Modulhandbuch
Maschinenbau für Erasmus-Studierende
SPO Zeitstudium
Wintersemester 2022/23
Stand 29.09.2022

KIT-FAKULTÄT FÜR MASCHINENBAU
Inhaltsverzeichnis

1. Aufbau des Studiengangs ... 9
 1.1. Leistungen der KIT-Fakultät für Maschinenbau .. 9
 1.2. Leistungen anderer Fakultäten und Überfachliche Qualifikationen ... 9

2. Module ... 10
 2.1. Schwerpunkt Energie- und Umweltechnik - M-MACH-104848 ... 10
 2.2. Schwerpunkt Fahrzeugtechnik - M-MACH-104849 .. 12
 2.3. Schwerpunkt Ingenieurwissenschaftliche Grundlagen - M-MACH-104847 .. 14
 2.4. Schwerpunkt Mechatronik und Mikrosystemtechnik - M-MACH-104850 ... 15
 2.5. Schwerpunkt Produktentwicklung und Konstruktion - M-MACH-104851 ... 17
 2.6. Schwerpunkt Produktionstechnik - M-MACH-104852 .. 19
 2.7. Schwerpunkt Theoretischer Maschinenbau - M-MACH-104853 ... 21
 2.8. Schwerpunkt Werkstoffe und Strukturen für Hocheistungssysteme - M-MACH-104854 22
 2.9. Spezialisierung im Maschinenbau - M-MACH-104878 ... 24
 2.10. Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik - M-MACH-104882 26
 2.11. Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften - M-MACH-105405 28
 2.12. Teilleistungen von der KIT-Fakultät für Chemieingenieurwesen - M-MACH-105100 29
 2.13. Teilleistungen von der KIT-Fakultät für Informatik - M-MACH-104883 ... 30
 2.15. Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften - M-MACH-104884 32
 2.16. Wahlmodul Allgemeiner Maschinenbau - M-MACH-105134 .. 33

3. Teilleistungen .. 35
 3.1. Abgas- und Schmieröalanalyse am Verbrennungsmotor - T-MACH-105173 ... 35
 3.2. Advanced Materials Thermodynamics: Experiments and Modelling - T-MACH-108689 36
 3.4. Aktoren und Sensoren in der Nanotechnik - T-MACH-105238 ... 38
 3.5. Alternative Antriebe für Automobile - T-MACH-105655 .. 39
 3.6. Angewandte Tribologie in der industriellen Produktentwicklung - T-MACH-105215 40
 3.7. Angewandte Werkstoffsimulation - T-MACH-105527 ... 41
 3.8. Antriebsstrang mobiler Arbeitsmaschinen - T-MACH-105307 ... 43
 3.9. Antriebssysteme und Möglichkeiten zur Effizienzsteigerung - T-MACH-105451 ... 45
 3.10. Antriebssystemtechnik B: Stationäre Antriebssysteme - T-MACH-105526 .. 46
 3.11. Arbeitstechniken der Materialwissenschaft und Werkstofftechnik - T-MACH-100288 47
 3.13. Arbeitswissenschaft II: Arbeitsorganisation - T-MACH-105519 .. 50
 3.15. Atomistische Simulation und Molekulardynamik - T-MACH-105308 .. 53
 3.16. Aufbau und Eigenschaften verschleißfester Werkstoffe - T-MACH-102141 .. 55
 3.17. Aufbau und Eigenschaften von Schutzschichten - T-MACH-105150 ... 57
 3.18. Ausgewählte Kapitel der Verbrennung - T-MACH-105428 .. 59
 3.19. Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen - T-MACH-105462 60
 3.20. Ausgewählte Themen virtueller Ingenieurssanwendungen - T-MACH-105381 ... 61
 3.21. Auslegung hochbelasteter Bauteile - T-MACH-105310 .. 62
 3.22. Auslegung mobiler Arbeitsmaschinen - T-MACH-105311 ... 63
 3.23. Auslegung Mobiler Arbeitsmaschinen - Vorlesung - T-MACH-108887 .. 65
 3.24. Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben - T-MACH-110958 ... 66
 3.25. Automatisierte Produktionsanlagen - T-MACH-108844 .. 68
 3.26. Bahnsystemtechnik - T-MACH-106424 ... 70
 3.27. Betriebsteile für Verbrennungsmotoren - T-MACH-105184 .. 72
 3.28. Bildgebende Verfahren in der Medizin I - T-ETIT-101930 .. 73
 3.29. Bildgebende Verfahren in der Medizin II - T-ETIT-101931 ... 74
 3.30. Bioelektrische Signale - T-ETIT-101956 .. 75
 3.31. Biomedizinische Messtechnik I - T-ETIT-106492 ... 76
 3.32. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I - T-MACH-100966 77
 3.33. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II - T-MACH-100967 78
 3.34. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III - T-MACH-100968 79
 3.35. Bionik für Ingenieure und Naturwissenschaftler - T-MACH-102172 ... 80
 3.36. BUS-Steuerungen - T-MACH-102150 .. 81
 3.37. BUS-Steuerungen - Vorlesung - T-MACH-108889 ... 83
 3.38. CAD-Praktikum CATIA - T-MACH-102185 ... 84
Inhaltsverzeichnis

3.39. CAD-Praktikum NX - T-MACH-102187 ... 86
3.40. CAE-Workshop - T-MACH-105212 ... 88
3.41. CATIA für Fortgeschrittene - T-MACH-105312 ... 90
3.42. CFD in der Energietechnik - T-MACH-105407 ... 92
3.43. CFD-Praktikum mit OpenFOAM - T-MACH-105313 93
3.44. Chemische, physikalische und werkstoffkundliche Aspekte von Kunststoffen in der Mikrotechnik - T-MACH-10216995
3.45. Computational Homogenization on Digital Image Data - T-MACH-109302 96
3.46. Computational Intelligence - T-MACH-105314 .. 97
3.47. Cryogenic Engineering - T-CIWVT-108915 .. 98
3.48. Datenanalyse für Ingenieure - T-MACH-105694 ... 99
3.49. Der Betrieb von Kraftwerken unter volatile und unberechenbaren Marktbedingungen - T-MACH-112238 101
3.50. Design of a Jet Engine Combustion Chamber - T-CIWVT-110571 103
3.51. Design und Entwicklung eines MRT-Probenkubos - T-MACH-106407 104
3.52. Die Eisenbahn im Verkehrsmarkt - T-MACH-105540 105
3.53. Differentialgleichungen - Klausur - T-MATH-103323 107
3.54. Differenzenverfahren zur numerischen Lösung von thermischen und fluid-dynamischen Problemen - T-MACH-105391
3.55. Digital microstructure characterization and modeling - T-MACH-110431 109
3.56. Digitale Regelungen - T-MACH-105317 ... 110
3.57. Digitaltechnik - T-ETIT-101918 .. 112
3.58. Dimensionierung mit Verbundwerkstoffen - T-MACH-108721 113
3.59. Do it! – Service-Learning für angehende Maschinenbauingenieure - T-MACH-106700
3.60. Dynamik des Kfz-Antriebsstrangs - T-MACH-105226 116
3.62. Einführung in die Finite-Elemente-Methode - T-MACH-105320 119
3.63. Einführung in die Kernenergie - T-MACH-105525 120
3.64. Einführung in die Materialtheorie - T-MACH-105321 121
3.65. Einführung in die Mechatronik - T-MACH-100535 122
3.66. Einführung in die Mehrkörperversuch - T-MACH-105209 123
3.67. Einführung in die Technische Mechanik I: Statik - T-MACH-108808 124
3.68. Einführung in die Technische Mechanik I: Statik und Festigkeitslehre - T-MACH-102208
3.69. Einführung in nichtlineare Schwingungen - T-MACH-105439 126
3.70. Elastizität als Feldtheorie - T-MACH-112215 .. 128
3.72. Electric Power Transmission & Grid Control - T-ETIT-110883 130
3.73. Electrical Machines - T-ETIT-100807 ... 131
3.74. Elektrische Maschinen und Stromrichter - T-ETIT-101954 132
3.75. Elektrische Schienenfahrzeuge - T-MACH-102121 133
3.76. Elektroenergiesysteme - T-ETIT-101923 ... 134
3.77. Elektronische Schaltungen - T-ETIT-109318 ... 135
3.78. Elektrotechnik und Elektronik - T-ETIT-109820 136
3.79. Elektrotechnik und Elektronik - T-ETIT-108386 137
3.80. Energie- und Prozesstechnik für Wirtschaftsingenieure I - T-MACH-102211
3.81. Energie- und Prozesstechnik für Wirtschaftsingenieure II - T-MACH-102212
3.82. Energiebedarf von Gebäuden – Grundlagen und Anwendungen mit Übungen zur Gebäudesimulation - T-MACH-105715
3.83. Energiesysteme I - Regenerative Energien - T-MACH-105408 140
3.84. Energiesysteme II: Grundlagen der Reaktorphysik - T-MACH-105550 141
3.85. Energieumsetzung und Wirkungsgradsteigerung bei Verbrennungsmotoren - T-MACH-105564
3.86. Energy from Biomass - T-CIWVT-110576 ... 144
3.88. Energy Storage and Network Integration - T-ETIT-104644 147
3.89. Entrepreneurship - T-WIWI-102864 .. 148
3.90. Ermüdungsverhalten geschweißter Bauteile und Strukturen - T-MACH-105984
3.91. Ersatz menschlicher Organe durch technische Systeme - T-MACH-105228
3.92. Experimentelle Dynamik - T-MACH-105514 ... 151
3.93. Experimentelle Strömungsmechanik - T-MACH-105512 153
3.94. Experimentelles metallographisches Praktikum - T-MACH-105447 157
3.95. Experimentelles Schweißechnisches Praktikum, in Gruppen - T-MACH-102099
3.96. Fahreigenschaften von Kraftfahrzeugen I - T-MACH-105152 160
3.97. Fahreigenschaften von Kraftfahrzeugen II - T-MACH-105153 161
3.98. Fahrzeugkomfort und -akustik I - T-MACH-105154 162
3.99. Fahrzeugkomfort und -akustik II - T-MACH-105155 166
Inhaltsverzeichnis

3.100. Fahrzeuggleichtbau - Strategien, Konzepte, Werkstoffe - T-MACH-105237 ... 168
3.101. Fahrzeugreifen- und Räderentwicklung für PKW - T-MACH-102207 ... 170
3.102. Fahrzeugsehnen - T-MACH-105218 .. 171
3.103. Faser verstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung - T-MACH-105535 .. 172
3.104. FEM Workshop - Stoffgesetze - T-MACH-105392 .. 174
3.105. Fertigungsprozesse der Mikrosystemtechnik - T-MACH-102166 ... 175
3.106. Fertigungstechnik - T-MACH-102105 ... 176
3.107. Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion - T-MACH-107667 .. 178
3.108. Financial Analysis - T-WIWI-102900 ... 180
3.109. Finite-Elemente Workshop - T-MACH-105417 ... 181
3.111. Fluid-Festkörper-Wechselwirkung - T-MACH-105474 ... 183
3.112. Fluidtechnik - T-MACH-102093 ... 184
3.114. Funktionskeramiken - T-MACH-105179 ... 187
3.115. Fusionstechnologie - T-MACH-110331 ... 188
3.116. Fusionstechnologie A - T-MACH-105411 ... 189
3.117. Fusionstechnologie B - T-MACH-105433 ... 191
3.118. Gas- und Dampfkraftwerke - T-MACH-105444 ... 193
3.119. Gasdynamik - T-MACH-105533 ... 194
3.120. Gehirn und Zentrales Nervensystem: Struktur, Informationstransfer, Reizverarbeitung, Neurophysiologie und Therapie - T-INFO-101262 ... 196
3.121. Gießereikunde - T-MACH-105157 ... 198
3.123. Grundlagen der Energietechnik - T-MACH-105220 ... 202
3.124. Grundlagen der Fahrzeugtechnik I - T-MACH-100092 ... 204
3.125. Grundlagen der Fahrzeugtechnik II - T-MACH-102117 ... 206
3.126. Grundlagen der globalen Logistik - T-MACH-105379 ... 208
3.127. Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie - T-MACH-102111 ... 210
3.128. Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren - T-MACH-105044 ... 211
3.129. Grundlagen der Medizin für Ingenieure - T-MACH-105235 ... 212
3.130. Grundlagen der Mess- und Regelungstechnik - T-MACH-104745 ... 213
3.131. Grundlagen der Mikrosystemtechnik I - T-MACH-105182 ... 216
3.132. Grundlagen der Mikrosystemtechnik II - T-MACH-105183 ... 217
3.133. Grundlagen der nichtlinearen Kontinuumsmechanik - T-MACH-105324 ... 218
3.134. Grundlagen der Reaktorsicherheit für den Betrieb und Rückbau von Kernkraftwerken - T-MACH-105530 ... 219
3.135. Grundlagen der Technischen Logistik I - T-MACH-109919 ... 220
3.136. Grundlagen der Technischen Logistik II - T-MACH-109920 ... 222
3.137. Grundlagen Finite Elemente - T-BGU-100047 ... 224
3.138. Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I - T-MACH-102116 ... 225
3.139. Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II - T-MACH-102119 ... 226
3.140. Grundsätze der Nutzfahrzeugentwicklung - T-MACH-111389 ... 228
3.141. Grundsätze der PKW-Entwicklung I - T-MACH-105162 ... 230
3.142. Grundsätze der PKW-Entwicklung II - T-MACH-105163 ... 232
3.143. Hands-on BioMEMS - T-MACH-106746 ... 234
3.144. High Performance Computing - T-MACH-105398 ... 235
3.146. Hybride und elektrische Fahrzeuge - T-ETIT-100784 ... 238
3.147. Hydraulische Strömungsmaschinen - T-MACH-105326 ... 239
3.148. Industrieanorganik - T-MACH-105375 ... 241
3.149. Industrielle Fertigungswirtschaft - T-MACH-105388 ... 242
3.150. Informationssysteme in Logistik und Supply Chain Management - T-MACH-102128 ... 243
3.151. Informationsverarbeitung in Sensornetzwerken - T-INFO-101466 ... 244
3.152. Innovative nukleare Systeme - T-MACH-105404 ... 245
3.153. Innovatives Projekt - T-MACH-109185 ... 246
3.154. Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen - T-MACH-105188 ... 247
3.155. Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 - T-MACH-108849 ... 250
3.156. Introduction to Neutron Cross Section Theory and Nuclear Data Generation - T-MACH-105466 ... 252
3.157. IoT Plattform für Ingenieursanwendungen - T-MACH-106743 ... 254
3.158. Keramik-Grundlagen - T-MACH-100287 ... 256
3.159. Keramische Faserverbundwerkstoffe - T-MACH-106722 ... 257
3.160. Kernkraft und Reaktortechnologie - T-MACH-110332 ... 258
3.161. Kernkraftwerkstechnik - T-MACH-105402 ... 259
3.162. Kognitive Automobile Labor - T-MACH-105378 ... 261
3.163. Kognitive Systeme - T-INFO-101356 ... 263
3.164. Kohlekraftwerkstechnik - T-MACH-105410 ... 267
3.165. Konstruieren mit Polymerwerkstoffen - T-MACH-105330 ... 268
3.166. Konstruktionswerkstoffe - T-MACH-100293 .. 270
3.167. Konstruktiver Leichtbau - T-MACH-105221 .. 271
3.168. Kontaktmechanik - T-MACH-105786 ... 273
3.169. Kraftfahrzeuglaboratorium - T-MACH-105222 ... 275
3.170. Kühlung thermisch hochbelasteter Gasturbinenkomponenten - T-MACH-105414 277
3.171. Lager- und Distributionssysteme - T-MACH-105174 ... 278
3.172. Lasereinsatz im Automobilbau - T-MACH-105164 .. 279
3.173. Leadership and Management Development - T-MACH-105231 281
3.174. Lehrlabor: Energie technik - T-MACH-105331 .. 282
3.175. Liberalised Power Markets - T-WIWI-107043 ... 285
3.176. Lichttechnik - T-ETIT-100772 .. 287
3.177. Liquid Transportation Fuels - T-CIVVT-111095 ... 288
3.178. Logistics and Supply Chain Management - T-WIWI-102870 289
3.179. Logistik und Supply Chain Management - T-MACH-110771 290
3.182. Magnetohydrodynamik - T-MACH-105426 ... 293
3.183. Magnet-Technologie für Fusionsreaktoren - T-MACH-105434 294
3.184. Management Accounting 1 - T-WIWI-102800 .. 296
3.185. Management- und Führungstechniken - T-MACH-105440 298
3.186. Maschinen und Prozesse - T-MACH-105208 .. 299
3.187. Maschinen und Prozesse, Vorleistung - T-MACH-105232 .. 301
3.188. Maschinendynamik - T-MACH-105210 ... 303
3.189. Maschinendynamik II - T-MACH-105224 .. 305
3.190. Materialfluss in Logistiksystemen - T-MACH-102151 .. 306
3.191. Materialphysik und Metalle - T-MACH-100285 .. 308
3.192. Materialwissenschaftliches Seminar - T-MACH-100290 ... 311
3.193. Mathematische Methoden der Dynamik - T-MACH-105293 312
3.194. Mathematische Methoden der Mikromechanik - T-MACH-110378 314
3.195. Mathematische Methoden der Schwingungsllehre - T-MACH-105294 315
3.196. Mathematische Methoden der Strömungslehre - T-MACH-105295 316
3.197. Mathematische Modelle und Methoden der Theorie der Verbrennung - T-MACH-105419 318
3.198. Mathematische Modelle und Methoden für Produktionssysteme - T-MACH-105189 319
3.199. Mechanik und Festigkeitslehre von Kunststoffen - T-MACH-105333 321
3.200. Mechanik von Mikrosystemen - T-MACH-105334 .. 322
3.201. Mechatronik in der Robotik - T-INFO-101294 ... 323
3.203. Mechatronische Systeme und Produkte - T-MACH-105574 327
3.204. Mensch-Maschine-Interaktion - T-INFO-101266 .. 328
3.205. MesstechnikII - T-MACH-105335 .. 331
3.206. Messtechnisches Praktikum - T-MACH-105300 .. 333
3.207. Metalle - T-MACH-105468 .. 334
3.208. Methoden der Signalverarbeitung - T-ETIT-100694 ... 336
3.209. Methoden und Prozesse der PGE - Produktgenerationsentwicklung - T-MACH-109192 337
3.211. Microenergy Technologies - T-MACH-105557 .. 340
3.212. Mikro NMR Technologie - T-MACH-105782 ... 341
3.213. Mikroaktorik - T-MACH-101910 .. 342
3.214. