Modulhandbuch
Bachelorstudiengang Maschinenbau 2023 (B.Sc.)
SPO 2023
Wintersemester 2023/24
Stand 16.08.2023
Inhaltsverzeichnis

1. Über das Modulhandbuch ... 5
 1.1. Wichtige Regeln ... 5
 1.1.1. Beginn und Abschluss eines Moduls 5
 1.1.2. Modul- und Teilleistungsversionen 5
 1.1.3. Gesamt- oder Teilprüfungen 5
 1.1.4. Arten von Prüfungen .. 5
 1.1.5. Wiederholung von Prüfungen 5
 1.1.6. Zusatzleistungen .. 6
 1.1.7. Alles ganz genau .. 6

2. Qualifikationsziele des Studiengangs .. 7

3. Studien- und Prüfungsordnung (SPO) .. 8

4. Studienplan .. 25

5. Aufbau des Studiengangs .. 31
 5.1. Orientierungsprüfung .. 31
 5.2. Bachelorarbeit .. 31
 5.3. Berufspraktikum ... 31
 5.4. Ingenieurwissenschaftliche Grundlagen 31
 5.5. Vertiefung im Maschinenbau 32
 5.6. Überfachliche Qualifikationen 32
 5.7. Zusatzleistungen ... 32

6. Module ... 33
 6.1. Angewandte Materialien - M-MACH-106386 33
 6.2. Bachelorarbeit - M-MACH-106422 34
 6.3. Begleitstudium - Angewandte Kulturwissenschaft - M-ZAK-106235 36
 6.4. Begleitstudium - Nachhaltige Entwicklung - M-ZAK-106099 39
 6.5. Computational Engineering - M-MACH-106383 42
 6.6. Elektrotechnik und Mechatronik - M-MACH-106380 44
 6.7. Fertigungstechnik und Werkstoffkunde - M-MACH-106376 45
 6.8. Höhere Mathematik - M-MATH-102859 47
 6.9. Industriepraktikum - M-MACH-106390 49
 6.10. Intelligente Systeme - M-MACH-106384 50
 6.11. IT und Data Science - M-MACH-106388 52
 6.13. Maschinenkonstruktionslehre - M-MACH-106375 54
 6.15. Mess- und Regelungstechnik [BSc-Modul 11, MRT] - M-MACH-102564 57
 6.16. Mobilitätsysteme - M-MACH-106382 59
 6.17. Nachhaltige Energietechnik - M-MACH-106385 61
 6.19. Orientierungsprüfung - M-MACH-106403 63
 6.20. Projekt - M-MACH-106381 .. 64
 6.21. Schlüsselqualifikationen - M-MACH-106389 66
 6.22. Strömungslehre - M-MACH-106378 67
 6.23. Technische Mechanik - M-MACH-106374 68
 6.24. Technische Thermodynamik - M-MACH-106377 70

7. Teilleistungen .. 72
 7.1. Additive Fertigung: Entwicklung und Herstellung metallischer Bauteile - T-MACH-112974 72
 7.2. Antriebssystemtechnik A: Fahrzeugantriebstechnik - T-MACH-105233 73
 7.3. Arbeitswissenschaft I: Ergonomie - T-MACH-105518 74
 7.4. Auslegung additiv gefertigter Polymerstrukturen an einem Beispiel der Medizintechnik - T-MACH-112717 76
 7.5. Automatisierung und Autonomie in der Logistik - T-MACH-113010 78
 7.6. Bachelorarbeit - T-MACH-113045 79
 7.7. Besser frei reden. Überzeugen durch Persönlichkeit - T-ZAK-113104 80
 7.8. Dynamik des Kfz-Antriebsstrangs - T-MACH-105226 81
 7.9. Einführung in die Energietechnik - T-MACH-112959 82
 7.10. Einführung in die Finite-Elemente-Methode - T-MACH-105320 83
 7.11. Einführung in die Mechanik der Faserverbundwerkstoffe - T-MACH-112976 85
 7.12. Einführung in die Numerische Strömungsmechanik - T-MACH-110362 86
 7.13. Experimentelle Dynamik - T-MACH-105514 88
7.14. Fahrzeuge in Mobilitätsystemen - T-MACH-112992 ... 89
7.15. Fahrzeugergonomie - T-MACH-108374 .. 90
7.16. Funktionsmaterialien - T-MACH-113011 .. 91
7.17. Grundlagen der Elektrotechnik - T-ETIT-112934 .. 92
7.18. Grundlagen der Fertigungstechnik - T-MACH-112928 .. 93
7.19. Grundlagen der Mechatronik - T-MACH-112937 .. 95
7.20. Grundlagen der Mess- und Regelungstechnik - T-MACH-104745 .. 96
7.21. Grundlagen der Produktionsautomatisierung - T-MACH-112971 ... 99
7.22. Grundlagen der rechnergestützten Dynamik - T-MACH-113006 ... 100
7.23. Grundlagen der Technischen Logistik - T-MACH-113013 ... 101
7.24. Grundlehrenmodul - Selbstverbuchung BAK - T-ZAK-112653 ... 102
7.25. Grundlehrenmodul - Selbstverbuchung BeNe - T-ZAK-112345 ... 103
7.27. Höhere Mathematik II - T-MATH-100276 .. 105
7.28. Höhere Mathematik III - T-MATH-100277 ... 106
7.29. Hybride und elektrische Fahrzeuge - T-ETIT-100784 ... 107
7.30. Industriepraktikum - T-MACH-112941 .. 108
7.31. IT und Data Science - T-MACH-112925 .. 109
7.32. Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110377 110
7.33. Künstliche Intelligenz in der Produktion - T-MACH-112970 ... 111
7.34. Maschinen und Prozesse der Energiewandlung - T-MACH-112939 112
7.35. Maschinen und Prozesse der Energiewandlung, Praktikum - T-MACH-112938 113
7.36. Maschinenkonstruktionslehre A - T-MACH-112984 .. 114
7.37. Maschinenkonstruktionslehre B und C - T-MACH-112985 ... 115
7.38. Materialfluss in Produktion und Logistik - T-MACH-112968 ... 116
7.40. Messtechnik II - T-MACH-105335 ... 118
7.41. Messtechnik, Messdatenübertragung und -analyse in der Energieotechnik - T-MACH-112961 120
7.42. Mikrostruktursimulation - T-MACH-105303 .. 121
7.43. Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft - T-ZAK-112659 123
7.44. Mündliche Prüfung - Begleitstudium Nachhaltige Entwicklung - T-ZAK-112351 124
7.45. Nachhaltige Fahrzeugantriebe - T-MACH-111578 .. 125
7.46. Nachhaltige Produktionswirtschaft - T-MACH-111859 .. 126
7.47. Oberflächentechnik - T-MACH-112979 .. 127
7.48. Physikalische Grundlagen moderner Messverfahren - T-MACH-112980 128
7.49. Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik - T-MACH-105341 129
7.50. Präsentation - T-MACH-113044 ... 131
7.51. Praxismodul - T-ZAK-112680 .. 132
7.52. Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung - T-MACH-102155 133
7.53. Produktionskette für die Elektromobilität - T-MACH-110379 .. 134
7.54. Produktions-technisches Labor - T-MACH-112995 .. 135
7.55. Projekt - T-MACH-112940 ... 136
7.56. Rechnergestützte Dynamik - T-MACH-105349 ... 137
7.57. Rechnergestützte Fahrzeugdynamik - T-MACH-105350 .. 138
7.58. Rechnergestützte Kontinuumsmechanik - T-MACH-112987 .. 139
7.59. Selbstverbuchung-BSc-HOC-SPZ-benotet - T-MACH-112931 ... 140
7.60. Selbstverbuchung-BSc-HOC-SPZ-unbenotet - T-MACH-112936 ... 141
7.61. Smart Factory - T-MACH-112972 ... 142
7.62. Spanende Fertigung: Entwicklung und Herstellung metallischer Bauteile - T-MACH-112973 143
7.63. Strömungslehre - T-MACH-112933 .. 144
7.64. Systematische Werkstoffauswahl - T-MACH-100531 ... 145
7.65. Teamwork - Zusammenarbeit in Teams erfolgreich gestalten! - T-ZAK-113076 146
7.66. Technische Grundlagen des Verbrennungsmotors - T-MACH-113005 147
7.67. Technische Mechanik I - T-MACH-112904 ... 148
7.68. Technische Mechanik II - T-MACH-112905 ... 149
7.69. Technische Mechanik III - T-MACH-112906 .. 150
7.70. Technische Schwingungslehre - T-MACH-105290 .. 151
7.71. Technische Thermodynamik und Wärmeübertragung I - T-MACH-112912 152
7.72. Technische Thermodynamik und Wärmeübertragung II - T-MACH-112913 153
7.73. Teilnahme an empirischer Forschung - T-MACH-112935 ... 154
7.74. Thermochemische Wandlung und Speicherung von Energie - T-MACH-112962 155
7.75. Übungen zu Einführung in die Finite-Elemente-Methode - T-MACH-110330 156

Bachelorstudiengang Maschinenbau 2023 (B.Sc.), Stand 16.08.2023
Modulhandbuch gültig ab Wintersemester 2023/24
7.76. Übungen zu Einführung in die Numerische Strömungsmechanik - T-MACH-111033 .. 159
7.77. Übungen zu Grundlagen der Mechatronik - T-MACH-113008 ... 160
7.78. Übungen zu Höhere Mathematik I - T-MATH-100525 .. 161
7.79. Übungen zu Höhere Mathematik II - T-MATH-100526 .. 162
7.80. Übungen zu Höhere Mathematik III - T-MATH-100527 .. 163
7.81. Übungen zu IT und Data Science - T-MACH-112924 ... 164
7.82. Übungen zu Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110333 ... 165
7.83. Übungen zu Rechnergestützte Kontinuumsmechanik - T-MACH-112996 .. 166
7.84. Übungen zu Technische Mechanik I - T-MACH-112907 .. 167
7.85. Übungen zu Technische Mechanik II - T-MACH-112908 .. 168
7.86. Übungen zu Technische Mechanik III - T-MACH-112909 .. 169
7.87. Übungen zu Technische Thermodynamik und Wärmeübertragung I - T-MACH-112910 ... 170
7.88. Übungen zu Technische Thermodynamik und Wärmeübertragung II - T-MACH-112911 .. 171
7.89. Verkehrswesen - T-BGU-113007 ... 172
7.90. Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK - T-ZAK-112655 ... 173
7.91. Vertiefungsmodul - Global Cultures - Selbstverbuchung - T-ZAK-112658 ... 174
7.92. Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK - T-ZAK-112657 ... 175
7.93. Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK - T-ZAK-112656 ... 176
7.94. Vertiefungsmodul - Selbstverbuchung BeNe - T-ZAK-112346 .. 177
7.95. Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK - T-ZAK-112654 ... 178
7.96. Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe - T-ZAK-112347 179
7.97. Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe - T-ZAK-112350 180
7.98. Wahlmodul - Nachhaltigkeitsbewertung von Technik - Selbstverbuchung BeNe - T-ZAK-112348 .. 181
7.99. Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe - T-ZAK-112349 182
7.100. Werkstoff- und Kontaktmechanik - T-MACH-112978 ... 183
7.101. Werkstoffeinsatz bei hohen Temperaturen - T-MACH-111258 .. 184
7.102. Werkstoffkunde I und II - T-MACH-112926 .. 186
7.103. Werkstoffkunde, Praktikum - T-MACH-112929 .. 190
7.104. Werkstoffprozesstechnik - T-MACH-112986 .. 192
7.105. Wissenschaftliches Arbeiten und empirische Forschungsmethoden - T-MACH-112930 .. 194
7.106. Workshop zu Maschinenkonstruktionslehre A - T-MACH-112981 .. 195
7.107. Workshop zu Maschinenkonstruktionslehre B - T-MACH-112982 .. 196
7.108. Workshop zu Maschinenkonstruktionslehre C - T-MACH-112983 .. 197
1 Über das Modulhandbuch

1.1 Wichtige Regeln

- die Zusammensetzung der Module,
- die Größe der Module (in LP),
- die Abhängigkeiten der Module untereinander,
- die Qualifikationsziele der Module,
- die Art der Erfolgskontrolle und
die Bildung der Note eines Moduls.

Das Modulhandbuch gibt somit die notwendige Orientierung im Studium und ist ein hilfreicher Begleiter. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis, das aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) informiert.

1.1.1 Beginn und Abschluss eines Moduls

1.1.2 Modul- und Teilleistungsversionen

1.1.3 Gesamt- oder Teilprüfungen

1.1.4 Arten von Prüfungen

1.1.5 Wiederholung von Prüfungen
1.1.6 Zusatzleistungen

1.1.7 Alles ganz genau ...

Qualifikationsziele
Maschinenbau (B. Sc.)

Im grundlagenorientierten Bereich des Studiums erwerben die Absolventinnen und Absolventen ingenieurwissenschaftliches Grundwissen. Mit diesen fundierten Kenntnissen der wissenschaftlichen Theorien, Prinzipien und Methoden können die Absolventinnen und Absolventen genau spezifizierte Probleme des Maschinenbaus mit eindeutigem Lösungsweg erfolgreich bearbeiten.

Absolventinnen und Absolventen des Bachelorstudiengangs Maschinenbau am KIT können in vertrauten Situationen grundlegende Methoden auswählen, um Modelle zu erstellen und zu vergleichen. Sie sind in der Lage, vorgegebene Probleme und die sich daraus ergebenden Aufgaben in arbeitsteilig organisierten Teams zu übernehmen, selbstständig zu bearbeiten, die Ergebnisse anderer zu integrieren und die eigenen Ergebnisse schriftlich darzulegen sowie zu interpretieren.

Sie können Systeme und Prozesse identifizieren, zergliedern, weiterentwickeln und vorgegebene Bewertungsmaßstäbe unter Berücksichtigung technischer, ökonomischer und gesellschaftlicher Randbedingungen anlegen.
<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau</td>
<td>203</td>
</tr>
</tbody>
</table>
Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT)
für den Bachelorstudiengang Maschinenbau

vom 27. April 2023

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KIT-Gesetz i.V.m. § 32 Absatz 3 Satz 1 Landeshochschulgesetz am 27. April 2023 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich
§ 2 Ziel des Studiums, akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
§ 6 Durchführung von Erfolgskontrollen
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
§ 6 b Online-Prüfungen
§ 7 Bewertung von Studien- und Prüfungsleistungen
§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
§ 10 Abmeldung; Versäumnis, Rücktritt
§ 11 Täuschung, Ordnungsverstoß
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 13 Studierende mit Behinderung oder chronischer Erkrankung
§ 14 Modul Bachelorarbeit
§ 14 a Berufspraktikum
§ 15 Zusatzleistungen
§ 15 a Mastervorzug
§ 16 Überfachliche Qualifikationen
§ 17 Prüfungsausschuss
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung
§ 20 a Leistungsnachweise für die Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich

Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Maschinenbau am KIT.

§ 2 Ziel des Studiums, akademischer Grad

1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. 2) Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.

2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Maschinenbau verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

2) Die Regelstudienzeit beträgt sechs Semester. 3) Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. 4) Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 2 Satz 3 bis 5. Eine qualifizierte Teilnahme liegt vor, wenn die/der Studierende Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtworkload 10 Semesterwochenstunden) belegt hat. 5) Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.

3) Das Lehrangebot des Studiengangs ist in Fächer, die Fächer sind in Module, die jeweiligen Module in Lehrveranstaltungen gegliedert. 4) Die Fächer und ihr Umfang werden in § 20 festgelegt. Näheres beschreibt das Modulhandbuch.

6) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutschsprachige Wahlmöglichkeiten gibt.
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

(2) Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.

(3) Prüfungsleistungen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Prüfungsleistungen anderer Art.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nummer 1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
 1. in den Bachelorstudiengang Maschinenbau am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen im Sinne des § 14 Absatz 7 Satz 1 der Zulassungs- und Immatrikulationsordnung des KIT beschränkt; und
 2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt, und
 3. nachweist, dass er in dem Bachelorstudiengang Maschinenbau den Prüfungsanspruch nicht verloren hat und
 4. die in § 20 a genannte Voraussetzung erfüllt.

(4) Nach Maßgabe von § 30 Absatz 5 Landeshochschulgesetz kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 4 Absatz 1 Satz 1 und 2 der Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.
§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Absatz 2 Nummer 1 bis 3, Absatz 3) wird von der/dem Prüflenden der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfender bzw. Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Absatz 5 zu berücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit in besonderen Lebenslagen gemäß § 4 Absatz 1 der Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung zu berücksichtigen. § 2 und § 4 Absatz 1 Satz 3 der Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Absatz 5) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Absatz 2 gilt entsprechend.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/r Prüfenden das Protokoll zeichnet.

Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbständig angefertigt, alle benutzten Quellen und Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.“ Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren

Für die Durchführung von Erfolgskontrollen im Antwort-Wahl-Verfahren findet die Satzung des Karlsruher Instituts für Technologie (KIT) zur Durchführung von Erfolgskontrollen im Antwort-Wahl-Verfahren in der jeweils gültigen Fassung Anwendung.

§ 6 b Online-Prüfungen

Für die Durchführung von Online-Prüfungen findet die Satzung zur Durchführung von Online-Prüfungen am Karlsruher Institut für Technologie (KIT) in der jeweils gültigen Fassung Anwendung.

§ 7 Bewertung von Studien- und Prüfungsleistungen

(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

- sehr gut (very good) : hervorragende Leistung,
- gut (good) : eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
- befriedigend (satisfactory) : eine Leistung, die durchschnittlichen Anforderungen entspricht,
- ausreichend (sufficient) : eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
- nicht ausreichend (failed) : eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

- 1,0; 1,3 : sehr gut
- 1,7; 2,0; 2,3 : gut
- 2,7; 3,0; 3,3 : befriedigend
- 3,7; 4,0 : ausreichend
- 5,0 : nicht ausreichend.

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.
Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

Die Modulprüfung ist bestanden, wenn alle erforderlichen Erfolgskontrollen bestanden sind.

Sofern das Modulhandbuch keine Regelung über die Bildung der Modulnote enthält, errechnet sich die Modulnote aus einem nach den Leistungspunkten der einzelnen Teilmodule gewichteten Notendurchschnitt.

Die differenzierten Noten (Absatz 2) sind bei der Berechnung der Modulnoten als Ausgangsdaten zu verwenden.

Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

- bis 1,5 = sehr gut
- von 1,6 bis 2,5 = gut
- von 2,6 bis 3,5 = befriedigend
- von 3,6 bis 4,0 = ausreichend.

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

Die Teilmodulprüfungen Höhere Mathematik I sowie Technische Mechanik I in den Modulen Höhere Mathematik und Technische Mechanik sind bis zum Ende des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Absatz 2 vorliegt. Ohne ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine Fristüberschreitung von

1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Absatz 2 im Umfang von einem Semester nachweist oder
2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Absatz 2 im Umfang von zwei Semestern nachweist.

Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Absatz 2 auszustellende Bescheinigung, die beim Studierendenservice des KIT einzureichen ist. Im Falle von Nummer 1 kann der Vorsitzende des Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Abliegen der Orientierungsprüfung erforderlich ist, insbesondere weil die Module, die Bestandteil der Orientierungsprüfung sind, nur einmal jährlich angeboten werden.
(3) 1Ist die Bachelorprüfung bis zum Ende des zehnten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Bachelorstudiengang Maschinenbau, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist. 2Die Entscheidung über eine Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss unter Beachtung der in § 32 Absatz 6 Landeshochschulgesetz genannten Tätigkeiten auf Antrag des/der Studierenden. 3Der Antrag ist schriftlich in der Regel bis sechs Wochen vor Ablauf der in Satz 1 genannten Studienhöchstdauer zu stellen. 4Absatz 2 Satz 3 bis 5 gelten entsprechend.

(4) 1Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) 1Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nummer 1) einmal wiederholen. 2Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so erfolgt in zeitlichem Zusammenhang eine mündliche Fortsetzung der Wiederholungsprüfung (mündliche Nachprüfung). 3Die Note der Wiederholungsprüfung, die in diesem Fall nur „ausreichend“ (4,0) oder „nicht ausreichend“ (5,0) lauten kann, wird von den Prüfenden bzw. der/dem Prüfenden unter angemessener Berücksichtigung der schriftlichen Leistung und des Ergebnisses der mündlichen Nachprüfung festgesetzt. 4Mündliche Nachprüfungen dauern in der Regel mindestens 15 Minuten und maximal 30 Minuten. § 6 Absatz 6 Satz 1 und 2 sowie Satz 4 und 5 gelten entsprechend. 5Sofern gemäß § 11 eine schriftliche Wiederholungsprüfung als mit „nicht ausreichend“ (5,0) bewertet gilt, ist eine mündliche Nachprüfung ausgeschlossen.

(2) 1Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nummer 2) einmal wiederholen.

(3) 1Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. 2Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) 1Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nummer 3) können einmal wiederholt werden.

(5) 1Studienleistungen können mehrfach wiederholt werden.

(6) 1Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. 2Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(7) 1Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(8) 1Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Absatz 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). 2Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

3Über den ersten Antrag eines/r Studierenden auf Zweitwiederholung entscheidet der Prüfungsausschuss, wenn er den Antrag genehmigt. 4Wenn der Prüfungsausschuss diesen Antrag ablehnt, entscheidet ein Mitglied des Präsidiums. 5Über weitere Anträge auf Zweitwiederholung entscheidet nach Stellungnahme des Prüfungsausschusses ein Mitglied des Präsidiums. 6Wird der Antrag genehmigt, hat die Zweitwiederholung spätestens zum übernächsten Prüfungstermin zu erfolgen. 7Absatz 1 Satz 2 und 3 gelten entsprechend.

(9) 1Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

(10) 1Die Bachelorarbeit kann bei einer Bewertung mit „nicht ausreichend“ (5,0) einmal wiederholt werden. 2Eine zweite Wiederholung der Bachelorarbeit ist ausgeschlossen. 3Die Präsentation nach § 14 Absatz 1 a ist eine Studienleistung und kann bei einer Bewertung mit „nicht bestanden (not passed)“ (im Gegensatz zu anderen Studienleistungen) nur einmal wiederholt wer-
§ 10 Abmeldung; Versäumnis, Rücktritt

(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Prüfungsausschuss erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

Für den Ausgleich von Nachteilen bei Studierenden in besonderen Lebenslagen findet die Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung Anwendung.
§ 13 Studierende mit Behinderung oder chronischer Erkrankung

Für den Ausgleich von Nachteilen bei Studierenden in besonderen Lebenslagen findet die Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung Anwendung.

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

(1 a) Dem Modul Bachelorarbeit sind 15 LP zugeordnet. Es besteht aus der Bachelorarbeit (mit 12 LP) und einer Präsentation (mit 3 LP). Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen.

(3) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

(5) Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung lautet wie folgt: Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Quellen und Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben. Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5,0) bewertet.

(6) Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Der Zeitpunkt der Abgabe der Bachelorarbeit ist durch den/die Prüfende/n beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Macht der oder die Studierende einen triftigen Grund geltend, kann der Prüfungsausschuss die in Absatz 4 festgelegte Bearbei-
tungszeit auf Antrag der oder des Studierenden um höchstens einen Monat verlängern.

Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

§ 14 a Berufspraktikum

§ 15 Zusatzleistungen

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 15 a Mastervorzug

§ 16 Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von 6 LP Bestandteil eines Bachelorstudiums. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.
§ 17 Prüfungsausschuss

(2) Die Vorsitzende, ihre Stellvertreter/in, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter/innen werden von dem KIT-Fakultätsrat bestellt, die akademischen Mitarbeiterinnen bzw. akademischen Mitarbeiter am KIT und die Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Die Vorsitzende und deren/dessen Stellvertreter/in müssen Hochschullehrerinnen oder Hochschullehrer am KIT sein. Die Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch das jeweilige Prüfungsssekretariat unterstützt.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsberechtigte Person hinzuzuziehen.

