Module Handbook
Bachelor's Program Mechatronics and Information Technology (B.Sc.)
SPO 2016
Summer term 2024
Date: 01/03/2024
Table Of Contents

1. About this handbook.. 11
 1.1. Notes and rules ... 11
 1.1.1. Begin and completion of a module ... 11
 1.1.2. Module versions ... 11
 1.1.3. General and partial examinations ... 11
 1.1.4. Types of exams ... 11
 1.1.5. Repeating exams .. 11
 1.1.6. Additional accomplishments .. 12
 1.1.7. Further information ... 12

2. General Information ... 13
 2.1. Study program details ... 13

3. Study and Examination Regulations ... 14

4. Amendment Statute ... 32

5. Qualification Objectives ... 36

6. Ansprechpersonen DE ... 37

7. Anerkennung DE .. 39

8. Curriculum ... 40

9. Field of study structure .. 45
 9.1. Orientation Exam ... 45
 9.2. Bachelor's Thesis .. 45
 9.3. Internship .. 45
 9.4. Engineering Fundamentals .. 46
 9.5. Specialization in Mechatronics ... 47
 9.6. Interdisciplinary Qualifications ... 50
 9.7. Additional Examinations ... 50
 9.8. Master's Transfer Account .. 51

10. Modules ... 55
 10.2. Actuators and Sensors in Nanotechnology - M-MACH-102698 ... 56
 10.3. Advanced Artificial Intelligence - M-INFO-106299 .. 58
 10.4. Advanced Mathematics - M-MATH-102859 .. 59
 10.5. Advanced Topics and Methods in Mechanical Engineering (4 CP) - M-MACH-104919 61
 10.6. Advanced Topics and Methods in Mechanical Engineering (5 CP) - M-MACH-105091 62
 10.7. Advanced Topics and Methods in Mechanical Engineering (6 CP) - M-MACH-106309 63
 10.8. Algorithms I - M-INFO-100030 ... 64
 10.9. Antennas and Multiple Antenna Systems - M-ETIT-100565 ... 65
 10.10. Appliance and Power Tool Design - M-MACH-102705 ... 66
 10.11. Automated Manufacturing Systems - M-MACH-105108 ... 68
 10.13. Automotive Engineering I - M-MACH-100501 ... 70
 10.15. Automotive Vision - M-MACH-102693 ... 72
 10.16. Bachelor's Thesis - M-MACH-104262 ... 73
 10.17. Basic Electronic Circuits Laboratory - M-ETIT-102113 .. 75
 10.18. Battery Modeling in MATLAB - M-ETIT-103271 .. 76
 10.20. Biomedical Measurement Techniques I - M-ETIT-100387 .. 78
 10.22. BioMEMS - Microsystems Technologies for Life Sciences and Medicine II - M-MACH-100490 ... 80
 10.23. BioMEMS - Microsystems Technologies for Life Sciences and Medicine III - M-MACH-100491 ... 81
 10.24. Channel Coding: Algebraic Methods for Communications and Storage - M-ETIT-105616 82
 10.25. Communications Engineering I - M-ETIT-102103 ... 83
 10.27. Complex Analysis and Integral Transformations - M-ETIT-104534 ... 85
 10.28. Computational Intelligence - M-MACH-105296 ... 86
 10.29. Computer Organization - M-INFO-103179 ... 87
 10.30. Control of Linear Multivariable Systems - M-ETIT-100374 .. 88

Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024
Module Handbook, valid from summer term 24
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-105467</td>
<td>Control Theory Laboratory</td>
</tr>
<tr>
<td>M-MACH-102687</td>
<td>Decently Controlled Intralogistic Systems</td>
</tr>
<tr>
<td>M/INFO-104460</td>
<td>Deep Learning and Neural Networks</td>
</tr>
<tr>
<td>M-ETIT-102102</td>
<td>Digital Technology</td>
</tr>
<tr>
<td>M-ETIT-100361</td>
<td>Distributed Discrete Event Systems</td>
</tr>
<tr>
<td>M-MACH-102700</td>
<td>Dynamics of the Automotive Drive Train</td>
</tr>
<tr>
<td>M-ETIT-102156</td>
<td>Electric Energy Systems</td>
</tr>
<tr>
<td>M-ETIT-105643</td>
<td>Electric Energy Systems/Hybrid and Electric Vehicles</td>
</tr>
<tr>
<td>M-ETIT-102124</td>
<td>Electrical Machines and Power Electronics</td>
</tr>
<tr>
<td>M-ETIT-104428</td>
<td>Electromagnetic Fields</td>
</tr>
<tr>
<td>M-ETIT-104515</td>
<td>Electromagnetic Waves</td>
</tr>
<tr>
<td>M-ETIT-105647</td>
<td>Electromagnetic Waves/Fundamentals on High Frequency Techniques</td>
</tr>
<tr>
<td>M-ETIT-104465</td>
<td>Electronic Devices and Circuits</td>
</tr>
<tr>
<td>M-MACH-102688</td>
<td>Elements of Technical Logistics</td>
</tr>
<tr>
<td>M-MACH-105015</td>
<td>Elements of Technical Logistics incl. Project</td>
</tr>
<tr>
<td>M-MACH-102402</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>M-MACH-103205</td>
<td>Engineering Mechanics IV</td>
</tr>
<tr>
<td>M-MACH-102831</td>
<td>Engineering of Automation Systems</td>
</tr>
<tr>
<td>M-ETIT-106037</td>
<td>Fluid Mechanics [Bsc-Modul 12, SL]</td>
</tr>
<tr>
<td>M-MACH-102565</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
</tr>
<tr>
<td>M-MACH-102707</td>
<td>Fundamentals of Combustion I</td>
</tr>
<tr>
<td>M-MACH-102690</td>
<td>Fundamentals of Energy Technology</td>
</tr>
<tr>
<td>M-ETIT-102129</td>
<td>Fundamentals on High Frequency Techniques</td>
</tr>
<tr>
<td>M-MACH-104332</td>
<td>Further Examinations</td>
</tr>
<tr>
<td>M/INFO-100839</td>
<td>Fuzzy Sets</td>
</tr>
<tr>
<td>M-MACH-105288</td>
<td>Handling Characteristics of Motor Vehicles I</td>
</tr>
<tr>
<td>M-MACH-102717</td>
<td>Heat and Mass Transfer</td>
</tr>
<tr>
<td>M/INFO-100729</td>
<td>Human Computer Interaction</td>
</tr>
<tr>
<td>M/INFO-100824</td>
<td>Human-Machine-Interaction in Anthropomatics: Basics</td>
</tr>
<tr>
<td>M-ETIT-100514</td>
<td>Hybrid and Electric Vehicles</td>
</tr>
<tr>
<td>M-ETIT-102651</td>
<td>Image Processing</td>
</tr>
<tr>
<td>M-ETIT-105644</td>
<td>Information and Automation Technology II/Laboratory for Machine Learning Algorithms</td>
</tr>
<tr>
<td>M-ETIT-105645</td>
<td>Information and Automation Technology II/Seminar Embedded Systems</td>
</tr>
<tr>
<td>M/INFO-100895</td>
<td>Information Processing in Sensor Networks</td>
</tr>
<tr>
<td>M-MACH-105281</td>
<td>Information Systems and Supply Chain Management</td>
</tr>
<tr>
<td>M-ETIT-104539</td>
<td>Information Technology I</td>
</tr>
<tr>
<td>M-ETIT-104547</td>
<td>Information Technology II and Automation Technology</td>
</tr>
<tr>
<td>M-MACH-106514</td>
<td>Innovation and Project Management in Rail Vehicle Engineering</td>
</tr>
<tr>
<td>M/INFO-100791</td>
<td>Innovative Concepts for Programming Industrial Robots</td>
</tr>
<tr>
<td>M-MACH-104265</td>
<td>Internship</td>
</tr>
<tr>
<td>M-WIWI-100498</td>
<td>Introduction into Energy Economics</td>
</tr>
<tr>
<td>M-ETIT-105276</td>
<td>Introduction to High Voltage Engineering</td>
</tr>
<tr>
<td>M-MACH-102691</td>
<td>Introduction to Microsystem Technology I</td>
</tr>
<tr>
<td>M-MACH-102706</td>
<td>Introduction to Microsystem Technology II</td>
</tr>
<tr>
<td>M-WIWI-101418</td>
<td>Introduction to Operations Research</td>
</tr>
<tr>
<td>M/INFO-100736</td>
<td>Introduction to Video Analysis</td>
</tr>
<tr>
<td>M-MACH-105282</td>
<td>IT-Fundamentals of Logistics: Opportunities for Digital Transformation</td>
</tr>
<tr>
<td>M-MACH-105291</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
</tr>
<tr>
<td>M-ETIT-100401</td>
<td>Lab Course Electrical Drives and Power Electronics</td>
</tr>
<tr>
<td>M-ETIT-100419</td>
<td>Lab Course Electrical Power Engineering</td>
</tr>
<tr>
<td>M-ETIT-100389</td>
<td>Laboratory Biomedical Engineering</td>
</tr>
<tr>
<td>M-ETIT-100518</td>
<td>Laboratory Circuit Design</td>
</tr>
<tr>
<td>M-ETIT-104823</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
</tr>
<tr>
<td>M-ETIT-103263</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
</tr>
<tr>
<td>M-ETIT-103448</td>
<td>Laboratory Mechatronic Measurement Systems</td>
</tr>
<tr>
<td>M-MACH-102699</td>
<td>Laboratory Mechatronics</td>
</tr>
<tr>
<td>M-MACH-102696</td>
<td>Lightweight Engineering Design</td>
</tr>
<tr>
<td>M-ETIT-104519</td>
<td>Linear Electric Circuits</td>
</tr>
<tr>
<td>M/INFO-100840</td>
<td>Localization of Mobile Agents</td>
</tr>
<tr>
<td>M-MACH-105298</td>
<td>Logistics and Supply Chain Management</td>
</tr>
<tr>
<td>Module Code</td>
<td>Title</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>M-MACH-103043</td>
<td>Manufacturing Measurement Technology</td>
</tr>
<tr>
<td>M-MACH-101923</td>
<td>Machine Vision [Sp-MV]</td>
</tr>
<tr>
<td>M-MACH-106652</td>
<td>Machine Learning for Robotic Systems 2</td>
</tr>
<tr>
<td>M-MACH-1010273</td>
<td>Mechatronics Systems and Products</td>
</tr>
<tr>
<td>M-ETIT-100757</td>
<td>Mechatronics and Robotics</td>
</tr>
<tr>
<td>M-MACH-102749</td>
<td>Medical Imaging Technology I</td>
</tr>
<tr>
<td>M-ETIT-106449</td>
<td>Medical Imaging Technology II</td>
</tr>
<tr>
<td>M-MACH-100487</td>
<td>Microactuators</td>
</tr>
<tr>
<td>M-MACH-102714</td>
<td>Microenergy Technologies</td>
</tr>
<tr>
<td>M-INFO-101249</td>
<td>Mobile Computing and Internet of Things [IN3INMC]</td>
</tr>
<tr>
<td>M-MACH-102695</td>
<td>Motor Vehicle Laboratory</td>
</tr>
<tr>
<td>M-MACH-105292</td>
<td>Novel Actuators and Sensors</td>
</tr>
<tr>
<td>M-MATH-105831</td>
<td>Numerical Methods</td>
</tr>
<tr>
<td>M-ETIT-100505</td>
<td>Optics and Solid State Electronics</td>
</tr>
<tr>
<td>M-ETIT-100509</td>
<td>Optoelectronic Components</td>
</tr>
<tr>
<td>M-ETIT-100480</td>
<td>Optoelectronics</td>
</tr>
<tr>
<td>M-MACH-102702</td>
<td>Organ Support Systems</td>
</tr>
<tr>
<td>M-MACH-104333</td>
<td>Orientation Exam</td>
</tr>
<tr>
<td>M-ETIT-100411</td>
<td>Photovoltaic System Design</td>
</tr>
<tr>
<td>M-ETIT-100390</td>
<td>Physiology and Anatomy for Engineers I</td>
</tr>
<tr>
<td>M-ETIT-106067</td>
<td>Power Electronic Systems in Energy Technology</td>
</tr>
<tr>
<td>M-ETIT-104567</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>M-ETIT-100407</td>
<td>Power Generation</td>
</tr>
<tr>
<td>M-ETIT-100534</td>
<td>Power Transmission and Power Network Control</td>
</tr>
<tr>
<td>M-ETIT-100394</td>
<td>Practical Aspects of Electrical Drives</td>
</tr>
<tr>
<td>M-INFO-102224</td>
<td>Practical Project Robotics and Automation I (Software)</td>
</tr>
<tr>
<td>M-INFO-102230</td>
<td>Practical Project Robotics and Automation II (Hardware)</td>
</tr>
<tr>
<td>M-MACH-102720</td>
<td>Principles of Medicine for Engineers I</td>
</tr>
<tr>
<td>M-MACH-105289</td>
<td>Principles of Whole Vehicle Engineering I</td>
</tr>
<tr>
<td>M-MACH-105290</td>
<td>Principles of Whole Vehicle Engineering II</td>
</tr>
<tr>
<td>M-MACH-102718</td>
<td>Product Development – Methods of Product Engineering</td>
</tr>
<tr>
<td>M-MACH-102711</td>
<td>Production Techniques Laboratory</td>
</tr>
<tr>
<td>M-INFO-101174</td>
<td>Programming [IN1INPROG]</td>
</tr>
<tr>
<td>M-MACH-104475</td>
<td>Project Management in the Development of Products for Safety-Critical Applications</td>
</tr>
<tr>
<td>M-MACH-105332</td>
<td>Quality Management</td>
</tr>
<tr>
<td>M-ETIT-100562</td>
<td>Radiation Protection</td>
</tr>
<tr>
<td>M-ETIT-105124</td>
<td>Radio-Frequency Electronics</td>
</tr>
<tr>
<td>M-MACH-103232</td>
<td>Rail System Technology</td>
</tr>
<tr>
<td>M-MACH-102683</td>
<td>Rail Vehicle Technology</td>
</tr>
<tr>
<td>M-MACH-106513</td>
<td>Railway System Digitalisation</td>
</tr>
<tr>
<td>M-INFO-100803</td>
<td>Real-Time Systems</td>
</tr>
<tr>
<td>M-INFO-102522</td>
<td>Robotics - Practical Course</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
</tr>
<tr>
<td>M-INFO-102756</td>
<td>Robotics II - Humanoid Robots</td>
</tr>
<tr>
<td>M-INFO-104897</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
</tr>
<tr>
<td>M-MACH-105725</td>
<td>Seamless Engineering</td>
</tr>
<tr>
<td>M-ETIT-105319</td>
<td>Seminar Battery I</td>
</tr>
<tr>
<td>M-ETIT-100455</td>
<td>Seminar Embedded Systems</td>
</tr>
</tbody>
</table>
11. Courses.. 268
11.1. Accessibility - Assistive Technologies for Visually Impaired Persons - T-INFO-101301........ 268
11.2. Actuators and Sensors in Nanotechnology - T-MACH-105238.. 269
11.3. Advanced Artificial Intelligence - T-INFO-112768 ... 270
11.4. Advanced Mathematics I - T-MATH-100275 ... 272
11.5. Advanced Mathematics II - T-MATH-100276 ... 273
11.6. Advanced Mathematics III - T-MATH-100277 .. 274
11.7. Algorithms I - T-INFO-100001 .. 275
11.8. Antennas and Multiple Antenna Systems - T-ETIT-106491 ... 276
11.9. Appliance and Power Tool Design - T-MACH-105229 .. 277
11.10. Appliance and Power Tool Design Project Work - T-MACH-110767 278
11.11. Automated Manufacturing Systems - T-MACH-108844 .. 279
11.13. Automotive Engineering I - T-MACH-100092 .. 282
11.15. Automotive Vision - T-MACH-105218 .. 286
11.16. Bachelor's Thesis - T-MACH-108800 .. 287
11.17. Basic Electronic Circuits Laboratory - T-ETIT-101943 ... 288
11.18. Basics Module - Self Assignment BAK - T-ZAK-112653 ... 289
11.22. Battery Modeling in MATLAB - T-ETIT-106507 .. 295
11.23. Biologically Inspired Robots - T-INFO-101351 ... 296
11.25. BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I - T-MACH-100966 298
11.27. BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III - T-MACH-100968 300
11.28. CAE-Workshop - T-MACH-105212 .. 301
11.29. Channel Coding: Algebraic Methods for Communications and Storage - T-ETIT-111244 303
11.30. Communications Engineering I - T-ETIT-101936 ... 304
11.31. Communications Engineering II - T-ETIT-100745 ... 305
11.32. Complex Analysis and Integral Transformations - T-ETIT-109285 ... 306
11.33. Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies - T-MACH-105535 307
11.34. Computational Intelligence - T-MACH-105314 ... 309
Table Of Contents

11.35. Computer Organization - T-INFO-103531 .. 311
11.36. Control of Linear Multivariable Systems - T-ETIT-100666 312
11.37. Control Theory Laboratory - T-ETIT-111009 .. 313
11.38. Cooperation in Interdisciplinary Teams - T-MACH-105699 314
11.39. Decentralized Controlled Intralogistic Systems - T-MACH-105230 315
11.40. Deep Learning and Neural Networks - T-INFO-109124 318
11.41. Digital Technology - T-ETIT-101918 ... 319
11.42. Digitization in the Railway System - T-MACH-113016 320
11.43. Distributed Discrete Event Systems - T-ETIT-100960 ... 321
11.44. Dynamics of the Automotive Drive Train - T-MACH-105226 322
11.45. Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe - T-ZAK-112349 ... 323
11.46. Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe - T-ZAK-112348 ... 324
11.47. Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe - T-ZAK-112350 ... 325
11.48. Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe - T-ZAK-112347 ... 326
11.49. Electric Energy Systems - T-ETIT-101923 ... 327
11.50. Electrical Engineering Components - T-ETIT-109292 .. 328
11.51. Electrical Machines and Power Electronics - T-ETIT-101954 329
11.52. Electromagnetic Fields - T-ETIT-109078 .. 330
11.53. Electromagnetic Waves - T-ETIT-109245 ... 331
11.54. Electronic Devices and Circuits - T-ETIT-109318 ... 332
11.55. Electronic Devices and Circuits - Workshop - T-ETIT-109138 333
11.56. Elements and Systems of Technical Logistics - T-MACH-102159 334
11.57. Elements and Systems of Technical Logistics - Project - T-MACH-108946 335
11.61. Engineering Mechanics IV - T-MACH-105274 .. 341
11.62. Engineering of Automation Systems - T-ETIT-112221 .. 343
11.63. Examination Material Science I & II - T-MACH-105148 344
11.64. Exercises in Technical Thermodynamics and Heat Transfer I - T-MACH-105204 346
11.65. Exercises in Technical Thermodynamics and Heat Transfer II - T-MACH-105288 347
11.66. Fluid Mechanics 1 & 2 - T-MACH-105207 ... 348
11.67. Fluid Power Systems - T-MACH-102093 ... 350
11.68. Fundamentals in the Development of Commercial Vehicles - T-MACH-111389 351
11.69. Fundamentals of Automobile Development I - T-MACH-105162 353
11.70. Fundamentals of Automobile Development II - T-MACH-105163 355
11.71. Fundamentals of Combustion Engine Technology - T-MACH-105652 357
11.72. Fundamentals of Combustion I - T-MACH-105213 ... 358
11.73. Fundamentals of Energy Technology - T-MACH-105220 360
11.74. Fundamentals on High Frequency Techniques - T-ETIT-101955 362
11.75. Fuzzy Sets - T-INFO-101376 ... 363
11.76. Handling Characteristics of Motor Vehicles I - T-MACH-105152 364
11.77. Heat and Mass Transfer - T-MACH-105292 ... 365
11.78. Human-Machine-Interaction - T-INFO-101266 ... 367
11.80. Human-Machine-Interaction Pass - T-INFO-106257 .. 369
11.81. Hybrid and Electric Vehicles - T-ETIT-100784 .. 370
11.82. Image Processing - T-ETIT-105566 .. 371
11.83. In-depth Module - Doing Culture - Self Assignment BAK - T-ZAK-112655 372
11.84. In-depth Module - Global Cultures - Self Assignment BAK - T-ZAK-112658 373
11.85. In-depth Module - Media & Aesthetics - Self Assignment BAK - T-ZAK-112656 374
11.86. In-depth Module - Spheres of Life - Self Assignment BAK - T-ZAK-112657 375
11.87. In-depth Module - Technology & Responsibility - Self Assignment BAK - T-ZAK-112654 ... 376
11.88. Information Processing in Sensor Networks - T-INFO-101466 377
11.89. Information Systems and Supply Chain Management - T-MACH-102128 378
11.90. Information Technology I - T-ETIT-109300 ... 379
11.91. Information Technology I - Practical Course - T-ETIT-109301 380
11.92. Information Technology II and Automation Technology - T-ETIT-109319 381
11.93. Innovation and Project Management in Rail Vehicle Engineering - T-MACH-113068 ... 382
11.94. Innovative Concepts for Programming Industrial Robots - T-INFO-101328 383

Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024
Module Handbook, valid from summer term 24
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
</tr>
<tr>
<td>T-MACH-108803</td>
<td>Internship</td>
</tr>
<tr>
<td>T-WIWI-102746</td>
<td>Introduction to Energy Economics</td>
</tr>
<tr>
<td>T-ETIT-110702</td>
<td>Introduction to High Voltage Engineering</td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction to Multi-Body Dynamics</td>
</tr>
<tr>
<td>T-WIWI-102758</td>
<td>Introduction to Operations Research I and II</td>
</tr>
<tr>
<td>T-INFO-101273</td>
<td>Introduction to Video Analysis</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
</tr>
<tr>
<td>T-MACH-105341</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
</tr>
<tr>
<td>T-ETIT-100718</td>
<td>Lab Course Electrical Drives and Power Electronics</td>
</tr>
<tr>
<td>T-ETIT-100728</td>
<td>Lab Course Electrical Power Engineering</td>
</tr>
<tr>
<td>T-ETIT-101934</td>
<td>Laboratory Biomedical Engineering</td>
</tr>
<tr>
<td>T-ETIT-100788</td>
<td>Laboratory Circuit Design</td>
</tr>
<tr>
<td>T-ETIT-109839</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
</tr>
<tr>
<td>T-ETIT-106498</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
</tr>
<tr>
<td>T-ETIT-106854</td>
<td>Laboratory Mechatronic Measurement Systems</td>
</tr>
<tr>
<td>T-MACH-105370</td>
<td>Laboratory Mechatronics</td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
</tr>
<tr>
<td>T-ETIT-109316</td>
<td>Linear Electronic Networks</td>
</tr>
<tr>
<td>T-ETIT-109317</td>
<td>Linear Electronic Networks - Workshop A</td>
</tr>
<tr>
<td>T-ETIT-109811</td>
<td>Linear Electronic Networks - Workshop B</td>
</tr>
<tr>
<td>T-INFO-101377</td>
<td>Localization of Mobile Agents</td>
</tr>
<tr>
<td>T-MACH-110771</td>
<td>Logistics and Supply Chain Management</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
</tr>
<tr>
<td>T-WIWI-106340</td>
<td>Machine Learning 1 - Basic Methods</td>
</tr>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 - Advanced Methods</td>
</tr>
<tr>
<td>T-MACH-113064</td>
<td>Machine Learning for Robotic Systems 1</td>
</tr>
<tr>
<td>T-MACH-113403</td>
<td>Machine Learning for Robotic Systems 2</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
</tr>
<tr>
<td>T-MACH-105223</td>
<td>Machine Vision</td>
</tr>
<tr>
<td>T-ETIT-106057</td>
<td>Manufacturing Measurement Technology</td>
</tr>
<tr>
<td>T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
</tr>
<tr>
<td>T-MACH-110375</td>
<td>Mathematical Methods in Continuum Mechanics</td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
</tr>
<tr>
<td>T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
</tr>
<tr>
<td>T-ETIT-112147</td>
<td>Measurement Technology</td>
</tr>
<tr>
<td>T-MACH-112225</td>
<td>Mechanical Design I and II</td>
</tr>
<tr>
<td>T-MACH-112226</td>
<td>Mechanical Design I, Tutorial</td>
</tr>
<tr>
<td>T-MACH-112227</td>
<td>Mechanical Design II, Tutorial</td>
</tr>
<tr>
<td>T-MACH-104810</td>
<td>Mechanical Design III and IV</td>
</tr>
<tr>
<td>T-MACH-110955</td>
<td>Mechanical Design III, Tutorial</td>
</tr>
<tr>
<td>T-MACH-110956</td>
<td>Mechanical Design IV, Tutorial</td>
</tr>
<tr>
<td>T-MACH-105334</td>
<td>Mechanics in Microtechnology</td>
</tr>
<tr>
<td>T-INFO-101294</td>
<td>Mechatronics and Robotics</td>
</tr>
<tr>
<td>T-MACH-105574</td>
<td>Mechatronical Systems and Products</td>
</tr>
<tr>
<td>T-ETIT-113048</td>
<td>Medical Imaging Technology I</td>
</tr>
<tr>
<td>T-ETIT-113421</td>
<td>Medical Imaging Technology II</td>
</tr>
<tr>
<td>T-MACH-109192</td>
<td>Methods and Processes of PGE Product Generation Engineering</td>
</tr>
<tr>
<td>T-MACH-101910</td>
<td>Microactuators</td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
</tr>
<tr>
<td>T-INFO-102061</td>
<td>Mobile Computing and Internet of Things</td>
</tr>
<tr>
<td>T-INFO-113119</td>
<td>Mobile Computing and Internet of Things - Exercise</td>
</tr>
<tr>
<td>T-MACH-100300</td>
<td>Modelling and Simulation</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Modelling of Microstructures</td>
</tr>
<tr>
<td>T-MACH-105222</td>
<td>Motor Vehicle Labor</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
</tr>
<tr>
<td>T-MATH-111700</td>
<td>Numerical Methods</td>
</tr>
<tr>
<td>T-ETIT-110275</td>
<td>Optics and Solid State Electronics</td>
</tr>
</tbody>
</table>
Table Of Contents

11.156. Optoelectronic Components - T-ETIT-101907 ... 465
11.157. Optoelectronics - T-ETIT-100767 ... 466
11.158. Oral Exam - Supplementary Studies on Culture and Society - T-ZAK-112659 467
11.159. Oral Exam - Supplementary Studies on Sustainable Development - T-ZAK-112351 ... 468
11.160. Organ Support Systems - T-MACH-105228 ... 469
11.162. Physical Basics of Laser Technology - T-MACH-102102 ... 471
11.163. Physics for Engineers - T-MACH-100530 ... 473
11.164. Physiology and Anatomy for Engineers I - T-ETIT-101932 475
11.165. Power Electronic Systems in Energy Technology - T-ETIT-112286 476
11.166. Power Electronics - T-ETIT-109360 .. 477
11.169. Practical Aspects of Electrical Drives - T-ETIT-100711 .. 480
11.170. Practical Project Robotics and Automation I (Software) - T-INFO-104545 481
11.171. Practical Project Robotics and Automation II (Hardware) - T-INFO-104552 482
11.172. Practice Module - T-ZAK-112660 .. 483
11.173. Presentation - T-MACH-107760 .. 484
11.174. Principles of Medicine for Engineers - T-MACH-105235 ... 485
11.175. Product Lifecycle Management - T-MACH-105147 .. 486
11.176. Production Techniques Laboratory - T-MACH-105346 ... 488
11.177. Programming - T-INFO-101531 ... 490
11.178. Programming Pass - T-INFO-101967 ... 491
11.181. Radiation Protection - T-ETIT-100825 .. 495
11.182. Radio-Frequency Electronics - T-ETIT-110359 ... 496
11.183. Rail System Technology - T-MACH-106424 ... 497
11.184. Rail Vehicle Technology - T-MACH-105353 ... 499
11.185. Real-Time Systems - T-INFO-101340 ... 501
11.186. Robotics - Practical Course - T-INFO-105107 ... 502
11.187. Robotics I - Introduction to Robotics - T-INFO-108014 .. 503
11.188. Robotics II - Humanoid Robotics - T-INFO-105723 .. 504
11.190. Scientific Computing for Engineers - T-MACH-100532 .. 506
11.191. Seamless Engineering - T-MACH-111401 ... 508
11.192. Seminar Battery I - T-ETIT-110800 ... 510
11.193. Seminar Embedded Systems - T-ETIT-100753 .. 512
11.195. Seminar on Selected Chapters of Biomedical Engineering - T-ETIT-100710 515
11.196. Seminar Power Electronics in Regenerative Energy Systems - T-ETIT-100714 516
11.198. Sensors - T-ETIT-101911 .. 518
11.199. Signals and Systems - T-ETIT-109313 ... 519
11.200. Signals and Systems - Workshop - T-ETIT-109314 ... 520
11.201. Software Engineering I - T-INFO-101968 ... 521
11.203. Software Engineering II - T-INFO-101370 .. 523
11.204. Specialisation Module - Self Assignment BeNe - T-ZAK-112346 524
11.205. Stochastic Information Processing - T-INFO-101366 .. 525
11.206. Superconducting Magnet Technology - T-ETIT-113440 ... 526
11.207. Superconducting Power Systems - T-ETIT-113439 .. 527
11.208. Superconductors for Energy Applications - T-ETIT-110788 528
11.209. System Dynamics and Control Engineering - T-ETIT-101921 529
11.211. Technical Design in Product Development - T-MACH-105361 532
11.212. Technical Thermodynamics and Heat Transfer I - T-MACH-104747 534
11.213. Technical Thermodynamics and Heat Transfer II - T-MACH-105287 536
11.214. Theory of Probability - T-ETIT-101952 .. 537
11.216. Tutorial Advanced Mathematics I - T-MATH-100525 .. 540
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.217</td>
<td>Tutorial Advanced Mathematics II - T-MATH-100526</td>
<td>541</td>
</tr>
<tr>
<td>11.218</td>
<td>Tutorial Advanced Mathematics III - T-MATH-100527</td>
<td>542</td>
</tr>
<tr>
<td>11.219</td>
<td>Tutorial Engineering Mechanics I - T-MACH-100528</td>
<td>543</td>
</tr>
<tr>
<td>11.220</td>
<td>Tutorial Engineering Mechanics II - T-MACH-100284</td>
<td>544</td>
</tr>
<tr>
<td>11.221</td>
<td>Tutorial Engineering Mechanics III - T-MACH-105202</td>
<td>545</td>
</tr>
<tr>
<td>11.224</td>
<td>Vehicle Systems for Urban Mobility - T-MACH-113069</td>
<td>549</td>
</tr>
<tr>
<td>11.225</td>
<td>Vibration Theory - T-MACH-105290</td>
<td>550</td>
</tr>
<tr>
<td>11.226</td>
<td>Virtual Engineering (Specific Topics) - T-MACH-105381</td>
<td>551</td>
</tr>
<tr>
<td>11.227</td>
<td>Virtual Engineering I - T-MACH-102123</td>
<td>552</td>
</tr>
<tr>
<td>11.228</td>
<td>Wearable Robotic Technologies - T-INFO-106557</td>
<td>554</td>
</tr>
<tr>
<td>11.229</td>
<td>Wildcard Additional Examinations 1 - T-MACH-106638</td>
<td>555</td>
</tr>
<tr>
<td>11.230</td>
<td>Wildcard Additional Examinations 10 - T-MACH-106650</td>
<td>556</td>
</tr>
<tr>
<td>11.231</td>
<td>Wildcard Additional Examinations 11 - T-MACH-113345</td>
<td>557</td>
</tr>
<tr>
<td>11.232</td>
<td>Wildcard Additional Examinations 2 - T-MACH-106639</td>
<td>558</td>
</tr>
<tr>
<td>11.233</td>
<td>Wildcard Additional Examinations 3 - T-MACH-106640</td>
<td>559</td>
</tr>
<tr>
<td>11.234</td>
<td>Wildcard Additional Examinations 4 - T-MACH-106641</td>
<td>560</td>
</tr>
<tr>
<td>11.235</td>
<td>Wildcard Additional Examinations 5 - T-MACH-106643</td>
<td>561</td>
</tr>
<tr>
<td>11.236</td>
<td>Wildcard Additional Examinations 6 - T-MACH-106646</td>
<td>562</td>
</tr>
<tr>
<td>11.237</td>
<td>Wildcard Additional Examinations 7 - T-MACH-106647</td>
<td>563</td>
</tr>
<tr>
<td>11.238</td>
<td>Wildcard Additional Examinations 8 - T-MACH-106648</td>
<td>564</td>
</tr>
<tr>
<td>11.239</td>
<td>Wildcard Additional Examinations 9 - T-MACH-106649</td>
<td>565</td>
</tr>
<tr>
<td>11.240</td>
<td>Workshop Mechatronical Systems and Products - T-MACH-108680</td>
<td>566</td>
</tr>
</tbody>
</table>
1 About this handbook

1.1 Notes and rules

The program exists of several subjects (e.g. Fundamentals of Engineering). Every subject is split into modules and every module itself consists of one or more interconnected module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP)
- the dependencies of the modules
- the learning outcomes
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.1.1 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he/she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.1.2 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student’s "binding declaration" on the choice of the module in the sense of §5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive.

1.1.3 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu/:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

1.1.4 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.

1.1.5 Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim.
1.1.6 Additional accomplishments
Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam.

1.1.7 Further information
More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).
2 General Information

2.1 Study program details

<table>
<thead>
<tr>
<th>KIT-Department</th>
<th>KIT Department of Mechanical Engineering / KIT Department of Electrical Engineering and Information Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Degree</td>
<td>Bachelor of Science (B.Sc.)</td>
</tr>
<tr>
<td>Examination Regulations Version</td>
<td>20161</td>
</tr>
<tr>
<td>Regular terms</td>
<td>6 terms</td>
</tr>
<tr>
<td>Maximum terms</td>
<td>10 terms</td>
</tr>
<tr>
<td>Credits</td>
<td>180</td>
</tr>
<tr>
<td>Language</td>
<td></td>
</tr>
<tr>
<td>Grade calculation</td>
<td>Weighted by ((\text{Weight} \times \text{CP}))</td>
</tr>
<tr>
<td>Additional Information</td>
<td>Link to study program https://www.mach.kit.edu/4385.php</td>
</tr>
</tbody>
</table>
Inhalt

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechatronik und Informationstechnik 200
Studien- und Prüfungsordnung
des Karlsruher Instituts für Technologie (KIT) für den
Bachelorstudiengang Mechatronik und Informationstechnik

vom 03. Mai 2016

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 03. Mai 2016 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
 § 1 Geltungsbereich
 § 2 Ziele des Studiums, akademischer Grad
 § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
 § 4 Modulprüfungen, Studien- und Prüfungsleistungen
 § 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
 § 6 Durchführung von Erfolgskontrollen
 § 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
 § 6 b Computergestützte Erfolgskontrollen
 § 7 Bewertung von Studien- und Prüfungsleistungen
 § 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
 § 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
 § 10 Abmeldung; Versäumnis, Rücktritt
 § 11 Täuschung, Ordnungsverstoß
 § 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
 § 13 Studierende mit Behinderung oder chronischer Erkrankung
 § 14 Modul Bachelorarbeit
 § 14 a Berufspraktikum
 § 15 Zusatzleistungen
 § 15 a Mastervorzug
 § 16 Überfachliche Qualifikationen
§ 17 Prüfungsausschuss
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung
§ 20 Umfang und Art der Bachelorprüfung
§ 20 a Leistungsnachweise für die Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften
17

Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich
Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Mechatronik und Informationstechnik am KIT. Dieser Studiengang wird gemeinsam von der KIT-Fakultät für Elektrotechnik und Informationstechnik sowie der KIT-Fakultät für Maschinenbau am KIT angeboten.

§ 2 Ziel des Studiums, akademischer Grad
(1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworben Wissen berufsfeldbezogen anwenden zu können.

(2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Mechatronik und Informationstechnik verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
(1) Der Studiengang nimmt teil am Programm „Studienmodelle individueller Geschwindigkeit“. Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg).

Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutschsprachige Wahlmöglichkeiten gibt.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

(2) Prüfungsleistungen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungs begleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
 1. in den Bachelorstudiengang Mechatronik und Informationstechnik am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
 2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
 3. nachweist, dass er in dem Bachelorstudiengang Mechatronik und Informationstechnik den Prüfungsanspruch nicht verloren hat und
 4. die in § 20 a genannte Voraussetzung erfüllt.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.
§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/de dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 5 zu berücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

(5) Schriftliche Prüfungen (§ 4 Abs. 2 Nr. 1) sind in der Regel von einer/einem Prüfenden nach § 18 Abs. 2 oder 3 zu bewerten. Sofern eine Bewertung durch mehrere Prüfende erfolgt, ergibt sich die Note aus dem arithmetischen Mittel der Einzelbewertungen. Entspricht das arithmetische Mittel keiner der in § 7 Abs. 2 definierten Notenstufen, so ist auf die nächstliegende Notenstufe auf- oder abzurunden. Bei gleichem Abstand ist auf die nächstbessere Notenstufe zu runden. Das Bewertungsverfahren soll sechs Wochen nicht überschreiten. Schriftliche Prüfungen dauern mindestens 60 und höchstens 300 Minuten.

(6) Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/einem Prüfenden in Gegenwart einer oder eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studierenden.

Die wesentlichen Gegenstände und Ergebnisse der mündlichen Prüfung sind in einem Protokoll festzuhalten. Das Ergebnis der Prüfung ist den Studierenden im Anschluss an die mündliche Prüfung bekannt zu geben.

Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüflings als Zuhörerinnen und Zuhörer bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuhalten und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet.

Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle
benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.* Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können.

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische und fachliche Betreuung zu gewährleisten. Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen
(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

<table>
<thead>
<tr>
<th>Note</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>sehr gut (very good)</td>
<td>hervorragende Leistung,</td>
</tr>
<tr>
<td>gut (good)</td>
<td>eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,</td>
</tr>
<tr>
<td>befriedigend (satisfactory)</td>
<td>eine Leistung, die durchschnittlichen Anforderungen entspricht,</td>
</tr>
<tr>
<td>ausreichend (sufficient)</td>
<td>eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,</td>
</tr>
<tr>
<td>nicht ausreichend (failed)</td>
<td>eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.</td>
</tr>
</tbody>
</table>

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

<table>
<thead>
<tr>
<th>Note</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0; 1,3</td>
<td>sehr gut</td>
</tr>
<tr>
<td>1,7; 2,0; 2,3</td>
<td>gut</td>
</tr>
<tr>
<td>2,7; 3,0; 3,3</td>
<td>befriedigend</td>
</tr>
<tr>
<td>3,7; 4,0</td>
<td>ausreichend</td>
</tr>
<tr>
<td>5,0</td>
<td>nicht ausreichend</td>
</tr>
</tbody>
</table>
(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendendienst des KIT verwaltet.

(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Notenbereich</th>
<th>Notenwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>von 1,6 bis 2,5</td>
<td>gut</td>
</tr>
<tr>
<td>von 2,6 bis 3,5</td>
<td>befriedigend</td>
</tr>
<tr>
<td>von 3,6 bis 4,0</td>
<td>ausreichend</td>
</tr>
</tbody>
</table>

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

(2) Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen. Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Abs. 2 vorliegt. Ohne ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine Fristüberschreitung von

1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von einem Semester nachweist oder

2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von zwei Semestern nachweist.

Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Abs. 2 ausstellende Bescheinigung, die beim Studierendendienst des KIT einzureichen ist. Im Falle von Nr. 1 kann der Vorsitzende des Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Ablegen der Orientierungsprüfung erforderlich ist, insbesondere weil die Module, die Bestandteil der Orientierungsprüfung sind, nur einmal jährlich angeboten werden.

Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist oder eine Wiederholungsprüfung nach § 9 Abs. 6 nicht rechtzeitig erbracht wurde, es sei denn die Fristüberschreitung ist nicht selbst zu vertreten.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Wiederholung von Prüfungsleistungen hat spätestens bis zum Ende des Prüfungszeitraumes des übernächsten Semesters zu erfolgen.

(7) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(8) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(9) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(10) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

§ 10 Abmeldung; Versäumnis, Rücktritt

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchten Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweils gültigen Gesetzes (Bundeseltern- und Elternzeitgesetz - BEEG) auf Antrag zu berücksichtigen. Der/die Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, dem Prüfungsausschuss, unter Beifügung der erforderlichen Nachweise schriftlich mitteilen, in welchem Zeitraum die Elternzeit in Anspruch genommen werden soll. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die bei einer Arbeitnehmerin bzw. einem Arbeitnehmer den Anspruch auf Elternzeit auslösen würden, und teilt
§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 20 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende die Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

(1 a) Dem Modul Bachelorarbeit sind 12 LP zugeordnet. Es besteht aus der Bachelorarbeit und einer Präsentation. Die Präsentation hat innerhalb der maximalen Bearbeitungsdauer gemäß Absatz 4 Satz 2, jedoch spätestens sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

Die Ausgabe des Themas erfolgt in diesem Fall über die/den Vorsitzende/n des Prüfungsausschusses.

(3) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

(5) Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.“ Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5,0) bewertet.

§ 14 a Berufspraktikum

(2) Die Studierenden setzen sich in eigener Verantwortung mit geeigneten privaten oder öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Das Nähere regelt das Modulhandbuch.
§ 15 Zusatzleistungen

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 15 a Mastervorzug

§ 16 Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschuss

(1) Für den Bachelorstudiengang Mechatronik und Informationstechnik wird ein Prüfungsausschuss gebildet. Er besteht aus vier stimmberechtigten Mitgliedern: zwei Hochschullehrer/innen / leitenden Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG / Privatdozentinnen bzw. - dozenten, zwei akademischen Mitarbeiterinnen und Mitarbeitern nach § 52 LHG / wissenschaftlichen Mitarbeiter/innen gemäß § 14 Abs. 3 Ziff. 2 KITG aus den nach § 1 Satz 2 beteiligten KIT-Fakultäten und zwei Studierenden mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und den Masterstudiengang Mechatronik und Informationstechnik erhöht sich die Anzahl der Studierenden auf vier Mitglieder mit beratender Stimme, wobei je zwei dieser vier aus dem Bachelor- und aus dem Masterstudiengang stammen. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr. Jede gemäß § 1 Satz 2 beteiligte KIT-Fakultät muss stimmberechtigt vertreten sein.

(2) Die/der Vorsitzende, ihre/sein Stellvertreter/in, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter/innen werden von den KIT-Fakultätsräten der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten bestellt, die akademischen Mitarbeiter/innen nach § 52 LHG, die wissenschaftlichen Mitarbeiter gemäß § 14 Abs. 3 Ziff. 2 KITG und die Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Die/der Vorsitzende und deren/dessen Stellvertreter/in müssen Hochschullehrer/innen oder leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG sein. Die/der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch das jeweilige Prüfungssekretariat unterstützt.
(3) Der Prüfungsausschuss achtet auf die Einhaltung der Bestimmungen dieser Studien- und Prüfungsordnung sowie deren Umsetzung in den gemäß § 1 Satz 2 beteiligten KIT-Fakultäten und fällt die Entscheidungen in Prüfungsangelegenheiten. Er entscheidet über die Anerkennung von Studienzeiten sowie Studien- und Prüfungsleistungen und trifft die Feststellung gemäß § 19 Absatz 1 Satz 1. Er berichtet der den gemäß § 1 Satz 2 beteiligten KIT-Fakultäten regelmäßig über die Entwicklung der Prüfungs- und Studienzeiten, einschließlich der Bearbeitungszeiten für die Bachelorarbeiten und die Verteilung der Modul- und Gesamtnoten. Er ist zuständig für Anregungen zur Reform der Studien- und Prüfungsordnung und zu Modulbeschreibungen. Der Prüfungsausschuss entscheidet mit der Mehrheit seiner Stimmen. Bei Stimmengleichheit entscheidet der Vorsitzende des Prüfungsausschusses.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n der Verschwiegenheit zu Verpflichten.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungs berechtigte Person hinzuzuziehen.

§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrer/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche einer der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern eine der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten eine Prüfungsbefugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem mathematisch-naturwissenschaftlichen oder ingenieurwissenschaftlichen Studiengang oder einen gleichwertigen akademischen Abschluss erworben hat.
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten
(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studien- bzw. Prüfungsleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Studiengang Mechatronik und Informationstechnik immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems erworben Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung
(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14) und dem Berufspraktikum (§ 14 a).

(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:

1. Ingenieurwissenschaftliche Grundlagen: Modul(e) im Umfang von 110 LP,
2. Vertiefung in der Mechatronik: Modul(e) im Umfang von 37 LP,
3. Überfachliche Qualifikationen im Umfang von 6 LP gemäß § 16.

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.
§ 20 a Leistungsnachweise für die Bachelorprüfung
Voraussetzung für die Anmeldung zur letzten Modulprüfung der Bachelorprüfung ist die Be-
scheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 14 a. In Ausnahmefällen,
die die Studierenden nicht zu vertreten haben, kann der Prüfungsausschuss die nachträgliche
Vorlage dieses Leistungsnachweises genehmigen.

§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen mindestens
mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichte-
ter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit.

(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem
Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with
distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records
(1) Über die Bachelorprüfung werden nach Bewertung der letzten Prüfungsleistung eine Ba-
chelorurkunde und ein Zeugnis erstellt. Die Ausfertigung von Bachelorurkunde und Zeugnis soll
nicht später als drei Monate nach Ablegen der letzten Prüfungsleistung erfolgen. Bachelorurku-
unde und Bachelorzeugnis werden in deutscher und englischer Sprache ausgestellt. Bachelorur-
kunde und Zeugnis tragen das Datum der erfolgreichen Erbringung der letzten Prüfungsleistung.
Diese Dokumente werden den Studierenden zusammen ausgehändigt. In der Bachelorurkunde
wird die Verleihung des akademischen Bachelorgrades beurkundet. Die Bachelorurkunde wird
von dem Präsidenten und den KIT-Dekaninnen/ den KIT-Dekanen der gemäß § 1 Satz 2 betei-
ligten KIT-Fakultäten unterzeichnet und mit dem Siegel des KIT versehen.

(2) Das Zeugnis enthält die Fach- und Modulnoten sowie die den Modulen und Fächern zuge-
ordnete Leistungspunkte und die Gesamtnote. Sofern gemäß § 7 Abs. 2 Satz 2 eine differenziere-
te Bewertung einzelner Prüfungsleistungen vorgenommen wurde, wird auf dem Zeugnis auch die
entsprechende Dezimalnote ausgewiesen; § 7 Abs. 4 bleibt unberührt. Das Zeugnis ist von den
KIT-Dekaninnen/den KIT-Dekanen der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten und von
der/dem Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und engli-
scher Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein
Transcript of Records in deutscher und englischer Sprache.

(4) Das Transcript of Records enthält in strukturierter Form alle erbrachten Studien- und Prü-
fungsleistungen. Dies beinhaltet alle Fächer und Fachnoten samt den zugeordneten Leistungs-
punkten, die dem jeweiligen Fach zugeordneten Module mit den Modulnoten und zugeordneten
Leistungspunkten sowie die den Modulen zugeordneten Erfolgskontrollen samt Noten und zuge-
ordneten Leistungspunkten. Absatz 2 Satz 2 gilt entsprechend. Aus dem Transcript of Records
soll die Zugehörigkeit von Lehrveranstaltungen zu den einzelnen Modulen deutlich erkennbar
sein. Angerechnete Studien- und Prüfungsleistungen sind im Transcript of Records aufzuneh-
men. Alle Zusatzleistungen werden im Transcript of Records aufgeführt.

(5) Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des
Transcript of Records werden vom Studierendenservice des KIT ausgestellt.
III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen
Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschener Widerstreitsverfahren ausgesprochen und in ihren Wirksamkeitsstellen bekannt gemacht wurde.

§ 24 Aberkennung des Bachelorgrades
(1) Haben Studierende bei einer Prüfungstätigkeit getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die/der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.

§ 25 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften
(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2016 in Kraft.

(3) Studierende, die auf Grundlage der Studien- und Prüfungsordnung für den Bachelorstudien-
gang Mechatronik und Informationstechnik vom 24. Juli 2012 (Amtliche Bekanntmachung des
KIT Nr. 38 vom 24. Juli 2012) zuletzt geändert durch die Dritte Satzung zur Änderung der Studi-
ien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudi-
gang Mechatronik und Informationstechnik vom 10. Juli 2015 (Amtliche Bekanntmachung des
KIT Nr. 51 vom 15. Juli 2015), ihr Studium am KIT aufgenommen haben, können Prüfungen auf
Grundlage dieser Studien- und Prüfungsordnung letztmalig am 30. September 2021 ablegen.

(4) Studierende, die auf Grundlage der Studien- und Prüfungsordnung der Universität Karlsruhe
für den interfakultativen Diplomstudiengang Mechatronik vom 15. August 2001 (Amtliche Be-
kanntmachungen der Universität Karlsruhe (TH) Nr. 24 vom 04. September 2001), zuletzt geän-
dert durch die Satzung zur Änderung der Prüfungsordnung der Universität Karlsruhe (TH) für
den interfakultativen Diplomstudiengang Mechatronik vom 10. September 2003 (Amtliche Be-
kanntmachungen der Universität Karlsruhe Nr. 34 vom 22. Oktober 2003), ihr Studium an der
Universität Karlsruhe (TH) aufgenommen haben, können die Diplomprüfung einschließlich etwa-
iger Wiederholungen letztmalig bis zum 30. September 2017 ablegen.

Karlsruhe, den 03. Mai 2016

Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Amtliche Bekanntmachung

2018 Ausgegeben Karlsruhe, den 28. September 2018 Nr. 54

Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechatronik und Informationstechnik 280
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechatronik und Informationstechnik

vom 26. September 2018

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LGH am 26. September 2018 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 8 Absatz 1 wird wie folgt gefasst:

„(1) Die Teilmodulprüfung „Technische Mechanik I“ im Modul „Technische Mechanik“ und die Modulprüfung im Modul „Lineare Elektrische Netze“ sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen)."

2. § 12 Absatz 1 wird wie folgt geändert:

a) Satz 1 wird wie folgt gefasst:

„Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung.“

b) Satz 2 wird aufgehoben.

c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

3. § 14 Absatz 1a wird wie folgt geändert:

a) In Satz 1 wird die Angabe „12 LP“ durch die Angabe „15 LP“ ersetzt.

4. § 17 Absatz 7 wird wie folgt geändert:

In Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.
5. § 18 Absatz 3 wird wie folgt geändert:
Nach dem Wort „sofern“ werden die Wörter „eine der gemäß § 1 Satz 2 beteiligten KIT-
Fakultäten eine Prüfungsbefugnis erteilt hat und“ gestrichen.

6. § 20 Absatz 2 wird wie folgt geändert:
a) In Satz 1 Nummer 2 wird nach dem Wort „von“ die Angabe „37 LP“ durch die Angabe „38 LP“ ersetzt.
b) In Satz 1 Nummer 3 wird nach dem Wort „von“ die Angabe „6 LP“ durch die Angabe „2 LP“ ersetzt.
c) Nach Satz 1 wird folgender Satz 2 eingefügt:
„Die Vermittlung weiterer überfachlicher Qualifikationen im Umfang von 4 LP gemäß § 16
findet im Rahmen der fachwissenschaftlichen Module Lineare Elektrische Netze,
Elektronische Schaltungen sowie Signale und Systeme im Pflichtfach
Ingenieurwissenschaftliche Grundlagen statt.“
d) Der bisherige Satz 2 wird Satz 3.

7. Dem § 21 Absatz 2 wird folgender Satz angefügt:
„Dabei wird die Note des Moduls Bachelorarbeit mit dem doppelten Gewicht berücksichtigt.“

Artikel 2 – Inkrafttreten, Übergangsvorschrift

(1) Die Satzung tritt am 01. Oktober 2018 in Kraft und gilt für
1. Studierende, die ihr Studium im Bachelorstudiengang Mechatronik und Informationstechnik am
KIT im ersten Fachsemester aufnehmen, sowie für
2. Studierende, die ihr Studium im Bachelorstudiengang Mechatronik und Informationstechnik am
KIT in einem höheren Fachsemester aufnehmen, sofern dieses Fachsemester nicht über dem
Fachsemester liegt, das der erste Jahrgang nach Ziff. 1 erreicht.

(2) Die Studien- und Prüfungsordnung des KIT für den Bachelorstudiengang Mechatronik und
Informationstechnik in der Fassung vom 03. Mai 2016 (Amtliche Bekanntmachung des KIT Nr. 29
vom 10. Mai 2016) gilt für
1. Studierende, die ihr Studium im Bachelorstudiengang Mechatronik und Informationstechnik am
KIT zuletzt im Sommersemester 2018 aufgenommen haben, sowie für
2. Studierende, die ihr Studium im Bachelorstudiengang Mechatronik und Informationstechnik am
KIT ab dem Wintersemester 2018/19 in einem höheren Fachsemester aufnehmen, sofern das
Fachsemester über dem liegt, das der erste Jahrgang nach Absatz 1 Ziff. 1 erreicht hat.

(3) Studierende, die auf Grundlage der Studien- und Prüfungsordnung für den Bachelorstudiengang
Mechatronik und Informationstechnik in der Fassung vom 03. Mai 2016 (Amtliche Bekannt-
machung des Karlsruher Instituts für Technologie (KIT) Nr. 29 vom 10. Mai 2016) ihr Studium am
KIT aufgenommen haben, können Prüfungen gemäß der vorgenannten Studien- und Prüfungs-
ordnung letztmalig am 30. September 2023 ablegen.
Karlsruhe, den 26. September 2018

Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Qualification Objectives

Having passed KIT’s research-oriented and practice-based six-semester Bachelor’s Program of Mechatronics and Information Technology, graduates are prepared for lifelong learning and employment in typical professional fields of mechatronics in industry, the service sector, and public administration. Graduates have acquired the scientific knowledge and methodological skills needed to pursue the Master’s Program of Mechatronics and Information Technology or master’s programs in related disciplines.

In the course of the basic studies, graduates acquire sound basic knowledge in mathematics, mechanics, and electrical engineering, complemented by basic knowledge of mechanical design, automation and information technology, production technology, and mechatronic systems and products. Moreover, students learn to link these disciplines for developing interdisciplinary problem solutions. This in-depth knowledge of scientific theories, principles, and methods enables graduates to successfully deal with clearly specified problems having a unique solution approach in mechatronics.

In the specialization subject and the bachelor’s thesis, cross-disciplinary problem-solving and synthesis skills are developed for engineering systems. Graduates are able to generate new solutions in the engineering areas of their choice.

Graduates of the Bachelor’s Program of Mechatronics and Information Technology at KIT can select basic methods to create and compare models under familiar conditions. They are able to tackle given problems and to work independently on the resulting tasks in organized teams, to integrate the results of others, and to present and interpret their own results in written form. They can identify, analyze, and develop systems and processes and apply predefined assessment criteria.
Ansprechpersonen
im Bachelorstudiengang Mechatronik und Informationstechnik

Studiengangservice Bachelor und Prüfungsausschuss
Beim MIT-Beratungsteam der Fakultät ETIT finden Sie Ihre Ansprechpersonen bei Fragen zum Studiengang, Studienverlauf und Verwaltungsabläufen. Sie sind außerdem Ihre erste Anlaufstelle bei Anfragen oder Anträgen an den Prüfungsausschuss.

Studiengangservice ETIT (Geb. 30.36, Raum 115 & 117)
Tel.: 0721/608-42636 oder -42746, E-Mail: Bachelor-info@etit.kit.edu

Praktikantenamt
Fragen zum Berufspraktikum stellen Studierende an das Praktikantenamt der Fakultät ETIT, E-Mail: praktikantenamt@etit.kit.edu

Fachstudienberatung
Studiendekane:
Prof. Dr.-Ing. Martin Doppelbauer (martin.doppelbauer@kit.edu) und
Prof. Dr.-Ing. Marcus Geimer (marcus.geimer@kit.edu)

Studierendenservice
Bei organisatorischen Fragen zum Studium (Bewerbung, Einschreibung, Rückmeldung, Abschlussdokumente, Bescheinigungen, …):
https://www.sle.kit.edu/wirueberuns/studierendenservice.php
Kontaktpersonen bezüglich des Studienganges:
https://www.sle.kit.edu/wirueberuns/studierendenservice_team4.php

Auslandsaufenthalt
Sie können einen Auslandsaufenthalt über beide Fakultäten planen:
ETIT: https://www.etit.kit.edu/internationales.php
MACH: International Studieren im Maschinenbau (ISIM), E-Mail: isim@mach.kit.edu
https://www.mach.kit.edu/4201.php

Ansprechpersonen Stand 15.10.2023
Ansprechpersonen
im Bachelorstudiengang Mechatronik und Informationstechnik

Studiengangservice Bachelor und Prüfungsausschuss

Beim MIT-Beratungsteam der Fakultät ETIT finden Sie Ihre Ansprechpersonen bei Fragen zum Studiengang, Studienverlauf und Verwaltungsabläufen. Sie sind außerdem Ihre erste Anlaufstelle bei Anfragen oder Anträgen an den Prüfungsausschuss.

Studiengangservice ETIT (Geb. 30.36, Raum 115 &117)
Tel.: 0721/608-42636 oder -42746, E-Mail: Bachelor-info@etit.kit.edu

Praktikantenamt

Fragen zum Berufspraktikum stellen Studierende an das Praktikantenamt der Fakultät ETIT,
E-Mail: praktikantenamt@etit.kit.edu

Fachstudienberatung

Studiendekane:
Prof. Dr.-Ing. Martin Doppelbauer (martin.doppelbauer@kit.edu) und
Prof. Dr.-Ing. Marcus Geimer (marcus.geimer@kit.edu)

Studierendenservice

Bei organisatorischen Fragen zum Studium (Bewerbung, Einschreibung, Rückmeldung, Abschlussdokumente, Bescheinigungen, …):
https://www.sle.kit.edu/wirueberuns/studierendenservice.php
Kontaktpersonen bezüglich des Studienganges:
https://www.sle.kit.edu/wirueberuns/studierendenservice_team4.php

Auslandsaufenthalt

Sie können einen Auslandsaufenthalt über beide Fakultäten planen:

ETIT: https://www.etit.kit.edu/internationales.php

MACH: International Studieren im Maschinenbau (ISIM), E-Mail: isim@mach.kit.edu
https://www.mach.kit.edu/4201.php

Ansprechpersonen Stand 15.10.2023
Anerkennung von Studien- und Prüfungsleistungen
im Bachelorstudiengang Mechatronik und Informationstechnik

Grundsätzliche Regelungen

Die grundsätzlichen Regelungen finden sich in den Studien- und Prüfungsordnungen:

Danach können die im Studienplan jeweils geforderten Leistungen auch durch Anerkennung externer Leistungen erbracht werden.

Externe Leistungen können dabei wie folgt erworben sein:

1. innerhalb des Hochschulsystems (weltweit)
2. außerhalb des Hochschulsystems (an Institutionen mit genormtem Qualitätssicherungssystemen; die Anerkennung kann versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden sollen)

Benotung

Wenn es sich um ein vergleichbares Notensystem handelt, wird die Note der anzuerkennenden Leistung übernommen. Bei nicht vergleichbaren Notensystemen wird die Note umgerechnet. Prüfungsleistungen, die anstelle einer benoteten Prüfungsleistung anerkannt werden sollen, müssen ebenfalls benotet sein.

Vorgehensweise

I. Gehen Sie zunächst zu einer Fachprüferin oder einem Fachprüfer* und legen Sie dort das Antragsformular zusammen mit den erforderlichen Unterlagen vor**.

Wichtig: Anerkennungen müssen innerhalb des ersten Semesters nach Immatrikulation beim Prüfungsausschuss beantragt werden.

II. Besteht Gleichwertigkeit im Hinblick auf die erworbenen Kompetenzen (Qualifikationsziele), wird dies mit Stempel und Unterschrift durch die Fachprüferin oder den Fachprüfer bestätigt.

III. Geben Sie dann den fertig ausgefüllten und unterschriebenen Antrag zusammen mit dem entsprechenden Notenauszug im Büro des Prüfungsausschusses ab.

Hinweis zu Auslandsprüfungsleistungen

Bei Anerkennung von Prüfungsleistungen aus einem Auslandssemester ist es empfehlenswert, vor dem Auslandsaufenthalt die geplanten Auslandsprüfungsleistungen im Hinblick auf die spätere Anerkennung mit einem Fachstudienberater zu besprechen.

Wenn Sie eine Leistung anstelle eines KIT-Moduls anerkennen lassen möchten, wenden Sie sich für die Fachprüfung an die/den Modulverantwortliche/n des KIT-Moduls. Für Anerkennungen im Wahlbereich/Interdisziplinären Fach/Profiliernungsfach wenden Sie sich an eine/n der Fachstudienberater*innen der Fakultät ETIT.

Für die Anerkennung erforderlich sind Unterlagen, auf denen die der Anerkennung zugrundeliegenden Prüfungsleistungen dokumentiert sind. (Zeugnisse, Transcript of Records, Auszüge aus dem Modulhandbuch, Skripte o.ä.). Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden.

Falls Sie weitere Fragen haben, wenden Sie sich gerne an den Studiengangservice Bachelor:
bachelor-info@etit.kit.edu, Tel.: 0721/608-42636 oder -42746, Geb. 30.36, 1. OG, Raum 117

Stand 15.10.2023
Studienplan für den Bachelorstudiengang Mechatronik und Informationstechnik

Zusammensetzung der Leistungspunkte (LP) insgesamt
Module im Pflichtfach „Ingenieurwissenschaftliche Grundlagen“: 110 LP
Module im Vertiefungsfach „Vertiefung in der Mechatronik“: 38 LP
Modul im Fach „Überfachliche Qualifikationen“: 2 LP
Berufspraktikum: 15 LP
Bachelorarbeit: 15 LP
Summe: 180 LP

Prüfungsart und -dauer
Angaben über Prüfungsart oder -dauer werden nach § 6 Absatz 2 der Prüfungsordnung für den Bachelorstudiengang fristgerecht bekannt gegeben. Prüfungsart und/oder -dauer können nach § 6 Absatz 2 und 3 geändert werden.

Zusammensetzung der Module im Pflichtfach „Ingenieurwissenschaftliche Grundlagen“

Modul M-MATH-102859 - Höhere Mathematik (21 LP)
- T-MATH-100525 - Übungen zu Höhere Mathematik I
- T-MATH-100275 - Höhere Mathematik I (7 LP)
- T-MATH-100526 - Übungen zu Höhere Mathematik II
- T-MATH-100276 - Höhere Mathematik II (7 LP)
- T-MATH-100527 - Übungen zu Höhere Mathematik III
- T-MATH-100277 - Höhere Mathematik III (7 LP)

Modul M-MACH-102402 - Technische Mechanik (18 LP)
- T-MACH-100528 - Übungen zu Technische Mechanik I
- T-MACH-100282 - Technische Mechanik I (7 LP)
- T-MACH-100284 - Übungen zu Technische Mechanik II
- T-MACH-100283 - Technische Mechanik II (6 LP)
- T-MACH-105202 - Übungen zu Technische Mechanik III
- T-MACH-100299 - Technische Mechanik III (5 LP)

Modul M-ETIT-104519 - Lineare elektrische Netze (9 LP)
- T-ETIT-109317 - Lineare Elektrische Netze – Workshop A (1 LP)
- T-ETIT-109811 - Lineare Elektrische Netze – Workshop B (1 LP)
- T-ETIT-109316 - Lineare Elektrische Netze (7 LP)

Modul M-ETIT-104465 - Elektronische Schaltungen (7 LP)
- T-ETIT-109138 - Elektronische Schaltungen - Workshop (1 LP)
- T-ETIT-109318 - Elektronische Schaltungen (6 LP)

Modul M-ETIT-104428 - Elektromagnetische Felder (6 LP)
- T-ETIT-109078 - Elektromagnetische Felder (6 LP)

Modul M-ETIT-102124 - Elektrische Maschinen und Stromrichter (6 LP)
- T-ETIT-101954 - Elektrische Maschinen und Stromrichter (6 LP)

Studienplan BSc Mechatronik und Informationstechnik

Modul M-MACH-101299 - Maschinenkonstruktionslehre (8 LP)
- T-MACH-110364 - Maschinenkonstruktionslehre Grundlage I, Vorleistung (1 LP)
- T-MACH-110365 - Maschinenkonstruktionslehre Grundlage II, Vorleistung (1 LP)
- T-MACH-110363 - Maschinenkonstruktionslehre Grundlagen I und II (6 LP)

Modul M-MACH-102549 - Fertigungsprozesse (4 LP)
- T-MACH-105219 - Grundlagen der Fertigungstechnik (4 LP)

Modul M-ETIT-102102 - Digitaltechnik (6 LP)
- T-ETIT-101918 - Digitaltechnik (6 LP)

Modul M-ETIT-104539 - Informationstechnik I (6 LP)
- T-ETIT-109301 - Informationstechnik I - Praktikum (2 LP)
- T-ETIT-109300 - Informationstechnik I (4 LP)

Modul M-ETIT-104525 - Signale und Systeme (7 LP)
- T-ETIT-109314 - Signale und Systeme - Workshop (1 LP)
- T-ETIT-109313 - Signale und Systeme (6 LP)

Modul M-ETIT-102181 - Systemdynamik und Regelungstechnik (6 LP)
- T-ETIT-101921 - Systemdynamik und Regelungstechnik (6 LP)

Modul M-MACH-102749 - Mechatronische Systeme und Produkte (6 LP)
- T-MACH-105574 - Mechatronische Systeme und Produkte (3 LP)
- T-MACH-105574 - Mechatronische Systeme und Produkte (3 LP)

Zusammensetzung der Module im Vertiefungsfach „Vertiefung in der Mechatronik“

Vertiefung in der Mechatronik Wahlblock 1: „Elektrotechnik und Informationstechnik“
Wählen Sie in diesem Wahlblock 1 Modul aus. Wählbare Module siehe Modulhandbuch.

Vertiefung in der Mechatronik Wahlblock 2: „Maschinenbau“
Wählen Sie in diesem Wahlblock 1 Modul aus. Wählbare Module siehe Modulhandbuch.

Vertiefung in der Mechatronik Wahlblock 3:
Wählen Sie in diesem Wahlblock weitere 1 bis 2 Module, bis 8 LP erreicht oder erstmalig überschritten werden. Wählbare Module siehe Modulhandbuch

Vertiefung in der Mechatronik Ergänzungsbereich
Sofern nach Auswahl der Module in den Wahlblöcken 1 bis 3 in Summe noch keine 38 LP im Vertiefungsfach erreicht sind, müssen Ergänzungsmodul gewählt werden, bis mindestens 38 LP erreicht werden. Nicht zulässig ist es, weitere Module anzumelden, wenn bereits 38 LP erreicht oder erstmalig überschritten wurden.
Als Ergänzungsmodule können alle noch nicht verwendeten Module aus den Wahlblöcken 1 bis 3 ausgewählt werden. (Bereits in den Modulen der Wahlblöcke 1 bis 3 erbrachte Leistungen können gemäß § 7 (5) der SPO nicht nochmal in Ergänzungsmodulen anerkannt werden.) Weitere Ergänzungsmodule sind im Modulhandbuch aufgeführt.

Zusammensetzung des Moduls im Fach „Überfachliche Qualifikationen“

Modul M-MACH-104355 Schlüsselqualifikationen (2 LP)
- T-MACH-105699 - Kooperation in interdisziplinären Teams (2 LP)

Modul Berufspraktikum

Modul M-MACH-104265 - Berufspraktikum (15 LP)
- T-MACH-108803 - Berufspraktikum (15 LP)

Modul Bachelorarbeit

Modul M-MACH-104262 - Bachelorarbeit (15 LP)
- T-MACH-107760 - Präsentation (3 LP)
- T-MACH-108800 - Bachelorarbeit (12 LP)

Orientierungsprüfung

Die Orientierungsprüfung nach SPO § 8 besteht aus der Teilmodulprüfung „Technische Mechanik I“ im Modul „Technische Mechanik“ und der Modulprüfung „Lineare elektrische Netze“.

Zusätzliche Leistungen

Es können nach SPO § 15 (1) auch Leistungen mit bis zu 30 Leistungspunkten mehr erworben werden, als für das Bestehen der Bachelorprüfung erforderlich sind. Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

Mastervorzug
Exemplarischer Studienablaufplan

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Fach</th>
<th>Modul</th>
<th>Teilleistungen</th>
<th>LP</th>
<th>Prüfung / Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>M-MATH-102859</td>
<td>T-MATH-100525 - Übungen zu Höhere Mathematik I</td>
<td>7</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100275 - Höhere Mathematik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-102402</td>
<td>T-MACH-100528 - Übungen zu Technische Mechanik I</td>
<td>7</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-100282 - Technische Mechanik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104519</td>
<td>T-ETIT-109317 - Lineare Elektrische Netze - Workshop A</td>
<td>1</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109811 - Lineare Elektrische Netze - Workshop B</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109316 - Lineare Elektrische Netze</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-102102</td>
<td>T-ETIT-101918 - Digitaltechnik</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-101299</td>
<td>T-MACH-110364 - Maschinenkonstruktionslehre Grundlage I</td>
<td>1</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vorleistung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>M-MATH-102859</td>
<td>T-MATH-100528 - Übungen zu Höhere Mathematik II</td>
<td>7</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100276 - Höhere Mathematik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-102402</td>
<td>T-MACH-102524 - Übungen zu Technische Mechanik II</td>
<td>6</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-100283 - Technische Mechanik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104465</td>
<td>T-ETIT-109138 - Elektronische Schaltungen - Workshop</td>
<td>1</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109318 - Elektronische Schaltungen</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104428</td>
<td>T-ETIT-109078 - Elektromagnetische Felder</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-101299</td>
<td>T-MACH-110365 - Maschinenkonstruktionslehre Grundlage II</td>
<td>1</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vorleistung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-110363 - Maschinenkonstruktionslehre Grundlagen I und II</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>M-MATH-102859</td>
<td>T-MATH-100527 - Übungen zu Höhere Mathematik III</td>
<td>7</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100277 - Höhere Mathematik III</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-102402</td>
<td>T-MACH-105202 - Übungen zu Technische Mechanik III</td>
<td>5</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-100296 - Technische Mechanik III</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-102124</td>
<td>T-ETIT-101954 - Elektrische Maschinen und Stromrichter</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104525</td>
<td>T-ETIT-109314 - Signale und Systeme - Workshop</td>
<td>1</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109313 - Signale und Systeme</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-102549</td>
<td>T-MACH-105219 - Grundlagen der Fertigungs technik</td>
<td>4</td>
<td>Prüfung</td>
</tr>
<tr>
<td>4</td>
<td>Ingenieurwissenschaftliche Grundla- gen</td>
<td>M-ETIT-104539</td>
<td>T-ETIT-109301 - Informationstechnik I - Praktikum</td>
<td>2</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109300 - Informationstechnik I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>siehe S. 2</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Überfachliche Qualifikationen</td>
<td>M-MACH-102749</td>
<td>T-MACH-108860 - Workshop Mechatronische Systeme und Produkte</td>
<td>3</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-105574 - Mechatronische Systeme und Produkte</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-102181</td>
<td>T-ETIT-101921 - Systemdynamik und Regelungstechnik</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>siehe S. 2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>M-MACH-104265</td>
<td>T-MACH-108803 - Berufspraktikum</td>
<td>15</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-104262</td>
<td>T-MACH-107760 - Präsentation</td>
<td>3</td>
<td>Studienleistung Abschlussarbeit</td>
</tr>
</tbody>
</table>
Exemplarische Wahloption

Die exemplarische Wahloption zeigt beispielhaft *eine* zulässige Kombination von Modulen im **Vertiefungsfach**, mit der exakt die angegebenen Leistungspunkte im 4. und 5. Semester erreicht werden können.

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Wahlblock</th>
<th>Modul</th>
<th>Teilleistungen</th>
<th>LP</th>
<th>Prüfung / Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Wahlblock 2</td>
<td>M-MACH-102829</td>
<td>T-MACH-110955 - Maschinenkonstruktionslehre III, Vorleistung</td>
<td>1</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>4</td>
<td>Wahlblock 1</td>
<td>M-ETIT-105643</td>
<td>T-ETIT-101923 - Elektroenergiesysteme</td>
<td>5</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td>Wahlblock 2</td>
<td>M-MACH-102829</td>
<td>T-MACH-110956 - Maschinenkonstruktionslehre IV, Vorleistung</td>
<td>1</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Wahlblock 3</td>
<td>M-ETIT-104547</td>
<td>T-ETIT-109319 - Informationstechnik II und Automatisierungstechnik</td>
<td>4</td>
<td>Prüfung</td>
</tr>
<tr>
<td>5</td>
<td>Wahlblock 1</td>
<td>M-ETIT-105643</td>
<td>T-ETIT-100784 - Hybride und elektrische Fahrzeuge</td>
<td>4</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td>Wahlblock 3</td>
<td>M-ETIT-102103</td>
<td>T-ETIT-101936 – Nachrichtentechnik I</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td>Ergänzungs- bereich</td>
<td>M-INFO-100893</td>
<td>T-INFO-108014 - Robotik I - Einführung in die Robotik</td>
<td>8</td>
<td>Prüfung</td>
</tr>
</tbody>
</table>

Seite 5 von 5

Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024
Module Handbook, valid from summer term 24
9 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation Exam
This field will not influence the calculated grade of its parent.</td>
<td>0 CR</td>
</tr>
<tr>
<td>Bachelor's Thesis</td>
<td>15 CR</td>
</tr>
<tr>
<td>Internship</td>
<td>15 CR</td>
</tr>
<tr>
<td>Engineering Fundamentals</td>
<td>110 CR</td>
</tr>
<tr>
<td>Specialization in Mechatronics
First usage possible from 4/1/2021.</td>
<td>38 CR</td>
</tr>
<tr>
<td>Interdisciplinary Qualifications</td>
<td>2 CR</td>
</tr>
<tr>
<td>Voluntary</td>
<td></td>
</tr>
<tr>
<td>Additional Examinations
This field will not influence the calculated grade of its parent.</td>
<td></td>
</tr>
<tr>
<td>Master's Transfer Account
This field will not influence the calculated grade of its parent.</td>
<td></td>
</tr>
</tbody>
</table>

9.1 Orientation Exam

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104333 Orientation Exam</td>
<td>0 CR</td>
</tr>
</tbody>
</table>

9.2 Bachelor's Thesis

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104262 Bachelor's Thesis</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

9.3 Internship

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104265 Internship</td>
<td>15 CR</td>
</tr>
</tbody>
</table>
9.4 Engineering Fundamentals

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-102859 Advanced Mathematics</td>
<td>21 CR</td>
</tr>
<tr>
<td>M-MACH-102402 Engineering Mechanics</td>
<td>18 CR</td>
</tr>
<tr>
<td>M-ETIT-104519 Linear Electric Circuits</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-104465 Electronic Devices and Circuits</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-ETIT-104428 Electromagnetic Fields</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-102124 Electrical Machines and Power Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-101299 Mechanical Design</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102549 Manufacturing Processes</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-102102 Digital Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-104539 Information Technology I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-102181 System Dynamics and Control Engineering</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-ETIT-102181 System Dynamics and Control Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102749 Mechatronical Systems and Products</td>
<td>6 CR</td>
</tr>
</tbody>
</table>
9.5 Specialization in Mechatronics

Note regarding usage
First usage possible from 4/1/2021.

Election notes
Compulsary Elective Modules

1. Part 1: Electrical Engineering and Information Technology
 You have to select one of the listed modules.

2. Part 2: Mechanical Engineering
 You have to select one of the listed modules.

 You have to select one or two modules so that 8 LP are achieved or for the first time exceeded.

4. Part 4: Supplementary Modules
 If you have not achieved 38 LP after having selected modules in part 1-3, you have to select supplementary modules until 38 LP are achieved. It is not allowed to select further modules, if 38 LP are achieved or for the first time exceeded. Modules already selected in part 1-3 cannot be acknowledged as supplementary modules.
Compulsory Elective Modules: Electrical Engineering and Information Technology (Election: 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-105643</td>
<td>Electric Energy Systems/Hybrid and Electric Vehicles</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-105644</td>
<td>Information and Automation Technology II/Laboratory for Machine Learning Algorithms</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-ETIT-105645</td>
<td>Information and Automation Technology II/Seminar Embedded Systems</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-ETIT-105646</td>
<td>Theory of Probability/Communication Engineering I</td>
<td>11 CR</td>
</tr>
<tr>
<td>M-ETIT-105647</td>
<td>Electromagnetic Waves/Fundamentals on High Frequency Techniques</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Compulsory Elective Modules: Mechanical Engineering (Election: 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102829</td>
<td>Mechanical Design III and IV</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-MACH-102565</td>
<td>Fluid Mechanics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102386</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102567</td>
<td>Material Science and Engineering</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management (Election: at least 8 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100803</td>
<td>Real-Time Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-101418</td>
<td>Introduction to Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-102156</td>
<td>Electric Energy Systems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-104515</td>
<td>Electromagnetic Waves</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-106037</td>
<td>Engineering of Automation Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-102129</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100514</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-104547</td>
<td>Information Technology II and Automation Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102829</td>
<td>Mechanical Design III and IV</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-INFO-100757</td>
<td>Mechano-Informatics and Robotics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-102103</td>
<td>Communications Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101174</td>
<td>Programming</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-103179</td>
<td>Computer Organization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-105320</td>
<td>Seminar Fuel Cell I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-100455</td>
<td>Seminar Embedded Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101175</td>
<td>Software Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102565</td>
<td>Fluid Mechanics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102386</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-ETIT-102104</td>
<td>Theory of Probability</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102567</td>
<td>Material Science and Engineering</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Supplementary Modules (Election: between 1 and 15 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100030</td>
<td>Algorithms I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100565</td>
<td>Antennas and Multiple Antenna Systems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100764</td>
<td>Accessibility - Assistive Technologies for Visually Impaired Persons</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-103271</td>
<td>Battery Modeling in MATLAB</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-102651</td>
<td>Image Processing</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-100803</td>
<td>Real-Time Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-101418</td>
<td>Introduction to Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100736</td>
<td>Introduction to Video Analysis</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-105276</td>
<td>Introduction to High Voltage Engineering</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-102156</td>
<td>Electric Energy Systems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-104515</td>
<td>Electromagnetic Waves</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-102113</td>
<td>Basic Electronic Circuits Laboratory</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-106037</td>
<td>Engineering of Automation Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100407</td>
<td>Power Generation</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-103043</td>
<td>Manufacturing Measurement Technology</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-102129</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>6 CR</td>
</tr>
<tr>
<td>Code</td>
<td>Course</td>
<td>Credits</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>M-ETIT-100514</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-104547</td>
<td>Information Technology II and Automation Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100895</td>
<td>Information Processing in Sensor Networks</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-104534</td>
<td>Complex Analysis and Integral Transformations</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-104823</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100518</td>
<td>Laboratory Circuit Design</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102829</td>
<td>Mechanical Design III and IV</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-INFO-100757</td>
<td>Mechano-Informatics and Robotics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-106449</td>
<td>Medical Imaging Technology I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-100729</td>
<td>Human Computer Interaction</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100824</td>
<td>Human-Machine-Interaction in Anthropomatics: Basics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101124</td>
<td>Mobile Computing and Internet of Things</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-102103</td>
<td>Communications Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-104440</td>
<td>Communications Engineering II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-105005</td>
<td>Optics and Solid State Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100509</td>
<td>Optoelectronic Components</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100480</td>
<td>Optoelectronics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100411</td>
<td>Photovoltaic System Design</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-100390</td>
<td>Physiology and Anatomy for Engineers I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-103263</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101174</td>
<td>Programming</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100562</td>
<td>Radiation Protection</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-105124</td>
<td>Radio-Frequency Electronics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-103179</td>
<td>Computer Organization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-105319</td>
<td>Seminar Battery I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-105320</td>
<td>Seminar Fuel Cell I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-100397</td>
<td>Seminar Power Electronics in Regenerative Energy Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100383</td>
<td>Seminar on Selected Chapters of Biomedical Engineering</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101175</td>
<td>Software Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100833</td>
<td>Software Engineering II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102565</td>
<td>Fluid Mechanics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-ETIT-105299</td>
<td>Superconductors for Energy Applications</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-106684</td>
<td>Superconducting Magnet Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-106683</td>
<td>Superconducting Power Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102831</td>
<td>Engineering Mechanics IV</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102386</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102830</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-ETIT-102104</td>
<td>Theory of Probability</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-104919</td>
<td>Advanced Topics and Methods in Mechanical Engineering (4 CP)</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105091</td>
<td>Advanced Topics and Methods in Mechanical Engineering (5 CP)</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-106309</td>
<td>Advanced Topics and Methods in Mechanical Engineering (6 CP)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102567</td>
<td>Material Science and Engineering</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
9.6 Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104355</td>
<td>Soft Skills</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

9.7 Additional Examinations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104332</td>
<td>Further Examinations</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-ZAK-106099</td>
<td>Supplementary Studies on Sustainable Development</td>
<td>19 CR</td>
</tr>
<tr>
<td></td>
<td>First usage possible from 4/1/2023.</td>
<td></td>
</tr>
<tr>
<td>M-ZAK-106235</td>
<td>Supplementary Studies on Culture and Society</td>
<td>22 CR</td>
</tr>
<tr>
<td></td>
<td>First usage possible from 4/1/2023.</td>
<td></td>
</tr>
</tbody>
</table>
9.8 Master’s Transfer Account

Election notes

Please note: Upon successful completion of all studies and exams needed for the bachelor's degree, a control of success registered as a prior master’s examination may only be passed as long as you are enrolled in the bachelor’s program. You should not yet have been admitted to the master’s program and the master’s semester should not yet have started.

This means that as soon as your admission to the master’s program has been expressed and the master’s semester has started, your participation in the examination is the first regular examination attempt within the framework of your master’s studies.
<table>
<thead>
<tr>
<th>Master Transfer Account (Elective: at most 30 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102698 Actuators and Sensors in Nanotechnology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-103294 Wearable Robotic Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100826 Automated Visual Inspection and Image Processing</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-105108 Automated Manufacturing Systems</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-103232 Rail System Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100814 Biologically Inspired Robots</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-100387 Biomedical Measurement Techniques I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-MACH-100489 BioMEMS - Microsystems Technologies for Life Sciences and Medicine I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100490 BioMEMS - Microsystems Technologies for Life Sciences and Medicine II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100491 BioMEMS - Microsystems Technologies for Life Sciences and Medicine III</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-105616 Channel Coding: Algebraic Methods for Communications and Storage</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-MACH-105296 Computational Intelligence</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-104460 Deep Learning and Neural Networks</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102687 Decentraly Controlled Intralogistic Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-106513 Railway System Digitalisation</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102700 Dynamics of the Automotive Drive Train</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-WIWI-100498 Introduction into Energy Economics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102688 Elements of Technical Logistics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105015 Elements of Technical Logistics incl. Project</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100419 Lab Course Electrical Power Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100534 Power Transmission and Power Network Control</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102702 Organ Support Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105288 Handling Characteristics of Motor Vehicles I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102703 Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102693 Automotive Vision</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-106515 Vehicle Systems for Urban Mobility</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-106299 Advanced Artificial Intelligence</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102705 Appliance and Power Tool Design</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102690 Fundamentals of Energy Technology</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-100501 Automotive Engineering I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-100502 Automotive Engineering II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102720 Principles of Medicine for Engineers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102691 Introduction to Microsystem Technology I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102706 Introduction to Microsystem Technology II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102707 Fundamentals of Combustion I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105824 Fundamentals in the Development of Commercial Vehicles</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105289 Principles of Whole Vehicle Engineering I</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-MACH-105290 Principles of Whole Vehicle Engineering II</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-MACH-105281 Information Systems and Supply Chain Management</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-100895 Information Processing in Sensor Networks</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-106514 Innovation and Project Management in Rail Vehicle Engineering</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100791 Innovative Concepts for Programming Industrial Robots</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105282 IT-Fundamentals of Logistics: Opportunities for Digital Transformation</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102696 Lightweight Engineering Design</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102695 Motor Vehicle Laboratory</td>
<td>4 CR</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>M-ETIT-105467</td>
<td>Control Theory Laboratory</td>
</tr>
<tr>
<td>M-ETIT-106067</td>
<td>Power Electronic Systems in Energy Technology</td>
</tr>
<tr>
<td>M-MACH-105298</td>
<td>Logistics and Supply Chain Management</td>
</tr>
<tr>
<td>M-MACH-106457</td>
<td>Machine Learning for Robotic Systems 1</td>
</tr>
<tr>
<td>M-MACH-106652</td>
<td>Machine Learning for Robotic Systems 2</td>
</tr>
<tr>
<td>M-MACH-102694</td>
<td>Machine Dynamics</td>
</tr>
<tr>
<td>M-MACH-104984</td>
<td>Material Flow in Logistic Systems</td>
</tr>
<tr>
<td>M-MACH-102713</td>
<td>Mechanics in Microtechnology</td>
</tr>
<tr>
<td>M-MACH-102699</td>
<td>Laboratory Mechatronics</td>
</tr>
<tr>
<td>M-ETIT-105982</td>
<td>Measurement Technology</td>
</tr>
<tr>
<td>M-MATH-105831</td>
<td>Numerical Methods</td>
</tr>
<tr>
<td>M-ETIT-104567</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>M-ETIT-100389</td>
<td>Laboratory Biomedical Engineering</td>
</tr>
<tr>
<td>M-ETIT-100401</td>
<td>Lab Course Electrical Drives and Power Electronics</td>
</tr>
<tr>
<td>M-ETIT-103448</td>
<td>Laboratory Mechatronic Measurement Systems</td>
</tr>
<tr>
<td>M-ETIT-100394</td>
<td>Practical Aspects of Electrical Drives</td>
</tr>
<tr>
<td>M-MACH-105291</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
</tr>
<tr>
<td>M-MACH-102718</td>
<td>Product Development – Methods of Product Engineering</td>
</tr>
<tr>
<td>M-MACH-102711</td>
<td>Production Techniques Laboratory</td>
</tr>
<tr>
<td>M-ETIT-104475</td>
<td>Project Management in the Development of Products</td>
</tr>
<tr>
<td>M-INFO-102224</td>
<td>Practical Project Robotics and Automation I (Software)</td>
</tr>
<tr>
<td>M-INFO-102230</td>
<td>Practical Project Robotics and Automation II (Hardware)</td>
</tr>
<tr>
<td>M-MACH-105332</td>
<td>Quality Management</td>
</tr>
<tr>
<td>M-ETIT-100374</td>
<td>Control of Linear Multivariable Systems</td>
</tr>
<tr>
<td>M-INFO-102522</td>
<td>Robotics - Practical Course</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
</tr>
<tr>
<td>M-INFO-102756</td>
<td>Robotics II - Humanoid Robotics</td>
</tr>
<tr>
<td>M-INFO-104897</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
</tr>
<tr>
<td>M-MACH-102683</td>
<td>Rail Vehicle Technology</td>
</tr>
<tr>
<td>M-MACH-105725</td>
<td>Seamless Engineering</td>
</tr>
<tr>
<td>M-ETIT-100378</td>
<td>Sensors</td>
</tr>
<tr>
<td>M-INFO-100829</td>
<td>Stochastic Information Processing</td>
</tr>
<tr>
<td>M-MACH-103205</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>M-MACH-105318</td>
<td>Technical Design in Product Development</td>
</tr>
<tr>
<td>M-MACH-102388</td>
<td>Thermal Solar Energy</td>
</tr>
<tr>
<td>M-INFO-100839</td>
<td>Fuzzy Sets</td>
</tr>
</tbody>
</table>
Modelled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 120 credits in the following fields:
 - Bachelor's Thesis
 - Internship
 - Engineering Fundamentals
 - Interdisciplinary Qualifications
 - Specialization in Mechatronics
 - Specialization in Mechatronics
 - Specialization in Mechatronics
Module: Accessibility - Assistive Technologies for Visually Impaired Persons (2400052) [M-INFO-100764]

Responsible: Prof. Dr.-Ing. Rainer Stiefelhagen

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101301</td>
<td>Accessibility - Assistive Technologies for Visually Impaired Persons</td>
<td>3 CR</td>
<td>Stiefelhagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: Actuators and Sensors in Nanotechnology [M-MACH-102698]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory
T-MACH-105238 Actuators and Sensors in Nanotechnology 4 CR Kohl

Competence Certificate
oral exam: 45 min

Prerequisites
keine

Competence Goal
The students can:
- describe the principles of actuation and sensing and exemplify them
- describe important nano fabrication technologies and assess the influence of process parameters
- illustrate the layout and function of nano actuators and sensors and determine their characteristic properties (time constants, sensitivities, forces, etc.)
- evaluate their suitability for specific applications

Content
- Physical principles of actuation and sensing
- Scaling and size effects
- Fabrication technologies
- Selected developments
- Applications
The lecture includes amongst others the following topics:
- Nano technologies
- Nano electro mechanical systems (NEMS)
- Nano magneto mechanical and multiferroic systems
- Polymer-based nano actuators
- Nano motors, molecular systems
- Adaptive nano optical systems
- Nanosensors: concepts, materials, fabrication
- Examples on different categories of materials and applications:
 - C-based, MeOx-based nano sensors
 - Physical, chemical, biological nano sensors
 - Multivariate data analysis / interpretation

Module grade calculation
Module grade calculation
The module grade is the grade of the written exam.

Workload
Time of attendance: 15 * 1,5 h = 22,5 h
Preparation and follow up: 15 * 5,5 h = 82,5 h
Exam Preparation and Exam: 15 h
Total: 120 h = 4 LP
Recommendation
The lecture addresses students in the fields of mechanical engineering, mechatronics and information technology, materials science and engineering, physics, electrical engineering and economic sciences. A comprehensive introduction is given in the basics and current developments on the nanoscopic length scale.

Literature
- Lecture notes
10.3 Module: Advanced Artificial Intelligence [M-INFO-106299]

Responsible: Prof. Dr. Jan Niehues
Organisation: KIT Department of Informatics
Part of: Master's Transfer Account (Usage from 4/1/2023)

Credits 6
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language English
Level 4
Version 1

| Mandatory | T-INFO-112768 | Advanced Artificial Intelligence | 6 CR | Niehues |

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal
● The students know the relevant elements of a technical cognitive system.
● The students understand the algorithms and methods of AI to model cognitive systems.
● The students are able to understand the different sub-components to develop and analyze a system.
● The students can transfer this knowledge to new applications, as well as analyze and compare different methods.

Content
Due to the successes in research, AI systems are increasingly integrated into our everyday lives. These are, for example, systems that can understand and generate language or analyze images and videos. In addition, AI systems are essential in robotics in order to be able to develop the next generation of intelligent robots.

Based on the knowledge of the lecture "Introduction to AI", the students learn to understand, develop and evaluate these systems.

In order to bring this knowledge closer to the students, the lecture is divided into 4 parts. First, the lecture investigates method of perception using different modalities. The second part deals with advanced methods of learning that go beyond supervised learning. Then methods are discussed that are required for the representation of knowledge in AI systems. Finally, methods that enable AI systems to generate content are presented.

Workload
Lecture with 3 SWS + 1 SWS exercise, 6 CP.
6 LP corresponds to approx. 180 hours, of which
approx. 45 hours lecture attendance
approx. 15 hours exercise visit
approx. 90 hours post-processing and processing of the exercise sheets
approx. 30 hours exam preparation
10.4 Module: Advanced Mathematics [M-MATH-102859]

Responsible: Prof. Dr. Roland Griesmaier
Organisation: KIT Department of Mathematics
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Grade to a tenth</td>
<td>3 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100525</td>
<td>Tutorial Advanced Mathematics I</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-100526</td>
<td>Tutorial Advanced Mathematics II</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-100527</td>
<td>Tutorial Advanced Mathematics III</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-100275</td>
<td>Advanced Mathematics I</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-100276</td>
<td>Advanced Mathematics II</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-100277</td>
<td>Advanced Mathematics III</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried by three written examinations of length 120 minutes each and by three sets of homework assignments (pre-requests). A "pass" result on a pre-requirestes in Advanced Mathematics I, II and III, respectively, is a requirement for registration for the corresponding written examination.

Prerequisites
None.

Competence Goal
The students know the fundamentals of one-dimensional calculus. They can reliably use limits, functions, power series and integrals. They understand central concepts such as continuity, differentiability or integrability and they know important statements about these concepts. The students can follow the arguments leading to these statements as presented in the lectures and are able to independently prove simple assertions based on these statements.

The students know about the fundamentals of linear algebra. They are able to use vectors, linear maps and matrices without problems. They have basic knowledge about Fourier series. The students also can theoretically and practically deal with initial value problems of ordinary differential equations. They can make use of classical solution techniques for linear differential equations.

The students know about differential calculus for vector-valued functions of several variables and about techniques of vector calculus such as the definition and application of differential operators, the computation of domain, line and surface integrals and important integral theorems. They have basic knowledge about partial differential equations and know basic facts from stochastics.

Content
Fundamentals, sequences and convergence, functions and continuity, series, differential calculus of one real variable, integral calculus, vector spaces, linear maps, eigenvalues, Fourier series, differential equations, Laplace transform, multidimensional calculus, domain integrals, vector calculus, partial differential equations, stochastics

Workload
In class: 270 hours
- lectures, tutorials and examinations

Independent study: 360 hours
- independent review of course material
- work on homework assignments
- preparation for written exams
Learning type
Lecture, problem classes, tutorials
10.5 Module: Advanced Topics and Methods in Mechanical Engineering (4 CP) [M-MACH-104919]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Election notes
Only one of the listed bricks can be chosen in the compulsory-elective block.

Advanced Topics and Methods in Mechanical Engineering (4 CP) (Elective: 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105381</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>4 CR</td>
<td>Geimer</td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>4 CR</td>
<td>Mittwollen, Oellerich</td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>4 CR</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>5 CR</td>
<td>Dietrich, Schulze</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td>4 CR</td>
<td>Maas, Yu</td>
</tr>
<tr>
<td>T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>4 CR</td>
<td>Gumbsch, Weygand</td>
</tr>
</tbody>
</table>

Competence Certificate
oral/written exam

Prerequisites
None

Competence Goal
The student have learned to evaluate, select and apply scientific methods in Mechanical Engineering in different areas (according to their choice of course).

Workload
The work load is about 120 hours, corresponding to 4 credit points. The work load varies from lecture to lecture, for example a lecture consisting of 4 credit points includes 28 h of presence during the lecture and 92 h self-study, exam and preparation, 120 hours in total.

Learning type
Lectures, Tutorials
Module: Advanced Topics and Methods in Mechanical Engineering (5 CP) [M-MACH-105091]

Responsible: Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Election notes
Only one of the listed bricks can be chosen in the compulsory-elective block.

<table>
<thead>
<tr>
<th>Advanced Topics and Methods in Mechanical Engineering (5 CP) (Election: 1 item)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105209 Introduction to Multi-Body Dynamics 5 CR Römer</td>
</tr>
<tr>
<td>T-MACH-105210 Machine Dynamics 5 CR Proppe</td>
</tr>
<tr>
<td>T-MACH-105303 Modelling of Microstructures 5 CR August, Nestler</td>
</tr>
<tr>
<td>T-MACH-100300 Modelling and Simulation 5 CR Gumbsch, Nestler</td>
</tr>
<tr>
<td>T-MACH-100530 Physics for Engineers 5 CR Dienwiebel, Gumbsch, Nesterov-Müller, Weygand</td>
</tr>
<tr>
<td>T-MACH-102102 Physical Basics of Laser Technology 5 CR Schneider</td>
</tr>
<tr>
<td>T-MACH-105652 Fundamentals of Combustion Engine Technology 5 CR Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
</tr>
<tr>
<td>T-MACH-105290 Vibration Theory 5 CR Fidlin</td>
</tr>
</tbody>
</table>

Competence Certificate
see course

Prerequisites
None

Competence Goal
Students will be able to select, apply, and evaluate scientific methods of mechanical engineering in the areas of the selected course.

Workload
The workload is approximately 150 time hours and corresponds to 5 credit points. The workload varies depending on the event.

Learning type
Lecture, exercise, practical course
10.7 Module: Advanced Topics and Methods in Mechanical Engineering (6 CP) [M-MACH-106309]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Election notes
Only one of the listed bricks can be chosen in the compulsory-elective block.

Advanced Topics and Methods in Mechanical Engineering (6 CP) (Election: 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>6 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6 CR</td>
<td>Fidlin, Römer</td>
</tr>
<tr>
<td>T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>6 CR</td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Competence Certificate
See course

Prerequisites
None

Competence Goal
The Student have learned to evaluate, select and apply scientific methods in Mechanical Engineering in different areas (according to their choice of course).

Workload
The workload is approximately 180 time hours and corresponds to 6 credit points.

Learning type
Lecture, exercise, practical course
10.8 Module: Algorithms I [M-INFO-100030]

Responsible: TT-Prof. Dr. Thomas Bläsius
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-100001 | Algorithms I | 6 CR | Bläsius |
Module: Antennas and Multiple Antenna Systems [M-ETIT-100565]

Responsible: Prof. Dr.-Ing. Thomas Zwick
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

Credits	5
Grading scale | Grade to a tenth
Recurrence | Each winter term
Duration | 1 term
Language | German
Level | 3
Version | 4

Mandatory
T-ETIT-106491 | Antennas and Multiple Antenna Systems | 5 CR | Zwick

Competence Certificate
The success control takes place within the framework of an oral overall examination (20 minutes).

Prerequisites
The "Antenna and Multiple Antenna Systems" module must not be started or completed.

Competence Goal
The students have in-depth knowledge of antennas and antenna systems. This includes functionality, calculation methods but also aspects of practical implementation. You will be able to understand how any antenna works and to develop and dimension antennas with specified properties.

Content
The lecture teaches the basics of field theory as well as the functioning of all essential antenna structures. The functionality of antenna arrays is also visualized using Matlab exercises. Furthermore, antenna measurement methods are taught, as well as an insight into modern antenna and multi-antenna systems. In addition, a practice-oriented workshop on computer-aided design and simulation of antennas is carried out, in which the students learn to use the software tool CST and thus carry out antenna design tasks independently. Individual antennas are then set up and measured so that the students get to know the entire process.

Module grade calculation
The module grade is the grade of the oral exam.

Workload
The workload includes:
Attendance study time lecture / exercise: 30 h
Attendance study time computer exercise CST / MATLAB: 30h
Self-study time including exam preparation: 90 h
A total of 150 h = 5 LP
10.10 Module: Appliance and Power Tool Design [M-MACH-102705]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105229</td>
<td>Appliance and Power Tool Design</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-110767</td>
<td>Appliance and Power Tool Design Project Work</td>
<td>This item will not influence the grade calculation of this parent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Approx. 30 min oral examination.
The project work on device technology is examined together with the lecture on device design.

Prerequisites
Due to organizational reasons, the number of participants is limited. At the beginning of August, a registration form will be available at the IPEK website. In the case of too many applicants, a selection process will be taking place. An early application is advantageous.

Competence Goal
The students are able to ...

- analyze complex and contradictory problems regarding the overall system user – machine and hence to create new solutions with focus on customer use.
- list, to identify and to explain strategies and approaches for the design of technical machines, to transfer them on new problems and to evaluate the working results concerning quality, costs and customer use.
- name the impact of specific boundary conditions, e.g. high quantities of mechatronic systems considering the customer, on the resulting design, to interpret the consequences and to evaluate the effects in unknown situations.
- name aspects of a successful product engineering in a team of worldwide acting companies regarding the field customer, company and market.
- evaluate their relevance for self-chosen examples and to transfer them on unknown problems.

Content
Operation system, system of objects and system of objectives of mechatronic appliances and power tool designs.
Mode of operation as enabler of design, components of mechatronic systems, application oriented design, guidelines for appliance and power tool design.
Part of the lecture is a project work, in which theory will be reprocessed and presented in a practical way. In such exercises the students also will present their results developed in project teams.
The interaction of analysis and synthesis will be acquired in student teams at the example of different appliances and power tools.

Module grade calculation
The module grade consists only of the grade for the lecture Appliance and Power Tool Design.

Annotation
Participation in the course on device design requires simultaneous participation in the project work on device technology. For organisational reasons the number of participants is limited. A registration form will be provided on the IPEK homepage at the beginning of August. If the number of applicants is too large, a selection procedure will take place. This is based on the following selection criteria:

- Students within the course of studies will be decided on the basis of their progress (not only with semesters), which will be determined in a personal interview. The personal selection interviews take place in addition, in order to make the students aware of the special project-oriented format and the time required in correlation with the ECTS points of the course before the final registration for the course.
- With the same study progress after waiting period
- With same waiting time by lot.
- The same procedure is used for students from other courses.
Workload
Lecture Appliance and Power Tool Design: 60 h
Appliance and Power Tool Design Project Work: 180 h

Recommendation
None

Learning type
Lecture, exercise, project work
Module: Automated Manufacturing Systems [M-MACH-105108]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-108844 Automated Manufacturing Systems 8 CR Fleischer

Competence Certificate
oral exam (40 min)

Competence Goal
The students

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: "Handling Technology", "Industrial Robotics", "Sensory" and "Controls".
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Content
The module gives an overview of the structure and functioning of automated production plants. In a basic chapter, fundamental elements for the realisation of automated production systems are taught. These include:

- Drive and control technology
- Handling technology for handling workpieces and tools
- Industrial robot technology
- Quality assurance in automated production plants
- Automated machines, cells, centres and systems for production and assembly
- Structures of multi-machine systems
- Project planning of automated production plants

An interdisciplinary view of these sub-areas results in interfaces to Industry 4.0 approaches. The basic chapters are supplemented by practical application examples and live demonstrations in the Karlsruhe Forschungsfabrik.

In the second part of the module, the fundamentals taught will be clarified using practically executed production processes for manufacturing and disassembling components, and the automated production facilities for manufacturing these components will be analyzed. In the field of automotive powertrain technology, the automated production process for both the manufacture and disassembly of batteries is considered. In the powertrain area, automated production facilities for the disassembly of electric motors are considered. Furthermore, automated production systems for the field of additive manufacturing are considered.

Within tutorials, the contents from the module are deepened and applied to concrete problems and tasks.

Workload
1. Presence time lecture/exercise: 15 * 6 h = 90 h
2. Pre- and post-processing time lecture/exercise: 15 * 9 h = 135 h
3. Exam preparation and presence in the same: 15 h
In total: 240 h = 8 LP

Learning type
Lectures, exercise, field trip
10.12 Module: Automated Visual Inspection and Image Processing (24169) [M/INFO-100826]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T/INFO-101363</th>
<th>Automated Visual Inspection and Image Processing</th>
<th>6 CR</th>
<th>Beyerer</th>
</tr>
</thead>
</table>
Module: Automotive Engineering I [M-MACH-100501]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam; duration approximately 2 hours

Prerequisites
Only one out of the two modules "M-MACH-100501 - Grundlagen der Fahrzeugtechnik I" and "M-MACH-102686 - Automotive Engineering I" is allowed.

Competence Goal
The students know the movements and the forces at the vehicle and are familiar with active and passive security. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution, so that they can apply their knowledge effectively in actual practise. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to judge and to develop the complex system "vehicle".

Content
The module provides an overview of:

1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of the longitudinal and transverse forces, passive safety
3. Engines: combustion engine, alternative drives (e.g. electric motor, fuel cell)
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Workload
1. regular attendance lecture: 15 * 2 * 2 h = 60 h
2. pre and post processing lecture: 15 * 2 * 3 h = 90 h
3. examination preparation and presence in examination: 90 h
In total: 240 h = 8 LP

Literature
3. Gnadtler, R.: Script to the lecture 'Automotive Engineering I'
Module: Automotive Engineering II [M-MACH-100502]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

| T-MACH-102117 | Automotive Engineering II | 4 CR | Gauterin, Gießler |

Competence Certificate
Written exam; duration approximately 1,5 h

Prerequisites
none

Competence Goal
The students have an overview of the modules, which are necessary for the road holding of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, the tyres, the steering elements and the brakes. They know different execution forms, the function and the influence on the driving or brake behavior. They can apply their knowledge effectively in actual practise. They are able to develop the appropriate components correctly. They are ready to analyze, to judge and to optimize the complex relationship of the different components under consideration of boundary conditions.

Content
The module provides an overview of:
1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of the designs

Workload
1. regular attendance lecture: 15 * 2 h = 30 h
2. pre and postprocessing lecture: 15 * 3 h = 45 h
3. examination preparation and presence in examnation: 45 h
In total: 120 h = 4 LP

Literature
3. Gnadler, R.: Script to the lecture 'Automotive Engineering II'
Module: Automotive Vision [M-MACH-102693]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Type of Examination: written exam
Duration of Examination: 60 minutes

Prerequisites

none

Competence Goal

After having participated in the lecture the participants have gained knowledge on modern techniques of signal processing and artificial intelligence which can be used to evaluate video sequences, to relate the image content to a spatial context and to interpret the content semantically. This comprises, binocular reconstruction, recognition of movements in video sequences, state space modeling and Bayesian filters, and the recognition of road surfaces and object behavior. The participants have learned to analyze the algorithms mathematically, to implement them in software, and to apply them to tasks in autonomous driving and mobile robots. The participants are able to analyze problems in the areas mentioned before and to develop appropriate solutions.

Content

Machine perception and interpretation of the environment forms the basis for the generation of intelligent behavior. Especially visual perception opens the door to novel automotive applications. Driver assistance systems already improve safety, comfort and efficiency in vehicles. Yet, several decades of research will be required to achieve an automated behavior with a performance equivalent to a human operator. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision and advanced information processing techniques are presented to provide a broad overview on seeing vehicles. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects. The lecture consists out of 2 hours/week of lecture and 1 hour/week of computer exercises. In the computer exercises methods introduced in the lecture will be implemented in MATLAB and tested experimentally.

Workload

180 hours
composed out of
hours of lecture: 15*3 h = 45 h
preparation time prior to and after lecture: 15*5 h = 75 h
exam preparation and exam: 60 h

Learning type

Lecture

Literature

TBA
10.16 Module: Bachelor's Thesis [M-MACH-104262]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: Bachelor's Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108800</td>
<td>Bachelor's Thesis</td>
<td>12 CR</td>
<td>Matthiesen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-107760</td>
<td>Presentation</td>
<td>3 CR</td>
<td>Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The module Bachelor Thesis consists of a written bachelor thesis and an oral presentation of a scientific subject chosen by the student himself/herself or given by the supervisor. The bachelor thesis is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

The scope of the module Bachelor Thesis corresponds to 15 ECTS (written thesis 12 LP, oral presentation 3 ECTS). The maximal processing time of the bachelor thesis takes 6 months. The examination board defines the languages the thesis has to be written in. The date of issue of the subject has to be fixed by the supervisor and the student and to be put on record at the examination board. The subject of the bachelor thesis may be only returned once and only within the first month of processing time.

On a reasoned request of the student, the examination board can extend the processing time by up to one month. If the bachelor thesis is not completed in time, this examination is "failed" (5,0), unless the student is not responsible.

The bachelor thesis is to be evaluated by not less than a professor or a senior scientist according to § 14 Abs. 3 Ziff. 1 KITG and another examiner. Generally, one of the two examiners is the person who has assigned the thesis. If the examiners do not agree, the bachelor thesis is graded by the examination board within this assessment; another expert can be appointed too. The bachelor thesis has to be graded within a period of six weeks after the submission.

Prerequisites

The requirement for admission to the bachelor's thesis module are 120 ECTS. As to exceptions, the examination board decides on a request of the student.

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to have earned at least 120 credits in the following fields:
 - Internship
 - Engineering Fundamentals
 - Interdisciplinary Qualifications
 - Specialization in Mechatronics
 - Specialization in Mechatronics
 - Specialization in Mechatronics

Competence Goal

The student is able to work independently on a defined, subject-relevant theme based on scientific criteria within a given period of time. The student is able to do research, to analyze information, to abstract as well as collect and recognize basic principles and regularities on the basis of less structured information. He/she overviews a question, is able to choose scientific methods and techniques, and use them to solve the question or to identify other potentials. In general, this will be carried out in consideration of social and/or ethical aspects.

The student can interpret, evaluate, and if needed plot the results obtained. He/she is able to clearly structure a scientific work and (a) to communicate it in written form using technical terminology as well as (b) to present it in oral form and discuss it with experts.

Content

The student shall be allowed to make suggestions for the topic of his/her bachelor thesis. The topic is set by the supervisor of the thesis in accordance with § 14 (3) SPO.

Workload

450 hours
Learning type
Bachelor Thesis and presentation
Module: Basic Electronic Circuits Laboratory [M-ETIT-102113]

Responsible: Dr.-Ing. Armin Teltschik
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

T-ETIT-101943 Basic Electronic Circuits Laboratory 6 CR Teltschik

Competence Certificate
The success control takes place in the form of an oral final colloquium of approximately 20 minutes duration and during the internship by checking the completed test tasks. To participate in the final colloque, at least 8 of the 9 attempts must be successfully completed. The successfully carried out experiments together with the final colloquium form an examination unit. If you fail, the internship must be repeated completely. The event is not graded.

Prerequisites
Knowledge of the contents of the following modules ist necessary: „M-ETIT-102102 – Digitaltechnik“ and „M-ETIT-104465 – Elektronische Schaltungen“.

Competence Goal
The students learn how to use typical electrical engineering laboratory equipment (e.g. multimeter, function generator, oscilloscope). Measuring devices are used in practical tests. The students deepen the already learned basics of electronic circuit technology and digital technology in practice. You will learn how to use the associated measurement, analysis and simulation tools and will be familiarized with the interpretation of data sheets.

Content
Tests are carried out in the following areas:
- oscilloscope measurement technology,
- Operational amplifiers: basic circuits, arithmetic circuits, Fourier / analysis & synthesis
- Measurement technology with LabVIEW
- Circuit simulation with SPICE
- Small signal behavior of bipolar transistors
- AC voltage, small transformers, rectifiers, linear regulators
- digital technology, machine design, Detection of runtime errors
- DC chopper

Module grade calculation
The event is not graded.

Annotation
To participate in the final colloque, at least 8 of the 9 attempts must be successfully completed. The successfully carried out experiments together with the final colloquium form an examination unit. If you fail, the internship must be repeated completely.

Workload
Workload (for a lecture)
Attendance time in the internship: 36 h
Preparation / follow-up of the same: 63/36 h
Exam preparation and attendance yourself: 20 h
Module: Battery Modeling in MATLAB [M-ETIT-103271]

Responsible: Dr.-Ing. Andre Weber

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>CR</th>
<th>Weber</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-106507</td>
<td>Battery Modeling in MATLAB</td>
<td>3</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>Weber</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101351</td>
<td>Biologically Inspired Robots</td>
<td>3</td>
<td>Rönnau</td>
</tr>
</tbody>
</table>
10.20 Module: Biomedical Measurement Techniques I [M-ETIT-100387]

Responsible: Prof. Dr. Werner Nahm

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master's Transfer Account

Credits: 3
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 3

| Mandatory | T-ETIT-106492 | Biomedical Measurement Techniques I | 3 CR | Nahm |

Competence Certificate

The assessment takes place in the form of a written examination lasting 60 min. The module grade is the grade of the written exam.

Bonus points can also be awarded. Information on this can be found under "Module grade calculation".

Prerequisites

none

Module grade calculation

The module grade is the grade of the written exam.

Bonus points can also be awarded. The achievement of bonus points works as follows:

- Bonus points are solved voluntarily.
- In ILIAS the students wear groups of max. 3 participants for a bonus task.
- The solution to the bonus task must be set in ILIAS at the specified time.
- The solutions are read by the lecture assistants and corrected and approved if necessary.
- The groups present their solutions in the lecture (20 min).
- Lecturers award the bonus points individually for each student based on the written solution and the presentation.
- Each participant can acquire a maximum of 6 bonus points.
- Bonus points can only be earned once.

The bonus points are credited as follows:

- Success control is carried out in a written test (written exam) of 60 min (max. 60 points).
- The exam consists of 6 tasks with 5 points each and 5 tasks with 6 points = 11 tasks.
- For the passed bonus task, a maximum of 6 points can be credited to the exam result.
- The grade can thus be improved by a maximum one step.

The total number of points remains limited to 60 points. The bonus points are only taken into account if the exam is passed. Bonus points do not expire and are retained for any examination achievements taken at a later date.
10.21 Module: BioMEMS - Microsystems Technologies for Life Sciences and Medicine I [M-MACH-100489]

Responsible: Prof. Dr. Andreas Guber

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-100966 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I | 4 CR | Guber |

Competence Certificate

Written exam (75 min)

Prerequisites

none

Competence Goal

The lecture will first address relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and Microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content

Introduction into various microtechnical manufacturing methods: LIGA, Micro milling, Silicon Micromachining, Laser Microstructuring, µEDM, Metal-Etching Biomaterials, Sterilisation.

Examples of use in the life science sector: basic micro fluidic structures: micro channels, micro filters, micromixers, micropumps, microvalves, Micro and nanotiter plates, Microanalysis systems (µTAS), Lab-on-chip applications.

Workload

Literature: 20 h

Lessons: 21 h

Preparation and Review: 50 h

Exam preparation: 30 h

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
Module: BioMEMS - Microsystems Technologies for Life Sciences and Medicine II [M-MACH-100490]

Responsible: Prof. Dr. Andreas Guber

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-100967 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II | 4 CR | Guber |

Prerequisites

None

Competence Goal

The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content

Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
- LabCD, Protein Crystallisation
- Microarrays
- Tissue Engineering
- Cell Chip Systems
- Drug Delivery Systems
- Micro reaction technology
- Microfluidic Cells for FTIR-Spectroscopy
- Microsystem Technology for Anesthesia, Intensive Care and Infusion
- Analysis Systems of Person’s Breath
- Neurobionics and Neuroprosthesis
- Nano Surgery

Workload

- Literature: 20 h
- Lessons: 21 h
- Preparation and Review: 50 h
- Exam preparation: 30 h

Literature

- Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
- Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
- M. Madou: Fundamentals of Microfabrication
Module: BioMEMS - Microsystems Technologies for Life Sciences and Medicine III [M-MACH-100491]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-100968 BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III 4 CR Guber

Competence Certificate
Written exam (75 min)

Prerequisites
none

Competence Goal
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Workload
Literature: 20 h
Lessions: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
Module: Channel Coding: Algebraic Methods for Communications and Storage [M-ETIT-105616]

Responsible: Prof. Dr.-Ing. Laurent Schmalen
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account (Usage from 4/1/2021)

Credits
3

Grading scale
Grade to a tenth

Recurrence
Each summer term

Duration
1 term

Language
English

Level
4

Version
1

Mandatory

| T-ETIT-111244 | Channel Coding: Algebraic Methods for Communications and Storage | 3 CR | Schmalen |

Competence Certificate
The exam is held as an oral exam of approx. 20 min.

Competence Goal
The students are able to analyse and assess problems of algebraic channel coding. They can apply methods of algebraic coding theory in the context of communication systems for data transmission and data storage and are able to assess their implementation. Additionally, they will get knowledge to current research topics and research results.

Content
This course focuses on the formal and mathematical basics for the design of coding schemes in digital communication systems. These include schemes for data transmission, data storage and networking. The course starts by introducing the necessary fundamentals of algebra which are then used to derive codes for different applications. Besides codes that are important for data transmission applications, e.g., BCH and Reed-Solomon-Codes, we also investigate codes for the efficient storage and reconstruction of data in distributed systems (locally repairable codes) and codes that increase the throughput in computer networks (network codes). Real applications are always given to discuss practical aspects and implementations of these coding schemes. Many of these applications are illustrated by example code in software (python/MATLAB).

Module grade calculation
Grade of the module corresponds to the grade of the oral exam.

Workload

1. Attendance to the lecture: 15 * 2 h = 30 h
2. Preparation and review: 15 * 4 h = 60 h
3. Preparation for the exam: included in preparation and review
4. In total: 90 h = 3 LP

Recommendation
Knowledge of basic engineering as well as basic knowledge of communications engineering.

Previous attendance of the lectures "Communication Engineering I" and "Probability Theory" is recommended.
10.25 Module: Communications Engineering I [M-ETIT-102103]

Responsible: Prof. Dr.-Ing. Laurent Schmalen
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101936 | Communications Engineering I | 6 CR | Schmalen |

Competence Certificate
Type of examination: written exam. Duration of Examination: approx. 180 minutes.

Prerequisites
none
Module: Communications Engineering II [M-ETIT-100440]

Responsible: Dr.-Ing. Holger Jäkel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100745 | Communications Engineering II | 4 CR | Jäkel |

Prerequisites
None
10.27 Module: Complex Analysis and Integral Transformations [M-ETIT-104534]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Dr.-Ing. Mathias Kluwe

Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109285</td>
<td>Complex Analysis and Integral Transformations</td>
<td>4 CR</td>
<td>Kluwe</td>
</tr>
</tbody>
</table>
10.28 Module: Computational Intelligence [M-MACH-105296]

Responsible:
apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

Organisation:
KIT Department of Mechanical Engineering

Part of:
Master's Transfer Account (Usage from 4/2/2020)

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

T-MACH-105314
Computational Intelligence
4 CR
Meisenbacher, Mikut, Reischl

Competence Certificate
A performance assessment is obligatory and can be oral, a written exam, or of another kind.

Prerequisites
None

Competence Goal
The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Content

- Terms and definitions Computational Intelligence, application fields and examples
- Fuzzy logic: fuzzy sets; fuzzification and membership functions; inference: T-norms and -conorms, operators, aggregation, activation, accumulation; defuzzification methods, structures for fuzzy control
- Artificial Neural Nets: biology of neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
- Evolutionary Algorithms: Basic algorithm, Genetic Algorithms and Evolution Strategies, Evolutionary Algorithm GLEAM, integration of local search strategies, memetic algorithms, application examples
- Deep Learning: History, Architectures, Training strategies, Interpretability and Explainable AI, Use Cases

Workload
The work load is about 120 hours, corresponding to 4 credit points.

Learning type
Lecture
10.29 Module: Computer Organization [M-INFO-103179]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-103531</th>
<th>Computer Organization</th>
<th>6 CR</th>
<th>Karl</th>
</tr>
</thead>
</table>
Module: Control of Linear Multivariable Systems [M-ETIT-100374]

M 10.30 Module: Control of Linear Multivariable Systems [M-ETIT-100374]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100666 | Control of Linear Multivariable Systems | 6 CR | Kluwe |

Competence Certificate

Success is checked as part of a written overall test (120 minutes) of the course.

Prerequisites

none

Competence Goal

- The students first acquired basic knowledge of the various forms of description of linear multivariable systems in the frequency and time domain with both time-continuous and time-discrete models.
- In particular, they are able to transform multi-size systems in the state space to different normal forms depending on the requirements.
- The students have an understanding of fundamental properties such as Stability, trajectory profiles, controllability and observability as well as pole / zero configuration are achieved and the systems can analyze them accordingly.
- You master the basic principles for controlling linear multi-variable systems both in the frequency domain (series decoupling) and in the time domain (pole specification with pre-filter)
- In concrete terms, the students are familiar with the design procedures modal control, decoupling control in the time domain and the complete modal synthesis.
- You are familiar with the problem of state quantity determination by state observers and the design of complete and reduced observers.
- Students are able to use advanced concepts such as output feedback and dynamic controllers if necessary.
- You can continue to counter the problems of high model orders in the state space by reducing the order based on the dominance analysis.

Content

The aim is to impart basic and advanced methods for the treatment of linear multi-size systems, the focus being on the state space. In this way, the students are introduced to a model that allows more modern and, in particular, non-linear processes. On the one hand, the module provides a comprehensive overview of the most important aspects in the variable description of the systems and the analysis of their characteristic properties. On the other hand, all facets of the synthesis of regulations for initial and permanent disorders and the observers often required for this are conveyed.

Module grade calculation

The module grade is the grade of the written exam.

Workload

The workload includes:

- Attendance time in lecture / exercise (3 + 1 SWS: 60h = 2 CP)
- Preparation / follow-up lecture / exercise (90h = 3 CP)
- Preparation / attendance time written exam (30h = 1 CP)

Recommendation

For a deeper understanding, basic knowledge of system dynamics and control technology is absolutely necessary, as taught in the ETIT Bachelor module “System Dynamics and Control Technology” M-ETIT-102181.
Module: Control Theory Laboratory [M-ETIT-105467]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master's Transfer Account (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-111009 | Control Theory Laboratory | 6 CR | Hohmann |

Prerequisites

None
Module: Decentrally Controlled Intralogistic Systems [M-MACH-102687]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: Master’s Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105230 | Decentrally Controlled Intralogistic Systems | 4 CR | Furmans, Hochstein |

Competence Certificate

The success control takes place as a study achievement in the form of the presentation of the work results (Lego robot and code) as well as a presentation of five to ten minutes and following discussion.

Prerequisites

None

Competence Goal

Students are able to:

- Name and explain the basics of intralogistic conveyor systems
- Describe and explain communication types between decentralized systems
- Apply the basics of project management in subsequent projects
- Developing constructive solutions for mechanical problems
- Applying the theory learned to a practical problem
- Evaluate solutions developed through group discussions and presentations
- Use the ROS (Robot Operating System) software framework
- Evaluate the solutions developed using logistical key figures

Content

Hard skills

- Introduction to the basics of technical logistics
- Development of a heterogeneous, integrated, mechatronic, decentralised intralogistics system
- Evaluation of the technical realisation based on logistical key figures
- Practical application of the content using various industry-related hardware components
- Use of various sensor systems
- Prototyping of a mobile robot with LEGO Mindstorms
- Planning and implementation of a control system using the ROS software framework and the object-orientated programming language Python

Soft skills

- Presentation of the work results
- Hardware and software development in teamwork (including tools such as git, Scrum, ...)

Annotation

number of participants limited

participants will be selected

Workload

Attendance time: 90 hours (laboratory practical)

Self-study: 30 hours

Recommendation

Basic knowledge of Python programming and basic knowledge of technical logistics of advantage

Learning type

Seminar
10.33 Module: Deep Learning and Neural Networks [M-INFO-104460]

Responsible: Prof. Dr. Jan Niehues

Organisation: KIT Department of Informatics

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-109124</td>
<td>Deep Learning and Neural Networks</td>
<td>6</td>
<td>CR</td>
<td>Niehues</td>
</tr>
</tbody>
</table>
Module: Digital Technology [M-ETIT-102102]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101918 | Digital Technology | 6 CR | Becker |

Prerequisites

none

Competence Goal

Students will be able to name the basic methods of digital technology and digital information processing with a focus on digital circuits. They are able to apply and analyze coding to digital information. In addition, students know the mathematical basics and can apply graphical and algebraic methods for the design, analysis and optimization of digital circuits and automata.

Content

This lecture is an introduction to important theoretical principles of digital technology, which is intended for students of the 1st semester of electrical engineering. Since it therefore cannot build on knowledge of circuit technology, the focus is on abstract modeling of behavior and structures. In addition, the lecture is also intended to teach the basics that are required in other lectures.

The lecture focuses on the formal, methodological and mathematical foundations for designing digital systems. Building on this, the technical realization of digital systems will be discussed, in particular the design and use of standard modules.

Module grade calculation

The module grade is the grade of the written examination.

Workload

1. attendance time in 23 lectures and 7 exercises: 45 h
2. preparation/follow-up: 90 h. (~2 h per unit)
3. preparation of and attendance in examination: 30 + 2 h
Total: 167 h = 6 LP
M 10.35 Module: Distributed Discrete Event Systems [M-ETIT-100361]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100960 | Distributed Discrete Event Systems | 4 CR | Heizmann |

Prerequisites

none
Module: Dynamics of the Automotive Drive Train [M-MACH-102700]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105226 Dynamics of the Automotive Drive Train 5 CR Fidlin

Competence Certificate
A performance assessment is an oral exam (approx. 30 minutes).

Prerequisites
none

Competence Goal
After having attended this lecture students will be able to understand typical vibration phenomena in a vehicle powertrain and to simulate the essential components of the vehicle powertrain including components of the engine steering. The method of the simulation-based concept choice and the necessary interaction between OEMs and the delivering industry is part of the taught knowledge. The students will also gain experience in the application of numerical simulation methods for solving practical problems of torsion vibrations in highly non-linear systems.

Content
Lectures: The concept of a simulation-based optimization of the vehicle powertrain and its components. Modelling of the components of the power system including internal-combustion engine, torsional vibration damper (two mass flywheel, centrifugal force pendulum, internal damper/torsion damped clutch disc), hydrodynamical transformer, gear, Kardan wave, differential, wheels, driving manoeuvre and its appraisal incl. start, neutral gear, approach, acceleration drive, load alteration, gear alteration, shearing force, stop, and different special manoeuvres like change of intentions or misuse.

Exercise: Elementary numerical proceedings to simulate nonlinear dynamic systems. Modelling of the powertrain in a simulation environment SimulationX or MapleSim.

Workload
Each credit point is equivalent to 25-30 hours of workload (per student). This refers to an average student who shows an average performance. The workload is as follows:
time of attendance lectures: 30 h
time of attendance exercise: 30h
self-study including exam preparation: 90 h
total 150 h - 5 credit points

Recommendation
Basic knowledge of the powertrain technology and elementary vibration knowledge are advantageous. The lectures refer to the book
Especially chapter 6 and 7 are recommended.

Literature

- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Responsible: Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)

Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101923</td>
<td>Electric Energy Systems</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Success is assessed by means of an overall written examination lasting 120 minutes on the selected course.

Prerequisites
none

Competence Goal
Students are able to calculate electrical circuits (passive or with controlled sources) in the time and frequency range. They are also familiar with the most important network equipment, its physical mode of operation and its electrical equivalent circuit.

Content
The first part of the lecture deals with the calculation of balancing processes in linear electrical networks using differential equations and the Laplace transformation. The second part of the lecture deals with electrical network resources.

Module grade calculation
The module grade is the grade of the written examination.

Annotation
The associated course "Elektroenergiesysteme" will be offered for the last time in summer semester 2024. From summer semester 2025, the content will be taught in the course "Elektrische Energietechnik".

Workload
Attendance time lecture: 30 h
Exercise attendance time: 15 h
Self-study time: 90 h
Exam preparation and attendance in the same: integrated in self-study time
Total 135 h = 5 LP
Module: Electric Energy Systems/Hybrid and Electric Vehicles [M-ETIT-105643]

Responsible: Prof. Dr. Martin Doppelbauer
Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology)

<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>T-ETIT-101923</td>
<td>Electric Energy Systems</td>
<td>5</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Competence Certificate

1. Electric Energy Systems:
 Type of examination: written exam. Duration of examination: approx. 120 minutes

2. Hybrid and Electric Vehicles:
 Type of examination: written exam. Duration of examination: approx. 120 minutes

Prerequisites

none

Competence Goal

1. Electric Energy Systems:
 Students are able to calculate electrical circuits (passive or with controlled sources) in the time and frequency range. They are also familiar with the most important network equipment, its physical mode of operation and its electrical equivalent circuit.

2. Hybrid and Electric Vehicles:
 Students understand the technical function of all drive components of hybrid and electric vehicles and their interaction in the drivetrain. They have detailed knowledge of the drive components, in particular batteries and fuel cells, power electronic circuits and electrical machines including the associated transmissions. They are also familiar with the most important drive topologies and their specific advantages and disadvantages. Students will be able to assess and evaluate the technical, economic and ecological effects of alternative drive technologies for motor vehicles.
Content

1. Electrical Energy Systems:
The first part of the lecture deals with the calculation of balancing processes in linear electrical networks using differential equations and the Laplace transformation. The second part of the lecture deals with electrical network resources.

2. Hybrids and Electric Vehicles:
Based on the mobility needs of modern industrial society and the political framework conditions for climate protection, the different drive and charging concepts of battery-electric and hybrid-electric vehicles are presented and evaluated. The lecture gives an overview of the components of the electric drive train, in particular battery, charging circuit, DC/DC converter, inverter, electric machine and transmission. Outline:

- Hybrid vehicle drives
- Electric vehicle drives
- Driving resistances and energy consumption
- Operating strategy
- Energy storage
- Fundamentals of electrical machines
- Asynchronous machines
- Synchronous machines
- Special machines
- Power electronics
- Charging
- Environment
- Vehicle examples

Requirements and specifications

Module grade calculation

1. Electric Energy Systems:
The module grade is the grade of the written examination.

2. Hybrid and Electric Vehicles:
The module grade is the grade of the written examination.

Workload

1. Electric Energy Systems:
 Lecture attendance time: 30 h
 Exercise attendance time: 15 h
 Independent study time: 90 h
 Exam preparation and attendance in the same: offset in preparation/follow-up
 Total 135 h = 5 CP

2. Hybrid and Electric Vehicles:
 14x lectures and 7x exercises à 1.5 h: = 31.5 h
 14x follow-up lectures à 1 h = 14 h
 6x preparation for exercises à 2 h = 12 h
 Exam preparation: = 50 h
 Exam time = 2 h
 Total = 109.5 h = 4 CP

Recommendation

1. Electric Energy Systems: -

2. Hybrid and Electric Vehicles:
 To understand the module, basic knowledge of electrical engineering is recommended (acquired, for example, by attending the modules "Electrical Machines and Power Electronics", "Electrical Engineering for Industrial Engineers I+II" or "Electrical Engineering and Electronics for Mechanical Engineers").
Competence Certificate
Success is assessed in the form of a written examination lasting 120 minutes.

Prerequisites
none

Competence Goal
Students will be familiar with the main electrical machines and power electronics. They are able to describe their behavior using characteristic curves and simple models. They will be able to analyze the network feedback and the effect of power converters on the electrical machine using Fourier series descriptions. You will be able to recognize the components of power transmission and drive systems and calculate their behavior by coupling the models of power converters and machines.

Content
Basic lecture on drive technology and power electronics. First, the mode of action and operating behavior of the most important electrical machines are explained. The function and behavior of the most important power converter circuits are then described. The mode of operation and areas of application of electrical machines and power electronic circuits are explained in more detail using examples.

Module grade calculation
The module grade is the grade of the written examination.

Annotation
valid until 30.09.2025 - Replacement: M-ETIT-106367 - Electric Drives, Power Electronics and Electrical Grids

Workload
14x lecture and 14x exercise 1.5 h each = 35 h
14x follow-up lecture à 1 h = 14 h
13x preparation for exercise à 2 h = 26 h
Exam preparation: = 80 h
Examination time = 2 h
Total approx. 157 h
(corresponds to 6 credit points)
Competence Certificate
Success is assessed in the form of a written examination lasting 120 minutes.

Prerequisites
none

Competence Goal
The aim is to teach the theoretical fundamentals of electric, magnetic and electromagnetic fields based on Maxwell’s equations. Students will be able to calculate electromagnetic fields of simple arrangements of charges and current-carrying conductors analytically using Maxwell’s equations, sketch field diagrams and derive the forces and powers that occur. They can take into account the influence of dielectrics and ferromagnetic materials.

Content
This lecture is an introduction to electromagnetic field theory based on Maxwell's equations. It deals with electrostatic fields, electric current fields, magnetic fields and slowly changing fields:

- Mathematical foundations of field theory
- Fundamentals of electromagnetic fields
- Electrostatic fields
- Electric flow fields
- Magnetic fields
- Quasi-stationary (slowly changing in time) fields

The lecture is accompanied by exercises on the lecture material. These are discussed in a large classroom exercise and the corresponding solutions are presented in detail.

In addition, tutorials are offered in small groups.

The course materials (lecture notes and formulary) can be found online on the Institute’s website. The required password will be announced in the first lecture.

Module grade calculation
The module grade is the grade of the written examination.

Annotation
The associated course "Elektromagnetische Felder" will be offered for the last time in SoSe2024. From winter semester 24/25, the content will be taught in the course "Elektromagnetische Felder und Wellen".

Attention:
The partial performance assigned to this module is part of the orientation examination for the following degree programs:

- Bachelor of Electrical Engineering and Information Technology (SPO 2018, §8)

The examination must be taken at the end of the 2nd semester. A repeat examination must be taken by the end of the 3rd semester.
Workload
6 credit points (ECTS) are awarded for the entire module, which are divided as follows:
- Attendance time in lectures (2 h per 15 dates) = 30 h
- Attendance time in exercises (1 h per 15 dates) = 15 h
- Attendance time in tutorials = 15 weeks per 2 h = 30 h
- Preparation/follow-up of the material: 15 weeks 3 h each = 45 h
- Exam preparation and presence in the exam: 1.5 weeks 40 h each = 60 h
Total workload approx. 180 hours = 6 ECTS.

Recommendation
General physical and mathematical basics from the basic courses of the first semester are strongly recommended.
10.41 Module: Electromagnetic Waves [M-ETIT-104515]

Responsible: Prof. Dr.-Ing. Sebastian Randel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
- Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-ETIT-109245</th>
<th>Electromagnetic Waves</th>
<th>6 CR</th>
<th>Randel</th>
</tr>
</thead>
</table>
10.42 Module: Electromagnetic Waves/Fundamentals on High Frequency Techniques [M-ETIT-105647]

Responsible: Prof. Dr.-Ing. Sebastian Randel
Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109245</td>
<td>Electromagnetic Waves</td>
<td>6 CR</td>
<td>Randel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101955</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>6 CR</td>
<td>Zwick</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

1. Electromagnetical Waves:
 Type of examination: written exam. Duration of examination: approx. 120 minutes
2. Fundamentals on High Frequency Techniques:
 Type of examination: handwritten reports and written exam. Duration of examination: approx. 120 minutes

Prerequisites
none
10.43 Module: Electronic Devices and Circuits [M-ETIT-104465]

Responsible: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory
- T-ETIT-109318 Electronic Devices and Circuits 6 CR Ulusoy
- T-ETIT-109138 Electronic Devices and Circuits - Workshop 1 CR Zwick

Competence Certificate
The assessment of the module consists of

1. a written examination of 120 minutes on the course Electronic Devices and Circuits (6 CP).
2. a written paper on the course Electronic Devices and Circuits - Workshop (1 CP). The written paper is corrected and awarded points. If the required number of points is achieved, the workshop is deemed to have been passed.

Prerequisites
None

Competence Goal
Students will be able to analyze and evaluate the functions and modes of operation of diodes, Z-diodes, bipolar and field-effect transistors, analog basic circuits, from single-stage amplifiers to operational amplifiers. The knowledge acquired about component parameters and the function of the components enables students to analyze and calculate various amplifier circuits. By acquiring knowledge of small signal models of the components, students can apply their theoretical knowledge to the practical design of circuits. In addition, students acquire advanced knowledge of the circuit design and applications of all basic digital elements (inverters, NAND, NOR, tri-state inverters and transmission gates) as well as circuits for use in sequential logic, such as flip-flops. This knowledge allows students to critically follow and analyze current trends in semiconductor development. In this way, students are enabled to analyze and, if necessary, independently optimize modern electrical systems from signal acquisition (sensor, detector) to signal conditioning (amplifier, filter, etc.).

In the workshop, students learn how to coordinate a project in small teams and how to present the results in the form of technical documentation. They will also be able to implement and characterize simple electronic transistor circuits.
Content
Basic lecture on passive and active electronic components and circuits for analog and digital applications.

The focus is on the design and circuit implementation of analog amplifier circuits with bipolar and field-effect transistors, the circuit design of simple logic elements for complex logic circuits. The following topics are covered in detail:

- Introduction (designations, terms)
- Passive components (R, C, L)
- Semiconductor components (diodes, transistors)
- Diodes
- Bipolar transistors
- Field-effect transistors (JFET, MOSFET, CMOS), properties and applications
- Amplifier circuits with transistors
- Properties of operational amplifiers
- Toggle circuits
- Sequential logic

The lecture is accompanied by exercises on the lecture material. These are discussed in a large classroom exercise and the corresponding solutions are presented in detail. Parallel to this, further exercises and lecture content will be set and solved in the form of dedicated tutorials in small groups to practice and deepen the course content.

The workshop takes up many of these focal points. Different sensors will be analyzed. In addition to the general functionality and theory of temperature, light or pressure sensors, suitable electronics are examined in order to convert the physical variables into a proportional, evaluable variable such as voltage or current. Simple sensor principles are dealt with in order to adapt the necessary prior knowledge for carrying out the experiment to the semester. Temperature-dependent resistors are used for temperature measurement or pn junctions are investigated. Applications for brightness measurement are realized with LEDs, photodiodes and phototransistors. Independent experiments are carried out as follows: Understanding sensor principle, design of evaluation circuits for the sensor signal, simulation of circuits in LTSpice, construction and comparison of circuits and evaluation with the μController board.

Module grade calculation
The module grade is made up of the grade of the written examination.

Workload
The preparation (0.5 h), attendance (1.5 h) and follow-up (2 h) of the weekly lecture, the 14-day tutorial and the six tutorial sessions as well as the preparation (82 h) and participation (2 h) in the written examination result in a total workload of approx. 180 h for the course Electronic Devices and Circuits, i.e. 6 CP.

The workload of the workshop is made up as follows:

1. Attendance time in the preparatory course incl. follow-up: 2 h
2. Working on the assignment: 23 h
3. Preparation of the written paper (protocol): 5 h

The time required for the workshop is approximately 30 hours. This corresponds to 1 CP.

Recommendation
Successful completion of the course "Linear Electrical Circuits" is recommended.
10.44 Module: Elements of Technical Logistics [M-MACH-102688]

Responsible: Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102159 | Elements and Systems of Technical Logistics | 4 CR | Fischer, Mittwollen |

Competence Certificate
The assessment consists of an oral examination (approx. 20min).

Prerequisites
one

Competence Goal
Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively and
- Equip material flow systems with appropriate machines.

Content
material flow systems and their (conveying) technical components
mechanical behaviour of conveyors;
structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
sample applications and calculations in addition to the lectures inside practical lectures

Workload
Lecture and exercise: 4 LP = 120 h

1. Attendance time lecture: 28 h
2. Preparation/follow-up lecture: 56 h
3. Attendance time exercise: 12 h
4. Preparation/follow-up exercise: 24 h
Module: Elements of Technical Logistics incl. Project [M-MACH-105015]

Responsible: Dr.-Ing. Martin Mittwollen
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Credits Required</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102159</td>
<td>Elements and Systems of Technical Logistics</td>
<td>4 CR</td>
<td>Fischer, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108946</td>
<td>Elements and Systems of Technical Logistics - Project</td>
<td>2 CR</td>
<td>Fischer, Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20min) and presentation of performed project and defense (approx. 30min)

Prerequisites

none

Competence Goal

Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively and
- Equip material flow systems with appropriate machines.

Content

- Material flow systems and their (conveying) technical components
- Mechanical behaviour of conveyors;
- Structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
- Sample applications and calculations in addition to the lectures inside practical lectures

Workload

Lecture and exercise: 6 LP = 180 h

1. Attendance time lecture: 28 h
2. Preparation/follow-up lecture: 56 h
3. Attendance time exercise: 12 h
4. Preparation/follow-up exercise: 24 h
5. Attendance time project: 4 h
6. Preparation/follow-up project: 56 h

Learning type

Lecture, tutorial, project
Module: Engineering Mechanics [M-MACH-102402]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>3 terms</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td>7 CR</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100528</td>
<td>Tutorial Engineering Mechanics I</td>
<td>0 CR</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Engineering Mechanics II</td>
<td>6 CR</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100284</td>
<td>Tutorial Engineering Mechanics II</td>
<td>0 CR</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100299</td>
<td>Engineering Mechanics III</td>
<td>5 CR</td>
<td>Proppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105202</td>
<td>Tutorial Engineering Mechanics III</td>
<td>0 CR</td>
<td>N.N.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisites EM I, II (see T-MACH-100528 "Engineering Mechanics I (Tutorial)" as well as T-MACH-100284 "Engineering Mechanics II (Tutorial)"): they consist of solving problems of the work sheets in four categories: written mandatory homework, written homework, computational homework, colloquia.

Exam-prerequisites EM III (see T-MACH-105202 "Engineering Mechanics III Tutorial". They consist of solving problems of the work sheets.

"Engineering Mechanics I", written exam, 90 minutes; graded;
"Engineering Mechanics II", written exam, 90 minutes; graded;
"Engineering Mechanics III", written exam, 90 Minutes; graded;

The final grade of this module is computed as ECTS-based weighted sum of the included exams.

Prerequisites

None

Competence Goal

After finishing the students can

- assess stress and strain distributions for the basic load cases within the framework of thermoelasticity
- compute and evaluate 3D stress and strain states
- apply the principle of virtual displacements
- apply energy methods and compute approximate solutions
- evaluate the stability of equilibrium positions
- list elastic-plastic material laws
- solve worksheet problems to topics of the lecture using the computer algebra system MAPLE.

In this lecture and tutorial students learn how to describe models of systems for a plain motion. They realize how to calculate speed and acceleration. The derivation of equations of motion for systems of particles and rigid bodies can be done. The students know the dependence of the kinetic energy on the kinetic quantities and the inertia parameters of the system and can apply the principle of work or the principle of the conservation of mechanical energy for conservative systems.
Content
Engineering Mechanics I:
• basics of vector calculus
• force systems
• statics of rigid bodies
• internal forces and moments in bars and beams
• friction
• centre of gravity, centre of mass
• work, energy, principle of virtual work
• statics of inextensible ropes
• elastostatics of tension-compression-bars

Engineering Mechanics II:
• bending
• shear
• torsion
• stress and strain state in 3D
• Hooke's law in 3D
• elasticity theories in 3D
• energy methods in elastostatics
• approximation methods
• stability
• inelastic material behaviour

Engineering Mechanics III:
Kinematics: Cartesian, cylindrical and natural coordinates.
Time derivatives in moving reference frames, angular velocities of reference frames.
Kinetics of a particle:
Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies,
principle of linear momentum, principle of moment of momentum, kinetics in moving reference frames.
Systems of particles:
Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.
Plain motion of rigid bodies:

Workload
regular attendance: 150,5 Stunden
self-study: 389,5 Stunden

Learning type
Lectures, Tutorials, Lab course groups, attestation of solved worksheets, colloquia, consultation hours (optional)
Module: Engineering Mechanics [M-MACH-103205]

10.47 Module: Engineering Mechanics [M-MACH-103205]

Responsible: Prof. Dr.-Ing. Thomas Böhlike
Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mechanical Engineering (Elective: at least 5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105209</td>
<td>Introduction to Multi-Body Dynamics</td>
<td>5 CR</td>
<td>Römer</td>
</tr>
<tr>
<td>T-MACH-105274</td>
<td>Engineering Mechanics IV</td>
<td>5 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-110375</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>4 CR</td>
<td>Böhlike</td>
</tr>
<tr>
<td>T-MACH-110376</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>2 CR</td>
<td>Böhlike</td>
</tr>
</tbody>
</table>

Competence Certificate

A performance assessment in the bricks to be chosen is obligatory and can be an oral or a written exam. For details see eligible bricks.

Prerequisites

none

Competence Goal

Introduction to multi-body dynamics: After completing this module, graduates will be able to describe the kinematics of a rigid body using rotational matrices, angular velocities and corresponding derivatives in various reference systems. They can specify holonomic and non-holonomic constraints for closed kinematic chains. In addition, the graduates can derive Newton-Euler's and Euler-Lagranian equations and apply the principle of d'Alembert and the principle of virtual power. Finally, they can analyze the structure of the equations of motion.

Engineering Mechanics IV: The graduates can study the kinematics for movements of points and systems. Based on Newton-Euler's axioms they can derive the equations of motion. In addition to classical synthetic methods, graduates can efficiently apply analytical methods with energy expressions as a starting point.

Mathematical methods of continuum mechanics: After completing the module, graduates can perform the essential operations of tensor algebra and tensor analysis for both second and higher-order tensors, in oblique and curvilinear coordinate systems. They can then apply these operations in the description of infinitesimal and finite deformations of continuum mechanical systems. In addition, graduates can specify the transport theorem and balance equations for continuum mechanical systems and use material equations.

Content

Contents of "Introduction to Multi-Body Dynamics": The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d'Alembert, principle of virtual power, Lagrange's equations, Kane's equations, structure of the equations of motion.

Contents of "Engineering Mechanics IV": Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption.

Workload

Introduction to Multi-Body Dynamics: presence lecture: 15 * 2 h = 30 h, preparation and recap: 15 * 2 h = 30 h, exam preparation and presence during exam: 90 h

Engineering Mechanics IV: presence lecture and tutorial: 15 * 2 h + 15 * 2 h = 60 h, preparation and recap lecture and tutorial: 15 * 2 h + 15 * 2 h = 60 h, exam preparation and presence during exam: 30 h

Mathematical methods of continuum mechanics: presence lecture and tutorial: 15 * 2 h + 8 * 2 h = 46 h, preparation and recap lecture and tutorial: 15 * 2 h + 8 * 2 h = 46 h, exam preparation and presence during exam: 58 h
Learning type
Lecture, Tutorials, Lab Course, Consultation hours
Module: Engineering Mechanics IV (5) [M-MACH-102831]

Responsible: Prof. Dr.-Ing. Alexander Fidlin

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105274</td>
<td>Engineering Mechanics IV</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, 1,5 h

Prerequisites

None

Competence Goal

The students know some possibilities to describe the position and orientation of a rigid body for an arbitrary 3D motion. They realize that the rotational velocity is a vector which may change both magnitude and orientation. They can apply the principle of linear momentum and the principle of moment of momentum to a spatial motion of a rigid body and notice that this is much more complicated compared to a plain motion. The students can calculate the coordinates of the inertia tensor. They see that many effects which may be seen with gyroscopes can be explained by the principle of moment of momentum. For systems with many particles or bodies but only few degrees of freedom the students know that the application of analytical methods like the principle of D’Alembert in Lagrangian form or the Lagrange equations may be advantageous. They can apply these principles to simple problems. For vibration problems the students can interpret the most important expressions like eigenfrequency, resonance or eigenvalue problem. Forced vibration of systems with one degree of freedom can be investigated by the students.

Content

Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption

Workload

time of attendance: 40h; self-study: 110h

Learning type

Lecture
10.49 Module: Engineering of Automation Systems [M-ETIT-106037]

Responsible: Prof. Dr.-Ing. Mike Barth
Organisation: KIT Department of Electrical Engineering and Information Technology
KIT Department of Mechanical Engineering
Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management) (Usage from 10/1/2022)
Specialization in Mechatronics (Supplementary Modules) (Usage from 10/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-112221</td>
<td>Engineering of Automation Systems</td>
<td>4 CR</td>
<td></td>
</tr>
</tbody>
</table>
10.50 Module: Fluid Mechanics (BSc-Modul 12, SL) [M-MACH-102565]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Part of:
- Specialization in Mechatronics (Compulsory Elective Modules: Mechanical Engineering)
- Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 2 terms
Language: German/English
Level: 3
Version: 1

Mandatory

| T-MACH-105207 | Fluid Mechanics 1&2 | 8 CR | Frohnapfel |

Competence Certificate
Common examination of "Fluid Mechanics I" and "Fluid Mechanics II"; written exam, 3 hours (graded)

Prerequisites
none

Competence Goal
After having completed this module the student is capable of deriving the mathematical equations that describe the motion of fluids and can determine flow quantities for generic problems. He/she can name characteristic properties of fluids and distinguish different flow states. The student is capable of determining fluid quantities in fundamental applications. This includes the calculation of

- static and dynamic forces acting from the fluid onto the solid
- two-dimensional viscous flows
- one-dimensional incompressible and compressible flows without losses
- lossy flows through pipes

Content
properties of fluids, surface tension, hydro- and aerostatics, kinematics, stream tube theory (compressible and incompressible), losses in pipeline systems, dimensional analysis, dimensionless numbers
tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Module grade calculation
result of exam

Annotation
For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
regular attendance: 64 hours
self-study: 176 hours

Learning type
Lectures + tutorials

Literature
Zirep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg
Kuhlmann, H.: Strömungsmechanik, Pearson Studium
Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag
10.51 Module: Fundamentals in the Development of Commercial Vehicles [M-MACH-105824]

Responsible:
Christof Weber

Organisation:
KIT Department of Mechanical Engineering

Part of:
Master’s Transfer Account (Usage from 10/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-111389 | Fundamentals in the Development of Commercial Vehicles | 4 CR | Weber |

Competence Certificate

Oral exam; duration approximately 30 minutes

Prerequisites

None

Competence Goal

The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They are able to plan, to steer, and to handle this process. They can apply their knowledge effectively in actual practice. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

They are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.

They know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application. They can apply their knowledge effectively in actual practice.

Content

The module provides an overview of:

1.1. Introduction, definitions, history
1.2. Development tools
1.3. Complete vehicle
1.4. Cab, bodyshell work
1.5. Cab, interior fitting
1.6. Alternative drive systems
1.7. Drive train
1.8. Drive system diesel engine
1.9. Intercooled diesel engines
2.1. Gear boxes of commercial vehicles
2.2. Intermediate elements of the drive train
2.3. Axle systems
2.4. Front axles and driving dynamics
2.5. Chassis and axle suspension
2.6. Braking System
2.7. Systems
2.8. Excursion
Workload
1. regular attendance lecture: 8 * 4 h = 32 h
2. pre and postprocessing lecture: 8 * 6 h = 48 h
3. examination preparation and presence in examination: 40 h
In total: 120 h = 4 LP (2 semester)

Learning type
Tutorial

Literature
Module: Fundamentals of Combustion I [M-MACH-102707]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105213 | Fundamentals of Combustion I | 4 CR | Maas |

Competence Certificate
Written exam, graded, approx. 3 h

Prerequisites
none

Competence Goal
After completing the course, the students are able to analyze the functionality of technical combustion systems (e.g. piston engines, gas turbines, furnaces). With regard to environmental pollution, students can name the mechanisms of combustion and pollutant formation and assess concepts for reducing pollutants. They can explain the fundamental chemical and physical processes of combustion and name experimental methods for investigating flames. Furthermore, the students can also describe the differences between laminar and turbulent flames and explain the principles of ignition processes.

Content
The lecture gives an overview of the basic terms and phenomena of technical combustion. In a basic chapter, experimental methods for investigating flames are taught. Conservation equations for laminar flames are derived based on scientific phenomena. In addition, the laminar premixed flame and the laminar non-premixed flame are treated as examples. Knowledge of chemical reactions and their description with reaction mechanisms is conveyed. Furthermore, ignition processes are taught. The content of the lecture is deepened in exercises and applied to specific problems and tasks.

Module grade calculation
Grade of the written exam (100%)

Workload
General attendance: 30 h
Preparation time for the lecture: 30 h
General attendance (Tutorial): 30 h
Self-study: 30 h

Recommendation
none

Learning type
Lecture
Exercise course

Literature
Lecture notes,
Module: Fundamentals of Energy Technology [M-MACH-102690]

Responsible: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory
T-MACH-105220
Fundamentals of Energy Technology
8 CR
Badea, Cheng

Competence Certificate
A performance assessment will consist of a written examination of 90 minutes.

Prerequisites
none

Competence Goal
The objective of the module is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

Content
The following relevant fields of the energy industry are covered:
- Energy demand and energy situation
- Energy types and energy mix
- Basics. Thermodynamics relevant to the energy sector
- Conventional fossil-fired power plants
- Combined Cycle Power Plants
- Cogeneration
- Nuclear energy
- Regenerative energies: hydropower, wind energy, solar energy, other energy systems
- Energy storage
- Transport of energy
- Power generation and environment. Future of the energy industry

Module grade calculation
The module grade is the grade of the written examination.

Workload
1. lectures: 15 * 3 h = 45 h
2. preparation for lectures: 15 * 2 h = 30 h
3. tutorials: 15 * 2 h = 30 h
4. preparation for tutorials: 15 * 1 h = 15 h
5. preparation for exam: 120 h
Total: 240 h = 8 LP
10.54 Module: Fundamentals on High Frequency Techniques [M-ETIT-102129]

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

T-ETIT-101955 Fundamentals on High Frequency Techniques 6 CR Zwick

Competence Certificate

Success control is carried out as part of a written overall examination (120 minutes) of the selected courses, with which the minimum requirement for CP is met and the assessment of homework. Students can work on the homework exercises during the semester and submit them for correction. The handover is in handwritten form.

Prerequisites

None

Competence Goal

he students have basic knowledge and understanding in the field of radio frequency technology and can transfer this knowledge to other areas of the course. These include, in particular, line theory, microwave network analysis and the basics of more complex microwave systems (receiver noise, non-linearity, compression, antennas, amplifiers, mixers, oscillators, radio systems, FMCW radar, S parameters). The methods learned enable simple or basic high-frequency technical problems to be solved (e.g. impedance matching, standing waves).

Content

Basic lecture on high frequency technology: The main focus of the lecture is to provide a basic understanding of high frequency technology as well as the methodological and mathematical foundations for the design of microwave systems. The main topics are passive components and linear circuits at higher frequencies, line theory, microwave network analysis and an overview of microwave systems.

Accompanying the lecture, exercises are given on the lecture material. These are discussed in a large hall exercise and the associated solutions are presented in detail. In addition, the most important connections from the lecture are repeated again in the exercise.

In addition to the exercise in the hall, a tutorial is used to independently work on typical high-frequency technology tasks. The students work on the tasks in small groups and receive help from a student tutor.

Module grade calculation

The module grade is the grade of the written exam. If at least 50% of the total points of the homework are achieved, the student receives a grade bonus of 0.3 or 0.4 grade points on passing the written exam. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade of the written exam by one grade (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

The grade bonus once acquired will remain for a possible written examination in a later semester. The homework is a voluntary additional service, i.e. Even without the grade bonus, the full score or top grade can be achieved in the exam.

Workload

The workload includes:

- Attendance study time lecture / exercise: 60 h
- Classroom study time: 15 h
- Self-study time including exam preparation: 105 h
- A total of 180 h = 6 LP

Recommendation

Knowledge of the basics of high frequency technology is helpful.
10.55 Module: Further Examinations [M-MACH-104332]

Organisation: KIT Department of Mechanical Engineering
Part of: Additional Examinations

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Further Examinations (Election: at most 30 credits)

- T-MACH-106638 Wildcard Additional Examinations 1 3 CR
- T-MACH-106639 Wildcard Additional Examinations 2 3 CR
- T-MACH-106640 Wildcard Additional Examinations 3 3 CR
- T-MACH-113345 Wildcard Additional Examinations 11 3 CR
- T-MACH-106641 Wildcard Additional Examinations 4 3 CR
- T-MACH-106643 Wildcard Additional Examinations 5 3 CR
- T-MACH-106646 Wildcard Additional Examinations 6 3 CR
- T-MACH-106647 Wildcard Additional Examinations 7 3 CR
- T-MACH-106648 Wildcard Additional Examinations 8 3 CR
- T-MACH-106649 Wildcard Additional Examinations 9 3 CR
- T-MACH-106650 Wildcard Additional Examinations 10 3 CR

Prerequisites
None
Module: Fuzzy Sets (24611) [M-INFO-100839]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck

Organisation: KIT Department of Informatics

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101376</th>
<th>Fuzzy Sets</th>
<th>6 CR</th>
<th>Hanebeck</th>
</tr>
</thead>
</table>
10.57 Module: Handling Characteristics of Motor Vehicles I [M-MACH-105288]

Responsible: Dr.-Ing. Martin Gießler
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105152 | Handling Characteristics of Motor Vehicles I | 4 CR | Unra |

Competence Certificate

Oral examination, duration: approximately 30 minutes.

Competence Goal

The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Content

1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Workload

The total work load for this module is about 120 Hours (4 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 4 credit points is about 120 hours

Learning type

Lecture
Module: Heat and Mass Transfer [M-MACH-102717]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering
Part of: Master’s Transfer Account

Credits 4
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 4
Version 1

Mandatory
T-MACH-105292 Heat and Mass Transfer 4 CR Maas, Yu

Competence Certificate
Written exam, graded, approx. 3 hours

Prerequisites
none

Competence Goal
The students will have knowledge of the basic processes, laws and calculation methods of heat and mass transfer based on dimension analysis. Further, they can use it to analyze and derive application systems of industrial importance in the fields of mechanical engineering, energy and process engineering.

Content
The lecture gives an overview of stationary and unsteady heat conduction phenomena in homogeneous and composite bodies; such as plates, pipe shells and spherical shells. Molecular diffusion in gases and the analogy between diffusion and heat conduction are thought. The lecture provides an overview of convective, forced heat transfer in pipes / channels with a flow, as well as plates and profiles that are flown over. In addition, the module conveys knowledge of the mass / heat transfer analogy and the multiphase, convective heat transfer (condensation, evaporation), as well as the convective mass transfer is taught. This module is intended to convey to students the theoretical and practical aspects of the radiant heat transport of solids and gases. The content of the lecture is deepened in exercises and applied to specific problems and tasks.

Module grade calculation
Grade of the written exam (100%)

Workload
General attendance: 30 h
Preparation time for the lecture: 30 h
General attendance (Tutorial): 30 h
Self-study: 30 h

Recommendation
none

Learning type
Lecture
Exercise course

Literature
- Maas ; Vorlesungsskript “Wärme- und Stoffübertragung”
Module: Human Computer Interaction (24659) [M-INFO-100729]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grades</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
<td>6 CR</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>T-INFO-106257</td>
<td>Human-Machine-Interaction Pass</td>
<td>0 CR</td>
<td>Beigl</td>
<td></td>
</tr>
</tbody>
</table>
Module: Human-Machine-Interaction in Anthropomatics: Basics (24100) [M-INFO-100824]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)

Credits 3

Grading scale Grade to a tenth

Recurrence Each winter term

Duration 1 term

Language German

Level 3

Version 1

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
</table>
10.61 Module: Hybrid and Electric Vehicles [M-ETIT-100514]

Responsible: Prof. Dr. Martin Doppelbauer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)

Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100784 | Hybrid and Electric Vehicles | 4 CR | Doppelbauer |

Competence Certificate

Success is assessed in the form of a written examination lasting 120 minutes.

Prerequisites

none

Competence Goal

Students understand the technical function of all drive components of hybrid and electric vehicles and their interaction in the drivetrain. They have detailed knowledge of the drive components, in particular batteries and fuel cells, power electronic circuits and electrical machines including the associated transmissions. They are also familiar with the most important drive topologies and their specific advantages and disadvantages. Students will be able to assess and evaluate the technical, economic and ecological effects of alternative drive technologies for motor vehicles.

Content

Based on the mobility needs of modern industrial society and the political framework conditions for climate protection, the different drive and charging concepts of battery-electric and hybrid-electric vehicles are presented and evaluated. The lecture gives an overview of the components of the electric drive train, in particular battery, charging circuit, DC/DC converter, inverter, electric machine and transmission. Outline:

- Hybrid vehicle drives
- Electric vehicle drives
- Driving resistances and energy consumption
- Operating strategy
- Energy storage
- Fundamentals of electrical machines
- Asynchronous machines
- Synchronous machines
- Special machines
- Power electronics
- Charging
- Environment
- Vehicle examples

Requirements and specifications

Module grade calculation

The module grade is the grade of the written examination.
Workload
14x lecture and 7x exercise 1.5 h each = 31.5 h
14x follow-up lecture à 1 h = 14 h
6x preparation for exercise à 2 h = 12 h
Exam preparation: = 50 h
Examination time = 2 h
Total = 109.5 h
(corresponds to 4 credit points)

Recommendation
To understand the module, basic knowledge of electrical engineering is recommended (acquired, for example, by attending the modules "Electrical Machines and Power Electronics", "Electrical Engineering for Industrial Engineers I+II" or "Electrical Engineering and Electronics for Mechanical Engineers").
10.62 Module: Image Processing [M-ETIT-102651]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-ETIT-105566 Image Processing 3 CR Heizmann

Prerequisites
none
Module: Information and Automation Technology II/Laboratory for Machine Learning Algorithms [M-ETIT-105644]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology)

Credits: 10

Grading scale: Grade to a tenth

Recurrence: Each term

Duration: 2 terms

Language: German

Level: 3

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109319</td>
<td>Information Technology II and Automation Technology</td>
<td>4 CR</td>
<td>Sax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109839</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
<td>6 CR</td>
<td>Becker, Sax, Stork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

1. Information Technology II and Automation Technology:
 - Type of examination: written exam. Duration of examination: approx. 120 minutes. Content: lecture and exercise.

2. Laboratory for Applied Machine Learning Algorithms:
 - Type of examination: alternative exam assessment
 - The examination consists of written reports, assessment of team work, an oral presentation, and an oral exam at the end of the lecture period. The overall impression is rated.

Prerequisites

none
10.64 Module: Information and Automation Technology II/Seminar Embedded Systems [M-ETIT-105645]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Exam</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109319</td>
<td>Information Technology II and Automation Technology</td>
<td>4 CR</td>
<td>Sax</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

1. Information Technology II and Automation Technology:
 Type of examination: written exam. Duration of examination: approx. 120 minutes. Content: lecture and excercise.

2. Seminar: Fundamentals of Embedded Systems:
 Type of examination: alternative exam assessment
 The examination consists of a written report and an oral presentation. The overall impression is rated.

Prerequisites
none
Module: Information Processing in Sensor Networks [M-INFO-100895]

10.65 Module: Information Processing in Sensor Networks [M-INFO-100895]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)
Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101466 | Information Processing in Sensor Networks | 6 CR | Hanebeck |
Module: Information Systems and Supply Chain Management [M-MACH-105281]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Prerequisites
none

Competence Goal
Students are able to:

- Describe requirements of logistical processes regarding IT systems,
- Choose information systems to support logistical processes and use them according to the requirements of a supply chain.

Content
1) Overview of logistics systems and processes
2) Basic concepts of information systems and information technology
3) Introduction to IS in logistics: Overview and applications
4) Detailed discussion of selected SAP modules for logistics support

Workload
regular attendance: 21 hours
self-study: 69 hours

Learning type
Lectures

Literature
Module: Information Technology I [M-ETIT-104539]

Responsible: Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

- T-ETIT-109300 Information Technology I 4 CR Sax
- T-ETIT-109301 Information Technology I - Practical Course 2 CR Sax

Competence Certificate

The module grade is the grade of the written exam. Successful completion of the internship is a prerequisite for passing the module.

The success control of the module consists of:

1. A "written exam" of 120 minutes for the courses lecture, exercise (4 CP)
2. A success control in the form of project documentation and control of the source code in the course of the practical course (2 CP)

Prerequisites

None

Competence Goal

The students get to know the structure and functioning of information technology systems and their use. Students can:

- Differentiate the characteristics of embedded systems.
- Name different programming languages and paradigms and compare their differences.
- Explain the basic components of the C++ programming language and create programs in this language.
- List the components required to create an executable program and describe their interaction.
- Represent program structures with the help of graphical description means.
- Differentiate the object-oriented programming paradigm from traditional approaches and create object-oriented programs.
- Graphically depict the structure of object-oriented programs.
- Describe general computer architectures, compare their advantages and disadvantages, and explain options for increasing performance.
- Describe different levels of abstraction for data storage. There are various ways to store, organize, name and evaluate data in a structured manner.
- Describe the tasks of an operating system and reflect the basic functions of processes and threads.
- Explain the phases and processes of project management and outline the planning of small projects.
- By participating in the information technology internship, students can break down complex programming problems into simple and clear modules and develop suitable algorithms and data structures, and convert them into an executable program using a programming language.
Content

Lecture Information Technology I:
Basic lecture on information technology. The focus of the event is:
Programming languages, program creation and program structures
Object orientation
Computer architectures and embedded systems
Data structures and databases
Project management
Operating systems and processes

Exercise Information Technology I:
Accompanying the lecture, the basics of the programming language C++ are taught in the exercise. For this purpose, exercises with reference to the lecture material are given, and the solutions to this are explained in detail. The focus is on the construction and analysis of programs and their creation.

Internship information technology:
In the implementation into a structured and executable source code, in compliance with given quality criteria, the writing of complex C/C++ code sections and the handling of an integrated development environment are trained. The implementation takes place on a microcontroller board, which is already known from other courses.

The project is processed in small teams, which break the entire project down into individual tasks and process them independently. Here, contents from lectures and exercises are taken up again and applied to specific problems. At the end of the internship, each project team should demonstrate the successful completion of their work on the "TivSeg platform".

Module grade calculation
The module grade is the grade of the written exam. Successful completion of the internship is a prerequisite for passing the module.

Annotation
From summer semester 2024, the content will be taught in the course "Informations- und Automatisierungstechnik".

Workload
The workload includes:
Attendance time in 14 lectures and 7 exercises (21.5 hours)
Preparation / follow-up of lecture and exercise (41 hours)
Exam preparation and attendance in the same (40 hours)
Information technology internship 5 appointments (7.5 hours)
Preparation / follow-up of the internship (40 hours)

Recommendation
Knowledge of the basics of programming is recommended (attendance of the MINT course C++). The contents of the module digital technology are helpful.
Module: Information Technology II and Automation Technology [M-ETIT-104547]

Responsible: Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)

Specialization in Mechatronics (Supplementary Modules)

Credits 4

Grading scale Grade to a tenth

Recurrence Each summer term

Duration 1 term

Language German

Level 3

Version 2

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109319</td>
<td>Information Technology II and Automation Technology</td>
<td>4</td>
<td>CR Sax</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

Type of examination: written exam. Duration of Examination: approx. 120 minutes. Content: lecture and exercise.

Prerequisites

None
Module: Innovation and Project Management in Rail Vehicle Engineering [M-MACH-106514]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Martin Cichon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Mechanical Engineering</td>
</tr>
</tbody>
</table>

Part of: Master's Transfer Account (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-113068 | Innovation and Project Management in Rail Vehicle Engineering | 4 CR | Cichon |

Competence Certificate
Presentation (duration approx. 20 minutes) and colloquium

Prerequisites
none

Competence Goal
Students will learn the basics of innovation and project management in the context of rail vehicle development. Using the case study of a practical vehicle development in the context of the "European Railway Challenge" competition, students will experience the various organizational, systemic, economic and technological challenges of an innovation project, namely the new construction of a prototype rail vehicle.

Content
- Basics of innovation management
- Creativity techniques and idea selection
- Basics and methods of project management
- Practical challenges in project management
- Product development processes
- Team organization
- Case study "innovative rail vehicle" based on the Railway Challenge requirements

Annotation
A bibliography is available for students to download from the Ilias platform.

Workload
Attendance time: 21 hours
Preparation / wrap-up: 21 hours
Exam and exam preparation: 78 hours
Total time: 120 hours = 4 LP

Learning type
Lecture
10.70 Module: Innovative Concepts for Programming Industrial Robots (24179) [M-INFO-100791]

Responsible: Prof. Dr.-Ing. Björn Hein

Organisation: KIT Department of Informatics

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101328</td>
<td>Innovative Concepts for Programming Industrial Robots</td>
<td>4 CR</td>
<td>Hein</td>
</tr>
</tbody>
</table>
10.71 Module: Internship [M-MACH-104265]

Mandatory

| T-MACH-108803 | Internship | 15 CR | Doppelbauer, Geimer |

Competence Certificate

An internship of at least thirteen weeks has to be fulfilled, which is suitable to provide the student an insight into the professional work in the area of mechatronics and information technology. 15 ECTS are allocated to the internship.

Original certificates and reports about the internship has to be provided to the appropriate internship office.

The reports have to contain a compilation of activities during the internship with the following content: company, area of production, workshop or department, instruction period in each workshop or department with start and end date and one detailed report per week or project. The report has to consist of at least one DIN A4 page per week and should have the format of a scientific report. The reports should give evidence, that the author has done all reported activities by himself; for example by describing the work flow or reflecting the gained experience. Sketches, drawings, schematics etc. can save a long report.

The reports have to be checked by the supervisor in the company and have to be approved by stamp and signature. Periods which are not verified by a report cannot be accredited.

Prerequisites

None

Competence Goal

The aim of the internship is, that the student will be lead to the typical activities of an engineer by contributing to specific technical tasks. He/she shall acquire knowhow related to his/her discipline and collect further impressions about his/her later professional environment and his/her position and responsibility within a company. As far as possible he/she should also get insights into organization and management of a company.

Content

It is recommended, to select one out of the following fields with respect of the intended area of specialization in the master course:

1. calculation, simulation, development and design
2. production and assembly (planning, preparation, controlling, calculation) of units, assembly parts, devices, apparatus, tools, machines of the entire mechatronics
3. planning of measurements, measurement and testing technology, quality control
4. planning, planning of service, maintenance and repair
5. assembly and commissioning, tools and jigmaking
6. heat treatment and surface engineering
7. operation and maintenance (field support) of complete sites of mechatronics (power plants, switchboard plants, grids, drives, equipment of information and data systems technology, high frequency equipment, equipment of measurement, control, process technology and so on)
8. research laboratories
9. test areas and proving grounds, planning of assembly/deassembly
10. computing centers and software engineering

Annotation

Further information are provided by the internship guidelines for the BSc-course in Mechatronics and Information Technology.

Workload

450 hours

Learning type

Internship
10.72 Module: Introduction into Energy Economics [M-WIWI-100498]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102746</td>
<td>Introduction to Energy Economics</td>
<td>5 CR</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites

None

Competence Goal

The student is able to

- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Content

1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

Workload

The total workload for this course is approximately 165.0 hours. For further information see German version.
10.73 Module: Introduction to High Voltage Engineering [M-ETIT-105276]

Responsible: Dr.-Ing. Michael Suriyah

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-110702 | Introduction to High Voltage Engineering | 3 CR | Suriyah |

Competence Certificate

Oral exam approx. 20 minutes.

Competence Goal

The students know the causes of overvoltages in electric power systems.

The students are familiar with the main components and measuring equipments used in high voltage systems.

The students are able to differentiate between the various methods to measure high voltages.

The students know the necessary steps to construct and build up a high voltage test circuit.

The students are familiar with relevant methods used to diagnose electrical insulating materials and systems.

Content

The integration of renewable energies into the existing grid is a huge challenge in terms of ensuring a stable and secure energy supply. High-voltage technology is a key technology to make the energy transition a success. In addition to the conventional three-phase transmission, high-voltage direct current (HVDC) transmission is becoming more and more important in Germany as part of network expansion of transmission grids. The aim of this event is to comprehensively convey and discuss new findings in the field of high voltage engineering. New materials and test methods for insulation systems and products are of particular importance.

Topics:

1. Materials of high voltage engineering
2. Equipment of electrical power engineering
3. Methods of high-voltage measurement technology
4. Monitoring, diagnostics and condition assessment of resources
5. Guest lecture from the industry

Module grade calculation

The module grade is the grade of the oral exam.

Workload

The workload includes:

Presence time in lecture (30 h = 1 LP)
Self-study time (60 h = 2 LP)
Total (90 h = 3 LP)

Recommendation

Basic knowledge in network theory, field theory and electrical metrology
Module: Introduction to Microsystem Technology I [M-MACH-102691]

Responsible: Prof. Dr. Jan Gerrit Korvink
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td>4 CR</td>
<td></td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam: 60 min

Prerequisites
None

Competence Goal
The lecture gives an introduction into the basics of microsystems technology. In analogy to processes employed in fabrication of microelectronics circuits the core technologies as well as materials for producing microstructures and components are presented. Finally, various techniques for Silicon micromachining are explained and illustrated with examples for micro-components and micro-systems.

Content
- Introduction in Nano- and Microtechnologies
- Silicon and processes for fabricating microelectronics circuits
- Basic physics background and crystal structure
- Materials for micromachining
- Processing technologies for microfabrication
- Silicon micromachining
- Examples

Workload

- Time of attendance: $15 \times 1,5 = 22.5$ h
- Preparation and follow up: $15 \times 5,5 = 82.5$ h
- Exam Preparation and Exam: 15 h
- Total: 120 h = 4 LP

Literature
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
Module: Introduction to Microsystem Technology II [M-MACH-102706]

Responsible: Prof. Dr. Jan Gerrit Korvink
Organisation: KIT Department of Mechanical Engineering
Part of: Master’s Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td>4</td>
<td>CR</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam: 60 min

Prerequisites
none

Competence Goal
The lecture gives an introduction into the basics of microsystems technology. In the first part, methods for lithographic pattern transfer are summarized. Then specific techniques such as the LIGA process, micro-machining, and laser-patterning are explained and examples are given. Finally assembly and packaging methods are presented leading into a discussion of entire microsystems.

Content
- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Workload
Time of attendance: \(15 \times 1.5 \, \text{h} = 22.5 \, \text{h}\)
Preparation and follow up: \(15 \times 5.5 \, \text{h} = 82.5 \, \text{h}\)
Exam Preparation and Exam: \(15 \, \text{h}\)
Total: \(120 \, \text{h} = 4 \, \text{LP}\)

Literature
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
Module: Introduction to Operations Research (WW1OR) [M-WIWI-101418]

Responsibility:
Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation:
KIT Department of Economics and Management

Part of:
Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

Credits
Grading scale
Recurrence
Duration
Language
Level
Version
9
Grade to a tenth
Each summer term
2 terms
German
3
2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102758</td>
<td>Introduction to Operations Research I and II</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the module is carried out by a written examination (120 minutes).
In each term (usually in March and August), one examination is held for both courses.

Prerequisites
None

Competence Goal
The student
- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content
This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.

This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Module grade calculation
The overall grade of the module is the grade of the written examination.

Workload
The total workload for this module is approx. 270 hours (attendance time: 85 hours, other time for preparation and follow-up as well as exam preparation: 185 hours, 9 credit points). The total number of hours per course results from the time spent attending the lectures and exercises, as well as the examination times and the time required for an average student to achieve the learning objectives of the module.
10.77 Module: Introduction to Video Analysis (24684) [M-INFO-100736]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101273</th>
<th>Introduction to Video Analysis</th>
<th>3 CR</th>
<th>Beyerer</th>
</tr>
</thead>
</table>
Module: IT-Fundamentals of Logistics: Opportunities for Digital Transformation [M-MACH-105282]

Responsible: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Frank Thomas

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105187 | IT-Fundamentals of Logistics | 4 CR | Thomas |

Competence Certificate

The assessment consists of an oral exam (30 min.) or an written exam (60min.) taking place in the recess period according to § 4 paragraph 2 Nr. 1/2 of the examination regulation.

Prerequisites

none

Competence Goal

The students …

- can describe the business process models from goods-inbound to goods-outbound based on sound basic knowledge, and derive the corresponding analysis models.
- will learn through the modularisation of the business process elements to think in reusable, adaptive IT components.
- will accomplish excellent work as a highly-motivated employee together in interdisciplinary teams (responses from the industry).
Content
The rapid development of information technology influences business processes drastically. A strategic IT-orientation for an enterprise without a critical appreciation of worldwide IT-development (where the half-life value of IT for logistic systems knowledge is less than 3 years) is dangerous. The pressure of costs is always in focus. For this purpose the contents of this course, as well as the detailed script will be continuously revised, and the influences on business processes will be shown in practical examples.

Focuses:
System architecture in Material Flow Control Systems (MFCS)
A guiding principle for a new system architecture for MFC systems is the consideration of making new standardized, functional groups available for re-usability.

Design and application of innovative Material Flow Control Systems (MFCS)
The most important task of the MFCS is the commissioning of conveying systems with driving commands in a way that optimally utilizes the facility and serves the logistics processes on schedule.

Identification of goods – Application in Logistics
Along with business processes, coded information is the link between the flow of information and the flow of materials, and contributes to error prevention in the communication between people and machines.

Data communication in Intra-logistics
Information describes the content of a message that is of value to the recipient. The recipient can be both a human and a machine.

Business processes for Intra-logistics – Software follows function!
If the business processes from Goods Incoming to Goods Outgoing are adapted with reusable building blocks then capabilities become visible. Against this background the consideration becomes apparent, how, through an innovative software architecture, a reusable building-block based framework can be made. Therefore applies: Software follows function. And only if all project requirements are documented in the planing phase, and supported together in an inter-disciplinary team - consisting of logistics planners, the customers (users) and the implementation leader (IL).

Software development in accordance with industrial standards
Today's development of object-oriented software, and the increasing penetration of industrial software production with this technology, makes it possible to create system designs that already offer these opportunities in their facility - both for a high degree of reuse and for easier adaptability. In software development, object-oriented methods are used to improve the productivity, maintainability and software quality. An important aspect of object-orientation is: the objects used are primarily intended to depict the real world.

Workload
regular attendance: 21 hours
self-study: 69 hours

Learning type
Lectures
Competence Goal
Powerful and cheap computation resources have led to major changes in the domain of measurement and control. Engineers in various fields are nowadays confronted with the application of computer-aided methods. This lab tries to give an insight into the modern domain of measurement and control by means of practically oriented and flexible experiments. Based on experiments on measurement instrumentation and digital signal processing, elementary knowledge in the domain of visual inspection and image processing will be taught. Thereby, commonly used software like MATLAB/Simulink will be used in both simulation and realization of control loops. The lab closes with selected applications, like control of a robot or supersonic computer tomography.

Content

1. Digital technology
2. Digital storage oscilloscope and digital spectrum analyzer
3. Supersonic computer tomography
4. Lighting and image acquisition
5. Digital image processing
6. Image interpretation
7. Control synthesis and simulation
8. Robot: Sensors
9. Robot: Actuating elements and path planning
The lab comprises 9 experiments.

Workload
120 hours

Recommendation
Basic studies and preliminary examination; basic lectures in automatic control

Learning type
Tutorial

Literature
Instructions to the experiments are available on the institute's website
Module: Lab Course Electrical Drives and Power Electronics [M-ETIT-100401]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-ETIT-100718 Lab Course Electrical Drives and Power Electronics 6 CR Doppelbauer

Prerequisites
none
10.81 Module: Lab Course Electrical Power Engineering [M-ETIT-100419]

Responsible: Prof. Dr. Martin Doppelbauer
Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100728</td>
<td>Lab Course Electrical Power Engineering</td>
<td>6 CR</td>
<td>Badent, Doppelbauer, Leibfried</td>
</tr>
</tbody>
</table>

Prerequisites

none
Module: Laboratory Biomedical Engineering [M-ETIT-100389]

Responsible: Prof. Dr. Werner Nahm

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101934 | Laboratory Biomedical Engineering | 6 CR | Nahm |

Prerequisites

Passed exam of the module "Biomedizinische Messtechnik I".

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-ETIT-100387 - Biomedical Measurement Techniques I must have been passed.
10.83 Module: Laboratory Circuit Design [M-ETIT-100518]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100788</td>
<td>Laboratory Circuit Design</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Prerequisites

none

Competence Goal

The practical course teaches necessary knowledge and abilities to design electric circuits as used to interface microcontrollers/FPGAs with sensors and actors. At the end of this course the participants are capable of selecting electronic components based on relevant criteria, combining them to basic building blocks, and setting up a working system for a given problem. In addition to circuit design, basic methods and abilities for the creation of PCB layouts are taught. Finally, the participants are enabled to assemble and test their designed circuits in real setups.

Content

This course is a three-week practical block event. Its goal is the development and setup of the complete electronics used to run a self-balancing single-axis transportation device.

The first part of the course covers commonly used electric circuits which are presented in interactive lecture style. This covers circuits for voltage supply, clock generation, sensor signal pre-processing, power drivers, and display control, among others. Real-world components are presented based on their datasheets. To consolidate this knowledge, the lecture is interwoven with small practical exercises where students set up and experiment with the presented circuits. This first part aims at refreshing basic knowledge from previous courses as well as imparting knowledge on often-used basic circuits.

After presenting the basic circuits there is a short presentation on PCB layout design. This part comprises an introduction of the PCB layout tool used in the course, followed by tips on placement and wiring of components on the PCB. It covers the topics of noise and crosstalk reduction, placement of bypass capacitors, and ground design.

During the third and longest part of the course, the participants work in teams to create a concept, schematics, and layouts of circuit parts to run the transportation device. Requirements are given concerning the functionality of the circuit parts as well as interfaces to neighboring parts only. All further development steps are carried out by the students themselves, based on the knowledge from the first two parts of the course.

Workload

The workload includes

1. presence in the laboratory: 15 days of 8h each = 120h
2. course preparation/recapitulation: 15 days of 2h each = 30h
3. exam preparation and attendance: 15h

Recommendation

Basic knowledge on basic electrical circuits (e.g. courses LEN, Nr. 2305256, ES, Nr. 2312655 and EMS, Nr. 2306387)
10.84 Module: Laboratory for Applied Machine Learning Algorithms [M-ETIT-104823]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-109839 | Laboratory for Applied Machine Learning Algorithms | 6 CR | Becker, Sax, Stork |

Competence Certificate

Type of examination: alternative exam assessment
The examination consists of written reports, assessment of team work, an oral presentation, and an oral exam at the end of the lecture period. The overall impression is rated.
Module: Laboratory Hardware and Software in Power Electronic Systems [M-ETIT-103263]

Responsible: Prof. Dr.-Ing. Marc Hiller

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-106498 | Laboratory Hardware and Software in Power Electronic Systems | 6 CR | Hiller |

Prerequisites
The modules "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" and "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" may neither be started nor completed.
M 10.86 Module: Laboratory Mechatronic Measurement Systems [M-ETIT-103448]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account

Credits
6
Grading scale
Grade to a tenth
Recurrence
Each winter term
Duration
1 term
Language
German
Level
4
Version
1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-106854 Laboratory Mechatronic Measurement Systems</td>
<td>6 CR</td>
<td></td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The success control is carried out in the form of a written test of 120 minutes. If there are fewer than 20 candidates, an oral exam of around 20 minutes can alternatively take place. The module grade is the grade of the written or oral exam.

Prerequisites
none

Competence Goal

- Students have in-depth knowledge of different methods for measuring objects, especially surfaces.
- Students master different procedures for the metrological recording of objects and know the relevant requirements, procedures and results.
- Students are able to implement procedures for evaluating sensor data from (surface) measuring devices and to evaluate the quality of the measurement result.

Content

A large number of different measuring methods and systems can be used for the quality inspection of technically manufactured objects and their surfaces. Examples are white light interferometry, confocal microscopy and systems based on focus variation. The measurement methods and systems naturally differ in terms of the physical measurement principle used, but also in terms of the evaluation of the raw sensor data recorded.

In this internship, different systems for the metrological recording of (technical) surfaces are presented and their properties are characterized. In the test dates, the students themselves create procedures and algorithms for processing the sensor data in order to obtain information about the desired geometric and/or optical properties of the examined surface. The algorithms obtained are evaluated on the basis of sensor data from exemplary objects and characterized in terms of the quality of the measurement statements achieved.

Module grade calculation
The module grade is the grade of the written or oral exam.

Annotation

The submission of the protocols of all experiments is required for admission to the examination. The quality of the protocols is assessed; for the admission to the exam, the quality must be acceptable. Attendance of all laboratory dates including the introductory event is required. Already in the event of a single unexcused absence, admission to the examination will not be granted.

Workload

Total: approx. 160 hours, of which

1. Attendance time in introductory session: 1.5 hours
2. Preparation of the test dates: 32 h
3. Attendance time in test appointments (8 appointments of 4 hours each): 32 hours
4. Follow-up of the test dates, Creation of the minutes: 32 h
5. Exam preparation and attendance in the same: 60 h

Recommendation

Knowledge from the lectures "Metrology" or "Metrology in Mechatronics" and "Manufacturing Metrology" as well as basic knowledge of programming (e.g. in Matlab, C / C++) are helpful.
Module: Laboratory Mechatronics [M-MACH-102699]

Responsible: Prof. Dr. Veit Hagenmeyer
Prof. Dr.-Ing. Wolfgang Seemann
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105370 | Laboratory Mechatronics | 4 CR | Hagenmeyer, Stiller |

Competence Certificate

The laboratory course is offered exclusively as ungraded course work. The assessment consists of a group colloquium at the beginning of the individual specialization phases (Part 1). In addition, a robot control system for a pick-and-place task must be successfully implemented in the group phase (Part 2).

Prerequisites

None

Competence Goal

The students are able to put the knowledge from the specialization in mechatronics and microsystems technology into practice on an exemplary mechatronic system, a handling system. The students can create an automated object recognition, calculate kinematic systems and realize a communication between different systems (PC, CAN, USB).

Furthermore, the students can integrate the individual parts of a manipulator in teamwork to a functioning overall system.

Content

Part I

- Control, programming and simulation of robots
- CAN-Bus communication
- Image processing / machine vision
- Dynamic simulation of robots in ADAMS

Part II

In a group work, a kinematic system has to be programmed so that it is able to recognize and grip objects fully automatically.

Module grade calculation

The module is not graded. Passing the module is 100% tied to the performance assessment of the partial performance.

Workload

1. Attendance time Lecture: 15 * 2 h = 30h
2. self-study: 15 * 6 h = 90h

Total: 120h = 4 LP

Learning type

Seminar
Module: Lightweight Engineering Design [M-MACH-102696]

Responsible: Prof. Dr.-Ing. Albert Albers
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (90 min)

Prerequisites

none

Competence Goal

The students are able to ...

- evaluate the potential of central lightweight strategies and their application in design processes.
- apply different stiffening methods qualitatively and to evaluate their effectiveness.
- evaluate the potential of computer-aided engineering as well as the related limits and influences on manufacturing.
- reflect the basics of lightweight construction from a system view in the context of the product engineering process.

Content

General aspects of lightweight design, lightweight strategies, construction methods, design principles, lightweight construction, stiffening techniques, lightweight materials, virtual product engineering, bionics, joining techniques, validation, recycling.

Additionally, guest speakers from industry will present lightweight design from an practical point of view.

Workload

1. Time of presence lecture: $15 \times 2 \text{ h} = 30 \text{ h}$
2. Prepare/follow-up lecture: $15 \times 2 \text{ h} = 30 \text{ h}$
3. Exam preparation and time of presence: 60 h

Total: $120 \text{ h} = 4 \text{ LP}$

Literature

Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
10 MODULES

Module: Linear Electric Circuits [M-ETIT-104519]

10.89 Module: Linear Electric Circuits [M-ETIT-104519]

Responsible: Prof. Dr.-Ing. John Jelonnek
Prof. Dr. Sebastian Kempf

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109316</td>
<td>Linear Electronic Networks</td>
<td>7 CR</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td></td>
<td>Jelonnek, Kempf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109317</td>
<td>Linear Electronic Networks - Workshop A</td>
<td>1 CR</td>
<td>Grade to a tenth</td>
<td></td>
<td></td>
<td>Leibfried, Lemmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109811</td>
<td>Linear Electronic Networks - Workshop B</td>
<td>1 CR</td>
<td>Grade to a tenth</td>
<td></td>
<td></td>
<td>Nahm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the entire module consists of three independent parts:

1. The contents of the Linear Electrical Circuits course (7 CP) are examined in a written examination lasting 120 minutes. Students who pass the examination can receive a grade bonus of up to 0.4 grade points if they have successfully completed two project tasks during the semester. Proof of completion of the project tasks is provided by submitting documentation or the project code within the processing period.

2. Written report for the course Linear Electrical Circuits - Workshop A, (1 CP)

3. Written report for the course Linear Electrical Circuits - Workshop B, (1 CP)

The following applies to both workshops: The written papers are corrected and awarded points. If the required number of points is achieved, the workshop is deemed to have been passed.

Competence Goal
In the module Linear Electrical Circuits, students acquire skills in the analysis and design of electrical circuits with linear components with direct current and alternating current. They will be able to recall and understand the topics and apply the methods covered in order to analyze electrical circuits with linear components and assess their relevance, correct function and properties.

In the workshop, students learn how to coordinate a project in small teams and how to present the results in the form of technical documentation. Furthermore, they are able to recognize basic simple problems from electrical engineering (e.g., measurement technology, analog circuit technology) and to develop practical and decision-relevant solutions.

Content
The following topics are covered in the course Linear Electrical Circuits:

- Methods for analyzing complex linear electrical circuits
- Definitions of U, I, R, L, C, independent sources, dependent sources
- Kirchhoff’s equations, junction potential method, mesh current method
- Substitute current source, substitute voltage source, star-delta transformation, power matching
- Operational amplifier, inverting amplifier, adder, voltage follower, non-inverting amplifier, differential amplifier
- Sinusoidal currents and voltages, differential equations for L and C, complex numbers
- Description of RLC circuits with complex numbers, impedance, complex power, power matching
- Bridge circuits, Wheatstone, Maxwell-Wien and Wien bridge circuits
- Series and parallel resonant circuits
- Four-pole theory, Z, Y and A matrix, impedance transformation, locus curves and Bode diagrams
- Transformer, mutual inductance, transformer equations, equivalent circuit diagrams of the transformer
- Three-phase current, power transmission and symmetrical load

In Workshop A, students are introduced to the current topic of renewable energy sources. For this purpose, a solar cell is used and various practical scenarios are realized with guidance in order to get to know the properties of photovoltaics and the advantages of an energy storage system. The task is to investigate the optimal utilization of renewable energy sources or the effects of shading on solar modules. In addition, a long-term experiment will introduce students to the basic functions of MATLAB and demonstrate the possibilities of a data logger.

In Workshop B, the students will be introduced to various circuits with operational amplifiers. The task ranges from literature research, simulation and experimental setup to measuring the real circuit and discussing the results. Simple basic circuits are considered, such as inverting and non-inverting amplifiers, differential amplifiers or RC and RL elements. In addition, active filters with operational amplifiers (low-pass/high-pass of higher order, RLC element) are constructed and characteristic curves such as the amplitude or phase response are evaluated.
Module grade calculation
The module grade corresponds to the grade for the Linear Electrical Circuits course. As described in the section "Competence Certificate", this is made up of the grade for the written examination Linear Electrical Circuits and any grade bonus received. In addition, passing both workshops is a prerequisite for passing the module.

Annotation
Attention:
The courses assigned to this module are part of the orientation examination for the following degree programs:

- Bachelor of Electrical Engineering and Information Technology (SPO 2018, §8)
- Bachelor of Biomedical Engineering (SPO 2022, §8)

The examination must be taken at the end of the 2nd semester. A repeat examination must be taken by the end of the 3rd semester.

Workload
The workload of the Linear Electrical Circuits course includes

1. Attendance time in lectures, exercises
2. Preparation/follow-up work
3. Exam preparation and attendance in the same

The workload for point 1 corresponds to about 60 hours, for points 2-3 about 115-150 hours. The total workload for the course Linear Electrical Circuits is 175-210 hours. This corresponds to 7 CP.

The workload of a workshop is made up as follows:

1. Attendance time in the preparatory event incl. follow-up: 2h
2. Working on the assignment: 23h
3. Preparation of the written paper (minutes): 5h

The time required per workshop is approximately 30 hours. This corresponds to 1 CP each.
10.90 Module: Localization of Mobile Agents (24613) [M-INFO-100840]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Uwe Hanebeck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>Master's Transfer Account</td>
</tr>
</tbody>
</table>

Credits
- 6

Grading scale
- Grade to a tenth

Recurrence
- Each summer term

Duration
- 1 term

Language
- German

Level
- 4

Version
- 1

Mandatory

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101377</td>
<td>Localization of Mobile Agents</td>
<td>6 CR</td>
<td></td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>
10.91 Module: Logistics and Supply Chain Management [M-MACH-105298]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: Master’s Transfer Account (Usage from 4/1/2020)

Credits: 9
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 2

Mandatory
T-MACH-110771 Logistics and Supply Chain Management 9 CR Furmans

Competence Certificate
The assessment consists of a 120 minutes written examination (according to §4(2), 1 of the examination regulation).

Prerequisites
None

Competence Goal
The student
- has comprehensive and well-founded knowledge of the central challenges in logistics and supply chain management, an overview of various practical issues and the decision-making requirements and models in supply chains,
- can model supply chains and logistics systems using simple models with sufficient accuracy,
- identifies cause-effect relationships in supply chains,
- is able to evaluate supply chains and logistics systems based on the methods they have mastered.

Content
Logistics and Supply Chain Management provides comprehensive and well-founded fundamentals for the crucial issues in logistics and supply chain management. Within the scope of the lectures, the interaction of different design elements of supply chains is emphasized. For this purpose, qualitative and quantitative description models are used. Methods for mapping and evaluating logistics systems and supply chains are also covered. The lecture contents are enriched by exercises and case studies and partially the comprehension of the contents is provided by case studies. The interacting of the elements will be shown, among other things, in the supply chain of the automotive industry.

Module grade calculation
grade of the module is grades of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):
- lecture: 60 h
independent study:
- preparation and follow-up lectures: 90 h
- preparation of case studies: 60 h
- examination preparation: 60 h
total: 270 h

Recommendation
none

Learning type
Lectures, tutorials, case studies.

Literature
Dieter Arnold et. al.: Handbuch Logistik, 2008
Marc Goetschalkx: Supply Chain Engineering, 2011
Module: Machine Dynamics [M-MACH-102694]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination

Prerequisites
none

Competence Goal
Students are able to apply engineering-oriented calculation methods in order to model and to understand dynamic effects in rotating machinery. This includes the investigation of runup, stationary operation of rigid rotors including balancing, transient and stationary behavior of flexible rotors, critical speeds, dynamics of slider-crank mechanisms, torsional oscillations.

Content

1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Workload
Lectures and exercises: 32 h
Studies: 118 h

Learning type
Lecture, tutorial
Module: Machine Learning 1 [M-WIWI-105003]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of: Master's Transfer Account

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
5 | Grade to a tenth | Each winter term | 1 term | German | 4 | 1

Mandatory

| T-WIWI-106340 | Machine Learning 1 - Basic Methods | 5 CR | Zöllner |

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Competence Goal

- Students gain knowledge of the basic methods in the field of machine learning.
- Students understand advanced concepts of machine learning and their application.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.

Content

The course prepares students for the rapidly evolving field of machine learning by providing a solid foundation, covering core concepts and techniques to get started in the field. Students delve into different methods in supervised, unsupervised, and reinforcement learning, as well as various model types, ranging from basic linear classifiers to more complex methods, such as deep neural networks. Topics include general learning theory, support vector machines, decision trees, neural network fundamentals, convolutional neural networks, recurrent neural networks, unsupervised learning, reinforcement learning, and Bayesian learning.

The course is accompanied by a corresponding exercise, where students gain hands-on experience by implementing and experimenting with different machine learning algorithms, helping them to apply machine learning algorithms on real world problems.

By the end of the course, students will have acquired a solid foundation in machine learning, enabling them to apply state-of-the-art algorithms to solve complex problems, contribute to research efforts, and explore advanced topics in the field.

Workload

The total workload for this module is approximately 150 hours.

Literature

Further reading

- Machine Learning - Tom Mitchell
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto

Further (specific) literature on individual topics will be given in the lecture.
Module: Machine Learning 2 [M-WIWI-105006]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods</td>
<td>5</td>
<td>CR</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation. The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Competence Goal

- Students gain knowledge of the basic methods in the field of machine learning.
- Students understand advanced concepts of machine learning and their application.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.

Content

The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects. The lecture "Machine Learning 2" deals with modern advanced methods of machine learning such as semi-supervised and active learning, deep neural networks (deep learning, CNNs, GANs, diffusion models, transformer, adversarial attacks) and hierarchical approaches, e.g. reinforcement learning. Another focus is the embedding and application of machine learning methods in real systems. The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (vehicles, robotics, neurorobotics, image processing, etc.).

Workload

The total workload for this module is approximately 150 hours.

Literature

- Deep Learning - Ian Goodfellow
- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Machine Learning - Tom Mitchell
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville
Module: Machine Learning for Robotic Systems 1 [M-MACH-106457]

10.95 Module: Machine Learning for Robotic Systems 1 [M-MACH-106457]

Responsible: Jun.-Prof. Dr. Rania Rayyes
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-113064 Machine Learning for Robotic Systems 1 5 CR Rayyes

Competence Certificate
The assessment of this course is a written examination (90 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

Prerequisites
None

Competence Goal

- Students acquire knowledge of the basic methods and concepts of Machine Learning
- Students can select suitable models and methods for learning problem in robotic systems
- Students can evaluate, compare and judge different machine learning models
- Student can implement and apply Machine Learning methods for Robotic Applications

Content
This lecture provides an overview of essential and current methods and concepts of Machine Learning for different robotic applications. It covers also their underlying mathematical and statistical methods. Important fundamental terminology, concepts and methods are presented for various topics including:

- Model selection, machine learning bias vs. parameter optimization
- Training, test, validation, generalization, overfitting, regularization
- Supervised vs unsupervised learning
- Regression
- Classifications
- Neural Networks
- Gaussian mixtures, Gaussian mixture regression

And other interesting topics

Annotation
None

Workload
150h

- approx 25h lecture attendance
- approx 25h attendance of exercises
- approx 70h studying and completing of the exercise sheets
- approx 30h exam preparation

Recommendation
None

Learning type
Lecture, exercise

Literature
None
Module: Machine Learning for Robotic Systems 2 [M-MACH-106652]

Responsible: Jun.-Prof. Dr. Rania Rayyes
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account (Usage from 4/1/2024)

Credits: 5
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-MACH-113403 Machine Learning for Robotic Systems 2 5 CR Rayyes

Competence Certificate
The assessment of this course is a written examination (90 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

Prerequisites
None

Competence Goal
- Students acquire knowledge of the basic methods and concepts of Machine Learning
- Students can select suitable models and methods for learning problems in robotic systems
- Students can evaluate, compare, and judge different machine learning models
- Students can implement and apply Machine Learning methods for Robotic Applications

Content
This lecture provides an overview of current advanced machine learning for different robotic applications. Important fundamental terminology, concepts, and methods are presented for various topics including:
- Active Learning
- Transformers
- Adversarial learning, GANs
- Deep Reinforcement Learning
- Goal-Directed Exploration
- Recurrent Neural Network
And other interesting topics
The course also includes hands-on sessions for programming and implementing the methods.
Module: Machine Tools and Industrial Handling [M-MACH-105107]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-110962 | Machine Tools and High-Precision Manufacturing Systems | 8 CR | Fleischer |

Competence Certificate
Oral exam (40 minutes)

Competence Goal
The students

- are able to assess the use and application of machine tools and high-precision manufacturing systems and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of machine tools and high-precision manufacturing systems (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of machine tools and high-precision manufacturing systems.
- are capable of selecting and evaluating machine tools and high-precision manufacturing systems according to technical and economic criteria.

Content
The module gives an overview of the construction, use and application of machine tools and high-precision manufacturing systems. In the course of the module a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools and high-precision manufacturing systems is conveyed. First, the main components of the systems are systematically explained and their design principles as well as the integral system design are discussed. Subsequently, the use and application of machine tools and high-precision manufacturing systems will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0 and artificial intelligence. Guest lectures from industry round off the module with insights into practice.

The individual topics are:

- Structural components of dynamic manufacturing Systems
- Feed axes: High-precision positioning
- Spindles of cutting machine Tools
- Peripheral Equipment
- Machine control unit
- Metrological Evaluation
- Maintenance strategies and condition Monitoring
- Process Monitoring
- Development process for machine tools and high-precision manufacturing Systems
- Machine examples

Workload
1. Presence time lecture/exercise: 15 * 6 h = 90 h
2. Pre- and post-processing time lecture/exercise: 15 * 9 h = 135 h
3. Exam preparation and presence in the same: 15 h
In total: 240 h = 8 LP

Learning type
Lecture, exercise, field trip
10.98 Module: Machine Vision (Sp-MV) [M-MACH-101923]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account (Usage from 10/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105223 Machine Vision 8 CR Lauer, Stiller

Competence Certificate

Type of Examination: written exam
Duration of Examination: 60 minutes

Prerequisites

None

Competence Goal

After having participated in the lecture the participants have gained knowledge on modern techniques of machine vision and pattern recognition which can be used to evaluate camera images. This especially includes techniques in the areas of gray level image analysis, analysis of color images, segmentation of images, describing the geometrical relationship between the image and the 3-dimensional world, and pattern recognition with various classification techniques. The participants have learned to analyze the algorithms mathematically, to implement them in software, and to apply them to tasks in video analysis. The participants are able to analyze real-world problems and to develop appropriate solutions.
Content
The lecture on machine vision covers basic techniques of machine vision. It focuses on the following topics:

- image preprocessing
- edge and corner detection
- curve and parameter fitting
- color processing
- image segmentation
- camera optics
- pattern recognition
- deep learning

Image preprocessing:
The chapter on image processing discusses techniques and algorithms to filter and enhance the image quality. Starting from an analysis of the typical phenomena of digital camera based image capturing the lecture introduces the Fourier transform and the Shannon-Nyquist sampling theorem. Furthermore, it introduces gray level histogram based techniques including high dynamic range imaging. The discussion of image convolution and typical filters for image enhancement concludes the chapter.

Edge and corner detection:
Gray level edges and gray level corners play an important role in machine vision since gray level edges often reveal valuable information about the boundaries and shape of objects. Gray level corners can be used as feature points since they can be identified easily in other images. This chapter introduces filters and algorithms to reveal gray level edges and gray level corners like the Canny edge detector and the Harris corner detector.

Curve and parameter fitting:
In order to describe an image by means of geometric primitives (e.g. lines, circles, ellipses) instead of just pixels robust curve and parameter fitting algorithms are necessary. The lecture introduces and discusses the Hough transform, total least sum of squares parameter fitting as well as robust alternatives (M-estimators, least trimmed sum of squares, RANSAC).

Color processing:
The short chapter on color processing discusses the role of color information in machine vision and introduces various models for color understanding and color representation. It concludes with the topic of color consistency.

Image Segmentation:
Image segmentation belongs to the core techniques of machine vision. The goal of image segmentation is to subdivide the image into several areas. Each area shares common properties, i.e. similar color, similar hatching, or similar semantic interpretation. Various ideas for image segmentation exist which can be used to create more or less complex algorithms. The lecture introduces the most important approaches ranging from the simpler algorithms like region growing, connected components labeling, and morphological operations up to highly flexible and powerful methods like level set approaches and random fields.

Camera optics:
The content of an image is related by the optics of the camera to the 3-dimensional world. In this chapter the lecture introduces optical models that describe the relationship between the world and the image including the pinhole camera model, the thin lens model, telecentric cameras, and catadioptric sensors. Furthermore, the lecture introduces camera calibration methods that can be used to determine the optical mapping of a real camera.

Pattern recognition:
Pattern recognition aims at recognizing semantic information in an image, i.e. not just analyzing gray values or colors of pixels but revealing which kind of object is shown by the pixels. This task goes beyond classical measurement theory and enters the large field of artificial intelligence. Rather than just being developed and optimized by a programmer, the algorithms are adapting themselves to their specific task using training algorithms that are based on large collections of sample images.

The chapter of pattern recognition introduces standard techniques of pattern recognition in the context of image understanding like the support vector machine (SVM), decision trees, ensemble and boosting techniques. It combines those classifiers with powerful feature representation techniques like the histogram of oriented gradients (HOG) features, locally binary patterns (LBP), and Haar features.

Deep learning:
Throughout recent years standard pattern recognition techniques have more and more been outperformed by deep learning techniques. Deep learning is based on artificial neural networks, a very generic and powerful form of a classifier. The lecture introduces multi layer perceptrons as the most relevant form of artificial neural networks, discusses training algorithms and strategies to achieve powerful classifiers based on deep learning including deep auto encoders, convolutional networks, and multi task learning, among others.

Workload
240 hours, composed of
hours of lecture: 15*4 h = 60 h
preparation time prior to and after lecture: 15*6 h = 90 h
exam preparation and exam: 90 h
Learning type
Lecture

Literature
Main results are summarized in the slides that are made available as pdf-files. Further recommendations will be presented in the lecture.
Module: Manufacturing Measurement Technology [M-ETIT-103043]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-106057</td>
<td>Manufacturing Measurement Technology</td>
<td>3 CR</td>
<td>Heizmann</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none
Module: Manufacturing Processes [M-MACH-102549]

Responsible: Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105219 | Basics of Manufacturing Technology | 4 CR | Schulze |

Competence Certificate

written exam (duration: 60 min)

Prerequisites

none

Competence Goal

The students:

- are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
- have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
- are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
- have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
- are enabled to perform a selection of suitable manufacturing processes for given components.
- are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

Content

The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects.

The following topics will be covered:

- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment

Workload

regular attendance: 21 hours
self-study: 99 hours

Learning type

Lecture

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102151 | Material Flow in Logistic Systems | 9 CR | Furmans |

Competence Certificate
The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.

Prerequisites
none

Competence Goal
The student

- acquires comprehensive and well-founded knowledge on the main topics of logistics, an overview of different logistic questions in practice and knows the functionality of material handling systems,
- is able to illustrate logistic systems with adequate accuracy by using simple models,
- is able to realize coherences within logistic systems,
- is able to evaluate logistic systems by using the learnt methods.

Content
The module Material Flow in Logistic Systems provides comprehensive and well-founded basics for the main topics of logistics. Within the lectures, the interaction between several components of logistic systems will be shown. The module focuses on technical characteristics of material handling systems as well as on methods for illustrating and evaluating logistics systems. To gain a deeper understanding, the course is accompanied by exercises and case studies.

Annotation
Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Recommendation
Recommended elective subject: Probability Theory and Statistics

Learning type
Lecture, tutorial
10.102 Module: Material Science and Engineering (CIW-MACH-01) [M-MACH-102567]

Responsible: Dr.-Ing. Johannes Schneider

Organisation: KIT Department of Mechanical Engineering

Part of:
- Specialization in Mechatronics (Compulsary Elective Modules: Mechanical Engineering)
- Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105148</td>
<td>Examination Material Science I & II</td>
<td>9</td>
<td>CR</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam

Prerequisites
None

Competence Goal
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can describe the typical property profiles and can name applications for the most important engineering materials.

The students are able to describe standard materials characterization methods and can explain the evaluation of these methods. They can judge materials on base of the data obtained by these methods.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to assess materials on base of the data obtained by these methods.
Content
Atomic structure and atomic bonds

Structures of crystalline and amorphous solids

Defects in crystalline solids

Alloys

Transport and transformation phenomena in the solid state

Corrosion

Wear

Mechanical properties

Testing of materials

Ferrous materials

Non-ferrous metals and alloys

Polymers

Engineering ceramics

Composites

Module grade calculation
grade of the oral exam

Workload
regular attendance: 90 hours
self-study: 180 hours

Learning type
lectures and exercises

Literature
W. Bergmann: Werkstofftechnik I + II, Hanser Verlag, München, 2008/9
M. Merkel: Taschenbuch der Werkstoffe, Hanser Verlag, München, 2008
J.F. Shackelford; Werkstofftechnologie für Ingenieure, Pearson Studium, München, 2008 (E-Book)
lecture notes and lab script
10.103 Module: Materials [M-ETIT-102734]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Materials (Elect:ion: 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>5 CR</td>
<td>Dietrich, Schulze</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>4 CR</td>
<td>Henning</td>
</tr>
<tr>
<td>T-ETIT-109292</td>
<td>Electrical Engineering Components</td>
<td>6 CR</td>
<td>Kempf</td>
</tr>
</tbody>
</table>

Prerequisites

none

Annotation

The three parts of the module "M-ETIT-102734 - Materials" are mutually exclusive.

Course „Passive Bauelemente“ will be taught in Wintersemester 2020/21 for the last time. Replacement will be "Bauelemente der Elektrotechnik".
10.104 Module: Measurement Technology [M-ETIT-105982]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master’s Transfer Account (Usage from 10/1/2022)

Mandatory
T-ETIT-112147 Measurement Technology 5 CR Heizmann

Competence Certificate
The examination takes place in form of a written examination lasting 120 minutes.

Prerequisites
M-ETIT-102652 - Messtechnik (German version) must not have started.

Competence Goal
- Students have a sound knowledge of the theoretical foundations of measurement technology, including modeling of measurement systems, consideration of nonlinearities, stochastic deviations and stochastic signals, acquisition of analog signals, and frequency and rotational speed measurement.
- Students are proficient in the approaches to measurement system design in terms of model assumptions, methods, and achievable results.
- Students are able to analyze and formally describe measurement technology tasks, synthesize possible solutions for measurement systems and assess the properties of the solution obtained.

Content
The module deals with the formal, methodical and mathematical fundamentals for the analysis and design of measurement systems. Focal points of the course are

- Measurement systems and deviations (including scales, the SI systems, modeling of measurement systems)
- Curve fitting (approximation, interpolation)
- Stationary behavior of measurement systems (characteristic curve, errors of the characteristic curve, nonlinearities, adjustment)
- Stochastic measurement errors (probabilistic analysis, samples, statistical test methods, statistic process control, error propagation)
- Stochastic processes (correlational measurements, spectral description of stochastic signals, system identification, matched filter, Wiener filter)
- Digitization of analog signals (sampling, quantization, analog-digital converters, digital-analog converters)
- Frequency and rotational speed measurement (generalized frequency concept, digital speed measurement, detection of direction)

Module grade calculation
The module grade is the grade of the written examination.

Annotation
In the module a lecture, an exercise and an examination are offered.

Workload
The workload includes:

1. attendance in lectures and exercises: 34 h
2. preparation / follow-up of lectures and exercises: 51 h
3. preparation of and attendance in examination: 65 h

total: 150 h = 5 CR

Recommendation
Basic knowledge in the fields of “Probability Theory” as well as “Signals and Systems” is helpful.
Module: Mechanical Design (CIW-MACH-02) [M-MACH-101299]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112225</td>
<td>Mechanical Design I and II</td>
<td>6 CR</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-112226</td>
<td>Mechanical Design I, Tutorial</td>
<td>1 CR</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-112227</td>
<td>Mechanical Design II, Tutorial</td>
<td>1 CR</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination on the contents of Mechanical Design I&II
Duration: 90 min plus reading time
Preliminary examination: Successful participation in the preliminary work in the field of Mechanical Design I&II

Prerequisites

None
Competence Goal

Learning object springs:

- be able to recognize spring types and explain stress
- Identify and describe the properties of a resilient LSS in machine elements presented later on
- Understanding and explaining the principle of action
- Know and list areas of application for springs
- graphically illustrate the load and the resulting stresses
- be able to describe the degree of species usefulness as a means of lightweight construction
- be able to analyse different solution variants with regard to lightweight construction (use species efficiency)
- Being able to explain several springs as a circuit and calculate total spring stiffness

Learning objects Technical Systems:

- Being able to explain what a technical system is
- "Thinking in systems."
- Using system technology as an abstraction tool for handling complexity
- Recognizing functional relationships of technical systems
- Getting to know the concept of function
- be able to use C&C²-A as a means of system technology

Learning objects Visualization:

- Ability to create and interpret schematics
- Using freehand technical drawing as a means of communication
- To be able to apply the technical basics of freehand drawing
- Derivation of 2D representations into different perspective representations of technical structures and vice versa
- Master reading of technical drawings
- Dedicated dimensioning of technical drawings
- Create sectional views of technical systems as a technical sketch

Learning objects Bearings:

- be able to recognize bearings in machine systems and explain their basic functions
- name bearings (type/type/function) and recognize them in machine systems and technical drawings
- Being able to name areas of application and selection criteria for the various bearings and bearing arrangements and explain interrelationships
- Ability to functionally explain the design of the bearing definitions in different directions radially/axially and circumferentially
- Know and describe selection as an iterative process as an example
- be able to perform dimensioning of bearing arrangements as an example of the engineer's approach to dimensioning machine elements
- Develop first ideas for probabilities in predicting the life of machine elements
- Recognise from the damage pattern whether static or dynamic overload was the cause of material failure
- Calculate equivalent static and dynamic bearing loads from the catalogue and given external forces on the bearing
- Being able to name, explain and transfer the basic equation of the dimensioning to the bearing dimensioning

Learning objectives seals:

The students...

- can discuss the basic functions of seals
- can describe the physical causes for mass transfer
- can apply the C&C-Model on seals
- can name, describe and apply the three most important classification criteria of seals
- can explain the function of a contacting seal and a non-contacting seal.
- can differentiate the seal types and organize them to the classification criteria.
- can discuss the structure and the effect of a radial shaft seal
- can evaluate radial shaft seals, compression packings, mechanical seals, gap seals and labyrinth seals
- can describe and apply the constructional principle of selffortification
- can describe the stick-slip phenomenon during the movement sequences of a reciprocating seal

Learning design:

The students...

- understand the meaning of design
- are able to recognize and implement basic rules and principles of design
- are able to design the connection of partial systems into the total system
- can name requirements of design and take them into account
- know the main groups of manufacturing methods
- are able to explain the manufacturing processes
- are able to depict a casted design in a drawing clearly, e.g. draft of the mold, no material accumulation, ...
• know how components are designed
• Know how the production of the components has an effect on
 their design
• Know the requirements and boundary conditions on design

Learning bolted connections:

The students...

• can list and explain various bolt applications.
• can recognize bolt types and explain their function
• can build a C&C² model of a bolted joint and discuss the influences on its function
• can explain the function of a bolted connection with the help of a spring model
• can reproduce, apply and discuss the screw equation.
• Can estimate the load-bearing capacity of low-loaded bolted joints for dimensioning purposes
• Can indicate which bolted joint is to be calculated and which only roughly dimensioned.
• Can carry out the dimensioning of bolted connections as flange connections
• Can create, explain and discuss the force deflection diagram of a bolted connection

Content
MKL I:
Introduction to product development
Tools for visualization (technical drawing)
Product creation as a problem solution
Technical Systems Product Development

• Systems theorie
• Contact and Channel Approach C&C²-A

Basics of selected construction and machine elements

• Federn
• bearings and fence
• sealings

The lecture is accompanied by exercises with the following content:

gear workshop
Tools for visualization (technical drawing)
Technical Systems Product Development

• Systemtheorie
• Contact and Channel Approach C&C²-A

Exercises for springs
Exercises for bearings and fence

MKL II:

• sealings
• design
• dimensioning
• component connections
• bolts
Workload
MKL1:

Presence: 33.5 h

Attendance in lectures: 15 * 1.5 h = 22.5 h

Presence in exercises: 8 * 1.5 h = 12 h

Self-study: 56.5 h

Personal preparation and wrap-up of lecture and exercises, including the processing of the test certificates and preparation for the exam: 56.5 h

Total: 90 h = 3 LP

MKL2:

Presence: 33 h

Attendance in lectures: 15 * 1.5 h = 22.5 h

Presence in exercises: 7 * 1.5 h = 10.5 h

Self study: 87 h

Personal preparation and wrap-up of lectures and exercises, including the processing of the test certificates and preparation for the exam: 87h

Total: 150 h = 5 LP

Additional expenditure for degree programs from other disciplines MKL1 + MKL2 in total: 30 h = 1 LP

Learning type

- Lecture
- Tutorial
- Project work during the semester
- Online-test
10.106 Module: Mechanical Design III and IV (13 LP) [M-MACH-102829]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of:
- Specialization in Mechatronics (Compulsory Elective Modules: Mechanical Engineering)
- Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Contact Hours</th>
<th>Exam Hours</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104810</td>
<td>Mechanical Design III and IV</td>
<td>11 CR</td>
<td>5 + 5</td>
<td>1</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110955</td>
<td>Mechanical Design III, Tutorial</td>
<td>1 CR</td>
<td>2 + 2</td>
<td>0</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110956</td>
<td>Mechanical Design IV, Tutorial</td>
<td>1 CR</td>
<td>2 + 2</td>
<td>0</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination, consisting of theoretical and constructive part.
The theoretical examination lasts 1 hour plus reading time
The constructional examination takes 3 hours plus reading time.
Both parts of the examination must be passed in order to pass the overall examination for machine design apprenticeship III+IV.

Prerequisites

None

Competence Goal

In mechanical design, students acquire skills in analysis and synthesis using examples (= leading examples). The examples include individual machine elements such as bearings or springs as well as more complex systems such as gears or clutches. After completing the machine design course, the students can apply the learned contents to further technical systems - even those not known from the lecture - by transferring the exemplary learned operating principles and basic functions to other contexts. This enables students to independently analyze unknown technical systems and to synthesize systems suitable for given problems.

Content

- tolerances and fits
- component connections
- gears
- basics of component dimensioning
- shaft clutches
- fundamentals of fluid technology
- electrical machines
Module: Mechanical Design III and IV (13 LP) [M-MACH-102829]

Workload

MKL 3:

Presence: 45 h

- Attendance time lecture (15 L): 22,5h
- Attendance time exercises (7 exercises): 10,5h
- Attendance time milestones project work (3x 4h): 12h

Self-study: 135h

- Project work in a team: 90h
- Personal preparation and follow-up of lecture and exercise: 45h

MKL 4:

Presence: 40,5 h

- Attendance lectures (13 L): 19,5h
- Attendance time exercises (6 exercises): 9h
- Attendance time milestones project work (3x 4h): 12h

Self-study: 169,5 h

- Project work in a team: 105h
- Personal preparation and follow-up of lecture and exercise, incl. preparation for the exam: 64,5h

Total: 390 h = 13 LP

Learning type

- Lecture
- Tutorial
- Project work during the semester
10.107 Module: Mechanics in Microtechnology [M-MACH-102713]

Responsible: Prof. Dr. Christian Greiner
Dr. Patric Gruber

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105334 | Mechanics in Microtechnology | 4 CR | Greiner, Gruber |

Competence Certificate
oral exam ca. 30 minutes

Prerequisites
none

Competence Goal
The students know and understand size and scaling effects in micro- and nanosystems. They understand the impact of mechanical phenomena in small dimensions. Based on this they can judge how they determine material processing as well as working principles and design of microsensors and microactuators.

Content
1. Introduction: Application and Processing of Microsystems
2. Scaling Effects
3. Fundamentals: Stress and Strain, (anisotropic) Hooke's Law
4. Fundamentals: Mechanics of Beams and Membranes
5. Thin Film Mechanics: Origin and Role of Mechanical Stresses
6. Characterization of Mechanical Properties of Thin Films and Small Structures: Measurement of Stresses and Mechanical Parameters such as Young's Modulus and Yield Strength, Thin Film Adhesion and Stiction
7. Transduction: Piezoresistivity, Piezo-electric Effect, Electrostatics,...
8. Aktuation: Inverse Piezo-electric Effect, Shape Memory, Electromagnetic Actuation,...

Workload
regular attendance: 22.5 hours
self-study: 97.5 hours

Learning type
lecture

Literature
Folien,
2. L.B. Freund and S. Suresh: „Thin Film Materials”
10.108 Module: Mechano-Informatics and Robotics [M-INFO-100757]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module code</th>
<th>Module name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101294</td>
<td>Mechano-Informatics and Robotics</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

See partial achievements (Teilleistung)

Prerequisites

See partial achievements (Teilleistung)

Competence Goal

Students understand the basics of the synergistic integration of methods from mechatronics, computer science and artificial intelligence using the example of humanoid robotics. They are acquainted with the basic concepts and methods of machine learning, the description of robot movements and actions as well as artificial neural networks and their application in robotics.

In particular, they are able to apply basic methods to problems and know relevant tools. Using research-oriented examples from humanoid robotics, students have learned – in an interactive way – to think analytically and to proceed in a structured and goal-oriented way when analyzing, formalizing and solving tasks.

Content

The lecture addresses topics at the interface between robotics and artificial intelligence, which are illustrated and explained based on examples from current research in the area of humanoid robotics. The lecture introduces fundamental algorithms in robotics and machine learning as well as methods for describing dynamical systems and representing robot motions and actions. This includes an introduction to artificial neural networks, the description of dynamical systems in state space as well as the learning of movement primitives. The topics and content are illustrated by practical examples from humanoid robotics.

Workload

Lecture with 2 SWS, 4 CP.

4 LP corresponds to approx. 120 hours, of which approx. 40 hours of lecture attendance, approx. 30 hours of follow-up work on the lecture, approx. 50 hours exam preparation

Recommendation

Attendance at the *Basispraktikums Mobile Roboter* is recommended.
10.109 Module: Mechatronical Systems and Products [M-MACH-102749]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105574</td>
<td>Mechatronical Systems and Products</td>
<td>3 CR</td>
<td>Hohmann, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-108680</td>
<td>Workshop Mechatronical Systems and Products</td>
<td>4 CR</td>
<td>Hohmann, Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate
Success is monitored within the framework of an written examination (60 minutes) and an alternative academic achievement

Prerequisites
None

Competence Goal
The students

- are able to describe the difficulties of interdisciplinary projects.
- are able to coordinate processes, structures, responsibilities and interfaces within a project
- know different solutions for mechanic/electric problems
- know the elements of the treated product development processes, are able to describe different views onto them and execute them
- know the model based systems engineering approaches
- know the basic principles of virtual design and are able to apply the methods of virtual system design
- are able to identify the differences between virtuality and reality
- are able to recognize the advantages of early validation
- Students are able to understand and apply model description with Bond graphs and generalized system elements
- Students are able to synthesize and analyze multi-domain models
- Students are able to apply parameter identification methods

Content
The lecture provides the theoretic basics, which will be applied and enhanced in development project during the semester. The project will take part in small groups, where the students have to organize and distribute the tasks on their own. In the project work - the workshop Mechatronic Systems and Products - they work on a development task in teams. This involves various development phases, from the development of technical solution concepts to the development and validation of virtual prototypes and physical functional prototypes.

Module grade calculation
The module grade is composed in equal parts of the grades of the module's sub-services.

Annotation
All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey "Anmeldung und Gruppeneinteilung" in ILIAS before the start of the semester.

Workload
1. Time of presence lecture: 17 * 1.5 h = 25.5 h
2. Prepare/follow-up lecture: 17 * 1.5 h = 25.5 h
3. Time of presence exercise + workshop: 4 * 1.5h + 12 * 7h = 90 h
4. Prepare/follow-up exercise: 4 * 1.5h = 6 h
5. Exam preparation and time of presence: 33 h
Total: 180 h = 6 LP
Recommendation
It is recommended not to take this module with other time-consuming workshops, such as MD, at the same time.

Learning type
Lecture, exercise and project work

Literature

Module: Medical Imaging Technology I [M-ETIT-106449]

Responsible: Prof. Dr. Maria Francesca Spadea
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules) (Usage from 10/1/2023)
Master’s Transfer Account (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-113048 | Medical Imaging Technology I | 3 CR | Spadea |

Competence Certificate
The examination takes place in form of a written examination lasting 60 minutes.

Prerequisites
none

Competence Goal
For each imaging modality students will be able to:

- identify required energy source;
- analyze the interactions between the form of energy and biological tissue distinguishing desired signal from noise contribution;
- critically interpret the image content to derive knowledge
- evaluate image quality and implementing strategies to improve it.

Moreover, the students will be able to communicate in technical and clinical English language.

Content
The module Medical Imaging Technology I provides knowledge on

- the basic knowledge of mathematical and physical principles of medical imaging formation, including X-ray based modalities, nuclear medicine imaging, magnetic resonance imaging and ultrasound
- the component of medical imaging devices.
- assessment of image quality in terms of signal-to-noise-ratio, presence of artifact, spatial, spectral and temporal resolution
- safety and protection for patients and workers.

Module grade calculation
The module grade is the grade of the written exam.

Workload
1. attendance in lectures an exercises: 2SWS = 30 h
2. preparation / follow-up: 15*2 h = 30 h
3. preparation of and attendance in examination: 30 h
A total of 90 h = 3 CR

Recommendation
Basic knowledge in the field of physics and signal processing is helpful.
Module: Medical Imaging Technology II [M-ETIT-106670]

Responsible: Prof. Dr. Maria Francesca Spadea
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account (Usage from 4/1/2024)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-113421</td>
<td>Medical Imaging Technology II</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination takes place in form of a written examination lasting 60 minutes.

Prerequisites

none

Competence Goal

For each imaging modality students will be able to:

- identify required energy source;
- analyze the interactions between the form of energy and biological tissue;
- distinguishing desired signal from noise contribution;
- critically interpret the image content to derive knowledge;
- evaluate image quality and implementing strategies to improve it.

Moreover, the student will be able to communicate in technical and clinical English language.

Content

- the basic knowledge of mathematical and physical principles of medical imaging formation, including nuclear medicine imaging and magnetic resonance imaging.
- the component of medical imaging devices.
- assessment of image quality in terms of signal-to-noise-ratio, presence of artifact, spatial, spectral and temporal resolution.
- safety and protection for patients and workers.

Module grade calculation

The module grade is the grade of the written exam.

Workload

- attendance in class: 15*2h = 30h
- preparation / follow-up: 15*2h = 30h
- exam preparation / attendance: 30h = 90h

A total of 90h = 3 CR

Recommendation

- Basic knowledge in the field of physics and signal processing is helpful.
- The contents of the module "Medical Imaging Technology I" are recommended.
Module: Microactuators

10.112 Module: Microactuators [M-MACH-100487]

- **Responsible:** Prof. Dr. Manfred Kohl
- **Organisation:** KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-101910 | Microactuators | 4 CR Kohl |

Competence Certificate

Written exam: 60 min

Prerequisites

none

Competence Goal

- Knowledge of the actuation principles including pros and cons
- Knowledge of important fabrication technologies
- Explanation of layout and function of the microactuators
- Calculation of important properties (time constants, forces, displacements, etc.)
- Development of a layout based on specifications

Content

- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications

The lecture includes amongst others the following topics:

- Microelectromechanical systems: linear actuators, microrelais, micromotors
- Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
- Microrobotics: Microgrippers, polymer actuators (smart muscle)
- Information technology: Optical switches, mirror systems, read/write heads

Workload

- Time of attendance: $15 \times 1.5 = 22.5$ h
- Preparation and follow up: $15 \times 5.5 = 82.5$ h
- Exam Preparation and Exam: 15 h

Total: 120 h $= 4$ LP

Literature

- Lecture notes
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
Module: Microenergy Technologies [M-MACH-102714]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 2

Mandatory
T-MACH-105557 Microenergy Technologies 4 CR Kohl

Competence Certificate
Oral exam: 45 min

Prerequisites
none

Competence Goal
The students can:

- describe the energy conversion principles and exemplify them
- explain the underlying concepts of thermodynamics and materials science
- illustrate the layout, fabrication and function of the treated devices
- calculate important properties (time constants, power output, efficiency, etc.)
- develop a layout based on specifications

Content
- Basic physical principles of energy conversion optimization
- Technologies
- Layout and design
- Selected devices
- Applications

The lecture includes amongst others the following topics:

- Micro energy harvesting of vibrations using different conversion principles (piezo, electrostatic, electromagnetic, etc.)
- Thermoelectric energy generation
- Novel thermal energy conversion principles (thermomagnetic, pyroelectric)
- Miniature scale solar devices
- RF energy harvesting
- Miniature scale heat pumping
- Solid-state cooling technologies (magneto-, electro-, mechanocalorics)
- Power management
- Energy storage technologies (microbatteries, supercapacitors, fuel cells)

Module grade calculation
Module grade calculation
The module grade is the grade of the written exam.

Workload
Time of attendance: 15 * 1.5 h = 22.5 h
Preparation and follow up: 15 * 5.5 h = 82.5 h
Exam Preparation and Exam: 15 h
Total: 120 h = 4 LP

Literature
- Lecture notes (overhead transparencies) „Micro Energy Technologies”
10.114 Module: Mobile Computing and Internet of Things (IN3INMC) [M-INFO-101249]

Responsible:
Prof. Dr.-Ing. Michael Beigl

Organisation:
KIT Department of Informatics

Part of:
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102061 Mobile Computing and Internet of Things</td>
<td>2,5 CR</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-INFO-113119 Mobile Computing and Internet of Things - Exercise</td>
<td>2,5 CR</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Prerequisites
None
Module: Motor Vehicle Laboratory [M-MACH-102695]

Responsible: Dr.-Ing. Michael Frey

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105222 | Motor Vehicle Labor | 4 CR | Frey |

Competence Certificate

After completion of the experiments: written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites

None

Competence Goal

The students have deepened their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions. They are ready to analyze and to judge measurement results.

Content

1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle

2. Investigation of a twin-tube and a single-tube shock absorber

3. Behavior of car tyres under longitudinal forces and lateral forces

4. Behavior of car tires on wet road surface

5. Rolling resistance, energy dissipation and high-speed strength of car tires

6. Investigation of the moment transient characteristic of a Visco clutch

Annotation

The admission is limited to 12 persons per group.

Workload

regular attendance: 31.5 hours

self-study: 103.5 hours

Literature

3. Gnädler, R.: Documents to the Motor Vehicle Laboratory
Module: Novel Actuators and Sensors [M-MACH-105292]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-MACH-102152 Novel Actuators and Sensors 4 CR Kohl, Sommer

Competence Certificate
Written exam, 60 min

Prerequisites
None

Competence Goal
- Knowledge of the actuation and sensing principles including pros and cons
- Knowledge of important fabrication technologies
- Explanation of layout and function of the actuators and sensors
- Calculation of important properties (time constants, forces, displacements, sensitivity etc.)
- Development of a layout based on specifications

Content
The content of the lecture is among others:

- Piezo actuators
- Magnetostriktive actuators
- Shape memory actuators
- Electro-/Magnetorheological actuators
- Sensors: Concepts, materials, fabrication
- Micromechanical sensors: Pressure, force, inertial sensors
- Temperature sensors
- Sensors for bioanalytics
- Mechano-magnetic sensors

Workload
lecture time 18 h
self preparation: 102 h

Learning type
Lecture

Literature
- Vorlesungsskript "Neue Aktoren" und Folienkript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
10.117 Module: Numerical Methods [M-MATH-105831]

Responsible: Prof. Dr. Wolfgang Reichel
Organisation: KIT Department of Mathematics
Part of: Master's Transfer Account (Usage from 10/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MATH-111700 | Numerical Methods - Exam | 5 CR | Kunstmann, Plum, Reichel |

Competence Certificate
Success control takes the form of a written examination (120 minutes).

Prerequisites
one

Competence Goal
Students who pass the module are familiar with basic concepts and ways of thinking on the topic of numerical mathematics. They know different procedures for solving linear and nonlinear problems in numerical mathematics. They are furthermore able to use numerical methods for solving problems from applications in an independent, critical, and needs-based way.

Content
In the lecture basic ideas and numerical methods for the following topics will be presented:

- systems of linear equations, Gauss-algorithm, LR-decomposition, Cholesky decomposition
- eigenvalue problems, von-Mises iteration
- linear optimization (also called linear programming)
- error analysis
- Newton's method
- quadrature, Newton-Cotes formulas
- numerical solution of initial value problems, Runge-Kutta methods
- finite difference method for solving boundary value problems
- finite elements

Module grade calculation
The module grade is the grade of the written exam.

Workload
Approximately 150h workload. The workload includes:

- 45h - attendance in lectures, exercises and examination
- 105h - self studies:

 - follow-up and deepening of the course content
 - solving problem sheets
 - literature study and internet research on the course content
 - preparation for the module examination
10.118 Module: Optics and Solid State Electronics [M-ETIT-105005]

Responsible: Prof. Dr. Ulrich Lemmer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules) (Usage from 10/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Course Title</th>
<th>CR</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-110275 Optics and Solid State Electronics</td>
<td>6 CR</td>
<td>Lemmer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: Optoelectronic Components [M-ETIT-100509]

Responsible: Prof. Dr. Wolfgang Freude
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-ETIT-101907 Optoelectronic Components 4 CR Freude

Competence Certificate
Type of Examination: oral exam
Duration of Examination: approx. 30 minutes
Modality of Exam: Oral examination, usually one examination day per month during the Summer and Winter terms. An extra questions-and-answers session will be held if students wish so.

Prerequisites
none

Competence Goal
Comprehending the physical layer of optical communication systems. Developing a basic understanding which enables a designer to read a device’s data sheet, to make most of its properties, and to avoid hitting its limitations.
The students
- understand the components of the physical layer of optical communication systems
- acquire the knowledge of operation principles and impairments of optical waveguides
- know the basics of laser diodes, luminescence diodes and semiconductor optical amplifiers
- understand pin-photodiodes
- know the systems’sensitivity limits, which are caused by optical and electrical noise

Content
The course concentrates on the most basic optical communication components. Emphasis is on physical understanding, exploiting results from electromagnetic field theory, (light waveguides), solid-state physics (laser diodes, LED, and photodiodes), and communication theory (receivers, noise). The following components are discussed:
- Light waveguides: Wave propagation, slab waveguides, strip wave-guides, integrated optical waveguides, fibre waveguides
- Light sources and amplifiers: Luminescence and laser radiation, luminescent diodes, laser diodes, stationary and dynamic behavior, semiconductor optical amplifiers
- Receivers: pin photodiodes, electronic amplifiers, noise

Module grade calculation
The module grade is the grade of the oral exam.

Annotation
There are no prerequisites, but solution of the problems on the exercise sheet, which can be downloaded as homework each week, is highly recommended. Also, active participation in the problem classes and studying in learning groups are strongly advised.

Workload
total 120 h, hereof 45 h contact hours (30 h lecture, 15 h problem class), and 75 h homework and self-studies

Recommendation
Minimal background required: Calculus, differential equations, Fourier transforms and p-n junction physics.

Literature
Detailed textbook-style lecture notes as well as the presentation slides can be downloaded from the IPQ lecture pages.
Further textbooks in German (also in electronic form) can be named on request.
Module: Optoelectronics [M-ETIT-100480]

Responsible: Prof. Dr. Ulrich Lemmer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100767</td>
<td>Optoelectronics</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The success check is carried out in the context of a written exam (90 minutes).

Prerequisites
none

Module grade calculation
The module grade is the grade of the written exam.

Workload
1. Presence time in lectures, exercises: 32 h
2. Preparation / Post-processing of the same: 48 h
3. Exam preparation and presence in same: 40 h
Module: Organ Support Systems [M-MACH-102702]

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-MACH-105228 | Organ Support Systems | 4 CR | Pylatiuk

Competence Certificate
A performance assessment is held in form of a written examination of 45 minutes.

Prerequisites
none

Competence Goal
Students have comprehensive knowledge of the functioning of support systems and their components (e.g. sensors, actuators) for different human organs (e.g. heart, kidney, liver, eye, ear, locomotor system). They know the physical basics, the technical solutions and the essential aspects of these medical technology systems and their current limitations. Furthermore, they know bioreactors and other methods of using the body’s own cells to support organs (tissue engineering). Furthermore, they have comprehensive knowledge of organ transplantation and its limitations.

Content
Hemodialysis, liver dialysis, heart-lung machine, artificial hearts, biomaterials, definition and classification of organ support and organ replacement, hearing prostheses, visual prostheses, exoskeletons, neuroprostheses, endoprostheses, tissue engineering.

Module grade calculation
The module grade is the grade of the written exam.

Workload

1. Attendance time Lecture: 15 * 2h = 30h
2. Pre- and postprocessing time Lecture: 15 * 3h = 45h
3. Exam preparation and attendance exam: 45h

Total: 120h = 4 LP

Recommendation
The content of module MMACH-105235 complements this lecture.

Literature

- E. Wintemantel, Suk-Woo Ha: Medizintechnik. Springer Verlag.
10.122 Module: Orientation Exam [M-MACH-104333]

Organisation: University
Part of: Orientation Exam

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Tutor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td>7 CR</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-ETIT-109316</td>
<td>Linear Electronic Networks</td>
<td>7 CR</td>
<td>Jelonnek, Kempf</td>
</tr>
<tr>
<td>T-ETIT-109317</td>
<td>Linear Electronic Networks - Workshop A</td>
<td>1 CR</td>
<td>Leibfried, Lemmer</td>
</tr>
<tr>
<td>T-ETIT-109811</td>
<td>Linear Electronic Networks - Workshop B</td>
<td>1 CR</td>
<td>Nahm</td>
</tr>
</tbody>
</table>

Modelled deadline
This module must be passed until the end of the 3. term.

Prerequisites
None
10.123 Module: Photovoltaic System Design [M-ETIT-100411]

Responsible: Dipl.-Ing. Robin Grab
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100724 | Photovoltaic System Design | 3 CR | Grab |

Prerequisites

none
10.124 Module: Physiology and Anatomy for Engineers I [M-ETIT-100390]

Responsible: Prof. Dr. Werner Nahm
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101932 | Physiology and Anatomy for Engineers I | 3 CR | Nahm |

 Competence Certificate
Success control is carried out in the form of a written test of 60 minutes.

Prerequisites
The module "M-ETIT-105874 – Physiologie und Anatomie für die Medizintechnik” must not been started.

Content
The lecture provides basic knowledge about the essential organ systems of humans and medical terminology. It is aimed at students of technical courses who are interested in physiological issues.

Thematic blocks:

- Organizational levels of the organism
- Building blocks of life
 - Proteins
 - Lipids
 - Carbohydrates
 - Lipids
 - Nucleic acids
- Cells
 - Structure
 - Membrane transport processes
 - Protein biosynthesis
 - Cell respiration
 - Nerve cells
 - Muscle cells

- Tissue
 - Tissue types
 - Cell connections

- Sensory organs
 - Eye
 - Hearing

Module grade calculation
The module grade is the grade of the written exam.

Workload
Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

- Attendance time in lectures (2 h, 15 appointments each) = 30 h
- Self-study (3 h, 15 appointments each) = 45 h
- Preparation / post-processing = 15 h

Total effort approx. 90 hours = 3 LP
10.125 Module: Power Electronic Systems in Energy Technology [M-ETIT-106067]

Responsible: Prof. Dr.-Ing. Marc Hiller
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account (Usage from 10/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-112286</td>
</tr>
</tbody>
</table>

Prerequisites
none
10.126 Module: Power Electronics [M-ETIT-104567]

Responsible: Prof. Dr.-Ing. Marc Hiller

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master's Transfer Account (Usage from 10/1/2022)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination takes place in form of a written examination lasting 120 minutes.

Prerequisites

None

Competence Goal

Students will be familiar with state-of-the-art power semiconductors including their application related features. Furthermore students will be familiar with the circuit topologies for DC/DC and DC/AC power conversion. They know the associated modulation and control methods and characteristics. They are able to analyze the circuit topologies with regard to harmonics and power losses. This also includes the thermal design of power electronic circuits. In addition, they are able to select and combine suitable circuits for given electrical energy conversion requirements.

Content

In the lecture, power electronic circuits for DC/DC and DC/AC power conversion using IGBTs and MOSFETs are presented and analyzed. First, the basic properties of self-commutated circuits under idealized conditions are elaborated using the DC/DC converter as an example. Then, self-commutated power converters for three-phase applications are presented and analyzed with respect to modulation and their AC and DC terminal behavior. Based on the real power semiconductor behavior in on- and off-state the device losses are calculated. Furthermore the thermal design of power converters is explained using thermal equivalent circuits of power devices and cooling equipment. The voltage and current stress on the power semiconductors in switching operation is explained as well as protective snubber circuits allowing a reliable operation within the safe operating area of the devices.

In detail, the following topics are treated:

- Power Semiconductors
- Commutation principles
- DC/DC converters
- Self-commutated 1ph and 3ph DC/AC inverters
- Modulation methods (Fundamental frequency modulation, Pulse width modulation with 3rd harmonic injection, Space vector modulation)
- Multilevel inverters
- Switching behavior in hard and soft switching applications
- Loss calculation
- Thermal equivalent circuits, thermal design
- Snubber circuits.

The lecturer reserves the right to adapt the contents of the lecture to current needs without prior notice.

Module grade calculation

The module grade is the grade of the written exam.

Workload

14x lecture and 14x exercise à 2 h = 56 h
14x wrap-up of the lecture à 1 h = 14 h
14x preparation of the exercise à 2 h = 28 h
Preparation for the exam = 75 h
Examination time = 2 h
Total = approx. 175 h (corresponds to 6 LP)
10.127 Module: Power Generation [M-ETIT-100407]

Responsible: Dr.-Ing. Bernd Hoferer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>CR</th>
<th>Hoferer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101924</td>
<td>Power Generation</td>
<td>3 CR</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Competence Certificate
Success is assessed in an overall oral examination (approx. 20 minutes) on the selected course.

Competence Goal
Students are able to recognize energy technology problems and develop solutions. They have gained an understanding of the physical and theoretical relationships in energy technology. They are also able to describe, analyze and explain the developed solutions in a scientific format.

Content
Basic lecture on the generation of electrical energy. From the conversion of the earth's primary energy resources in coal-fired power plants and in nuclear power plants to the use of renewable energies, the lecture covers the entire spectrum of generation. The lecture provides an overview of the physical principles, the technical and economic aspects and the development potential of generating electrical energy from both conventional and renewable sources.

Module grade calculation
The module grade is the grade of the oral examination.

Workload
- Attendance time: 30 h
- Self-study time: 60 h
- Total 90 h = 3 LP
10.128 Module: Power Transmission and Power Network Control [M-ETIT-100534]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101941 | Power Transmission and Power Network Control | 5 CR | Leibfried |

Prerequisites
none
Module: Practical Aspects of Electrical Drives [M-ETIT-100394]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100711 | Practical Aspects of Electrical Drives | 4 CR | Doppelbauer |

Competence Certificate
Success is assessed in a written examination lasting 120 minutes.

Prerequisites
none

Competence Goal
Students understand the function of all components of modern electrical drive systems. They have detailed knowledge of the basic electrical machine types and know the function and physical behavior of loads and other drive components. Students will be able to design electrical drive systems for an application-specific use, taking into account all boundary conditions, and calculate their mechanical and electrical behavior.

Content
The lecture is divided into the following areas

- Drive systems
- electric motors
- Transmission elements
- Drive and load
- Starting, braking, positioning
- Thermal and protection
- Variable speed drives
- Electromagnetic compatibility
- Small drives
- Noise
- Drives with limited movement

Module grade calculation
The module grade is the grade of the written examination.

Workload
14x lecture + 7x exercises of 1.5 h each = 31.5 h
14x post-processing of lectures à 1 h = 14 h
6x preparation of exercises à 2 h = 12 h
Preparation for the exam = 50 h
Total = 107.5 h (corresponds to 4 CP)

Recommendation
To understand the module, basic knowledge in the field of electrical machines is recommended (acquired, for example, by attending the modules “Electrical Machines and Power Electronics”
Module: Practical Project Robotics and Automation I (Software) [M-INFO-102224]

 Responsible: Prof. Dr.-Ing. Björn Hein
 Prof. Dr.-Ing. Thomas Längle
 Organisation: KIT Department of Informatics
 Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-104545 | Practical Project Robotics and Automation I (Software) | 6 CR | Hein, Längle |
Module: Practical Project Robotics and Automation II (Hardware) [M-INFO-102230]

Responsible: Prof. Dr.-Ing. Björn Hein
Prof. Dr.-Ing. Thomas Längle

Organisation: KIT Department of Informatics

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-104552 | Practical Project Robotics and Automation II (Hardware) | 6 CR | Hein, Längle |
Module: Principles of Medicine for Engineers [M-MACH-102720]

M Mandatory

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering

Part of: Master’s Transfer Account

Credits 4
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 4
Version 1

Mandatory

| T-MACH-105235 | Principles of Medicine for Engineers | 4 CR | Pylatiuk |

Competence Certificate
A performance assessment is held in form of a written examination of 45 minutes.

Prerequisites
none

Competence Goal
Students have a comprehensive understanding of the functioning and anatomical construction of organs, which are assigned to different medical disciplines. Furthermore, they know the physical basics, the technical solutions and the essential aspects of the application of medical technology procedures in diagnostics and therapy. They are familiar with common clinical pictures in the different medical disciplines and their relevance in health care. Through their acquired knowledge, students can communicate with physicians about medical-technical procedures and assess mutual expectations more realistically.

Content
Definition of disease and health and history of medicine, evidence-based medicine* and personalized medicine, nervous system, conduction, musculoskeletal system, cardiovascular system, anesthesia, respiratory system, sensory organs, gynecology, digestive organs, surgery, nephrology, orthopedics, immune system, genetics.

Module grade calculation
The module grade is the grade of the written exam.

Workload
1. Attendance time Lecture: 15 * 2h = 30h
2. Pre- and postprocessing time Lecture: 15 * 3h = 45h
3. Exam preparation and attendance exam: 45h

Total: 120h = 4 LP

Recommendation
The content of module MMACH-105228 complements this lecture.

Literature
- Adolf Faller, Michael Schünke: Der Körper des Menschen. Thieme Verlag.
M 10.133 Module: Principles of Whole Vehicle Engineering I [M-MACH-105289]

Responsible: Prof. Dipl.-Ing. Rolf Frech
Dr.-Ing. Martin Gießler
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: Master’s Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>2 CR</td>
<td>Frech</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, duration approximately 90 minutes.

Auxiliary means: none

Competence Goal

The students have an overview of the entire development process of a passenger car. In addition to the chronological sequence of passenger car development, they also know the national and international legal requirements. They have knowledge of the conflict of objectives between aerodynamics, thermal management and design. They will be able to assess conflicting goals in the area of passenger car development and work out possible solutions.

Content

1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines

Workload

The total work load for this module is about 60 Hours (2 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 2 credit points is about 60 hours.

Learning type

Lecture
10.134 Module: Principles of Whole Vehicle Engineering II [M-MACH-105290]

Responsible: Prof. Dipl.-Ing. Rolf Frech
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105163 | Fundamentals of Automobile Development II | 2 CR | Frech |

Competence Certificate

Written exam, duration: approximately 90 minutes.
Auxiliary means: none

Competence Goal

Students are familiar with the selection of suitable materials and with various manufacturing techniques. They have an overview of the acoustics of the vehicle. They are familiar with both the aspects of acoustics in the interior of the vehicle and the aspects of exterior noise. They are familiar with testing the vehicle and assessing the overall vehicle characteristics. They are able to participate competently in the development process of the entire vehicle.

Content

1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Workload

The total work load for this module is about 60 Hours (2 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 2 credit points is about 60 hours.

Learning type

Lecture
Module: Product Development – Methods of Product Engineering [M-MACH-102718]

Responsible: Prof. Dr.-Ing. Albert Albers

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

Credits 6

Grading scale Grade to a tenth

Recurrence Each summer term

Duration 1 term

Language German/English

Level 4

Version 2

Mandatory

| T-MACH-109192 | Methods and Processes of PGE - Product Generation Engineering | 6 CR | Albers, Burkardt, Matthiesen |

Competence Certificate

Written examination (processing time: 120 min + 10 min reading time)

Prerequisites

None

Competence Goal

The students are able to ...

- classify product development in companies and differentiate between different types of product development.
- name the relevant influencing factors of a market for product development.
- name, compare and use the central methods and process models of product development within moderate complex technical systems.
- explain problem solving techniques and associated development methods.
- explain product profiles and to differentiate and choose suitable creative techniques of solution/idea generation finding on this basis.
- use design guidelines to create simple technical systems and to explain these guidelines.
- name and compare quality assurance methods; to choose and use suitable methods for particular applications.
- explain the different methods of design of experiment.
- explain the costs in development process.

Content

Basics of Product Development: Basic Terms, Classification of the Product
Development into the industrial environment, generation of costs / responsibility for costs
Concept Development: List of demands / Abstraction of the Problem Definition / Creativity Techniques / Evaluation and selection of solutions
Drafting: Prevailing basic rules of Design / Design Principles as a problem oriented accessory
Rationalization within the Product Development: Basics of Development
Management/ Simultaneous Engineering and Integrated Product Development/Development of Product Lines and Modular Construction Systems
Quality Assurance in early Development Phases: Methods of Quality Assurance in an overview/QFD/FMEA

Workload

1. Time of presence lecture: 15 * 3h = 45 h
2. Prepare/follow-up lecture: 15 * 4,5 h = 67,5 h
3. Time of presence exercise: 4 * 1,5h = 6 h
4. Prepare/follow-up exercise: 4 * 3 h = 12 h
5. Exam preparation and time of presence: 49,5 h
Total: 180 h = 6 LP

Learning type

Lecture

Tutorial
Literature
Lecture documents
Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997
Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag, 1993
Module: Production Techniques Laboratory [M-MACH-102711]

Responsible: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Jivka Ovtcharova
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105346 | Production Techniques Laboratory | 4 CR | Deml, Fleischer, Furmans, Ovtcharova |

Competence Certificate

A performance assessment (non-graded) is obligatory and can be oral, a written exam, or of another kind.

Prerequisites

None

Competence Goal

The students acquire in the lab profound knowledge about the scientific theories, principles and methods of Production Engineering. Afterwards they are able to evaluate and design complex production systems according to problems of manufacturing and process technologies, materials handling, handling techniques, information engineering as well as production organisation and management.

After completion this lab, the students are able

- to analyse and solve planning and layout problems of the discussed fields,
- to evaluate and configure the quality and efficiency of production, processes and products,
- to plan, control and evaluate the production of a production enterprise,
- to configure and evaluate the IT architecture of a production enterprise,
- to design and evaluate appropriate techniques for conveying, handling and picking within a production system,
- to design and evaluate the part production and the assembly by considering the work processes and the work places.

Content

The production technique laboratory (PTL) is a collaboration of the institutes wbk, IFL, IMI and ifab.

1. Computer Aided Product Development (IMI)
2. Computer communication in factory (IMI)
3. Production of parts with CNC turning machines (wbk)
4. Controlling of production systems using PLCs (wbk)
5. Automated assembly systems (wbk)
6. Optical identification in production and logistics (IFL)
7. RFID identification systems (IFL)
8. Storage and order-picking systems (IFL)
9. Design of workstations (ifab)
10. Time study (ifab)
11. Accomplishment of workplace design (ifab)

Workload

Present time: 20 h
Self study: 100 h

Learning type

Seminar
Literature
Handout and literature online ILIAS.
Module: Programming (IN1INPROG) [M-INFO-101174]

Responsibility: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101967</th>
<th>Programming Pass</th>
<th>0 CR</th>
<th>Koziolek, Reussner</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101531</td>
<td>Programming</td>
<td>6 CR</td>
<td>Koziolek, Reussner</td>
</tr>
</tbody>
</table>

Competence Goal

Students should learn

- basic structures of the programming language Java and how to apply them; in particular control and simple data structures, object orientation and implementation of basic algorithms
- basics of programming methodology and the ability to autonomously write executable small to medium sized Java programs

Content

- objects and classes
- types, values and variables
- methods
- control structures
- recursion
- references, lists
- inheritance
- input and output
- exceptions
- programming methodology
- implementation of basic algorithms in Java (such as sorting algorithms)

Responsible: Dr.-Ing. Manfred Nolle
Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109148</td>
<td>Project Management in the Development of Products for Safety-Critical Applications</td>
<td>4 CR</td>
<td>Nolle</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Module: Quality Management [M-MACH-105332]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: Master’s Transfer Account

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

T-MACH-102107 Quality Management 4 CR Lanza

Competence Certificate
Written Exam (60 min)

Prerequisites
None

Competence Goal
The students …

- are capable to comment on the content covered by the module.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the module to new problems from the context of the module.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the module for a specific problem.

Content
Based on the quality philosophies Total Quality Management (TQM) and Six-Sigma, the module will specifically address the needs of a modern quality management. The process orientation in a modern company and the process-specific fields of quality assurance are presented in detail. Preventive as well as non-preventive quality management methods, which are state of the art in operational practice today, are content of the module. The use of suitable measurement techniques in production engineering (production measurement technology) as well as their potential levels of integration in the production system are discussed. The use of suitable statistical methods for data analysis and their modern extension by methods of artificial intelligence are be discussed. The contents are complemented by legal aspects in the field of quality management.

Main topics of the module:

- The term "Quality"
- Total Quality Management (TQM)
- Six-Sigma and universal methods and tools within the DMAIC cycle
- QM in early product stages – Determination and realization of customer requirements
- QM in product development
- Production measurement Technology
- QM in production - statistical Methods
- Artificial intelligence and machine learning in quality Management
- Operating behaviour and reliability
- Legal aspects in QM

Workload
1. Presence time lecture: 15 * 2 h = 30 h
2. Pre- and post-processing time lecture: 15 * 3 h = 45 h
3. Exam preparation and presence in the same: 45 h
In total: 120 h = 4 LP

Learning type
Lecture
10.140 Module: Radiation Protection [M-ETIT-100562]

Responsible: PD Dr. Bastian Breustedt
Prof. Dr. Werner Nahm

Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-ETIT-100825 Radiation Protection 3 CR Breustedt, Nahm

Competence Certificate
Success control is carried out as part of an overall written examination (2 h).

Prerequisites
none

Competence Goal
- The students understand the terminology used in radiation protection and apply it correctly.
- The students are able to describe the types of ionizing radiation, their properties and the principles for their measurement.
- The students are able to describe the biological risks associated to exposures to ionizing radiation.
- The students are able to describe the basic principles of radiation protection and their implementation in national and international law.
- Based on a basic understanding of the scientific foundations of radiation protection the students are able to critically evaluate radiation protection measures for a given situation, which involves the use of ionizing radiation.

Content
The module covers the basics of radiation protection for ionizing radiation and provides an overview of the subject. The topics which will be covered are:

- Ionizing Radiation and its applications,
- Interaction of Radiation with Matter,
- Biological Effects of Radiation,
- Measurement of Radiation – Principles and detector designs,
- Measurement of Radiation – Applications and Examples
- Dosimetry for external + internal Exposures,
- Legal Aspects (Regulation, Ethics) and
- Radiation Protection – Principles and Application

The students will gain insight on ionizing radiation, its applications and the biological risks associated with exposures to ionizing radiation. The scientific foundations of radiation protection (natural sciences, engineering, medicine as well as sociological and legal basics) are summarized. The principles, standards and practice of radiation protection in applications of ionizing radiation are derived and demonstrated.

Module grade calculation
The module grade is the grade of the written exam.

Workload
Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (2 h * 15 appointments each) = 30 h
Self-study (3 h * 15 appointments each) = 45 h
Preparation / post-processing = 20 h
Total effort approx. 95 hours = 3 LP
Recommendation
Basic knowledge in the field of physics is helpful.
Module: Radio-Frequency Electronics [M-ETIT-105124]

Responsible: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-110359 | Radio-Frequency Electronics | 5 CR | Ulusoy |

Competence Certificate
The success criteria will be determined by a written examination of 120 min.

Prerequisites
none

Competence Goal
* The students have a comprehensive understanding of the theory and the basic design methodology of electronic circuits at high frequencies.
* They understand the limitations of active and passive circuit elements including various transistor technologies and their impact on the applications.
* They understand the limitations and how linear network theory is applied for advanced electronic circuits.
* The students can apply the acquired theoretical knowledge using modern design tools.

Content
In this module, the theory and design methodology of high-frequency electronic circuits will be studied in detail. The focus of the module is on the fundamentals of active linear circuits. The important topics are phasor analysis, resonance, impedance matching networks, two-port parameters of transistors, high-frequency behavior of basic amplifier circuits, practical design methodology of high-frequency amplifiers, and introduction to the design of non-linear circuits using the linear design methodology. In the tutorial the student will have the possibility to apply their theoretical knowledge by designing, assembling and testing a radio-frequency amplifier in the framework of a design challenge.

Module grade calculation
The module grade is the grade of the written examination.

Workload
1. Attendance to the lectures (15*(2)=30h)
2. Attendance to the exercises and workshop (15*(2)=30h)
3. Preparation to the lectures, exercises and workshop (15*(1+1)=30h)
4. Preparation of homework assignments and to the oral exam (20+40h)
Total: 150h = 5L

Recommendation
Contents of the modules "Linear electrical networks" and "Electronic circuits".
10.142 Module: Rail System Technology [M-MACH-103232]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-106424 Rail System Technology 4 CR Cichon

Competence Certificate

written examination in German language
Duration: 60 minutes
No tools or reference materials may be used during the exam except calculator and dictionary

Prerequisites
none

Competence Goal

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- Based on operating requirements and legal framework they derive the requirements concerning a capable infrastructure and suitable concepts of rail vehicles.
- They recognize the impact of alignment, understand the important function of the wheel-rail-contact and estimate the impact of driving dynamics on the operating program.
- They evaluate the impact of operating concepts on safety and capacity of a rail system.
- They know the infrastructure to provide power supply to rail vehicles with different drive systems.

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Annotation

A bibliography is available for download (Ilias-platform).

Workload

Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours
total: 120 hours = 4 ECTS

Learning type

Lecture
Module: Rail Vehicle Technology [M-MACH-102683]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
written examination in German language
Duration: 60 minutes
No tools or reference materials may be used during the exam except calculator and dictionary

Prerequisites
none

Competence Goal

- The students learn the role of rail vehicles and understand their classification. They understand the basic structure and know the functions of the main systems. They understand the overall tasks of vehicle system technology.
- They learn functions and requirements of car bodies and judge advantages and disadvantages of design principles. They know the functions of the car body's interfaces.
- They know about the basics of running dynamics and bogies.
- The students learn about advantages and disadvantages of different types of traction drives and judge, which one fits best for each application.
- They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
- They know the basic setup of train control management system and understand the most important functions.
- They specify and define suitable vehicle concepts based on requirements for modern rail vehicles.

Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Annotation
A bibliography is available for download (Ilias-platform).

Workload
Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours
total: 120 hours = 4 ECTS
Learning type
Lecture
10.144 Module: Railway System Digitalisation [M-MACH-106513]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-113016 | Digitization in the Railway System | 4 CR | Cichon |

Competence Certificate
- Examination performance oral
- Duration approx. 20 minutes
- Auxiliary means: none

Prerequisites
- none

Competence Goal

The students have a basic understanding of train control and its technical implementation in Germany, the functioning of the European Train Control System (ETCS) and its planning, Automated Train Operation. They are able to explain the knowledge they have acquired (terms, interrelationships) in context and apply it to issues in practice. Furthermore, the students can classify the operational and technical advantages and disadvantages in the context of the digitalization of the rail network in Germany and take future challenges into account.

The students can discuss the technical aspects and areas of application of ETCS in the different levels and reproduce the main features of balise planning for ETCS Level 2. Digital planning approaches such as PlanPro as well as measurement and test runs are known and can be classified.

Content

1. Introduction and motivation: organizational aspects; current developments in Germany, Europe
2. Basics of the railroad system: terminology; interaction of rolling stock, infrastructure and operations
3. Securing train movements: overview of possibilities and areas of application; operational and technical aspects with a focus on Germany
4. Basics of interlockings, control and safety elements: Train protection in Germany with PZB, LZB
5. Safety and security: ENS012x, CENELEC, RAMS
6. European Train Control System (ETCS): specification; system components, braking curves; ETCS level and modes, train integrity; interface between vehicle and infrastructure, data exchange; infrastructure-side ETCS balise planning using the example of ETCS level 2; track surveying, commissioning; digitization of the planning process using the example of PlanPro
7. Automatic Train Operation (ATO), Communication-Based Train Control (CBTC): system architecture, Grade of Automation (GoA); advantages and challenges ATO; differences CTBC to ETCS
8. Future Developments: Future Railway Mobile Communication System (FRMCS) as successor to GSM-R

Annotation

A bibliography is available for students to download from the Ilias platform.

Workload

- Attendance time: 21 hours
- Preparation / wrap-up: 21 hours
- Exam and exam preparation: 78 hours
- Total effort: 120 hours = 4 LP

Learning type

Lecture

Literature

- European Train Control System (ETCS), Schnieder, ISBN 978-3-662-66054-6
- Communications-Based Train Control (CBTC), Schnieder, ISBN 978-3-662-61012-1
Module: Real-Time Systems (24576) [M-INFO-100803]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Thomas Längle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management) Specialization in Mechatronics (Supplementary Modules)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101340</td>
</tr>
</tbody>
</table>
10.146 Module: Robotics - Practical Course [M/INFO-102522]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-105107</td>
<td>Robotics - Practical Course</td>
<td>6</td>
<td>6 CR</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Competence Certificate

See partial Achievements (Teilleistung)

Prerequisites

See partial Achievements (Teilleistung)

Competence Goal

The student knows concrete solutions for different problems in robotics. He/she uses methods of inverse kinematics, grasp and motion planning, and visual perception. The student can implement solutions in the programming languages C++ and Python with the help of suitable software frameworks.

Content

The practical course is offered as an accompanying course to the lectures Robotics I-III. Every week, a small team of students will work on solving a given robotics problem. The list of topics includes robot modeling and simulation, inverse kinematics, robot programming via state charts, collision-free motion planning, grasp planning, robot vision and robot learning.

Workload

Practical course with 4 SWS, 6 LP
6 LP corresponds to 180 hours, including
2 hours introductory event
18 hours initial familiarization with the software framework
120 hours group work
40 hours attendance time

Recommendation

10.147 Module: Robotics I - Introduction to Robotics [M/INFO-100893]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Module Handbook, valid from summer term 24

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T/INFO-108014 | Robotics I - Introduction to Robotics | 6 CR | Asfour |

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal
The student is able to apply the presented concepts to simple and realistic tasks from robotics. This includes mastering and deriving the mathematical concepts relevant for robot modeling. Furthermore, the student masters the kinematic and dynamic modeling of robot systems, as well as the modeling and design of simple controllers. The student knows the algorithmic basics of motion and grasp planning and can apply these algorithms to problems in robotics. He/she knows algorithms from the field of image processing and is able to apply them to problems in robotics. He/she is able to model and solve tasks as a symbolic planning problem. The student has knowledge about intuitive programming procedures for robots and knows procedures for programming and learning by demonstration.

Content
The lecture provides an overview of the fundamentals of robotics using the examples of industrial robots, service robots and autonomous humanoid robots. An insight into all relevant topics is given. This includes methods and algorithms for robot modeling, control and motion planning, image processing and robot programming. First, mathematical basics and methods for kinematic and dynamic robot modeling, trajectory planning and control as well as algorithms for collision-free motion planning and grasp planning are covered. Subsequently, basics of image processing, intuitive robot programming especially by human demonstration and symbolic planning are presented.

In the exercise, the theoretical contents of the lecture are further illustrated with examples. Students deepen their knowledge of the methods and algorithms by independently working on problems and discussing them in the exercise. In particular, students can gain practical programming experience with tools and software libraries commonly used in robotics.

Workload
Lecture with 3 SWS + 1 SWS Tutorial, 6 LP
6 LP corresponds to 180 hours, including
15 * 3 = 45 hours attendance time (lecture)
15 * 1 = 15 hours attendance time (tutorial)
15 * 6 = 90 hours self-study and exercise sheets
30 hours preparation for the exam
Module: Robotics II - Humanoid Robotics [M-INFO-102756]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Master's Transfer Account

Credits: 3
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 3

Mandatory
T-INFO-105723 Robotics II - Humanoid Robotics 3 CR Asfour

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal
The students have an overview of current research topics in autonomous learning robot systems using the example of humanoid robotics. They are able to classify and evaluate current developments in the field of cognitive humanoid robotics. The students know the essential problems of humanoid robotics and are able to develop solutions on the basis of existing research.

Content
The lecture presents current work in the field of humanoid robotics that deals with the implementation of complex sensorimotor and cognitive abilities. In the individual topics different methods and algorithms, their advantages and disadvantages, as well as the current state of research are discussed.

The topics addressed are: Applications and real world examples of humanoid robots; biomechanical models of the human body, biologically inspired and data-driven methods of grasping, imitation learning and programming by demonstration; semantic representations of sensorimotor experience as well as cognitive software architectures of humanoid robots.

Workload
Lecture with 2 SWS, 3 CP.
3 LP corresponds to approx. 90 hours, thereof:
approx. 15 * 2h = 30 Std. Attendance time
approx. 15 * 2h = 30 Std. Self-study prior/after the lecture
approx. 30 Std. Preparation for the exam and exam itself

Recommendation
Having visited the lectures on Robotics I - Introduction to Robotics and Mechano-Informatics and Robotics is recommended.
Module: Robotics III - Sensors and Perception in Robotics (24635) [M-INFO-104897]

Responsible
Prof. Dr.-Ing. Tamim Asfour

Organisation
KIT Department of Informatics

Part of
Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-109931 | Robotics III - Sensors and Perception in Robotics | 3 CR |

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal

Students can name the main sensor principles used in robotics.

Students can explain the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and semantic scene understanding.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, semantic scene interpretation, and (inter-)active perception. The lecture is divided into two parts: In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive). The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, semantic scene interpretation, and (inter-)active perception.

Workload

Lecture with 2 SWS, 3 LP

3 LP corresponds to 90 hours, including

- 15 * 2 = 30 hours attendance time
- 15 * 2 = 30 hours self-study
- 30 hours preparation for the exam

Recommendation

Attending the lecture Robotics I – Introduction to Robotics is recommended.
Competence Certificate
Examination of another type. The module grade is the grade of the brick. The description of the form of examination can be found in the description of the partial performance.

Prerequisites
None

Competence Goal
After successful completion of the course, the students are able to model and parameterise the requirements and boundary conditions for typical mechatronic systems. In addition, students learn the ability to select the appropriate procedures, processes, methods and tools for the development of a mechatronic system.

Important core competences in the areas of communication, problem solving and self-organisation are further essential components of the workshop, which enable the students to do reflected work independently and in a team.

Content
This module is designed to teach students how to develop a heterogeneous integrated mechatronic system. In the lecture, students are introduced to a system-oriented, higher-level approach to the description, assessment and development of a mechatronic system.

Parallel to this, the contents taught are applied and deepened in the practical part on hardware that is close to industry. The students learn the systematic development in a simulative environment as well as the transition from simulation to real hardware.

To achieve this, important components of software development in the robotics environment are taught. This includes, among other things, the basics of programming (Python) as well as the handling of the framework "Robot Operating System (ROS)". In addition, students gain insights into the use of sensors and actuators, image processing, autonomous navigation of automated guided vehicles and robotic grasping.

Annotation
None

Workload
1. attendance time lecture and exercise: 45 h
2. interdisciplinary qualification: 45 h
3. group work project: 130 h
4. colloquia and final event: 30 h
5. exam preparation and presence in the same: 20 h

In total: 270 = 9 LP

Recommendation
None

Learning type
Lecture, exercise, project.

Literature
None
10.151 Module: Seminar Battery I [M-ETIT-105319]

Responsible: Dr.-Ing. Andre Weber

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules) (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-110800 | Seminar Battery I | 3 CR |

Competence Certificate
The performance review takes the form of a written paper and a seminar presentation. The overall impression will be evaluated.

Prerequisites
none

Competence Goal
After completion of the seminar the students are able to work independently on an engineering problem in the field of batteries, to analyze the related literature and to present it in the form of a written paper and a presentation.

Content
The seminar “Batteries I” is primarily aimed at bachelor students who are planning to write their bachelor thesis in the field of batteries. In this seminar the participants will work on a scientific topic in the field of batteries. This usually includes a literature study, the compilation of the methods, procedures and results described in the publications as well as a critical evaluation of the same. In individual cases, next to a literature study more practical topics can be in focus.

The results are summarized in a seminar paper and presented in a lecture during the seminar. The grading is based on the written paper as well as the presentation.

Module grade calculation
The assessment of the written paper and the seminar presentation will be included in the module grade. Further details will be given at the beginning of the course.

Workload
1. presence time seminar: $15 \times 2 \text{ h} = 30 \text{ h}$
2. preparation of seminar paper: 30 h
3. preparation of seminar presentation: 30 h
Total: $30 + 30 + 30 = 90 \text{ h} = 3 \text{ LP}$
Module: Seminar Embedded Systems [M-ETIT-100455]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)

Credits 4
Grading scale Grade to a tenth
Recurrence Each term
Duration 1 term
Language German
Level 3
Version 3

Mandatory
T-ETIT-100753 Seminar Embedded Systems 4 CR Becker, Sax, Stork

Competence Certificate
Success is assessed in the form of a written paper, reviews and a presentation. The overall impression is assessed.

Prerequisites
none

Competence Goal
Seminar participants can independently familiarize themselves with a given technical topic, identify all relevant aspects and summarize the results. In this context, students can identify relevant literature in terms of the research question, assess the strengths and weaknesses of existing approaches and methods, and formally evaluate other works according to specified criteria. They can also suggest new aspects in line with the research question. They can present the results of their work concisely in the form of a short text (approx. 6-page paper, usually written in English) and an approx. 15-minute presentation in words and pictures (slides).

Content
In the “Embedded Systems” seminar, students work on a given topic from the field of information processing through literature and internet research under the guidance of research assistants and then present it to the other seminar participants in a short text (approx. 6-page paper, usually written in English) and a 15-minute presentation in words and pictures (slides). The students give each other feedback as part of a peer review and thus experience a part of the scientific publication process.

Module grade calculation
The grading is based on the elaboration, the mutual review and the presentation.

Workload
The workload includes:

1. Independent familiarization with a topic: 50h
2. Writing a scientific article: 40h
3. Preparing a peer review: 10h
4. Preparing and giving a presentation: 20h

Total: 120h = 4 LP
Module: Seminar Fuel Cell I [M-ETIT-105320]

Responsible: Dr.-Ing. Andre Weber

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)

Specialization in Mechatronics (Supplementary Modules)

- **Credits:** 3
- **Grading scale:** Grade to a tenth
- **Recurrence:** Each term
- **Duration:** 1 term
- **Language:** German/English
- **Level:** 3
- **Version:** 1

| Mandatory | T-ETIT-110798 | Seminar Fuel Cell I | 3 CR | Weber |

Competence Certificate
The examination consists of a written paper and an oral presentation of the students' work. The overall impression is rated.

Prerequisites
none

Competence Goal
After completing the seminar, the students are able to familiarize themselves independently with an engineering question in the field of fuel cells, analyze the associated literature and present it in the form of a written report and a presentation.

Content
The seminar "Fuel Cell Research Projects" is primarily aimed at students who are planning to carry out a scientific thesis in the fuel cell research area. In this seminar the participants deal with scientific questions in the field of fuel cells. This includes a literature search, the compilation of the methods, processes and results described in the publications as well as a critical evaluation of the same. The results are summarized in a seminar paper and presented in a lecture during the seminar. The written work and a lecture that has to be given during the event are included in the grading of the thesis.

Module grade calculation
The module grade results of the assessment of the written paper and the oral presentation. Details will be given during the lecture.

Workload
1. Presence seminar: 15 * 2 h = 30 h
2. Preparation of seminar paper and lecture: 30 h
3. Preparation of seminar lecture: 30 h
Total: 90 h = 3 LP
Module: Seminar on Selected Chapters of Biomedical Engineering [M-ETIT-100383]

Responsible: Dr.-Ing. Axel Loewe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Module</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100710</td>
<td>Seminar on Selected Chapters of Biomedical Engineering</td>
<td>3 CR</td>
<td>Loewe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Success monitoring is carried out in the context of a lecture (approx. 25 minutes) followed by a discussion (approx. 10 minutes).

Prerequisites

none

Competence Goal

The students are able to research a scientific topic from biomedical technology, work out essentials, process the content, prepare a lecture and finally present it.

Content

The seminar aims to enable students to independently work on and present a scientific topic in the field of biomedical engineering in order to improve their presentation skills. First, an introduction to presentation techniques and feedback rules is given. Then there is a test presentation to try out the techniques learned. Finally, the students select a topic of biomedical engineering for their presentation and prepare a specialist lecture on this topic.

Workload

Attendance time: 15 weeks * 2SWS = 30h

Development of the topic, exchange with supervisor, preparation of the lecture: 60h

Responsible: Prof. Dr.-Ing. Marc Hiller

Organisation:
- KIT Department of Electrical Engineering and Information Technology
- KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100714 | Seminar Power Electronics in Regenerative Energy Systems | 4 CR | Hiller |

Prerequisites

none
10.156 Module: Sensors [M-ETIT-100378]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Description</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101911</td>
<td>Sensors</td>
<td>3 CR</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>
Module: Signals and Systems [M-ETIT-104525]

10.157 Module: Signals and Systems [M-ETIT-104525]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109313</td>
<td>Signals and Systems</td>
<td>6 CR</td>
<td>Heizmann</td>
</tr>
<tr>
<td>T-ETIT-109314</td>
<td>Signals and Systems - Workshop</td>
<td>1 CR</td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the module consists of

1. a written examination of 120 minutes on the course Signals and Systems (6 CP)
2. a written paper on the course Signals and Systems - Workshop, (1 CP)

Prerequisites
none

Competence Goal
After completing the module, students are familiar with the representation of signals and have mastered the basics of system theory.

By applying transformations to signals and systems, they will be able to describe and evaluate solution approaches for continuous-time and discrete-time problems in signal processing. The mathematical methods learned can be transferred to problems from other areas of study.

In the workshop, students learn how to coordinate a project in small teams and how to present the results in the form of technical documentation. Furthermore, they are able to apply the theory in the field of digital signal processing systems in practice.

Content
The module is a basic lecture on signal processing. The focus of the course is on

- Mathematical foundations (mathematical spaces, basis function systems, Bessel's inequality, projection theorem)
- Continuous-time signals (function spaces, Fourier transform, leakage effect, Gibbs phenomenon, duration-bandwidth product)
- Continuous-time systems (linearity, time invariance, causality, stability, Laplace transform, system function, filtering with window functions, Hilbert transform)
- Discrete-time signals (sampling theorem, reconstruction, oversampling, undersampling, discrete Fourier transform)
- Discrete-time systems (z-transform, system function, discrete-time representation of continuous systems, filtering with window functions)

The workshop takes up many of these focal points and shows the practical application of the sampling theorem, discrete-time signals and filtering. Audio signals, pulse-width modulated signals and filtering using moving averages are used as examples.

Module grade calculation
The module grade is the grade of the written examination. In addition, passing the workshop is a prerequisite for passing the module.

Annotation
The workshop is offered in the summer semester.
The module duration is therefore 2 semesters.
Workload
The preparation (0.5 h), attendance (1.5 h) and follow-up (2 h) of the weekly lecture and exercise as well as the preparation (50-60 h) and participation (2 h) in the written exam result in a total workload of 150-160 h for the course Signals and Systems, i.e. 6 CP.

The workload of the workshop is made up as follows:

1. Attendance time in the preparatory course incl. follow-up: 2h
2. Working on the assignment: 23h
3. Preparation of the written paper (protocol): 5h

The time required per workshop is approximately 30 hours. This corresponds to 1 CP.

Recommendation
Advanced Mathematics I + II
10.158 Module: Soft Skills [M-MACH-104355]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105699 | Cooperation in Interdisciplinary Teams | 2 CR | Matthiesen |

Competence Certificate
Accompanying the workshop, delivery services are required. In these the application of the knowledge of the students is examined.

Prerequisites
None

Competence Goal
The students:

- can apply the principles for ensuring good scientific practice
- can describe the difficulties of interdisciplinary project work
- can coordinate processes, structures, areas of responsibility and interfaces within a project
- know the elements of the treated product development processes (PEP) and can explain the different views of a PEP

Content
The students receive a semester-accompanying development task, which they must solve independently. The development task is handled in small groups in which the students organize themselves and divide the tasks independently. This involves various development phases, from the development of technical solution concepts to the development and validation of virtual prototypes and physical functional prototypes. At the end of the semester, the experiences of the development task are reflected upon.

Workload
60 h, thereof 5 h attendance time, 55 h self-study and study preparation

Learning type
Exercise and project work
10.159 Module: Software Engineering I (IN1INSWT1) [M/INFO-101175]

Responsible: Prof. Dr.-Ing. Ina Schaefer
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T/INFO-101968</td>
<td>Software Engineering I</td>
<td>6 CR</td>
<td></td>
<td>Schaefer</td>
<td></td>
</tr>
<tr>
<td>T/INFO-101995</td>
<td>Software Engineering I Pass</td>
<td>0 CR</td>
<td></td>
<td>Schaefer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Goal
The students acquire basic knowledge about the principles, methods and tools of software engineering. They learn how to build and to maintain complex software systems in a systematic way.

Content
The content of the lecture is the entire lifecycle of software, spanning project planning, system analysis, cost estimation, design, implementation, validation, verification, and finally the maintaining of software. The covered topics include UML, design patterns, software tools, programming environments and configuration control/versioning systems.

Workload
approx. 180 h
10.160 Module: Software Engineering II (IN4INSWT2) [M-INFO-100833]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101370 | Software Engineering II | 6 CR | Koziolek, Reussner |

Content

Requirements engineering, software development processes, software quality, software architectures, MDD, Enterprise Software Patterns software maintainability, software security, dependability, embedded software, middleware, domain-driven design
Module: Stochastic Information Processing (24113) [M-INFO-100829]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101366</td>
</tr>
</tbody>
</table>
Module: Superconducting Magnet Technology [M-ETIT-106684]

Responsible: Prof. Dr. Tabea Arndt
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules) (Usage from 4/1/2024)

Credits	Grade to a tenth	Recurrence	Duration	Language	Level	Version
4 | | Each summer term | 1 term | English | 3 | 1

Competence Certificate
The examination takes place in form of an oral exam (abt. 30 minutes).

Two timeslots (weeks) for examination dates will be announced (usually near end of lecture period & end of semester)

Prerequisites
none

Competence Goal

- The students have a solid knowledge of architecture and design aspects of applications in magnets, windings and coils in power engineering.
- For the most important magnet applications the students can apply the state of the art, choose between options and can reflect the main benefits.
- The students have a clear understanding of opportunities, benefits and limitations of superconducting windings and magnets.
- The students are able to perform the required design calculations and to solve fundamental design questions independently.

Content
As the materials become increasingly mature and powerful, using superconductivity in a variety of applications of electrical engineering is of rising interest and benefit, too. This module is focuses on Superconducting Magnet Technology:

Windings, coils and magnets may be used as a device by itself (providing high magnetic fields e.g. in MRI, NMR, accelerators, industry magnets, etc.) or as components for Power Systems.

This section will cover the following aspects:

- Unique selling points of superconducting windings.
- Basic approaches and tools to design superconducting windings.
- Discussion of winding architectures
- Criteria to design the appropriate operating temperatures, materials, conductors, cooling technology for the electromagnetic purpose.
- Limits and opportunities when preparing and operating superconducting windings.
- Measures for safe operation of superconducting magnets.
- High-Field Magnets
- Magnets for Fusion Technology
- 3D topologies (e.g. in dipole magnets or motors/ generators)
- New options potentially offered by widespread use of hydrogen.
- New winding topologies

In the exercises, selected magnets will be designed and calculated analytically and with some computational tools (e.g. dipole magnets and compact, cryogen free HTS-magnets)

The lecturer may change the details of the content without further notice. Materials will be offered on ILIAS.

Module grade calculation
The module grade is the grade of the oral exam.
Workload

1. attendance in lectures and exercises: 15*3 h = 45 h
2. preparation / follow-up: 15*3 h = 45 h
3. preparation of and attendance in examination: 30 h

A total of 120 h = 4 CR

Recommendation

Having knowledge in "Superconducting Materials" is beneficial, but not mandatory.
Module: Superconducting Power Systems [M-ETIT-106683]

Responsible: Prof. Dr. Mathias Noe
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules) (Usage from 4/1/2024)

Mandatory

| T-ETIT-113439 | Superconducting Power Systems | 4 CR | Noe |

Competence Certificate
The examination takes place in form of an oral exam (abt. 45 minutes).

Prerequisites
none

Competence Goal

- The students have a solid knowledge of architecture and design aspects of applications in windings and energy technology devices.
- For the most important power system applications the students can apply the state of the art and can reflect the main benefits.
- The students have a clear understanding of opportunities, benefits and limitations of superconducting components and devices.
- The students are able to perform the required design calculations and to solve fundamental design questions independently.

Content
As the materials become increasingly mature and powerful, using superconductivity in a variety of applications of electrical engineering is of rising interest and benefit, too. This module focuses on Superconducting Power Systems.

It will provide an overview of the state of the art, will give an insight into the basic setup, the design, the characteristic parameters and the specific operation behaviour of the following applications:

- Power Transmission Cables and Lines
- Motors and Generators
- Transformers
- Fault Current Limiters
- Magnetic Energy Storage
- Basics of Cryo Technology

For each application a design example is shown and the focus is given on the conceptual design of each application.

The lecturers may change the details of the content without further announcement.

Materials will be offered on ILIAS.

Module grade calculation
The module grade is the grade of the oral exam.

Workload

1. attendance in lectures and exercises: 15*3 h = 45 h
2. preparation / follow-up: 15*3 h = 45 h
3. preparation of and attendance in examination: 30 h

A total of 120 h = 4 CR

Recommendation
Having knowledge in „Superconducting Materials“ is beneficial.
Successful participation in „Superconductivity for Engineers“
Module: Superconductors for Energy Applications [M-ETIT-105299]

Responsible: apl. Prof. Dr. Francesco Grilli

Organisation:
- KIT Department of Chemical and Process Engineering
- KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-110788</td>
<td>Superconductors for Energy Applications</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Grading scale

Level

Version

Competence Certificate
oral exam approx. 30 minutes.

Prerequisites
The module “Superconducting Materials for Energy Applications” must not be taken.

Competence Goal
The students acquire a good knowledge of physical properties of superconductors including those currently employed in energy applications (niobium-based superconductors, cuprates, MgB2) and also promising recently discovered ones (pnictides)).

The students have a thorough understanding of the wide range of superconducting energy applications (magnets, cables, fault current limiters, motors, transformers, etc.). They can discuss the advantages they offer with respect to their conventional counterparts; they can also define the scientific and technical challenges involved in those applications.

With the practical exercise, the students learn to use different software packages (Matlab, Comsol Multiphysics) and to model the electromagnetic and thermal behavior of superconducting wires and applications.

The students are able to talk about topic-related aspects in English using the technical terminology of the field of study.

Content
Superconductivity is one of the most important discoveries in physics in the twentieth century and has just celebrated its 100th birthday. Investigating the origins of the universe in particle accelerators or having detailed images of the human body with MRI would be impossible without employing technology based on superconductors. The near future will see superconductors enter our everyday life even more deeply, in the form of cables powering our cities, fault current limiters protecting our electric grids, and super-fast levitating trains reducing dramatically travel times.

The lecture provides an introduction to superconductivity with an overview of its main features and of the theories developed to explain it. Superconducting materials and their properties will be presented, especially materials currently employed in energy applications (niobium-based superconductors, uprates, MgB2) and promising recently discovered ones (pnictides). The wide range of superconducting energy applications (magnets, cables, fault current limiters, motors, transformers, etc.) will be covered as well as the advantages they offer with respect to their conventional counterparts.

The practical exercises are based on using numerical models (e.g. finite-element method or network approach) to investigate the electromagnetic and thermal behavior of superconducting wires and applications such as cables and magnets.

Module grade calculation
The module grade is the grade of the oral exam.
Workload
Each credit point (LP) corresponds to approximately 30 hours of work (by the student). This is based on the average student who achieves an average performance.

The workload in hours is broken down as follows:
1. Presence time in lectures, exercises 45 h
2. Preparation / Post-processing of the same 30 h
3. Exam preparation and presence in the same 75 h

Recommendation
A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.
Module: Supplementary Studies on Culture and Society [M-ZAK-106235]

10.165 Module: Supplementary Studies on Culture and Society [M-ZAK-106235]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td></td>
<td>Each term</td>
<td>3 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Election notes

With the exception of the final oral exam and the practice module, students have to self-record the achievements obtained in the Supplementary Studies on Culture and Society in their study plan. ZAK records the achievements as "non-assigned" under "UQ/SQ-Leistungen". Further instructions on self-recording of achievements can be found in the FAQ at https://campus.studium.kit.edu/ and on the ZAK homepage at https://www.zak.kit.edu/begleitstudium-bak.php. The title of the examination and the amount of credits override the modules placeholders.

If you want to use ZAK achievements **both for your interdisciplinary qualifications and for the supplementary studies**, please record them in the interdisciplinary qualifications first. You can then get in contact with the ZAK study services (stg@zak.kit.edu) to also record them in your supplementary studies.

In the in-depth module, achievements have to be obtained in three different areas. The areas are as follows:

- Technology & Responsibility
- Doing Culture
- Media & Aesthetics
- Spheres of Life
- Global Cultures

You have to obtain two achievements with 3 credits each and one achievement with 5 credits. To self-record achievements in the in-depth module, you first have to elect the matching partial achievement.

Note: If you registered for the Supplementary Studies on Sustainable Development before April 1st, 2023, self-recording an achievement in this module counts as a request in the sense of §20 (2) of the regulations for the Supplementary Studies on Culture and Society. Your overall grade for the supplementary studies will thus be calculated as the average of the examantion grades, not as the average of the module grades.

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112653</td>
<td>Basics Module - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

In-depth Module (Election: 3 items)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112654</td>
<td>In-depth Module - Technology & Responsibility - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112655</td>
<td>In-depth Module - Doing Culture - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112656</td>
<td>In-depth Module - Media & Aesthetics - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112657</td>
<td>In-depth Module - Spheres of Life - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112658</td>
<td>In-depth Module - Global Cultures - Self Assignment BAK</td>
<td>3 CR</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112660</td>
<td>Practice Module</td>
<td>4 CR</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112659</td>
<td>Oral Exam - Supplementary Studies on Culture and Society</td>
<td>4 CR</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

Competence Certificate

The monitoring is explained in the respective partial achievement.

They are composed of:

- minutes
- presentations
- a seminar paper
- an internship report
- an oral examination

After successful completion of the supplementary studies, the graduates receive a graded certificate and a KIT certificate.
Prerequisites
The offer is study-accompanying and does not have to be completed within a defined period of time. Enrolment or acceptance for graduation must be present when registering for the final examination.

KIT students register for the supplementary studies by selecting this module in the student portal and self-checking a performance. In addition, registration for the individual courses is necessary, which is possible shortly before the beginning of each semester.

The course catalogue, statutes (study regulations), registration form for the oral exam, and guides for preparing the various written performance requirements can be found as downloads on the ZAK homepage at www.zak.kit.edu/begleitstudium-bak.

Competence Goal
Graduates of the Supplementary Studies on Culture and Society demonstrate a sound basic knowledge of conditions, procedures and concepts for analysing and shaping fundamental social development tasks in connection with cultural topics. They have gained a well-founded theoretical and practical insight into various cultural studies and interdisciplinary topics in the field of tension between culture, technology and society in the sense of an expanded concept of culture.

They are able to place the contents selected from the specialization module in the basic context as well as to analyse and evaluate the contents of the selected courses independently and exemplarily and to communicate about them scientifically in written and oral form. Graduates are able to analyse social topics and problem areas and critically reflect on them in a socially responsible and sustainable perspective.

Content
The Supplementary Studies on Culture and Society can be started from the 1st semester and is not limited in time. It comprises at least 3 semesters. The supplementary studies are divided into 3 modules (basics, in-depth studies, practice). A total of 22 credit points (ECTS) are earned.

The thematic elective areas of the supplementary studies are divided into the following 5 modules and their sub-topics:

Block 1 Technology & Responsibility
Value change / ethics of responsibility, technology development / history of technology, general ecology, sustainability

Block 2 Doing Culture
Cultural studies, cultural management, creative industries, cultural institutions, cultural policy

Block 3 Media & Aesthetics
Media communication, cultural aesthetics

Block 4 Spheres of Life
Cultural sociology, cultural heritage, architecture and urban planning, industrial science

Block 5 Global Cultures
Multiculturalism / interculturalism / transculturalism, science and culture

Module grade calculation
The overall grade of the supplementary studies is calculated as an average of the grades of the examination performances weighted with credit points.

In-depth Module
- presentation 1 (3 ECTS)
- presentation 2 (3 ECTS)
- seminar paper incl. presentation (5 ECTS)
- oral examination (4 ECTS)

Annotation
With the Supplementary Studies on Culture and Society, KIT provides a multidisciplinary study offer as an additional qualification, with which the respective specialized study program is supplemented by interdisciplinary basic knowledge and interdisciplinary orientation knowledge in the field of cultural studies, which is becoming increasingly important for all professions.

Within the framework of the supplementary studies, students acquire in-depth knowledge of various cultural studies and interdisciplinary subject areas in the field of tension between culture, technology and society. In addition to high culture in the classical sense, other cultural practices, common values and norms as well as historical perspectives of cultural developments and influences are considered.

In the courses, conditions, procedures and concepts for the analysis and design of fundamental social development tasks are acquired on the basis of an expanded concept of culture. This includes everything created by humans - also opinions, ideas, religious or other beliefs. The aim is to develop a modern concept of cultural diversity. This includes the cultural dimension of education, science and communication as well as the preservation of cultural heritage. (UNESCO, 1982)

According to § 16 of the statutes, a reference and a certificate are issued by the ZAK for the supplementary studies. The achievements are also shown in the transcript of records of the degree program and, upon request, in the certificate. They can also be recognized in the interdisciplinary qualifications (see elective information).
Workload
The workload is made up of the recommended number of hours for the individual modules:

- basic module approx. 90 h
- in-depth module approx. 340 h
- practical module approx. 120 h

Total: approx. 550 h

Learning type

- lectures
- seminars
- workshops
- practical course

Literature
Recommended reading of primary and specialized literature will be determined individually by each instructor.
Module: Supplementary Studies on Sustainable Development [M-ZAK-106099]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: Additional Examinations (Usage from 4/1/2023)

Election notes

With the exception of the final oral exam, students have to self-record the achievements obtained in the Supplementary Studies on Sustainable Development in their study plan. ZAK records the achievements as "non-assigned" under "ÜQ/SQ-Leistungen". Further instructions on self-recording of achievements can be found in the FAQ at https://campus.studium.kit.edu/ and on the ZAK homepage at https://www.zak.kit.edu/begleitstudium-bene. The title of the examination and the amount of credits override the modules placeholders.

If you want to use ZAK achievements **both for your interdisciplinary qualifications and for the supplementary studies**, please record them in the interdisciplinary qualifications first. You can then get in contact with the ZAK study services (stg@zak.kit.edu) to also record them in your supplementary studies.

In the elective module, you need to obtain 6 credits worth of achievements in two of the four areas:

- Sustainable Cities & Neighbourhoods
- Sustainable Assessment of Technology
- Subject, Body, Individual: The Other Side of Sustainability
- Sustainability in Culture, Economy & Society

Usually, two achievements with 3 credits each have to be obtained. To self-record achievements in the elective module, you first have to elect the matching partial achievement.

Note: If you registered for the Supplementary Studies on Sustainable Development before April 1st, 2023, self-recording an achievement in this module counts as a request in the sense of §19 (2) of the regulations for the Supplementary Studies on Sustainable Development. Your overall grade for the supplementary studies will thus be calculated as the average of the examination grades, not as the average of the module grades.

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>3 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

- **T-ZAK-112345** Basics Module - Self Assignment BeNe
 3 CR Myglas

Elective Module (Elective: at least 6 credits)

- **T-ZAK-112347** Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe
 3 CR

- **T-ZAK-112348** Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe
 3 CR

- **T-ZAK-112349** Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe
 3 CR

- **T-ZAK-112350** Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe
 3 CR

Competence Certificate

The monitoring is explained in the respective partial achievement.

They are composed of:

- protocols
- a reflection report
- presentations
- presentations
- the elaboration of a project work
- an individual term paper

Upon successful completion of the supplementary studies, graduates receive a graded report and a certificate issued by ZAK.
Prerequisites
The course is offered during the course of study and does not have to be completed within a defined period of time. Enrolment is required for all performance assessments of the modules of the supplementary studies. Participation in the supplementary studies is regulated by § 3 of the statutes.
KIT students register for the supplementary studies by selecting this module in the student portal and self-booking a performance. Registration for courses, performance assessments and examinations is regulated by § 6 of the Statutes and is usually possible shortly before the beginning of the semester.

The course catalogue, statutes (study regulations), registration form for the oral exam and guidelines for preparing the various written performance requirements can be found as downloads on the ZAK homepage at http://www.zak.kit.edu/begleitstudium-bene.

Competence Goal
Graduates of the supplementary studies in sustainable development acquire additional practical and professional competencies. Thus, the supplementary study program enables the acquisition of basics and initial experience in project management, trains teamwork skills, presentation skills and self-reflection, and also creates a fundamental understanding of sustainability that is relevant for all professional fields.
Graduates are able to analyse social topics and problem areas and critically reflect on them in a socially responsible and sustainable perspective. They are able to place the contents selected from the modules "Elective" and "Advanced" in the basic context as well as to independently and exemplary analyse and evaluate the contents of the selected courses and to scientifically communicate about them in written and oral form.

Content
The supplementary study program Sustainable Development can be started from the 1st semester and is not limited in time. The wide range of courses offered by ZAK makes it possible to complete the program usually within three semesters. The supplementary studies comprise 19 credit points (LP). It consists of three modules: Basic Module, Elective Module and Advanced Module.
The thematic elective areas of the supplementary studies are divided into the following 4 modules and their subtopics in Module 2 (elective module):

Block 1 Sustainable Cities and Neighbourhoods
The courses provide an overview of the interaction of social, ecological, and economic dynamics in the microcosm of the city.

Block 2 Sustainability Assessment of Technology
Mostly based on ongoing research activities, methods and approaches of technology assessment are elaborated.

Block 3 Subject, Body, Individual: The other Side of Sustainability
Different approaches are presented to the individual perception, experience, shaping and responsibility of relationships to the environment and to oneself.

Block 4 Sustainability in Culture, Economy & Society
Courses usually have an interdisciplinary approach, but may also focus on one of the areas of culture, economics or society, both in application and in theory.

The core of the supplementary studies is a case study in the specialization area. In this project seminar, students conduct sustainability research with practical relevance themselves. The case study is supplemented by an oral examination with two topics from module 2 (elective module) and module 3 (in-depth module).

Module grade calculation
The overall grade of the supplementary studies is calculated as an average of the grades of the examination performances weighted with credit points.

Elective module
- Presentation 1 (3 ECTS)
- Presentation 2 (3 ECTS)

Advanced module
- individual term paper (6 ECTS)
- oral examination (4 ECTS)
Annotation
The Supplementary Studies on Sustainable Development at KIT is based on the conviction that a long-term socially and ecologically compatible coexistence in the global world is only possible if knowledge about necessary changes in science, economy and society is acquired and applied.

The interdisciplinary and transdisciplinary Studies on Sustainable Development enables diverse access to transformation knowledge as well as basic principles and application areas of sustainable development. According to the statutes § 16, a certificate is issued by the ZAK for the complementary studies.

The achievements are also shown in the transcript of records of the degree program and, upon request, in the certificate. They can also be recognized in the interdisciplinary qualifications (see elective information).

In the specialised studies, modules and partial achievements can be recognised within the framework of the additional achievements or e.g. the interdisciplinary qualifications. This must be regulated via the respective subject study programme.

The focus is on experience- and application-oriented knowledge and competences, but theories and methods are also learned. The aim is to be able to represent one's own actions as a student, researcher and later decision-maker as well as an individual and part of society under the aspect of sustainability.

Sustainability is understood as a guiding principle to which economic, scientific, social and individual actions should be oriented. According to this, the long-term and socially just use of natural resources and the material environment for a positive development of global society can only be addressed by means of integrative concepts. Therefore, "education for sustainable development" in the sense of the United Nations programme plays just as central a role as the goal of promoting "cultures of sustainability". For this purpose, practice-centred and research-based learning of sustainability is made possible and the broad concept of culture established at ZAK is used, which understands culture as habitual behaviour, lifestyle and changing context for social actions.

The supplementary study programme conveys the basics of project management, trains teamwork skills, presentation skills and self-reflection. Complementary to the specialised studies at KIT, it creates a fundamental understanding of sustainability, which is important for all professional fields. Integrative concepts and methods are essential: in order to use natural resources in the long term and to shape the global future in a socially just way, not only different disciplines, but also citizens, practitioners and institutions must work together.

Workload
The workload is made up of the number of hours of the individual modules:

- Basic module approx. 180 h
- Elective module approx. 150 h
- Consolidation module approx. 180 h

Total: approx. 510 h

Learning type
- lectures
- seminars
- workshops

Literature
Recommended reading of primary and specialist literature is determined individually by the respective lecturer.
Module: System Dynamics and Control Engineering [M-ETIT-102181]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Engineering Fundamentals

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 3
Version: 2

Mandatory

| T-ETIT-101921 | System Dynamics and Control Engineering | 6 CR | Hohmann |

Competence Certificate
Success is assessed in the form of a written examination lasting 120 minutes.

Prerequisites
none

Competence Goal
- The aim is to teach the theoretical fundamentals of control engineering, so students are able to recognize and work on basic control engineering problems.
- Students are able to formally describe real processes and derive requirements for control structures.
- They can analyze the dynamics of systems using graphical and algebraic methods.
- Students will be able to name control design methods for single-variable systems, select them on the basis of criteria, carry out the design steps and evaluate the designed control system; they will also be able to compensate for disturbances using suitable control loop structures.
- Students know relevant technical terms in control engineering and can evaluate and discuss proposed solutions in a goal-oriented manner.
- They are familiar with computer-aided tools for working on system-theoretical issues and can use them.

Content
The basic lecture System Dynamics and Control Engineering provides students with knowledge in a core area of engineering. They become familiar with the elements as well as the structure and behavior of dynamic systems. Students learn basic concepts of control engineering and gain an insight into the tasks involved in controller design and the corresponding solution methods in the frequency and time domain. This enables them to systematically apply mathematical methods to analyze and synthesize dynamic systems.

Module grade calculation
The module grade is the grade of the written examination.

Annotation
valid until 31.03.2025 - Replacement: M-ETIT-106339 - Measurement and Control Technology

Workload
The workload includes
1. attendance time in lecture/exercise (2+2 SWS: 60h, 2 LP)
2. preparation/follow-up of lecture/exercise/tutorial (optional) (105h, 3.5 CP)
3. preparation/attendance time for written examination (15h, 0.5 CP)
Module: Technical Design in Product Development [M-MACH-105318]

Responsible
Prof. Dr.-Ing. Albert Albers

Organisation
KIT Department of Mechanical Engineering

Part of
Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105361
Technical Design in Product Development
4 CR
Albers, Matthiesen, Schmid

Competence Certificate
Written examination; duration approx. 1h

Prerequisites
None

Competence Goal
The students:

- acquire and possess sound design skills for use at the interface between engineer and designer.
- master all relevant human-product requirements, such as demographic/geographic and psychographic characteristics, relevant modes of perception, typical recognition contents as well as ergonomic basics.
- have a command of the procedure for designing a product, product range or product system from the structure, through form, colour and graphic design within the phases of the design process.
- have a command of the functional and structural design as well as the important human-machine interface of interface design, have knowledge of the essential parameters of a good corporate design.

Content
Value relevant parameters of the technical design

- Basics Interface Design
- Macroergonomics: Planning and concept phase
- Microergonomics: Concept and design phase
- Microergonomics: development phase

Best practice

Module grade calculation

The module grade is composed of:

1. Grade of the written examination (100%)

Annotation

After attending the module, students will have the knowledge of the essential fundamentals of technically oriented design, as an integral part of methodical product development.

Workload

1. Time of presence lecture: 21 h
2. Prepare/follow-up lecture exam preparation: 99 h

Total: 120 h = 4 LP

Learning type

Tutorial

Media:

- Beamer
- Models
Literature
Markus Schmid, Thomas Maier
Technisches Interface Design Anforderungen, Bewertung, Gestaltung.
2017

Hartmut Seeger
Design technischer Produkte, Produktprogramme und -systeme
Industrial Design Engineering.
2., bearb. und erweiterte Auflage.
ISBN: 3540236538
September 2005 - gebunden - 396 Seiten
Module: Technical Thermodynamics and Heat Transfer I [M-MACH-102386]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of:
Specialization in Mechatronics (Compulsary Elective Modules: Mechanical Engineering)
Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-MACH-104747</th>
<th>Technical Thermodynamics and Heat Transfer I</th>
<th>8 CR</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105204</td>
<td>Exercices in Technical Thermodynamics and Heat Transfer I</td>
<td>0 CR</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

See individual courses

Competence Goal

The students acquire the competency to master the fundamentals of thermodynamics and the ability to apply this knowledge to problem-solving in various branches of mechanical engineering and especially in the energy technology sector.

An integral part of the module is that students can define the fundamental laws of thermodynamics and their applications. The students are competent in describing and comparing the main processes in energy conversion that are important in mechanical engineering. Using tools also applied in industry, they are capable of analyzing and rating the efficiency of processes. The students are capable of discussing the thermodynamic correlation of ideal gas mixtures, real gases, and humid air, as well as explaining the properties on a molecular basis and analyzing them with the help of the laws of thermodynamics.

Content

- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Module grade calculation

Grade of the written exam

Annotation

This module, including all brick details, exams and courses, is offered in German language.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload

Lectures and exercises: 75 h
Homework and preparation of examination: 165 h

Learning type

Lecture
Exercise course
Tutorial

Literature

Script
Additional literature will be provided in the lecture.
Module: Technical Thermodynamics and Heat Transfer II (7) [M-MACH-102830]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105287 | Technical Thermodynamics and Heat Transfer II | 7 CR | Maas |
| T-MACH-105288 | Exercises in Technical Thermodynamics and Heat Transfer II | 0 CR | Maas |

Competence Certificate
See individual courses

Competence Goal
The students acquire the competency to master the fundamentals of thermodynamics and the ability to apply this knowledge to problem-solving in various branches of mechanical engineering and especially in the energy technology sector.

An integral part of the module is that students can define the fundamental laws of thermodynamics and their applications. The students are competent in describing and comparing the main processes in energy conversion that are important in mechanical engineering. Using tools also applied in industry, they are capable of analyzing and rating the efficiency of processes. The students are capable of discussing the thermodynamic correlation of ideal gas mixtures, real gases, and humid air, as well as explaining the properties on a molecular basis and analyzing them with the help of the laws of thermodynamics. Furthermore, the students are capable of explaining chemical reactions in the context of thermodynamics as well as defining and applying the heat transfer mechanisms.

Content
- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat transfer

Module grade calculation
Weighting according to credit points.

Annotation
This module, including all brick details, exams and courses, is offered in German language.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
Lectures and exercises: 75 h
Homework and preparation of examination: 135 h

Recommendation
Technical Thermodynamics and Heat Transfer I

Learning type
Lecture
Exercise course
Tutorial
Literature
Script

Additional literature will be provided in the lecture.
10.171 Module: Theory of Probability [M-ETIT-102104]

Responsible: Dr.-Ing. Holger Jäkel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101952</td>
<td>Theory of Probability</td>
<td>5</td>
<td>CR</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Type of examination: written exam. Duration of examination: approx. 120 minutes.

Prerequisites
Contents of higher mathematics are necessary (e.g. M-MATH-101731 and M-MATH-101732).

Recommendation
Contents of digital technologies are recommended (e.g. M-ETIT-102102).

Responsible: Dr.-Ing. Holger Jäkel
Prof. Dr.-Ing. Laurent Schmalen

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101952</td>
<td>Theory of Probability</td>
<td>5 CR</td>
<td>Jäkel</td>
</tr>
<tr>
<td>T-ETIT-101936</td>
<td>Communications Engineering I</td>
<td>6 CR</td>
<td>Schmalen</td>
</tr>
</tbody>
</table>

Competence Certificate

1. Theory of Probability:
 Type of examination: written exam. Duration of examination: approx. 120 minutes

2. Communication Engineering I:
 Type of examination: written exam. Duration of examination: approx. 180 minutes

Prerequisites

1. Theory of Probability:
 Contents of higher mathematics are necessary (e.g. M-MATH-101731 und M-MATH-101732).

Responsible: Prof. Dr. Robert Stieglitz

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105225 | Thermal Solar Energy | 4 CR | N.N. |

Competence Certificate

A performance assessment is obligatory; oral exam about 30 minutes

Prerequisites

none

Competence Goal

Based on the elaboration of the basic physics knowledge of the solar irradiation, heat radiation, optics and thermal-hydraulics, the student will be able to

- select solar thermal components such as mirrors, glasses, selective absorbers and insulation materials and their manufacturing processes and to calculate and assess their performance,
- identify different collector types and to indicate their potential field of application,
- characterize the entire solar thermal collector system with respect to its performance and derive from the collector characteristics its suitability for different types of use,
- embed collectors into a technical overall system for heat (household, process heat, heat storage networks) or electricity generation (power plant), to calculate the system efficiency and independently develop the basics of its optimization.
- identify adequate thermal storage types for the temporal separation of generation and consumption, to dimension them appropriately and to integrate them into a system concept,
- evaluate solar thermal systems in their entirety (capacity, estimation of system dynamics, response behavior, efficiency) and know options for integration into networks (heat, cold, electricity).

Content

Fundamentals of thermal solar energy from solar irradiation (influence of time and place, modifications in the atmosphere) and their implementation in a collector to integration into a technical overall system. In detail:

1. *introduction* to the energy demand and evaluation of the application potential of solar thermal energy.
2. *primary energy source SUN:* Sun, solar constant, solar radiation (scattering, absorption in the atmosphere, direct-diffuse radiation, angular influences, radiation balance).
3. *solar collectors:* basic design of a collector, basics of determining the efficiency, significance of concentration and its limitations, solar thermal collector types (designs, efficiency, system technology).
5. *momentum and heat transport:* basic equations of single- and multi-phase transport, basic ideas of local and system engineering calculation methods, stability limits.

Optional

6. *solar thermal low-temperature systems:* collector variants, methods for system simulation, planning and dimensioning of systems, system-related system design and stagnation scenarios and their handling.
7. *solar thermal high-temperature systems:* solar thermal power plants (classification of system components, loss mechanisms, upwind power plants), coupling of collector with energy generation process.

At the end:

8. *Thermal energy storage* Explanation of terms (energy contents, storage forms and materials, potentials ...), storage concepts (system structure, design ratio), system integration.
Workload
regular lecture attendance: 30 h
self-study: 60 h (incl. supplementary searches)
exam preparation 30 h

Recommendation
desirable are reliable knowledge in physics in optics and thermodynamics
Basics in heat and mass transfer, material science, energy technology and fluid mechanics

Learning type
Präsentation complemented by printouts

Literature
supply of lecture material in printed and electronic form

Responsible: Prof. Dr.-Ing. Frank Henning
Organisation: KIT Department of Mechanical Engineering

Lightweight Design

Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105237 | Vehicle Lightweight Design - Strategies, Concepts, Materials | 4 | Henning |

Competence Certificate
Written exam; Duration approx. 90 min

Prerequisites
none

Competence Goal
Students learn that lightweight design is a process of realizing a demanded function by using the smallest possible mass. They understand lightweight construction as a complex optimization problem with multiple boundary conditions, involving competences from methods, materials and production.

Students learn the established lightweight strategies and ways of construction. They know the metallic materials used in lightweight construction and understand the relation between material and vehicle body.

Content
Strategies in lightweight design
Shape optimization, light weight materials, multi-materials and concepts for lightweight design

Construction methods
Differential, integral, sandwich, modular, bionic

body construction
Shell, space-frame, monocoque

metallic materials
Steel, aluminium, magnesium, titan

Workload
1. Attendance of lectures: 21 h
2. Preparation and attendance of examination: 99 h
Total: 120 h = 4 LP

Learning type
Lecture

Literature
Module: Vehicle Systems for Urban Mobility [M-MACH-106515]

Responsible: Prof. Dr.-Ing. Martin Cichon

Organisation: KIT Department of Mechanical Engineering

Part of: Master's Transfer Account (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-113069 | Vehicle Systems for Urban Mobility | 4 CR | Cichon |

Competence Certificate

Oral exam
Duration approx. 20 minutes
Auxiliary means: none

Prerequisites

none

Competence Goal

Students will gain a basic understanding of the essential traffic, transport policy and technological contexts of urban mobility. On the basis of this basic understanding, different vehicle concepts of public transport in urban and regional environments will be analyzed, compared and the optimal range of applications will be discussed. In addition to the established public transport systems, special attention will be paid to innovative mobility solutions. In particular, an understanding of how sustainable, systemic mobility solutions should be designed depending on the individual use case is to be created.

Content

- Definitions of urban mobility and public transport services
- Comparison and performance parameters of different vehicle concepts
- Rail-bound vehicle systems
- Bus systems and alternative propulsion systems
- Definition of an "innovative vehicle concept for public transport”.
- Historical innovative urban vehicle concepts and analysis of why they did not succeed
- Future innovative urban vehicle concepts and discussion of their market opportunities
- Comparison of urban mobility solutions under the aspects of sustainability, resource conservation, resilience and economic efficiency
- Presentations by external experts

Annotation

A bibliography is available for students to download from the Ilias platform.

Workload

Attendance time: 21 hours
Preparation / wrap-up: 21 hours
Exam and exam preparation: 78 hours
Total time: 120 hours = 4 LP

Learning type

Lecture
10.176 Module: Virtual Engineering 1 [M-MACH-105293]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: Part of: Master's Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102123 | Virtual Engineering I | 4 CR | Ovtcharova |

Competence Certificate
Written exam, graded, 90 min.

Competence Goal
After successful attendance of the course, students can:

- conceptualize complex systems with the methods of virtual engineering and continue the product development in different domains
- model the digital product with regard to planning, design, manufacturing, assembly and maintenance.
- use validation systems to validate product and production in an exemplary manner.
- Describe AI methods along the product creation process.

Content

- Conception of the product (system approaches, requirements, definitions, structure)
- Generation of domain-specific product data (CAD, ECAD, software, ...) and AI methods
- Validation of product properties and production processes through simulation
- Digital twin for optimization of products and processes using AI methods

Module grade calculation
Examination result "Virtual Engineering 1" 100%

Workload
120 h

Recommendation
None

Learning type
Lecture and exercises

Literature
Lecture slides
Module: Wearable Robotic Technologies [M-INFO-103294]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: Master's Transfer Account

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 3

Mandatory

| T-INFO-106557 | Wearable Robotic Technologies | 4 CR | Asfour, Beigl |

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal
The student has received fundamental knowledge about wearable robotic technologies and understands the requirements for the design, the interface to the human body and the control of wearable robots. He/she is able to describe methods for modelling the human neuromusculoskeletal system, the mechatronic design, fabrication and composition of interfaces to the human body. The student understands the symbiotic human–machine interaction as a core topic of Anthropomatics and has knowledge of state-of-the-art examples of exoskeletons, orthoses and prostheses.

Content
The lecture provides an overview of wearable robot technologies (exoskeletons, prostheses and orthoses) and their potentials. It starts with the basics of wearable robotics and introduces different approaches to the design of wearable robots and their related actuator and sensor technology. The lecture focuses on modeling the neuromusculoskeletal system of the human body, the interfaces of wearable robots to the human body and the physical and cognitive human-robot interaction for tightly-coupled hybrid human-robot systems. Examples of current research and various applications of lower, upper and full body exoskeletons as well as prostheses are presented.

Workload
Lecture with 2 SWS, 4 LP
4 LP corresponds to 120 hours, including
15 * 2 = 30 hours attendance time
15 * 3 = 45 self-study
45 hours preparation for the exam

Recommendation
Attendance of the lecture Mechano-Informatics in Robotics is recommended.
11 Courses

11.1 Course: Accessibility - Assistive Technologies for Visually Impaired Persons [T-INF-101301]

Responsible: Prof. Dr.-Ing. Rainer Stiefelhagen
Organisation: KIT Department of Informatics
Part of: M-INF-100764 - Accessibility - Assistive Technologies for Visually Impaired Persons

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>
11.2 Course: Actuators and Sensors in Nanotechnology [T-MACH-105238]

Responsible: Prof. Dr. Manfred Kohl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102698 - Actuators and Sensors in Nanotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Weeks/SWS</th>
<th>Type</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2141866</td>
<td>Actuators and sensors in nanotechnology</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Kohl, Sommer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Weeks/SWS</th>
<th>Type</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105238</td>
<td>Actuators and Sensors in Nanotechnology</td>
<td></td>
<td></td>
<td>Kohl, Sommer</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105238</td>
<td>Actuators and Sensors in Nanotechnology</td>
<td></td>
<td></td>
<td>Kohl, Sommer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

oral exam

Prerequisites

none

Below you will find excerpts from events related to this course:

V Actuators and sensors in nanotechnology

2141866, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)
Course: Advanced Artificial Intelligence [T-INFO-112768]

Responsible: Prof. Dr. Jan Niehues
Organisation: KIT Department of Informatics
Part of: M-INFO-106299 - Advanced Artificial Intelligence

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Advanced Artificial Intelligence
2400141, SS 2024, 4 SWS, Language: English, Open in study portal

Lecture (V) On-Site
Content

AI systems are increasingly integrated into our everyday lives. These are, for example, systems that can understand and generate language or analyze images and videos. In addition, AI systems are essential in robotics in order to be able to develop the next generation of intelligent robots.

Based on the knowledge of the lecture "Einführung in der KI", the students learn to understand, develop and evaluate these systems. In order to bring this knowledge closer to the students, the lecture is divided into 4 parts. First, the methods of perception using different modalities are treated. The second part deals with advanced methods of learning that go beyond supervised learning. Then methods are discussed that are required for the representation of knowledge in AI systems. Finally, methods are presented that enable AI systems to generate content.

Requirements:
None

Recommendations:
- "Einführung in der KI"
- Good basic knowledge of mathematics

Workload:
approx. 180 hours, of which
approx. 45 hours lecture attendance
approx. 15 hours exercise visit
approx. 90 hours post-processing and processing of the exercise sheets
approx. 30 hours exam preparation

Learning goals:

• The students know the relevant elements of a technical cognitive system and their tasks.
• The students understand the algorithms and methods of AI to model technically cognitive systems.
• The students are able to understand the different sub-components to develop and analyze a system.
• The students can transfer this knowledge to new applications, as well as analyze and compare different methods.

success control:
See the module manual!
11.4 Course: Advanced Mathematics I [T-MATH-100275]

Responsible
- PD Dr. Tilo Arens
- Prof. Dr. Roland Griesmaier
- PD Dr. Frank Hettlich

Organisation
- KIT Department of Mathematics

Part of
- M-MATH-102859 - Advanced Mathematics

Type
- Written examination

Credits
- 7

Grading scale
- Grade to a third

Recurrence
- Each term

Version
- 3

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 0131000</td>
<td>Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Hettlich</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 0131200</td>
<td>Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Hettlich</td>
<td></td>
</tr>
</tbody>
</table>

Exams
- WT 23/24 6700007 Advanced Mathematics I

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A "pass" result on the pre-requisite in AM I is a requirement for registration for the examination in AM I.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100525 - Tutorial Advanced Mathematics I must have been passed.
11 COURSES

11.5 Course: Advanced Mathematics II [T-MATH-100276]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type and Description</th>
<th>Credits</th>
<th>Lecture</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>0180800</td>
<td>Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Arens</td>
</tr>
<tr>
<td>ST 2024</td>
<td>0181000</td>
<td>Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type and Description</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6700008</td>
<td>Advanced Mathematics II</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites

A "pass" result on the pre-requisite in AM II is a requirement for registration for the examination in AM II.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MATH-100526 - Tutorial Advanced Mathematics II must have been passed.
11.6 Course: Advanced Mathematics III [T-MATH-100277]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 0131400 | Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau | 4 SWS | Lecture | Arens |

Exams

| WT 23/24 | 6700009 | Advanced Mathematics III | Arens, Griesmaier, Hettlich |

Competence Certificate

Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites

A “pass” result on the pre-requisite in AM III is a requirement for registration for the examination in AM III.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MATH-100527 - Tutorial Advanced Mathematics III must have been passed.
11.7 Course: Algorithms I [T-INFO-100001]

Responsible: TT-Prof. Dr. Thomas Bläsius

Organisation: KIT Department of Informatics

Part of: M-INFO-100030 - Algorithms I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>24500</td>
<td>Algorithms I</td>
<td>4</td>
<td>/</td>
<td>Bläsius, Wilhelm, Yi, von der Heydt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500117</td>
<td>Algorithms I</td>
<td>Bläsius</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7500186</td>
<td>Algorithms I</td>
<td>Bläsius</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
11.8 Course: Antennas and Multiple Antenna Systems [T-ETIT-106491]

Responsible: Prof. Dr.-Ing. Thomas Zwick
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100565 - Antennas and Multiple Antenna Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2308416</td>
<td>Antennas and Multiple Antenna Systems</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Zwick</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2308417</td>
<td>Workshop for 2308416 Antennas and Multiple Antenna Systems</td>
<td>2</td>
<td>Practice /🧩</td>
<td>Zwick, Kretschmann, Bekker</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7308416</td>
<td>Antennas and Multiple Antenna Systems</td>
<td>Zwick</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7308416</td>
<td>Antennas and Multiple Antenna Systems</td>
<td>Zwick</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The success control takes place within the framework of an oral overall examination (20 minutes).

Prerequisites
T-ETIT-100638 - Antennen und Mehrantennensysteme wurde weder begonnen, noch abgeschlossen.
Das Modul "Antennen und Antennensysteme" darf nichtbegonnen oder abgeschlossen sein.
11.9 Course: Appliance and Power Tool Design [T-MACH-105229]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102705 - Appliance and Power Tool Design

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
<tr>
<td>2145164</td>
<td>3 SWS</td>
<td>Lecture / On-Site</td>
<td>Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105229</td>
<td>Appliance and Power Tool Design</td>
<td>Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Approx. 30 min oral exam
The Appliance and Power Tool Design Project Work will be examined in conjunction with the concurrent lecture. To ensure that the impact on the overall grade is appropriate, the weighting of the exam is 8 credits.

Prerequisites

The participation in "Appliance and power tool design“ requires the concurrent project work.
Due to organizational reasons, the number of participants is limited. At the beginning of August, a registration form will be available at the IPEK website. In the case of too many applicants, a selection process will be taking place. An early application is advantageous.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110767 - Appliance and Power Tool Design Project Work must have been started.

Below you will find excerpts from events related to this course:

Appliance and Power Tool Design
2145164, SS 2024, 3 SWS, Language: German, Open in study portal

Organizational issues

- Teilnahme an der Lehrveranstaltung Gerätekonstruktion bedingt die gleichzeitige Teilnahme an der Projektarbeit Geräteotechnik.
11.10 Course: Appliance and Power Tool Design Project Work [T-MACH-110767]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102705 - Appliance and Power Tool Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2145165 | Appliance and Power Tool Design Project Work | 3 SWS | Project (P / 🛠) | Matthiesen |

Exams

| ST 2024 | 76-T-MACH-110767 | Appliance and Power Tool Design Project Work | Matthiesen |

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🛠 On-Site, ✗ Cancelled

Competence Certificate

The Appliance and Power Tool Design Project Work will be examined in conjunction with the concurrent lecture.

Prerequisites

The participation in the project work requires the participation in "Appliance and power tool design". Due to organizational reasons, the number of participants is limited. At the beginning of August, a registration form will be available at the IPEK website. In the case of too many applicants, a selection process will be taking place. An early application is advantageous.

Below you will find excerpts from events related to this course:

Organizational issues

- Teilnahme an der Lehrveranstaltung Gerätekonstruktion bedingt die gleichzeitige Teilnahme an der Projektarbeit Geräte technik.
11.11 Course: Automated Manufacturing Systems [T-MACH-108844]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-105108 - Automated Manufacturing Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Lectures</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2150904</td>
<td>Automated Manufacturing Systems</td>
<td>6</td>
<td>Lecture / Practice (/on-site)</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Lectures</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>Fleischer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-108844 - Wdh.</td>
<td>Automated Manufacturing Systems</td>
<td>Fleischer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (40 minutes)

Prerequisites
"T-MACH-102162 - Automatisierte Produktionsanlagen" must not be commenced.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Automated Manufacturing Systems</th>
<th>Lecture / Practice (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150904, SS 2024, 6 SWS, Language: German, Open in study portal</td>
<td>On-Site</td>
</tr>
</tbody>
</table>
Content
The lecture gives an overview of the structure and functioning of automated production plants. In a basic chapter, fundamental elements for the realization of automated production systems are taught. These include:

- Drive and control technology
- Handling technology for handling workpieces and tools
- Industrial robot technology
- Quality assurance in automated production plants
- Automated machines, cells, centres and systems for production and assembly
- Structures of multi-machine systems
- Project planning of automated production plants

An interdisciplinary view of these sub-areas results in interfaces to Industry 4.0 approaches. The basic chapters are supplemented by practical application examples and live demonstrations in the Karlsruhe Forschungsfabrik.

In the second part of the lecture, the fundamentals taught will be clarified using practically executed production processes for manufacturing and disassembling components, and the automated production facilities for manufacturing these components will be analyzed. In the field of automotive powertrain technology, the automated production process for both the manufacture and disassembly of batteries is considered. In the powertrain area, automated production facilities for the disassembly of electric motors are considered. Furthermore, automated production systems for the field of additive manufacturing are considered.

Within tutorials, the contents from the lecture are deepened and applied to concrete problems and tasks.

Learning Outcomes:
The students ...

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: "Handling Technology", "Industrial Robotics", "Sensory" and "Controls".
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues
Vorlesungstermine dienstags 8:00 Uhr und donnerstags 8:00 Uhr, Übungstermine donnerstags 09:45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
11.12 Course: Automated Visual Inspection and Image Processing [T-INFO-101363]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: M-INFO-100826 - Automated Visual Inspection and Image Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24169</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>Lecture / On-Site</td>
<td>Beyerer, Zander</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500008</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>Beyerer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☢ Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Automated Visual Inspection and Image Processing

24169, WS 23/24, 4 SWS, Language: German, Open in study portal

Content

Topics covered:

- sensors and concepts for image acquisition
- light and colour
- image signals (system theory, Fourier transformation, stochastic processes)
- excursion to wave optics
- pre-processing and image enhancement
- image restoration
- segmentation
- morphological image processing
- texture analysis
- detection
- image pyramids, multi scale analysis and wavelet-transform

Educational objective:

- Students have a sound knowledge regarding the basic concepts and methods of image processing (pre-processing and image enhancement, image restoration, image segmentation, morphological filtering, texture analysis, detection, image pyramids, multi-scale analysis and the wavelet transform)
- Students are in the position to work out and to evaluate solution concepts for problems of automated visual inspection
- Students have a sound knowledge of the different sensors and methods for the acquisition of image data as well as of the relevant optical principles
- Students know different concepts to describe image data and they know the essential system theoretical concepts and interrelations

Organizational issues

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Empfehlungen:

Grundkenntnisse der Optik und der Signalverarbeitung sind hilfreich.

Literature

Weiterführende Literatur

11.13 Course: Automotive Engineering I [T-MACH-100092]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100501 - Automotive Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2113805</th>
<th>Automotive Engineering I</th>
<th>4 SWS</th>
<th>Lecture / On-Site</th>
<th>Gauterin, Gießler</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113809</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Lecture / On-Site</td>
<td>Gauterin, Gießler</td>
</tr>
</tbody>
</table>

Exams

| ST 2024 | 76-T-MACH-100092 | Automotive Engineering | Unrau, Gauterin |

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Course</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination

Duration: 120 minutes

Auxiliary means: none

Prerequisites
The brick “T-MACH-102203 - Automotive Engineering I” is not started or finished. The bricks “T-MACH-100092 - Grundlagen der Fahrzeugtechnik I” and “T-MACH-102203 - Automotive Engineering I” can not be combined.

Below you will find excerpts from events related to this course:

Automotive Engineering I
2113805, WS 23/24, 4 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performance, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system “vehicle”.

Organizational issues
Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterilias/

Kann nicht mit der Veranstaltung [2113809] kombiniert werden.
Can not be combined with lecture [2113809].

 Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024
Content

1. History and future of the automobile

2. Driving mechanics: driving resistances and driving performances, mechanics of longitudinal and lateral forces, active and passive safety

3. Drive systems: combustion engine, hybrid and electric drive systems

4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)

5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

Organizational issues
You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/PasswoerterIIAS/, students from eucor universities send an e-mail to martina.kaiser@kit.edu

Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literature

11.14 Course: Automotive Engineering II [T-MACH-102117]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100502 - Automotive Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Location</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2114835</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gießler</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2114855</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Location</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102117</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Unrau, Gauterin</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102117-2</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gauterin, Unrau</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102117</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gauterin, Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate

Written Examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Automotive Engineering II

2114835, SS 2024, 2 SWS, Language: German, [Open in study portal]

Lecture (V)
On-Site

Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of designs

Learning Objectives:

The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Organizational issues

Kann nicht mit der Veranstaltung [2114855] kombiniert werden.
Can not be combined with lecture [2114855]

Automotive Engineering II
2114855, SS 2024, 2 SWS, Language: English, Open in study portal

Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of the designs

Learning Objectives:

The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Literature

Elective literature:

11.15 Course: Automotive Vision [T-MACH-105218]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102693 - Automotive Vision

Type: Written examination
Credits: 6
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Hours</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2138340</td>
<td>3 SWS</td>
<td>Lecture / 🗣️</td>
<td>Lauer, Fehler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣️ On-Site, 🗿 Cancelled

Competence Certificate
Type of Examination: written exam
Duration of Examination: 60 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Automotive Vision
2138340, SS 2024, 3 SWS, Language: English, Open in study portal

Content

Lernziele (EN):
Machine perception and interpretation of the environment for the basis for the generation of intelligent behaviour. Especially visual perception opens the door to novel automotive applications. First driver assistance systems can already improve safety, comfort and efficiency in vehicles. Yet, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on seeing vehicles’. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

Lehrinhalt (EN):
1. Driver assistance systems
2. Binocular vision
3. Feature point methods
4. Optical flow/tracking in images
5. Tracking and state estimation
6. Self-localization and mapping
7. Lane recognition
8. Behavior recognition

Nachweis: Written examination 60 minutes

Arbeitsaufwand (EN): 120 hours

Literature
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
11.16 Course: Bachelor's Thesis [T-MACH-108800]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104262 - Bachelor's Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>12</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The bachelor’s thesis is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

The scope of the bachelor thesis corresponds to 12 ECTS. The maximal processing time of the bachelor thesis takes 6 months. The examination board defines the languages the thesis has to be written in. The date of issue of the subject has to be fixed by the supervisor and the student and to be put on record at the examination board. The subject of the bachelor thesis may be only returned once and only within the first month of processing time.

On a reasoned request of the student, the examination board can extend the processing time by up to one month. If the bachelor thesis is not completed in time, this examination is “failed” (5.0), unless the student is not responsible.

The bachelor thesis is to be evaluated by not less than a professor or a senior scientist according to § 14 Abs. 3 Ziff. 1 KITG and another examiner. Generally, one of the two examiners is the person who has assigned the thesis. If the examiners do not agree, the bachelor thesis is graded by the examination board within this assessment; another expert can be appointed too. The bachelor thesis has to be graded within a period of six weeks after the submission.

Prerequisites
The requirement for admission to the bachelor's thesis module are 120 ECTS. As to exceptions, the examination board decides on a request of the student.

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- Submission deadline 6 months
- Maximum extension period 1 month
- Correction period 6 weeks

This thesis requires confirmation by the examination office.
11.17 Course: Basic Electronic Circuits Laboratory [T-ETIT-101943]

Responsible: Dr.-Ing. Armin Teltschik
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102113 - Basic Electronic Circuits Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework (oral)</th>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2303800 | Basic Electronic Circuits Laboratory | 4 SWS | Practical course / 🔴 | Teltschik |

Legend: 🖥 Online, 🟱 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
The success control takes place in the form of an oral final colloquium of approximately 20 minutes duration and during the internship by checking the completed test tasks.

To participate in the final colloquium, at least 8 of the 9 attempts must be successfully completed. The successfully carried out experiments together with the final colloquium form an examination unit. If you fail, the internship must be repeated completely. The event is not graded.

Prerequisites
Knowledge of the contents of the following modules ist necessary: „M-ETIT-102102 – Digitaltechnik“ and „M-ETIT-104465 – Elektronische Schaltungen“.

Annotation
To participate in the final colloquium, at least 8 of the 9 attempts must be successfully completed. The successfully carried out experiments together with the final colloquium form an examination unit. If you fail, the internship must be repeated completely.
11.18 Course: Basics Module - Self Assignment BAK [T-ZAK-112653]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The monitoring in this module includes a course credit according to § 5 section 4 in the form of minutes of which two are to be handed in freely chosen topics of the lecture series "Introduction to Applied Studies on Culture and Society". Length: approx. 6,000 characters each (incl. spaces).

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

Annotation
The Basic Module consists of the lecture "Introduction to Supplementary Studies on Culture and Society", which is offered only in the winter semester. It is therefore recommended that students start their studies in the winter semester and complete them before module 2.
11.19 Course: Basics Module - Self Assignment BeNe [T-ZAK-112345]

Responsible: Christine Myglas
Organisation: Part of M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The monitoring in this module includes a course credit according to § 5 section 4:

Introduction to Sustainable Development in the form of minutes of which two are to be handed in freely chosen topics of the lecture series "Introduction to Sustainable Development". Length: approx. 6,000 characters each (incl. spaces).

or

Sustainability Spring Days at KIT in the form of a reflection report on all components of the project days "Sustainability Spring Days at KIT". Length approx. 12,000 characters (incl. spaces).

Prerequisites
None

Self service assignment of supplementary studies
This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

Annotation
Module Basics consists of the lecture "Introduction to Sustainable Development", which is only offered in the summer semester or alternatively of the project days "Sustainability Spring Days at KIT", which is only offered in the winter semester. It is recommended to complete the course before Elective Module an Specialisation Module.

In exceptional cases, Elective Module or Specialisation Module can also be completed simultaneously with Basics Module. However, the prior completion of the advanced modules Elective and Specialisation should be avoided.
11.20 Course: Basics of Manufacturing Technology [T-MACH-105219]

Responsible: Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102549 - Manufacturing Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2149658</th>
<th>Basics of Manufacturing Technology</th>
<th>2 SWS</th>
<th>Lecture / Practice</th>
<th>Schulze</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105219</th>
<th>Fundamentals of Manufacturing Technology</th>
<th>Schulze</th>
</tr>
</thead>
</table>

Competence Certificate

written exam (duration: 60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Basics of Manufacturing Technology

2149658, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)

Blended (On-Site/Online)
Content
The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects. Regard is paid to classic manufacturing processes as well as new developments like additive manufacturing processes.

The following topics will be covered:
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment

Learning Outcomes:
The students ...
- are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
- have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
- are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
- have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
- are enabled to perform a selection of suitable manufacturing processes for given components.
- are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

Workload:
regular attendance: 30 hours
self-study: 60 hours

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
11.21 Course: Basics of Technical Logistics I [T-MACH-109919]

Responsible: Dr.-Ing. Martin Mittwollen
Dr.-Ing. Jan Oellerich

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
</tr>
<tr>
<td>WT 23/24</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge of the basics of technical mechanics preconditioned.

Below you will find excerpts from events related to this course:

Basics of Technical Logistics I
2117095, WS 23/24, 4 SWS, Language: German, [Open in study portal](#)
Lecture / Practice (VÜ) On-Site

Content

- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

Students are able to:

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines
- Model real machines applying knowledge from lessons and calculate their dimensions.
Organizational issues
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder mündlichen Prüfung (nach §4 (2), 1 bzw. 2SPO).
The assessment consists of a written or oral exam according to Section 4 (2), 1 or 2 of the examination regulation.
Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.
Basics knowledge of technical mechanics is preconditioned.
Ergänzungsblätter, Präsentationen, Tafel.
Supplementary sheets, presentations, blackboard.
Präsenz: 48Std
Nacharbeit: 132Std
presence: 48h
rework: 132h

Literature
Empfehlungen in der Vorlesung / Recommendations during lessons
11.22 Course: Battery Modeling in MATLAB [T-ETIT-106507]

Responsibility: Dr.-Ing. Andre Weber

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-103271 - Battery Modeling in MATLAB

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Lecture</th>
<th>Practice</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2304228</td>
<td>Lecture</td>
<td></td>
<td>Weber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2304229</td>
<td>Practice</td>
<td></td>
<td>Weber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Lecture</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7304228</td>
<td></td>
<td>Weber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancellation

Prerequisites

none
11.23 Course: Biologically Inspired Robots [T-INFO-101351]

Responsible: Dr.-Ing. Arne Rönnau
Organisation: KIT Department of Informatics
Part of: M-INFO-100814 - Biologically Inspired Robots

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>24619</td>
<td>Biologisch Motivierte Roboter</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500313</td>
<td>Biologically Inspired Robots</td>
<td></td>
<td>Rönnau</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗Cancelled
11.24 Course: Biomedical Measurement Techniques I [T-ETIT-106492]

Responsible: Prof. Dr. Werner Nahm

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100387 - Biomedical Measurement Techniques I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Number</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2305269</td>
<td>Biomedical Measurement Techniques I</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Nahm, Schaufelberger</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Number</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7305269</td>
<td>Biomedical Measurement Techniques I</td>
<td>Nahm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Prerequisites
The earlier version "T-ETIT-101928 - Biomedizinische Messtechnik I" may not have been started or completed.
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I [T-MACH-100966]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100489 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine I

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2141864</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100966</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td></td>
<td>Guber</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (75 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

Organizational issues
schriftliche Prüfung:
18.03.2024, 10:00 - 12:00; 30.46 Chemie, Neuer Hörsaal

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
11.26 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II [T-MACH-100967]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100490 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2142883 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II | 2 SWS | Lecture / 🗣 | Guber, Ahrens |

Exams

| WT 23/24 | 76-T-MACH-100967 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II | Guber |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Written exam (75 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

V BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II
2142883, SS 2024, 2 SWS, Language: German, Open in study portal
Lecture (V)
On-Site

Content

Examples of use in Life-Sciences and biomedicine: Microfluidic Systems: LabCD, Protein Crystallisation
Microarrays
Tissue Engineering
Cell Chip Systems
Drug Delivery Systems
Micro reaction technology
Microfluidic Cells for FTIR-Spectroscopy
Microsystem Technology for Anesthesia, Intensive Care and Infusion
Analysis Systems of Person’s Breath
Neurobionics and Neuroprosthesis
Nano Surgery

Organizational issues

Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.

Prüfung:

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

M. Madou
Fundamentals of Microfabrication
11.27 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [T-MACH-100968]

Responsible: Prof. Dr. Andreas Guber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100491 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine III

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Gradating scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lectures</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2142879</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>2</td>
<td>Lecture /</td>
<td>Guber, Ahrens</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>2</td>
<td>Lecture</td>
<td>Guber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written exam (75 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III

2142879, SS 2024, 2 SWS, Language: German, Open in study portal

Content

Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Organizational issues

Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.

Prüfung:

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

M. Madou
Fundamentals of Microfabrication
11.28 Course: CAE-Workshop [T-MACH-105212]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Examination of another type</td>
<td>3</td>
<td>Block / 🗓️</td>
<td>Albers, Düser</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓️ On-Site, ✗ Cancelled

Competence Certificate
Written test (with practical part on the computer), duration 60 min.

Prerequisites
None

Annotation
Consistent attendance on the workshop days is required for successful participation in the exam. The number of participants is limited. Selection will be made by drawing lots after the end of the registration period.

Below you will find excerpts from events related to this course:

CAE-Workshop
2147175, WS 23/24, 3 SWS, Language: German, Open in study portal

Content

Content:
- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:
- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis and structure optimization with industrial common software.
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Regular attendance: 31.5 h
Self-study: 88.5 h
Exam: 1h written

Organizational issues

Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht
Literature
Kursunterlagen werden in Ilias bereitgestellt.

Content is provided on Ilias.

CAE-Workshop
2147175, SS 2024, 3 SWS, Language: German, Open in study portal

Block (B)
On-Site

Content

Content:

- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:

- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Exam:
1h Regularly written

Regular attendance: 31.5 h

Self-study: 88.5 h

Annotation: Number of participants limited. The selection will be made by drawing after the end of the registration period.

Organizational issues
Wir empfehlen den Workshop ab dem 5. Semester.

Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.

Anwesenheitspflicht

Literature
Kursunterlagen werden in Ilias bereitgestellt.

Content is provided on Ilias.
11.29 Course: Channel Coding: Algebraic Methods for Communications and Storage [T-ETIT-111244]

Responsible: Prof. Dr.-Ing. Laurent Schmalen

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105616 - Channel Coding: Algebraic Methods for Communications and Storage

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2310546 | Channel Coding: Algebraic Methods for Communications and Storage | 2 SWS | Lecture / 🧩 | Schmalen |

Exams

WT 23/24	7310546-1	Channel Coding: Algebraic Methods for Communications and Storage	Schmalen
WT 23/24	7310546-2	Channel Coding: Algebraic Methods for Communications and Storage	Schmalen
ST 2024	7310546-1	Channel Coding: Algebraic Methods for Communications and Storage	Schmalen

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The exam is held as an oral exam of 20 Min according to 4 Abs. 2 Nr. 1 SPO Bachelor/Master Elektrotechnik und Informationstechnik. Grade of the module corresponds to the grade of the oral exam.

Prerequisites

none

Recommendation

Previous attendance of the lectures "Communication Engineering I" and "Probability Theory" is recommended.
11.30 Course: Communications Engineering I [T-ETIT-101936]

Responsible: Prof. Dr.-Ing. Laurent Schmalen
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-102103 - Communications Engineering I
- M-ETIT-105646 - Theory of Probability/Communication Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Event Code</th>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2310506</td>
<td>Communication Engineering I</td>
<td>Lecture / Online</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Schmalen</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2310508</td>
<td>Übungen zu 2310506 Nachrichtentechnik I</td>
<td>Practice / Blended (On-Site/Online)</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Schmalen, Edelmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7310506</td>
<td>Communication Engineering I</td>
<td>Schmalen</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7310506</td>
<td>Communication Engineering I</td>
<td>Schmalen</td>
</tr>
</tbody>
</table>

Prerequisites
none

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
11.31 Course: Communications Engineering II [T-ETIT-100745]

Responsible: Dr.-Ing. Holger Jäkel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100440 - Communications Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Event Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2310513</td>
<td>Tutorial for 2310511 Communications Engineering II</td>
<td>1</td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Practice / []</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Event Code</th>
<th>Event Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7310511</td>
<td>Communications Engineering II</td>
<td>Jäkel</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7310511</td>
<td>Communications Engineering II</td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
11.32 Course: Complex Analysis and Integral Transformations [T-ETIT-109285]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2303190</th>
<th>Complex analysis and integral transformations</th>
<th>1 SWS</th>
<th>Lecture / 📚</th>
<th>Kluwe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2303191</td>
<td>Übungen zu 2303190 Komplexe Analysis und Integraltransformationen</td>
<td>1 SWS</td>
<td>Practice / 📚</td>
<td>Kluwe</td>
</tr>
</tbody>
</table>

Exams

| WT 23/24 | 7303190 | Complex Analysis and Integral Transformations | Kluwe |

Prerequisites

none
11 COURSES

11.33 Course: Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies [T-MACH-105535]

| Responsible: | Prof. Dr.-Ing. Frank Henning |
| Organisation: | KIT Department of Mechanical Engineering |

Type: Written examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>Credits</th>
<th>Format</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2114053</td>
<td>Lecture / 🧩</td>
<td>Composite Manufacturing – Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>2 SWS</td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>Henning</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>Henning</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam 90 minutes

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-100531 - Systematic Materials Selection must not have been started.

Below you will find excerpts from events related to this course:

Composite Manufacturing – Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies

2114053, SS 2024, 2 SWS, Language: German, Open in study portal

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
Content

Physical connections of fiber reinforcement

Use and examples
- Automotive construction
- Transport
- Energy and construction
- Sport and recreation

Resins
- Thermoplastics
- Duromeres

Mechanisms of reinforcements
- Glas fibers
- Carbon fibers
- Aramid fibers
- Natural fibers

Semi-finished products - textiles

Process technologies - prepregs

Recycling of composites

Aim of the lecture:

Students know different polymer resin materials and fiber materials and can deduce their character and use.

They understand the reinforcing effect of fibers in a matrix surrounding as well as the tasks of the single components in a compound. They know about the influence of the length of fibers, their mechanical characters and performance in a polymer matrix compound.

Student know the important industrial production processes for continuous and discontinuous reinforced polymer matrix compounds.

Organizational issues

Die Lehrveranstaltung wird im SS 2024 als Hybridveranstaltung geplant.

Literature

[1-7]

Course: Computational Intelligence [T-MACH-105314]

Responsible: Stefan Meisenbacher
apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105296 - Computational Intelligence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>No.</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2105016</td>
<td>Computational Intelligence</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Each winter term</td>
<td>Mikut, Reischl, Meisenbacher</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>No.</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105314</td>
<td>Computational Intelligence</td>
<td></td>
<td>Mikut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105314</td>
<td>Computational Intelligence</td>
<td></td>
<td>Mikut</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (Duration: 1h)

Prerequisites

none

Below you will find excerpts from events related to this course:

Content

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Content:

- Terms and definitions Computational Intelligence, application fields and examples
- Fuzzy logic: fuzzy sets; fuzzification and membership functions; inference: T-norms and -conorms, operators, aggregation, activation, accumulation; defuzzification methods, structures for fuzzy control
- Artificial Neural Nets: biology of neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
- Evolutionary Algorithms: Basic algorithm, Genetic Algorithms and Evolution Strategies, Evolutionary Algorithm GLEAM, integration of local search strategies, memetic algorithms, application examples
- Deep Learning: History, Architectures, Training strategies, Interpretability and Explainable AI, Use Cases

Learning objectives:

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.
Literature
Kroll, A. Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet)
11.35 Course: Computer Organization [T-INFO-103531]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-103179 - Computer Organization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 24502</td>
<td>3 SWS</td>
<td></td>
<td>Computer Organization</td>
<td>Henkel, Lehmann</td>
</tr>
<tr>
<td>WT 23/24 24505</td>
<td>2 SWS</td>
<td></td>
<td>Übungen zu Rechnerorganisation</td>
<td>Lehmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th>Computer Organization</th>
<th>Henkel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7500228</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11 COURSES

Course: Control of Linear Multivariable Systems [T-ETIT-100666]

11.36 Course: Control of Linear Multivariable Systems [T-ETIT-100666]

Responsible: Dr.-Ing. Mathias Kluwe
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100374 - Control of Linear Multivariable Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2303177</th>
<th>Control of Linear Multivariable Systems</th>
<th>3 SWS</th>
<th>Lecture / Blended</th>
<th>Kluwe</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2303177</td>
<td>Control of Linear Multivariable Systems (Tutorial to 2303177)</td>
<td>1 SWS</td>
<td>Practice / Blended</td>
<td>Piscol</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>7303177</th>
<th>Control of Linear Multivariable Systems</th>
<th>Kluwe</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7303177</td>
<td>Control of Linear Multivariable Systems</td>
<td>Kluwe</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7303177</td>
<td>Control of Linear Multivariable Systems</td>
<td>Kluwe</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗿 On-Site, ✗ Cancelled

Competence Certificate
Success is checked as part of a written overall test (120 minutes) of the course.

Prerequisites
none

Recommendation
For a deeper understanding, basic knowledge of system dynamics and control technology is absolutely necessary, as taught in the ETIT Bachelor module "System Dynamics and Control Technology" M-ETIT-102181.
Course: Control Theory Laboratory [T-ETIT-111009]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-105467 - Control Theory Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type/ Dönung</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2303169</td>
<td>Control Theory Laboratory</td>
<td>4</td>
<td>Block / 🗣️</td>
<td>Hohmann</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2303169</td>
<td>Control Theory Laboratory</td>
<td>4</td>
<td>Practical course / 🗣️</td>
<td>Kluwe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7303156</td>
<td>Control Theory Laboratory</td>
<td>4</td>
<td>Kluwe</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites

none
Course: Cooperation in Interdisciplinary Teams [T-MACH-105699]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104355 - Soft Skills

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Code Description</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2145166</td>
<td>Cooperation in interdisciplinary teams</td>
<td>2 SWS</td>
<td>Practical course / Blended</td>
<td></td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Code Description</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105699</td>
<td>Cooperation in interdisciplinary teams</td>
<td>2 SWS</td>
<td>Practical course (P)</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate
Accompanying the workshop, delivery services are required. In these the application of the knowledge of the students is examined.

Prerequisites
none

Below you will find excerpts from events related to this course:

Cooperation in interdisciplinary teams
2145166, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Practical course (P)
Blended (On-Site/Online)

Literature

11.39 Course: Decentrally Controlled Intralogistic Systems [T-MACH-105230]

Responsible: Prof. Dr.-Ing. Kai Furmans
Dr.-Ing. Maximilian Hochstein

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102687 - Decentrally Controlled Intralogistic Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2117084</td>
<td>Decentrally controlled intralogistic systems</td>
<td>Practical course / On-Site</td>
<td>2 SWS</td>
<td>pass/fail</td>
<td>Each term</td>
<td>Furmans, Sperling, Arndt</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2117084</td>
<td>Decentrally controlled intralogistic systems</td>
<td>Practical course / On-Site</td>
<td>2 SWS</td>
<td>pass/fail</td>
<td>Each term</td>
<td>Furmans, Sperling, Arndt, Enke, Schumacher, Pang</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Certificate through colloquium with presentation, documentation of the work results and fulfilment of the attendance requirement

Prerequisites
None

Recommendation
Basic knowledge of Python programming and basic knowledge of technical logistics of advantage

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decentrally controlled intralogistic systems</td>
<td>2117084</td>
<td>2 SWS, Language: German, Open in study portal</td>
<td>Practical course (P)</td>
<td>On-Site</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024
Module Handbook, valid from summer term 24

Page 315
Content

Proof:

- Certificate by colloquium with presentation

Note:

- Number of participants limited
- Participants will be selected
- Compulsory attendance

Media:

- Lego Mindstorms, PC

Teaching content:

- Introduction to material handling systems
- Construction of a model for decentralized logistic systems
- Object-oriented programming with LabView (or Python* with reservation)
- Implementation of the model with Mindstorms
- Presentation of the results

Learning objectives:

Students are able to:

- Model complex cinematic systems and use object-oriented programming for this purpose,
- Built experimental setups in a team for decentralized controlled intralogistic systems, choose appropriate system components and models and finally proof the function by using experiments.

Effort:

- Regular attendance: 90 hours (workplace is provided)
- Self-study: 30 hours

Dates and further information see homepage

Organizational issues

Termine im WS23/24:

Gruppe 1 05.02.- 23.02.2024, davon Präsenz: 05.02., 12.02. - 23.02.2024
Gruppe 2 19.02.- 08.03.2024, davon Präsenz: 19.02., 26.02. - 08.03.2024

Anmeldezeitraum:

01.11.2023 8:00 Uhr - 31.12.2023 18:00 Uhr (via Ilias-Kurs)

Literature

keine

Decently controlled intralogistic systems

2117084, SS 2024, 2 SWS, Language: German, Open in study portal
Content

Proof:
- Certificate by colloquium with presentation

Note:
- Number of participants limited
- Participants will be selected
- Compulsory attendance

Media:
- Lego Mindstorms, PC

Teaching content:
- Introduction to material handling systems
- Construction of a model for decentralized logistic systems
- Object-oriented programming with LabView (or Python* with reservation)
- Implementation of the model with Mindstorms
- Presentation of the results

Learning objectives:
Students are able to:
- Model complex cinematic systems and use object-oriented programming for this purpose,
- Build experimental setups in a team for decentralized controlled intralogistic systems, choose appropriate system components and models and finally proof the function by using experiments.

Effort:
- Regular attendance: 90 hours (workplace is provided)
- Self-study: 30 hours

Dates and further information see homepage

Organizational issues
Termin im SS24:
09.09.2024 14:00 Uhr Einführungsveranstaltung

Anmeldezeitraum:
01.04.2024 8:00 Uhr - 30.06.2024 18:00 Uhr (via Ilias-Kurs)

Literature
keine
11.40 Course: Deep Learning and Neural Networks [T-INFO-109124]

- **Responsible:** Prof. Dr. Jan Niehues
- **Organisation:** KIT Department of Informatics
- **Part of:** M-INFO-104460 - Deep Learning and Neural Networks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2400024 | Deep Learning and Neural Networks | 4 SWS | Lecture / 🗣 | Niehues, Waibel |

Exams

| WT 23/24 | 7500259 | Deep Learning and Neural Networks | | Waibel |
| ST 2024 | 7500044 | Deep Learning and Neural Networks | | Niehues, Waibel |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
11.41 Course: Digital Technology [T-ETIT-101918]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102102 - Digital Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2311615</td>
<td>Accompanying group tutorial for 2311615 Digital Technology / Fundamentals of Digital Technology</td>
<td>Tutorial / Höfer</td>
<td>1</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2311615</td>
<td>Digital Technology / Fundamentals of Digital Technology</td>
<td>3 SWS Lecture / Becker</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2311617</td>
<td>Tutorial for 2311615 Digital Technology / Fundamentals of Digital Technology</td>
<td>1 SWS Practice / Höfer</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none
11.42 Course: Digitization in the Railway System [T-MACH-113016]

Responsible:
Prof. Dr.-Ing. Martin Cichon

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-106513 - Railway System Digitalisation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each winter term</td>
<td>1 terms</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each winter term</td>
<td>1 terms</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
Oral examination
Duration: approx. 20 minutes
No tools or reference material may be used during the exam.
11.43 Course: Distributed Discrete Event Systems [T-ETIT-100960]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100361 - Distributed Discrete Event Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2302106 | Verteilte ereignisdiskrete Systeme | 2 SWS | Lecture / 🧩 | Heizmann |
| ST 2024 | 2302108 | Übungen zu 2302106 Verteilte ereignisdiskrete Systeme | 1 SWS | Practice /🗣 | Hoffmann |

| Exams | 7302106 | Distributed Discrete Event Systems | | |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
11.44 Course: Dynamics of the Automotive Drive Train [T-MACH-105226]

Responsible: Prof. Dr.-Ing. Alexander Fidlin

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102700 - Dynamics of the Automotive Drive Train

Type
- Oral examination

Credits
- 5

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination, 30 min.

Prerequisites

none

Recommendation

Powertrain Systems Technology A: Automotive SystemsMachine DynamicsVibration Theory

Below you will find excerpts from events related to this course:

Dynamics of the Automotive Drive Train

2163111, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

- Main components of the vehicle powertrain and their modelling
- Typical driving situations
- Problem-oriented models for particular driving situations
- System analysis and optimization with respect to dynamic behavior

Literature

- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Übungen zu Dynamik des Kfz-Antriebsstrangs

2163112, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

Exercises related to the lecture
11.45 Course: Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe [T-ZAK-112349]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
11.46 Course: Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe [T-ZAK-112348]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studes
This course can be used for self service assignment of grade aquired from the following study providers:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
Course: Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe [T-ZAK-112350]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
11.48 Course: Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe [T-ZAK-112347]

Organisation: University

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
11.49 Course: Electric Energy Systems [T-ETIT-101923]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Thomas Leibfried</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Electrical Engineering and Information Technology</td>
</tr>
</tbody>
</table>
| Part of | M-ETIT-102156 - Electric Energy Systems
 M-ETIT-105643 - Electric Energy Systems/Hybrid and Electric Vehicles |

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>WKS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2307391</td>
<td>Electric Energy Systems</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
<td>Leibfried</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2307393</td>
<td>Übungen zu 2307391 Elektroenergieyysteme</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
<td>Eser</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7307391</td>
<td>Electric Energy Systems</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites:

none
11.50 Course: Electrical Engineering Components [T-ETIT-109292]

Responsible: Prof. Dr. Sebastian Kempf
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102734 - Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2312700</td>
<td>Electrical Engineering Components</td>
<td>3</td>
<td>Lecture / 🗣️</td>
<td>Kempf, Lemmer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2312701</td>
<td>Tutorial for 2312700 Electrical Engineering Components</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Wünsch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7312700</td>
<td>Electrical Engineering Components</td>
<td>Kempf, Lemmer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7312700</td>
<td>Electrical Engineering Components</td>
<td>Kempf, Lemmer</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🔄 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
The success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none
11.51 Course: Electrical Machines and Power Electronics [T-ETIT-101954]

Responsible: Prof. Dr.-Ing. Marc Hiller
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102124 - Electrical Machines and Power Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2306387</td>
<td>Electrical Machines and Power Electronics</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Hiller</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2306389</td>
<td>Tutorial for 2306387 Electrical Machines and Power Electronics</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7306307</td>
<td>Electrical Machines and Power Electronics</td>
<td></td>
<td>Hiller</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7306307</td>
<td>Electrical Machines and Power Electronics</td>
<td></td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
11.52 Course: Electromagnetic Fields [T-ETIT-109078]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104428 - Electromagnetic Fields

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2306004</td>
<td>2 SWS</td>
<td>Electromagnetical Fields</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>ST 2024 2306005</td>
<td>2 SWS</td>
<td>Practice to 2306004 Electromagnetic Fields</td>
<td>Kesten, Bischoff</td>
</tr>
<tr>
<td>ST 2024 2306006</td>
<td>/</td>
<td>Tutorium zu 2306004 Elektromagnetische Felder</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7300019</td>
<td></td>
<td>Electromagnetical Fields</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>ST 2024 7300019</td>
<td></td>
<td>Electromagnetical Fields</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ➧ On-Site, ✗ Cancelled

Prerequisites

none
11.53 Course: Electromagnetic Waves [T-ETIT-109245]

Responsible: Prof. Dr.-Ing. Sebastian Randel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-104515 - Electromagnetic Waves
- M-ETIT-105647 - Electromagnetic Waves/Fundamentals on High Frequency Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2309475</td>
<td>Electromagnetical Waves</td>
<td>2 SWS Lecture / 🗣️</td>
<td>Randel, Koos, N.N., Krimmer, Dittmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2309477</td>
<td>Tutorial for 2309475 Electromagnetical Waves</td>
<td>2 SWS Practice / 🗣️</td>
<td>Randel, Koos, N.N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 232309477</td>
<td>Tutorial for 2309475 Electromagnetical Waves</td>
<td>2 SWS Practice / 🗣️</td>
<td>Randel, Koos, Krimmer, Dittmer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Course Description</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7300006</td>
<td>Electromagnetic Waves</td>
<td>Randel</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 7309475</td>
<td>Electromagnetical Waves (repetition exam SoSe 2023)</td>
<td>Randel</td>
<td></td>
</tr>
<tr>
<td>ST 2024 7309475</td>
<td>Electromagnetical Waves</td>
<td>Randel</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
Course: Electronic Devices and Circuits [T-ETIT-109318]

Responsible: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104465 - Electronic Devices and Circuits

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2308655</td>
<td></td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
<td>Lecture</td>
<td>Ulusoy</td>
</tr>
<tr>
<td>ST 2024 2308657</td>
<td></td>
<td>Übungen zu 2312655 Elektronische Schaltungen</td>
<td>1</td>
<td>Practice</td>
<td>Ulusoy</td>
</tr>
<tr>
<td>ST 2024 2308658</td>
<td></td>
<td>Tutorien zu 2312655 Elektronische Schaltungen</td>
<td>1</td>
<td>/</td>
<td>Ulusoy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7308655</td>
<td></td>
<td>Electronic Devices and Circuits</td>
<td>Ulusoy</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- 🗿 Cancelled
11.55 Course: Electronic Devices and Circuits - Workshop [T-ETIT-109138]

Responsible: Prof. Dr.-Ing. Thomas Zwick
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104465 - Electronic Devices and Circuits

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2308450</td>
<td>Elektronische Schaltungen - Workshop</td>
<td>1 SWS</td>
<td>Practical course / Zwick</td>
<td>Each summer term</td>
<td></td>
</tr>
</tbody>
</table>

Legend: ☑ Online, ☐ Blended (On-Site/Online), ☑ On-Site, ☓ Cancelled
11.56 Course: Elements and Systems of Technical Logistics [T-MACH-102159]

Responsible: Georg Fischer
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102688 - Elements of Technical Logistics
M-MACH-105015 - Elements of Technical Logistics incl. Project

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (20min) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge out of "Basics of Technical Logistics I" (T-MACH-109919) preconditioned.
11.57 Course: Elements and Systems of Technical Logistics - Project [T-MACH-108946]

Responsible: Georg Fischer
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105015 - Elements of Technical Logistics incl. Project

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Presentation of performed project and defense (30min) according to §4 (2), No. 3 of the examination regulation

Prerequisites
T-MACH-102159 (Elements and Systems of Technical Logistics) must have been started

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-102159 - Elements and Systems of Technical Logistics must have been started.

Recommendation
Knowledge out of "Basics of Technical Logistics I" (T-MACH-109919) preconditioned.
11.58 Course: Engineering Mechanics I [T-MACH-100282]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102402 - Engineering Mechanics
M-MACH-104333 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2161245</td>
<td>Engineering Mechanics I</td>
<td>3</td>
<td>Lecture</td>
<td>Böhlke</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3161010</td>
<td>Engineering Mechanics I (Lecture)</td>
<td>3</td>
<td>Lecture / On-Site</td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100282-englisch</td>
<td>Engineering Mechanics I</td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online,
🧩 Blended (On-Site/Online),
🗣 On-Site,
🗙 Cancelled

Competence Certificate
written exam, 90 min, graded

Prerequisites
successful participation in "Engineering Mechanics I (Tutorial)" (see T-MACH-100528)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-100528 - Tutorial Engineering Mechanics I must have been passed.

Below you will find excerpts from events related to this course:

Engineering Mechanics I
2161245, WS 23/24, 3 SWS, Language: German, [Open in study portal]

Content

- Basics of vector calculus
- Force systems
- Statics of rigid bodies
- Internal forces and moments in bars and beams
- Friction
- Centre of gravity, centre of mass
- Work, energy, principle of virtual work
- Statics of inextensible ropes
- Elastostatics of tension-compression bars

Literature

- Vorlesungsskript
- Hibbeler, R.C: Technische Mechanik 1 - Statik. Prentice Hall. Pearson Studium 2005
11.59 Course: Engineering Mechanics II [T-MACH-100283]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102402 - Engineering Mechanics

Type	**Credits**	**Grading scale**	**Recurrence**	**Version**
Written examination | 6 | Grade to a third | Each summer term | 2

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Exam Code</th>
<th>Name</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2162250</td>
<td>Engineering Mechanics II</td>
<td>3 SWS</td>
<td>Lecture / On-Site</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>ST 2024</td>
<td>3162010</td>
<td>Engineering Mechanics II (Lecture)</td>
<td>3 SWS</td>
<td>Lecture / On-Site</td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Exam Code</th>
<th>Name</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100283</td>
<td>Engineering Mechanics II</td>
<td></td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100283-englisch</td>
<td>Engineering Mechanics II</td>
<td></td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

written exam, 90 min, graded

Prerequisites

successful participation in "Engineering Mechanics II (Tutorial)" (see T-MACH-100284)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-100284 - Tutorial Engineering Mechanics II must have been passed.

Below you will find excerpts from events related to this course:

Engineering Mechanics II

2162250, SS 2024, 3 SWS, Language: German, [Open in study portal]

Content

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theorems in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars

Literature

Vorlesungsskript

Engineering Mechanics II (Lecture)

3162010, SS 2024, 3 SWS, Language: English, [Open in study portal]
Content

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theories in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars
11.60 Course: Engineering Mechanics III [T-MACH-100299]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2161203</th>
<th>Engineering Mechanics III</th>
<th>2 SWS</th>
<th>Lecture /</th>
<th>Proppe</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-100299</th>
<th>Engineering Mechanics III</th>
<th>Proppe, Fidlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-100299</td>
<td>Engineering Mechanics III</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written exam (90 min)

Prerequisites
successful participation in "Engineering Mechanics III (Tutorial)" (see T-MACH-105202)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105202 - Tutorial Engineering Mechanics III must have been passed.

Below you will find excerpts from events related to this course:

V Engineering Mechanics III
2161203, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

Kinetics of a particle:
Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems

Systems of particles:
Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.

Plain motion of rigid bodies:

Organizational issues
Literature
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
Hagedorn: Technische Mechanik III.
11.61 Course: Engineering Mechanics IV [T-MACH-105274]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102831 - Engineering Mechanics IV
M-MACH-103205 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2 SWS</td>
<td>Practice</td>
<td>/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Practice</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2 SWS</td>
<td>Practice</td>
<td>/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination

Below you will find excerpts from events related to this course:

Engineering Mechanics IV
2162231, SS 2024, 2 SWS, Language: German, [Open in study portal]

Lecture (V)
On-Site

Content

Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption

Organizational issues

Literature

Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin, 1971
Klotter: Technische Schwingungslehre, 1. Bd. Teil A, Heidelberg

Engineering Mechanics IV (Tutorial)

2162232, SS 2024, 2 SWS, Language: German, [Open in study portal]

Practice (Ü)
On-Site

Content

In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the exercises are presented and instructions are given for those exercises which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.
Literature
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin, 1971
Klotter: Technische Schwingungslehre, 1. Bd. Teil A, Heidelberg
11.62 Course: Engineering of Automation Systems [T-ETIT-112221]

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-106037 - Engineering of Automation Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2301485 | Engineering von Automatisierungssystemen | 2 SWS | Lecture / 🗣 | Barth, Jilg |

Exams

| WT 23/24 | 7300029 | Engineering of Automation Systems | Barth |

Prerequisites

none
11.63 Course: Examination Material Science I & II [T-MACH-105148]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102567 - Material Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course ID</th>
<th>Course Name</th>
<th>ECTS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2181555</td>
<td>Materials Science and Engineering I for ciw, vt, MIT</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2182562</td>
<td>Materials Science and Engineering II for ciw, vt, mit</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course ID</th>
<th>Course Name</th>
<th>ECTS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105148</td>
<td>Examination Material Science I, II</td>
<td></td>
<td>Lecture / Practice</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral; 30 to 40 minutes
No tools and reference tools are allowed!

Prerequisites

none

Below you will find excerpts from events related to this course:

Materials Science and Engineering I for ciw, vt, MIT
2181555, WS 23/24, 4 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ)
On-Site

Content

Atomic structure and atomic bonds
Structures of crystalline and amorphous solids
Defects in crystalline solids
Alloys
Transport and transformation phenomena in the solid state
Corrosion
Wear
Mechanical properties
Testing of materials
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.
The students can describe the typical property profiles and can name applications for the most important engineering materials.
The students are able to describe standard materials characterization methods and can explain the evaluation of these methods. They can judge materials on base of the data obtained by these methods.

regular attendance: 45 hours
self-study: 75 hours
Oral exam in combination with Materials Science and Engineering II; oral; 30 to 40 minutes
No tools and reference tools are allowed!
Content
Ferrous materials
Non-ferrous metals and alloys
Polymers
Engineering ceramics
Composites
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name representative materials for different material classes and can describe the differences.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to assess materials on base of the data obtained by these methods.

regular attendance: 45 hours
self-study: 105 hours

Combined oral exam with Materials Science and Engineering I, 30 to 40 minutes

No tools and reference tools are allowed!
11.64 Course: Exercizes in Technical Thermodynamics and Heat Transfer I [T-MACH-105204]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102386 - Technical Thermodynamics and Heat Transfer I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2165502</td>
<td>Exercise course Technical Thermodynamics and Heat Transfer I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3165015</td>
<td>Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>2 SWS</td>
<td>Tutorial (/ 🗣)</td>
<td>Schießl, Maas</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105204</td>
<td>Exercizes in Technical Thermodynamics and Heat Transfer I</td>
<td></td>
<td></td>
<td>Maas, Schießl</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105204</td>
<td>Exercizes in Technical Thermodynamics and Heat Transfer I</td>
<td></td>
<td></td>
<td>Maas, Schießl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Competence Certificate
Successful completion of written preliminary tests.

Prerequisites
none
11.65 Course: Exercises in Technical Thermodynamics and Heat Transfer II [T-MACH-105288]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102830 - Technical Thermodynamics and Heat Transfer II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2100020</td>
<td>Technical Thermodynamics and Heat Transfer II (Repeater Tutorial)</td>
<td>Tutorial / On-Site</td>
<td>2 SWS</td>
<td></td>
<td>Schießl</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2166556</td>
<td>Technical Thermodynamics and Heat Transfer II (Tutorial)</td>
<td>Practice / On-Site</td>
<td>2 SWS</td>
<td></td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>3166033</td>
<td>Technical Thermodynamics and Heat Transfer II (Tutorial)</td>
<td>Practice / On-Site</td>
<td>2 SWS</td>
<td></td>
<td>Schießl, Maas</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105288</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer II</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105288</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer II</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Successful completion of written preliminary tests.

Prerequisites

none

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II (Tutorial)

2166556, SS 2024, 2 SWS, Language: German, Open in study portal

Content

Calculation of thermodynamical problems

Literature

Vorlesungsskriptum
11.66 Course: Fluid Mechanics 1&2 [T-MACH-105207]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102565 - Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2153512</td>
<td>Fluid Mechanics II</td>
<td>3 SWS</td>
<td>Lecture / Practice (/ 🗣)</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3153511</td>
<td>Fluid Mechanics II</td>
<td>3 SWS</td>
<td>Lecture / Practice (/ 🗣)</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2154512</td>
<td>Fluid Mechanics I</td>
<td>3 SWS</td>
<td>Lecture / Practice (/ 🗣)</td>
</tr>
<tr>
<td>ST 2024</td>
<td>3154510</td>
<td>Fluid Mechanics I</td>
<td>3 SWS</td>
<td>Lecture / Practice (/ 🗣)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105207</td>
<td>Fluid Mechanics (1+2)</td>
<td></td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105207 engl.</td>
<td>Fluid Mechanics 1&2</td>
<td></td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105207</td>
<td>Fluid Mechanics (1+2)</td>
<td></td>
<td>Frohnapfel, Kriegseis</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105207 engl.</td>
<td>Fluid Mechanics 1&2</td>
<td></td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam 3 hours

Prerequisites
none

Below you will find excerpts from events related to this course:

Fluid Mechanics II
2153512, WS 23/24, 3 SWS, Language: German, [Open in study portal](#)
Lecture / Practice (VÜ)
On-Site

Content
The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

- tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Literature
Fluid Mechanics II

3153511, WS 23/24, 3 SWS, Language: English, [Open in study portal](#)

Lecture / Practice (VÜ) On-Site

Content
The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations.

Literature

Fluid Mechanics I

2154512, SS 2024, 3 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ) On-Site

Content
Properties of fluids, surface tension, hydro- and aerostatics, kinematics, stream tube theory (compressible and incompressible), losses in pipeline systems, dimensional analysis, dimensionless numbers

Literature

Fluid Mechanics I

3154510, SS 2024, 3 SWS, Language: English, [Open in study portal](#)

Lecture / Practice (VÜ) On-Site

Content
Properties of fluids, surface tension, hydro- and aerostatics, kinematics, stream tube theory (compressible and incompressible), losses in pipeline systems, dimensional analysis, dimensionless numbers

Literature
11.67 Course: Fluid Power Systems [T-MACH-102093]

Responsible: Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2114093</td>
<td>Fluid Technology</td>
<td>2</td>
<td>Lecture</td>
<td>On-Site</td>
<td>Geimer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/ Geimer</td>
<td>On-Site</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>Lecture/V</td>
<td>On-Site</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legend: ⬆️ Online, ⬇️ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (90 minutes) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
none

Below you will find excerpts from events related to this course:

Fluid Technology

2114093, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
In the range of hydrostatics the following topics will be introduced:

- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:

- Compressors
- Motors
- Valves
- Pneumatic circuits.

- regular attendance: 21 hours
- self-study: 92 hours

Literature
Skriptum zur Vorlesung Fluidtechnik
Institut für Fahrzeugsystemtechnik
downloadbar
11.68 Course: Fundamentals in the Development of Commercial Vehicles [T-MACH-111389]

Responsible: Christof Weber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105824 - Fundamentals in the Development of Commercial Vehicles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>Lecture / 🗣️</td>
<td>1 SWS</td>
<td>Weber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>Lecture / 🗣️</td>
<td>1 SWS</td>
<td>Weber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76T-MACH-111389</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
<td>Weber</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral group examination
Duration: appr. 30 minutes
Auxiliary means: none

Prerequisites

none

Annotation

Fundamentals in the Development of Commercial Vehicles I, WT
Fundamentals in the Development of Commercial Vehicles II, ST

Below you will find excerpts from events related to this course:

Fundamentals in the Development of Commercial Vehicles I

2113812, WS 23/24, 1 SWS, Language: German, Open in study portal

Content

1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodyshell work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Learning Objectives:

The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

The students are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.
Organizational issues
Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterllias/
Termine und Nähere Informationen: siehe ILIAS oder Institutshomepage
Dates and further information will be published on the homepage of the institute.

Literature

Fundamentals in the Development of Commercial Vehicles II
2114844, SS 2024, 1 SWS, Language: German, Open in study portal

Content
1. Gear boxes of commercial vehicles
2. Intermediate elements of the drive train
3. Axle systems
4. Front axles and driving dynamics
5. Chassis and axle suspension
6. Braking System
7. Systems
8. Excursion

Learning Objectives:
The students know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application.

Organizational issues
Genaue Termine sowie nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage.

Literature
1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803
11.69 Course: Fundamentals of Automobile Development I [T-MACH-105162]

- **Responsible:** Prof. Dipl.-Ing. Rolf Frech
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-105289 - Principles of Whole Vehicle Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>WS</th>
<th>Lecture</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113810</td>
<td>Fundamentals of Automobile Development I</td>
<td>1</td>
<td>Lecture</td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2113851</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>1</td>
<td>Lecture</td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frech, Unrau</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frech, Gießler</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination

- **Duration:** 90 minutes
- **Auxiliary means:** none
- **Prerequisites:** none

Below you will find excerpts from events related to this course:

Fundamentals of Automobile Development I

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **V Lecture (V) On-Site**

Content

1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:

The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterlias/

Termine und nähere Informationen finden Sie auf der Institutshomepage.

Kann nicht mit Lehrveranstaltung 2113851 kombiniert werden.

Date and further information will be published on the homepage of the institute.

Cannot be combined with lecture 2113851.
Principles of Whole Vehicle Engineering I

2113851, WS 23/24, 1 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Content

1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aerodynamical dimensioning and design of an automobile I
5. Aerodynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:

The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues

You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/PasswoerterIlias/

Termine und nähere Informationen finden Sie auf der Institutshomepage.

Dats and further information will be published on the homepage of the institute.

Kann nicht mit Lehrveranstaltung 2113810 kombiniert werden

Cannot be combined with lecture 2113810.

Literature

Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben

The scriptum will be provided during the first lessons
11.70 Course: Fundamentals of Automobile Development II [T-MACH-105163]

Responsible: Prof. Dipl.-Ing. Rolf Frech
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-105290 - Principles of Whole Vehicle Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2114842 | Principles of Whole Vehicle Engineering II | 1 SWS | Block / On-Site | Frech
| ST 2024 | 2114860 | Principles of Whole Vehicle Engineering II | 1 SWS | On-Site | Frech

Exams

| WT 23/24 | 76-T-MACH-105163 | Fundamentals of Automobile Development II | Frech, Unrau
| ST 2024 | 76-T-MACH-105163 | Fundamentals of Automobile Development II | Frech, Gießler

Competence Certificate

Written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Principles of Whole Vehicle Engineering II
2114842, SS 2024, 1 SWS, Language: German, [Open in study portal]

Content

1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:

The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues

Vorlesung findet als Blockvorlesung an folgenden Terminen statt: 02.05., 16.05., 06.06. 2024, jeweils von 08:00 bis 11:00 Uhr. Kann nicht mit der Veranstaltung [2114860] kombiniert werden.

Cannot be combined with lecture [2114860].

Literature

Skript zur Vorlesung ist über ILIAS verfügbar.
Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues
Veranstaltung findet als Blockvorlesung an folgenden Terminen statt: 02.05., 16.05., 06.06.2024 von 11:15 bis 14:00 Uhr.

Scheduled dates:
see homepage of the institute.
Kann nicht mit der Veranstaltung [2114842] kombiniert werden.
Cannot be combined with lecture [2114842].

Literature
Das Skript zur Vorlesung ist über ILIAS verfügbar.
11.71 Course: Fundamentals of Combustion Engine Technology [T-MACH-105652]

Responsible:
Dr.-Ing. Sören Bernhardt
Dr.-Ing. Heiko Kubach
Jürgen Pfeil
Dr.-Ing. Olaf Toedter
Dr.-Ing. Uwe Wagner

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering (5 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2133123</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>Lecture / On-Site</td>
<td>Kubach, Wagner, Toedter, Pfeil, Bernhardt, Velji</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>Kubach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105652(SP)</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>Kubach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
one

Below you will find excerpts from events related to this course:

Fundamentals of Combustion Engine Technology
2133123, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
Fundamentals of engine processes
Components of combustion engines
Mixture formation systems
Gas exchange systems
Injection systems
Exhaust Gas Aftertreatment Systems
Cooling systems
Ignition Systems
11.72 Course: Fundamentals of Combustion I [T-MACH-105213]

Responsible: Prof. Dr. Ulrich Maas

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102707 - Fundamentals of Combustion I
- M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2165515</td>
<td>2 SWS</td>
<td>Fundamentals of Combustion I</td>
<td>German</td>
<td>Maas, Shrotriya, Zenk</td>
</tr>
<tr>
<td>WT 23/24 2165517</td>
<td>1 SWS</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>German</td>
<td>Bykov</td>
</tr>
<tr>
<td>WT 23/24 3165016</td>
<td>2 SWS</td>
<td>Fundamentals of Combustion I</td>
<td>German</td>
<td>Maas</td>
</tr>
<tr>
<td>WT 23/24 3165017</td>
<td>1 SWS</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>German</td>
<td>Bykov</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 76-T-MACH-105213</td>
<td></td>
<td>Fundamentals of Combustion I - german exam</td>
<td>German</td>
<td>Maas</td>
</tr>
<tr>
<td>WT 23/24 76-T-MACH-105464</td>
<td></td>
<td>Fundamentals of Combustion I - english exam</td>
<td>German</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, approx. 3 hours

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Combustion I

2165515, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)

- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames
- Ignition processes
- NOx formation
- Formation of hydrocarbons and soot

Organizational issues

Bei zu wenigen Hörern wird die Lehrveranstaltung mit der englischen Lehrveranstaltung zusammengelegt.

Literature

Fundamentals of Combustion I (Tutorial)

2165517, WS 23/24, 1 SWS, Language: German, Open in study portal
Fundamentals of Combustion I

Content

- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames
- Ignition processes
- NOx formation
- Formation of hydrocarbons and soot

Literature

Vorlesungsskript

11.73 Course: Fundamentals of Energy Technology [T-MACH-105220]

Responsible: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102690 - Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Lectures</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>3 SWS</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture / On-Site</td>
<td>Cheng, Badea</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>3 SWS</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture / On-Site</td>
<td>Badea</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Lectures</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Badea, Cheng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Cheng, Badea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Badea</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🕺 Online, 🏭 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written examination, 90 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Energy Technology

2130927, SS 2024, 3 SWS, Language: German, [Open in study portal](#)

Lecture (V) On-Site

Content

The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy demand and energy situation
- Energy types and energy mix
- Basics. Thermodynamics relevant to the energy sector
- Conventional fossil-fired power plants
- Combined Cycle Power Plants
- Cogeneration
- Nuclear energy
- Regenerative energies: hydropower, wind energy, solar energy, other energy systems
- Energy storage
- Transport of energy
- Power generation and environment. Future of the energy industry
Course: Fundamentals of Energy Technology [T-MACH-105220]

Fundamentals of Energy Technology
3190923, SS 2024, 3 SWS, Language: English, Open in study portal

Content
The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy forms
- Thermodynamics relevant to energy industry
- Energy sources: fossil fuels, nuclear energy, renewable sources
- Energy industry in Germany, Europe and worldwide
- Power generation and environment
- Evaluation of energy conversion processes
- Thermal/electrical power plants and processes
- Transport of energy / energy carriers
- Energy storage
- Systems utilizing renewable energy sources
- Basics of economic efficiency and calculus / Optimisation
- Future of the energy industry
11.74 Course: Fundamentals on High Frequency Techniques [T-ETIT-101955]

Responsible: Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
- M-ETIT-102129 - Fundamentals on High Frequency Techniques
- M-ETIT-105647 - Electromagnetic Waves/Fundamentals on High Frequency Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>6</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2308080</td>
<td>362</td>
<td>Accompanying group tutorial for 2308406 Fundamentals on High Frequency Techniques</td>
<td>Tutorial (/ Online)</td>
<td>Nuß</td>
<td></td>
</tr>
<tr>
<td>ST 2024 2308406</td>
<td>362</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Nuß</td>
</tr>
<tr>
<td>ST 2024 2308408</td>
<td>362</td>
<td>Tutorial for 2308406 Fundamentals on High Frequency Techniques</td>
<td>2 SWS</td>
<td>Practice / On-Site</td>
<td>Nuß</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7308406</td>
<td>362</td>
<td>Fundamentals on High Frequency Techniques</td>
<td></td>
<td>Zwick, Nuß</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Success control is carried out as part of a written overall examination (120 minutes) of the selected courses, with which the minimum requirement for CP is met and the assessment of homework. Students can work on the homework exercises during the semester and submit them for correction. The handover is in handwritten form.

Prerequisites

none

Recommendation

Knowledge of the basics of high frequency technology is helpful.

Annotation

The module grade is the grade of the written exam. If at least 50% of the total points of the homework are achieved, the student receives a grade bonus of 0.3 or 0.4 grade points on passing the written exam. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade of the written exam by one grade (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

The grade bonus once acquired will remain for a possible written examination in a later semester. The homework is a voluntary additional service, i.e. Even without the grade bonus, the full score or top grade can be achieved in the exam.
11.75 Course: Fuzzy Sets [T-INFO-101376]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck

Organisation: KIT Department of Informatics

Part of: M-INFO-100839 - Fuzzy Sets

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7500011</th>
<th>Fuzzy Sets</th>
<th>Pfaff</th>
</tr>
</thead>
</table>
Course: Handling Characteristics of Motor Vehicles I [T-MACH-105152]

Responsible: Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105288 - Handling Characteristics of Motor Vehicles I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113807</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Unra</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>Lecture</td>
<td></td>
<td></td>
<td>Unra</td>
</tr>
</tbody>
</table>

Competence Certificate

Verbally

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Handling Characteristics of Motor Vehicles I

2113807, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)

Online

Content

1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Learning Objectives:

The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Organizational issues

Die Vorlesung wird als Videostream zur Verfügung gestellt. Sie finden den Videostream und das Vorlesungsmaterial auf ILIAS. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterilias/

Literature

Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024

Module Handbook, valid from summer term 24
Course: Heat and Mass Transfer [T-MACH-105292]

Responsible: Prof. Dr. Ulrich Maas
Dr.-Ing. Chunkan Yu

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102717 - Heat and Mass Transfer
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

Type
Written examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each term

Version
1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Content</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2165512</td>
<td>Heat and mass transfer</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Yu, Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>3122512</td>
<td>Heat and Mass Transfer</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Content</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td></td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, approx. 3 h

Prerequisites

none

Below you will find excerpts from events related to this course:

Heat and mass transfer
2165512, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

- Steady and unsteady heat transfer in homogenous materials; Plates, pipe sections and spherical shells
- Molecular diffusion in gases; analogies between heat conduction and mass diffusion
- Convective, forced heat transfer in pipes/channels and around plates and profiles.
- Convective mass transfer, heat-/mass transfer analogy
- Multi phase convective heat transfer (condensation, evaporation)
- Radiative heat transfer

Literature

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"

Heat and Mass Transfer
3122512, SS 2024, 2 SWS, Language: English, Open in study portal

Content

- Steady and unsteady heat transfer in homogenous materials; Plates, pipe sections and spherical shells
- Molecular diffusion in gases; analogies between heat conduction and mass diffusion
- Convective, forced heat transfer in pipes/channels and around plates and profiles.
- Convective mass transfer, heat-/mass transfer analogy
- Multi phase convective heat transfer (condensation, evaporation)
- Radiative heat transfer
Organizational issues
Bitte beachten Sie den Aushang.

Literature

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"
11.78 Course: Human-Machine-Interaction [T-INFO-101266]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-INFO-106257 - Human-Machine-Interaction Pass must have been passed.

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Dr.-Ing. Florian van de Camp

Organisation: KIT Department of Informatics

Part of: M-INFO-100824 - Human-Machine-Interaction in Anthropomatics: Basics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 24100 | Human-Machine-Interaction in Anthropomatics: Basics | 2 SWS | Lecture / 🧩 | van de Camp |

Exams

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
11.80 Course: Human-Machine-Interaction Pass [T-INFO-106257]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2400095</td>
<td>Human-Computer-Interaction</td>
</tr>
<tr>
<td>ST 2024</td>
<td>24659</td>
<td>Human-Computer-Interaction</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
11.81 Course: Hybrid and Electric Vehicles [T-ETIT-100784]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-100514 - Hybrid and Electric Vehicles
- M-ETIT-105643 - Electric Energy Systems/Hybrid and Electric Vehicles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Grading scale</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2306321</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Hybrid and Electric Vehicles</td>
<td>Doppelbauer</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2306323</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Tutorial for 2306323 Hybrid and Electric Vehicles</td>
<td>Doppelbauer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>Doppelbauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 7306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>Doppelbauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none
Course: Image Processing [T-ETIT-105566]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr.-Ing. Michael Heizmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Electrical Engineering and Information Technology</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-ETIT-102651 - Image Processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2302114</td>
<td>Bildverarbeitung</td>
<td>2 SWS</td>
<td>Heizmann</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7302114</td>
<td>Image Processing</td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- 🗑 Cancelled

Prerequisites

none
11.83 Course: In-depth Module - Doing Culture - Self Assignment BAK [T-ZAK-112655]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
11.84 Course: In-depth Module - Global Cultures - Self Assignment BAK [T-ZAK-112658]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT). In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.

The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.

In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites

Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies

This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation

The content of the Basic Modul is helpful.
11 COURSES

Course: In-depth Module - Media & Aesthetics - Self Assignment BAK [T-ZAK-112656]

| Responsible: | Dr. Christine Mielke
| Christine Myglas |
| Organisation: | Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society |

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
11.86 Course: In-depth Module - Spheres of Life - Self Assignment BAK [T-ZAK-112657]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
11.87 Course: In-depth Module - Technology & Responsibility - Self Assignment BAK [T-ZAK-112654]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT). In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken. The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the ‘Oral Examination’ is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7500030</th>
<th>Information Processing in Sensor Networks</th>
<th>Pfaff</th>
</tr>
</thead>
</table>
11.89 Course: Information Systems and Supply Chain Management [T-MACH-102128]

Responsible: Dr.-Ing. Christoph Kilger
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105281 - Information Systems and Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered.

Prerequisites
none
11.90 Course: Information Technology I [T-ETIT-109300]

- **Responsible:** Prof. Dr.-Ing. Eric Sax
- **Organisation:** KIT Department of Electrical Engineering and Information Technology
- **Part of:** M-ETIT-104539 - Information Technology I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2303185</td>
<td>Informationstechnik und Automatisierungstechnik</td>
<td>3</td>
<td>Lecture / 🗣️</td>
<td>Barth</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2303186</td>
<td>Übung zu Informationstechnik und Automatisierungstechnik</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Madsen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7311651</td>
<td>Information Technology I</td>
<td>Sax</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7300024</td>
<td>Information and Automation Technology</td>
<td>Barth</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⛳ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Einer schriftlichen Prüfung nach im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung, Übung.
11.91 Course: Information Technology I - Practical Course [T-ETIT-109301]

Responsible: Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-104539 - Information Technology I

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2311653 | Laboratory on Information Technology I | 1 SWS | Practical course / 🧩 | Sax |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Einer Erfolgskontrolle in Form von Projektdokumentationen und Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum.
11.92 Course: Information Technology II and Automation Technology [T-ETIT-109319]

Responsible: Prof. Dr.-Ing. Eric Sax
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-104547 - Information Technology II and Automation Technology
- M-ETIT-105644 - Information and Automation Technology II/Laboratory for Machine Learning Algorithms
- M-ETIT-105645 - Information and Automation Technology II/Seminar Embedded Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2311654 | Information Technology II and Automation Technology | 2 SWS | Lecture / 🗣 | Sax |
| ST 2024 | 2311655 | Tutorial for 2311654 Information Technology II and Automation Technology | 1 SWS | Practice / 🗣 | Zink |

Exams

| WT 23/24 | 7311654 | Information Technology II and Automation Technology | Sax |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Einer schriftlichen Prüfung nach im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung, Übung.
11.93 Course: Innovation and Project Management in Rail Vehicle Engineering [T-MACH-113068]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106514 - Innovation and Project Management in Rail Vehicle Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Innovation and Project Management with Case Study "Innovative Rail Vehicle"</td>
<td>2 SWS</td>
<td>Cichon</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Innovation and Project Management with Case Study "Innovative Rail Vehicle"</td>
<td>2 SWS</td>
<td>Cichon, Berthold</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Innovation and Project Management in Rail Vehicle Engineering</td>
<td>Cichon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Innovation and Project Management in Rail Vehicle Engineering</td>
<td>Cichon, Berthold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔗 On-Site, ✗ Cancelled

Competence Certificate
Presentation (duration approx. 20 minutes) and colloquium
11.94 Course: Innovative Concepts for Programming Industrial Robots [T-INFO-101328]

Responsible: Prof. Dr.-Ing. Björn Hein
Organisation: KIT Department of Informatics
Part of: M-INFO-100791 - Innovative Concepts for Programming Industrial Robots

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>24179</td>
<td>Innovative Concepts for Programming Industrial Robots</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Hein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>750001</td>
<td>Innovative Concepts for programming Industrial Robots</td>
<td>Hein</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🦂 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled
11.95 Course: Integrated Information Systems for Engineers [T-MACH-102083]

** Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova
** Organisation:** KIT Department of Mechanical Engineering

** Part of:** M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2121001</td>
<td>Integrated Information Systems for engineers</td>
<td>3</td>
<td>Lecture / Practice (🗣)</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2121001</td>
<td>Integrated Information Systems for engineers</td>
<td>3</td>
<td>Lecture / Practice (🗣)</td>
<td>Elstermann, Meyer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>3</td>
<td>Lecture / Practice (🗣)</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral examination 20 min.

Prerequisites

None

Below you will find excerpts from events related to this course:

Integrated Information Systems for engineers

2121001, WS 23/24, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) On-Site

Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature

Vorlesungsfolien / lecture slides
Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature

Vorlesungsfolien / lecture slides
11.96 Course: Internship [T-MACH-108803]

Responsible: Prof. Dr. Martin Doppelbauer
 Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104265 - Internship

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>15</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams
WT 23/24 76-T-MACH-108803 Internship Doppelbauer, Geimer

Competence Certificate
An internship of at least thirteen weeks has to be fulfilled, which is suitable to provide the student an insight into the professional work in the area of mechatronics and information technology. 15 ECTS are allocated to the internship.

Original certificates and reports about the internship has to be provided to the appropriate internship office.

The reports have to contain a compilation of activities during the internship with the following content: company, area of production, workshop or department, instruction period in each workshop or department with start and end date and one detailed report per week or project. The report has to consist of at least one DIN A4 page per week and should have the format of a scientific report. The reports should give evidence, that the author has done all reported activities by himself; for example by describing the work flow or reflecting the gained experience. Sketches, drawings, schematics etc. can save a long report.

The reports have to be checked by the supervisor in the company and have to be approved by stamp and signature. Periods which are not verified by a report cannot be accredited.

Prerequisites
None

Annotation
Further information are provided by the internship guidelines for the BSc-course in Mechatronics and Information Technology.
11.97 Course: Introduction to Energy Economics [T WIWI-102746]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M WIWI-100498 - Introduction into Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>6</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2581010 Introduction to Energy Economics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Fichtner</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ST 2024 2581011 Übungen zu Einführung in die Energiewirtschaft</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Sandmeier, Fichtner, Scharnhorst</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7981010 Introduction to Energy Economics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Fichtner</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☎️ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

Below you will find excerpts from events related to this course:

Introduction to Energy Economics

2581010, SS 2024, 2 SWS, Language: German, [Open in study portal]

Content

1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

The student is able to

- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Literature

Weiterführende Literatur:

Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
11.98 Course: Introduction to High Voltage Engineering [T-ETIT-110702]

Responsible: Dr.-Ing. Michael Suriyah

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105276 - Introduction to High Voltage Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture code</th>
<th>Title</th>
<th>WS</th>
<th>Lecture / On-Site</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2307395</td>
<td>Introduction to High Voltage Engineering</td>
<td>2 SWS</td>
<td>On-Site</td>
<td>Suriyah</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7307396</td>
<td>Introduction to High Voltage Engineering</td>
<td>Suriyah</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7307395</td>
<td>Introduction to High Voltage Engineering</td>
<td>Suriyah</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral exam approx. 20 min.

Prerequisites

none

Recommendation

Basic knowledge in network theory, field theory and electrical metrology
11.99 Course: Introduction to Microsystem Technology I [T-MACH-105182]

Responsible: Dr. Vlad Badilita
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102691 - Introduction to Microsystem Technology I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
<th>Examiners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2141861</td>
<td>Introduction to Microsystem Technology I</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td></td>
<td></td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td></td>
<td></td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written examination (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology I
2141861, WS 23/24, 2 SWS, Language: English, Open in study portal

Literature
Mikrosystemtechnik für Ingenieure, W. Menz und J. Mohr, VCH Verlagsgesellschaft, Weinheim 2005

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd., Auflage: 3. Auflage. 2011
Course: Introduction to Microsystem Technology II [T-MACH-105183]

Responsible:
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-102706 - Introduction to Microsystem Technology II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2142874</td>
<td>Introduction to Microsystem Technology II</td>
<td>2</td>
<td>Lecture</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td>2</td>
<td>Lecture</td>
<td>Korvink, Badilita</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td>2</td>
<td>Lecture</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Competence Certificate
written examination (60 min)

Prerequisites
one

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology II
2142874, SS 2024, 2 SWS, Language: English, [Open in study portal](#)

Content
- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Organizational issues

Topic: Grundlagen der Mikrosystemtechnik II (MST II) SS 21
Time: Thursdays 14:00 - 15:30
10.91 Redtenbacher-Hörsaal

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
11 COURSES

11.101 Course: Introduction to Multi-Body Dynamics [T-MACH-105209]

Responsible: Dr.-Ing. Ulrich Römer
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-103205 - Engineering Mechanics
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering (5 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2162235</td>
<td>Introduction to Multibody Dynamics</td>
<td>3</td>
<td>Lecture /</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
<td>Römer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>3</td>
<td>Lecture /</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Proppe, Römer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105209-mPr</td>
<td>Introduction to Multi-Body Dynamics</td>
<td>3</td>
<td>Lecture /</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Römer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105209</td>
<td>Introduction to Multibody Dynamics</td>
<td>3</td>
<td>Lecture /</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Römer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Canceled

Competence Certificate

Written examination, 180 min.

Prerequisites

none

Recommendation

Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

Introduction to Multibody Dynamics

2162235, SS 2024, 3 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Blended (On-Site/Online)

Content

The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d'Alembert, principle of virtual power, Lagrange's equations, Kane's equations, structure of the equations of motion

Literature

Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
de Ja'lon, J. G., Bayo, E.: Kinematik and Dynamic Simulation of Multibody Systems.
Kane, T.: Dynamics of rigid bodies.
11.102 Course: Introduction to Operations Research I and II [T-WIWI-102758]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101418 - Introduction to Operations Research

Type
Written examination

Credits
9

Grading scale
Grade to a third

Recurrence
see Annotations

Version
2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2500030</td>
<td>Computer Exercises on Introduction to Operations Research II</td>
<td>1</td>
<td>Tutorial (🖥)</td>
<td>Dunke</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2530043</td>
<td>Introduction to Operations Research II</td>
<td>2</td>
<td>Lecture (🧩)</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2530044</td>
<td></td>
<td></td>
<td>Tutorial (🗣)</td>
<td>Dunke</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2500008</td>
<td>Computer Exercises on Introduction to Operations Research I</td>
<td>1</td>
<td>Tutorial (🖥)</td>
<td>Dunke</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2550040</td>
<td>Introduction to Operations Research I</td>
<td>2</td>
<td>Lecture (🗣)</td>
<td>Nickel</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2550043</td>
<td>Tutorials on Introduction to Operations Research I</td>
<td>2</td>
<td>Tutorial (🗣)</td>
<td>Dunke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900209</td>
<td>Introduction to Operations Research I and II</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation. In each term (usually in March and August), one examination is held for both courses. The overall grade of the module is the grade of the written examination.

Prerequisites

None

Recommendation

Knowledge of Mathematics I and II is recommended, as well as programming knowledge for the software laboratory. It is strongly recommended to attend the course Introduction to Operations Research I [2550040] before attending the course Introduction to Operations Research II [2530043].

Below you will find excerpts from events related to this course:
Content

Integer and combinatorial optimization: basic concepts, cutting plane methods, branch-and-bound methods, branch-and-cut methods, heuristic methods.

Nonlinear optimization: basic concepts, optimality conditions, solution methods for convex and nonconvex optimization problems.

Dynamic and stochastic models and methods: Dynamic optimization, Bellman methods, lot-sizing models and dynamic and stochastic models of inventory, queues.

Learning Objectives:

The student

- knows and describes the basic concepts of integer and combinatorial optimization, nonlinear optimization and dynamic optimization,
- knows the methods and models indispensable for a quantitative analysis,
- models and classifies optimization problems and selects appropriate solution procedures to solve simple optimization problems independently,
- validates, illustrates and interprets obtained solutions.

Literature

V Introduction to Operations Research I
2550040, SS 2024, 2 SWS, Language: German, Open in study portal

Content

Examples for typical OR problems.

Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, game theory.

Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal and minimal cost flows in networks.

Learning objectives:

The student

- names and describes basic notions of linear programming as well as graphs and networks,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Literature

11.103 Course: Introduction to Video Analysis [T-INFO-101273]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible:
Prof. Dr.-Ing. Jürgen Beyerer

Organisation:
KIT Department of Informatics

Part of:
M-INFO-100736 - Introduction to Video Analysis

Events
- **ST 2024**
 - Code: 24684
 - Lecture / Arens
 - Introduction to Video Analysis
 - 2 SWS

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
</tr>
<tr>
<td>Introduction to Video Analysis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled
11.104 Course: IT-Fundamentals of Logistics [T-MACH-105187]

Responsible: Prof. Dr.-Ing. Frank Thomas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105282 - IT-Fundamentals of Logistics: Opportunities for Digital Transformation

Competence Certificate
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
none
11.105 Course: Lab Computer-Aided Methods for Measurement and Control [T-MACH-105341]

Responsible: Marvin Klemp
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105291 - Lab Computer-Aided Methods for Measurement and Control

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Each winter term</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lab</td>
<td>2137306</td>
<td>Lab Computer-aided methods for measurement and control</td>
</tr>
<tr>
<td></td>
<td>course</td>
<td></td>
<td>3 SWS</td>
</tr>
<tr>
<td></td>
<td>practical</td>
<td></td>
<td>Practical course / On-Site</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stiller, Immel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Exam</td>
<td>76-T-MACH-105341</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Legend: 🛥 Online, 🧩 Blended (On-Site/Online), ⚫ On-Site, ❌ Cancelled

Competence Certificate
Colloquia

Prerequisites
none

Below you will find excerpts from events related to this course:

Lab Computer-aided methods for measurement and control
2137306, WS 23/24, 3 SWS, Language: German, Open in study portal

Practical course (P)
On-Site

Content
Lerninhalt (EN):
1. Digital technology
2. Digital storage oscilloscope and digital spectrum analyzer
3. Supersonic computer tomography
4. Lighting and image acquisition
5. Digital image processing
6. Image interpretation
7. Control synthesis and simulation
8. Robot: Sensors
9. Robot: Actuating elements and path planning
The lab comprises 9 experiments.

Voraussetzungen: Recommendations:
Basic studies and preliminary examination; basic lectures in automatic control

Arbeitsaufwand (EN): 120 hours

Lernziele (EN):
Powerful and cheap computation resources have led to major changes in the domain of measurement and control. Engineers in various fields are nowadays confronted with the application of computer-aided methods. This lab tries to give an insight into the modern domain of measurement and control by means of practically oriented and flexible experiments. Based on experiments on measurement instrumentation and digital signal processing, elementary knowledge in the domain of visual inspection and image processing will be taught. Thereby, commonly used software like MATLAB/Simulink will be used in both simulation and realization of control loops. The lab closes with selected applications, like control of a robot or supersonic computer tomography.

Nachweis (EN):
Colloquia
Literature
Übungsanleitungen sind auf der Institutshomepage erhältlich.
Instructions to the experiments are available on the institute's website
11.106 Course: Lab Course Electrical Drives and Power Electronics [T-ETIT-100718]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100401 - Lab Course Electrical Drives and Power Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2306331 | Lab Course Electrical Drives and Power Electronics | 4 SWS | Practical course / 🗣 Brodatzki, Hiller |

Legend: 🔄 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
11.107 Course: Lab Course Electrical Power Engineering [T-ETIT-100728]

Responsible:
- Dr.-Ing. Rainer Badent
- Prof. Dr. Martin Doppelbauer
- Prof. Dr.-Ing. Thomas Leibfried

Organisation:
KIT Department of Electrical Engineering and Information Technology

Part of:
M-ETIT-100419 - Lab Course Electrical Power Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2307398</td>
<td>Lab Course Electrical Power Engineering</td>
<td>4 SWS</td>
<td>Practical course / 🗣</td>
<td>Badent, Brodatzki, N.N.</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7307398</td>
<td>Lab Course Electrical Power Engineering</td>
<td>Badent</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
11.108 Course: Laboratory Biomedical Engineering [T-ETIT-101934]

Responsible:
Prof. Dr. Werner Nahm

Organisation:
KIT Department of Electrical Engineering and Information Technology

Part of:
M-ETIT-100389 - Laboratory Biomedical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2305276 | Laboratory Biomedical Engineering | 4 SWS | Practical course / 🗣 Nahm |

Exams

| ST 2024 | 7305276 | Laboratory Biomedical Engineering | Nahm |

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
Passed exam of the module “Biomedizinische Messtechnik I”.

Modeled Conditions
You have to fulfill one of 2 conditions:

1. The course T-ETIT-106492 - Biomedical Measurement Techniques I must have been passed.
2. The course T-ETIT-101928 - Biomedical Measurement Techniques I must have been passed.
11.09 Course: Laboratory Circuit Design [T-ETIT-100788]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Dr.-Ing. Oliver Sander

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100518 - Laboratory Circuit Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Cycles</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2311638</td>
<td>Laboratory Circuit Design</td>
<td>Practical course</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7311638</td>
<td>Laboratory Circuit Design</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 👥 On-Site, ✗ Cancelled

Prerequisites

None
11.110 Course: Laboratory for Applied Machine Learning Algorithms [T-ETIT-109839]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
M-ETIT-104823 - Laboratory for Applied Machine Learning Algorithms
M-ETIT-105644 - Information and Automation Technology II/Laboratory for Machine Learning Algorithms

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
<td>4 SWS</td>
<td>Practical course / 🗣</td>
<td>Sax, Stork, Becker</td>
<td>1 terms</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
<td></td>
<td>Sax, Stork, Becker</td>
<td></td>
<td>1 terms</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
11.111 Course: Laboratory Hardware and Software in Power Electronic Systems [T-ETIT-106498]

Responsible: Prof. Dr.-Ing. Marc Hiller

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-103263 - Laboratory Hardware and Software in Power Electronic Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Location</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2306346</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
<td>4 SWS</td>
<td>Practical course / 📅</td>
<td>Hiller, Swoboda, Cujic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2306346</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
<td>4 SWS</td>
<td>Practical course / 📅</td>
<td>Hiller, Swoboda, Cujic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Location</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7306346</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
<td>Hiller, Stoß</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
The modules "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" and "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" may neither be started nor completed.
11.112 Course: Laboratory Mechatronic Measurement Systems [T-ETIT-106854]

Responsible: Prof. Dr.-Ing. Michael Heizmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-103448 - Laboratory Mechatronic Measurement Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4 SWS</td>
<td>Laboratory Mechatronic Measurement Systems</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Heizmann, Steffens</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Heizmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The success control is carried out in the form of a written test of 120 minutes. If there are fewer than 20 candidates, an oral exam of around 20 minutes can alternatively take place. The module grade is the grade of the written or oral exam.

Prerequisites

none

Recommendation

Knowledge from the lectures "Metrology" or "Metrology in Mechatronics" and "Manufacturing Metrology" as well as basic knowledge of programming (e.g. in Matlab, C / C++) are helpful.

Annotation

Annotations

The submission of the protocols of all experiments is required for admission to the examination. The quality of the protocols is assessed; for the admission to the exam, the quality must be acceptable.

Attendance of all laboratory dates including the introductory event is required. Already in the event of a single unexcused absence, admission to the examination will not be granted.
11.113 Course: Laboratory Mechatronics [T-MACH-105370]

Responsible: Prof. Dr. Veit Hagenmeyer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102699 - Laboratory Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Practical course / 🗣</td>
<td>Each winter term</td>
<td>Fidlin, Hagenmeyer, Böhland, Stiller, Chen, Orth, Immel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Practical course / 🗣</td>
<td>Each winter term</td>
<td>Stiller, Hagenmeyer</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The laboratory course is offered exclusively as ungraded course work. The assessment consists of a group colloquium at the beginning of the individual specialization phases (Part 1). In addition, a robot control system for a pick-and-place task must be successfully implemented in the group phase (Part 2).

Prerequisites
None

Below you will find excerpts from events related to this course:

Laboratory mechatronics
2105014, WS 23/24, 3 SWS, Language: German, Open in study portal

Practical course (P)
On-Site

Content

Part I
Control, programming and simulation of robots
CAN-Bus communication
Image processing / machine vision
Dynamic simulation of robots in ADAMS

Part II
Solution of a complex problem in team work

Learning objectives:
The student is able to ...

- use his knowledge about mechatronics and microsystems technology to solve a practical problem. The laboratory course comprises simulation, bus communication, measurement instrumentation, control engineering and programming.
- integrate the different subsystems from a manipulator to a working compound system in teamwork.

Nachweis (EN): certificate of successful attendance
Voraussetzung (EN): none
Arbeitsaufwand (EN):
regular attendance: 33.5 h
self-study: 88.5 h
Organizational issues
Das Praktikum ist anmeldepflichtig.
Die Anmeldungmodalitäten-/fristen werden auf https://www.iai.kit.edu/Pruefungen.php bekannt gegeben.
Siehe Internet / Aushang Raum 033 EG, im Gebäude 40.32.

Literature
Materialien zum Mechatronik-Praktikum
Manuals for the laboratory course on Mechatronics
11.114 Course: Lightweight Engineering Design [T-MACH-105221]

Responsible: Prof. Dr.-Ing. Tobias Düser
Sascha Ott

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102696 - Lightweight Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2146190</td>
<td>Lightweight Engineering Design</td>
<td>2</td>
<td>Lecture / On-Site</td>
<td>Düser, Ott</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>Lecture (V)</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>Lecture (V)</td>
<td>Düser, Ott, Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🏗 Blended (On-Site/Online), 🗣 On-Site, × Cancelled

Competence Certificate

Written examination (90 min)

Prerequisites

None

Below you will find excerpts from events related to this course:

Lightweight Engineering Design

2146190, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Content

General aspects of lightweight design, lightweight strategies, construction methods, design principles, lightweight construction, stiffening techniques, lightweight materials, virtual product engineering, bionics, joining techniques, validation, recycling

Additionally, guest speakers from industry will present lightweight design from an practical point of view.

The students are able to ...

- evaluate the potential of central lightweight strategies and their application in design processes.
- apply different stiffing methods qualitatively and to evaluate their effectiveness.
- evaluate the potential of computer-aided engineering as well as the related limits and influences on manufacturing.
- reflect the basics of lightweight construction from a system view in the context of the product engineering process.
Organizational issues
Vorlesungsfolien können über die eLearning-Plattform ILIAS bezogen werden.

Die Prüfungsart wird gemäß der Prüfungsordnung zu Vorlesungsbeginn angekündigt:

- Schriftliche Prüfung: 90 min Prüfungsdauer
- Mündliche Prüfung: 20 min Prüfungsdauer
- Erlaubte Hilfsmittel: keine

Medien: Beamer

Arbeitsbelastung:

- Präsenzzeit: 21 h
- Selbststudium: 99 h

Lecture slides are available via eLearning-Platform ILIAS.
The type of examination (written or oral) will be announced at the beginning of the lecture:

- written examination: 90 min duration
- oral examination: 20 min duration
- auxiliary means: None

Media: Beamer

Workload:

- regular attendance: 21 h
- self-study: 99 h

Literature
Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
11.115 Course: Linear Electronic Networks [T-ETIT-109316]

Responsible: Prof. Dr.-Ing. John Jelonnek
Prof. Dr. Sebastian Kempf

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
M-ETIT-104519 - Linear Electric Circuits
M-MACH-104333 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2305256</td>
<td>Linear Electric Circuits</td>
<td>4 SWS</td>
<td>Lecture / Online</td>
<td>Kempf, Jelonnek</td>
</tr>
<tr>
<td>WT 23/24 2305258</td>
<td>Linear Electric Circuits (Tutorial to 2305256)</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Wünsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7305256</td>
<td>Linear Electronic Networks</td>
<td>Kempf, Jelonnek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 7312701</td>
<td>Linear Electronic Networks</td>
<td>Kempf, Jelonnek</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
11.116 Course: Linear Electronic Networks - Workshop A [T-ETIT-109317]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Prof. Dr. Ulrich Lemmer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
M-ETIT-104519 - Linear Electric Circuits
M-MACH-104333 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>2313732</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Linear Electric Circuits - Workshop A</td>
</tr>
<tr>
<td></td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td>Practical course / Lemmer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th>7313732</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Linear Electronic Networks - Workshop A</td>
</tr>
<tr>
<td></td>
<td>Lemmer</td>
</tr>
</tbody>
</table>

Prerequisites

none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ❌ Cancelled
11.117 Course: Linear Electronic Networks - Workshop B [T-ETIT-109811]

Responsible: Prof. Dr. Werner Nahm
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-104519 - Linear Electric Circuits
- M-MACH-104333 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Event Name</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Trainer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2307306</td>
<td>Linear Electronic Networks Workshop B</td>
<td>Practical course</td>
<td>1</td>
<td>Each winter term</td>
<td>Leibfried</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2307400</td>
<td>Linear Electronic Networks - Workshop B</td>
<td>Practical course</td>
<td>1</td>
<td>Each winter term</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Event Name</th>
<th>Type</th>
<th>Trainer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7307400</td>
<td>Linear Electronic Networks - Workshop B</td>
<td></td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
11.118 Course: Localization of Mobile Agents [T-INFO-101377]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: M-INFO-100840 - Localization of Mobile Agents

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2024 24613 Localization of Mobile Agents 3 SWS Lecture / Hanebeck

Exams

WT 23/24 7500020 Localization of Mobile Agents Zea Cobo

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔖 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Localization of Mobile Agents
24613, SS 2024, 3 SWS, Language: German, [Open in study portal]

Content
This module provides a systematic introduction into the topic of localization methods. In order to facilitate understanding, the module is divided into four main topics. Dead reckoning treats the instantaneous determination of a vehicle’s position based on dynamic parameters like velocity or steering angle. Localization with the help of measurements of known landmarks is part of static localization. In addition to the closed-form solutions for particular measurements (distances and angles), the least squares method for fusion arbitrary measurements is also introduced. Dynamic localization treats the combination of dead reckoning and static localization. The central part of the lecture is the derivation of the Kalman filter, which has been successfully applied in several practical applications. Finally, simultaneous localization and mapping (SLAM) is introduced, which allows localization in case of (partly) unknown landmark positions.

Organizational issues
Prüfungsterminvorschläge und das Verfahren dazu sind auf der Webseite der Vorlesung zu finden.

Literature
Grundlegende Kenntnisse der linearen Algebra und Stochastik sind hilfreich.
11.119 Course: Logistics and Supply Chain Management [T-MACH-110771]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-105298 - Logistics and Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Event ID</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
<th>Mode</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2118078</td>
<td>Logistics and Supply Chain Management</td>
<td>4 SWS</td>
<td>Lecture / 🗣️</td>
<td>Furmans, Alicke</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

The success control takes place in the form of an examination performance of a different kind. This is composed as follows:

- 50% assessment of a written examination (60 min) during the semester break
- 50% assessment of an oral examination (20 min) during the semester break

To pass the examination, both examination performances must be passed.

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102089 - Logistics - Organisation, Design and Control of Logistic Systems must not have been started.

Annotation

The brick cannot be taken if one of the bricks “T-MACH-102089 – Logistics - Organisation, Design and Control of Logistic Systems” and “T-MACH-105181 – Supply Chain Management” has been taken.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

2118078, SS 2024, 4 SWS, Language: English, Open in study portal
Content
In the lecture "Logistics and Supply Chain Management", comprehensive and well-founded fundamentals of crucial issues in logistics and supply chain management are presented. Furthermore, the interaction of different design elements of supply chains is emphasized. For this purpose, both qualitative and quantitative models are presented and applied. Additionally, methods for mapping and evaluating logistics systems and supply chains are described. The contents of the lecture are deepened in exercises and case studies and comprehension is partially reviewed in case studies. The contents will be illustrated, among other things, on the basis of supply chains in the automotive industry.
Among others, the following topics are covered:

- Inventory Management
- Forecasting
- Bullwhip Effect
- Supply Chain Segmentation and Collaboration
- Key Performance Indicators
- Supply Chain Risk Management
- Production Logistics
- Location Planning
- Route Planning

It is intended to provide an interactive format in which students can also contribute (and work alone or in groups). Since logistics and supply chain management (also in times during and after Corona) requires working in an international environment and therefore many terms are derived from English, the lecture will be held in English.
11.120 Course: Machine Dynamics [T-MACH-105210]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102694 - Machine Dynamics
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering (5 CP)

Type
Written examination

Credits
5

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2161224</td>
<td>Machine Dynamics</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2161224</td>
<td>Machine Dynamics</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2161225</td>
<td>Machine Dynamics (Tutorial)</td>
<td>1 SWS</td>
<td>Practice</td>
<td>On-Site</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105210</td>
<td>Machine Dynamics</td>
<td></td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105210</td>
<td>Machine Dynamics</td>
<td></td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 180 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Machine Dynamics
2161224, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Content

1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Literature

Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953

Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979

Dresig, Vulfson: Dynamik der Mechanismen, 1989

Machine Dynamics
2161224, SS 2024, 2 SWS, Language: German/English, [Open in study portal](#)

Content

1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing
Literature
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989

Machine Dynamics (Tutorial)
2161225, SS 2024, 1 SWS, Language: English, Open in study portal

Content
Exercises related to the lecture
11.121 Course: Machine Learning 1 - Basic Methods [T-WIWI-106340]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105003 - Machine Learning 1

Type: Written examination
Credits: 5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 4

Events
WT 23/24 2511500 Machine Learning 1 - Fundamental Methods 2 SWS Lecture / Zöllner
WT 23/24 2511501 Exercises to Machine Learning 1 - Fundamental Methods 1 SWS Practice / Zöllner, Polley, Fechner, Daaboul

Exams
WT 23/24 79AIFB_ML1_C5 Machine Learning 1 - Basic Methods Zöllner

Content
The course prepares students for the rapidly evolving field of machine learning by providing a solid foundation, covering core concepts and techniques to get started in the field. Students delve into different methods in supervised, unsupervised, and reinforcement learning, as well as various model types, ranging from basic linear classifiers to more complex methods, such as deep neural networks. Topics include general learning theory, support vector machines, decision trees, neural network fundamentals, convolutional neural networks, recurrent neural networks, unsupervised learning, reinforcement learning, and Bayesian learning.

The course is accompanied by a corresponding exercise, where students gain hands-on experience by implementing and experimenting with different machine learning algorithms, helping them to apply machine learning algorithms on real world problems.

By the end of the course, students will have acquired a solid foundation in machine learning, enabling them to apply state-of-the-art algorithms to solve complex problems, contribute to research efforts, and explore advanced topics in the field.

Learning objectives:

- Students acquire knowledge of the fundamental methods in the field of machine learning.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.
Literatur
Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

• Machine Learning - Tom Mitchell
• Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville
• Pattern Recognition and Machine Learning - Christopher M. Bishop
• Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
• Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.
Course: Machine Learning 2 – Advanced Methods [T-WIWI-106341]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105006 - Machine Learning 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Room</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2511502</td>
<td>Machine Learning 2 - Advanced methods</td>
<td>2</td>
<td>Lecture</td>
<td>Zöllner, Fechner, Polley</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2511503</td>
<td>Exercises for Machine Learning 2 - Advanced Methods</td>
<td>1</td>
<td>Practice</td>
<td>Zöllner, Fechner, Polley</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>79AIFB_ML2_B8</td>
<td>Machine Learning 2 – Advanced Methods</td>
<td>Lecture</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the exam will be offered either as an open-book exam, or as a written exam (60 min). The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Machine Learning 2 - Advanced methods

2511502, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Content

The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.

The lecture "Machine Learning 2" deals with modern advanced methods of machine learning such as semi-supervised, self-supervised and active learning, deep neural networks (deep learning, CNNs, GANs, diffusion models, transformer, adversarial attacks) and hierarchical approaches, e.g. reinforcement learning. Another focus is the embedding and application of machine learning methods in real systems.

The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (vehicles, robotics, neurorobotics, image processing, etc.).

Learning objectives:

- Students understand extended concepts of machine learning and their possible applications.
- Students can classify, formally describe and evaluate methods of machine learning.
- In detail, methods of machine learning can be embedded and applied in complex decision and inference systems.
- Students can use their knowledge to select suitable models and methods of machine learning for existing problems in the field of machine intelligence.

Recommendations:

Attending the lecture *Machine Learning 1* or a comparable lecture is very helpful in understanding this lecture.
Literatur
Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

- Deep Learning - Ian Goodfellow
- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Machine Learning - Tom Mitchell
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.
Course: Machine Learning for Robotic Systems 1 [T-MACH-113064]

Responsible: Jun.-Prof. Dr. Rania Rayyes
Organisation: KIT Department of Electrical Engineering and Information Technology
KIT Department of Mechanical Engineering

Part of: M-MACH-106457 - Machine Learning for Robotic Systems 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Module</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2117055</td>
<td>Machine Learning for Robotic Systems 1</td>
<td>Lecture / Practice</td>
<td>4 SWS</td>
<td>Rayyes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-113064</td>
<td>Machine Learning for Robotic Systems 1</td>
<td>Rayyes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competition Certificate

The assessment of this course is a written examination (90 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

Prerequisites

None

Recommendation

- The course assumes basic knowledge in mathematics. e.g., particular (conditional) probabilities, the exponential function, basic linear algebra etc.
- Programming skills in one programming language is recommended.
- Attendance of the lectures Robotics 1.
- Some knowledge in statistics is useful.

Below you will find excerpts from events related to this course:

Machine Learning for Robotic Systems 1
2117055, WS 23/24, 4 SWS, Language: English, Open in study portal

Content

This lecture provides an overview of essential and current methods and concepts of Machine Learning for different robotic applications. It covers also their underlying mathematical and statistical methods. Important fundamental terminology, concepts and methods are presented for various topics including:

- Model selection, machine learning bias vs. parameter optimization
- Training, test, validation, generalization, overfitting, regularization
- Supervised vs unsupervised learning
- Regression
- Classifications
- Neural Networks
- Gaussian mixtures, Gaussian mixture regression

And other interesting topics
11.124 Course: Machine Learning for Robotic Systems 2 [T-MACH-113403]

Responsible: Jun.-Prof. Dr. Rania Rayyes

Organisation:
- KIT Department of Electrical Engineering and Information Technology
- KIT Department of Mechanical Engineering

Part of: M-MACH-106652 - Machine Learning for Robotic Systems 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2100015</th>
<th>Machine Learning for Robotic Systems 2</th>
<th>4 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Rayyes</th>
</tr>
</thead>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment of this course is a written examination (90 min) according to §4(2), 1 of the examination regulation or an oral exam (approx. 20 min) following §4, Abs. 2, 2 of the examination regulation.

Prerequisites
None

Recommendation
- The course assumes basic knowledge in mathematics. e.g., particular (conditional) probabilities, the exponential function, basic linear algebra etc.
- Programming skills in one programming language is recommended.
- Attendance of the lecture Machine Learning for Robotic Systems 1
- Attendance of the lectures Robotics 1.
- Some knowledge in statistics is useful.

Below you will find excerpts from events related to this course:

Content
This lecture provides an overview of current advanced machine learning for different robotic applications. Important fundamental terminology, concepts, and methods are presented for various topics including:

- Active Learning
- Transformers
- Adversarial learning, GANs
- Deep Reinforcement Learning
- Goal-Directed Exploration
- Recurrent Neural Network

And other interesting topics

The course also includes hands-on sessions for programming and implementing the methods.
11.125 Course: Machine Tools and High-Precision Manufacturing Systems [T-MACH-110962]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-105107 - Machine Tools and Industrial Handling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam (40 minutes)

Prerequisites
T-MACH-102158 - Machine Tools and Industrial Handling must not be commenced.
T-MACH-109055 - Machine Tools and Industrial Handling must not be commenced.
T-MACH-110963 - Machine Tools and High-Precision Manufacturing Systems must not be commenced.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110963 - Machine Tools and High-Precision Manufacturing Systems must not have been started.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>6 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled
Content
The lecture gives an overview of the construction, use and application of machine tools and high-precision manufacturing systems. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools and high-precision manufacturing systems is conveyed. First, the main components of the systems are systematically explained and their design principles as well as the integral system design are discussed. Subsequently, the use and application of machine tools and high-precision manufacturing systems will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0 and artificial intelligence. Guest lectures from industry round off the lecture with insights into practice.

The individual topics are:

- Structural components of dynamic manufacturing Systems
- Feed axes: High-precision positioning
- Spindles of cutting machine Tools
- Peripheral Equipment
- Machine control unit
- Metrological Evaluation
- Maintenance strategies and condition Monitoring
- Process Monitoring
- Development process for machine tools and high-precision manufacturing Systems
- Machine examples

Learning Outcomes:
The students ...

- are able to assess the use and application of machine tools and high-precision manufacturing systems and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of machine tools and high-precision manufacturing systems (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of machine tools and high-precision manufacturing systems.
- are capable of selecting and evaluating machine tools and high-precision manufacturing systems according to technical and economic criteria.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING/TWVL:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues

Lectures on Mondays and Wednesdays, tutorial on Thursdays. The tutorial dates will be announced in the first lecture.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstüzt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Course: Machine Vision [T-MACH-105223]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101923 - Machine Vision

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Machine Vision</td>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Machine Vision</td>
<td>Written exam</td>
<td>4 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Lauer, Klemp</td>
<td></td>
</tr>
</tbody>
</table>

Exams:

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105223 Machine Vision</td>
<td>Written exam</td>
<td>4 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Stiller, Lauer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Type of Examination: written exam

Duration of Examination: 60 minutes

Prerequisites

None

Below you will find excerpts from events related to this course:

Machine Vision

2137308, WS 23/24, 4 SWS, Language: English, [Open in study portal](#)

Lecture / Practice (VÜ) On-Site

Content

Lernziele (EN):

Machine vision (or computer vision) describes all kind of techniques that can be used to extract information from camera images in an automated way. Considerable improvements of machine vision techniques throughout recent years, e.g. by the advent of deep learning, have caused growing interest in these techniques and enabled applications in various domains, e.g. robotics, autonomous driving, gaming, production control, visual inspection, medicine, surveillance systems, and augmented reality.

The participants should gain an overview over the basic techniques in machine vision and obtain hands-on experience.

Nachweis: written exam, 60 min.

Arbeitsaufwand: 240 hours

Voraussetzungen: none

Literature

Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
11.127 Course: Manufacturing Measurement Technology [T-ETIT-106057]

- **Responsible:** Prof. Dr.-Ing. Michael Heizmann
- **Organisation:** KIT Department of Electrical Engineering and Information Technology
- **Part of:** M-ETIT-103043 - Manufacturing Measurement Technology

Type
- Written examination

Credits
- 3

Grading scale
- Grade to a third

Recurrence
- Each summer term

Version
- 1

Events
<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2302116</td>
<td>Fertigungsmesstechnik</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7302116</td>
<td>Manufacturing Measurement Technology</td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗒 On-Site, ✗ Cancelled
11.128 Course: Material Flow in Logistic Systems [T-MACH-102151]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104984 - Material Flow in Logistic Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Material Flow in Logistic Systems</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.

Prerequisites

none

Recommendation

Recommended elective subject: Probability Theory and Statistics

Annotation

Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).
11.129 Course: Mathematical Methods in Continuum Mechanics [T-MACH-110375]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-103205 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Credits</th>
<th>Title</th>
<th>WS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Credits</th>
<th>Title</th>
<th>WS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam (90 min). Additives as announced.

Prerequisites

Passing the Tutorial to Mathematical Methods of Continuum Mechanics (T-MACH-110376)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110376 - Tutorial Mathematical Methods in Continuum Mechanics must have been passed.

Below you will find excerpts from events related to this course:

Mathematical Methods in Continuum Mechanics
2161254, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

Tensor algebra

- vectors; basis transformation; dyadic product; tensors of 2nd order
- properties of 2nd order tensors: symmetry, anti-symmetry, orthogonality etc.
- eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order
- tensor algebra in curvilinear coordinate systems
- tensor analysis in curvilinear coordinate systems
- Differentiation of tensor functions

Application of tensor calculus in strength of materials

- kinematics of infinitesimal and finite deformations
- transport theorem, balance equations, stress tensor
- constitutive equations for solids and fluids
- Formulation of initial-boundary-value problems

Literature

Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
11.130 Course: Mathematical Methods in Dynamics [T-MACH-105293]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106309 - Advanced Topics and Methods in Mechanical Engineering (6 CP)

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Title</th>
<th>Hours</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2161206</td>
<td>Mathematical Methods in Dynamics</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Proppe</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2161207</td>
<td>Übungen zu Mathematische Methoden der Dynamik</td>
<td>1 SWS</td>
<td>Practice / 🗤</td>
<td>Proppe, Bitner</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2161206</td>
<td>Mathematical Methods in Dynamics</td>
<td>2 SWS</td>
<td>Lecture / 📔</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam ID</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>3 CP</td>
<td>Written examination</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Legend: 🤖 Online, 🧩 Blended (On-Site/Online), 🗤 On-Site, ❌ Cancelled

Competence Certificate
written examination, 180 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Mathematical Methods in Dynamics
2161206, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
Dynamics of continua:
Concept of continuum, geometry of continua, kinematics and kinetics of continua

Dynamics of rigid bodies:
Kinematics and kinetics of rigid bodies

Variational principles:
Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
Methods of weighted residuals, method of Ritz

Applications
Literature

Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994

P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000

M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

Übungen zu Mathematische Methoden der Dynamik

2161207, WS 23/24, 1 SWS, Language: German, [Open in study portal](#)

Content

Exercises related to the lecture

Mathematical Methods in Dynamics

2161206, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Content

The students know precisely the mathematical methods of dynamics. They are able to use the basic mathematical methods for modelling the dynamical behaviour of elastic and rigid bodies. The students also have a basic understanding of the description of kinematics and kinetics of bodies. They also master the alternative formulations based on weak formulations and variational methods and the approximate solution methods for numerical calculations of the moving behaviour of elastic bodies.

Dynamics of continua:
- Concept of continuum, geometry of continua, kinematics and kinetics of continua

Variational principles:
- Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
- Methods of weighted residuals, method of Ritz

Literature

Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994

P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000

M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

11.131 Course: Mathematical Methods in Fluid Mechanics [T-MACH-105295]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106309 - Advanced Topics and Methods in Mechanical Engineering (6 CP)

Type
- Written examination

Credits
- 6

Grading scale
- Grade to a third

Recurrence
- Each summer term

Version
- 1

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2154432</th>
<th>Mathematical Methods in Fluid Mechanics</th>
<th>4 SWS</th>
<th>Lecture / Practice (🧩)</th>
<th>Gatti, Frohnapfel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2154540</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>4 SWS</td>
<td>Lecture / Practice (🗣)</td>
<td>Gatti, Frohnapfel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105295</th>
<th>Mathematical Methods in Fluid Mechanics</th>
<th>Frohnapfel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105295 (engl.)</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Frohnapfel, Gatti</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Frohnapfel, Gatti</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105295 (engl.)</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Gatti, Frohnapfel</td>
</tr>
</tbody>
</table>

Competence Certificate
- written examination - 3 hours

Prerequisites
- none

Recommendation
- Basic Knowledge about Fluid Mechanics

Below you will find excerpts from events related to this course:

Mathematical Methods in Fluid Mechanics
2154432, SS 2024, 4 SWS, Language: German/English, Open in study portal
Lecture / Practice (VÜ)
Blended (On-Site/Online)

Content

The students can simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical methods in fluid mechanics effectively in order to solve the resulting governing equations analytically, if possible, or to enable simpler numerical solution of the problem. The students can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Creeping flows (Stokes flow)
- Lubrication theory
- Potential flow theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows

Organizational issues

Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024
Module Handbook, valid from summer term 24
Mathematical Methods in Fluid Mechanics

2154540, SS 2024, 4 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ)
On-Site

Content
The students can simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical methods in fluid mechanics effectively in order to solve the resulting governing equations analytically, if possible, or to enable simpler numerical solution of the problem. The students can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Creeping flows (Stokes flow)
- Lubrication theory
- Potential flow theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows

Literature
11.132 Course: Mathematical Methods of Vibration Theory [T-MACH-105294]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Dr.-Ing. Ulrich Römer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106309 - Advanced Topics and Methods in Mechanical Engineering (6 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td></td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

ST 2024 2162241 Mathematical methods of vibration theory Lecture / x Römer
ST 2024 2162242 Mathematical methods of vibration theory (Tutorial) Practice / x Keller, Römer

Exams

WT 23/24 76-T-MACH-105294 Mathematical Methods of Vibration Theory Fidlin
ST 2024 76-T-MACH-105294 Mathematical Methods of Vibration Theory Fidlin

Competence Certificate
written examination, 180 min.

Prerequisites
none

Recommendation
Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

Mathematical methods of vibration theory
2162241, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)
Cancelled

Content
Linear, time-invariant, ordinary single differential equations: homogeneous solution; harmonic, periodic and non-periodic excitations; Duhamel’s integral; Fourier and Laplace transform; introduction into the theory of distributions; Systems of ordinary differential equations: matrix notation, eigenvalue theory, fundamental matrix, forced vibrations via modal expansion and transition matrix; Introduction into the dynamic stability theory; Partial differential equations: solution in product form, eigenvalue theory, modal expansion using Ritz series; Variational methods, Hamilton’s principle, boundary value problems representing vibrating continua; Perturbation methods

Organizational issues
Die Vorlesung Mathematische Methoden der Schwingungslehre wird im Sommersemester 2024 nicht angeboten.

Mathematical methods of vibration theory (Tutorial)
2162242, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Practice (Ü)
Cancelled

Content
Seven tutorials with examples of the contents of the course

Organizational issues
Die Vorlesung und Übungen zu Mathematische Methoden der Schwingungslehre werden im Sommersemester 2024 nicht angeboten.
Literature
Riener, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
11.133 Course: Measurement Technology [T-ETIT-112147]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-105982 - Measurement Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2302117</td>
<td>Measurement Technology</td>
<td>2 SWS</td>
<td>Lecture / 🦄</td>
<td>Heizmann</td>
</tr>
<tr>
<td>WT 23/24 2302118</td>
<td>Exercise for 2302117 Measurement Technology</td>
<td>1 SWS</td>
<td>Practice / 📚</td>
<td>Heizmann, Panther</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7302118</td>
<td>Measurement Technology</td>
<td></td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🦄 Blended (On-Site/Online), 📚 On-Site, ⌚ Cancelled

Competence Certificate
The examination takes place in form of a written examination lasting 120 minutes. The module grade is the grade of the written examination.

Prerequisites
T-ETIT-101937 – Messtechnik (German version) must not have started.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-ETIT-101937 - Measurement Technology must not have been started.
11.134 Course: Mechanical Design I and II [T-MACH-112225]

Responsible: Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams
- **WT 23/24** 76-T-MACH-110363 Mechanical Design I and II
- **ST 2024** 76-T-MACH-110363 Mechanical Design I and II

Matthiesen, Düser

Competence Certificate
Written Exam (90min) on the topics of MKL I and MKL II.

Prerequisites
The bricks "T-MACH-112226 - Mechanical Design I, Tutorial" and "T-MACH-112227 - Mechanical Design II, Tutorial" must be passed successfully.
11.135 Course: Mechanical Design I, Tutorial [T-MACH-112226]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-110364</td>
<td>Mechanical Design I, Tutorial</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Furthermore an online test is carried out.
11.136 Course: Mechanical Design II, Tutorial [T-MACH-112227]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101299 - Mechanical Design

Competence Certificate
CIW/ VT/ IP-M/ WiING / MATH/ MWT: To pass the prerequisite it is required that a design task is successfully completed.
MIT: To pass the prerequisite it is required that a design task is successfully completed.
NWT: For students of the subject area NwT, the creation of a teaching video for the teaching of a technical system must be completed as a prerequisite for the exam instead.

Prerequisites
None
Course: Mechanical Design III and IV [T-MACH-104810]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102829 - Mechanical Design III and IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>11</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Code</th>
<th>Type</th>
<th>Type</th>
<th>Credits</th>
<th>2 SWS</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td></td>
<td>2145151</td>
<td>Mechanical Design III</td>
<td>Lecture / 🗣️</td>
<td>Matthiesen, Düser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td></td>
<td>3145016</td>
<td>Mechanical Design III (Lecture)</td>
<td>Lecture / 🗣️</td>
<td>Burkardt, Düser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td></td>
<td>2146177</td>
<td>Mechanical Design IV</td>
<td>Lecture / 🗣️</td>
<td>Matthiesen, Düser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td></td>
<td>3146020</td>
<td>Mechanical Design IV Lecture</td>
<td>Lecture / 🗣️</td>
<td>Düser, Burkardt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Code</th>
<th>Type</th>
<th>Type</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td></td>
<td>76-T-MACH-104810</td>
<td>Mechanical Design III & IV</td>
<td>Lecture / 🗣️</td>
<td>Albers, Matthiesen, Düser, Burkardt</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td></td>
<td>76-T-MACH-104810_EN</td>
<td>Mechanical Design III & IV (english)</td>
<td>Lecture / 🗣️</td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td></td>
<td>76-T-MACH-104810</td>
<td>Mechanical Design III & IV</td>
<td>Lecture / 🗣️</td>
<td>Albers, Matthiesen, Düser</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td></td>
<td>76-T-MACH-104810_EN</td>
<td>Mechanical Design III & IV (english)</td>
<td>Lecture / 🗣️</td>
<td>Albers, Matthiesen, Düser</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

written exam consisting of:
- written part duration 60 min and
- design part duration 180 min

Sum: 240 min

Prerequisites

Admission to the exam only with successful completion of the Mechanical Design III, Tutorial and Mechanical Design IV, Tutorial.

Modeled Conditions

You have to fulfill one of 2 conditions:

1. The course T-MACH-110955 - Mechanical Design III, Tutorial must have been passed.
2. The course T-MACH-110956 - Mechanical Design IV, Tutorial must have been passed.

Below you will find excerpts from events related to this course:

Mechanical Design III
2145151, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site
V Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III (Lecture)
3145016, WS 23/24, 2 SWS, Language: English, Open in study portal

Lecture (V)
On-Site
Course: Mechanical Design III, Tutorial [T-MACH-110955]

Responsible: Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102829 - Mechanical Design III and IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2145153</td>
<td>Tutorials Mechanical Design III</td>
<td>2 SWS</td>
<td>Practice / On-Site</td>
<td>Matthiesen, Düser</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2145154</td>
<td>Mechanical Design III Workshop</td>
<td>1 SWS</td>
<td>Practical course / On-Site</td>
<td>Matthiesen, Düser</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3145017</td>
<td>Mechanical Design III (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / On-Site</td>
<td>Burkardt, Düser</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3145018</td>
<td>Mechanical Design III (Workshop)</td>
<td>1 SWS</td>
<td>/ On-Site</td>
<td>Burkardt, Düser</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-110955</td>
<td>Mechanical Design III, Constructing with Team</td>
<td>1 SWS</td>
<td>Albers, Matthiesen, Düser</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Canceled

Competence Certificate
Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single CAD-workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites
None

Below you will find excerpts from events related to this course:

Tutorials Mechanical Design III
2145153, WS 23/24, 2 SWS, Language: German, Open in study portal

Mechanical Design III Workshop
2145154, WS 23/24, 1 SWS, Language: German, Open in study portal

Literature

- **Konstruktionselemente des Maschinenbaus** - 1 und 2
 Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

- **Grundlagen von Maschinenelementen für Antriebsaufgaben**;
 Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

- Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III (Tutorial)
V 3145017, WS 23/24, 2 SWS, Language: English, Open in study portal

Organizational issues
Termine siehe Lehrveranstaltung 2145154

Mechanical Design III (Workshop)
V 3145018, WS 23/24, 1 SWS, Language: English, Open in study portal

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Course: Mechanical Design IV, Tutorial [T-MACH-110956]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102829 - Mechanical Design III and IV

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

ST 2024 2146184
Tutorials Mechanical Design IV
1 SWS
Practice / Online
Matthiesen, Düser

ST 2024 2146187
Workshop 'Mechanical Design IV'
1 SWS
/ On-Site
Matthiesen, Düser

ST 2024 3146021
Mechanical Design IV Tutorials
1 SWS
Practice / Online
Düser, Burkardt

ST 2024 3146022
Mechanical Design IV Workshop
1 SWS
/ Online
Düser, Burkardt

Exams
ST 2024 76-T-MACH-105285
Mechanical Design IV, tutorial
1 SWS
Albers, Matthiesen, Düser

Legend:
Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites
None

Below you will find excerpts from events related to this course:

Mechanical Design IV Workshop
3146022, SS 2024, 1 SWS, Language: English, [Open in study portal](#) On-Site

Organizational issues
Registration required, information on the IPEK website.

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
11.140 Course: Mechanics in Microtechnology [T-MACH-105334]

Responsible: Prof. Dr. Christian Greiner
Dr. Patric Gruber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102713 - Mechanics in Microtechnology

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2181710</td>
<td>Mechanics in Microtechnology</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Gruber, Greiner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105334</td>
<td>Mechanics in Microtechnology</td>
<td></td>
<td>Gruber, Greiner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination, ca. 30 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Mechanics in Microtechnology

2181710, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content

1. Introduction: Application and Processing of Microsystems
2. Scaling Effects
3. Fundamentals: Stress and Strain, (anisotropic) Hooke’s Law
4. Fundamentals: Mechanics of Beams and Membranes
5. Thin Film Mechanics: Origin and Role of Mechanical Stresses
6. Characterization of Mechanical Properties of Thin Films and Small Structures: Measurement of Stresses and Mechnical Parameters such as Young’s Modulus and Yield Stress; Thin Film Adhesion and Stiction
7. Transduction: Piezo-resistivity, Piezo-electric Effect, Electrostatics,...
8. Aktuation: Inverse Piezo-electric Effect, Shape Memory, Electromagnetic Actuation,...

The students know and understand size and scaling effects in micro- and nanosystems. They understand the impact of mechanical phenomena in small dimensions. Based on this they can judge how they determine material processing as well as working principles and design of microsensors and microactuators.

regular attendance: 22,5 hours
self-study: 97,5 hours
oral exam ca. 30 minutes

Literature

Folien,
2. L.B. Freund and S. Suresh: "Thin Film Materials"
Course: Mechano-Informatics and Robotics [T-INFO-101294]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-100757 - Mechano-Informatics and Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Module Name</th>
<th>SWS</th>
<th>Type / Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2400077</td>
<td>2 SWS</td>
<td>Mechano-Informatics and Robotics</td>
<td></td>
<td>Lecture / On-Site</td>
<td>Asfour</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7500217</td>
<td>2 SWS</td>
<td>Nachprüfung: Mechano-Informatics and Robotics</td>
<td></td>
<td>Lecture / On-Site</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Competition Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites

None.

Recommendation

Basispraktikum Mobile Roboter

Below you will find excerpts from events related to this course:

Mechano-Informatics and Robotics

2400077, WS 23/24, 2 SWS, Language: German/English, [Open in study portal](#)

Lecture (V)

On-Site

Content

The lecture addresses various engineering and algorithmic aspects and topics in robotics which are illustrated and explained based on examples originating from current research conducted in the field of humanoid robotics. First, this lecture gives an introduction into the mathematical fundamentals which are needed to describe a robotic system as well as the basic algorithms commonly applied in motion planning. Subsequently, models and methods are introduced with which dynamical systems can be formalized and which can be used to encode and represent robot actions. To do so, we will discuss linear time-invariant systems in state.

Learning Objectives:

Based on the example of robotics students understand the synergistic effects and interdisciplinarity of mechatronics and informatics, the embedded systems, the control, and the methods and the algorithms. They are acquainted with the basic terminology and the methods which are common in robotics, signal processing, action representation, machine learning and cognitive systems. They are capable of applying fundamental state-of-the art methods and tools for the development and programming of robots. Based on examples originating from current research conducted in the fields of humanoid robotics, the students interactively learn how to identify and formalize problems and tasks and how to develop solutions in an analytical and goal-directed way.

Organizational issues

Zugehörige Veranstaltungen: Empfehlung - Basispraktikum Mobile Roboter

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand:

2h Präsenz
+ 2*2h = 4h Vor/Nachbereitung
+ 30h Prüfungsvorbereitung
120h
11.142 Course: Mechatronical Systems and Products [T-MACH-105574]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102749 - Mechatronical Systems and Products

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type / Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2303003</td>
<td>Exercises for 2303161 Mechatronical Systems and Products</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Matthiesen, Hohmann</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2303161</td>
<td>Mechatronical Systems and Products</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Matthiesen, Hohmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105574</td>
<td>Mechatronical Systems and Products</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

written examination (duration: 60min)

Annotation

All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey “Anmeldung und Gruppeneinteilung” in ILIAS before the start of the semester.
11.143 Course: Medical Imaging Technology I [T-ETIT-113048]

Responsible: Prof. Dr. Maria Francesca Spadea
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-106449 - Medical Imaging Technology I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Spadea</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The examination takes place in form of a written examination lasting 60 minutes. The course grade is the grade of the written exam.

Prerequisites

none
The examination takes place in form of a written examination lasting 60 minutes. The course grade is the grade of the written exam.

Prerequisites

none
11.145 Course: Methods and Processes of PGE - Product Generation Engineering [T-MACH-109192]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102718 - Product Development – Methods of Product Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code (en)</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2146176</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Albers, Düser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code (en)</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105382</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers, Burkardt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105382-en</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105382</td>
<td>Product Development - Methods of Product Development</td>
<td>Albers, Düser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105382-en</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers, Düser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written exam (processing time: 120 min + 10 min reading time)

Auxiliaries:
- Calculator
- German dictionary (books only)

Prerequisites
None

Annotation
This lecture is the basis for the main subject Integrated Product Development, which is offered as a specialisation.

Below you will find excerpts from events related to this course:

Methods and Processes of PGE – Product Generation Engineering
2146176, SS 2024, 4 SWS, Language: German, Open in study portal

Lecture (V)
On-Site
Content

Note:
This lecture is the basis for the main subject Integrated Product Development, which is offered as a specialisation.

Recommendations:

none

Workload:
regular attendance: 39 h
self-study: 141 h

Examination:
Written exam
Duration: 120 minutes (+10 minutes reading time)

Auxiliaries:
• Calculator
• German dictionary (books only)

Course content:
Basics of Product Development: Basic Terms, Classification of the Product Development into the industrial environment, generation of costs / responsibility for costs
Concept Development: List of demands / Abstraction of the Problem Definition / Creativity Techniques / Evaluation and selection of solutions
Drafting : Prevailing basic rules of Design / Design Principles as a problem oriented accessory

Quality Assurance in early Development Phases : Methods of Quality Assurance in an overview/QFD/FMEA

Learning objectives:
The students are able to ...

• classify product development in companies and differentiate between different types of product development.
• name the relevant influencing factors of a market for product development.
• name, compare and use the central methods and process models of product development within moderate complex technical systems.
• explain problem solving techniques and associated development methods.
• explain product profiles and to differentiate and choose suitable creative techniques of solution/idea generation finding on this basis.
• use design guidelines to create simple technical systems and to explain these guidelines.
• name and compare quality assurance methods; to choose and use suitable methods for particular applications.
• explain the differents methods of design of experiment.
• explain the costs in development process.

Literature
Vorlesungsunterlagen
Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997
Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag,1993
Course: Microactuators [T-MACH-101910]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100487 - Microactuators

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2142881</td>
<td>Microactuators</td>
<td>2 SWS</td>
<td>Lecture / Kohl</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7600002</td>
<td>Microactuators</td>
<td></td>
<td>Kohl</td>
<td>2</td>
</tr>
<tr>
<td>WT 23/24 76-T-MACH-101910</td>
<td>Microactuators</td>
<td></td>
<td>Kohl</td>
<td>2</td>
</tr>
<tr>
<td>ST 2024 76-T-MACH-101910</td>
<td>Microactuators</td>
<td></td>
<td>Kohl</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Microactuators
2142881, SS 2024, 2 SWS, Language: German, Open in study portal

Content
- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications
The lecture includes amongst others the following topics:
 - Microelectromechanical systems: linear actuators, microrelais, micromotors
 - Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
 - Microrobotics: Microgrippers, polymer actuators (smart muscle)
 - Information technology: Optical switches, mirror systems, read/write heads

Literature
- Folienskript "Mikroaktorik"
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
11.147 Course: Microenergy Technologies [T-MACH-105557]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102714 - Microenergy Technologies

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2142897</td>
<td>Microenergy Technologies</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Kohl</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 76-T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>Kohl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 76-T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>Kohl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Oral examination (30 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

Microenergy Technologies
2142897, SS 2024, 2 SWS, Language: English, [Open in study portal](#)

Content
- Basic physical principles of energy conversion
- Layout and design optimization
- Technologies
- Selected devices
- Applications

The lecture includes amongst others the following topics:

- Micro energy harvesting of vibrations using different conversion principles (piezo, electrostatic, electromagnetic, etc.)
- Thermoelectric energy generation
- Novel thermal energy conversion principles (thermomagnetic, pyroelectric)
- Miniature scale solar devices
- RF energy harvesting
- Miniature scale heat pumping
- Solid-state cooling technologies (magneto-, electro-, mechanocalorics)
- Power management
- Energy storage technologies (microbatteries, supercapacitors, fuel cells)

Literature
- Folienskript “Micro Energy Technologies”
11.148 Course: Mobile Computing and Internet of Things [T-INFO-102061]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Michael Beigl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-101249 - Mobile Computing and Internet of Things</td>
</tr>
</tbody>
</table>

Type
Written examination

Credits
2,5

Grading scale
Grade to a third

Recurrence
Each winter term

Version
5

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2+1 SWS</td>
<td>Lecture / Practice</td>
<td>Beigl, Röddiger</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500287_1</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
</tr>
</tbody>
</table>

Events

Exams

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-113119 - Mobile Computing and Internet of Things - Exercise must have been started.
11.149 Course: Mobile Computing and Internet of Things - Exercise [T-INFO-113119]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-101249 - Mobile Computing and Internet of Things

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2400051</td>
<td>Mobile Computing and Internet of Things</td>
<td>Lecture / Practice</td>
<td>2+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500358</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
</tr>
</tbody>
</table>
11.150 Course: Modelling and Simulation [T-MACH-100300]

Responsible: Prof. Dr. Peter Gumbsch
Prof. Dr. Britta Nestler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering (5 CP)

Type
Written examination

Credits
5

Grading scale
Grade to a third

Recurrence
Each term

Version
3

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2183703</td>
<td>Numerical methods and simulation techniques</td>
<td>3</td>
<td>Lecture / Practice</td>
<td>Nestler, August, Prahs</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2183703</td>
<td>Modelling and Simulation</td>
<td>2+1</td>
<td>Lecture / Practice</td>
<td>Nestler, August, Prahs</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>1</td>
<td>Lecture / Practice</td>
<td>Nestler, August, Prahs</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate
Successful participation in the computer internship (ungraded) and written exam, 90 min (graded)

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

Numerical methods and simulation techniques

2183703, WS 23/24, 3 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)

On-Site
Content
The course gives an introduction to modelling and simulation techniques.
The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises

The student can

- explain the basic algorithms and numerical methods which are beside other applications relevant for materials simulations.
- describe and apply numerical solution methods for partial differential equations and dynamical systems
- apply numerical methods to solve heat and mass diffusion problems which can also be used to model microstructure formation processes
- has experiences in how to implement and program the introduced numerical methods from an integrated computer lab.

preliminary knowledge in mathematics, physics and materials science recommended

regular attendance: 22.5 hours lecture, 11.5 hours exercises
self-study: 116 hours

We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.

written examination: 90 minutes

Organizational issues
Termine für Rechnerübungen werden in der Vorlesung bekannt gegeben!

Literature

Modelling and Simulation
2183703, SS 2024, 2+1 SWS, Language: German, Open in study portal

Content
The course gives an introduction to modelling and simulation techniques.
The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises

The student can

- explain the basic algorithms and numerical methods which are beside other applications relevant for materials simulations.
- describe and apply numerical solution methods for partial differential equations and dynamical systems
- apply numerical methods to solve heat and mass diffusion problems which can also be used to model microstructure formation processes
- has experiences in how to implement and program the introduced numerical methods from an integrated computer lab.

preliminary knowledge in mathematics, physics and materials science recommended

regular attendance: 22.5 hours lecture, 11.5 hours exercises
self-study: 116 hours

We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.

written examination: 90 minutes
Organizational issues

Literature
Course: Modelling of Microstructures [T-MACH-105303]

Responsible: Dr. Anastasia August
Prof. Dr. Britta Nestler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering (5 CP)

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Lecture / Practice</td>
<td>August, Prahs, Nestler</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam 30 min

Prerequisites

none

Recommendation

materials science
fundamental mathematics

Below you will find excerpts from events related to this course:

Modelling of Microstructures

2183702, WS 23/24, 3 SWS, Language: German, [Open in study portal](#)

Content

- Brief Introduction in thermodynamics
- Gibbs free energy and phase diagrams
- Free energy functional
- Phasefield equation
- Driving forces
- Grand chemical potential functional and the evolution equations
- Numeric solution of the phasefield equation

The student can

- explain the thermodynamic and statistical foundations for liquid-solid and solid-solid phase transition processes and apply them to construct phase diagrams.
- explain the mechanisms of phase boundary motion induced under driving forces
- use the phase-field method for simulation of microstructure formation processes
- have experiences in computing and conduction simulations of microstructure formation from an integrated computer lab.

Knowledge in materials science and in fundamental mathematics recommended

regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours
oral exam ca. 30 min
Organizational issues
Der erste Termin (am 27.10.2023) findet ausnahmsweise ohne die Dozentin statt. Bitte schauen Sie sich an diesem Termin die erste Aufzeichnung der Vorlesung an (s. das entsprechende Verzeichnis bei ILIAS).

Terminvereinbarung für die mündliche Prüfung: Sobald Sie wissen, wann Sie die Prüfung ablegen möchten, schreiben Sie bitte eine Mail an die Prüferin Anastasia August (anastasia.august2@kit.de) und schlagen Sie einen oder mehrere Termin/e vor. Die Prüfung dauert ca. 30 Minuten.

Literature
4. Gaskell, D.R., Introduction to the thermodynamics of materials
11 COURSES Course: Motor Vehicle Labor [T-MACH-105222]

11.152 Course: Motor Vehicle Labor [T-MACH-105222]

Responsible: Dr.-Ing. Michael Frey
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102695 - Motor Vehicle Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Motor Vehicle Laboratory</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Motor Vehicle Laboratory</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Motor Vehicle Laboratory</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Motor Vehicle Laboratory</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate

Colloquium before each experiment

After completion of the experiments: written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Motor Vehicle Laboratory

2115808, WS 23/24, 2 SWS, Language: German, Open in study portal

Practical course (P) On-Site

Content

1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle

2. Investigation of a twin-tube and a single-tube shock absorber

3. Behavior of car tyres under longitudinal forces and lateral forces

4. Investigation of acoustic behaviour of vehicles

5. Rolling resistance, energy dissipation and high-speed strength of car tires

6. Investigation of the moment transient characteristic of a Visco clutch

Learning Objectives:

The students have deepened their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions. They are ready to analyze and to judge measurement results.
Organizational issues
Genauer Ort und Termine sowie weitere Infos siehe Institutshomepage.

Einteilung:
- Gruppe A: Mo 14:00-15:30
- Gruppe B: Mo 16:00-17:30
- Gruppe C: Di 09:00-10:30
- Gruppe D: Di 11:00-12:30
- Gruppe E: Di 14:00-15:30
- Gruppe F: Di 16:00-17:30

Content
1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle
2. Investigation of a twin-tube and a single-tube shock absorber
3. Behavior of car tyres under longitudinal forces and lateral forces
4. Behavior of car tires on wet road surface
5. Rolling resistance, energy dissipation and high-speed strength of car tires
6. Investigation of the moment transient characteristic of a Visco clutch

Learning Objectives:
The students have deepened their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions. They are ready to analyze and to judge measurement results.

Organizational issues
Genauer Ort und Termine sowie weitere Infos siehe Institutshomepage.

Einteilung in
- Gruppe A: Mo 14:00 - 15:30
- Gruppe B: Mo 16:00 - 17:30
- Gruppe C: Di 09:00 - 10:30
- Gruppe D: Di 11:00 - 12:30
- Gruppe E: Di 14:00 - 15:30
- Gruppe F: Di 16:00 - 17:30

Literature

Motor Vehicle Laboratory
2115808, SS 2024, 2 SWS, Language: German, Open in study portal

Practical course (P)
On-Site
11.153 Course: Novel Actuators and Sensors [T-MACH-102152]

Responsible: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105292 - Novel Actuators and Sensors

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2141865</td>
<td>Novel actuators and sensors</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>German</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>German</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

- written exam, 60 minutes

Prerequisites

- none

Below you will find excerpts from events related to this course:

Novel actuators and sensors

- 2141865, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Literature

- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
11.154 Course: Numerical Methods - Exam [T-MATH-111700]

Responsible:
apl. Prof. Dr. Peer Kunstmann
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-105831 - Numerical Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Description</th>
<th>Type</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>0180300</td>
<td>Lecture</td>
<td>2</td>
<td>Numerical Methods (Electrical Engineering, Meteorology, Remote Sensing, Geoinformatics)</td>
<td></td>
<td>1</td>
<td>Liao</td>
</tr>
<tr>
<td>ST 2024</td>
<td>0180400</td>
<td>Practice</td>
<td>1</td>
<td>Tutorial for 0180300</td>
<td></td>
<td>1</td>
<td>Liao</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7700069</td>
<td>Numerical Methods - Exam</td>
<td>Anapolitanos, Plum, Kunstmann</td>
</tr>
</tbody>
</table>

Competence Certificate
Success control takes the form of a written examination (120 minutes).

Prerequisites
none
11.155 Course: Optics and Solid State Electronics [T-ETIT-110275]

Responsible: Prof. Dr. Ulrich Lemmer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-105005 - Optics and Solid State Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2024	2304205	Optics and Solid State Electronics	3 SWS	Lecture / 🗣	Lemmer, Krewer
ST 2024	2304206	Optics and Solid State Electronics (Tutorial to 2304205)	2 SWS	Practice / 🗣	Lemmer, Krewer
ST 2024	2304207	Tutorien zu 2304205 Optik- und Festkörperelektronik	1 SWS	Tutorial / 🗣	Lemmer, Krewer

Exams

| WT 23/24 | 7313719 | Optics and Solid State Electronics | Lemmer, Krewer |

Prerequisites

none
11.156 Course: Optoelectronic Components [T-ETIT-101907]

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Wolfgang Freude
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100509 - Optoelectronic Components

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Length</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2309486</td>
<td>Optoelectronic Components</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Randel</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2309487</td>
<td>Optoelectronic Components (Tutorial)</td>
<td>1 SWS</td>
<td>Practice / Blended (On-Site/Online)</td>
<td>Randel</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7309486</td>
<td>Optoelectronic Components</td>
<td>Freude</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7309486</td>
<td>Optoelectronic Components</td>
<td>Randel</td>
</tr>
</tbody>
</table>

Prerequisites
none
11.157 Course: Optoelectronics [T-ETIT-100767]

Responsible: Prof. Dr. Ulrich Lemmer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100480 - Optoelectronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2313726</td>
<td>Optoelectronics</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Lemmer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2313728</td>
<td>Übungen zu 2313726 Optoelektronik</td>
<td>1</td>
<td>Practice</td>
<td>Lemmer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7313726</td>
<td>Optoelectronics</td>
<td>Lemmer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, × Cancelled

Competence Certificate

The success check is carried out in the context of a written exam (90 minutes).

Prerequisites

none

Recommendation

Knowledge of solid state electronics
11.158 Course: Oral Exam - Supplementary Studies on Culture and Society [T-ZAK-112659]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
An oral examination according to § 7 section 6 of approx. 45 minutes on the contents of two courses from In-depth Module.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.
11.159 Course: Oral Exam - Supplementary Studies on Sustainable Development [T-ZAK-112351]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
An oral examination according to § 7 section 6 of approx. 45 minutes on the contents of two courses from Elective Module.

Prerequisites
A requirement for the Supplementary Course: Oral examination is the successful completion of the modules Basics Module and Specialisation Module and the required electives of Elective Module.
11.160 Course: Organ Support Systems [T-MACH-105228]

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102702 - Organ Support Systems

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination (Duration: 45min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Organ support systems
2106008, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Content
Content:

- Introduction: Definitions and classification of organ support and replacement.
- Special topics: acoustic and visual prostheses, exoskeletons, neuroprostheses, tissue-engineering, hemodialysis, heart-lung machine, artificial hearts, biomaterials.

Learning objectives:

Students have fundamental knowledge about functionality of organ support systems and its components. An analysis of historical developments can be done and limitations of current systems can be found. The limits and possibilities of transplantations can be elaborated.

Organizational issues

Die Vorlesung findet in Präsenz statt.

Literature

- E. Wintermann, Suk-Woo Ha: Medizintechnik. Springer Verlag.
11.161 Course: Photovoltaic System Design [T-ETIT-100724]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Dipl.-Ing. Robin Grab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Electrical Engineering and Information Technology</td>
</tr>
<tr>
<td>Part of</td>
<td>M-ETIT-100411 - Photovoltaic System Design</td>
</tr>
</tbody>
</table>

Type
Written examination

Credits
3

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Photovoltaische Systemtechnik
2 SWS
Lecture / 🗣 Grab

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
Course: Physical Basics of Laser Technology [T-MACH-102102]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering (5 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2181612</td>
<td>Physical basics of laser technology</td>
<td>3 SWS</td>
<td>Lecture / Practice (/ ♤)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td></td>
<td></td>
<td>Schneider</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td></td>
<td></td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online,
- 🧩 Blended (On-Site/Online),
- ♤ On-Site,
- ✗ Cancelled

Competence Certificate

oral examination (30 min)

no tools or reference materials

Prerequisites

It is not possible, to combine this brick with brick Laser Material Processing [T-MACH-112763], brick Laser Application in Automotive Engineering [T-MACH-105164] and brick Physical Basics of Laser Technology [T-MACH-109084]

Recommendation

Basic knowledge of physics, chemistry and material science

Below you will find excerpts from events related to this course:

Physical basics of laser technology

2181612, WS 23/24, 3 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ)
On-Site
Content
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focuses on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
- safety aspects

The lecture is complemented by a tutorial.

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- can describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- can illustrate the possible applications of laser sources in measurement and medicine technology
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

regular attendance: 33,5 hours
self-study: 116,5 hours

The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

It is allowed to select only one of the lectures "Laser in automotive engineering" (2182642) or "Physical basics of laser technology" (2181612) during the Bachelor and Master studies.

Organizational issues
Termine für die Übung werden in der Vorlesung bekannt gegeben!

Literature
T. Graf: Laser - Grundlagen der Laserstrahlerzeugung 2015, Springer Vieweg
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
11.163 Course: Physics for Engineers [T-MACH-100530]

Responsible:
Prof. Dr. Martin Dienwiebel
Prof. Dr. Peter Gumbsch
apl. Prof. Dr. Alexander Nesterov-Müller
Dr. Daniel Weygand

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering (5 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2142890</td>
<td>Physics for Engineers</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Weygand, Dienwiebel, Nesterov-Müller, Gumbsch</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Gumbsch, Dienwiebel, Nesterov-Müller, Weygand</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Gumbsch, Weygand, Nesterov-Müller, Dienwiebel</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

written exam 90 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Physics for Engineers

2142890, SS 2024, 4 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)

On-Site
Content

1) Foundations of solid state physics
 - Wave particle dualism
 - Tunnelling
 - Schrödinger equation
 - H-atom

2) Electrical conductivity of solids
 - solid state: periodic potentials
 - Pauli Principle
 - band structure
 - metals, semiconductors and isolators
 - p-n junction / diode

3) Optics
 - quantum mechanical principles of the laser
 - linear optics
 - non-linear optics

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students and for testing progress in learning of the topics.

The student

- has the basic understanding of the physical foundations to explain the relationship between the quantum mechanical principles and the optical as well as electrical properties of materials
- can describe the fundamental experiments, which allow the illustration of these principles

regular attendance: 22,5 hours (lecture) and 22,5 hours (exercises)
self-study: 105 hours

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Organizational issues

Kontakt: daniel.weygand@kit.edu

Literature

- Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
- Harris, Moderne Physik, Pearson Verlag, 2013
11.164 Course: Physiology and Anatomy for Engineers I [T-ETIT-101932]

Responsible: Prof. Dr. Werner Nahm
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100390 - Physiology and Anatomy for Engineers I

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2305281</td>
<td>Physiology and Anatomy for</td>
<td>2 SWS</td>
<td>Nahm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineers I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7305281</td>
<td>Physiology and Anatomy for</td>
<td>2 SWS</td>
<td>Nahm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineers I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Lecture / 🧱</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧱 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Success control is carried out in the form of a written test of 60 minutes.

Prerequisites

none
11.165 Course: Power Electronic Systems in Energy Technology [T-ETIT-112286]

Responsible: Prof. Dr.-Ing. Marc Hiller
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-106067 - Power Electronic Systems in Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Environment</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2306357</td>
<td>Power Electronic Systems in Energy applications</td>
<td>3</td>
<td>Lecture / Online</td>
<td>Hiller</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2306358</td>
<td>Power Electronic Systems in Energy applications</td>
<td>1</td>
<td>Practice / Blended</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7300035</td>
<td>Power Electronic Systems in Energy Technology</td>
<td>Hiller</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7300035</td>
<td>Power Electronic Systems in Energy Technology</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗱 On-Site, ✗ Cancelled

Prerequisites

none
11.166 Course: Power Electronics [T-ETIT-109360]

Responsible: Prof. Dr.-Ing. Marc Hiller
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104567 - Power Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>6</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type Description</th>
<th>SWS</th>
<th>Mode</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2300004</td>
<td>Ausweich- und Praktikumstermin für ETI-Vorlesungen</td>
<td>2</td>
<td>Practical course / 🧩</td>
<td>Hiller, Thönelt</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2306323</td>
<td>Power Electronics</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Hiller</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2306324</td>
<td>Tutorial for 2306385 Power Electronics</td>
<td>2</td>
<td>Practice / 🧩</td>
<td>Hiller, Thönelt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type Description</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7306385</td>
<td>Power Electronics</td>
<td>2</td>
<td>Hiller</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7306385</td>
<td>Power Electronics</td>
<td>2</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination takes place in form of a written examination lasting 120 minutes.

Prerequisites

none
11.167 Course: Power Generation [T-ETIT-101924]

Responsible: Dr.-Ing. Bernd Hoferer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100407 - Power Generation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lecture</td>
<td>2307356</td>
<td>Power Generation</td>
<td>2</td>
<td></td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lecture</td>
<td>7307356</td>
<td>Power Generation</td>
<td>Hoferer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Lecture</td>
<td>7307356</td>
<td>Power Generation</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Prerequisites

none

Legend: 🖥 Online, ⬇️ Blended (On-Site/Online), 🗣 On-Site, ⌖ Cancelled
11.168 Course: Power Transmission and Power Network Control [T-ETIT-101941]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100534 - Power Transmission and Power Network Control

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2307372</td>
<td>Power Transmission and Power Network Control</td>
<td>2</td>
<td>Lecture</td>
<td>Leibfried</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2307374</td>
<td>Übungen zu 2307372 Energieübertragung und Netzregelung</td>
<td>1</td>
<td>Practice</td>
<td>Bisseling</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7307372</td>
<td>Power Transmission and Power Network Control</td>
<td></td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☮ Blended (On-Site/Online), 🔉 On-Site, ✗ Cancelled

Prerequisites

none
Course: Practical Aspects of Electrical Drives [T-ETIT-100711]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100394 - Practical Aspects of Electrical Drives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2306311</td>
<td>2 SWS</td>
<td>Practical Aspects of Electrical Drives</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>ST 2024 2306313</td>
<td>1 SWS</td>
<td>Übungen zu 2306311 Praxis elektrischer Antriebe</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>Exams</td>
<td>7306313</td>
<td>Practical Aspects of Electrical Drives</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Prerequisites
none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
11.170 Course: Practical Project Robotics and Automation I (Software) [T-INFO-104545]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible:
- Prof. Dr.-Ing. Björn Hein
- Prof. Dr.-Ing. Thomas Längle

Organisation:
- KIT Department of Informatics

Part of:
- M-INFO-102224 - Practical Project Robotics and Automation I (Software)

Events

<table>
<thead>
<tr>
<th>WK 23/24</th>
<th>Event ID</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24282</td>
<td>Project practical Robotics and Automation I (Software)</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Hein, Längle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WK 23/24</th>
<th>Exam ID</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750003</td>
<td>Project practical Robotics and Automation I (Software)</td>
<td>Hein, Längle</td>
</tr>
</tbody>
</table>
11.171 Course: Practical Project Robotics and Automation II (Hardware) [T-INFO-104552]

Responsible: Prof. Dr.-Ing. Björn Hein
Prof. Dr.-Ing. Thomas Längle

Organisation: KIT Department of Informatics

Part of: M-INFO-102230 - Practical Project Robotics and Automation II (Hardware)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Event Title</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24290</td>
<td>Robotics and Automation II (Hardware)</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Hein, Längle</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Event Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>750004</td>
<td>Project practical Robotics and Automation II (Hardware)</td>
<td>Hein, Längle</td>
</tr>
</tbody>
</table>
11.172 Course: Practice Module [T-ZAK-112660]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Internship (3 ECT)
Report within the framework of the practical training (Length approx. 18,000 characters (incl. spaces)
(1 ECT)

Prerequisites
none

Annotation
Knowledge from the Basic Module and the Elective Module is helpful.
11.173 Course: Presentation [T-MACH-107760]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104262 - Bachelor's Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The colloquium presentation must be held within the maximum processing time of the modul Bachelor Thesis but latest 6 weeks after the submission of the bachelor thesis.

The presentation should last around 20 minutes followed by a scientific discussion with the present expert audience. The students should show that they are able to independently present and discuss the content of their bachelor thesis according to scientific criteria.

Prerequisites

Bachelor Thesis has been started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-108800 - Bachelor's Thesis must have been started.

Annotation

No exam registration is required for the presentation. Passing will be registered by MACH's Examination Office.
Course: Principles of Medicine for Engineers [T-MACH-105235]

11.174

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102720 - Principles of Medicine for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2105992</td>
<td>Principles of Medicine for Engineers</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Pylatiuk</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105235</td>
<td>Principles of Medicine for Engineers</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Pylatiuk</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105235</td>
<td>Principles of Medicine for Engineers</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Pylatiuk</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, X Cancelled

Competence Certificate
Written examination (Duration: 45min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Principles of Medicine for Engineers
2105992, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

- Introduction: Definitions of “health” and “disease”. History of medicine and paradigm shift towards evidence based medicine and personalized medicine.
- Special topics: nervous system, saltatory conduction, musculoskeletal system, cardio-circulatory system, narcosis, pain, respiratory system, sensory organs, gynaecology, digestive organs, surgery, nephrology, orthopaedics, immune system, genetics.

Learning objectives:

Students have fundamental knowledge about functionality and anatomy of organs within different medical disciplines. The students further know about technical methods in diagnosis and therapy, common diseases, their relevance and costs. Finally the students are able to communicate with medical doctors in a way, in which they prevent misunderstandings and achieve a more realistic idea of each others expectations.

Literature

- Adolf Faller, Michael Schünke: Der Körper des Menschen. Thieme Verlag.
11.175 Course: Product Lifecycle Management [T-MACH-105147]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
<th>Credits</th>
<th>4</th>
<th>Grading scale</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Each winter term</th>
<th>Version</th>
<th>2</th>
</tr>
</thead>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2121350</th>
<th>Product Lifecycle Management</th>
<th>2 SWS</th>
<th>Lecture / 🗣️</th>
<th>Ovtcharova, Elstermann</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105147</th>
<th>Product Lifecycle Management</th>
<th>Ovtcharova, Elstermann</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☮ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Written examination 90 min.

Prerequisites

None

Below you will find excerpts from events related to this course:

Product Lifecycle Management

2121350, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

The course includes:

- Basics for product data management and data exchange
- IT system solutions for Product Lifecycle Management (PLM)
- Economic viability analysis and implementation problems
- Illustrative scenario for PLM using the example of the institute's own I4.0Lab

After successful attendance of the course, students can:

- identify the challenges of data management and exchange and describe solution concepts for these challenges.
- clarify the management concept PLM and its goals and highlight the economic benefits.
- explain the processes required to support the product life cycle and describe the most important business software systems (PDM, ERP, ...) and their functions.
Literature

Vorlesungsfolien.

11.176 Course: Production Techniques Laboratory [T-MACH-105346]

Responsible: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Jürgen Fleischer
Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102711 - Production Techniques Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale pass/fail</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course / 🧩</td>
<td>4 SWS</td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2110678 | Production Techniques Laboratory | 4 SWS | Practical course / 🧩 | Deml, Fleischer, Furmans, Meyer |

Legend: Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Advanced Internship: Participate in practice exercise courses and complete the colloquia successfully.

Elective Subject: Participate in practice exercise courses and complete the colloquia successfully and presentation of a specific topic.

Prerequisites

The course is limited in capacity, therefore the allocation of places is based on § 5 (4) in the Study and Examination Regulations. This results in the following selection criteria:

- The selection is based
 - on the study progress (here the study progress in credit points and not the study progress in semesters is taken as a basis),
 - on the waiting period in the case of equal progress in studies
 - by lot if the waiting period is the same.

The procedure is explained in more detail on ILIAS. Successful participation requires active and continuous participation in the course.

Below you will find excerpts from events related to this course:

Production Techniques Laboratory

| ST 2024 | 2110678, SS 2024, 4 SWS, Language: German, Open in study portal | Practical course (P) | Blended (On-Site/Online) |

Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024
Module Handbook, valid from summer term 24
Content
The production technique laboratory (PTL) is a collaboration of the institutes wbk, IFL, IMI and ifab.

1. Information management for I4.0 (IMI)
2. VR-supported product development (IMI)
3. Production of parts with CNC turning machines (wbk)
4. Controlling of production systems using PLCs (wbk)
5. Automated assembly systems (wbk)
6. Flexible material flow in the age of Industry 4.0 (IFL)
7. Identification in production and logistics (IFL)
8. Storage and order-picking systems (IFL)
9. Production Management (ifab)
10. Time study (ifab)
11. Accomplishment of workplace design (ifab)

Recommendations:
Participation in the following lectures:
 • Informationssystems in logistics and supply chain management
 • Material flow in logistic systems
 • Manufacturing technology
 • Human Factors Engineering

Learning Objects:
The students acquire in the lab profound knowledge about the scientific theories, principles and methods of Production Engineering. Afterwards they are able to evaluate and design complex production systems according to problems of manufacturing and process technologies, materials handling, handling techniques, information engineering as well as production organisation and management.

After completion this lab, the students are able
 • to analyse and solve planning and layout problems of the discussed fields,
 • to evaluate and configure the quality and efficiency of production, processes and products,
 • to plan, control and evaluate the production of a production enterprise,
 • to configure and evaluate the IT architecture of a production enterprise,
 • to design and evaluate appropriate techniques for conveying, handling and picking within a production system,
 • to design and evaluate the part production and the assembly by considering the work processes and the work places.

Organizational issues
Anwesenheitspflicht, Teilnehmerzahl begrenzt. Anmeldung über ILIAS
Arbeitsaufwand von 120 h (=4 LP).
Nachweis: bestanden / nicht bestanden
Regelmäßige Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien.
Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.
The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
11.177 Course: Programming [T-INFO-101531]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: M-INFO-101174 - Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type of Lecture / Practice</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24004</td>
<td>Programming</td>
<td>4</td>
<td>Lecture / Practice</td>
<td>Heinrich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>750075</td>
<td>Programming</td>
<td>Koziolek, Heinrich</td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-101967 - Programming Pass must have been passed.
11.178 Course: Programming Pass [T-INFO-101967]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: M-INFO-101174 - Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type of Lecture / Practice</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24004</td>
<td>Programming</td>
<td>4</td>
<td>Lecture / Practice (Heinrich)</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500074</td>
<td>Programming Pass</td>
<td>Koziolek, Heinrich</td>
</tr>
</tbody>
</table>
11.179 Course: Project Management in the Development of Products for Safety-Critical Applications [T-ETIT-109148]

Responsible: Dr.-Ing. Manfred Nolle
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104475 - Project Management in the Development of Products for Safety-Critical Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2311641</th>
<th>Project Management in the Development of Products for Safety-Critical Applications</th>
<th>2 SWS / ‍</th>
<th>Nolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2311643</td>
<td>Tutorial for 2311641 Project Management in the Development of Products for Safety-Critical Applications</td>
<td>1 SWS Practice / ‍</td>
<td>Nolle</td>
</tr>
</tbody>
</table>

Exams

| WT 23/24 | 7311641 | Project Management in the development of products for safety-critical applications | Nolle |

Legend: 🖥 Online, 🌐 Blended (On-Site/Online), 🌐 On-Site, X Cancelled
11.180 Course: Quality Management [T-MACH-102107]

Responsible: Prof. Dr.-Ing. Gisela Lanza

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105332 - Quality Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2149667</td>
<td>Quality Management</td>
<td>2</td>
<td>Lecture / Blended</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102107</td>
<td>Quality Management</td>
<td>Lecture (V) Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Written Exam (60 min)

Prerequisites

It is not possible to combine this brick with brick Quality Management [T-MACH-112586].

Below you will find excerpts from events related to this course:

Quality Management

2149667, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

• The term "Quality"
• Total Quality Management (TQM) and Six Sigma
• Universal methods and tools
• QM during early product stages – product definition
• QM during product development and in procurement
• QM in production – manufacturing metrology
• QM in production – statistical methods
• QM in service
• Quality management systems
• Legal aspects of QM

Learning Outcomes:
The students ...

• are capable to comment on the content covered by the lecture.
• are capable of substantially quality philosophies.
• are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
• are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Vorlesungstermine montags 09:45 Uhr
Übung erfolgt während der Vorlesung

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt:

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
11.181 Course: Radiation Protection [T-ETIT-100825]

Responsible:
PD Dr. Bastian Breustedt
Prof. Dr. Werner Nahm

Organisation:
KIT Department of Electrical Engineering and Information Technology

Part of:
M-ETIT-100562 - Radiation Protection

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2305272</th>
<th>Radiation Protection</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Breustedt</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7305272</th>
<th>Radiation Protection</th>
<th>Breustedt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>7305272</td>
<td>Radiation Protection</td>
<td>Breustedt</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Success control is carried out as part of an overall written examination (2 h). The module grade is the grade of the written exam.

Prerequisites

none
11.182 Course: Radio-Frequency Electronics [T-ETIT-110359]

- **Responsible:** Prof. Dr.-Ing. Ahmet Cagri Ulusoy
- **Organisation:** KIT Department of Electrical Engineering and Information Technology
- **Part of:** M-ETIT-105124 - Radio-Frequency Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2308503</td>
<td>Radio-Frequency Electronics</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Ulusoy</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7308503</td>
<td>Radio-Frequency Electronics</td>
<td></td>
<td></td>
<td>Ulusoy</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The success criteria will be determined by a written examination of 120 min.

Recommendation

Contents of the modules “Linear electrical networks” and “Electronic circuits”.
11.183 Course: Rail System Technology [T-MACH-106424]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-103232 - Rail System Technology

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT 23/24</td>
<td>Rail System Technology</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ST 2024</td>
<td>Rail System Technology</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT 23/24</td>
<td>Rail System Technology</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ST 2024</td>
<td>Rail System Technology</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
written examination in German language
Duration: 60 minutes
No tools or reference materials may be used during the exam except calculator and dictionary

Prerequisites
none

Below you will find excerpts from events related to this course:

Lecture (V) On-Site

Rail System Technology
2115919, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Organizational issues
ab SS 2024 schriftliche Prüfung

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (ilias-platform).
11.184 Course: Rail Vehicle Technology [T-MACH-105353]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102683 - Rail Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Cichon, Reimann</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Cichon</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td></td>
<td>Lecture / 🗣</td>
<td>Cichon, Reimann, Heckele</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td></td>
<td>Lecture / 🗣</td>
<td>Cichon, Berthold</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- 🏥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- ❌ Cancelled

Competence Certificate
- written examination in German language
- Duration: 60 minutes
- No tools or reference materials may be used during the exam except calculator and dictionary

Prerequisites
- none

Below you will find excerpts from events related to this course:

Lecture (V) On-Site

Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Organizational issues
ab SS 2024 schriftliche Prüfung

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
11.185 Course: Real-Time Systems [T-INFO-101340]

Responsible: Prof. Dr.-Ing. Thomas Längle
Organisation: KIT Department of Informatics
Part of: M-INFO-100803 - Real-Time Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>24576</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Längle, Ledermann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>750002</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Längle</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕰 Blended (On-Site/Online), 🔅 On-Site, × Cancelled
11.186 Course: Robotics - Practical Course [T-INFO-105107]

Responsible: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: M-INFO-102522 - Robotics - Practical Course

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Name</th>
<th>Grading</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>24870</td>
<td>Robotics - Practical Course</td>
<td>Practical course</td>
<td>Asfour</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Name</th>
<th>Grading</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>7500261</td>
<td>Robotics - Practical Course</td>
<td>Practical course</td>
<td>Asfour</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment is carried out as an examination of another type (§ 4 Abs. 2 No. 3 SPO). It is composed of several sub-tasks.

Prerequisites
Knowledge of the programming language C++ is required.

Recommendation

Below you will find excerpts from events related to this course:

Robotics - Practical Course
24870, SS 2024, 4 SWS, Language: German, [Open in study portal](link)

Practical course (P)

On-Site

Content
The practical course is offered as an accompanying course to the lectures Robotics I-III. Every week, a small team of students will work on solving a given robotics problem. The list of topics includes robot modeling and simulation, inverse kinematics, robot programming via statecharts, collision-free motion planning, grasp planning, robot vision and robot learning.

Learning Objectives:
The student knows concrete solutions for different problems in robotics. He/she uses methods of inverse kinematics, grasp and motion planning, and visual perception. The student can implement solutions in the programming languages C++ and Python with the help of suitable software frameworks.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO und besteht aus mehreren Teilaufgaben.

Arbeitsaufwand: 180 h

Voraussetzungen: Kenntnisse in der Programmiersprache C++ werden vorausgesetzt.

Zielgruppe: Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik
11.187 Course: Robotics I - Introduction to Robotics [T-INFO-108014]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-100893 - Robotics I - Introduction to Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2424152</td>
<td>Robotics I - Introduction to Robotics</td>
<td>3/1 SWS</td>
<td>Lecture / 📚</td>
<td>Asfour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500106</td>
<td>Robotics I - Introduction to Robotics</td>
<td></td>
<td>Asfour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7500218</td>
<td>Robotik I - Einführung in die Robotik</td>
<td></td>
<td>Asfour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites

none.
11.188 Course: Robotics II - Humanoid Robotics [T-INFO-105723]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-102756 - Robotics II - Humanoid Robotics

Type
Written examination

Credits
3

Grading scale
Grade to a third

Recurrence
Each summer term

Version
4

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>ID</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2400074</td>
<td>Robotics II: Humanoid Robotics</td>
<td>V</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>ID</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500211</td>
<td>Robotics II: Humanoid Robotics</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7500086</td>
<td>Robotics II: Humanoid Robotics</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Recommendation
Having visited the lectures on Robotics I - Introduction to Robotics and Mechatro-Informatics and Robotics is recommended.

Below you will find excerpts from events related to this course:

Robots I: Humanoid Robotics
2400074, SS 2024, 2 SWS, Language: English, Open in study portal

Content
The lecture presents current work in the field of humanoid robotics that deals with the implementation of complex sensorimotor and cognitive abilities. In the individual topics different methods and algorithms, their advantages and disadvantages, as well as the current state of research are discussed. The topics addressed are: Applications and real world examples of humanoid robots; biomechanical models of the human body, biologically inspired and data-driven methods of grasping, imitation learning and programming by demonstration; semantic representations of sensorimotor experience as well as cognitive software architectures of humanoid robots.

Learning Objectives:
The students have an overview of current research topics in autonomous learning robot systems using the example of humanoid robotics. They are able to classify and evaluate current developments in the field of cognitive humanoid robotics. The students know the essential problems of humanoid robotics and are able to develop solutions on the basis of existing research.

Organizational issues
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand: 90 h

Empfehlungen: Der Besuch der Vorlesungen Robotik I – Einführung in die Robotik und Mechano-Informatik in der Robotik wird empfohlen

Zielgruppe: Modul für Master Informatik, Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Literature
Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema, werden auf der VL-Website bereitgestellt.
11.189 Course: Robotics III - Sensors and Perception in Robotics [T-INFO-109931]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-104897 - Robotics III - Sensors and Perception in Robotics

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lecture / 🗣</td>
<td>3</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Lecture / 🗣</td>
<td>3</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗩 Blended (On-Site/Online), ⚪ On-Site, ✗ Cancelled

Competence Certificate
The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites
none.

Recommendation
Attending the lecture Robotics I – Introduction to Robotics is recommended.

Below you will find excerpts from events related to this course:

Robots III - Sensors and Perception in Robotics
2400067, SS 2024, 2 SWS, Language: German/English, [Open in study portal](#)

Content
The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, semantic scene interpretation and (inter-)active perception. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, semantic scene interpretation and (inter-)active perception.

Learning Objectives:
Students know the main sensor principles used in robotics and understand the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and environmental modeling.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Organizational issues
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik
Empfehlungen: Der Besuch der Vorlesung Robotik I – Einführung in die Robotik wird empfohlen

Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Literature
Eine Foliensammlung wird im Laufe der Vorlesung angeboten.

Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.
11.190 Course: Scientific Computing for Engineers [T-MACH-100532]

Responsible: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2181738</td>
<td>Scientific computing for Engineers</td>
<td>2 SWS</td>
<td>Lecture/🗣</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2181739</td>
<td>Exercises for Scientific Computing for Engineers</td>
<td>2 SWS</td>
<td>Practice/🗣</td>
<td>Grade to a third</td>
<td></td>
<td>Weygand</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>Weygand, Gumbsch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🿩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Written exam (90 minutes)

Prerequisites

The brick can not be combined with the brick "Application of advanced programming languages in mechanical engineering" (T-MACH-105390).

Below you will find excerpts from events related to this course:

Scientific computing for Engineers

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181738</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

 Bachelor's Program Mechatronics and Information Technology (B.Sc.), Date:01/03/2024
 Module Handbook, valid from summer term 24
Content
1. Introduction: why scientific computing
2. computer architectures
3. Introduction to Unix/Linux
4. Foundations of C++
 * program organization
 * data types, operator, control structures
 * dynamic memory allocation
 * functions
 * class
 * OpenMP parallelization
5. numeric / algorithms
 * finite differences
 * MD simulations: 2nd order differential equations
 * algorithms for particle simulations
 * solver for linear systems of eqns.

The student can
- apply the programming language C++ for scientific computing in the field of materials science
- adapt programs for use on parallel platforms
- choose suitable numerical methods for the solution of differential equations.

The lecture can not be combined with the lecture "Application of advanced programming languages in mechanical engineering" (2182735).

regular attendance: 22.5 hours
Lab: 22.5 hours (optional)
self-study: 75 hours
written exam 90 minutes

Literature
1. C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München
2. C++ and object-oriented numeric computing for Scientists and Engineers, Daoqui Yang, Springer Verlag.
3. The C++ Programming Language, Bjarne Stroustrup, Addison-Wesley
4. Die C++ Standardbibliothek, S. Kuhlins und M. Schader, Springer Verlag

Numerik:
1. Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
2. Numerische Mathematik, H.R. Schwarz, Teubner Stuttgart
3. Numerische Simulation in der Moleküldynamik, Griebel, Knapek, Zumbusch, Caglar, Springer Verlag

Exercises for Scientific Computing for Engineers
2181739, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
Exercises for the different topics of the lecture "Scientific computing for Engineers" (2181738)
regular attendance: 22.5 hours

Organizational issues
Veranstaltungsort (RZ Pool Raum) wird in Vorlesung bekannt gegeben

Literature
Skript zur Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)
11.191 Course: Seamless Engineering [T-MACH-111401]

Responsible: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Electrical Engineering and Information Technology
KIT Department of Mechanical Engineering

Part of: M-MACH-105725 - Seamless Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2117072</td>
<td></td>
<td></td>
<td></td>
<td>Furmans, Sax</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>76-T-MACH-111401</td>
<td>Seamless Engineering</td>
<td></td>
<td></td>
<td>Sax, Furmans</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Competence certificate in the form of an examination of another type.

The overall grade is composed as follows:

- 50% assessment of an examination as individual performance as the conclusion of the lecture block.
- 50% assessment of colloquia as individual performance on defined milestones during the project work

Failing the final examination or the colloquia does not result in failing the course.

Prerequisites

None

Recommendation

None

Annotation

The course consists of two components. Theoretical knowledge and basics about structured system design are taught in lecture and exercise. In parallel, a practical part takes place throughout the semester. In this, the students design and implement a mechatronic system in small groups using industry-related hardware and software to deal with a given task in the logistics environment.

Below you will find excerpts from events related to this course:

Seamless Engineering - Logistics Robotics Workshop

2117072, WS 23/24, 2 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ)
On-Site

Content

The aim of this module is to teach students how to develop a heterogeneous integrated mechatronic system. In the lecture, students are introduced to a system-oriented, higher-level approach to the description, evaluation and development of a mechatronic system. Special emphasis is placed on the description of intralogistics systems and modular material flow technology.

At the same time, the practical part of the course applies and deepens the knowledge gained to hardware used in industry. The students learn the systematic development in a simulation environment as well as the transition from simulation to real hardware. In small groups, the students will implement an autonomous material flow.

For this purpose, important components of software development in the robotics environment are taught. This includes, among other things, the basics of programming (Python and "Robot Operating System (ROS)"). In addition, students will gain insights into sensor and actuator technology, image processing, autonomous navigation of automated guided vehicles as well as handling robotics.
Organizational issues
The course consists of two components: 1) lectures and 2) a intralogistics robotic workshop. In lectures, theoretical knowledge and fundamentals of structured system design and modular material handling are taught. There will be a written exam at the end of the lecture unit.

In parallel, a practical workshop takes place throughout the semester. For this, small group of students design and implement a mechatronic intralogistic system using industry-related robotic hardware and software to accomplish a given material flow task.

Registration takes place via the ILIAS course and the poll contained therein.

The course is exclusively for mechatronics students and number of participants is limited.
11.192 Course: Seminar Battery I [T-ETIT-110800]

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105319 - Seminar Battery I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2304226</td>
<td>Seminar Battery</td>
<td>2 SWS</td>
<td>Seminar / Weber</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2304226</td>
<td>Seminar Batteries</td>
<td>2 SWS</td>
<td>Seminar / Weber</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7300001</td>
<td>Seminar Battery I</td>
<td>2 SWS</td>
<td>Weber</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), ⚤ On-Site, ☑ Cancelled

Prerequisites

none

Below you will find excerpts from events related to this course:

Seminar Battery

2304226, WS 23/24, 2 SWS, Language: German/English, [Open in study portal]

Content

Seminar Batteries (I + II for Bachelor and Master students respectively)

The battery seminar is offered all year round (including the lecture-free period). In the seminar, topics related to current research work at the IAM-ET are discussed on a weekly basis. Participation in the seminar is possible for students from the Faculty of Electrical Engineering and Information Technology as well as for students from other faculties. The seminar paper is usually a theoretical work consisting of literature research and comparative evaluation of different approaches to solve a scientific or technical question. A seminar paper can be started at any time (just come along). The work includes a written thesis and a lecture to be given as part of the event. Regular attendance at the weekly appointments is not required. If possible, you should attend dates where other participants give their presentations. If you are interested in taking part in the seminar and writing a seminar paper, please contact the lecturer.

Organizational issues

Anmeldungen können unter: andre.weber@kit.edu erfolgen.

Literature

werden zu Beginn der Seminararbeit themenspezifisch gegeben

Seminar Batteries

2304226, SS 2024, 2 SWS, Language: German/English, [Open in study portal]

Content

Seminar Batteries (I + II for Bachelor and Master students respectively)

The battery seminar is offered all year round (including the lecture-free period). In the seminar, topics related to current research work at the IAM-ET are discussed on a weekly basis. Participation in the seminar is possible for students from the Faculty of Electrical Engineering and Information Technology as well as for students from other faculties. The seminar paper is usually a theoretical work consisting of literature research and comparative evaluation of different approaches to solve a scientific or technical question. A seminar paper can be started at any time (just come along). The work includes a written thesis and a lecture to be given as part of the event. Regular attendance at the weekly appointments is not required. If possible, you should attend dates where other participants give their presentations. If you are interested in taking part in the seminar and writing a seminar paper, please contact the lecturer.

Organizational issues

Anmeldungen können unter: andre.weber@kit.edu erfolgen.

Veranstaltung findet auch außerhalb der Vorlesungszeiten ganzjährig statt.
Literature
werden zu Beginn der Seminararbeit themenspezifisch gegeben
11.193 Course: Seminar Embedded Systems [T-ETIT-100753]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100455 - Seminar Embedded Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2311627</td>
<td>Seminar Embedded Systems</td>
<td>2 SWS</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2311627</td>
<td>Seminar Embedded Systems</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7311627</td>
<td>Seminar Embedded Systems</td>
</tr>
</tbody>
</table>

Prerequisites
none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Seminar Fuel Cell I [T-ETIT-110798]

Responsible: Dr.-Ing. Andre Weber

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105320 - Seminar Fuel Cell I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Type</th>
<th>WS/SS</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2304227</td>
<td>Seminar Fuel Cell</td>
<td>2 SWS</td>
<td>German/English</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2304227</td>
<td>Seminar Fuel Cell</td>
<td>2 SWS</td>
<td>German/English</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7300003</td>
<td>Seminar Fuel Cell I</td>
<td>Weber</td>
</tr>
</tbody>
</table>

Competence Certificate

Success control takes the form of other types of examination.

The grade consists of:

1. written report (50%)
2. seminar lecture (50%)

Prerequisites

none

Below you will find excerpts from events related to this course:

Seminar Fuel Cell

2304227, WS 23/24, 2 SWS, Language: German/English, [Open in study portal](#)

Content

Seminar Fuel Cells (I + II for Bachelor and Master students respectively)

The fuel cell seminar is offered all year round (including the lecture-free period). In the seminar, topics related to current research work at the IAM-ET are discussed on a weekly basis. Participation in the seminar is possible for students from the Faculty of Electrical Engineering and Information Technology as well as for students from other faculties. The seminar paper is usually a theoretical work consisting of literature research and comparative evaluation of different approaches to solve a scientific or technical question. A seminar paper can be started at any time (just come along). The work includes a written thesis and a lecture to be given as part of the event. Regular attendance at the weekly appointments is not required. If possible, you should attend dates where other participants give their presentations. If you are interested in taking part in the seminar and writing a seminar paper, please contact the lecturer.

Organizational issues

Anmeldungen können unter: andre.weber@kit.edu erfolgen.

Literature

werden zu Beginn der Seminararbeit themenspezifisch gegeben

Seminar Fuel Cell

2304227, SS 2024, 2 SWS, Language: German/English, [Open in study portal](#)
Content
Seminar Fuel Cells (I + II for Bachelor and Master students respectively)

The fuel cell seminar is offered all year round (including the lecture-free period). In the seminar, topics related to current research work at the IAM-ET are discussed on a weekly basis. Participation in the seminar is possible for students from the Faculty of Electrical Engineering and Information Technology as well as for students from other faculties. The seminar paper is usually a theoretical work consisting of literature research and comparative evaluation of different approaches to solve a scientific or technical question. A seminar paper can be started at any time (just come along). The work includes a written thesis and a lecture to be given as part of the event. Regular attendance at the weekly appointments is not required. If possible, you should attend dates where other participants give their presentations. If you are interested in taking part in the seminar and writing a seminar paper, please contact the lecturer.

Organizational issues
Anmeldungen können unter: andre.weber@kit.edu erfolgen.
Veranstaltung findet auch außerhalb der Vorlesungszeiten ganzjährig statt.

Literature
werden zu Beginn der Seminararbeit themenspezifisch gegeben
11.195 Course: Seminar on Selected Chapters of Biomedical Engineering [T-ETIT-100710]

Responsible: Dr.-Ing. Axel Loewe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100383 - Seminar on Selected Chapters of Biomedical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2305254</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Loewe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7305254</td>
<td></td>
<td>Seminar / 🗣</td>
<td>Loewe</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Success monitoring is carried out in the context of a lecture (approx. 25 minutes) followed by a discussion (approx. 10 minutes).

Prerequisites

none
11.196 Course: Seminar Power Electronics in Regenerative Energy Systems [T-ETIT-100714]

Responsible: Prof. Dr.-Ing. Marc Hiller
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100397 - Seminar Power Electronics in Regenerative Energy Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2306318</th>
<th>Seminar Power Electronics in Regenerative Energy Systems</th>
<th>3 SWS</th>
<th>Seminar / 🗣️</th>
<th>Hiller</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>7306318</th>
<th>Seminar Power Electronics in Regenerative Energy Systems</th>
<th>Hiller</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ☘️ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites

none
Course: Seminar: Fundamentals of Embedded Systems [T-ETIT-110832]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105645 - Information and Automation Technology II/Seminar Embedded Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2311628</td>
<td>Seminar Fundamentals of Embedded Systems</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Becker, Sax, Stork</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7311628</td>
<td>Seminar: Fundamentals of Embedded Systems</td>
</tr>
</tbody>
</table>

Prerequisites

none
11.198 Course: Sensors [T-ETIT-101911]

Responsible: Dr. Wolfgang Menesklou

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100378 - Sensors

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2304231 | Sensors | 2 SWS | Lecture / 🗣️ | Menesklou |

Exams

| WT 23/24 | 7304231 | Sensors | Menesklou |
| ST 2024 | 7304231 | Sensors | Menesklou |

Legend: 🖥 Online, 🎨 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
11.199 Course: Signals and Systems [T-ETIT-109313]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104525 - Signals and Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2302109</th>
<th>Signals and Systems</th>
<th>2 SWS</th>
<th>Lecture / 📡</th>
<th>Wahls, Heizmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2302111</td>
<td>Signals and Systems (Tutorial to 2302109)</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Wahls, Heizmann, Leven</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7302109</th>
<th>Signals and Systems</th>
<th>Wahls</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
Course: Signals and Systems - Workshop [T-ETIT-109314]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type of course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2302905</td>
<td>Signals and Systems - Workshop</td>
<td>1 SWS</td>
<td>Practical course / 🧩</td>
<td>Wahls</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>7302314</td>
<td>Signals and Systems - Workshop</td>
<td>Wahls</td>
</tr>
</tbody>
</table>

Prerequisites

none
11.201 Course: Software Engineering I [T-INFO-101968]

Responsible: Prof. Dr.-Ing. Ina Schaefer
Organisation: KIT Department of Informatics
Part of: M-INFO-101175 - Software Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>24518</td>
<td>Softwaretechnik I</td>
<td>4 SWS</td>
<td></td>
<td></td>
<td>Schaefer, Eichhorn</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credit</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500123</td>
<td>Software Engineering I</td>
<td>9 SWS</td>
<td>Schaefer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7500152</td>
<td>Software Engineering I</td>
<td>9 SWS</td>
<td>Schaefer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
11.202 Course: Software Engineering I Pass [T-INFO-101995]

Responsible: Prof. Dr.-Ing. Ina Schaefer
Organisation: KIT Department of Informatics
Part of: M-INFO-101175 - Software Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>24518</th>
<th>Softwaretechnik I</th>
<th>4 SWS</th>
<th>Lecture / Practice</th>
<th>Schaefer, Eichhorn</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>7500250</th>
<th>Software Engineering I Pass</th>
<th>Schaefer</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
11.203 Course: Software Engineering II [T-INFO-101370]

Responsible: Prof. Dr.-Ing. Anne Koziolok
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: M-INFO-100833 - Software Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 24076 | Software Engineering II | 4 SWS | Lecture / Reussner |

Exams

| WT 23/24 | 7500054 | Software Engineering II | Reussner |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Software Engineering II

24076, WS 23/24, 4 SWS, Language: German, [Open in study portal](#)

Literature

11.204 Course: Specialisation Module - Self Assignment BeNe [T-ZAK-112346]

Responsible: Christine Myglas
Organisation: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The monitoring occurs in the form of several supplementary courses, which usually comprise a presentation of the (group) project, a written elaboration of the (group) project as well as an individual term paper, if necessary with appendices (examination performances of other kind according to statutes § 5 section 3 No. 3 or § 7 section 7). The presentation is usually with the accompanying practice partners, as well as the written paper.

Prerequisites
Active participation in all three mandatory components.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
Knowledge from 'Basic Module ' and 'Elective Module ' is helpful.
Content
In order to handle complex dynamic systems (e.g., in robotics), an in-step estimation of the system's internal state (e.g., position and orientation of the actuator) is required. Such an estimation is ideally based on the system model (e.g., a discretized differential equation describing the system dynamics) and the measurement model (e.g., a nonlinear function that maps the state space to a measurement subspace). Both system and measurement model are uncertain (e.g., include additive or multiplicative noise).

For continuous state spaces, an exact calculation of the probability densities is only possible in a few special cases. In practice, general nonlinear systems are often traced back to these special cases by simplifying assumptions. One extreme is linearization with subsequent application of linear estimation theory. However, this often leads to unsatisfactory results and requires additional heuristic measures. At the other extreme are numerical approximation methods, which only evaluate the desired distribution densities at discrete points in the state space. Although the working principle of these procedures is usually quite simple, a practical implementation often turns out to be difficult and especially for higher-dimensional systems it is computationally complex.

As a middle ground, analytical nonlinear estimation methods would therefore often be desirable. In this lecture the main difficulties in the development of such estimation methods are presented and corresponding solution modules are presented. Based on these building blocks, some analytical estimation methods are discussed in detail as examples, which are very suitable for practical implementation and offer a good compromise between computing effort and performance. Useful applications of these estimation methods are also discussed. Both known methods and the results of current research are presented.

Organizational issues
Der Prüfungstermin ist per E-Mail (gambichler@kit.edu) zu vereinbaren.

Literature
Weiterführende Literatur
Skript zur Vorlesung
11.206 Course: Superconducting Magnet Technology [T-ETIT-113440]

Responsible: Prof. Dr. Tabea Arndt

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-106684 - Superconducting Magnet Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2312698 | Superconducting Magnet Technology | 3 SWS | Lecture / Practice (/ 🧩) | Arndt |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination takes place in form of an oral exam (abt. 30 minutes).

Two timeslots (weeks) for examination dates will be announced (usually near end of lecture period & end of semester).

The module grade is the grade of the oral exam.

Prerequisites

none
11.207 Course: Superconducting Power Systems [T-ETIT-113439]

Responsible: Prof. Dr. Mathias Noe
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-106683 - Superconducting Power Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2314011</th>
<th>Superconducting Power Systems</th>
<th>3 SWS</th>
<th>Lecture / Practice</th>
<th>Noe</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ☢ Blended (On-Site/Online), 🔈 On-Site, ✗ Cancelled

Competence Certificate

The examination takes place in form of an oral exam (abt. 45 minutes). The module grade is the grade of the oral exam.

Prerequisites

none
11.208 Course: Superconductors for Energy Applications [T-ETIT-110788]

Responsible: apl. Prof. Dr. Francesco Grilli

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105299 - Superconductors for Energy Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2312704</th>
<th>Superconductors for Energy Applications</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Grilli</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2312705</td>
<td>Übungen zu 2312704 Superconductors for Energy Applications</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Grilli</td>
</tr>
</tbody>
</table>

Exams

| WT 23/24 | 7300015 | Superconductors for Energy Applications | Grilli |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam approx. 30 minutes.

Prerequisites
A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.

"T-ETIT-106970 - Superconducting Materials for Energy Applications" must not be taken.
11.209 Course: System Dynamics and Control Engineering [T-ETIT-101921]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-102181 - System Dynamics and Control Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

- **WT 23/24 2303155**
 - **Systemdynamik und Regelungstechnik**
 - 2 SWS
 - Lecture /
 - Hohmann

- **WT 23/24 2303156**
 - **Tutorien zu 2303155 Systemdynamik und Regelungstechnik**
 - Tutorial /
 - Piscol

- **WT 23/24 2303157**
 - **Übungen zu 2303155 Systemdynamik und Regelungstechnik**
 - 1 SWS
 - Practice /
 - Piscol

Exams

- **WT 23/24 7303155**
 - **System Dynamics and Control Engineering**
 - Hohmann

Prerequisites

none
11.210 Course: Systematic Materials Selection [T-MACH-100531]

Responsible: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-ETIT-102734 - Materials
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>5</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2174576 | Systematic Materials Selection | 3 SWS | Lecture / 🗣 | Dietrich |
| ST 2024 | 2174577 | Exercises in Systematic Materials Selection | 1 SWS | Practice / 🗣 | Dietrich |

Exams

| WT 23/24 | 76-T-MACH-100531 | Systematic Materials Selection | Dietrich |
| ST 2024 | 76-T-MACH-100531 | Systematic Materials Selection | Dietrich |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment is carried out as a written exam of 2 h.

Prerequisites
one

Recommendation
Basic knowledge in materials science, mechanics and mechanical design due to the lecture Materials Science I/II.

Below you will find excerpts from events related to this course:

Systematic Materials Selection

2174576, SS 2024, 3 SWS, Language: German, Open in study portal

Lecture (V)

On-Site
Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered:

- Information and introduction
- Necessary basics of materials
- Selected methods / approaches of the material selection
- Examples for material indices and materials property charts
- Trade-off and shape factors
- Sandwich materials and composite materials
- High temperature alloys
- Regard of process influences
- Material selection for production lines
- Incorrect material selection and the resulting consequences
- Abstract and possibility to ask questions

learning objectives:
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

requirements:
Wiling SPO 2007 (B.Sc.)
The course Material Science I [21760] has to be completed beforehand.
Wiling (M.Sc.)
The course Material Science I [21760] has to be completed beforehand.

workload:
The workload for the lecture is 120 h per semester and consists of the presence during the lecture (30 h) as well as preparation and rework time at home (30 h) and preparation time for the oral exam (60 h).

Literature
Vorlesungsskriptum; Übungsblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7

Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
Course: Technical Design in Product Development [T-MACH-105361]

Responsible:
- Prof. Dr.-Ing. Albert Albers
- Prof. Dr.-Ing. Sven Matthiesen
- Dr.-Ing. Markus Schmid

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-105318 - Technical Design in Product Development

Type
Written examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2146179</td>
<td>Technical Design in Product Development</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏠 Blended (On-Site/Online), ☑ On-Site, ✗ Cancelled

Content

Introduction
Relevant parameters on product value in Technical Design
Design in Methodical Development and Engineering and for a differentiated validation of products
Design in the concept stage of Product Development
Design in the draft and elaboration stage of Product Development

Best Practice
After listening the module “technical design” the students should have knowledge about the basics of technical oriented design as an integral part of the methodical product development

The students have knowledge about ...

- the interface between engineer and designer.
- all relevant human-product requirements as f. exp. demographic/ geographic and psychographic features, relevant perceptions, typical content recognition as well as ergonomic bases.
- the approaches concerning the design of a product, product program or product system with focus on structure, form-, color- and graphic design within the phases of the design process.
- the design of functions and supporting structures as well as the important interface between human and machine.
- relevant parameters of a good corporate design.

Organizational issues
Die Veranstaltung findet 2024 nicht statt.
Literature
Markus Schmid, Thomas Maier
Technisches Interface Design
Anforderungen, Bewertung, Gestaltung.
2017
Hartmut Seeger
Design technischer Produkte, Produktprogramme und -systeme
Industrial Design Engineering.
2., bearb. und erweiterte Auflage.
ISBN: 3540236538
September 2005 - gebunden - 396 Seiten
11.212 Course: Technical Thermodynamics and Heat Transfer I [T-MACH-104747]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102386 - Technical Thermodynamics and Heat Transfer I

Type
Written examination

Credits
8

Grading scale
Grade to a third

Recurrence
Each winter term

Version
3

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2165501</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4</td>
<td>Lecture</td>
<td>Maas</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3165014</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4</td>
<td>Lecture</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-104747</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td></td>
<td>Lecture</td>
<td>Maas, Schießl</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-104747-english</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td></td>
<td>Lecture</td>
<td>Maas, Schießl</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-104747</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td></td>
<td>Lecture</td>
<td>Maas, Schießl</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-104747-englisch</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td></td>
<td>Lecture</td>
<td>Maas, Schießl</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam, approx. 3 hours

Prerequisites
Successful participation in the tutorial (T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer I
2165501, WS 23/24, 4 SWS, Language: German, [Open in study portal]

Content

- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Literature

Vorlesungsskriptum
Technical Thermodynamics and Heat Transfer I
3165014, WS 23/24, 4 SWS, Language: English, Open in study portal

Content

- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Literature

Vorlesungsskriptum
Course: Technical Thermodynamics and Heat Transfer II [T-MACH-105287]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102830 - Technical Thermodynamics and Heat Transfer II

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Technical Thermodynamics and Heat Transfer II (Repeater Tutorial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Tutorial</td>
<td></td>
<td></td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ST 2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2166526</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Lecture</td>
<td></td>
<td></td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam, approx. 3 hours

Prerequisites
Successful participation in the tutorial (T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II

2166526, SS 2024, 4 SWS, Language: German, [Open in study portal](#)

Content

- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

Literature

Vorlesungsskriptum

11.214 Course: Theory of Probability [T-ETIT-101952]

Responsible: Dr.-Ing. Holger Jäkel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-102104 - Theory of Probability
- M-ETIT-105646 - Theory of Probability/Communication Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2310505</td>
<td>Theory of Probability</td>
<td>2 SWS</td>
<td>Lecture / Blended (On-Site/Online), Blended (On-Site/Online)</td>
<td>Jäkel</td>
</tr>
<tr>
<td>WT 23/24 2310507</td>
<td>Tutorial for 2310505 Theory of Probability</td>
<td>1 SWS</td>
<td>Practice / Blended (On-Site/Online), Blended (On-Site/Online)</td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7310505</td>
<td>Theory of Probability</td>
<td></td>
<td></td>
<td>Jäkel</td>
</tr>
<tr>
<td>ST 2024 7310505</td>
<td>Theory of Probability</td>
<td></td>
<td></td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Prerequisites

Contents of higher mathematics are necessary (e.g. M-MATH-101731 und M-MATH-101732).
11.215 Course: Thermal Solar Energy [T-MACH-105225]

Responsible: N.N.
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102388 - Thermal Solar Energy

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2169472</th>
<th>Thermal Solar Energy</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Stieglitz, Dagan</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105225</th>
<th>Thermal Solar Energy</th>
<th>Dagan</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🌐 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral examination of about 30 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Thermal Solar Energy

2169472, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

On-Site

Content

In detail:

1. Introduction to energy requirements and evaluation of the potential use of solar thermal energy.
2. Primary energy source SUN: sun, solar constant, radiation (direct, diffuse scattering, absorption, impact angle, radiation balance).
5. Momentum and heat transport: basic equations of single and multiphase transport, calculation methods, stability limits. Optional
6. Low temperature solar thermal systems: collector types, methods for system simulation, planning and dimensioning of systems, system design and stagnation scenarios.
7. High temperature solar thermal systems: solar towers and solar-farm concept, loss mechanisms, chimney power plants and energy production processes.

The lecture elaborates the basics of the solar technology and the definition of the major wordings and its physical content such as radiation, thermal use, insulation etc.. Further the design of solar collectors for different purposes is discussed and analyzed. The functional principle of solar plants is elaborated before at the end the ways for solar cooling is discussed.

The aim of the course is to provide the basic physical principles and the derivation of key parameters for the individual solar thermal use. This involves in addition to the selective absorber, mirrors, glasses, and storage technology. In addition, a utilization of solar thermal energy means an interlink of the collector with a thermal-hydraulic circuit and a storage. The goal is to capture the regularities of linking to derive efficiency correlations as a function of their use and evaluate the performance of the entire system.

Recommendations / previous knowledge

Basics in heat and mass transfer, material science and fluid mechanics, desirable are reliable knowledge in physics in optics and thermodynamics

Oral exam of about 25 minutes, no tools or reference materials may be used during the exam.
Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
Bereitstellung des Studienmaterials in gedruckter und elektronischer Form.
11.216 Course: Tutorial Advanced Mathematics I [T-MATH-100525]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>0131100</td>
<td>Übungen zu 0131000</td>
<td>2</td>
<td>Practice</td>
<td>Hettlich</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>0131300</td>
<td>Übungen zu 0131200</td>
<td>2</td>
<td>Practice</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam Code</th>
<th>Course Description</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6700005</td>
<td>Problem Class for Advanced Mathematics I</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites
None.
11.217 Course: Tutorial Advanced Mathematics II [T-MATH-100526]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>0180900</th>
<th>Übungen zu 0180800</th>
<th>2 SWS</th>
<th>Practice</th>
<th>Arens</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>0181100</td>
<td>Übungen zu 0181000</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites

None.
11.218 Course: Tutorial Advanced Mathematics III [T-MATH-100527]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework (written)</th>
<th>Credits</th>
<th>0</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each winter term</th>
<th>Version</th>
<th>2</th>
</tr>
</thead>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>WT 23/24</th>
<th>0131500</th>
<th>Übungen zu 0131400</th>
<th>2 SWS</th>
<th>Practice</th>
<th>Arens</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>WT 23/24</th>
<th>6700006</th>
<th>Tutorial Advanced Mathematics III</th>
<th>Arens, Griesmaier, Hettlich</th>
</tr>
</thead>
</table>

Competence Certificate

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites

None.
11.219 Course: Tutorial Engineering Mechanics I [T-MACH-100528]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td></td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2161246</td>
<td>Tutorial Engineering Mechanics I</td>
<td>2</td>
<td>SWS</td>
<td>0</td>
<td>German</td>
<td>Kehrer, Klein, Böhlke</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3161011</td>
<td>Engineering Mechanics I (Tutorial)</td>
<td>2</td>
<td>SWS</td>
<td>0</td>
<td>English</td>
<td>Gisy, Klein, Langhoff</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Language</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100528</td>
<td>Tutorial Engineering Mechanics I</td>
<td></td>
<td>0</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100528-englisch</td>
<td>Tutorial Engineering Mechanics I</td>
<td></td>
<td>0</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online,
🧩 Blended (On-Site/Online),
🗣 On-Site,
🗙 Cancelled

Competence Certificate

Successful solution of worksheets. Details are given in the first lecture "Engineering Mechanics I".

Passing this course allows to register to the exam "Engineering Mechanics I" (see T-MACH-100282).

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorial Engineering Mechanics I

2161246, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

Please refer to the lecture Engineering Mechanics I.

Literature

Siehe Vorlesung Technische Mechanik I

Engineering Mechanics I (Tutorial)

3161011, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Content

See Lecture "Engineering Mechanics I".

Literature

See Lecture "Engineering Mechanics I"
Course: Tutorial Engineering Mechanics II [T-MACH-100284]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Tutorial Engineering Mechanics II</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Each summer term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Engineering Mechanics II (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Canceled

Competence Certificate
Successful solution of worksheets. Details are given in the first lecture "Engineering Mechanics II"
Passing this course allows to register to the exam "Engineering Mechanics II" (see T-MACH-100283).

Prerequisites
None

Below you will find excerpts from events related to this course:

Tutorial Engineering Mechanics II
2162251, SS 2024, 2 SWS, Language: German, Open in study portal

Content
see lecture Engineering Mechanics II

Literature
Siehe Vorlesung Technische Mechanik II

Engineering Mechanics II (Tutorial)
3162011, SS 2024, 2 SWS, Language: English, Open in study portal

Content
see lecture "Engineering Mechanics II"

Literature
see lecture "Engineering Mechanics II"
11.221 Course: Tutorial Engineering Mechanics III [T-MACH-105202]

Responsible: N.N.
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2161204</th>
<th>Engineering Mechanics III (Tutorial)</th>
<th>2 SWS</th>
<th>Practice / On-Site: Proppe, Altoé, Fischer, Römer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3161013</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / On-Site: Römer, Altoé, Fischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105202</th>
<th>Tutorial Engineering Mechanics III</th>
<th>Proppe</th>
</tr>
</thead>
</table>

Competence Certificate

Attestations, successful accomplishment of exercise sheets

Prerequisites

None

Below you will find excerpts from events related to this course:

Engineering Mechanics III (Tutorial)

2161204, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the tutorial exercises are presented and instructions for those exercises are given which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.

Literature

Hibbeler: Technische Mechanik 3, Dynamik, München, 2006

Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983

Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975

Göldner, Holzweissig: Leitfaden der Technischen Mechanik.

Hagedorn: Technische Mechanik III.

Engineering Mechanics III (Tutorial)

3161013, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Content

Exercises related to the lecture
11.222 Course: Tutorial Mathematical Methods in Continuum Mechanics [T-MACH-110376]

Responsible: Prof. Dr.-Ing. Thomas Böhlke

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-103205 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2161255</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Lauff, Sterr, Böhlke</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-110376</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛍️ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Successfully solving the homework sheets. Details are announced in the first lecture.

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorial Mathematical Methods in Continuum Mechanics

2161255, WS 23/24, 2 SWS, Language: German, [Open in study portal](#) - Practice (U) - On-Site

Content

See "Mathematical Methods in Continuum Mechanics"

Literature

Siehe "Mathematische Methoden der Kontinuumsmechanik"

Responsible: Prof. Dr.-Ing. Frank Henning

Organisation: KIT Department of Mechanical Engineering

Lightweight Design

Part of: M-MACH-102703 - Vehicle Lightweight Design - Strategies, Concepts, Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113102</td>
<td>Vehicle Lightweight design – Strategies, Concepts, Materials</td>
<td>2 SWS</td>
<td>Lecture / Blended</td>
<td>Henning</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105237</td>
<td>Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td>Henning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105237</td>
<td>Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td>Henning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam; Duration approx. 90 min

Prerequisites

none

Recommendation

none

Below you will find excerpts from events related to this course:

Vehicle Lightweight design – Strategies, Concepts, Materials

2113102, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

Strategies in lightweight design

Shape optimization, light weight materials, multi-materials and concepts for lightweight design

Construction methods

Differential, integral, sandwich, modular, bionic

Body construction

Shell, space frame, monocoque

Metallic materials

Steel, aluminium, magnesium, titan

Aim of this lecture:

Students learn that lightweight design is a process of realizing a demanded function by using the smallest possible mass. They understand lightweight construction as a complex optimization problem with multiple boundary conditions, involving competences from methods, materials and production.

Students learn the established lightweight strategies and ways of construction. They know the metallic materials used in lightweight construction and understand the relation between material and vehicle body.
Literature
11.224 Course: Vehicle Systems for Urban Mobility [T-MACH-113069]

Responsible: Prof. Dr.-Ing. Martin Cichon

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106515 - Vehicle Systems for Urban Mobility

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2115922 | Vehicle Systems for Urban Mobility | 2 SWS | Lecture / 🗣 | Cichon |
| ST 2024 | 2115922 | Vehicle Systems for Urban Mobility | 2 SWS | Lecture / 🗣 | Cichon, Berthold |

Exams

| WT 23/24 | 76-T-MACH-106428 | Vehicle Systems for Urban Mobility | Cichon |
| ST 2024 | 76-T-MACH-106428 | Vehicle Systems for Urban Mobility | Cichon, Berthold |

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral examination

Duration: approx. 20 minutes

No tools or reference material may be used during the exam.
11.225 Course: Vibration Theory [T-MACH-105290]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering (5 CP)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Vibration Theory</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Römer</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Übungen zu Technische Schwingungslehre</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Römer, Keller</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Vibration Theory</td>
<td></td>
<td>Fidlin, Römer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Vibration Theory</td>
<td></td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 180 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Vibration Theory

2161212, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

Concept of vibration, superposition of vibration with equal and with different frequencies, complex frequency response.

Vibration of systems with one dof: Free undamped and damped vibration, forced vibration for harmonic, periodic and arbitrary excitation. Excitation of undamped vibration in resonance.

Vibration of systems with distributed parameters: Partial differential equations as equations of motion, wave propagation, d'Alembert's solution, Ansatz for separation of time and space, eigenvalue problem, infinite number of eigenvalues and eigenfunctions.

Introduction to rotor dynamics: Laval rotor in rigid and elastic bearings, inner damping, Laval rotor in anisotropic bearings, synchronous and asynchronous whirl, rotors with asymmetric shaft.

Literature

Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Übungen zu Technische Schwingungslehre

2161213, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

Exercises related to the lecture
Course: Virtual Engineering (Specific Topics) [T-MACH-105381]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering (4 CP)

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

| ST 2024 | 3122031 | Virtual Engineering (Specific Topics) | 2 SWS | Lecture / 🗣 | Ovtcharova, Maier |

Exams

| WT 23/24 | 76-T-MACH-105381 | Virtual Engineering (Specific Topics) | Ovtcharova |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, × Cancelled

Competence Certificate
oral exam, approx. 20 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Virtual Engineering (Specific Topics)
3122031, SS 2024, 2 SWS, Language: English, Open in study portal

Lecture (V)
On-Site

Content

Students can

- explain the basics of virtual engineering and name exemplary modeling tools and assign them to the corresponding methods and processes
- formulate validation questions in the product development process and name obvious solution methods
- explain the basics of systems engineering and establish the connection to the product development process
- explain individual methods of the digital factory and present the functions of the digital factory in the context of the product creation process
- explain the theoretical and technical basics of Virtual Reality technology and show the connection to Virtual Engineering

Organizational issues

Zeit und Ort der Lehrveranstaltung siehe ILIAS / Time and place of the course see ILIAS.

Literature

Lecture slides / Vorlesungsfolien
Course: Virtual Engineering I [T-MACH-102123]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-105293 - Virtual Engineering 1

Course Details

Type: Written examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 3

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2121352</td>
<td>2</td>
<td>Virtual Engineering I</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
<tr>
<td>WT 23/24 2121353</td>
<td>2</td>
<td>Exercises Virtual Engineering I</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 76-T-MACH-102123</td>
<td></td>
<td>Virtual Engineering I</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 76-T-MACH-102123-mdl</td>
<td></td>
<td>Virtual Engineering I</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 76-T-MACH-102123</td>
<td></td>
<td>Virtual Engineering I</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination 90 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

Virtual Engineering I
2121352, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)
Lecture (V)
On-Site

Content

The course includes:

- Conception of the product (system approaches, requirements, definitions, structure)
- Generation of domain-specific product data (CAD, ECAD, software, …) and AI methods
- Validation of product properties and production processes through simulation
- Digital twin for optimization of products and processes using AI methods

After successful attendance of the course, students can:

- Conceptualize complex systems with the methods of virtual engineering and continue the product development in different domains
- Model the digital product with regard to planning, design, manufacturing, assembly and maintenance.
- Use validation systems to validate product and production in an exemplary manner.
- Describe AI methods along the product creation process.

Literature
Vorlesungsfolien / Lecture slides

Exercises Virtual Engineering I
2121353, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)
Practice (Ü)
On-Site

Content

The theoretical Konzepts and contents of the lecture will be trained within practical relevance by basic functionalities of VE System solutions.
Organizational issues
Practice dates will probably be offered on different afternoons (14:00 - 17:15) in two-week intervals at IMI / Übungstermine werden voraussichtlich an unterschiedlichen Nachmittagen (14:00 - 17:15) in zweiwöchigem Rhythmus am IMI angeboten.

Literature
Exercise script / Übungsskript
Course: Wearable Robotic Technologies [T-INFO-106557]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: M-INFO-103294 - Wearable Robotic Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Type</th>
<th>Credits</th>
<th>Lecture</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2400062</td>
<td>Wearable Robotic Technologies</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Asfour, Beigl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Type</th>
<th>Credits</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500073</td>
<td>Wearable Robotic Technologies</td>
<td>Asfour</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7500219</td>
<td>Wearable Robotic Technologies</td>
<td>Asfour</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites

Attending the lecture Mechano-Informatics and Robotics is recommended.

Recommendation

Attending the lecture Mechano-Informatics and Robotics is recommended.

Below you will find excerpts from events related to this course:

Wearable Robotic Technologies

2400062, SS 2024, 2 SWS, Language: German/English, [Open in study portal](http://www.humanoids.kit.edu)

Content

The lecture starts with an overview of wearable robot technologies (exoskeletons, prostheses and orthoses) and its potentials, followed by the basics of wearable robotics. In addition to different approaches to the design of wearable robots and their related actuator and sensor technology, the lecture focuses on modeling the neuromusculoskeletal system of the human body and the physical and cognitive human-robot interaction for tightly coupled hybrid human-robot systems. Examples of current research and various applications of lower, upper and full body exoskeletons as well as prostheses are presented.

Learning Objectives:

The students have received fundamental knowledge about wearable robotic technologies and understand the requirements for the design, the interface to the human body and the control of wearable robots. They are able to describe methods for modelling the human neuromusculoskeletal system, the mechatronic design, fabrication and composition of interfaces to the human body. The students understand the symbiotic human–machine interaction as a core topic of Anthropomatics and has knowledge of state-of-the-art examples of exoskeletons, orthoses and prostheses.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik, Sportwissenschaften

Empfehlungen: Der Besuch der Vorlesung *Mechano-Informatik in der Robotik* wird empfohlen.

Arbeitsaufwand: 120h

Literature

11.229 Course: Wildcard Additional Examinations 1 [T-MACH-106638]

Organisation: University
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
11.230 Course: Wildcard Additional Examinations 10 [T-MACH-106650]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>Organisation:</td>
<td>University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part of:</td>
<td>M-MACH-104332 - Further Examinations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
11.232 Course: Wildcard Additional Examinations 2 [T-MACH-106639]

Organisation: University
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
11.233 Course: Wildcard Additional Examinations 3 [T-MACH-106640]

Organisation: University
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
11.234 Course: Wildcard Additional Examinations 4 [T-MACH-106641]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
11.235 Course: Wildcard Additional Examinations 5 [T-MACH-106643]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
11.236 Course: Wildcard Additional Examinations 6 [T-MACH-106646]

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
11.237 Course: Wildcard Additional Examinations 7 [T-MACH-106647]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
11.238 Course: Wildcard Additional Examinations 8 [T-MACH-106648]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>Type</td>
<td>Credits</td>
<td>Grading scale</td>
<td>Recurrence</td>
<td>Version</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104332 - Further Examinations
11.240 Course: Workshop Mechatronical Systems and Products [T-MACH-108680]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102749 - Mechatronical Systems and Products

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SW SWS</td>
<td>Practical course<alt>
 / On-Site</td>
<td>Each winter term</td>
<td>Teltschik, Matthiesen, Hohmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SW SWS</td>
<td>Practical course<alt>
 / On-Site</td>
<td>Each winter term</td>
<td>Hohmann, Matthiesen</td>
</tr>
</tbody>
</table>

Competition Certificate

Alongside the workshop, deliverables will be requested at defined milestones. In these, the application of the knowledge that has been developed within the framework of the module will be examined. These deliverables consist of CAD designs, control software and reflection reports, for example, are defined in a workshop assignment at the beginning of the semester. The milestones are announced in a calendar at the beginning of the semester and are available to students through ILIAS. The demanded deliveries are uploaded to ILIAS.

Prerequisites

none

Annotation

All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey "Anmeldung und Gruppeneinteilung" in ILIAS before the start of the semester.