik
- Näherungsverfahren
- Stabilität elastischer Stäbe

Literaturhinweise
Vorlesungs-skript
Engineering Mechanics II (Lecture)
3162010, SS 2020, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V)

Inhalt

• bending
• shear
• torsion
• stress and strain state in 3D
• Hooke's law in 3D
• elasticity theorems in 3D
• energy methods in elastostatics
• approximation methods
• stability of elastic bars
7.41 Teilleistung: Technische Mechanik III & IV [T-MACH-105201]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102572 - Technische Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2162231</th>
<th>Technische Mechanik IV</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Seemann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3162012</td>
<td>Engineering Mechanics 4</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Seemann</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2161203</td>
<td>Technische Mechanik III</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Seemann</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3161012</td>
<td>Engineering Mechanics III (Lecture)</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2020 | 76-T-MACH-105201 | Technische Mechanik III & IV | Prüfung (PR) | Seemann |

Legende: Online, Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (3 h), benotet

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in TM III Ü (T-MACH-105202) sowie der Übungsblätter in TM IV Ü (T-MACH-105203).

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105202 - Übungen zu Technische Mechanik III muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-MACH-105203 - Übungen zu Technische Mechanik IV muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Mechanik IV

2162231, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

Literaturhinweise

Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin, 1971
Klotter: Technische Schwingungslehre, 1. Bd. Teil A, Heidelberg

Engineering Mechanics 4

3162012, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt

Kinematik: kartesische, zylindrische und natürliche Koordinaten, Ableitungen in verschiedenen Bezugssystemen, Winkelgeschwindigkeiten.

Ebene Bewegung starrer Körper:

Literaturhinweise
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
Hagedorn: Technische Mechanik III.
7.42 Teilleistung: Technische Thermodynamik und Wärmeübertragung I [T-MACH-104747]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102574 - Technische Thermodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

WS 20/21
2165501, Technische Thermodynamik und Wärmeübertragung I
4 SWS, Vorlesung (V) / Online
Maas

WS 20/21
3165014, Technical Thermodynamics and Heat Transfer I
4 SWS, Vorlesung (V) / Präsenz
Schießl, Maas

Prüfungsveranstaltungen

SS 2020
76-T-MACH-104747, Technische Thermodynamik und Wärmeübertragung I
Prüfung (PR)
Maas

SS 2020
76-T-MACH-104747-englisch, Technische Thermodynamik und Wärmeübertragung I, englisch
Prüfung (PR)
Maas

Legende: 🖥 Online, 🕰️ Präsenz/Online gemischt, 🕰️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen

Erfolgreiche Teilnahme an der Übung (T-MACH-105204 - Technische Thermodynamik und Wärmeübertragung I, Vorleistung)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105204 - Technische Thermodynamik und Wärmeübertragung I, Vorleistung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Literaturhinweise

Vorlesungsverzeichnis
7.43 Teilleistung: Technische Thermodynamik und Wärmeübertragung I, Vorleistung [T-MACH-105204]

Verantwortung: Prof. Dr. Ulrich Maas

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-102574 - Technische Thermodynamik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Leistungsart</th>
<th>Vorleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2165502 Übungen zu Technische Thermodynamik und Wärmeübertragung I</td>
<td>2 SWS</td>
<td>Jedes Wintersemester</td>
<td>Studienleistung schriftlich</td>
<td>0</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3165015 Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>2 SWS</td>
<td>Jedes Wintersemester</td>
<td>Übung (Ü)</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Prüfung</th>
<th>Vorleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105204 Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erfolgreiche Bearbeitung der Übungsblätter.

Voraussetzungen
keine
7.44 Teilleistung: Technische Thermodynamik und Wärmeübertragung II [T-MACH-105287]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102574 - Technische Thermodynamik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
7

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2166526</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Maas</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Schießl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungsbezeichnung</th>
<th>Prüfung (PR)</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105287</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105287-englisch</td>
<td>Technische Thermodynamik und Wärmeübertragung II, englisch</td>
<td>Maas</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
Erfolgreiche Teilnahme an der Übung (T-MACH-105288 - Technische Thermodynamik und Wärmeübertragung II, Vorleistung)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Thermodynamik und Wärmeübertragung II
2166526, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Wiederholung des Stoffes von "Thermodynamik und Wärmeübertragung I"
Mischung idealer Gase
Feuchte Luft
Verhalten realer Stoffe beschrieben durch Zustandsgleichungen
Anwendung der Hauptsätze auf chemische Reaktionen

Literaturhinweise
Vorlesungsskriptum
7.45 Teilleistung: Technische Thermodynamik und Wärmeübertragung II, Vorleistung [T-MACH-105288]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102574 - Technische Thermodynamik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2166556</td>
<td>Tutorien zu Technische Thermodynamik und Wärmeübertragung II</td>
<td>2 SWS</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3166033</td>
<td>Technical Thermodynamics and Heat Transfer II (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105288</td>
<td>Technische Thermodynamik und Wärmeübertragung II, Vorleistung</td>
<td>Prüfung (PR)</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung der Übungsblätter.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Tutorien zu Technische Thermodynamik und Wärmeübertragung II

2166556, SS 2020, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Übung (Ü)

Inhalt

Berechnung thermodynamischer Problemstellungen

Literaturhinweise

Vorlesungsskriptum
Teilleistung: Übungen zu Technische Mechanik I [T-MACH-100528]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102572 - Technische Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Typ (Nummer der SWS)</th>
<th>Inhalt</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2161246</td>
<td>Übungen zu Technische Mechanik I</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🧩</td>
<td>Dyck, Lang, Böhlke</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3161011</td>
<td>Engineering Mechanics I (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🧩</td>
<td>Kehrer, Pallicity, Langhoff</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflichtaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als drei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-100282)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik I
2161246, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalts
Siehe Vorlesung Technische Mechanik I.

Literaturhinweise
Siehe Vorlesung Technische Mechanik I
7.47 Teilleistung: Übungen zu Technische Mechanik II [T-MACH-100284]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102572 - Technische Mechanik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Übungen zu Technische Mechanik II</td>
<td>2</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Engineering Mechanics II (Tutorial)</td>
<td>2</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Übungen zu Technische Mechanik II</td>
<td>2</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Engineering Mechanics II (Tutorial)</td>
<td>2</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflicht-Hausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als zwei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-100283).

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik II

::: 2162251, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Engineering Mechanics II (Tutorial)

::: 3162011, SS 2020, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Siehe Vorlesung Technische Mechanik II

Literaturhinweise
Siehe Vorlesung Technische Mechanik II

Im folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
7.48 Teilleistung: Übungen zu Technische Mechanik III [T-MACH-105202]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102572 - Technische Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>2161204</th>
<th>Übungen zu Technische Mechanik III</th>
<th>2 SWS</th>
<th>Übung (Ü)</th>
<th>Seemann, Altoé, Bitner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>3161013</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Seemann, Altoé, Bitner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Testate, erfolgreiche Bearbeitung von Übungsblättern

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik III
2161204, WS 20/21, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Übungsblätter müssen zu Hause bearbeitet und zur Korrektur abgegeben werden. Die erfolgreiche Bearbeitung ist Voraussetzung zur Teilnahme an der Klausur.

Literaturhinweise
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
Hagedorn: Technische Mechanik III.
7.49 Teilleistung: Übungen zu Technische Mechanik IV [T-MACH-105203]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102572 - Technische Mechanik

Teilleistungsart: Studienleistung schriftlich
Leistungspunkte: 0
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungkode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2162232</td>
<td>Übungen zu Technische Mechanik 4 für mach, tema</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Seemann, Bitner, Schröders</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3162013</td>
<td>Engineering Mechanics 4 (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Seemann, Bitner, Schröders</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungkode</th>
<th>Veranstaltungsname</th>
<th>Prüfung (PR)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105203</td>
<td>Übungen zu Technische Mechanik IV</td>
<td>Prüfung (PR)</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Testate, erfolgreiche Bearbeitung von Übungsblättern

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik 4 für mach, tema
2162232, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)

Inhalt

Die Übungsblätter müssen zu Hause bearbeitet und zur Korrektur abgegeben werden. Die erfolgreiche Bearbeitung ist Voraussetzung zur Teilnahme an der Klausur.

Literaturhinweise
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin, 1971
Klotter: Technische Schwingungslehre, 1. Bd. Teil A, Heidelberg
7.50 Teilleistung: Wärme- und Stoffübertragung [T-MACH-105292]

Verantwortung: Prof. Dr.-Ing. Henning Bockhorn
Prof. Dr. Ulrich Maas

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-103350 - SP B: Energietechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4

Turnus Jedes Semester

Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3122512</td>
<td>Heat and Mass Transfer</td>
<td>2 SWS</td>
<td>Bockhorn</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2165512</td>
<td>Wärme- und Stoffübertragung</td>
<td>2 SWS</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungsnamen</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105292</td>
<td>Wärme- und Stoffübertragung</td>
<td>PR</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung schriftlich; Dauer ca. 3 h

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wärme- und Stoffübertragung

2165512, WS 20/21, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise

- Maas; Vorlesungs-skript “Wärme- und Stoffübertragung”
7.51 Teilleistung: Wellen- und Quantenphysik [T-PHYS-108322]

Verantwortung: apl. Prof. Dr. Gernot Goll
Prof. Dr. Bernd Pilawa

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104030 - Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Semester</th>
<th>Lecture Code</th>
<th>Lecture Title</th>
<th>Lecture Hours</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>4040411</td>
<td>Wellen und Quantenphysik (für Maschinenbauer)</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Pilawa</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040412</td>
<td>Übungen zu Wellen und Quantenphysik</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Pilawa, NN</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040431</td>
<td>Wave and Quantum Physics</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Goll</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040432</td>
<td>Exercises to Wave and Quantum Physics</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Goll, Loïc</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Semester</th>
<th>Lecture Code</th>
<th>Lecture Title</th>
<th>Examination Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7800123</td>
<td>Wellen- und Quantenphysik (deutschsprachige Prüfung)</td>
<td>Prüfung (PR)</td>
<td>Pilawa</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>7800124</td>
<td>Wave and Quantum Physics (englischsprachige Prüfung)</td>
<td>Prüfung (PR)</td>
<td>Goll</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen

- keine
7.52 Teilleistung: Werkstoffkunde I & II [T-MACH-105145]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102562 - Werkstoffkunde

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2174560</td>
<td>Werkstoffkunde II für mach, phys</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2020 3174015</td>
<td>Materials Science and Engineering II (Lecture)</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2020 3174026</td>
<td>Materials Science and Engineering II (Tutorials)</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td>WS 20/21 2173550</td>
<td>Werkstoffkunde I für mach, phys</td>
<td>4 SWS</td>
<td>Vorlesung (V) / Punt</td>
</tr>
<tr>
<td>WS 20/21 3173008</td>
<td>Materials Science and Engineering I (Lecture)</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 20/21 3173009</td>
<td>Materials Science and Engineering I (Tutorial)</td>
<td>1 SWS</td>
<td>Übung (Ü) /</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 76-T-MACH-105145</td>
<td>Werkstoffkunde I, II</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105145-2</td>
<td>Werkstoffkunde I, II</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105145-English</td>
<td>Werkstoffkunde I & II (Exam in English)</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Gibmeier</td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-105145-W</td>
<td>Werkstoffkunde I & II (Wiederholer)</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>WS 20/21 76-T-MACH-105145</td>
<td>Werkstoffkunde I, II</td>
<td>Prüfung (PR)</td>
<td>Heilmaier, Pundt</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
Vorbedingung für mündliche Modulprüfung: Erfolgreiche Teilnahme am "Praktikum in Werkstoffkunde" (unbenoteter Schein).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Die Teilleistung T-MACH-105146 - Werkstoffkunde Praktikum muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Der Arbeitsaufwand für die Vorlesung Werkstoffkunde 1 und 2 beträgt pro Semester 165 h und besteht aus Präsenz in den Vorlesungen (WS: 4 SWS, SS: 2SWS) und Übungen (je 1 SWS im WS und SS) sowie Vor- und Nachbearbeitungszeit zuhause.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffkunde II für mach, phys
2174560, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.
Die Studierenden können typische Vertreter der einzelnen Werkstoffhauptgruppen nennen und die grundsätzlichen Unterschiede zwischen den einzelnen Vertreter beschreiben.
Die Studierenden sind in der Lage die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.
Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ablesen und daraus die Gefügeentwicklung ableiten.
Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Voraussetzungen:
Werkstoffkunde I

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Nachweis:
Kombiniert mit Werkstoffkunde I, mündlich; ca. 30 Minuten

Voraussetzung für die Zulassung zur Prüfung ist eine erfolgreiche Teilnahme am Werkstoffkundepraktikum.

Organisatorisches
Aktuelle Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehrveranstaltungen.php

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering II (Lecture)
3174015, SS 2020, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.
Die Studierenden können typische Vertreter der einzelnen Werkstoffhauptgruppen nennen und die grundsätzlichen Unterschiede zwischen den einzelnen Vertretern beschreiben.
Die Studierenden sind in der Lage die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.
Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ablesen und daraus die Gefügeentwicklung ableiten.
Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Voraussetzungen:
Werkstoffkunde I

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Nachweis:
Kombiniert mit Werkstoffkunde I, mündlich; ca. 30 Minuten
Voraussetzung für die Zulassung zur Prüfung ist eine erfolgreiche Teilnahme am Werkstoffkundepraktikum.

Literaturhinweise
Vorlesungs­skript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
Inhalt
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung

Qualifikationsziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die Eigenschaftsprofile beschreiben und Anwendungsgebiete der wichtigsten Ingenieurswerkstoffe nennen.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung beschreiben und deren Auswertung erläutern. Sie können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Organisatorisches
asynchrone Videos

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
Inhalt
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung

Qualifikationsziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die Eigenschaftsprofile beschreiben und Anwendungsgebiete der wichtigsten Ingenieurswerkstoffe nennen.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung beschreiben und deren Auswertung erläutern. Sie können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
7.53 Teilleistung: Werkstoffkunde Praktikum [T-MACH-105146]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102562 - Werkstoffkunde

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2174597</th>
<th>Experimentelles Praktikum in Werkstoffkunde</th>
<th>3 SWS</th>
<th>Praktikum (P)</th>
<th>Heilmaier, Pundt, Dietrich, Gibmeier, Guth, Lang</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3174016</td>
<td>Materials Science and Engineering Lab Course</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Gibmeier, Heilmaier, Pundt, Dietrich, Lang</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-105146</th>
<th>Werkstoffkunde Praktikum</th>
<th>Prüfung (PR)</th>
<th>Heilmaier, Pundt</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Mündliches Kolloquium zu Beginn jedes Themenblocks; unbenotete Bescheinigung der erfolgreichen Teilnahme.

Voraussetzungen

keine

Anmerkungen

Der Arbeitsaufwand für das Praktikum Werkstoffkunde beträgt insgesamt 90 h und besteht aus Präsenzpflcht in den 10 Versuchen (eine Woche halbtags, je 4 Zeitstunden pro Tag) und Vor- und Nachbearbeitungszeit zuhause.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelles Praktikum in Werkstoffkunde

2174597, SS 2020, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Inhalt
Durchführung und Auswertung von Laborversuchen zu folgenden fünf Themenblöcken:

Mechanische Werkstoffprüfung
Nichtmetallische Werkstoffe
Gefüge und Eigenschaften
Schwingende Beanspruchung / Ermüdung
Fertigungstechnische Werkstoffbeeinflussung

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung benennen, ihre Durchführung und die notwendigen Auswertemethoden beschreiben und können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Die Studierenden sind in der Lage zur Klärung werkstoffkundlicher Fragestellungen geeignete Versuche auszuwählen, sie können die praktischen Versuchsabläufe beschreiben und diese Versuche selbst durchführen und können aus den gemessenen und erhobenen Daten entsprechende Kennwerte berechnen und diese interpretieren.

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzeit: 22 Stunden
Selbststudium: 68 Stunden

Organisatorisches
Blockveranstaltung in KW 37/38. Infos durch Aushang am IAM-WK und in der VL WII. Anmeldung erforderlich.

Literaturhinweise
Praktikumsskriptum

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering Lab Course
3174016, SS 2020, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Durchführung und Auswertung von Laborversuchen zu folgenden fünf Themenblöcken:

Mechanische Werkstoffprüfung
Nichtmetallische Werkstoffe
Gefüge und Eigenschaften
Schwingende Beanspruchung / Ermüdung
Fertigungstechnische Werkstoffbeeinflussung

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung benennen, ihre Durchführung und die notwendigen Auswertemethoden beschreiben und können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Die Studierenden sind in der Lage zur Klärung werkstoffkundlicher Fragestellungen geeignete Versuche auszuwählen, sie können die praktischen Versuchsabläufe beschreiben und diese Versuche selbst durchführen und können aus den gemessenen und erhobenen Daten entsprechende Kennwerte berechnen und diese interpretieren.

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzeit: 22 Stunden
Selbststudium: 68 Stunden

Organisatorisches
Registration required. Note announcements (MSE lecture and IAM-WK bulletin board)
Literaturhinweise
Praktikumsskriptum

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
Amtliche Bekanntmachung

2017

Ausgegeben Karlsruhe, den 21. Juli 2017

Nr. 50

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satzung für das hochschuleigene Auswahlverfahren im internationalen englischsprachigen Bachelorstudiengang Mechanical Engineering (International) am Karlsruher Institut für Technologie (KIT)</td>
<td>422</td>
</tr>
</tbody>
</table>
Satzung für das hochschuleigene Auswahlverfahren im internationalen englischsprachigen Bachelorstudiengang Mechanical Engineering (International) am Karlsruher Institut für Technologie (KIT)

vom 19. Juli 2017

§ 1 Anwendungsbereich, Quoten

(2) Die Ausländerquote beträgt in diesem Studiengang gem. der Anlage 1 zur Hochschulvergabeverordnung (im Folgenden: HVVO) iVm. § 1 Abs. 3 HVVO 70 vom Hundert. Zugelassen werden in dieser Quote Studienbewerber/innen ausländischer Staatsangehörigkeit oder Staatenlose, die nicht Deutschen nach § 1 Abs. 2 HVVO gleichgestellt sind.

30 vom Hundert der zur Verfügung stehenden Plätze werden an deutsche und Deutschen gem. § 1 Abs. 2 HVVO gleichgestellte Studienbewerber/-bewerberinnen vergeben.

§ 2 Fristen
Eine Zulassung von Studienanfängern/-anfängerinnen erfolgt nur zum Wintersemester. Der Antrag auf Zulassung einschließlich aller erforderlichen Unterlagen muss bis zum 30.4. eines Jahres beim KIT eingegangen sein (Ausschlussfrist).

§ 3 Form des Antrags
(1) Die Form des Antrags richtet sich nach den allgemeinen für das Zulassungsverfahren geltenden Bestimmungen in der jeweils gültigen Zulassungs- und Immatrikulationsordnung des KIT.

(2) Dem Antrag sind folgende Unterlagen beizufügen:
1. eine Kopie des Zeugnisses der Allgemeinen Hochschulzugangsberechtigung, einer einschlägigen fachgebundenen Hochschulzugangsberechtigung, bzw. einer gleichwertigen ausländischen oder sonstigen Hochschulzugangsberechtigung im Sinne des § 58 Abs. 2 LHG;

2. Nachweis über die erfolgreiche Teilnahme am SAT (Scholastic Assessment Test bestehend aus „Reading Test, Writing and Language Test, and a Math Test“) mit mindestens 1200 Punkten. Die Nachweisführung erfolgt ausschließlich über den offiziellen Leistungsnachweis mit den erreichten Punktzahlen über die Teilnahme am SAT Test (student score report „CollegeBoard SAT“) ausgestellt durch das CollegeBoard. Dieser ist der Bewerbung in Papierform beizufügen;

3. die in einem vorläufigen Zeugnis nach § 3 Abs. 3 bzw. dem Zeugnis der Hochschulzugangsberechtigung ausgewiesenen Noten in den Fächern Mathematik und Physik; alten kann der offizielle Leistungsnachweis mit der erreichten Punktzahl des SAT Subject Test in Physik vorgelegt werden.

4. Nachweise über ausreichende englische Sprachkenntnisse nach § 5 Abs. 1 b;

5. sofern vorhanden: Nachweise über eine abgeschlossene Berufsausbildung und Berufstätigkeit, besondere Vorbildungen, praktische Tätigkeiten, sowie außerschulische Leistungen und Qualifikationen, die über die Eignung für den Studiengang besonderen Aufschluss geben;

6. Motivationsschreiben;

7. die in der jeweils gültigen Zulassungs- und Immatrikulationsordnung genannten sonstigen Unterlagen.

Falls die vorgelegten Unterlagen und Zeugnisse nicht in deutscher oder englischer Sprache abgefasst sind, ist eine amtlich beglaubigte Übersetzung in deutscher oder englischer Sprache erforderlich. Das KIT kann verlangen, dass diese der Zulassungsentscheidung zugrundeliegenden Dokumente bei der Einschreibung im Original vorzulegen sind.

(3) Liegt das Zeugnis der Hochschulzugangsberechtigung nach Abs. 2 Ziffer 1 bis zum Ende der Antragsfrist nach § 2 noch nicht vor, kann der Zulassungsantrag auf ein vorläufiges Zeugnis gestützt werden, wenn zu erwarten ist, dass aufgrund der bisherigen Prüfungsergebnisse die Hochschulzugangsberechtigung rechtzeitig vor Beginn des Bachelorstudiengangs Mechanical Engineering erlangt wird.

Das vorläufige Zeugnis muss eine Bewertung der bisher erbrachten Prüfungsleistungen enthalten, welche in die Note der Hochschulzugangsberechtigung mit einführen oder Vorraussetzung für den Erwerb der HZH sind, und von einer für die Notengebung oder Zeugniserteilung autorisierten Stelle ausgestellt sein. Weiterhin muss der angestrebte Abschluss
im originalsprachlichen Wortlaut angegeben sein, entsprechend der Richtlinien der Zentralstelle für das ausländische (ZAB) Bildungswesen (www.anabin.org).

Bewerber und Bewerberinnen nach Satz 1 nehmen am Auswahlverfahren mit einer Durchschnittsnote, die aufgrund der bisherigen Prüfungsleistungen ermittelt wird, teil; das Ergebnis der endgültigen Hochschulzugangsberechtigung bleibt unbeachtet.

Eine Zulassung ist im Fall einer Bewerbung nach Satz 1 unter dem Vorbehalt auszusprechen, dass die Hochschulzugangsberechtigung bis zur Immatrikulation nachgewiesen wird und sich die vorläufige Zulassung durch das endgültige Zeugnis bestätigt. Im Übrigen bleibt das endgültige Zeugnis bei der Zulassung unbeachtlich. Wird der Nachweis nicht fristgerecht erbracht, erlischt die Zulassung.

§ 4 Auswahlkommission

(1) Zur Vorbereitung der Auswahlentscheidung setzt die KIT-Fakultät Maschinenbau mindestens eine Auswahlkommission ein. Die Auswahlkommission besteht aus mindestens zwei Personen des hauptberuflich tätigen wissenschaftlichen Personals, davon ein/er Professor/in.

(2) Die Auswahlkommission berichtet dem KIT-Fakultätsrat nach Abschluss des Verfahrens über die gesammelten Erfahrungen und macht Vorschläge zur Verbesserung und Weiterentwicklung des Auswahlverfahrens.

§ 5 Auswahlverfahren

(1) Am Auswahlverfahren nimmt nur teil, wer

a) sich frist- und formgerecht um einen Studienplatz beworben hat und

b) ausreichende englische Sprachkenntnisse (Test of English as Foreign Language (TOEFL) mit mindestens 570 Punkten im paper-based TOEFL Test, 250 Punkten im computerbased TOEFL Test oder 88 Punkten im internet-based TOEFL Test; IELTS min. 6,5 oder gleichwertiger Nachweis) nachweist, sofern die Muttersprache der Bewerber/-in nicht Englisch ist. Dieser Nachweis englischer Sprachkenntnisse entfällt für Bewerber/-innen, deren Muttersprache Englisch ist oder die ihren Hochschulabschluss in einem englischsprachigen Studiengang oder im englischsprachigen Ausland erworben haben. Die offizielle Sprache des Studienprogramms muss auf dem Abschlusszeugnis, dessen Ergänzung, im Transcript of Records oder in einer entsprechenden Bescheinigung der Hochschule vermerkt sein.

(2) Die Zulassung ist zu versagen, wenn

a) die Unterlagen nach § 3 Abs. 2 nicht frist- oder formgerecht vorgelegt wurden oder

b) im Bachelorstudiengang Mechanical Engineering oder einem verwandten Studiengang mit im Wesentlichen gleichem Inhalt eine nach der Prüfungsordnung erforderliche Prüfung endgültig nicht bestanden wurde oder der Prüfungsanspruch aus sonstigen Gründen nicht mehr besteht (§ 60 Abs. 2 Nr. 2 LHG, § 9 Abs. 2 HZG). Über die Festlegung der Studiengänge mit im Wesentlichen gleichem Inhalt entscheidet die Auswahlkommission des Bachelorstudiengangs Mechanical Engineering im Einvernehmen mit dem Prüfungsausschuss des Bachelorstudiengangs Mechanical Engineering.
§ 6 Auswahlkriterien

Die Auswahl erfolgt aufgrund einer gemäß § 8 zu bildenden Rangliste nach dem Ergebnis

a) eines fachspezifischen Studierfähigkeitstests (§ 7),

b) die in den (vorläufigen) Zeugnissen ausgewiesenen Profilnoten in Mathematik und Physik aus den letzten zwei Halbjahren vor dem 30.04., sofern diese in die Note der Hochschulzugangsberechtigung mit einfließen oder Voraussetzung für den Erwerb der Hochschulzugangsberechtigung sind. Die Profilnoten können ersetzt werden durch den SAT-Subject Test Physik.

c) eines Motivationsschreibens,

d) beruflicher und sonstiger Leistungen.

§ 7 Fachspezifischer Studierfähigkeitstest (SAT-Test)

§ 8 Erstellen der Rangliste für die Auswahlentscheidung

(1) Die Rangliste wird nach einer Punktzahl, in die nachfolgende Leistungen eingehen, erstellt:

1. Ergebnis des SAT-Test:
 Die im SAT-Test erreichte Punktzahl wird mit maximal 20 Punkten bewertet. Die Umrechnung erfolgt nach der Tabelle in Anlage 1 der Satzung.

2. Die in den (vorläufigen) Zeugnissen ausgewiesenen Profilnoten in Mathematik und Physik aus den letzten zwei Halbjahren vor dem 30.04., sofern diese in die Note der Hochschulzugangsberechtigung mit einfließen oder Voraussetzung für den Erwerb der Hochschulzugangsberechtigung sind. Die Profilnoten können ersetzt werden durch das Ergebnis des SAT Subject Test Physik:

Die Verteilung der maximal 10 Punkte auf das aus den Schulnoten gebildete arithmetische Mittel bzw. das Ergebnis des SAT Subject Test Physik erfolgt gemäß den Tabellen in den Anlagen 2 (Profilnoten) und Anlage 3 (SAT Subject Test) der Satzung.

3. Motivationsschreiben:
 Im Motivationsschreiben soll der Bewerber/ die Bewerberin zu folgenden Themen Stellung beziehen bzw. Angaben machen:
Darstellung der
a) eigenen Persönlichkeit und des Werdegangs
b) fachspezifischen Interessen und Fähigkeiten
c) Entscheidung für die Studienrichtung Maschinenbau
d) persönliche Ziele für den Studienabschluss Bachelor of Science
e) Spätere Studien- und Berufsziele.

Das Motivationsschreiben ist in englischer Sprache zu verfassen und soll einen Umfang von zwei DIN A4 Seiten nicht überschreiten.

Die Mitglieder der Auswahlkommission bewerten das Motivationsschreiben gemeinsam auf einer Skala von 0 bis 10. Dabei werden die Themen nach Nr. 3 a) bis e) mit jeweils maximal 2 Punkten bewertet, sofern sie über die Eignung des Bewerbers/ der Bewerberin für das angestrebte Studium besonderen Aufschluss geben.

4. Berufliche und sonstige Leistungen:

Die Mitglieder der Auswahlkommission bewerten die beruflichen und sonstigen Leistungen gesondert auf einer Skala von 0 bis 5. Dabei werden die folgenden Kriterien berücksichtigt, sofern sie über die Eignung für das angestrebte Studium besonderen Aufschluss geben:

a) eine abgeschlossene Berufsausbildung in einem einschlägigen Ausbildungsberuf und bisherige, für den Studiengang einschlägige Berufsausübung auch ohne abgeschlossene Berufsausbildung,
b) praktische Tätigkeiten und besondere Vorbildungen
c) außerschulische Leistungen und Qualifikationen (z.B. Preise und Auszeichnungen).

Aus der Summe der von den einzelnen Mitgliedern vergebenen Punktzahlen wird das arithmetische Mittel bis auf eine Dezimalstelle hinter dem Komma berechnet. Es wird nicht gerundet.

(2) Die Punktzahl nach Absatz 1 Nr. 1 (SAT-Test), nach Absatz 1 Nr. 2 (Profilnoten bzw. Ergebnis des SAT Subject Test Physik), nach Absatz 1 Nr. 3 (Motivationsschreiben) und Absatz 1 Nr. 4 (Berufliche und sonstige Leistungen) werden addiert (max. 45 Punkte). Auf der Grundlage der so ermittelten Punktzahl wird unter allen Teilnehmenden des Auswahlverfahrens eine Rangliste erstellt.

(3) Bei Ranggleichheit gilt § 16 HVVO.

§ 9 Inkrafttreten

Karlsruhe, den 19. Juli 2017

Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Anlage 1:
Umrechnung der im SAT Test erreichten Punktezahl

<table>
<thead>
<tr>
<th>SAT Test Punktezahl</th>
<th>Zugeordnete Punkte für das Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 Minimum</td>
<td></td>
</tr>
<tr>
<td>1200 - 1215</td>
<td>1</td>
</tr>
<tr>
<td>1216 - 1230</td>
<td>2</td>
</tr>
<tr>
<td>1231 - 1245</td>
<td>3</td>
</tr>
<tr>
<td>1246 - 1260</td>
<td>4</td>
</tr>
<tr>
<td>1261 - 1275</td>
<td>5</td>
</tr>
<tr>
<td>1276 - 1290</td>
<td>6</td>
</tr>
<tr>
<td>1291 - 1305</td>
<td>7</td>
</tr>
<tr>
<td>1306 - 1320</td>
<td>8</td>
</tr>
<tr>
<td>1321 - 1335</td>
<td>9</td>
</tr>
<tr>
<td>1336 - 1350</td>
<td>10</td>
</tr>
<tr>
<td>1351 - 1365</td>
<td>11</td>
</tr>
<tr>
<td>1366 - 1380</td>
<td>12</td>
</tr>
<tr>
<td>1381 - 1395</td>
<td>13</td>
</tr>
<tr>
<td>1396 - 1410</td>
<td>14</td>
</tr>
<tr>
<td>1411 - 1425</td>
<td>15</td>
</tr>
<tr>
<td>1426 - 1440</td>
<td>16</td>
</tr>
<tr>
<td>1441 - 1455</td>
<td>17</td>
</tr>
<tr>
<td>1456 - 1470</td>
<td>18</td>
</tr>
<tr>
<td>1471 - 1495</td>
<td>19</td>
</tr>
<tr>
<td>>1496</td>
<td>20</td>
</tr>
</tbody>
</table>
Anlage 2:

Verteilung der Punkte auf das arithmetische Mittel der Profilnoten Mathe und Physik

<table>
<thead>
<tr>
<th>Note (arithmetisches Mittel)</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 – 1.3</td>
<td>10 Punkte</td>
</tr>
<tr>
<td>1.4 – 1.6</td>
<td>9 Punkte</td>
</tr>
<tr>
<td>1.7 – 1.9</td>
<td>8 Punkte</td>
</tr>
<tr>
<td>2.0 – 2.2</td>
<td>7 Punkte</td>
</tr>
<tr>
<td>2.3 – 2.5</td>
<td>6 Punkte</td>
</tr>
<tr>
<td>2.6 – 2.8</td>
<td>5 Punkte</td>
</tr>
<tr>
<td>2.9 – 3.1</td>
<td>4 Punkte</td>
</tr>
<tr>
<td>3.2 – 3.4</td>
<td>3 Punkte</td>
</tr>
<tr>
<td>3.5 – 3.7</td>
<td>2 Punkte</td>
</tr>
<tr>
<td>3.8 – 4.0</td>
<td>1 Punkt</td>
</tr>
</tbody>
</table>
Anlage 3:
Umrechnung der im SAT Physik Fach-spezifischen Test erreichten Punktezahl

<table>
<thead>
<tr>
<th>SAT Test Punktezahl</th>
<th>Zugeordnete Punkte für das Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punkteverteilung 200 – 800 Punkte</td>
<td></td>
</tr>
<tr>
<td>400 Minimum</td>
<td></td>
</tr>
<tr>
<td>400 - 420</td>
<td>1</td>
</tr>
<tr>
<td>421 - 440</td>
<td>2</td>
</tr>
<tr>
<td>441 - 460</td>
<td>3</td>
</tr>
<tr>
<td>461 - 480</td>
<td>4</td>
</tr>
<tr>
<td>481 - 500</td>
<td>5</td>
</tr>
<tr>
<td>501 - 520</td>
<td>6</td>
</tr>
<tr>
<td>521 - 540</td>
<td>7</td>
</tr>
<tr>
<td>541 - 560</td>
<td>8</td>
</tr>
<tr>
<td>561 - 580</td>
<td>9</td>
</tr>
<tr>
<td>>581</td>
<td>10</td>
</tr>
</tbody>
</table>
Inhalt

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechanical Engineering (International) 430

Seite

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich
§ 2 Ziele des Studiums, akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
§ 6 Durchführung von Erfolgskontrollen
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
§ 6 b Computergestützte Erfolgskontrollen
§ 7 Bewertung von Studien- und Prüfungsleistungen
§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
§ 10 Abmeldung; Versäumnis, Rücktritt
§ 11 Täuschung, Ordnungsverstoß
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 13 Studierende mit Behinderung oder chronischer Erkrankung
§ 14 Modul Bachelorarbeit
§ 15 Zusatzleistungen
§ 15 a Mastervorzug
§ 16 Überfachliche Qualifikationen
§ 17 Prüfungsausschuss
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung
§ 20 Umfang und Art der Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudien gänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich
Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im englischsprachigen Bachelorstudiengang Mechanical Engineering (International) am KIT.

§ 2 Ziel des Studiums, akademischer Grad
(1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.
(2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Mechanical Engineering (International) verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
(1) Die Regelstudienzeit beträgt sechs Semester.
(2) Das Lehrangebot des Studiengangs ist in Fächer, die Fächer sind in Module, die jeweiligen Module in Lehrveranstaltungen gegliedert. Die Fächer und ihr Umfang werden in § 20 festgelegt. Näheres beschreibt das Modulhandbuch.
(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studien- und Prüfungsleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 180 Leistungspunkte.
(5) Lehrveranstaltungen werden in englischer Sprache angeboten.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.
(2) Prüfungsleistungen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Prüfungsleistungen anderer Art.
(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungs begleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
1. in den Bachelorstudiengang Mechanical Engineering (International) am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
3. nachweist, dass er in dem Bachelorstudiengang Mechanical Engineering (International) den Prüfungsanspruch nicht verloren hat.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.

(5) Die Zulassung ist abzulehnen, wenn die in Absatz 3 und 4 genannten Voraussetzungen nicht erfüllt sind.

§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 5 zu be-
rücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Erfolgskontrollen werden in englischer Sprache abgenommen.

Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüfungs als Zuhörerinnen und Zuhörer bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet. Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren

Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische und fachliche Betreuung zu gewährleisten. Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen

(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

<table>
<thead>
<tr>
<th>Note</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>sehr gut (very good)</td>
<td>hervorragende Leistung</td>
</tr>
<tr>
<td>gut (good)</td>
<td>eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt</td>
</tr>
<tr>
<td>befriedigend (satisfactory)</td>
<td>eine Leistung, die durchschnittlichen Anforderungen entspricht</td>
</tr>
<tr>
<td>ausreichend (sufficient)</td>
<td>eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt</td>
</tr>
<tr>
<td>nicht ausreichend (failed)</td>
<td>eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt</td>
</tr>
</tbody>
</table>

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

<table>
<thead>
<tr>
<th>Note</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0; 1,3</td>
<td>sehr gut (very good)</td>
</tr>
<tr>
<td>1,7; 2,0; 2,3</td>
<td>gut (good)</td>
</tr>
<tr>
<td>2,7; 3,0; 3,3</td>
<td>befriedigend (satisfactory)</td>
</tr>
<tr>
<td>3,7; 4,0</td>
<td>ausreichend (sufficient)</td>
</tr>
<tr>
<td>5,0</td>
<td>nicht ausreichend (failed)</td>
</tr>
</tbody>
</table>

(3) Studienleistungen werden mit „bestanden (passed)“ oder mit „nicht bestanden (not passed)“ gewertet.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend (sufficient)“(4,0) ist.

(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Wertung</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5</td>
<td>sehr gut (very good)</td>
</tr>
<tr>
<td>von 1,6 bis 2,5</td>
<td>gut (good)</td>
</tr>
<tr>
<td>von 2,6 bis 3,5</td>
<td>befriedigend (satisfactory)</td>
</tr>
<tr>
<td>von 3,6 bis 4,0</td>
<td>ausreichend (sufficient)</td>
</tr>
</tbody>
</table>

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

(2) Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

(3) Ist die Bachelorprüfung bis zum Ende des Prüfungszeitraums des neunten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist. Die Entscheidung über eine Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss unter Beachtung der in § 32 Abs. 6 LHG genannten Tätigkeiten auf Antrag des/der Studierenden. Der Antrag ist schriftlich, in der Regel bis sechs Wochen vor Ablauf der in Satz 1 genannten Studienhöchstdauer, zu stellen.

(4) Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist oder eine Wiederholungsprüfung nach § 9 Abs. 6 nicht rechtzeitig erbracht wurde, es sei denn die Fristüberschreitung ist nicht selbst zu vertreten.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend (failed)” (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend (sufficient)” (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.
(6) Die Wiederholung von Prüfungsleistungen hat spätestens bis zum Ende des Prüfungszeitraums des übernächsten Semesters zu erfolgen.

(7) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend (failed)“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden (not passed)“ bewertet wurde.

(8) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(9) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(10) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

(11) Die Bachelorarbeit kann bei einer Bewertung mit „nicht ausreichend (failed)” (5,0) einmal wiederholt werden. Eine zweite Wiederholung der Bachelorarbeit ist ausgeschlossen.

§ 10 Abmeldung; Versäumnis, Rücktritt

(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden, hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als „nicht ausreichend (failed)“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend (failed)” (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend (failed)” (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.
(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 20 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/des Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

(3) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

(5) Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben." Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend (failed)“ (5,0) bewertet.

(6) Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuerin/ den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Der Zeitpunkt der Abgabe der Bachelorarbeit ist durch den/die Prüfende/n beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Macht der oder die Studierende
einen triftigen Grund geltend, kann der Prüfungsausschuss die in Absatz 4 festgelegte Bearbei-
tungszeit auf Antrag der oder des Studierenden um höchstens einen Monat verlängern. Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend (failed)” (5,0) be-
wertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

(7) Die Bachelorarbeit wird von mindestens einem/einer Hochschullehrer/in, einem/einer leiten-
den Wissenschaftler/in gemäß § 14 Abs. 3 Ziff. 1 KITG oder einem habilitierten Mitglied der KIT-
Fakultät und einem/einer weiteren Prüfenden bewertet. In der Regel ist eine/r der Prüfenden die
Person, die die Arbeit gemäß Absatz 2 vergeben hat. Bei nicht übereinstimmender Beurteilung
dieser beiden Personen setzt der Prüfungsausschuss im Rahmen der Bewertung dieser beiden
Personen die Note der Bachelorarbeit fest; er kann auch einen weiteren Gutachter bestellen. Die
Bewertung hat innerhalb von sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

§ 15 Zusatzleistungen

(1) Es können auch weitere Leistungspunkte (Zusatzleistungen) im Umfang von höchstens 30
LP aus dem Gesamtangebot des KIT erworben werden. § 3 und § 4 der Prüfungsordnung blei-
ben davon unberührt. Diese Zusatzleistungen gehen nicht in die Festsetzung der Gesamt-
und Modulnoten ein. Die bei der Festlegung der Modulnote nicht berücksichtigten LP werden als Zu-
satzleistungen im Transcript of Records aufgeführt und als Zusatzleistungen gekennzeichnet. Auf Antrag der/des Studierenden werden die Zusatzleistungen in das Bachelorzeugnis aufge-
nommen und als Zusatzleistungen gekennzeichnet. Zusatzleistungen werden mit den nach § 7
vorgesehenen Noten gelistet.

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese
als Zusatzleistung zu deklarieren.

§ 15 a Mastervorzug

Studierende, die im Bachelorstudium bereits mindestens 120 LP erworben haben, können zu-
sätzlich zu den in § 15 Abs. 1 genannten Zusatzleistungen Leistungspunkte aus einem konseku-
tiven Masterstudiengang am KIT im Umfang von höchstens 30 LP erwerben (Mastervorzugsleis-
tungen). § 3 und § 4 der Prüfungsordnung bleiben davon unberührt. Die Mastervorzugsleistun-
gen gehen nicht in die Festsetzung der Gesamt-, Fach- und Modulnoten ein. Sie werden im
Transcript of Records aufgeführt und als solche gekennzeichnet sowie mit den nach § 7 vorge-
sehenen Noten gelistet. § 15 Absatz 2 gilt entsprechend.

§ 16 Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher
Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. Überfach-
liche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschuss

(1) Für den Bachelorstudiengang wird ein Prüfungsausschuss gebildet. Er besteht aus vier
stimmberichtigen Mitgliedern: zwei Hochschullehrer/innen / leitenden Wissenschaftler/innen
gemäß § 14 Abs. 3 Ziff. 1 KITG / Privatdozentinnen bzw. -dozenten, zwei akademischen Mitar-
beiterinnen und Mitarbeitern nach § 52 LHG / wissenschaftlichen Mitarbeiter/innen gemäß § 14
Abs. 3 Ziff. 2 KITG und einer bzw. einem Studierenden mit beratender Stimme. Die Amtszeit der
nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.

(2) Die/der Vorsitzende, ihre/sein Stellvertreter/in, die weiteren Mitglieder des Prüfungsaus-
schusses sowie deren Stellvertreter/innen werden von dem KIT-Fakultätsrat bestellt, die akade-
mischen Mitarbeiter/innen nach § 52 LHG, die wissenschaftlichen Mitarbeiter gemäß § 14 Abs. 3
Ziff. 2 KITG und die Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wieder-
bestellung ist möglich. Die/der Vorsitzende und deren/dessen Stellvertreter/in müssen Hoch-
schullehrer/innen oder leitende Wissenschaftler/innen § 14 Abs. 3 Ziff. 1 KITG sein. Die/der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch das jeweilige Prüfungssekretariat unterstützt.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsberechtigte Person hinzuzuziehen.

§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrer/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung bzw. Prüfungsleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Studiengang Mechanical Engineering (International) immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems erworben Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung

(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14).

(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:

1. Fundamentals of Engineering: Modul(e) im Umfang von 143 LP,
2. Majors in Mechanical Engineering (International): Modul(e) im Umfang von 16 LP,

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen mindestens mit „ausreichend (sufficient)” bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit. Dabei wird die Note des Moduls Bachelorarbeit mit dem doppelten Gewicht gegenüber den Noten der übrigen Fächer berücksichtigt.

(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung (with distinction)” verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen
Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.
§ 24 Aberkennung des Bachelorgrades
(1) Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend (failed)” (5,0) und die Bachelorprüfung für „nicht bestanden (not passed)” erklärt werden.
(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die/der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend (failed)” (5,0) und die Bachelorprüfung für „nicht bestanden (not passed)” erklärt werden.
(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.
(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden (not passed)” erklärt wurde.
(6) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.

§ 25 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.
(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.
(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.
(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften
(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2017 in Kraft.

Karlsruhe, den 19. Juli 2017

Professor Dr.-Ing. Holger Hanselka
(Präsident)
Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechanical Engineering (International) Seite 368
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechanical Engineering (International)

vom 28. November 2018

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 28. November 2018 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 9 Absatz 11 werden folgende Sätze 3 und 4 angefügt:

„Die Präsentation nach § 14 Absatz 1 a ist eine Studienleistung und kann bei einer Bewertung mit „nicht bestanden (not passed)“ (im Gegensatz zu anderen Studienleistungen) nur einmal wiederholt werden. Die Präsentation ist endgültig nicht bestanden, wenn sie zweimal mit „nicht bestanden“ (not passed) bewertet wurde.“

2. § 12 Absatz 1 wird wie folgt geändert:

a) Satz 1 wird wie folgt gefasst:

„Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung.“

b) Satz 2 wird aufgehoben.

c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

3. § 14 Absatz 1a wird wie folgt geändert:

4. § 17 Absatz 7 wird wie folgt geändert:

In Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.
5. § 18 Absatz 3 wird wie folgt geändert:
Nach dem Wort „sofern“ werden die Wörter „die KIT-Fakultät eine Prüfungsbeugnis erteilt hat und“ gestrichen.

Artikel 2 – Inkrafttreten

Diese Satzung tritt am Tage nach ihrer Bekanntmachung in den Amtlichen Bekanntmachungen des KIT in Kraft.

Karlsruhe, den 28. November 2018

gez. Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechanical Engineering (International) 358
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechanical Engineering (International)

vom 28. November 2018

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 28. November 2018 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 9 Absatz 11 werden folgende Sätze 3 und 4 angefügt:

„Die Präsentation nach § 14 Absatz 1 a ist eine Studienleistung und kann bei einer Bewertung mit „nicht bestanden (not passed)” (im Gegensatz zu anderen Studienleistungen) nur einmal wiederholt werden. Die Präsentation ist endgültig nicht bestanden, wenn sie zweimal mit „nicht bestanden” (not passed) bewertet wurde."

2. § 12 Absatz 1 wird wie folgt geändert:

a) Satz 1 wird wie folgt gefasst:

„Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung."

b) Satz 2 wird aufgehoben.

c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

3. § 14 Absatz 1a wird wie folgt geändert:

4. § 17 Absatz 7 wird wie folgt geändert:

In Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.
5. § 18 Absatz 3 wird wie folgt geändert:
Nach dem Wort „sofern“ werden die Wörter „die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und“ gestrichen.

Artikel 2 – Inkrafttreten

Diese Satzung tritt am Tage nach ihrer Bekanntmachung in den Amtlichen Bekanntmachungen des KIT in Kraft.

Karlsruhe, den 28. November 2018

gez. Prof. Dr.-Ing. Holger Hanselka (Präsident)