§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrerinnen bzw. Hochschullehrer am KIT, habilitierte Mitglieder und akademische Mitarbeiterinnen und Mitarbeiter am KIT, welche der KIT-Fakultät angehören und denen die Prüfungsbefugnis gemäß § 14 Absatz 2, § 14 b Absatz 1 Nummer 1 KITG i.V.m. § 52 Absatz 1 Satz 6 Halbsatz 2 Landeshochschulgesetz übertragen wurde. Bestellt werden darf nur,
wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) 1Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) 1Die Beisitzenden werden durch die Prüfenden benannt. 2Zu Beisitzenden darf nur benannt werden, wer eine dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) 1Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. 2Dabei ist kein schematischer Vergleich, sondern eine Gesamt betrachtung vorzunehmen. 3Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studien- und Prüfungsleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) 1Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. 2Studierende, die neu in den Studiengang Maschinenbau immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb des ersten Semesters nach Immatrikulation zu stellen. 3Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. 4Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) 1Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. 2Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. 3Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. 4Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) 1Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) 1Außerhalb des Hochschulsystems erworbbene Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. 2Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

(6) 1Zuständig für Anerkennung und Anrechnung ist der Prüfungsausschuss. 2Im Rahmen der Feststellung, ob ein wesentlicher Unterschied im Sinne des Absatz 1 vorliegt, sind die zuständigen Fachvertreter/innen zu hören. 3Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.
II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung
(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14) und dem Berufspraktikum (§ 14 a).

(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:
 1. Ingenieurwissenschaftliche Grundlagen: Modul(e) im Umfang von 137 LP,
 2. Vertiefung im Maschinenbau: Modul(e) im Umfang von 12 LP,
 3. Überfachliche Qualifikationen: Modul(e) im Umfang von 4 LP gemäß § 16.

Die Vermittlung weiterer überfachlicher Qualifikationen im Umfang von 2 LP gemäß § 16 findet im Rahmen fachwissenschaftlicher Module im Fach Ingenieurwissenschaftliche Grundlagen statt.

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.

§ 20 a Leistungsnachweise für die Bachelorprüfung
Voraussetzung für die Anmeldung zur letzten Modulprüfung der Bachelorprüfung ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 14 a. In Ausnahmefällen, die die Studierenden nicht zu vertreten haben, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.

§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen bestanden sind.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten in § 20 Absatz 2 Nummer 1 und 2 sowie des Moduls Bachelorarbeit.

Dabei werden die Noten des Moduls Bachelorarbeit jeweils mit dem doppelten Gewicht der Noten der übrigen Fächer berücksichtigt.

(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

(2) Das Zeugnis enthält die Fach- und Modulnoten sowie die den Modulen und Fächern zugeordneten Leistungspunkte und die Gesamtnote. Sofern gemäß § 7 Absatz 2 Satz 2 eine differenzierte Bewertung einzelner Prüfungsleistungen vorgenommen wurde, wird auf dem Zeugnis
auch die entsprechende Dezimalnote ausgewiesen; § 7 Absatz 4 bleibt unberührt. 3Das Zeugnis ist von der KIT-Dekanin/dem KIT-Dekan der KIT-Fakultät und von der/dem Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

(3) 1Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users' Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.

(4) 1Das Transcript of Records enthält in strukturierter Form alle erbrachten Studien- und Prüfungsleistungen. 2Dies beinhaltet alle Fächer und Fachnoten samt den zugeordneten Leistungspunkten, die dem jeweiligen Fach zugeordneten Module mit den Modulnoten und zugeordneten Leistungspunkten sowie die den Modulen zugeordneten Erfolgskontrollen samt Noten und zugeordneten Leistungspunkten. 3Absatz 2 Satz 2 gilt entsprechend. 4Aus dem Transcript of Records soll die Zugehörigkeit von Erfolgskontrollen zu den einzelnen Modulen deutlich erkennbar sein. 5Angerechnete Studien- und Prüfungsleistungen sind im Transcript of Records aufzunehmen. 6Alle Zusatzleistungen werden im Transcript of Records aufgeführt.

(5) 1Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studierendenservice des KIT ausgestellt.

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen
1Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. 2Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 24 Aberkennung des Bachelorgrades
(1) 1Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. 2Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) 1Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die/der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. 2Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) 1Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) 1Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. 2Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(5) 1Eine Entscheidung nach Absatz 1 und Absatz 2 Satz 2 ist nach einer Frist von fünf Jahren ab dem Datum des Zeugnisses ausgeschlossen.

(6) 1Die Aberkennung des akademischen Grades richtet sich nach § 36 Absatz 7 Landeshochschulgesetz.
§ 25 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften

(1) Diese Studien- und Prüfungsordnung tritt am 1. Oktober 2023 in Kraft und gilt für

1. Studierende, die ihr Studium im Bachelorstudiengang Maschinenbau am KIT im ersten Fachsemester aufnehmen, sowie für
2. Studierende, die ihr Studium im Bachelorstudiengang Maschinenbau am KIT in einem höheren Fachsemester aufnehmen, sofern dieses Fachsemester nicht über dem Fachsemester liegt, das der erste Jahrgang nach Ziffer 1 erreicht.

1. Studierende, die ihr Studium im Bachelorstudiengang Maschinenbau am KIT zuletzt im Sommersemester 2023 aufgenommen haben, sowie für
2. Studierende, die ihr Studium im Bachelorstudiengang Maschinenbau am KIT ab dem Wintersemester 2023/2024 in einem höheren Fachsemester aufnehmen, sofern das Fachsemester über dem liegt, das der erste Jahrgang nach Absatz 1 Ziffer 1 erreicht hat.

(3) Im Übrigen tritt sie außer Kraft.

Karlsruhe, den 27. April 2023

gez. Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Studienplan der KIT-Fakultät für Maschinenbau
für den Bachelorstudiengang Maschinenbau
gemäß SPO 2023

Gültig ab 01. Oktober 2023

Inhaltsverzeichnis

1 Allgemeine Informationen ...2
 1.1 Umfang des Bachelorstudiums, Leistungspunkte2
 1.2 Modularer Aufbau des Studiums, Erfolgskontrollen2
 1.3 Prüfungsmodalitäten ...2
 1.4 Orientierungsprüfungen ..2

2 Aufbau des Studiengangs ..2
 2.1 Übersicht über Fächer, Module und Teilleistungen2
 2.2 Exemplarischer Studienplan ...2

3 Erläuterungen zu Modulen mit individuellen Wahlmöglichkeiten6
 3.1 Schlüsselqualifikationen ..6
 3.2 Vertiefung im Maschinenbau ...6
 3.3 Projekt ..6
 3.4 Industriepraktikum ...6
 3.5 Bachelorarbeit ..6

Studienplan der KIT-Fakultät für Maschinenbau
für den Bachelorstudiengang Maschinenbau
gemäß SPO 2023

Gültig ab 01. Oktober 2023

Inhaltsverzeichnis

1 Allgemeine Informationen ...2
 1.1 Umfang des Bachelorstudiums, Leistungspunkte2
 1.2 Modularer Aufbau des Studiums, Erfolgskontrollen2
 1.3 Prüfungsmodalitäten ...2
 1.4 Orientierungsprüfungen ...2

2 Aufbau des Studiengangs ..2
 2.1 Übersicht über Fächer, Module und Teilleistungen2
 2.2 Exemplarischer Studienplan ..2

3 Erläuterungen zu Modulen mit individuellen Wahlmöglichkeiten6
 3.1 Schlüsselqualifikationen ...6
 3.2 Vertiefung im Maschinenbau ...6
 3.3 Projekt ..6
 3.4 Industriepraktikum ...6
 3.5 Bachelorarbeit ..6
1 Allgemeine Informationen

1.1 Umfang des Bachelorstudiengangs, Leistungspunkte

Der Bachelorstudiengang Maschinenbau am Karlsruher Institut für Technologie (KIT) umfasst 180 Leistungspunkte (LP), die gleichmäßig auf die Regelstudienzeit von sechs Semestern verteilt werden, so dass von den Studierenden durchschnittlich 30 LP (± 3 LP) pro Semester erworben werden.

1.2 Modularer Aufbau des Studiums, Erfolgskontrollen

In einigen Modulen sind einzelne TL miteinander verknüpft. So kann das Bestehen einer Studienleistung Voraussetzung zur Prüfungszulassung sein. Dies ist im Modulhandbuch beschrieben.

1.3 Prüfungsmodalitäten

In jedem Semester wird für Prüfungen mindestens ein Prüfungstermin angeboten. Anmelde- und Prüfungsstermine werden rechtzeitig bekanntgegeben, bei schriftlichen Prüfungen mindestens sechs Wochen vor der Prüfung.

Über Hilfsmittel, die bei einer Prüfung benutzt werden dürfen, entscheidet der/die Prüfende. Eine Liste der zugelassenen Hilfsmittel wird gleichzeitig mit der Ankündigung des Prüfungstermins bekanntgegeben.

Prüfungen können in der Regel einmal wiederholt werden. Studienleistungen können solange wiederholt werden, bis diese erfolgreich bestanden wurden.

Zur Berechnung der Modul- und Fachnoten wird auf § 7 in der Studien- und Prüfungsordnung (SPO) verwiesen. Ggf. sind zusätzliche Informationen zur Bildung der Modulnoten in den Modulbeschreibungen zu finden.

1.4 Orientierungsprüfungen

Die Teilmodulprüfungen Höhere Mathematik I und Technische Mechanik I sind Orientierungsprüfungen. Sie sind bis zum Ende des zweiten Fachsemesters abzulegen. Zu weiteren Regelungen wird auf § 8 der SPO verwiesen.

2 Aufbau des Studiengangs

2.1 Übersicht über Fächer, Module und Teilleistungen

2.2 Exemplarischer Studienplan

Der exemplarische Studienplan auf S. 5 zeigt, wie die Module und Teilleistungen des Studiengangs auf sechs Semester Regelstudienzeit verteilt werden können. In der Übersicht werden Pflichtmodule (blau) von Modulen unterscheiden, in denen die Studierenden eine individuelle Wahl treffen können (grün). Diese Module mit Wahlmöglichkeiten sind in Kapitel 3 näher erläutert.
<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul und dessen Verantwortliche(r)</th>
<th>LP</th>
<th>Teilleistung (TL)</th>
<th>LP</th>
<th>Gewichtung der TL innerhalb des Moduls</th>
<th>Art der Erfolgskontrolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>M-MATH-102859 Höhere Mathematik (HM)</td>
<td>21</td>
<td>T-MATH-100525 Übungen zu HM I</td>
<td>0</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Griesmaier</td>
<td></td>
<td>T-MATH-100275 Höhere Mathematik I</td>
<td>7</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100526 Übungen zu HM II</td>
<td>0</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100276 Höhere Mathematik II</td>
<td>7</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100527 Übungen zu HM III</td>
<td>0</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100277 Höhere Mathematik III</td>
<td>7</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Technische Mechanik (TM)</td>
<td>M-MACH-106374</td>
<td>21</td>
<td>T-MACH-112907 Übungen zu TM I</td>
<td>1</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Böhlike/ Proppe</td>
<td></td>
<td></td>
<td>T-MACH-112904 Technische Mechanik I</td>
<td>6</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112908 Übungen zu TM II</td>
<td>1</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112905 Technische Mechanik II</td>
<td>6</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112909 Übungen zu TM III</td>
<td>1</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112906 Technische Mechanik III</td>
<td>6</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre (MKL)</td>
<td>M-MACH-106375</td>
<td>20</td>
<td>T-MACH-112981 Workshop zu MKL A</td>
<td>2</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Matthiesen</td>
<td></td>
<td></td>
<td>T-MACH-112984 MKL A</td>
<td>6</td>
<td>8</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112982 Workshop zu MKL B</td>
<td>3</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112983 Workshop zu MKL C</td>
<td>3</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112985 MKL B und C</td>
<td>6</td>
<td>12</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Fertigungstechnik und Werkstoffkunde</td>
<td>M-MACH-106376</td>
<td>15</td>
<td>T-MACH-112928 Grundlagen der Fertigungstechnik</td>
<td>3</td>
<td>3</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Pundt</td>
<td></td>
<td></td>
<td>T-MACH-112929 Werkstoffkunde, Praktikum</td>
<td>2</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112926 Werkstoffkunde I und II</td>
<td>10</td>
<td>12</td>
<td>Mündl. Prüfung</td>
</tr>
<tr>
<td>IT und Data Science</td>
<td>M-MACH-106388</td>
<td>7</td>
<td>T-MACH-112924 Übungen zu IT und Data Science</td>
<td>1</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Meyer</td>
<td></td>
<td></td>
<td>T-MACH-112925 IT und Data Science</td>
<td>6</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Technische Thermodynamik (TT)</td>
<td>M-MACH-106377</td>
<td>14</td>
<td>T-MACH-112910 Übungen zu TT und Wärmeübertragung I</td>
<td>1</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Maas</td>
<td></td>
<td></td>
<td>T-MACH-112912 TT und Wärmeübertragung I</td>
<td>6</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112911 Übungen zu TT und Wärmeübertragung II</td>
<td>1</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112913 TT und Wärmeübertragung II</td>
<td>6</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Elektrotechnik und Mechatronik</td>
<td>M-MACH-106380</td>
<td>8</td>
<td>T-ETIT-112934 Grundlagen der Elektrotechnik</td>
<td>4</td>
<td>4</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Fidlin</td>
<td></td>
<td></td>
<td>T-MACH-113008 Übungen zu Grundlagen der Mechatronik</td>
<td>1</td>
<td>0</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112937 Grundlagen der Mechatronik</td>
<td>3</td>
<td>4</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Strömungslehre</td>
<td>M-MACH-106378</td>
<td>7</td>
<td>T-MACH-112933 Strömungslehre</td>
<td>7</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td>T-MACH-112936 Strömungslehre</td>
<td>7</td>
<td>7</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Nachhaltige Produktionswirtschaft</td>
<td>M-MACH-105902</td>
<td>5</td>
<td>T-MACH-111859 Nachhaltige Produktionswirtschaft</td>
<td>5</td>
<td>5</td>
<td>Schriftl. Prüfung</td>
</tr>
<tr>
<td>Fach</td>
<td>Modul und dessen Verantwortliche(r)</td>
<td>LP</td>
<td>Teileistung (TL)</td>
<td>Gewichtung der TL innerhalb des Moduls</td>
<td>Art der Erfolgskontrolle</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
<td>----</td>
<td>-----------------</td>
<td>--</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>Furmans/ Lanza</td>
<td>7</td>
<td>T-MACH-104745</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>Schriftl. Prüfung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106379</td>
<td>7</td>
<td>T-MACH-112938</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Maschinen und Prozesse der Energiewandlung, Koh/ Kubach</td>
<td></td>
<td></td>
<td>Maschinen und Prozesse der Energiewandlung, Praktikum</td>
<td>Studienleistung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-112939</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maschinen und Prozesse der Energiewandlung</td>
<td>Schriftl. Prüfung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106381</td>
<td>5</td>
<td>T-MACH-112940</td>
<td>5</td>
<td>0*</td>
<td></td>
</tr>
<tr>
<td>Projekt Heilmaier</td>
<td></td>
<td></td>
<td>Projekt</td>
<td>Studienleistung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahl eines Moduls aus dem Angebot von sechs Fachgebieten:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilitätssysteme Gauterin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Engineering Böhlke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106384</td>
<td>12</td>
<td></td>
<td></td>
<td>Jede der drei Prüfungen: 4</td>
<td></td>
</tr>
<tr>
<td>Intelligente Systeme Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Je nach Wahl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachhaltige Energie-technik Bauer/ Koch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angewandte Materialien Greiner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menschzentrierte Produktdenwicklung und Produktion Schulze/ Matthiesen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahl eines Moduls aus dem Angebot von sechs Fachgebieten:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlüsselqualifikationen Deml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106390</td>
<td>12</td>
<td></td>
<td></td>
<td>0*</td>
<td></td>
</tr>
<tr>
<td>Industriepraktikum Heilmaier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Studienleistung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-MACH-106422</td>
<td>15</td>
<td>T-MACH-113045</td>
<td>12</td>
<td>15**</td>
<td></td>
</tr>
<tr>
<td>Bachelorarbeit Heilmaier</td>
<td></td>
<td></td>
<td>Bachelorarbeit</td>
<td>Abchlussarbeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-113044</td>
<td>3</td>
<td>0**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Präsentation</td>
<td>Studienleistung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Das Modul ist unbenotet.
**Die Note des Moduls Bachelorarbeit wird mit dem doppelten Gewicht der Noten der übrigen Fächer berücksichtigt.
Exemplarischer Studienplan: Bachelorstudiengang Maschinenbau

Studienplan für den Bachelorstudiengang Maschinenbau gem. SPO 2023. Gültig ab 01.10.2023, auf Beschlussfassung des Fakultätsrats vom 28.06.2023

Seite 5 von 6
3 Erläuterungen zu Modulen mit individuellen Wahlmöglichkeiten

3.1 Schlüsselqualifikationen

3.2 Vertiefung im Maschinenbau

In der Vertiefung im Maschinenbau stehen sechs verschiedene Fachgebiete zur Auswahl, mit deren Wahl die Studierenden im Bachelorstudiengang einen individuellen Schwerpunkt setzen. Jedes Fachgebiet wird durch ein Modul im Umfang von 12 LP dargestellt.

<table>
<thead>
<tr>
<th>Fachgebiet</th>
<th>Fachgebietverantwortliche(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-106392 Mobilitätssysteme</td>
<td>Gauterin</td>
</tr>
<tr>
<td>M-MACH-106383 Computational Engineering</td>
<td>Böhlke</td>
</tr>
<tr>
<td>M-MACH-106384 Intelligente Systeme</td>
<td>Stiller</td>
</tr>
<tr>
<td>M-MACH-106385 Nachhaltige Energieotechnik</td>
<td>Bauer/ Koch</td>
</tr>
<tr>
<td>M-MACH-106386 Angewandte Materialien</td>
<td>Greiner</td>
</tr>
<tr>
<td>M-MACH-106387 Menschzentrierte Produktion</td>
<td>Schulze/Matthiesen</td>
</tr>
</tbody>
</table>

3.3 Projekt

3.4 Industriepraktikum

3.5 Bachelorarbeit

5 Aufbau des Studiengangs

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierungsprüfung</td>
<td>0 LP</td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>15 LP</td>
</tr>
<tr>
<td>Berufspraktikum</td>
<td>12 LP</td>
</tr>
<tr>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>137 LP</td>
</tr>
<tr>
<td>Vertiefung im Maschinenbau</td>
<td>12 LP</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

Freiwillige Bestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zusatzleistungen</td>
<td></td>
</tr>
</tbody>
</table>

5.1 Orientierungsprüfung

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-106403</td>
<td>0 LP</td>
</tr>
</tbody>
</table>

5.2 Bachelorarbeit

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-106422</td>
<td>15 LP</td>
</tr>
</tbody>
</table>

5.3 Berufspraktikum

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-106390</td>
<td>12 LP</td>
</tr>
</tbody>
</table>

5.4 Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-106380</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-106376</td>
<td>15 LP</td>
</tr>
<tr>
<td>M-MATH-102859</td>
<td>21 LP</td>
</tr>
<tr>
<td>M-MACH-106388</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-106375</td>
<td>20 LP</td>
</tr>
<tr>
<td>M-MACH-106379</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-102564</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-105902</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-MACH-106381</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-MACH-106378</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-106374</td>
<td>21 LP</td>
</tr>
<tr>
<td>M-MACH-106377</td>
<td>14 LP</td>
</tr>
</tbody>
</table>
5.5 Vertiefung im Maschinenbau

Leistungspunkte 12

<table>
<thead>
<tr>
<th>Fachgebiet (Wahl: 1 Bestandteil)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-106386 Angewandte Materialien</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-MACH-106383 Computational Engineering</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-MACH-106384 Intelligente Systeme</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-MACH-106387 Menschzentrierte Produktentwicklung und Produktion</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-MACH-106382 Mobilitätssysteme</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-MACH-106385 Nachhaltige Energietechnik</td>
<td>12 LP</td>
</tr>
</tbody>
</table>

5.6 Überfachliche Qualifikationen

Leistungspunkte 4

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-106389 Schlüsselqualifikationen</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

5.7 Zusatzleistungen

Zusatzleistungen (Wahl: max. 30 LP)

<table>
<thead>
<tr>
<th>Zusatzleistungen</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ZAK-106099 Begleitstudium - Nachhaltige Entwicklung</td>
<td>19 LP</td>
</tr>
<tr>
<td>M-ZAK-106235 Begleitstudium - Angewandte Kulturwissenschaft</td>
<td>22 LP</td>
</tr>
</tbody>
</table>
6 Module

6.1 Modul: Angewandte Materialien [M-MACH-106386]

Verantwortung: Prof. Dr. Christian Greiner
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Vertiefung im Maschinenbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Angewandte Materialien (Wahl: 12 LP)

<table>
<thead>
<tr>
<th>Leistungseinheit</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112974</td>
<td>Additive Fertigung: Entwicklung und Herstellung metallischer Bauteile</td>
<td>4 LP Schulze, Zanger</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-112976</td>
<td>Einführung in die Mechanik der Faserverbundwerkstoffe</td>
<td>4 LP Kärger, Wittemann</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-113011</td>
<td>Funktionsmaterialien</td>
<td>4 LP Gruber</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-110377</td>
<td>Kontinuumsmechanik der Festkörper und Fluide</td>
<td>3 LP Böhike, Frohnapfel</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-110333</td>
<td>Übungen zu Kontinuumsmechanik der Festkörper und Fluide</td>
<td>1 LP Böhike, Frohnapfel</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>4 LP August, Nestler</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-112979</td>
<td>Oberflächentechnik</td>
<td>4 LP Schneider</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-112980</td>
<td>Physikalische Grundlagen moderner Messverfahren</td>
<td>4 LP Dienwiebel, Weygand</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>4 LP Dietrich, Schulze</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-112978</td>
<td>Werkstoff- und Kontaktmechanik</td>
<td>4 LP Greiner</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-111258</td>
<td>Werkstoffeinsatz bei hohen Temperaturen</td>
<td>4 LP Gorr</td>
<td>Vorlesungen/Übungen</td>
</tr>
<tr>
<td>T-MACH-112986</td>
<td>Werkstoffprozesstechnik</td>
<td>4 LP Binder, Liebig</td>
<td>Vorlesungen/Übungen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
siehe einzelne Teilleistungen

Voraussetzungen
keine

Qualifikationsziele
Mit der Wahl dieses Schwerpunktes erhalten Studierende grundlegende Kompetenzen in allen ingenieurwissenschaftlich relevanten Materialklassen sowie der Werkstoffmechanik.

Solche Kompetenzen sind unerlässlich um mittels maschinenbaulicher Ansätze gesamtgesellschaftliche Fragen - Klimawandel, circular economy, Ressourceneffizienz - mittels passender, moderner Werkstoffe zu adressieren.

Inhalt

Zusammensetzung der Modulnote
Durchschnitt der benoteten Prüfungen (mit gleichem Gewicht).

Arbeitsaufwand
360 Zeitstunden, davon je nach Wahl der Teilleistungen 135 - 180 Stunden Präsenzzeit

Lehr- und Lernformen
Vorlesungen/Übungen, je nach Wahl der Teilleistung

Literatur
siehe einzelne Teilleistungen
6.2 Modul: Bachelorarbeit [M-MACH-106422]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Bachelorarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Kursbeschreibung</th>
<th>LP</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-113045</td>
<td>Bachelorarbeit</td>
<td>12</td>
<td>Heilmaier</td>
</tr>
<tr>
<td>T-MACH-113044</td>
<td>Präsentation</td>
<td>3</td>
<td>Heilmaier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Auf begründeten Antrag des Studenten kann der Prüfungsausschuss die Bearbeitungszeit um maximal einen Monat verlängern. Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

Die Bachelorarbeit wird von mindestens einem/einer Hochschullehrer/in oder einem/einer leitenden Wissenschaftler/in gemäß § 14 abs. 3 Ziff. 1 KITG oder habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau und einem/einer weiteren Prüfenden bewertet. In der Regel ist eine/r der Prüfenden die Person, die die Arbeit vergeben hat.

Bei nicht übereinstimmender Beurteilung dieser beiden Personen setzt der Prüfungsausschuss im Rahmen der Bewertung dieser beiden Personen die Note der Bachelorarbeit fest; er kann auch einen weiteren Gutachter bestellen. Die Bewertung hat innerhalb von sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen. Die Präsentation soll ca. 20 Minuten dauern, entspricht im Umfang 3 LP und wird anschließend mit dem anwesenden Fachpublikum diskutiert.

Voraussetzungen

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (vgl. §14 (1) der SPO).

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein:
 - Berufspraktikum
 - Ingenieurwissenschaftliche Grundlagen
 - Überfachliche Qualifikationen
 - Vertiefung im Maschinenbau

Qualifikationsziele

Die gewonnenen Ergebnisse kann er/sie interpretieren, evaluieren und bei Bedarf grafisch darstellen. Er/sie ist in der Lage, eine wissenschaftliche Arbeit klar zu strukturieren und sie (a) in schriftlicher Form unter Verwendung der Fachterminologie zu kommunizieren, sowie (b) in mündlicher Form zu präsentieren und mit Fachleuten zu diskutieren.

Inhalt

Das Thema der Bachelorarbeit kann vom Studierenden selbst vorgeschlagen werden. Es wird vom Betreuer der Bachelorarbeit unter Beachtung von § 14 (3) der SPO festgelegt.
Arbeitsaufwand
Für die Ausarbeitung und Präsentation der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 450 Stunden gerechnet.
Verantwortung: Dr. Christine Mielke
Christine Myglas
Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: Zusatzleistungen

Wahlinformationen

Sofern Sie Leistungen des ZAK für die Überfachlichen Qualifikationen und das Begleitstudium nutzen wollen, ordnen Sie diese unbedingt zuerst den Überfachlichen Qualifikationen zu und wenden sich für eine Verbuchung im Begleitstudium an das Sekretariat Lehre des ZAK (stg@zak.kit.edu).

Im Vertiefungsmodul müssen drei Leistungen in drei unterschiedlichen Bausteinen erbracht werden. Zur Wahl stehen die folgenden Bausteine:

- Technik & Verantwortung
- Doing Culture
- Medien & Ästhetik
- Lebenswelten
- Global Cultures

Erbracht werden müssen zwei Leistungen mit je 3 LP und eine Leistung mit 5 LP. Für die Selbstverbuchung im Vertiefungsmodul ist zunächst die passende Teilarbeit auszuwählen.

Hinweis: Sofern Sie sich vor dem 01.04.2023 beim ZAK für das Begleitstudium Angewandte Kulturwissenschaft angemeldet haben, gilt die Selbstverbuchung einer Leistung in diesem Modul als Antrag im Sinne von §20 Absatz 2 der Satzung für das Begleitstudium Angewandte Kulturwissenschaft. Dies bedeutet, dass sich Ihre Gesamtnote im Begleitstudium als Durchschnitt der Noten der Prüfungsleistungen (und nicht als Durchschnitt der Modularnoten) berechnet.

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112653</td>
<td>Grundlagenmodul - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

Vertiefungsmodul (Wahl: 3 Bestandteile)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112654</td>
<td>Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112655</td>
<td>Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112656</td>
<td>Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112657</td>
<td>Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112658</td>
<td>Vertiefungsmodul - Global Cultures - Selbstverbuchung</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112660</td>
<td>Praxismodul</td>
<td>4 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112659</td>
<td>Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft</td>
<td>4 LP</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)

Die Erfolgskontrollen sind in der jeweiligen Teilleistung erläutert.

Sie setzen sich zusammen aus:

- Protokollen
- Referaten
- einer Seminararbeit
- einem Praktikumsbericht
- einer mündlichen Prüfung

Nach erfolgreichem Abschluss des Begleitstudiums erhalten die Absolvierenden ein benotetes Zeugnis und ein Zertifikat des KIT.

Voraussetzungen

Das Angebot ist studienbegleitend und muss nicht innerhalb eines definierten Zeitraums abgeschlossen werden. Bei der Anmeldung zur Abschlussprüfung muss eine Immatrikulation oder Annahme zur Promotion vorliegen.

Vorlesungsverzeichnis, Satzung (Studienordnung), Anmeldeformular zur mündlichen Abschlussprüfung und Leitfäden zum Erstellen der verschiedenen schriftlichen Leistungsanforderungen sind als Download auf der Homepage des ZAK unter www.zak.kit.edu/begleitstudium-bak zu finden.

Qualifikationsziele

Sie können die aus dem Vertiefungsmodul gewählten Inhalte in den Grundlagenkontext einordnen sowie die Inhalte der gewählten Lehrveranstaltungen selbständig und exemplarisch analysieren, bewerten und darüber in schriftlicher und mündlicher Form wissenschaftlich kommunizieren. Absolventinnen und Absolventen können gesellschaftliche Themen- und Problembereiche analysieren und in einer gesellschaftlich verantwortungsvollen und nachhaltigen Perspektive kritisch reflektieren.

Inhalt

Die thematischen Wahlbereiche des Begleitstudiums gliedern sich in folgende 5 Bausteine und deren Unthemen:

Baustein 1 Technik & Verantwortung

Wertewandel / Verantwortungsethik, Technikentwicklung / Technikgeschichte, Allge meine Ökologie, Nachhaltigkeit

Baustein 2 Doing Culture

Kulturwissenschaft, Kulturmanagement, Kreativwirtschaft, Kulturinstitutionen, Kulturpolitik

Baustein 3 Medien & Ästhetik

Medienkommunikation, Kulturästhetik

Baustein 4 Lebenswelten

Kulturoziologie, Kulturere, Architektur und Stadtplanung, Arbeitswissenschaft

Baustein 5 Global Cultures

Multikulturalität / Interkulturalität / Transkulturalität, Wissenschaft und Kultur

Zusammensetzung der Modulnote

Die Gesamtnote des Begleitstudiums errechnet sich als ein mit Leistungspunkten gewichteter Durchschnitt der Noten der Prüfungsleistungen.

Vertiefungsmodul

- Referat 1 (3 LP)
- Referat 2 (3 LP)
- Seminararbeit inkl. Referat (5 LP)
- mündliche Prüfung (4 LP)
Anmerkungen
Mit dem Begleitstudium Angewandte Kulturwissenschaft stellt das KIT ein überfachliches Studienangebot als Zusatzqualifikation zur Verfügung, mit dem das jeweilige Fachstudium um interdisziplinäres Grundlagenwissen und fachübergreifendes Orientierungswissen im kulturwissenschaftlichen Bereich ergänzt wird, welches für sämtliche Berufe zunehmend an Bedeutung gewinnt.

Arbeitsaufwand
Der Arbeitsaufwand setzt sich aus der empfohlenen Stundenanzahl der einzelnen Module zusammen:

- Grundlagenmodul ca. 90 h
- Vertiefungsmodul ca. 340 h
- Praxismodul ca. 120 h

Summe: ca. 550 h

Lehr- und Lernformen

- Vorlesungen
- Seminare
- Workshops
- Praktikum

Literatur
Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell festgelegt.
6.4 Modul: Begleitstudium - Nachhaltige Entwicklung [M-ZAK-106099]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: Zusatzleistungen

Wahlinformationen

Sofern Sie Leistungen des ZAK für die Überfachlichen Qualifikationen und das Begleitstudium nutzen wollen, ordnen Sie diese unbedingt zuerst den Überfachlichen Qualifikationen zu und wenden sich für eine Verbuchung im Begleitstudium an das Sekretariat Lehre des ZAK (stg@zak.kit.edu).

Im Wahlmodul müssen Leistungen im Umfang von 6 LP in zwei der vier Bausteine erbracht werden:

- Nachhaltige Stadt- und Quartiersentwicklung
- Nachhaltigkeitsbewertung von Technik
- Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit
- Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft

In der Regel sind zwei Leistungen mit je 3 LP zu erbringen. Für die Selbstverbuchung im Wahlmodul ist zunächst die passende Teilleistung auszuwählen.

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112345</td>
<td>Grundlagenmodul - Selbstverbuchung BeNe</td>
<td>3</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlmodul (Wahl: mind. 6 LP)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112347</td>
<td>Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe</td>
<td>3</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-ZAK-112348</td>
<td>Wahlmodul - Nachhaltigkeitsbewertung von Technik - Selbstverbuchung BeNe</td>
<td>3</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-ZAK-112349</td>
<td>Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe</td>
<td>3</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-ZAK-112350</td>
<td>Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe</td>
<td>3</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112346</td>
<td>Vertiefungsmodul - Selbstverbuchung BeNe</td>
<td>6</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-ZAK-112351</td>
<td>Mündliche Prüfung - Begleitstudium Nachhaltige Entwicklung</td>
<td>4</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
Die Erfolgskontrollen sind im Rahmen der jeweiligen Teilleistung erläutert.
Sie setzen sich zusammen aus:

- Protokollen
- einem Reflexionsbericht
- Referaten
- Präsentationen
- die Ausarbeitung einer Projektarbeit
- einer individuellen Hausarbeit

Nach erfolgreichem Abschluss des Begleitstudiums erhalten die Absolvierenden ein benotetes Zeugnis und ein Zertifikat, die vom ZAK ausgestellt werden.

Voraussetzungen
Das Angebot ist studienbegleitend und muss nicht innerhalb eines definierten Zeitraums abgeschlossen werden. Für all Erfolgskontrollen der Module des Begleitstudiums ist eine Immatrikulation erforderlich. Die Teilnahme am Begleitstudium wird durch § 3 der Satzung geregelt.

Vorlesungsverzeichnis, Satzung (Studienordnung), Anmeldeformular zur mündlichen Abschlussprüfung und Leitfäden zum Erstellen der verschiedenen schriftlichen Leistungsanforderungen sind als Download auf der Homepage des ZAK unter http://www.zak.kit.edu/begleitstudium-bene zu finden.

Qualifikationsziele

Inhalt

Die thematischen Wahlbereiche des Begleitstudiums gliedern sich in Modul 2 Wahlbereich in folgende 4 Bausteine und deren Untertemen:

Baustein 1 Nachhaltige Stadt- & Quartiersentwicklung
Die Lehrveranstaltungen bieten einen Überblick über das Ineinandergreifen von sozialen, ökologischen und ökonomischen Dynamiken im Mikrokosmos Stadt.

Baustein 2 Nachhaltigkeitsbewertung von Technik
Meist anhand laufender Forschungsaktivitäten werden Methoden und Zugänge der Technikfolgenabschätzung erarbeitet.

Baustein 3 Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit
Unterschiedliche Zugänge zum individuellen Wahrnehmen, Erleben, Gestalten und Verantworten von Beziehungen zur Mit- und Umwelt und zu sich selbst werden exemplarisch vorgestellt.

Baustein 4 Nachhaltigkeit in Kultur, Wirtschaft & Gesellschaft
Die Lehrveranstaltungen haben i.d.R. einen interdisziplinären Ansatz, können aber auch einen der Bereiche Kultur, Wirtschaft oder Gesellschaft sowohl anwendungsbezogen als auch theoretisch fokussieren.

Zusammensetzung der Modulnote
Die Gesamtnote des Begleitstudiums errechnet sich als ein mit Leistungspunkten gewichteter Durchschnitt der Noten der Prüfungsleistungen.

Wahlmodul
- Referat 1 (3 LP)
- Referat 2 (3 LP)
- mündliche Prüfung (4 LP)

Vertiefungsmodul
- individuelle Hausarbeit (6 LP)
- mündliche Prüfung (4 LP)

Anmerkungen
Das Begleitstudium Nachhaltige Entwicklung am KIT basiert auf der Überzeugung, dass ein langfristig soziales und ökologisch verträgliches Zusammenleben in der globalen Welt nur möglich ist, wenn Wissen über notwendige Veränderungen in Wissenschaft, Wirtschaft und Gesellschaft erworben und angewandt wird.

Im Vordergrund stehen erfahrungs- und anwendungsorientiertes Wissen und Kompetenzen, aber auch Theorien und Methoden werden erlernt. Ziel ist es, das eigene Handeln als Studierende, Forschende und spätere Entscheidungstragende ebenso wie als Individuum und Teil der Gesellschaft unter dem Aspekt der Nachhaltigkeit vertreten zu können.

Das Begleitstudium vermittelt Grundlagen des Projektmanagements, schult Teamfähigkeit, Präsentationskompetenzen sowie Selbstreflexion. Es schafft komplementär zum Fachstudium am KIT ein grundlegendes Verständnis von Nachhaltigkeit, das für alle Berufsfelder von Bedeutung ist. Integrative Konzepte und Methoden sind dabei essenziell: Um natürliche Ressourcen langfristig zu nutzen und die globale Zukunft sozial gerecht zu gestalten, müssen nicht nur verschiedene Disziplinen, sondern auch Bürgerinnen und Bürger, Praktiker und Institutionen zusammenarbeiten.

Arbeitsaufwand
Der Arbeitsaufwand setzt sich aus der Stundenanzahl der einzelnen Module zusammen:
- Grundlagenmodul ca. 180 h
- Wahlmodul ca. 150 h
- Vertiefungsmodul ca. 180 h

Summe: ca. 510 h

Lehr- und Lernformen
- Vorlesungen
- Seminare
- Workshops

Literatur
Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell festgelegt.
Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Vertiefung im Maschinenbau

Leistungspunkte: 12
Notenskala: Zehntelnoten
Turnus: Jedes Sommersemester
Dauer: 2 Semester
Sprache: Deutsch
Level: 2
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112987</td>
<td>Rechnergestützte Kontinuumsmechanik</td>
<td>3 LP</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-112996</td>
<td>Übungen zu Rechnergestützte Kontinuumsmechanik</td>
<td>1 LP</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Computational Engineering (Wahl: 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112717</td>
<td>Auslegung additiv gefertigter Polymerstrukturen an einem Beispiel der Medizintechnik</td>
<td>4 LP</td>
<td>Kärger</td>
</tr>
<tr>
<td>T-MACH-105320</td>
<td>Einführung in die Finite-Elemente-Methode</td>
<td>3 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-110330</td>
<td>Übungen zu Einführung in die Finite-Elemente-Methode</td>
<td>1 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-112976</td>
<td>Einführung in die Mechanik der Faserverbundwerkstoffe</td>
<td>4 LP</td>
<td>Kärger, Wittemann</td>
</tr>
<tr>
<td>T-MACH-110362</td>
<td>Einführung in die Numerische Strömungsmechanik</td>
<td>3 LP</td>
<td>Frohnapfel, Stroh</td>
</tr>
<tr>
<td>T-MACH-111033</td>
<td>Übungen zu Einführung in die Numerische Strömungsmechanik</td>
<td>1 LP</td>
<td>Frohnapfel, Stroh</td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimentelle Dynamik</td>
<td>4 LP</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-113006</td>
<td>Grundlagen der rechnergestützten Dynamik</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-110377</td>
<td>Kontinuumsmechanik der Festkörper und Fluide</td>
<td>3 LP</td>
<td>Böhlke, Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-110333</td>
<td>Übungen zu Kontinuumsmechanik der Festkörper und Fluide</td>
<td>1 LP</td>
<td>Böhlke, Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-105349</td>
<td>Rechnergestützte Dynamik</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Technische Schwingungslehre</td>
<td>4 LP</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe einzelne Teil leistungen

Voraussetzungen
keine

Qualifikationsziele
Nach Abschluss dieses Fachgebiets können die Studierenden

- wesentliche Konzepte und Modelle der Kontinuums(thermo)mechanik im Rahmen gegebener Problemstellungen angeben,
- die Grundgleichungen der gegebenen Problemstellung in einen Algorithmus für eine rechnergestützte Lösung transferieren, um danach simulationsbasiert Ergebnisse zu generieren,
- in Abhängigkeit der konkreten Problemklassen die grundlegenden, rechnergestützten Werkzeuge einordnen und für konkrete Aufgabenstellungen anwenden,
- die erzielte Lösung einer gegebenen Problemstellung auswerten, visualisieren, kritisch diskutieren und hinterfragen, sowie bei Bedarf experimentell validieren,
- die grundlegenden Prinzipien für ein nachhaltiges Forschungsdatenmanagement angeben.

Inhalt
Das übergreifende Thema des Fachgebiets ist die Kenntnis der Grundlagen rechnergestützter Methoden im Ingenieurbereich des Maschinenbaus. Im Pflichtbereich werden die Grundlagen der rechnergestützten Kontinuumsmechanik gelegt. Im Ergänzungsbereich können die Studierenden dann Methoden aus unterschiedlichen Disziplinen ihren Interessen entsprechend individuell vertiefen.

Zusammensetzung der Modulnote
Durchschnitt der benoteten Prüfungen (mit gleichem Gewicht).
Arbeitsaufwand
360 Zeitstunden, davon je nach Wahl der Teilleistungen 135 - 180 Stunden Präsenzzeit

Lehr- und Lernformen
Vorlesungen/ Übungen, je nach Wahl der Teilleistung

Literatur
siehe einzelne Teilleistungen
6.6 Modul: Elektrotechnik und Mechatronik [M-MACH-106380]

Verantwortung:
Prof. Dr.-Ing. Alexander Fidlin

Einrichtung:
KIT-Fakultät für Maschinenbau

Bestandteil von:
Ingenieurwissenschaftliche Grundlagen

### Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8 | Zehntelnoten | Jedes Sommersemester | 1 Semester | Deutsch | 2 | 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Teilleistung</th>
<th>Lerninhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-112934</td>
<td>Grundlagen der Elektrotechnik</td>
<td>4 LP Brodatzki, Doppelbauer</td>
</tr>
<tr>
<td>T-MACH-113008</td>
<td>Übungen zu Grundlagen der Mechatronik</td>
<td>1 LP Fidlin</td>
</tr>
<tr>
<td>T-MACH-112937</td>
<td>Grundlagen der Mechatronik</td>
<td>3 LP Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

siehe einzelne Teilleistungen

Voraussetzungen

keine

Qualifikationsziele

Inhalt

- Variationsprinzipien und allgemeine Formulierung physikalischer Gesetze
- Elektro-mechanische Wandler und die Gleichungen von Lagrange-Maxwell
- Kapazitive Wandler, induktive Wandler, piezo-elektrische Wandler
- Elementare Methoden dynamischer Analyse: Ruhelagen, Stabilität, singuläre gestörte Systeme
- Dynamik gekoppelter elektro-mechanischer Systeme
- Kapazitive und induktive Sensoren, magnetische Aufhängung, Schwingunserreger, Piezo-Sensoren und -Aktoren
- Grundbegriffe, Elektrisches Feld, Magnetisches Feld, magnetische Materialien, Übergang zu konzentrierten Parametern
- Grundelemente: Ohmscher Widerstand, Kondensator, Spule, Lineare Netzwerke
- Komplexe Wechselstromrechnung, Leistungsgriffe, Drehstrom
- Transformator, Synchronmaschine, Asynchronmaschine
- Halbleiterbauelemente, Dioden, Transistoren, MOSFET und IGBT, Leistungselektronik, Modulation

Zusammensetzung der Modulnote

Die Modulnote setzt sich zu je 50% aus den Noten der beiden Klausuren zusammen.

Arbeitsaufwand

240 Zeitstunden, davon 90 Stunden Präsenzzeit und 150 Stunden Selbststudium

Lehr- und Lernformen

Vorlesung, Übung
6.7 Modul: Fertigungstechnik und Werkstoffkunde [M-MACH-106376]

Verantwortung: Prof. Dr. Astrid Pundt

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte: 15

Notenskala: Zehntelnoten

Turnus: Jedes Wintersemester

Dauer: 2 Semester

Sprache: Deutsch

Level: 1

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte (LP)</th>
<th>Verantwortlich</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112928</td>
<td>Grundlagen der Fertigungstechnik</td>
<td>3</td>
<td>Schulze</td>
<td></td>
</tr>
<tr>
<td>T-MACH-112926</td>
<td>Werkstoffkunde I und II</td>
<td>10</td>
<td>Heilmair, Pundt</td>
<td></td>
</tr>
<tr>
<td>T-MACH-112929</td>
<td>Werkstoffkunde, Praktikum</td>
<td>2</td>
<td>Pundt, Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe Teilleistungen

Voraussetzungen

none

Qualifikationsziele

Die Studierenden sollen in diesem Modul die folgenden Fähigkeiten erreichen:

WK I/II

- Vertiefte Kenntnisse über Konstruktionswerkstoffe (auch als Struktur- oder Ingenieurswerkstoffe bezeichnet) und weniger ausführlich Funktionswerkstoffe
- Erkennen der Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten
- Kennenlernen sowie sicheres Anwenden der geeigneten Methoden zur Ermittlung von Kennwerten sowie zur Charakterisierung der Mikrostruktur von Werkstoffen
- Beurteilung von Werkstoffeigenschaften und den daraus resultierenden Verwendungsmöglichkeiten

Grundlagen der Fertigungstechnik

Die Studierenden ...

- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der sechs Hauptgruppen (DIN 8580) klassifizieren.
- sind fähig, die wesentlichen Fertigungsverfahren der sechs Hauptgruppen (DIN 8580) anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, die charakteristischen Verfahrensmerkmale (Geometrie, Werkstoffe, Genauigkeit, Werkzeuge, Maschinen) der wesentlichen Fertigungsverfahren der sechs Hauptgruppen nach DIN 8580 zu beschreiben.
- sind fähig, aus den charakteristischen Verfahrensmerkmalen die relevanten prozessspezifischen technischen Vor- und Nachteile abzuleiten.
- sind in der Lage, für vorgegebene Bauteil eine Auswahl geeigneter Fertigungsprozesse durchzuführen.
- sind in der Lage, die für die Herstellung vorgegebener Beispielprodukte erforderlichen Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen.
Inhalt

WK I

• Atomaufbau und atomare Bindungen
• Kristalline Festkörperstrukturen
• Störungen in kristallinen Festkörperstrukturen
• Amorphe und teilkristalline Festkörperstrukturen
• Legierungslehre
• Materietransport und Umwandlung im festen Zustand
• Mikroskopische Methoden
• Untersuchung mit Röntgen- und Teilchenstrahlen
• Zerstörungsfreie Werkstoffprüfung
• Mechanische Werkstoffprüfung

WK II

• Eisenbasiswerkstoffe
• Nichteisenmetalle
• Keramische Werkstoffe
• Glaswerkstoffe
• Polymere Werkstoffe
• Verbundwerkstoffe

Grundlagen der Fertigungstechnik

Die Themen im Einzelnen sind:

• Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
• Umformen (Blech-, Massivumformung)
• Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
• Fügen
• Beschichten
• Wärme- und Oberflächenbehandlung

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus den beiden benoteten Teilleistungen zusammen und wird nach deren Leistungspunkten inkl. entsprechender Vorleistung gewichtet.

Die Note, die in der Teilleistung T-MACH-112928 erworben wird, wird also mit dem Faktor 3 gewichtet, während die Note der Teilleistung T-MACH-112926 eine Gewichtung mit dem Faktor 12 erfährt.

Arbeitsaufwand

T-MACH-112926: Präsenzzeit 90 Stunden; Selbststudium 210 Stunden
T-MACH-112928: Präsenzzeit 30 Stunden; Selbststudium 60 Stunden
T-MACH-112929: Präsenzzeit 25 Stunden; Selbststudium 35 Stunden

Lehr- und Lernformen

T-MACH-112926: Vorlesungen und Übungen
T-MACH-112928: Vorlesungen und Übungen
T-MACH-112929: Praktikum
6.8 Modul: Höhere Mathematik [M-MATH-102859]

Verantwortung: Prof. Dr. Roland Griesmaier
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Zehntelnoten</td>
<td>Jährlich</td>
<td>3 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Leistungspunkte</th>
<th>Lehrer/-innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100525</td>
<td>0 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100526</td>
<td>0 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100527</td>
<td>0 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100275</td>
<td>7 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100276</td>
<td>7 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100277</td>
<td>7 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von drei schriftlichen Teilprüfungen im Umfang von jeweils 120 Minuten und je drei Studienleistungen (Übungsscheine). Das Bestehen eines Übungsscheins in Höhere Mathematik I, II oder III ist jeweils Voraussetzung für die Teilnahme an der entsprechenden schriftlichen Prüfung.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden beherrschen die Differentialrechnung für vektorwertige Funktionen mehrerer Veränderlicher und Techniken der Vektoranalysis wie die Definition und Anwendung von Differentialoperatoren, die Berechnung von Gebiets-, Kurven- und Oberflächenintegralen sowie zentrale Integralsätze. Sie haben grundlegende Kenntnisse über partielle Differentialgleichungen und beherrschen Grundbegriffe der Stochastik.

Inhalt

Arbeitsaufwand

Präsenzzeit: 270 Stunden
- Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 360 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vorbereitung auf die studienbegleitenden Modulprüfungen
Lehr- und Lernformen
Vorlesungen, Übungen, Tutorien
6.9 Modul: Industriepraktikum [M-MACH-106390]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Berufspraktikum

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 | best./nicht best. | Jedes Semester | 1 Semester | Deutsch/Englisch | 3 | 1

Pflichtbestandteile

| T-MACH-112941 | Industriepraktikum | 12 LP | Heilmaier |

Erfolgskontrolle(n)

siehe Teilleistung

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können nach ihrem Berufspraktikum

- die Grundsätze der Aufbauorganisation (z.B. Organisationsstrukturen) und der Ablauforganisation (z.B. Arbeitsplanung und Arbeitssteuerung) in einem Industriebetrieb beschreiben,
- unter realistischen Bedingungen komplexe technische Aufgaben erfüllen
- neben den fachpraktischen Erfahrungen und Fähigkeiten Schlüsselqualifikationen wie Eigeninitiative, Team- und Kommunikationsfähigkeit anwenden und
- die fachlichen und überfachlichen Anforderungen im individuell angestrebten späteren Tätigkeitsbereich beschreiben und können dies für die künftige Studienplanung berücksichtigen.

Inhalt

Um eine ausreichende Breite der berufspraktischen Ausbildung zu gewährleisten, sollen Tätigkeiten aus mindestens zwei verschiedenen Arbeitsgebieten nachgewiesen werden. Die Tätigkeiten im Berufspraktikum müssen inhaltlich dem Berufsbild des Ingenieurwesens entsprechen. Die Tätigkeiten können aus folgenden Gebieten gewählt werden:

- (Industrielle) Forschung und Entwicklung,
- Konstruktion und Arbeitsvorbereitung,
- Produktionsplanung und -steuerung,
- Logistik und Betriebsleitung,
- Modellbildung und Simulation,
- Versuchsplanung, -durchführung und -auswertung,
- Projekt- und Planungsaufgaben,
- Ingenieurdiensleistungen und,
- andere fachrichtungsbezogene komplexe Tätigkeiten (Projekte) entsprechend der gewählten Vertiefung.

Zusammensetzung der Modulnote

Das Modul ist unbenotet.

Anmerkungen

Im Rahmen des Bachelorstudiums ist ein Berufspraktikum gemäß SPO § 14a zu absolvieren. Die vorgeschriebene Mindestdauer beträgt 12 Wochen in Vollzeit. Ausgefallene Arbeitszeit muss in jedem Falle nachgeholt werden. Bei Ausfallzeiten die Praktikantin bzw. der Praktikant den Betrieb um eine Vertragsverlängerung ersuchen, um die berufspraktische Tätigkeit im erforderlichen Umfang durchführen zu können.

Arbeitsaufwand

Präsenzzeit im Betrieb inkl. Vorbereitung des Praktikumsberichtes: 12 Wochen x 35 h/Woche = 420 h

Lehr- und Lernformen

Berufspraktikum
6.10 Modul: Intelligente Systeme [M-MACH-106384]

Verantwortung: Prof. Dr.-Ing. Anne Meyer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Vertiefung im Maschinenbau

Leistungspunkte 12
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 2 Semester
Sprache Deutsch
Level 2
Version 1

Intelligente Systeme (Wahl: zwischen 2 und 3 Bestandteilen sowie zwischen 8 und 12 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte (LP)</th>
<th>Anschließbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-113010</td>
<td>Automatisierung und Autonomie in der Logistik</td>
<td>4</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-112971</td>
<td>Grundlagen der Produktionsautomatisierung</td>
<td>4</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-112970</td>
<td>Künstliche Intelligenz in der Produktion</td>
<td>4</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-112988</td>
<td>Mechatronische Systeme und Produkte</td>
<td>4</td>
<td>Hohmann, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105335</td>
<td>Messtechnik II</td>
<td>4</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-112972</td>
<td>Smart Factory</td>
<td>4</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Intelligente Systeme - Praktika (Wahl: höchstens 1 Bestandteil sowie max. 4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte (LP)</th>
<th>Anschließbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105341</td>
<td>Praktikum Rechengerstützte Verfahren der Mess- und Regelungstechnik</td>
<td>4</td>
<td>Klemp, Stiller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe einzelne Teilleistungen

Voraussetzungen
keine

Qualifikationsziele

Inhalt

Zusammensetzung der Modulnote
Durchschnitt der benoteten Prüfungen (mit gleichem Gewicht).

Arbeitsaufwand
360 Zeitstunden, davon je nach Wahl der Teilleistungen 135 - 180 Stunden Präsenzzeit
Lehr- und Lernformen
Vorlesungen/ Übungen/ Praktika, je nach Wahl der Teilleistung

Literatur
siehe einzelne Teilleistungen
6.11 Modul: IT und Data Science [M-MACH-106388]

Verantwortung: Prof. Dr.-Ing. Anne Meyer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MACH-112924</th>
<th>Übungen zu IT und Data Science</th>
<th>1 LP</th>
<th>Meyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112925</td>
<td>IT und Data Science</td>
<td>6 LP</td>
<td>Meyer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
siehe einzelne Teilleistungen

Voraussetzungen
Vor Klausuranmeldung muss die Vorleistung bestanden sein.

Qualifikationsziele

Inhalt
Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.
Algorithmen: Eigenschaften von Algorithmen, Abschätzung der Komplexität, Entwurfsmethoden, wichtige Beispiele.
Datenverwaltungssysteme: Relationales Datenmodell, relationale Algebra, deklarative Sprache SQL. Grundlagen und Konzepte von JAVA. Einführung in das Programmieren mit JAVA.

Zusammensetzung der Modulnote
Note der schriftlichen Prüfung

Arbeitsaufwand
210 Stunden, davon
- Präsenzzeiten 90 Stunden
- Selbststudium 120 Stunden

Lehr- und Lernformen
Vorlesung und Rechnerpraktikum
6.12 Modul: Maschinen und Prozesse der Energiewandlung [M-MACH-106379]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte 7
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Prüfungstyp</th>
<th>Beteiligung</th>
<th>Leistungspunkte</th>
<th>Note</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112938</td>
<td>Maschinen und Prozesse der Energiewandlung, Praktikum</td>
<td>1 LP</td>
<td>Koch, Kubach</td>
<td></td>
</tr>
<tr>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112939</td>
<td>Maschinen und Prozesse der Energiewandlung</td>
<td>6 LP</td>
<td>Koch, Kubach</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
siehe einzelne Teilleistungen

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können Energiebilanzen für die verschiedenen Energiewandlungsprozesse aufstellen. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen.

Inhalt
- Einführung in die Energietechnik
- Radial- und Axialturbine
- Pumpen
- Verdichter
- Gebläse
- Windräder
- Brennstoffzellen
- Energiespeicher
- E-Motoren
- Wärmepumpen
- Kraft-Wärme-Kopplung
- Dieselmotoren
- Ottomotoren
- Wasserstoffmotoren

Zusammensetzung der Modulnote
Die Modulnote entspricht der Note der Klausur.

Arbeitsaufwand
210 h, davon 54 h in Präsenz

Lehr- und Lernformen
Vorlesung mit Übung und Laborpraktikum
6.13 Modul: Maschinenkonstruktionslehre [M-MACH-106375]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>3 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-MACH-112981 Workshop zu Maschinenkonstruktionslehre A 2 LP Matthiesen
T-MACH-112984 Maschinenkonstruktionslehre A 6 LP Matthiesen
T-MACH-112982 Workshop zu Maschinenkonstruktionslehre B 3 LP Matthiesen
T-MACH-112983 Workshop zu Maschinenkonstruktionslehre C 3 LP Matthiesen
T-MACH-112985 Maschinenkonstruktionslehre B und C 6 LP Matthiesen

Erfolgskontrolle(n)

siehe einzelne Teilleistung

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

MKL A
- Federn
- Technische Systeme
- Lager und Lagerungen
- Dichtungen
- Bauteilverbindung
- Getriebe

MKL B
- Gestaltung
- Toleranzen und Passungen
- Zahnradgetriebe
- Kupplungen

MKL C
- Schraubenverbindungen
- Dimensionierung
- E-Maschinen + Hydraulik

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus den beiden benoteten Teilleistungen zusammen und wird nach deren Leistungspunkten inkl. entsprechender Vorleistung(en) gewichtet.

Die Note, die in der Teilleistung T-MACH-112984 - MKL A erworben wird, wird also mit dem Faktor 8 gewichtet, während die Note der Teilleistung T-MACH-112985 - MKL B und C eine Gewichtung mit dem Faktor 12 erfährt.

Anmerkungen

Keine
Arbeitsaufwand
MKL A: Gesamter Arbeitsaufwand: 240 h, davon Anwesenheit 75 h, aufgeteilt in Vorlesung + Übung: 4 SWS -> 60 h sowie Workshop: 1 SWS -> 15; Selbststudium 165 h
MKL B: Gesamter Arbeitsaufwand: 180 h, davon Anwesenheit: 67,5 h, aufgeteilt in Vorlesung + Übung: 3 SWS -> 45 h sowie Workshop: 1,5 SWS -> 22,5; Selbststudium 112,5 h
MKL C: Gesamter Arbeitsaufwand: 180 h, davon Anwesenheit: 67,5 h, aufgeteilt in Vorlesung + Übung: 3 SWS -> 45 h sowie Workshop: 1,5 SWS -> 22,5; Selbststudium 112,5 h

Empfehlungen
Keine

Lehr- und Lernformen
Vorlesungen, Übungen und Semsterbegleitende Workshops sowie Projektarbeiten

Literatur
Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Grundlage für
Keine
6.14 Modul: Menschzentrierte Produktentwicklung und Produktion [M-MACH-106387]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Vertiefung im Maschinenbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Menschzentrierte Produktentwicklung und Produktion (Wahl: höchstens 3 Bestandteile sowie mind. 12 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112974</td>
<td>Additive Fertigung: Entwicklung und Herstellung metallischer Bauteile</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105233</td>
<td>Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112717</td>
<td>Auslegung additiv gefertigter Polymerstrukturen an einem Beispiel der Medizintechnik</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112971</td>
<td>Grundlagen der Produktionsautomatisierung</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112970</td>
<td>Künstliche Intelligenz in der Produktion</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112968</td>
<td>Materialfluss in Produktion und Logistik</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112988</td>
<td>Mechatronische Systeme und Produkte</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112969</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112995</td>
<td>Produktionstechnisches Labor</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112972</td>
<td>Smart Factory</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehr- und Lernformen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112973</td>
<td>Spanende Fertigung: Entwicklung und Herstellung metallischer Bauteile</td>
<td>4 LP</td>
<td>siehe einzelne Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe einzelne Teilleistungen

Voraussetzungen

keine

Zusammensetzung der Modulnote

Durchschnitt der benoteten Prüfungen (mit gleichem Gewicht).

Arbeitsaufwand

360 Zeitstunden, davon je nach Wahl der Teilleistungen 135 - 180 Stunden Präsenzzeit

Lehr- und Lernformen

Vorlesungen/ Übungen, je nach Wahl der Teilleistung

Literatur

siehe einzelne Teilleistungen
6.15 Modul: Mess- und Regelungstechnik (BSc-Modul 11, MRT) [M-MACH-102564]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte 7
Notenskala Jedes Wintersemester
Turnus 1 Semester
Dauer Deutsch/Englisch
Sprache Level 3
Version 2

Pflichtbestandteile
T-MACH-104745 Grundlagen der Mess- und Regelungstechnik 7 LP Stiller

Erfolgskontrolle(n)
Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 150 Minuten

Voraussetzungen
keine

Qualifikationsziele
• Die Studierenden können mess- und regelungstechnische Prinzipien für physikalische Größen benennen, beschreiben und an Beispielen erläutern.
• Sie können systemtheoretische Eigenschaften von dynamischen Systemen benennen, analysieren und bewerten.
• Sie können reale Systeme systemtheoretisch modellieren und die Eignung aufgestellter Modellen bewerten.
• Sie können Methoden zur Synthese von Reglern anwenden und so parametrierte Regler analysieren und bewerten.
• Sie können Messprinzipien auswählen und Messeinrichtungen zur Messung nicht-elektrischer Größen modellieren, analysieren und bewerten.
• Sie können die Messunsicherheiten von Messgrößen quantifizieren und beurteilen.

Inhalt
1. Dynamische Systeme
2. Eigenschaften wichtiger Systeme und Modellbildung
3. Übertragungsverhalten und Stabilität
4. Synthese von Reglern
5. Grundbegriffe der Messtechnik
6. Estimation
7. Messaufnehmer
8. Einführung in digitale Messverfahren

Zusammensetzung der Modulnote
Note der Prüfung

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
84 Stunden Präsenzzeit, 126 Stunden Selbststudium.

Empfehlungen
Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace Transformation

Lehr- und Lernformen
Vorlesung
Übungen
Literatur

Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005
- Measurement and Control Systems:
 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley
- Regelungstechnische Bücher:
 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag
- Messtechnische Bücher:
 E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Measurement and Control Systems
Modul: Mobilitätssysteme [M-MACH-106382]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Vertiefung im Maschinenbau

### Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 | Zehntelnoten | Jedes Sommersemester | 2 Semester | Deutsch | 2 | 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Thema</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112992</td>
<td>Fahrzeuge in Mobilitätssystemen</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Antriebsystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105320</td>
<td>Einführung in die Finite-Elemente-Methode</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-110330</td>
<td>Übungen zu Einführung in die Finite-Elemente-Methode</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-112976</td>
<td>Einführung in die Mechanik der Faserwerkstoffe</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-110362</td>
<td>Einführung in die Numerische Strömungsmechanik</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-111033</td>
<td>Übungen zu Einführung in die Numerische Strömungsmechanik</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-108374</td>
<td>Fahrzeugergonomie</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-112971</td>
<td>Grundlagen der Produktionsautomatisierung</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-113013</td>
<td>Grundlagen der Technischen Logistik</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-111578</td>
<td>Nachhaltige Fahrzeugantriebe</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-112979</td>
<td>Oberflächentechnik</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-112969</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105350</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-112972</td>
<td>Smart Factory</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-113005</td>
<td>Technische Grundlehren des Verbrennungsmotors</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Technische Schwingungslehre</td>
<td>4</td>
</tr>
<tr>
<td>T-BGU-113007</td>
<td>Verkehrswesen</td>
<td>4</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe einzelne Teilleistungen.

Voraussetzungen
Keine.

Qualifikationsziele

Inhalt
Im Fachgebiet Mobilitätssysteme werden die Grundlagen vermittelt, die für die Entwicklung, die Auslegung, die Produktion und den Betrieb von Fahrzeugsystemen bedeutend sind. Es werden die wesentlichen technischen Lösungen betrachtet, die den Betrieb sicher, komfortabel und nachhaltig machen. Im Fachgebiet Mobilitätssysteme liegt der Fokus, unter Berücksichtigung zukünftiger Mobilitätssysteme, auf Straßen- und Schienenfahrzeugen sowie mobilen Arbeitsmaschinen.

Weitere Informationen: Siehe Teilleistungen.
Zusammensetzung der Modulnote
Durchschnitt der benoteten Prüfungen (mit gleichem Gewicht).

Arbeitsaufwand
360 Zeitstunden, davon je nach Wahl der Teilleistungen 135 - 180 Stunden Präsenzzeit.

Lehr- und Lernformen
Die Lehr- und Lernform (Vorlesung, Übung) wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
6.17 Modul: Nachhaltige Energietechnik [M-MACH-106385]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Prof. Dr. Thomas Koch

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Vertiefung im Maschinenbau

Leistungspunkte 12
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 2 Semester
Sprache Deutsch
Level 2
Version 1

Nachhaltige Energietechnik (Wahl: höchstens 3 Bestandteile sowie mind. 12 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Kurzbeschreibung</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112959</td>
<td>Einführung in die Energietechnik</td>
<td>4</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-112961</td>
<td>Messtechnik, Messdatenübertragung und -analyse in der Energietechnik</td>
<td>4</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-112962</td>
<td>Thermochemische Wandlung und Speicherung von Energie</td>
<td>4</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe einzelne Teilleistungen.

Voraussetzungen
keine

Zusammensetzung der Modulnote
Durchschnitt der benoteten Prüfungen (mit gleichem Gewicht).

Arbeitsaufwand
360 Zeitstunden, davon je nach Wahl der Teilleistungen 135 - 180 Stunden Präsenzzeit

Lehr- und Lernformen
Vorlesungen/Übungen, je nach Wahl der Teilleistung

Literatur
siehe einzelne Teilleistungen
Modul: Nachhaltige Produktionswirtschaft (BSc-Modul 22 MWT) [M-MACH-105902]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Gisela Lanza

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte: 5

Notenskala: Zehntelnoten

Turnus: Jedes Wintersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 3

Version: 2

Pflichtbestandteile

| T-MACH-111859 | Nachhaltige Produktionswirtschaft | 5 LP | Furmans, Lanza |

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min)

Voraussetzungen

keine

Qualifikationsziele

Nach erfolgreichem Abschluss der Lehrveranstaltung sind die Studierenden in der Lage, alleine und im Team ...

- die Begriffe, Zusammenhänge und Modelle, durch welche produzierende Unternehmen beschrieben sind, zu erörtern.
- typische Problemstellungen produzierender Unternehmen, insbesondere vor dem Hintergrund gegenwärtiger und zukünftiger Herausforderungen der ökologischen, sozialen und ökonomischen Nachhaltigkeit, zu erörtern.
- die wichtigsten Methoden zum effizienten und nachhaltigen Wirtschaften in Industrieunternehmen, insbesondere im Sinne der Kreislaufwirtschaft, problembezogen anzuwenden.
- durch Anwendung der gelernten Methoden Entscheidungsalternativen auszuwählen und zu begründen.
- die gelernten Methoden kritisch zu hinterfragen und sich darüber hinausgehende Methoden selbstständig anzueignen.

Inhalt

Das Modul vermittelt ein Gesamtverständnis der betrieblichen Produktionswirtschaft unter besonderer Berücksichtigung von Aspekten der Nachhaltigkeit sowie ein anwendungsorientiertes Verständnis der grundlegenden Fragestellungen und Methoden in Industrieunternehmen. Durch Übungen sowie ein Planspiel synchron zur Vorlesung werden die vermittelten Inhalte durch Anwendung vertieft, so dass die Teilnehmer sie in ihrem späteren Berufsumfeld unmittelbar anwenden können.

Anmerkungen

Es handelt sich um ein gemeinsames Modul des Instituts für Fördertechnik und Logistiksysteme (IFL), und des Instituts für Produktionstechnik (WBK). Die Institute wechseln sich bei jedem Zyklus ab.

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird ein vergleichbares Modul mit vergleichbaren Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

Präsenzzzeit: 42 Stunden
Selbststudium: 108 Stunden

Lehr- und Lernformen

1. Vorlesungen (Pflicht)
2. Übungen (Pflicht)
6.19 Modul: Orientierungsprüfung [M-MACH-106403]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt

Bestandteil von: Orientierungsprüfung

Leistungspunkte

0

Notenskala

best./nicht best.

Turnus

Jedes Semester

Dauer

2 Semester

Sprache

Deutsch

Level

3

Version

1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrbuchverantwortlichkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100275</td>
<td>Höhere Mathematik I</td>
<td>7 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MACH-112904</td>
<td>Technische Mechanik I</td>
<td>6 LP</td>
<td>Böhke, Langhoff</td>
</tr>
</tbody>
</table>

Modellierte Fristen

Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen

keine

Anmerkungen

...
6.20 Modul: Projekt [M-MACH-106381]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112940</td>
<td>5 LP</td>
</tr>
<tr>
<td>Heilmaier</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
siehe Teilleistung

Voraussetzungen
keine, aber Empfehlungen beachten

Qualifikationsziele
Die Studierenden können im Team einfache ingenieurwissenschaftliche oder technische Fragestellungen aus dem Bereich des Maschinenbaus und angrenzender Fachgebiete analysieren. Sie sind in der Lage, für die Fragestellung einen oder mehrere Lösungswege zu finden, ggf. verschiedene Lösungswege zu vergleichen, zu diskutieren und zu beurteilen, und schließlich einen Lösungsweg zu verfolgen und zur Lösung auszuarbeiten. Dabei wenden sie im Studium erlernte ingenieurwissenschaftliche Methoden zur Problemlösung sowie Methoden für die Entwicklung technischer Lösungen an. Sie beziehen die vorher definierten Anforderungen und Entwicklungsziele ein und definieren Indikatoren zur Überprüfung der Erreichung der Ziele.

Die Studierenden sind in der Lage, eigenständig nach relevanter, aktueller Fachliteratur strukturiert zu recherchieren und diese in ihre Lösungswege mit einzubeziehen. Die Studierenden können ihre fachlichen Ergebnisse dokumentieren, wobei sie sich an der Satzung zur Sicherung guter wissenschaftlicher Praxis am KIT orientieren und insbesondere auf wissenschaftssprachlichen Ausdruck und Zitierregeln achten. Außerdem sind sie in der Lage, schriftlich über die Arbeit als Team zu reflektieren und ihre Erfahrungen dabei kritisch zu analysieren. Die Studierenden können ihre Projektergebnisse präsentieren und zur Diskussion stellen.

Inhalt
- Lösen einer einfachen ingenieurwissenschaftlichen oder technischen Fragestellung, die dem Bereich des Maschinenbaus und angrenzender Fachgebiete entspricht.
- Anwendung von Kenntnissen im Zeit- und Konfliktmanagement.
- Recherche nach Fachliteratur.
- Präsentation der Ergebnisse (als Gruppenleistung).
- Dokumentation der Ergebnisse (als Gruppenleistung).
- Erstellen einer schriftlichen Reflexion über die Arbeit als Team (als Einzelleistung).

Zusammensetzung der Modulnote
Das Modul ist unbenotet.

Arbeitsaufwand
150 Zeitstunden, davon mindestens drei Treffen mit Betreuer. Weitere Präsenzzeiten nach Bedarf und Einschätzung des Projektteams.

Empfehlungen
Erfolgreicher Abschluss der Teilleistung Wissenschaftliche Arbeiten und empirische Forschungsmethoden (Überfachliche Qualifikationen).

Lehr- und Lernformen
Projekarbeit im Team von 2-5 Studierenden, mindestens drei Treffen mit dem/r Betreuer/-in.
Grundlage für
In der Projektarbeit erworbene Kenntnisse (Literaturrecherche, Erstellen eines Projektberichts) werden in der Bachelorarbeit vorausgesetzt.
6.21 Modul: Schlüsselqualifikationen [M-MACH-106389]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte 4 Notenskala best./nicht best. Turnus Jedes Semester Dauer 1 Semester Sprache Deutsch/Englisch Level 2 Version 1

Wahlinformationen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.

Pflichtbestandteile
T-MACH-112930 Wissenschaftliches Arbeiten und empirische Forschungsmethoden 2 LP Deml

Schlüsselqualifikationen (Wahl: 2 LP)
T-ZAK-113104 Besser frei reden. Überzeugen durch Persönlichkeit 2 LP
T-ZAK-113076 Teamwork - Zusammenarbeit in Teams erfolgreich gestalten! 2 LP
T-MACH-112935 Teilnahme an empirischer Forschung 2 LP Deml
T-MACH-112931 Selbstverbuchung-BSc-HOC-SPZ-benotet 2 LP Deml
T-MACH-112936 Selbstverbuchung-BSc-HOC-SPZ-unbenotet 2 LP Deml

Erfolgskontrolle(n)
siehe einzelne Teilleistungen

Voraussetzungen
siehe einzelne Teilleistungen

Qualifikationsziele

Inhalt
Das Modul vermittelt relativ lang verwertbare Kenntnisse und Fähigkeiten, um berufliche Anforderungssituationen zu bewältigen. Es adressiert sowohl die Kompetenzfelder der Fachkompetenz (wissenschaftliches Arbeiten) und der Methodenkompetenz (empirische Forschungsmethoden), als auch der Sozial- und Individualkompetenz. Im letzten Bereich kann aus einem Fächerkatalog gewählt werden, sodass unter anderem gesellschaftlich-kulturelle oder kreativ-kommunikative Inhalte in das Studium integriert werden können.

Zusammensetzung der Modulnote
Das Modul ist unbenotet.

Arbeitsaufwand
Insgesamt 120 Zeitstunden.

Lehr- und Lernformen
Vorlesungen, Übungen, praktische Tätigkeiten, je nach Wahl

Literatur
Hängt von der Wahl der einzelnen Teilleistungen ab; wird ggf. in den gewählten Kursen bekanntgegeben.
Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 | Zehntelnoten | Jedes Sommersemester | 1 Semester | Deutsch | 2 | 1

Pflichtbestandteile
T-MACH-112933 Strömungslehre 7 LP Frohnapfel

Erfolgskontrolle(n)
Schriftliche Prüfung

Voraussetzungen
keine

Qualifikationsziele
Nach Abschluss dieses Moduls ist der/die Studierende in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, herzuleiten und auf Beispiele anzuwenden. Er/Sie kann die charakteristischen Eigenschaften von Fluiden benennen und Strömungszustände unterscheiden. Der/Die Studierende ist in der Lage, Strömungsgrößen für grundlegende Anwendungsfälle zu bestimmen. Dies beinhaltet die Berechnung von

- statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken
- zweidimensionalen viskosen Strömungen
- verlustfreien inkompressiblen und kompressiblen Strömungen (Stromfadentheorie)
- verlustbehalteten technischen Rohrströmungen

Inhalt
Eigenschaften von Fluiden, Oberflächenspannung, Hydro- und Aerostatik, Kinematik, Stromfadentheorie (kompressibel und inkompressibel), Verluste in Rohrströmungen, Dimensionsanalyse, dimensionslose Kennzahlen

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton’scher Fluid, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Zusammensetzung der Modulnote
Note der Prüfung

Arbeitsaufwand
Präsenzzzeit: 90 Stunden
Selbststudium: 120 Stunden

Empfehlungen
keine

Lehr- und Lernformen
Vorlesungen + Übungen

Literatur
Zierep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg
Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag
M 6.23 Modul: Technische Mechanik [M-MACH-106374]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte Notenskala Turnus Dauer Sprache Level Version
21 Zehntelnoten Jedes Wintersemester 3 Semester Deutsch 1 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112904</td>
<td>Technische Mechanik I</td>
<td>6 LP</td>
<td>Böhlke, Langhoff</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-112907</td>
<td>Übungen zu Technische Mechanik I (Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.)</td>
<td>1 LP</td>
<td>Böhlke, Langhoff</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-112905</td>
<td>Technische Mechanik II</td>
<td>6 LP</td>
<td>Böhlke, Langhoff</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-112908</td>
<td>Übungen zu Technische Mechanik II (Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.)</td>
<td>1 LP</td>
<td>Böhlke, Langhoff</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-112906</td>
<td>Technische Mechanik III</td>
<td>6 LP</td>
<td>Proppe</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-112909</td>
<td>Übungen zu Technische Mechanik III (Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.)</td>
<td>1 LP</td>
<td>Proppe</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Teilleistung Technische Mechanik I (T-MACH-112904), schriftliche Prüfung, 90 Minuten; benotet; Hilfsmittel gemäß Ankündigung
Teilleistung Technische Mechanik II (T-MACH-112905), schriftliche Prüfung, 90 Minuten; benotet; Hilfsmittel gemäß Ankündigung
Teilleistung Technische Mechanik III (T-MACH-112906), schriftliche Prüfung, 180 Minuten; benotet; Hilfsmittel gemäß Ankündigung

Für die Zulassung zu den einzelnen Klausuren sind separate Vorleistungen zu bestehen.

Prüfungsvorleistung in Technische Mechanik I: Studienleistung Übungen zu Technische Mechanik I (T-MACH-112907)
Prüfungsvorleistung in Technische Mechanik II: Studienleistung Übungen zu Technische Mechanik II (T-MACH-112908)
Prüfungsvorleistung in Technische Mechanik III: Studienleistung Übungen zu Technische Mechanik III (T-MACH-112909)

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Moduls können die Studierenden

- innere Schnittgrößen an Linientragwerken berechnen
- 3D-Spannungs- und Verzerrungszustände im Rahmen der linearen Elastizität und Thermoelastizität berechnen und bewerten
- das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- Energienmethoden und Näherungslösungen bewerten
- die Stabilität von Gleichgewichtslagen bewerten

Inhalt

Inhalte "Technische Mechanik I"
- Grundzüge der Vektorrechnung
- Kraftsysteme
- Statik starrer Körper
- Schnittgrößen in Stäben u. Balken
- Haftung und Gleitreibung
- Schwerpunkt u. Massenmittelpunkt
- Arbeit, Energie, Prinzip der virtuellen Verschiebungen
- Statik der undehnbaren Seile
- Elastostatik der Zug-Druck-Stäbe

Inhalte "Technische Mechanik II"
- Balkenbiegung
- Querkraftschub
- Torsionstheorie
- Spannungs- und Verzerrungszustand in 3D
- Hooke'sches Gesetz in 3D
- Elastizitätstheorie in 3D
- Energiemethoden der Elastostatik
- Näherungsverfahren
- Stabilität elastischer Stäbe

Inhalte "Technische Mechanik III"
- Massenpunktkinematik
- Kinematik der Kontinua
- Geführte Bewegungen
- Massenkinematische Größen
- Dynamische Größen
- Dynamische Axiome und Sätze
- Analytische Methoden
- Stoßvorgänge
- Schwingungen
- Kreiseltheorie

Zusammensetzung der Modulnote
Die Modulnote berechnet sich aus dem LP-gewichteten Mittel der enthaltenen benoteten Teilleistungen.

Arbeitsaufwand
155 Stunden Präsenzzeit, 475 Stunden Selbststudium

Lehr- und Lernformen
Vorlesungen, Saalübungen, Übungen in Kleingruppen, Bewertung bearbeiteter Übungsblätter, Sprechstunden
Modul: Technische Thermodynamik [M-MACH-106377]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte 14
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 2 Semester
Sprache Deutsch
Level 2
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Turnus</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112910</td>
<td>Übungen zu Technische Thermodynamik und Wärmeübertragung I</td>
<td>1 LP Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112912</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>6 LP Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112911</td>
<td>Übungen zu Technische Thermodynamik und Wärmeübertragung II</td>
<td>1 LP Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112913</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>6 LP Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe einzelne Teilleistungen

Voraussetzungen
Keine

Qualifikationsziele

Die Studierenden erwerben Fähigkeiten, die Grundlagen der Thermodynamik zu benennen und auf Problemstellungen in verschiedenen Bereichen des Maschinenbaus, insbesondere in der Energietechnik, anzuwenden.

Inhalt

Thermodynamik I:

- System, Zustandsgrößen
- Absolute Temperatur, Modellsysteme
- 1. Hauptsatz für ruhende und bewegte Systeme
- Entropie und 2. Hauptsatz
- Verhalten realer Stoffe beschrieben durch Tabellen, Diagramme und Zustandsgleichungen
- Maschinenprozesse
- Mischungen von idealen und realen Stoffen
- Verhalten von Mischungen
- Feuchte Luft

Thermodynamik II:

- Wiederholung des Stoffes von "Thermodynamik und Wärmeübertragung I"
- Aufbau der Materie, chemische Grundlagen
- Kinetische Gastheorie
- Verhalten realer Stoffe beschrieben durch Zustandsgleichungen
- Chemische Reaktionen und Anwendung der Hauptsätze auf chemische Reaktionen
- Reaktionskinetik
- Wärme- und Stoffübertragung

Zusammensetzung der Modulnote
Gewichtung nach Leistungspunkten.
Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Wird zum ersten Mal ab Wintersemester 2024/2025 angeboten.

Arbeitsaufwand
Präsenzzeit: 150h
Selbststudium: 270h

Lehr- und Lernformen
Vorlesungen
Übungen
Tutorien

Literatur
Skript
Weiterführende Literatur wird in der Vorlesung angegeben.
7 Teilleistungen

7.1 Teilleistung: Additive Fertigung: Entwicklung und Herstellung metallischer Bauteile [T-MACH-112974]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
 Prof. Dr.-Ing. Frederik Zanger

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-106386 - Angewandte Materialien
 M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4

Notenskala Drittelnoten

Turnus Jedes Sommersemester

Dauer 1 Sem.

Version 1

Erfolgskontrolle(n)
schriftliche Prüfung, Dauer 60 Minuten
7.2 Teilleistung: Antriebssystemtechnik A: Fahrzeugantriebstechnik [T-MACH-105233]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Sascha Ott

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106382 - Mobilitätssysteme
M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Teilleistungsart Prüfungsleistung schriftlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2146180</td>
<td>Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Notenskala</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-105233</td>
<td>Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>Drittelnoten</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105233</td>
<td>Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>Drittelnoten</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung: 60 min Prüfungsdauer

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Antriebssystemtechnik A: Fahrzeugantriebstechnik
2146180, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden erwerben die grundlegenden Kompetenzen, die benötigt werden, um zukünftige energieeffiziente und gleichzeitig komfortabel fahrbare Antriebstränge zu entwickeln. Hierbei werden ganzheitliche Entwicklungsmethoden und Bewertungen von Antriebsystemen betrachtet. Die Schwerpunkte lassen sich hierbei in folgende Kapitel gliedern:

- System Antriebsstrang
- System Fahrer
- System Umgebung
- Systemkomponenten
- Entwicklungsprozess

Empfehlungen für ergänzende Lehrveranstaltungen:

- Antriebssystemtechnik B: Stationäre Antriebssysteme

Literaturhinweise
Kirchner, E.; "Leistungsübertragung in Fahrzeuggetrieben: Grundlagen der Auslegung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten", Springer Verlag Berlin Heidelberg 2007
Naunheimer, H.; "Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion", Springer Verlag Berlin Heidelberg 2007
7.3 Teilleistung: Arbeitswissenschaft I: Ergonomie [T-MACH-105518]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Teilleistung: Arbeitswissenschaft I: Ergonomie [T-MACH-105518]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>Lehrstunde(n)</th>
<th>Ort(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2109035</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Deml</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>Ort(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>Deml</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗿 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Arbeitswissenschaft I: Ergonomie
2109035, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V)
Präsenz/Online gemischt

Inhalt

1. Grundlagen menschlicher Arbeit
2. Verhaltenswissenschaftliche Datenerhebung
3. Arbeitsplatzgestaltung
4. Arbeitsumweltgestaltung
5. Arbeitswirtschaft
6. Arbeitsrecht und Interessensvertretung

Lernziele:

Die Studierenden erwerben vor allem grundlegendes Wissen im Bereich der Ergonomie:

• Sie können Arbeitsplätze hinsichtlich kognitiver, physiologischer, anthropometrischer und sicherheitstechnischer Aspekte ergonomisch gestalten.
• Ebenso kennen sie physikalische und psychophysische Grundlagen (z. B. Lärm, Beleuchtung, Klima) im Bereich der Arbeitsumweltgestaltung.
• Die Studierenden sind in der Lage, Arbeitsplätze arbeitswirtschaftlich zu bewerten, indem sie wesentliche Methoden des Zeitstudiums und der Entgeltfindung kennen und anwenden können.
• Schließlich erwerben sie auch einen ersten, überblickhaften Einblick in das deutsche Arbeitsrecht und die Organisation der überbetrieblichen Interessensvertretung.

Darüber hinaus lernen die Teilnehmer wesentliche Methoden der verhaltenswissenschaftlichen Datenerhebung (z. B. Eyetracking, EKG, Dual-Task-Paradigma) kennen.
Organisatorisches
Die Veranstaltung "Arbeitswissenschaft I: Ergonomie" findet in der ersten Hälfte des Semesters am Mittwoch und Donnerstag statt.

In der zweiten Hälfte des Semesters findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.

- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
7.4 Teilleistung: Auslegung additiv gefertigter Polymerstrukturen an einem Beispiel der Medizintechnik [T-MACH-112717]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittenoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Luise Kärger
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106383 - Computational Engineering
 M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2023</th>
<th>2114102</th>
<th>Auslegung additiv gefertigter Polymerstrukturen an einem Beispiel der Medizintechnik</th>
<th>2 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🤖</th>
<th>Kärger</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>SS 2023</th>
<th>76-T-MACH-112717</th>
<th>Auslegung additiv gefertigter Polymerstrukturen an einem Beispiel der Medizintechnik</th>
<th>Kärger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-112717-W</td>
<td>Auslegung additiv gefertigter Polymerstrukturen an einem Beispiel der Medizintechnik (Nur für Wiederholer)</td>
<td>Kärger</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🤖 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung anderer Art

- Projektarbeit
- Zwischen- und Abschlusspräsentation der Projektarbeit
- Mündliche Abschlussprüfung (ca. 15 Minuten)

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auslegung additiv gefertigter Polymerstrukturen an einem Beispiel der Medizintechnik

2114102, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt

Kerninhalte:

- Überblick über additive Fertigungsverfahren
- Wechselwirkung Prozess-Material-Bauteil
- Polymer in der additiven Fertigung:
 - Materialwissenschaftliche Grundlagen, Material- und Bauteilprüfung,
 - Sonderaspekte der Additive Fertigung in der Medizintechnik (externe Gastbeiträge):
 - Auswahl und Zulassung von Prozess und Material, Orthetik/Prothetik als Anwendungsfall
 - Rechnergestützte Bauteilauslegung und -optimierung
 (Vorlesungen und Übungen)
 - Semesterprojekt: Auslegung, Fertigen und Prüfen eines AM-Bauteil aus dem Feld „Medizintechnik“

Lernziele:
Die Studierenden können…

- … verschiedene AM-Fertigungstechnologien für Polymerbauteilen benennen, beschreiben und anhand ihrer Spezifika (v.a. Vor-/Nachteile und Verfahrensgrenzen) zielgerichtet auswählen.
- … die Entwicklungskette in der additiven Fertigung (Materialauswahl, CAD, Simulation/Optimierung, Slicer-Software) erläutern und umsetzen
- … die Wechselwirkung von Prozesssteilgrößen, Materialeigenschaften und Konstruktion für Polymerbauteile am Beispiel von Extrusionsprozessen beschreiben
- … relevante medizintechnische Zusatzaspekte, z.B. Sterilisierbarkeit oder Allergiepotential, bei der Material- und Prozessauswahl benennen und erläutern
- … wesentliche Konzepte der Finite-Elemente-Methode und der Topologieoptimierung erläutern
- … die Finite-Elemente-Software „Abaqus“ zur Bauteilauslegung anwenden und Simulationsergebnisse hinsichtlich Aussagekraft und Tragfähigkeit bewerten
- … mit der Software Tosca eine Topologieoptimierung durchführen, deren Ergebnisse interpretieren und Tragwerkskonzepte ableiten
- … individuelles Entwicklungsprojekt im Bereich additive Fertigung zielgerichtet bearbeiten

Organisatorisches
Die Raumbelegung und der wöchentliche Veranstaltungstermin wird zu Beginn des Sommersemesters auf der Homepage des Instituts bekannt gegeben.

Aufgrund des gewünschten Betreuungsverhältnisses und der Institutsausstattung ist die maximale Anzahl der teilnehmenden Studierenden begrenzt. Die Anmeldung erfolgt über die Instituts-Homepage ab Anfang März.

The room allocation and the weekly course dates are announced on the Institute's homepage at the beginning of the summer semester.
Due to the desired supervision ratio and the institute's equipment, the maximum number of participating students is limited. Registration takes place via the Institute's homepage from the beginning of March.
7.5 Teilleistung: Automatisierung und Autonomie in der Logistik [T-MACH-113010]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-106384 - Intelligente Systeme

Teilleistung: Automatisierung und Autonomie in der Logistik [T-MACH-113010]

Erfolgskontrolle(n)
Schriftliche Prüfung, Dauer 60 Minuten

Voraussetzungen
keine

Empfehlungen
keine
Erfolgskontrolle(n)

Voraussetzungen
Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (vgl. §14 (1) der SPO).

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

- **Bearbeitungszeit**: 3 Monate
- **Maximale Verlängerungsfrist**: 1 Monate
- **Korrekturfrist**: 6 Wochen

Anmerkungen
Für die Ausarbeitung der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 360 Stunden gerechnet.
Teilleistung: Besser frei reden. Überzeugen durch Persönlichkeit [T-ZAK-113104]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-MACH-106389 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>SWS</th>
<th>Format</th>
<th>T</th>
<th>Bock</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>1130031</td>
<td>Besser frei reden - Überzeugen durch Persönlichkeit</td>
<td>2</td>
<td>Block (B) / 🗣</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Besser frei reden - Überzeugen durch Persönlichkeit

<table>
<thead>
<tr>
<th>Code</th>
<th>Semester</th>
<th>SWS</th>
<th>Format</th>
<th>Anbieter</th>
<th>Bitdruck in Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1130031</td>
<td>WS 23/24</td>
<td>2</td>
<td>Präsenz</td>
<td>Zentrum für Angewandte Kulturwissenschaft und Studium Generale</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

In diesem Seminar sollen - unterstützt durch Videofeedback - die persönlichen Rede-/Gesprächs- und Sprechfertigkeiten und ihre Wirkung auf die Zuhörenden im Mittelpunkt stehen, denn:

Egal ob Sie vor oder mit anderen erfolgreich sprechen wollen, Fachkompetenz alleine genügt nicht!

Durch Vermittlung rhetorischer Grundkenntnisse und -übungen soll eine spezifische, auf die Persönlichkeit bezogene "Strategie" entwickelt werden, um den eigenen Rede- und Kommunikationsstil zu überprüfen und auch - wenn gewollt - zu ändern und zu verbessern.

2-3 LP

Organisatorisches

Anmeldung erforderlich über:
7.8 Teilleistung: Dynamik des Kfz-Antriebsstrangs [T-MACH-105226]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-106382 - Mobilitätssysteme

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

| WS 23/24 | 2163111 | Dynamik des Kfz-Antriebsstrangs | 2 SWS | Vorlesung (V) / 🗣 Fidlin |
| WS 23/24 | 2163112 | Übungen zu Dynamik des Kfz-Antriebsstrangs | 2 SWS | Übung (Ü) Fidlin, Gießler |

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-105226 | Dynamik vom Kfz-Antriebsstrang | Fidlin |

Legende: 🖥 Online, 🦾 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, 30 Min.

Voraussetzungen
keine

Empfehlungen
Antriebssystemtechnik A: FahrzeugantriebssystemeMaschinendynamikTechnische Schwingungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Vorlesung (V)

Dynamik des Kfz-Antriebsstrangs
2163111, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Hauptkomponenten eines KFZ-Antriebsstrangs und ihre Modelle
- Typische Fahrmanöver
- Problembezogene Modelle für einzelne Fahrsituationen
- Gesamtsystem: Betrachtung und Optimierung vom Antriebsstrang in Bezug auf dynamisches Verhalten

Literaturhinweise
- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Übungen zu Dynamik des Kfz-Antriebsstrangs
2163112, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Übung des Vorlesungsstoffs
7.9 Teilleistung: Einführung in die Energietechnik [T-MACH-112959]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106385 - Nachhaltige Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min)

Voraussetzungen
keine
7.10 Teilleistung: Einführung in die Finite-Elemente-Methode [T-MACH-105320]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106382 - Mobilitätssysteme
M-MACH-106383 - Computational Engineering

Teilleistungsart Prüfungsleistung schriftlich
Leistungspunkte 3
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 4

Lehrveranstaltungen

| SS 2023 | 2162282 | Einführung in die Finite-Elemente-Methode | 2 SWS | Vorlesung (V) / 🗣 | Langhoff, Böhlke |

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-105320 | Einführung in die Finite-Elemente-Methode | Böhlke, Langhoff |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, X Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min)
Klausurzulassung: bestandene Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330)

Voraussetzungen
Das Bestehen der Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330) ist Klausurvoraussetzung.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Anmerkungen
Kenntnisse aus den Vorlesungen "Kontinuumsmechanik der Festkörper und Fluide" und "Mathematische Methoden der Kontinuumsmechanik" und den jeweils begleitenden Übungsveranstaltungen werden vorausgesetzt
Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen. Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Finite-Elemente-Methode
2162282, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
• Einführung und Motivation, Elemente der Tensorrechnung
• Diskrete FEM: Stab- und Federsysteme
• Formulierungen eines Randwertproblems (1D)
• Approximationsansätze in der FEM
• FEM für skalare und vektorwertige Feldprobleme
• Lösungsverfahren für lineare Gleichungssysteme

Bachelorstudiengang Maschinenbau 2023 (B.Sc.), Stand 16.08.2023
Modulhandbuch gültig ab Wintersemester 2023/24

83
Literaturhinweise

- Fish, J., Belytschko, T.: A First Course in Finite Elements, Wiley 2007
7.11 Teilleistung: Einführung in die Mechanik der Faserverbundwerkstoffe [T-MACH-112976]

Verantwortung: Prof. Dr.-Ing. Luise Kärger
Dr.-Ing. Florian Wittemann

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von:
M-MACH-106382 - Mobilitätssysteme
M-MACH-106383 - Computational Engineering
M-MACH-106386 - Angewandte Materialien

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung (Dauer ca. 20 min)

Voraussetzungen

keine

Anmerkungen

Inhalt: Charakteristiken und Einsatzgebiete von Faserverbundwerkstoffen, kontinuierlich und diskontinuierlich faserverstärkte Polymere, Modellierung von Faserorientierungen, Faserlängen und Faservolumenanteilen, Homogenisierungsmethoden und experimentelle Prüfmethoden zur Ermittlung makroskopischer mechanischer Kennwerte, Ansätze zur Modellierung und Simulation auf Bauteilebene.
7.12 Teilleistung: Einführung in die Numerische Strömungsmechanik [T-MACH-110362]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Alexander Stroh

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmekanik

Bestandteil von: M-MACH-106382 - Mobilitätssysteme
M-MACH-106383 - Computational Engineering

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 3

Lehrveranstaltungen
SS 2023 2154533 Einführung in die Numerische Strömungsmechanik 2 SWS Vorlesung (V) /🧩 Stroh, Frohnapfel

Prüfungsveranstaltungen
SS 2023 76-T-MACH-110362 Einführung in die Numerische Strömungsmechanik Stroh

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗯 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 90Min

Voraussetzungen
Das Bestehen der Studienleistung "Übungen zu Einführung in die Numerische Strömungsmechanik" (T-MACH-111033) ist Klausurvoraussetzung.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-111033 - Übungen zu Einführung in die Numerische Strömungsmechanik muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Numerische Strömungsmechanik
2154533, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

- Einführung und Motivation, Grundgleichungen und Kennzahlen,
- Turbulenz und deren Modellierung (DNS, LES, RANS);
- Numerische Lösung der Navier-Stokes Gleichungen:
 Diskretisierung und Lösungsverfahren (FDM, FVM), Randbedingungen, Initialbedingungen, Stabilität, Fehler der Numerik und der Modellierung
- Aufbau einer numerischen Strömungssimulation: Pre- und Postprocessing, Validierung, Darstellung der Rechenergebnisse, kritische Bewertung
- Einführung in open-source Simulationstoolbox OpenFOAM:
 Simulationsaufbau, Netzgenerierung mit OpenFOAM-Werkzeugen, Netzgenerierung mit kommerziellen Softwarepaketen, OpenFOAM-Auswertewerkzeuge, Auswertung in python;
- Einführung in einen forschungsoorientierten Strömungslöser für turbulente Strömungen (DNS mit Incompact3d),
 Simulationsaufbau, statistische Auswertung und Analyse turbulenter Strömungen in MATLAB und python;
- Visualisierung von Simulationsergebnissen in ParaView, Interpretation der Simulationsergebnisse

Die Veranstaltung umfasst eine Vorlesung und ein Rechnerpraktikum.

Organisatorisches
Die Kenntnis der Vorlesungsinhalte "Kontinuumsmechanik der Festkörper und Fluide" sowie "Mathematische Methoden der Kontinuumsmechanik" wird vorausgesetzt.

Bachelorstudiengang Maschinenbau 2023 (B.Sc.), Stand 16.08.2023
Modulhandbuch gültig ab Wintersemester 2023/24
Literaturhinweise
Wird in der Vorlesung bekannt gegeben.
7.13 Teilleistung: Experimentelle Dynamik [T-MACH-105514]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-106383 - Computational Engineering

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

| SS 2023 | 2162225 | Experimentelle Dynamik | 3 SWS | Vorlesung (V) | Fidlin |
| SS 2023 | 2162228 | Übungen zu Experimentelle Dynamik | 2 SWS | Übung (Ü) | Fidlin, Genda |

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-105514 | Experimentelle Dynamik | Fidlin |

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Voraussetzungen
Kann nicht mit Schwingungstechnisches Praktikum (T-MACH-105373) kombiniert werden.

In der folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Experimentelle Dynamik
2162225, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Einführung
2. Messprinzipen
3. Sensoren als gekoppelte, multiphysikalische Systeme
4. Digitale Signalverarbeitung, Messung von Frequenzgängen
5. Zwangserregte Schwingungen nichtlinearer Schwinger
6. Stabilitätsprobleme (Mathieu-Schwinger, reibungserregte Schwingungen)
7. Elementare Rotordynamik
8. Modalanalyse
7.14 Teilleistung: Fahrzeuge in Mobilitätsystemen [T-MACH-112992]

Verantwortung: Prof. Dr.-Ing. Martin Cichon
Prof. Dr. Frank Gauterin
Prof. Dr.-Ing. Marcus Geimer

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-106382 - Mobilitätsysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>4</th>
<th>Notenskala</th>
<th>Drittelnoten</th>
<th>Turnus</th>
<th>Jedes Sommersemester</th>
<th>Dauer</th>
<th>1 Sem.</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, Dauer 90 Minuten

Empfehlungen
keine

Anmerkungen
7.15 Teilleistung: Fahrzeugergonomie [T-MACH-108374]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-106382 - Mobilitätssysteme

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2023 2110050 Fahrzeugergonomie 2 SWS Vorlesung (V) / 🗣 Deml

Prüfungsveranstaltungen
SS 2023 76-T-MACH-108374 Fahrzeugergonomie Deml
WS 23/24 76-T-MACH-108374 Fahrzeugergonomie Ehrhardt

Legende: 🖥 Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 Minuten
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugergonomie
2110050, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches
Die Vorlesung hat einen Arbeitsaufwand von 120 h (= 4 LP).

Literaturhinweise
Die Literaturliste wird in der Vorlesung ausgegeben. Die Folien zur Vorlesung stehen auf ILIAS zum Download zur Verfügung.

Inhalt
- Grundlagen der physikalisch-körperbezogenen Ergonomie
- Grundlagen der kognitiven Ergonomie
- Theorien des Fahrerverhaltens
- Schnittstellengestaltung
- Usability-Testing
Lernziele:
7.16 Teilleistung: Funktionsmaterialien [T-MACH-113011]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer ca. 25 Minuten

Voraussetzungen
keine

Verantwortung: Dr. Patric Gruber
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106386 - Angewandte Materialien
7.17 Teilleistung: Grundlagen der Elektrotechnik [T-ETIT-112934]

Verantwortung: Dr.-Ing. Matthias Brodatzki
Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-106380 - Elektrotechnik und Mechatronik

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine
7.18 Teilleistung: Grundlagen der Fertigungstechnik [T-MACH-112928]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-106376 - Fertigungstechnik und Werkstoffkunde

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Sem.
Version: 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 2149658</td>
<td>Grundlagen der Fertigungstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 76-T-MACH-112928</td>
<td>Grundlagen der Fertigungstechnik</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung (Dauer: 60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fertigungstechnik
2149658, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt

Die Themen im Einzelnen sind:

- Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung

Lernziele:
Die Studierenden...

- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der sechs Hauptgruppen (DIN 8580) klassifizieren.
- sind fähig, die wesentlichen Fertigungsverfahren der sechs Hauptgruppen (DIN 8580) anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, die charakteristischen Verfahrensmerkmale (Geometrie, Werkstoffe, Genauigkeit, Werkzeuge, Maschinen) der wesentlichen Fertigungsverfahren der sechs Hauptgruppen nach DIN 8580 zu beschreiben.
- sind fähig, aus den charakteristischen Verfahrensmerkmalen die relevanten prozessspezifischen technischen Vor- und Nachteile abzuleiten.
- sind in der Lage, für vorgegebene Bauteil eine Auswahl geeigneter Fertigungsprozesse durchzuführen.
- sind in der Lage, die für die Herstellung vorgegebener Beispielprodukte erforderlichen Fertigungsverfahren in den Ablauf einer Prozesskette einzuorden.

Arbeitsaufwand:
Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
7 TEILLEISTUNGEN

7.19 Teilleistung: Grundlagen der Mechatronik [T-MACH-112937]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106380 - Elektrotechnik und Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, 180 Min.

Voraussetzungen
Die Studienleistung T-MACH-113008 – Übungen zu Grundlagen der Mechatronik muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-113008 - Übungen zu Grundlagen der Mechatronik muss erfolgreich abgeschlossen worden sein.
7.20 Teilleistung: Grundlagen der Mess- und Regelungstechnik [T-MACH-104745]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-102564 - Mess- und Regelungstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistung</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Ort</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2137301</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>3</td>
<td>Vorlesung (V) / 🗣</td>
<td>Stiller</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2137302</td>
<td>Übungen zu Grundlagen der Mess- und Regelungstechnik</td>
<td>1</td>
<td>Übung (Ü) / 🗣</td>
<td>Stiller, Fischer, Hauser</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>3137020</td>
<td>Measurement and Control Systems</td>
<td>3</td>
<td>Vorlesung (V) / 🗣</td>
<td>Stiller</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>3137021</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1</td>
<td>Übung (Ü) / 🗣</td>
<td>Stiller, Fischer, Hauser</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistung</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-104745</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td></td>
<td>Vorlesung (V)</td>
<td>Stiller</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-104745</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td></td>
<td>Vorlesung (V)</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung
2,5 Stunden

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mess- und Regelungstechnik

<table>
<thead>
<tr>
<th>Leistung</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>2137301</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>3</td>
<td>Vorlesung (V) / 🗣</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Bachelorstudiengang Maschinenbau 2023 (B.Sc.), Stand 16.08.2023
Modulhandbuch gültig ab Wintersemester 2023/24
Inhalt

Lehrinhalt
1. Dynamische Systeme
2. Eigenschaften wichtiger Systeme und Modellbildung
3. Übertragungsverhalten und Stabilität
4. Synthese von Reglern
5. Grundbegriffe der Messtechnik
6. Estimation
7. Messaufnehmer
8. Einführung in digitale Messverfahren

Lernziele:

Voraussetzungen:
Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace-Transformation
Arbeitsaufwand:
210 Stunden

Literaturhinweise
Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

• Measurement and Control Systems:
R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:
J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
O. Föllinger: Regelungstechnik, Hüthig-Verlag
W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:
W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
Literaturhinweise

• Measurement and Control Systems:
 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:
 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:
 E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
7.21 Teilleistung: Grundlagen der Produktionsautomatisierung [T-MACH-112971]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106382 - Mobilitätssysteme
M-MACH-106384 - Intelligente Systeme
M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, Dauer 60 Minuten

Voraussetzungen
keine
7.22 Teilleistung: Grundlagen der rechnergestützten Dynamik [T-MACH-113006]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-106383 - Computational Engineering

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer ca. 20 Minuten.

Voraussetzungen
keine
7.23 Teilleistung: Grundlagen der Technischen Logistik [T-MACH-113013]

Verantwortung: Dr.-Ing. Martin Mittwollen
Dr.-Ing. Jan Oellerich

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-106382 - Mobilitätssysteme

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4

Notenskala Drittelnoten

Turnus Jedes Wintersemester

Version 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen
Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.
7.24 Teilleistung: Grundlagenmodul - Selbstverbuchung BAK [T-ZAK-112653]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul umfasst eine Studienleistung nach § 5 Absatz 4 in Form von zwei Protokollen zu zwei frei wählbaren Sitzungen der Ringvorlesung „Einführung in die Angewandte Kulturwissenschaft“, Umfang jeweils ca. 6000 Zeichen (inkl. Leerzeichen).

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Das Grundlagenmodul besteht aus der Vorlesung „Einführung in die Angewandte Kulturwissenschaft“, die jeweils nur im Wintersemester angeboten wird. Empfohlen werden daher ein Studienbeginn im Wintersemester und ein Absolvieren vor Modul 2.
7.25 Teilleistung: Grundlagenmodul - Selbstverbuchung BeNe [T-ZAK-112345]

Verantwortung: Christine Myglas
Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul umfasst eine Studienleistung nach § 5 Absatz 4:
- oder
- **Projektstage Frühlingsakademie Nachhaltigkeit** in Form eines Reflexionsberichts über alle Bestandteile der Projektstage "Frühlingsakademie Nachhaltigkeit". Umfang ca. 12.000 Zeichen (inkl. Leerzeichen)

Die Erfolgskontrolle erfolgt studienbegleitend ohne Note.

Voraussetzungen
Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
7.26 Teilleistung: Höhere Mathematik I [T-MATH-100275]

Teilleistung: Höhere Mathematik I [T-MATH-100275]

Verantwortung:
- PD Dr. Tilo Arens
- Prof. Dr. Roland Griesmaier
- PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
- M-MACH-106403 - Orientierungsprüfung
- M-MATH-102859 - Höhere Mathematik

Lehrveranstaltungen

| WS 23/24 | 0131000 | Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik | 4 SWS | Vorlesung (V) | Hettlich |
| WS 23/24 | 0131200 | Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT | 4 SWS | Vorlesung (V) | Hettlich |

Prüfungsveranstaltungen

| SS 2023 | 6700025 | Höhere Mathematik I | Arens, Griesmaier, Hettlich |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 1-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 1.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100525 - Übungen zu Höhere Mathematik I muss erfolgreich abgeschlossen worden sein.
7.27 Teilleistung: Höhere Mathematik II [T-MATH-100276]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 0180800</td>
<td>Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
</tr>
<tr>
<td>SS 2023 0181000</td>
<td>Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 6700001</td>
<td>Höhere Mathematik II</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Erfolgreiche Bearbeitung der Übungsblätter in HM 2-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 2.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100526 - Übungen zu Höhere Mathematik II muss erfolgreich abgeschlossen worden sein.
7.28 Teilleistung: Höhere Mathematik III [T-MATH-100277]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>Modulverantwortlich</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>0131400</td>
<td>Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfung</th>
<th>Modulverantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>6700002</td>
<td>Höhere Mathematik III</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 3-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 3.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

7.29 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Prof. Dr. Martin Doppelbauer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-106382 - Mobilitätssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2306323</td>
<td>Übungen zu 2306321 Hybride und elektrische Fahrzeuge</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Vorlesungsname</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Empfehlungen
Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").
7.30 Teilleistung: Industriepraktikum [T-MACH-112941]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106390 - Industriepraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>best./nicht best.</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 7600004 | Industriepraktikum | Hillenbrand |

Erfolgskontrolle(n)
Vorlage der Praktikumsdokumente (Arbeitsvertrag, Tätigkeitsnachweis, Praktikumszeugnis) sowie Ablegen eines Praktikumsberichtes in Form und eines schriftlichen Berichtes (0,5 Seiten Text pro Woche). Die Praktikumsberichte sollen von der betreuenden Person der Praktikantin bzw. des Praktikanten im Betrieb durchgesehen werden und müssen durch Firmenstempel und Unterschrift bestätigt werden.

Voraussetzungen
keine
7.31 Teilleistung: IT und Data Science [T-MACH-112925]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Anne Meyer
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106388 - IT und Data Science

Erfolgskontrolle(n)
Schriftliche Prüfung, Dauer 180 Minuten

Voraussetzungen
T-MACH-112924 - Übungen zu IT und Data Science muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112924 - Übungen zu IT und Data Science muss erfolgreich abgeschlossen worden sein.
7.32 Teilleistung: Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110377]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106383 - Computational Engineering
M-MACH-106386 - Angewandte Materialien

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>5</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗿 Präsenz, ⏹ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung

Voraussetzungen
bestandene Studienleistung "Übungen zu Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110333)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110333 - Übungen zu Kontinuumsmechanik der Festkörper und Fluide muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen.
Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kontinuumsmechanik der Festkörper und Fluide
2161252, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Einführung in die Tensorrechnung
- Kinematik
- Bilanzgleichungen der Mechanik und Thermodynamik
- Materialtheorie der Festkörper und Fluide
- Feldgleichungen für Festkörper und Fluid
- Thermomechanische Kopplungen
- Dimensionsanalyse

Literaturhinweise
Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
7.33 Teilleistung: Künstliche Intelligenz in der Produktion [T-MACH-112970]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-106384 - Intelligente Systeme
M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Erfolgskontrolle(n)

schriftliche Prüfung, Dauer 60 Minuten

Voraussetzungen
keine
7.34 Teilleistung: Maschinen und Prozesse der Energiewandlung [T-MACH-112939]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-106379 - Maschinen und Prozesse der Energiewandlung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>6</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Sem.</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, Dauer 2 h.

Voraussetzungen
Die Studienleistung T-MACH-112938 Energiewandlung, Praktikum muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112938 - Maschinen und Prozesse der Energiewandlung, Praktikum muss erfolgreich abgeschlossen worden sein.
7.35 Teilleistung: Maschinen und Prozesse der Energiewandlung, Praktikum [T-MACH-112938]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-106379 - Maschinen und Prozesse der Energiewandlung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>1</td>
</tr>
<tr>
<td>Notenskala</td>
<td>best./nicht best.</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Sem.</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung. Es wird ein Praktikumsbericht erstellt. Weitere Informationen zu Umfang und Art der Ausarbeitung werden in der Lehrveranstaltung zur Verfügung gestellt.

Voraussetzungen
keine

Anmerkungen
Die Studienleistung ist Vorleistung für die Teilleistung T-MACH-112939 Energiewandlung.
7.36 Teilleistung: Maschinenkonstruktionslehre A [T-MACH-112984]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-106375 - Maschinenkonstruktionslehre

Lehrveranstaltungen
| WS 23/24 | 2145170 | Maschinenkonstruktionslehre A | 3 SWS | Vorlesung / Übung (VÜ) | Matthiesen, Düser |

Prüfungsveranstaltungen
| WS 23/24 | 76T-MACH-112984 | Maschinenkonstruktionslehre A | Matthiesen, Düser |

Erfolgskontrolle(n)
Schriftliche Prüfung mit einer Dauer von 90 min.

Voraussetzungen
Voraussetzung für die Teilnahme an der Klausur ist der Workshop Maschinenkonstruktionslehre A (T-MACH-112981)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Die Teilleistung T-MACH-112981 - Workshop zu Maschinenkonstruktionslehre A muss erfolgreich abgeschlossen worden sein.

Empfehlungen
Keine

Anmerkungen
Die Studierenden sind mit den grundlegenden Maschinenelementen technischer Systeme vertraut und sind dazu in der Lage diese im Systemkontext zu analysieren

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinenkonstruktionslehre A
2145170, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Den Studierenden werden grundlegende Themen der Maschinenkonstruktionslehre näher gebracht. Hierbei liegt der Fokus auf der Analyse bestehender Systeme und dem Erkenntnisaufbau für grundlegende Elemente und Funktionsweisen von technischen Systemen. Die Veranstaltung gliedert sich hierbei in folgende Themenblöcke:

- Federn
- Technische Systeme
- Lager und Lagerungen
- Dichtungen
- Bauteilverbindung
- Getriebe

Literaturhinweise
- Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
7.37 Teilleistung: Maschinenkonstruktionslehre B und C [T-MACH-112985]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-106375 - Maschinenkonstruktionslehre

Erfolgskontrolle(n)
Schriftliche Prüfung bestehend aus schriftlichem & konstruktivem Teil (insgesamt 240 Minuten)

Voraussetzungen
Voraussetzung für die Teilnahme an der Klausur sind der Workshop Maschinenkonstruktionslehre B (T-MACH-112982) UND der Workshop Maschinenkonstruktionslehre C (T-MACH-112983)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112983 - Workshop zu Maschinenkonstruktionslehre C muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-MACH-112982 - Workshop zu Maschinenkonstruktionslehre B muss erfolgreich abgeschlossen worden sein.

Empfehlungen
Kein

Anmerkungen
Kein
7.38 Teilleistung: Materialfluss in Produktion und Logistik [T-MACH-112968]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Empfehlungen
keine
7.39 Teilleistung: Mechatronische Systeme und Produkte [T-MACH-112988]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik/Institut für Regelungs- und Steuerungssysteme
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106384 - Intelligente Systeme
M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 60 Minuten)

Voraussetzungen
Keine

Empfehlungen
Maschinenkonstruktionslehre abgeschlossen

Anmerkungen
Alle relevanten Inhalte (Skript, Übungsblätter, etc.) zur Lehrveranstaltung können über die eLearning-Plattform ILIAS bezogen werden. Zur Teilnahme an der Lehrveranstaltung schließen Sie bitte die Umfrage Anmeldung und Gruppeneinteilung in ILIAS schon vor dem Semesterstart ab.
7.40 Teilleistung: Messtechnik II [T-MACH-105335]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106384 - Intelligente Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2138326</th>
<th>Messtechnik II</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Stiller, Bieder</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-105335 | Messtechnik II | | Stiller |
|---------|-------------------|----------------|| |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- **Schriftliche Prüfung**
 - 60 Minuten
 - Selbstverfasste Formelsammlung über 2 DIN A4 erlaubt

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Messtechnik II
2138326, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V) Präsenz

Inhalt

Lerninhalt:

1. Signalverstärker
2. Digitale Schaltungstechnik
3. Stochastische Modellierung in der Messtechnik
4. Stochastische Schätzverfahren
5. Kalman-Filter
6. Umfeldwahrnehmung

Lernziele:

Die wachsende Leistungsfähigkeit der Messtechnik eröffnet Ingenieuren laufend innovative Anwendungsfelder. Dabei kommt digitalen Messverfahren eine wachsende Bedeutung zu, da sie gerade für komplexe Aufgaben eine hohe Leistungsfähigkeit bieten. Stochastische Modelle des Messaufbaus und der Messgrößenentstehung sind Grundlage für aussagekräftige Informationsverarbeitung und bilden zunehmend ein unverzichtbares Handwerkszeug des Ingenieurs, nicht nur in der Messtechnik.

Nachweis:

Schriftlich

Dauer: 60 Minuten

Eigene Formelsammlung

Arbeitsaufwand:

120 Stunden
Literaturhinweise
Skript und Foliensatz zur Veranstaltung werden als kostenlose pdf-Dateien bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.

Idealerweise haben Sie zuvor 'Grundlagen der Mess- und Regelungstechnik' gehört oder verfügen aus einer Vorlesung anderer Fakultäten über grundlegende Kenntnisse der Mess- und Regelungstechnik und der Systemtheorie.
7.41 Teilleistung: Messtechnik, Messdatenübertragung und -analyse in der Energietechnik [T-MACH-112961]

Verantwortung: Prof. Dr. Thomas Koch
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106385 - Nachhaltige Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer ca. 20 Minuten

Voraussetzungen
keine
7.42 Teilleistung: Mikrostruktursimulation [T-MACH-105303]

Verantwortung: Dr. Anastasia August
Prof. Dr. Britta Nestler

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-106386 - Angewandte Materialien

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2183702</th>
<th>Mikrostruktursimulation</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>August, Nestler</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>76-T-MACH-105303</th>
<th>Mikrostruktursimulation</th>
<th>August, Nestler, Weygand</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>August, Weygand, Nestler</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 30 min

Voraussetzungen
keine

Empfehlungen
Werkstoffkunde
mathematische Grundlagen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mikrostruktursimulation
2183702, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Einige Grundlagen der Thermodynamik
- Gibbs'sche Freie Energie und Phasendiagramme
- Phasen-Feld-Gleichung
- Treibende Kräfte
- Großkannonisches-Potential-Funktional und die Evolutionsgleichungen
- Numerische Lösung der Phasen-Feld-Gleichung

Der/die Studierende

- kann die thermodynamischen und statistischen Grundlagen für flüssig-fest und fest-fest Phasenumwandlungsprozess erläutern und zur Konstruktion von Phasendiagrammen anwenden
- kann Mechanismen zur Bewegung von Phasengrenzen unter Wirkung der treibenden Kräfte erläutern
- kann mithilfe der Phasenfeldmodellierung die Entwicklung von Mikrostrukturen simulieren
- verfügt durch Rechnerübungen über Erfahrungen in der Implementierung von Phasenfeldmodellen und kann eigene Simulationen von Mikrostrukturausbildungen durchführen

Kenntnisse in Werkstoffkunde und mathematische Grundlagen empfohlen

Präsenzzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden
Mündliche Prüfung ca. 30 min
Literaturhinweise

4. Gaskell, D.R., Introduction to the thermodynamics of materials
7.43 Teilleistung: Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft [T-ZAK-112659]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung nach § 7, Abs. 6 im Umfang von ca. 45 Minuten über die Inhalte von zwei Lehrveranstaltungen aus dem Vertiefungsmodul 2 (4 LP)

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.
7.44 Teilleistung: Mündliche Prüfung - Begleitstudium Nachhaltige Entwicklung [T-ZAK-112351]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Eine mündliche Prüfung nach § 7 Abs. 6 im Umfang von ca. 40 Minuten über die Inhalte von zwei Lehrveranstaltungen aus dem Wahlmodul.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss des Grundlagenmoduls und des Vertiefungsmoduls, sowie der erforderlichen Wahlpflichtteilleistungen im Wahlmodul.
7.45 Teilleistung: Nachhaltige Fahrzeugantriebe [T-MACH-111578]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Olaf Toedter

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-106382 - Mobilitätssysteme

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

| WS 23/24 | 2133132 | Nachhaltige Fahrzeugantriebe | 2 SWS | Vorlesung (V) / 🗣️ Toedter |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 20 Minuten)

Voraussetzungen

keine

Anmerkungen

Ab WS 25/26 besteht die Veranstaltung aus einer Vorlesung (V2) und einer Übung (Ü1).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Nachhaltige Fahrzeugantriebe
2133132, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Nachhaltigkeit
Umweltbilanzierung
Gesetzgebung
Alternative Kraftstoffe
BEV
Brennstoffzelle
Hybridantriebe
7.46 Teilleistung: Nachhaltige Produktionswirtschaft [T-MACH-111859]

Verantwortung:
- Prof. Dr.-Ing. Kai Furmans
- Prof. Dr.-Ing. Gisela Lanza

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
- KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
- M-MACH-105902 - Nachhaltige Produktionswirtschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2149616</td>
<td>Nachhaltige Produktionswirtschaft</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ) / Lanza</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-111859</td>
<td>Nachhaltige Produktionswirtschaft</td>
<td></td>
<td>Furmans, Lanza</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-111859</td>
<td>Nachhaltige Produktionswirtschaft</td>
<td></td>
<td>Furmans, Lanza</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
- Schriftliche Prüfung (Dauer: 90 min)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nachhaltige Produktionswirtschaft

Vorlesung / Übung (VÜ) Präsenz

<table>
<thead>
<tr>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149616, WS 23/24</td>
<td>Nachhaltige Produktionswirtschaft</td>
<td>4 SWS</td>
<td>Furmans, Lanza</td>
</tr>
</tbody>
</table>

Inhalt

Die Vorlesung vermittelt ein Gesamtverständnis der betrieblichen Produktionswirtschaft unter besonderer Berücksichtigung von Aspekten der Nachhaltigkeit sowie ein anwendungsorientiertes Verständnis der grundlegenden Fragestellungen und Methoden in Industrieunternehmen. Durch Übungen sowie ein Planspiel synchron zur Vorlesung werden die vermittelten Inhalte durch Anwendung vertieft, so dass die Teilnehmer sie in ihrem späteren Berufsumfeld unmittelbar anwenden können.

Lernziele:

Nach erfolgreichem Abschluss der Lehrveranstaltung sind die Studierenden in der Lage, ...

- alleine und im Team die Begriffe, Zusammenhänge und Modelle, durch welche produzierende Unternehmen beschrieben sind, zu erörtern.
- typische Problemstellungen produzierender Unternehmen, insbesondere vor dem Hintergrund gegenwärtiger und zukünftiger Herausforderungen der ökologischen, sozialen und ökonomischen Nachhaltigkeit, zu erörtern.
- die wichtigsten Methoden zum effizienten und nachhaltigen Wirtschaften in Industrieunternehmen, insbesondere im Sinne der Kreislaufwirtschaft, problembezogen anzuwenden.
- durch Anwendung der gelernten Methoden Entscheidungsalternativen auszuwählen und zu begründen.
- die gelernten Methoden kritisch zu hinterfragen und sich darüber hinausgehende Methoden selbstständig anzueignen.

Arbeitsaufwand:

- Präsenzzeit: 42 Stunden
- Selbststudium: 108 Stunden

Organisatorisches

Vorlesungstermine montags, Übungstermine freitags.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung

Literaturhinweise

Medien:
- Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.
- Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
7.47 Teilleistung: Oberflächentechnik [T-MACH-112979]

Verantwortung:
Dr.-Ing. Johannes Schneider

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von:
M-MACH-106382 - Mobilitätssysteme
M-MACH-106386 - Angewandte Materialien

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- mündliche Prüfung (30 min)
- keine Hilfsmittel

Voraussetzungen
- keine spezifischen Voraussetzungen

Empfehlungen
- Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.
7.48 Teilleistung: Physikalische Grundlagen moderner Messverfahren [T-MACH-112980]

Verantwortung: Prof. Dr. Martin Dienwiebel
Dr. Daniel Weygand
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106386 - Angewandte Materialien

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, Dauer 90 Minuten

Voraussetzungen
keine
7.49 Teilleistung: Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik [T-MACH-105341]

Verantwortung: Marvin Klemp
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-106384 - Intelligente Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Praktikum</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Lehrveranstaltungsart</th>
<th>Praxisorientierung</th>
<th>Notwendige Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2137306</td>
<td>Praktikum "Rechnergestützte Verfahren der Mess- und Regelungstechnik"</td>
<td>3</td>
<td>Praktikum (P) / 🗣</td>
<td>Stiller, Immel</td>
<td>Fundamentals of Measurements and Control Engineering</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, x Abgesagt

Erfolgskontrolle(n)
Kolloquien

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum "Rechnergestützte Verfahren der Mess- und Regelungstechnik"
2137306, WS 23/24, 3 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt
8 Parallelkurse

Lerninhalten:
1. Digitaltechnik
2. Digitales Speicherosiloskop und digitaler Spektrum-Analysator
3. Ultraschall-Computertomographie
4. Beleuchtung und Bildgewinnung
5. Digitale Bildverarbeitung
6. Bildauswertung
7. Reglersynthese und Simulation
8. Roboter: Sensorik
9. Roboter: Aktorik und Bahnplanung

Das Praktikum umfasst 9 Versuche.

Voraussetzungen: Empfehlungen:
Vorlesung 'Fundamentals of Measurements and Control Engineering'

Arbeitsaufwand: 120 Stunden

Lernziele:

Nachweis:
Kolloquien
Literaturhinweise
Übungsanleitungen sind auf der Institutshomepage erhältlich.
Instructions to the experiments are available on the institute's website
7.50 Teilleistung: Präsentation [T-MACH-113044]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106422 - Bachelorarbeit

Erfolgskontrolle(n)

Voraussetzungen
Bachelorarbeit wurde begonnen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-113045 - Bachelorarbeit muss begonnen worden sein.

Anmerkungen
Für die Präsentation der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 90 Stunden gerechnet.
7.51 Teilleistung: Praxismodul [T-ZAK-112660]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Erfolgskontrolle(n)
Praktikum (3 LP)
Studienleistung 'Praktikumsbericht' (im Umfang ca. 18.000 Zeichen inkl. Leerzeichen) (1 LP)

Voraussetzungen
keine

Anmerkungen
Kenntnisse aus Grundlagenmodul und Vertiefungsmodul sind hilfreich.
7.52 Teilleistung: Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung [T-MACH-102155]

Verantwortung: Prof. Dr.-Ing. Sama Mbang
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-106382 - Mobilitätssysteme

Lehrveranstaltungen

| SS 2023 | 2123364 | Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR) | 2 SWS | Vorlesung / Übung (VÜ) / 🗣 | Mbang |

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-102155 | Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung |

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)

2123364, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Überblick zur Fahrzeugentstehung (Prozess- und Arbeitsabläufe, IT-Systeme)
- Integrierte Produktmodelle in der Fahrzeugindustrie (Produkt, Prozess und Ressource Sichten)
- Neue CAx-Modellierungsmethoden (Intelligente Feature-Technologie, Template- & Skelett-Methodik, funktionale Modellierung)
- Automatisierung und wissensbasierte Mechanismen in der Konstruktion und Produktionsplanung
- Anforderungs- und Prozessgerechte Fahrzeugentstehung (3D-Master Prinzip, Toleranzmodelle)
- Concurrent Engineering, verteiltes Arbeiten
- Erweiterte Konzepte: Prinzip der digitalen und virtuellen Fabrik (Einsatz virtueller Techniken und Methoden in der Fahrzeugentstehung)

Organisatorisches
Blockveranstaltung

Literaturhinweise
Vorlesungsfolien
7.53 Teilleistung: Produktionstechnik für die Elektromobilität [T-MACH-112969]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-106382 - Mobilitätssysteme
M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Erfolgskontrolle(n)
schriftliche Prüfung, Dauer 60 Minuten

Voraussetzungen
keine
7 TEILLEISTUNGEN

7.54 Teilleistung: Produktionstechnisches Labor [T-MACH-112995]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Jürgen Fleischer
Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Erfolgskontrolle(n)
Aktive Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien. Die Eingangskolloquien werden benotet.

Voraussetzungen
Das Praktikum ist kapazitätsbegrenzt, daher richtet sich die Platzvergabe nach § 5 Abs. 4 in der Studien- und Prüfungsordnung.
Es ergeben sich folgende Auswahlkriterien:

Die Auswahl richtet sich

- nach dem Studienfortschritt (hier wird der Studienfortschritt in Leistungspunkten und nicht der Studienfortschritt in Fachsemestern zugrunde gelegt),
- bei gleichem Studienfortschritt nach Wartezeit
- bei gleicher Wartezeit durch Los.

Die genauere Vorgehensweise wird auf ILIAS erklärt.
Eine erfolgreiche Teilnahme erfordert die aktive und kontinuierliche Mitarbeit in der Veranstaltung.
7.55 Teilleistung: Projekt [T-MACH-112940]

Verantwortung: Prof. Dr.-Ing. Martin Heilmayer
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106381 - Projekt

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>5</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Empfehlungen
Erfolgreicher Abschluss der Teilleistung Wissenschaftliche Arbeiten und empirische Forschungsmethoden (Überfachliche Qualifikationen).
7.56 Teilleistung: Rechnergestützte Dynamik [T-MACH-105349]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-106383 - Computational Engineering

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2023 2162246 Rechnergestützte Dynamik 2 SWS Vorlesung (V) / 🗣 Proppe
WS 23/24 2162246 Rechnergestützte Dynamik 2 SWS Vorlesung (V) / 🗣 Proppe

Prüfungsveranstaltungen
SS 2023 76-T-MACH-105349 Rechnergestützte Dynamik Proppe

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer ca. 20 Minuten.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnergestützte Dynamik
2162246, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Grundlagen der Elastokinetik (Verschiebungs differentialgleichung, Prinzip von Hamilton und Hellinger-Reissner)
2. Schwingungsdifferentialgleichungen für Strukturelemente (Stäbe, Platten)
3. Numerische Lösung der Bewegungsgleichungen
4. Numerische Algorithmen
5. Stabilitätsanalysen

Literaturhinweise
1. Ein Vorlesungsskript wird bereitgestellt!

Rechnergestützte Dynamik
2162246, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Grundlagen der Elastokinetik (Verschiebungsdifferentialgleichung, Prinzip von Hamilton und Hellinger-Reissner)
2. Schwingungsdifferentialgleichungen für Strukturelemente (Stäbe, Platten)
3. Numerische Lösung der Bewegungsgleichungen
4. Numerische Algorithmen
5. Stabilitätsanalysen

Literaturhinweise
1. Ein Vorlesungsskript wird bereitgestellt!
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnergestützte Fahrzeugdynamik

2162256, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierenendenportal anzeigen

Vorlesung (V)

- Online

Inhalt

1. Einleitung
2. Modelle für Trag- und Führsysteme
3. Kontaktkräfte zwischen Rad und Fahrzeug
4. Fahrgewagaregungen
5. Gesamtfahrzeugmodelle
6. Berechnungsmethoden
7. Beurteilungskriterien

Literaturhinweise

Inhalt

1. Einleitung
2. Modelle für Trag- und Führsysteme
3. Kontaktkräfte zwischen Rad und Fahrweg
4. Fahrwegsankregungen
5. Gesamtfahrzeugmodelle
6. Berechnungsmethoden
7. Beurteilungskriterien

Literaturhinweise
7.58 Teilleistung: Rechnergestützte Kontinuumsmechanik [T-MACH-112987]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106383 - Computational Engineering

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung.

Klausurzulassung: Bestandene Studienleistung in den Übungen zu Rechnergestützte Kontinuumsmechanik (T-MACH-112996)

Voraussetzungen
Bestandene Studienleistung in den Übungen zu Rechnergestützte Kontinuumsmechanik (T-MACH-112996)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

7.59 Teilleistung: Selbstverbuchung-BSc-HOC-SPZ-benotet [T-MACH-112931]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-106389 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung

Voraussetzungen
Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum

Anmerkungen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.
7.60 Teilleistung: Selbstverbuchung-BSc-HOC-SPZ-unbenotet [T-MACH-112936]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-106389 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung

Voraussetzungen
Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum

Anmerkungen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selbstservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.
7.61 Teilleistung: Smart Factory [T-MACH-112972]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-106382 - Mobilitätssysteme
M-MACH-106384 - Intelligente Systeme
M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

Erfolgskontrolle(n)
Im Rahmen der Erfolgskontrolle können maximal 100 Punkte erworben werden. Der Verteilungsschlüssel (Umrechnung Punkte zur Note) wird in der ersten Veranstaltung bekanntgegeben.

Die Erfolgskontrolle setzt sich zusammen aus

- zwei Leistungsabfragen zum Wissenserwerb im Rahmen des Seminars, Dauer je ca. 20 Minuten, maximal je 20 Punkte,
- Interaktion zwischen den Teilnehmenden, maximal 15 Punkte,
- Wissenschaftliches Kolloquium in Gruppen zu je 3 Studierenden, Dauer ca. 30 min, maximal 45 Punkte.

Voraussetzungen
keine

Anmerkungen
Begrenzt auf 20 Studierende, Platzvergabe im Losverfahren, Anmeldung zum Losverfahren im Wiwi-Portal, weitere Informationen zur Anmeldung auf der Instituts-Webseite.

Bachelorstudiengang Maschinenbau 2023 (B.Sc.), Stand 16.08.2023
Modulhandbuch gültig ab Wintersemester 2023/24

143
7.62 Teilleistung: Spanende Fertigung: Entwicklung und Herstellung metallischer Bauteile [T-MACH-112973]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106387 - Menschzentrierte Produktentwicklung und Produktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, Dauer 60 Minuten
7.63 Teilleistung: Strömungslehre [T-MACH-112933]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-106378 - Strömungslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung 2h

Voraussetzungen
keine
Teilleistung: Systematische Werkstoffauswahl [T-MACH-100531]

Verantwortung: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-106386 - Angewandte Materialien

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 5

Lehrveranstaltungen

| SS 2023 | 2174576 | Systematische Werkstoffauswahl | 3 SWS | Vorlesung (V) / 🗣 | Dietrich |
| SS 2023 | 2174577 | Übungen zu 'Systematische Werkstoffauswahl' | 1 SWS | Übung (Ü) / 🗣 | Dietrich |

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-100531 | Systematische Werkstoffauswahl | Dietrich |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung mit einer Dauer von 2 h.

Voraussetzungen
Die Teilleistung T-MACH-112926 - Werkstoffkunde I und II muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112926 - Werkstoffkunde I und II muss erfolgreich abgeschlossen worden sein.

Empfehlungen
Einfache Grundlagen in Werkstoffkunde, Mechanik und Konstruktionslehre wie sie in der Vorlesung Werkstoffkunde I/II vermittelt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systematische Werkstoffauswahl
2174576, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Die wichtigsten Aspekte und Kriterien der Werkstoffauswahl werden behandelt und Leitlinien für eine systematische Vorgehensweise beim Auswahlprozess erarbeitet. Dabei werden u.a. folgende Themen angesprochen:

- Informationen und Einleitung
- Erforderliche Grundlagen der Werkstoffkunde
- Ausgewählte Methoden / Herangehensweisen der Werkstoffauswahl
- Beispiele für Materialindices und Werkstoffeigenschaftsschaubilder
- Zielkonflikt und Formfaktoren
- Verbundwerkstoffe und Werkstoffverbunde
- Hochtemperaturwerkstoffe
- Berücksichtigung von Fertigungseinflüssen
- Werkstoffauswahl für eine bestehende Produktionslinie
- Fehlerhafte Werkstoffauswahl und abzuleitende Konsequenzen
- Zusammenfassung und Fragerunde

Lernziele:

Voraussetzungen:
Wlng SPO 2007 (B.Sc.)

Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein
Wlng (M.Sc.)

Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (30 h) sowie Vor- und Nachbearbeitungszeit zuhause (30 h) und Prüfungsvorbereitungszeit (60 h).

Literaturhinweise
Vorlesungsskriptum; Übungsblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7

Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
7.65 Teilleistung: Teamwork - Zusammenarbeit in Teams erfolgreich gestalten! [T-ZAK-113076]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: M-MACH-106389 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>1130183</th>
<th>Teamwork. Zusammenarbeit in Teams erfolgreich gestalten!</th>
<th>2 SWS</th>
<th>Seminar (S) / 🗣</th>
<th>Schwarz</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Teamwork. Zusammenarbeit in Teams erfolgreich gestalten!
1130183, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Seminar (S) Präsenz

Inhalt

Neben fachlichem Input stehen der Erfahrungsaustausch und die Selbstreflexion durch handlungsorientierte Übungen und moderierte Diskussion im Mittelpunkt der gemeinsamen Arbeit, um den Transfer in Ihre Praxis zu ermöglichen.

TN-Voraussetzung: Die Teilnehmenden müssen zurzeit (an der Hochschule, privat, ehrenamtlich oder beruflich) in einem Team arbeiten. Über dieses Team/die eigene Rolle wird in der Veranstaltung reflektiert und das Team analysiert.

2-3 LP

Organisatorisches
Anmeldung erforderlich über:
7.66 Teilleistung: Technische Grundlagen des Verbrennungsmotors [T-MACH-113005]

Verantwortung: Dr.-Ing. Sören Bernhardt
Dr.-Ing. Heiko Kubach
Jürgen Pfeil
Dr.-Ing. Olaf Toedter
Dr.-Ing. Uwe Wagner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-106382 - Mobilitätssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min.

Voraussetzungen
keine

Anmerkungen
Zu dieser Teilleistung gehört eine Vorlesung (V2) und eine Übung (Ü1).
7.67 Teilleistung: Technische Mechanik I [T-MACH-112904]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106374 - Technische Mechanik
M-MACH-106403 - Orientierungsprüfung

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Dauer
1 Sem.

Version
1

Lehrveranstaltungen
WS 23/24 2161245 Technische Mechanik I 3 SWS Vorlesung (V) / Böhlke

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-100282 Technische Mechanik I Böhlke, Langhoff

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung, 90 Minuten; benotet; Hilfsmittel gemäß Ankündigung

Voraussetzungen
Bestehen der "Übungen zu Technische Mechanik I" (siehe Teilleistung T-MACH-112907)

Modellierbare Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112907 - Übungen zu Technische Mechanik I muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Mechanik I
2161245, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Grundzüge der Vektorrechnung
- Kraftsysteme
- Statik starrer Körper
- Schnittgrößen in Stäben u. Balken
- Haftung und Gleitreibung
- Schwerpunkt u. Massenmittelpunkt
- Arbeit, Energie, Prinzip der virtuellen Verschiebungen
- Statik der undehnbaren Seile
- Elastostatik der Zug-Druck-Stäbe

Literaturhinweise
- Vorlesungsskript
- Hibbeler, R.C: Technische Mechanik 1 - Statik. Prentice Hall. Pearson Studium 2005
7.68 Teilleistung: Technische Mechanik II [T-MACH-112905]

Verantwortung: Prof. Dr.-Ing. Thomas Böhike
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106374 - Technische Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2162250 | Technische Mechanik II | 3 SWS | Vorlesung (V) / 🗣 | Böhike, Langhoff |

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-100283 | Technische Mechanik II | Böhike, Langhoff |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 90 Minuten; benotet; Hilfsmittel gemäß Ankündigung

Voraussetzungen
Bestehen der "Übungen zu Technische Mechanik II" (siehe Teilleistung T-MACH-112908)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112908 - Übungen zu Technische Mechanik II muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Mechanik II
2162250, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Balkenbiegung
- Querkraftschub
- Torsionstheorie
- Spannungs- und Verzerrungszustand in 3D
- Hooke'sches Gesetz in 3D
- Elastizitätstheorie in 3D
- Energiemethoden der Elastostatik
- Näherungsverfahren
- Stabilität elastischer Stäbe

Literaturhinweise
Vorlesungsskript
7.69 Teilleistung: Technische Mechanik III [T-MACH-112906]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106374 - Technische Mechanik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Dauer
1 Sem.

Version
1

Erfolgskontrolle(n)
Schriftliche Prüfung, Dauer: 180 Minuten

Voraussetzungen
Bestehen der "Übungen zu Technische Mechanik III" (siehe Teilleistung T-MACH-112909)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112909 - Übungen zu Technische Mechanik III muss erfolgreich abgeschlossen worden sein.
7.00 Teilleistung: Technische Schwingungslehre [T-MACH-105290]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-106382 - Mobilitätssysteme
M-MACH-106383 - Computational Engineering

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Dozent</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2161212</td>
<td>Römer</td>
<td>2</td>
<td>Technische Schwingungslehre</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2161213</td>
<td>Römer, Keller</td>
<td>2</td>
<td>Übungen zu Technische Schwingungslehre</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-105290</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Schwingungslehre

Inhalt
Grundbegriffe bei Schwingungen, Überlagerung von Schwingungen, komplexe Frequenzgangrechnung.

Einführung in die Rotordynamik: Lavalrotor in starren und elastischen Lagern, Berücksichtigung innerer Dämpfung, Lavalrotor in anisotroper Lagerung, Gleich- und Gegenlauf, Rotoren mit unrunder Welle.

Literaturhinweise

Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Übungen zu Technische Schwingungslehre

Inhalt
Übung des Vorlesungsstoffs
7.71 Teilleistung: Technische Thermodynamik und Wärmeübertragung I [T-MACH-112912]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-106377 - Technische Thermodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
Erfolgreiche Teilnahme an der Übung (T-MACH-112910 – Übungen zu Technische Thermodynamik und Wärmeübertragung I)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112910 - Übungen zu Technische Thermodynamik und Wärmeübertragung I muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Wird zum ersten Mal angeboten im Wintersemester 2024/2025.
7.72 Teilleistung: Technische Thermodynamik und Wärmeübertragung II [T-MACH-112913]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-106377 - Technische Thermodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
Erfolgreiche Teilnahme an der Übung (T-MACH-112911 – Übungen zu Technische Thermodynamik und Wärmeübertragung II)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112911 - Übungen zu Technische Thermodynamik und Wärmeübertragung II muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Wird zum ersten Mal angeboten im Sommersemester 2025.
7.73 Teilleistung: Teilnahme an empirischer Forschung [T-MACH-112935]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-106389 - Schlüsselqualifikationen

Erfolgskontrolle(n)

Voraussetzungen
keine
7.74 Teilleistung: Thermochemische Wandlung und Speicherung von Energie [T-MACH-112962]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106385 - Nachhaltige Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, Dauer 120 Minuten

Voraussetzungen
keine
7.75 Teilleistung: Übungen zu Einführung in die Finite-Elemente-Methode [T-MACH-110330]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
M-MACH-106382 - Mobilitätssysteme
M-MACH-106383 - Computational Engineering

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2162257 | Übungen zu Einführung in die Finite-Elemente-Methode | 1 SWS | Übung (Ü) / 🗣 | Lauff, Langhoff, Böhlke, Klein |

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-110330 | Übungen zu Einführung in die Finite-Elemente-Methode | Böhlke, Langhoff |

Legende: 🖥 Online, 🤓 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Einführung in die Finite-Elemente-Methode" (siehe Teilleistung 76-T-MACH-105320)

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsbögen und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, und für Studierende anderer Fachrichtungen bestehen die Klausurvorleistungen in der Bearbeitung der schriftlichen Übungsaufgaben.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen. Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Einführung in die Finite-Elemente-Methode

| 2162257, SS 2023, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen | Übung (Ü) | Präsenz |

Inhalt

siehe Vorlesung "Einführung in die Finite-Elemente-Methode"

Literaturhinweise

siehe Vorlesung "Einführung in die Finite-Elemente-Methode"
7.76 Teilleistung: Übungen zu Einführung in die Numerische Strömungsmechanik [T-MACH-111033]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Alexander Stroh

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-106382 - Mobilitätssysteme
M-MACH-106383 - Computational Engineering

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2154534</th>
<th>Übung zu Einführung in die Numerische Strömungsmechanik</th>
<th>2 SWS</th>
<th>Übung (Ü) / 🧩</th>
<th>Stroh, Frohnapfel</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2023 | 76-T-MACH-111033 | Übungen zu Einführung in die Numerische Strömungsmechanik | Stroh |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 👥 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Bearbeitung der Hausaufgaben am Rechner.

Voraussetzungen

keine

Anmerkungen

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung für die Klausur: Einführung in die numerische Strömungsmechanik (siehe Teilleistung T-MACH-110362).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übung zu Einführung in die Numerische Strömungsmechanik

2154534, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Einführung und Motivation, Grundgleichungen und Kennzahlen,
- Turbulenz und deren Modellierung (DNS, LES, RANS);
- Numerische Lösung der Navier-Stokes Gleichungen: Diskretisierung und Lösungsverfahren (FDM, FVM), Randbedingungen, Initialbedingungen, Stabilität, Fehler der Numerik und der Modellierung
- Aufbau einer numerischen Strömungssimulation: Pre- und Postprocessing, Validierung, Darstellung der Rechenergebnisse, kritische Bewertung
- Einführung in open-source Simulationstoolbox OpenFOAM: Simulationsaufbau, Netzgenerierung mit OpenFOAM-Werkzeugen, Netzgenerierung mit kommerziellen Softwarepaketen, OpenFOAM-Auswertewerkzeuge, Auswertung in python;
- Einführung in einen forschungsorientierten Strömungslöser für turbulente Strömungen (DNS mit Incompact3d), Simulationsaufbau, statistische Auswertung und Analyse turbulenter Strömungen in MATLAB und python;
- Visualisierung von Simulationsergebnissen in ParaView, Interpretation der Simulationsergebnisse

Die Veranstaltung umfasst eine Vorlesung und ein Rechnerpraktikum. Über die Vergabe der beschränkten Plätze in den begleitenden Rechnerübungen entscheidet das Institut.
7.77 Teilleistung: Übungen zu Grundlagen der Mechatronik [T-MACH-113008]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106380 - Elektrotechnik und Mechatronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Grundlagen der Mechatronik" (siehe Teilleistung T-MACH-112937).

Voraussetzungen
Keine
7.78 Teilleistung: Übungen zu Höhere Mathematik I [T-MATH-100525]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kursnummer</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>0131100</td>
<td>Übungen zu 0131000</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Hettlich</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>0131300</td>
<td>Übungen zu 0131200</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine
7.79 Teilleistung: Übungen zu Höhere Mathematik II [T-MATH-100526]

Verantwortung:
PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung:
KIT-Fakultät für Mathematik

Bestandteil von:
M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Übungen zu</th>
<th>SWS</th>
<th>Leistung</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>0180900</td>
<td>0180800</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hettlich</td>
</tr>
<tr>
<td>SS 2023</td>
<td>0181100</td>
<td>0181000</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Übungen zu Höhere Mathematik II</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7700024</td>
<td></td>
<td>Hettlich, Arens, Griesmaier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingungen werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine
7.80 Teilleistung: Übungen zu Höhere Mathematik III [T-MATH-100527]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102859 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 0131500 Übungen zu 0131400 2 SWS Übung (Ü) Arens</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine.
7.81 Teilleistung: Übungen zu IT und Data Science [T-MACH-112924]

Verantwortung: Prof. Dr.-Ing. Anne Meyer
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-106388 - IT und Data Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine
Teilleistung: Übungen zu Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110333]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
 Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
 KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106383 - Computational Engineering
 M-MACH-106386 - Angewandte Materialien

Teilleistungsart: Studienleistung
Leistungspunkte: 1
Notenskala: best./nicht best.
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161253, WS 23/24</td>
<td>Übungen zu Kontinuumsmechanik der Festkörper und Fluide</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Erfolgreiches Bestehen der Übungen ist Voraussetzung für die Teilnahme an der Klausur "Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110377).

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, und für Studierende der Fachrichtung MATWERK bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsbögen und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsaufgaben.

Voraussetzungen
Keine

Anmerkungen
Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Kontinuumsmechanik der Festkörper und Fluide
2161253, WS 23/24, 1 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt
Siehe Vorlesung "Kontinuumsmechanik der Festkörper und Fluide"

Literaturhinweise
Siehe Vorlesung "Kontinuumsmechanik der Festkörper und Fluide".
Please refer to the lecture "Continuum mechanics of solids and fluids".
7.83 Teilleistung: Übungen zu Rechnergestützte Kontinuumsmechanik [T-MACH-112996]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-106383 - Computational Engineering

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erfolgreiche Bearbeitung der Übungsblätter. Details werden in der ersten Vorlesung "Rechnergestützte Kontinuumsmechanik" bekanntgegeben.

Voraussetzungen
keine
7.84 Teilleistung: Übungen zu Technische Mechanik I [T-MACH-112907]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106374 - Technische Mechanik

Teilleistungsart Studienleistung
Leistungspunkte 1
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Modulcode</th>
<th>Veranstaltungsbezeichnung</th>
<th>Leistungspunkte</th>
<th>Turnuszeitraum</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2161246</td>
<td>Übungen zu Technische Mechanik I</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Kehr, Klein, Böhlke</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Prüfungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>Leistungspunkte</th>
<th>Turnuszeitraum</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-100528</td>
<td>Übungen zu Technische Mechanik I</td>
<td></td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🟠 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung von Übungsblättern. Details dazu werden in der ersten Vorlesung "Technische Mechanik I" bekanntgegeben.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-112904).

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik I

2161246, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Siehe Vorlesung Technische Mechanik I.

Literaturhinweise
Siehe Vorlesung Technische Mechanik I.
7.85 Teilleistung: Übungen zu Technische Mechanik II [T-MACH-112908]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-106374 - Technische Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2162251 | Übungen zu Technische Mechanik II | 2 SWS | Übung (Ü) / 🗣 | Dyck, Sterr, Böhlke |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-100284 | Übungen zu Technische Mechanik II | Böhlke, Langhoff |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung von Übungsblättern. Details dazu werden in der ersten Vorlesung "Technische Mechanik II" bekanntgegeben.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-112905).

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik II

2162251, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierenportal anzeigen

Inhalt

Siehe Vorlesung Technische Mechanik II

Literaturhinweise

Siehe Vorlesung Technische Mechanik II
7.86 Teilleistung: Übungen zu Technische Mechanik III [T-MACH-112909]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-106374 - Technische Mechanik

Erfolgskontrolle(n)
Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik III" (siehe Teilleistung T-MACH-112906).

Voraussetzungen
keine
7.87 Teilleistung: Übungen zu Technische Thermodynamik und Wärmeübertragung I [T-MACH-112910]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-106377 - Technische Thermodynamik

Erfolgskontrolle(n)
Erfolgreiche Teilnahme an schriftlichen Vorleistungstests.

Anmerkungen
Wird zum ersten Mal angeboten im Wintersemester 2024/2025.
7.88 Teilleistung: Übungen zu Technische Thermodynamik und Wärmeübertragung II [T-MACH-112911]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-106377 - Technische Thermodynamik

Erfolgskontrolle(n)
Erfolgreiche Teilnahme an schriftlichen Vorleistungstests.

Anmerkungen
Wird zum ersten Mal angeboten im Sommersemester 2025.
7.89 Teilleistung: Verkehrswesen [T-BGU-113007]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-MACH-106382 - Mobilitätssysteme

Erfolgskontrolle(n)
Schriftliche Prüfung mit 60 Minuten

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine
7.90 Teilleistung: Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK [T-ZAK-112655]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr. Christine Mielke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Christine Myglas</td>
</tr>
<tr>
<td>Einrichtung:</td>
<td>Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten. In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen. Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden. Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
7.91 Teilleistung: Vertiefungsmodul - Global Cultures - Selbstverbuchung [T-ZAK-112658]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten.
In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen.
Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
7.92 Teilleistung: Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK [T-ZAK-112657]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten. In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen. Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden. Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung ‘Mündliche Prüfung’ ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
7.93 Teilleistung: Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK [T-ZAK-112656]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten. In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen. Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden. Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
7.94 Teilleistung: Vertiefungsmodul - Selbstverbuchung BeNe [T-ZAK-112346]

Verantwortung: Christine Myglas
Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form mehrerer Teilleistungen, die in der Regel eine Präsentation der (Gruppen-)Projektarbeit, eine schriftliche Ausarbeitung der (Gruppen-)Projektarbeit sowie eine individuelle Hausarbeit, ggf. mit Anhängen umfassen (Prüfungsleistungen anderer Art gemäß Satzung § 5 Absatz 3 Nr. 3 bzw. § 7 Absatz 7).
Die Präsentation wird in der Regel für Praxispartner geöffnet, die schriftliche Ausarbeitung wird ebenfalls an Praxispartner weitergegeben.

Voraussetzungen
Die aktive Teilnahme in allen drei Pflichtbestandteilen.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

• Zentrum für Angewandte Kulturwissenschaft und Studium Generale
• ZAK Begleitstudium

Empfehlungen
Kenntnisse aus 'Grundlagenmodul ' und 'Wahlmodul ' sind hilfreich.
Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Projektseminar festgelegt.
7.95 Teilleistung: Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK [T-ZAK-112654]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten. In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen. Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden. Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
7.96 Teilleistung: Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe [T-ZAK-112347]

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Notenskala: Drittelnoten
Version: 1

Erfolgskontrolle(n)
Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen
Die Inhalte des Grundlagenmoduls sind hilfreich.

7.97 Teilleistung: Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe [T-ZAK-112350]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen
Die Inhalte des Grundlagenmoduls sind hilfreich.
7.98 Teilleistung: Wahlmodul - Nachhaltigkeitsbewertung von Technik - Selbstverbuchung BeNe [T-ZAK-112348]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Erfolgskontrolle(n)
Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen
Die Inhalte des Grundlagenmoduls sind hilfreich.

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Vertiefungsbauzein festgelegt.
7.99 Teilleistung: Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe [T-ZAK-112349]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Erfolgskontrolle(n)
Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen
Die Inhalte des Grundlagenmoduls sind hilfreich.
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>4</th>
<th>Notenskala</th>
<th>Drittelnoten</th>
<th>Turnus</th>
<th>Jedes Wintersemester</th>
<th>Dauer</th>
<th>1 Sem.</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, Dauer ca. 30 Minuten

Voraussetzungen
Keine
7.101 Teilleistung: Werkstoffeinsatz bei hohen Temperaturen [T-MACH-111258]

Verantwortung: Prof. Dr.-Ing. Bronislava Gorr
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-106386 - Angewandte Materialien

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2194724</th>
<th>Werkstoffeinsatz bei hohen Temperaturen</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣 Gorr</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>76-T-MACH-111258</th>
<th>Werkstoffeinsatz bei hohen Temperaturen</th>
<th>Gorr</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🎯 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
keine

Empfehlungen
Kenntnisse aus der Grundvorlesung Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffeinsatz bei hohen Temperaturen

2194724, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Mündliche Prüfung (ca. 30 Min)

Lehrinhalt:
- Anwendungsgebiete und Anforderungsprofile für Hochtemperaturwerkstoffe
- Grundlagen der Hochtemperaturoxidation
- Einflüsse der Gasatmosphäre auf das Hochtemperaturkorrosionsverhalten
- Schutzmaßnahmen gegen Hochtemperaturkorrosion
- Einsinnige mechanische Belastung bei hohen Temperaturen: Kriechen
- Zyklische mechanische Belastung: Hochtemperaturermüdung
- Komplexe mechanische Belastung bei hohen Temperaturen: Thermomechanische Ermüdung
- Metallische Hochtemperaturwerkstoffe: Stähle, Ni-Basislegierungen, Co-Basislegierungen, ODS-Legierungen, Refraktäre Legierungen
- Intermetallische Phase
- Keramiken und Verbundwerkstoffe

Qualifikationsziele:
Die Studierenden sollen die Fähigkeit erwerben, werkstofftechnische Fragestellungen bei Hochtemperaturanwendung in ingenieurwissenschaftlicher Art zu vertiefen und zu beschreiben. Sie sollen praxisbezogene Aufgaben systematisch lösen können. Darüber hinaus soll den Studierenden ein Bewusstsein für den produktspezifischen Stoffkreislauf und der ökologischen Tragweite der Verfügbarkeit verbesserter Hochtemperaturwerkstoffe vermittelt werden.

Empfehlungen:
Kenntnisse aus der Grundvorlesung Werkstoffkunde

Organisatorisches
Anmeldung verbindlich bis zum 14.04.2023 unter bronislava.gorr@kit.edu
Literaturhinweise

- J. Young, High temperature oxidation and corrosion of metals, Elsevier, 2008
- Skript in elektronischer Form verfügbar.
7.102 Teilleistung: Werkstoffkunde I und II [T-MACH-112926]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-106376 - Fertigungstechnik und Werkstoffkunde

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs / Übungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2174560</td>
<td>Werkstoffkunde II für mach, phys</td>
<td>3 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2174563</td>
<td>Übungen zu Werkstoffkunde II für mach, phys</td>
<td>1 SWS</td>
<td>Übung (Ü) / Präsenz</td>
<td>Heilmaier, Kauffmann</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2173550</td>
<td>Werkstoffkunde I für mach, phys</td>
<td>4 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Pundt, Kauffmann</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2173552</td>
<td>Übungen zu Werkstoffkunde I für mach, phys</td>
<td>1 SWS</td>
<td>Übung (Ü) / Präsenz</td>
<td>Pundt, Kauffmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-105145</td>
<td>Werkstoffkunde I, II</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-105145-2</td>
<td>Werkstoffkunde I, II</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-105145-W</td>
<td>Werkstoffkunde I & II (Wiederholer)</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105145</td>
<td>Werkstoffkunde I, II</td>
<td>Heilmaier, Pundt</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕒 Präsenz/Online gemischt, 🗓 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, Dauer ca. 25 Minuten

Voraussetzungen

Vorbedingung für mündliche Prüfung: Studienleistung T-MACH-112929 Werkstoffkunde, Praktikum muss bestanden sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112929 - Werkstoffkunde, Praktikum muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffkunde II für mach, phys

2174560, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

Themen:
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können typische Vertreter der einzelnen Werkstoffhauptgruppen nennen und die grundsätzlichen Unterschiede zwischen den einzelnen Vertreter beschreiben.

Die Studierenden sind in der Lage die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.

Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ableisen und daraus die Gefügeentwicklung ableiten.

Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Voraussetzungen:
Werkstoffkunde I

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Nachweis:
Kombiniert mit Werkstoffkunde I, mündlich; ca. 30 Minuten

Voraussetzung für die Zulassung zur Prüfung ist eine erfolgreiche Teilnahme am Werkstoffkundepraktikum.

Organisatorisches
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise
Vorlesungsskript, Vorlesungsvideos, Übungsblätter, Übungsvideos
Weiterführende Informationen gibt es hier:
https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC117341509

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei im KIT-Netz erhältlich)

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei im KIT-Netz erhältlich)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften (frei zugänglich)

Übungen zu Werkstoffkunde II für mach, phys
2174563, SS 2023, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Lernziele:

Die Studierenden sind in der Lage, das in der Vorlesung und im Selbststudium erarbeitete Wissen anzuwenden und auf gegebene Fragestellungen zu übertragen.

Sie können selbstständig auf Basis grundlegender mathematischer Zusammenhänge Berechnungen zu werkstoffkundlichen Fragestellungen ausführen, wobei Sie in der Lage sind, zu erkennen, welche mathematischen Formeln für die Berechnungen herangezogen werden müssen.

Die Studierenden können werkstoffkundliche Zusammenhänge qualitativ und quantitativ diskutieren und sind in der Lage, diese Zusammenhänge mit eigenen Worten wiederzugeben und zu präsentieren.

Voraussetzungen:

Vorlesung zu Werkstoffkunde II

Organisatorisches

Weitere Informationen finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise

Vorlesungsskript, Vorlesungsvideos, Übungsblätter, Übungsvideos

Weiterführende Informationen gibt es hier:

https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC117341509

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

http://www.ifw-dresden.de/institutes/imw/lectures/pwe

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
Inhalt
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.
Die Studierenden können die Eigenschaftsprofile beschreiben und Anwendungsgebiete der wichtigsten Ingenieurswerkstoffe nennen.
Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung beschreiben und deren Auswertung erläutern. Sie können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Voraussetzungen:
Keine, Empfehlungen: Keine.

Arbeitsaufwand:
Präsenzzeit: 53 Stunden
Selbststudium: 157 Stunden

Literaturhinweise
Vorlesungsskript; Videos, Übungsaufgabenblätter.
Shackelford, J.F., Werkstofftechnologie für Ingenieure, Verlag Pearson Studium, 2005
Skolaut, W., Maschinenbau (Ein Lehrbuch für das ganze Bachelor-Studium), Springer, Heidelberg 2014
Gottstein, G., Physikalische Grundlagen der Materialkunde, 3 Aufl., Springer Verlag, Berlin, 2007

Übungen zu Werkstoffkunde I für mach, phys
2173552, WS 23/24, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Voraussetzungen:
Vorlesung Werkstoffkunde I

Arbeitsaufwand:
21 Präsenzstunden, 21 Stunden Vor-/Nacharbeit

Literaturhinweise
Vorlesungsskript zu WK1
7.103 Teilleistung: Werkstoffkunde, Praktikum [T-MACH-112929]

Verantwortung: Prof. Dr. Astrid Pundt
Dr. rer. nat. Stefan Wagner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-106376 - Fertigungstechnik und Werkstoffkunde

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2023 2174597 Experimentelles Praktikum in Werkstoffkunde 3 SWS Praktikum (P) / 🗣 Wagner, Heilmaier, Pundt, Dietrich, Guth

Prüfungsveranstaltungen

SS 2023 76-T-MACH-105146 Werkstoffkunde Praktikum Heilmaier, Pundt

Legende: 🖥 Online, 🌐 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelles Praktikum in Werkstoffkunde
2174597, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz

Inhalt
Durchführung und Auswertung von Laborversuchen zu folgenden fünf Themenblöcken:

Mechanische Werkstoffprüfung
Nichtmetallische Werkstoffe
Gefüge und Eigenschaften
Schwingende Beanspruchung / Ermüdung
Fertigungstechnische Werkstoffbeeinflussung

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.
Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung benennen, ihre Durchführung und die notwendigen Auswertemethoden beschreiben und können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.
Die Studierenden sind in der Lage zur Klärung werkstoffkundlicher Fragestellungen geeignete Versuche auszuwählen, sie können die praktischen Versuchsabläufe beschreiben und diese Versuche selbst durchführen und können aus den gemessenen und erhobenen Daten entsprechende Kennwerte berechnen und diese interpretieren.

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzzeit: 22 Stunden
Selbststudium: 68 Stunden

Organisatorisches
Blockveranstaltung. Infos durch Aushang am IAM-WK und in der VL WK II. Anmeldung erforderlich.
Literaturhinweise
Praktikumsskriptum

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
7.104 Teilleistung: Werkstoffprozesstechnik [T-MACH-112986]

Verantwortung: Dr. Joachim Binder
Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-106386 - Angewandte Materialien

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2173540 | Werkstoffprozesstechnik | 3 SWS | Vorlesung / Übung (VÜ) / Präsenz/Online gemischt | Liebig, Binder |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündlich Prüfung, ca. 25 Minuten

Voraussetzungen

eine

Anmerkungen

Diese Teilleistung ist für den Studiengang MACH und umfasst lediglich die Vorlesung. Das Praktikum ist kein Bestandteil.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffprozesstechnik
2173540, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt
Inhalt

Einführung

Polymere:
Rohstoffe, Materialgesetze, Modelle, Rheologie, Urformen, Umformen, Fügeverfahren

Keramik:
Rohstoffe, Pulversynthese, Additive und Masseaufbereitung, Urformen und Umformen von Glas, Urformgebung, abtragende Verfahren, Stoffeigenschaften ändern, Endbearbeitung

Metalle:
Rohstoffe, Materialgewinnung und -aufbereitung, Urformen, Umformen, Trennen, Fügen

Halbleiter:
Rohstoffe, Urformen, Stoffeigenschaft ändern

Zusammenfassung

Lernziele:
Die Studierenden sind in der Lage, die verschiedenen Verfahren der Werkstoff- und Fertigungstechnik zu benennen, die ihnen zugrundeliegenden Prinzipien zu beschreiben und diese den Hauptgruppen der Fertigungsverfahren zuzuordnen.

Die Studierenden können Fertigungsverfahren anhand gegebener Fragestellungen oder vorgegebener Anwendungsszenarien auswählen und beachten dabei werkstoffspezifische Randbedingungen, die sie aus den in vorausgehenden Modulen erarbeiteten werkstoffkundlichen Grundlagen ableiten können.

Die Studierenden sind in der Lage, mit fettigungstechnischen Einrichtungen im Labormaßstab einfache Experimente durchzuführen, Korrelationen zwischen verwendeten Fertigungsparametern und den resultierenden Materialeigenschaften zu ziehen, indem sie diese mit geeigneten Prüfverfahren analysieren und dazu jene geeignet auswählen, auswerten und dokumentieren.

Voraussetzungen:
keine, Empfehlung: Modul "Materialwissenschaftliche Grundlagen" sollte abgeschlossen sein.

Arbeitsaufwand:
Der Arbeitsaufwand für den Studiengang MatWerk für die Vorlesung „Werkstoffprozesstechnik“ beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (36 h) inkl. der integrierten Übungen, Präsenzzeit im Praktikum (12 h), Vor- und Nachbearbeitungszeit zuhause (72 h), und Prüfungsvorbereitungszeit (60 h).

Der Arbeitsaufwand für den Studiengang MACH für die Vorlesung „Werkstoffprozesstechnik“ beträgt pro Semester 120 h und besteht aus Präsenz in den Vorlesungen (36 h) inkl. der integrierten Übungen, Vor- und Nachbearbeitungszeit zuhause (24 h), und Prüfungsvorbereitungszeit (60 h).

Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung

Presentation slides and additional lecture notes are handed out during the lecture, additional literature recommendations given
7.105 Teilleistung: Wissenschaftliches Arbeiten und empirische Forschungsmethoden [T-MACH-112930]

Verantwortung: Prof. Dr.-Ing. Barbara Deml

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: M-MACH-106389 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Unbenotete schriftliche Klausur (bestanden/ nicht bestanden), Dauer 60 Minuten. Die Klausur kann so oft wiederholt werden, bis sie bestanden wurde.

Voraussetzungen
keine
7.106 Teilleistung: Workshop zu Maschinenkonstruktionslehre A [T-MACH-112981]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-106375 - Maschinenkonstruktionslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 2145171</td>
<td>Maschinenkonstruktionslehre A - Workshop</td>
<td>2</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinenkonstruktionslehre A - Workshop
2145171, WS 23/24, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Literaturhinweise

- Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
7.107 Teilleistung: Workshop zu Maschinenkonstruktionslehre B [T-MACH-112982]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt.

Aus dem Bereich der Maschinenkonstruktionslehre muss eine CAD-Aufgabe bearbeitet werden. Diese wird im Rahmen einer Abnahme geprüft.

Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Keine
7.108 Teilleistung: Workshop zu Maschinenkonstruktionslehre C [T-MACH-112983]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-106375 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDIENLEISTUNG</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt.

Aus dem Bereich der Maschinenkonstruktionslehre muss eine CAD-Aufgabe bearbeitet werden. Diese wird im Rahmen einer Abnahme geprüft.

Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine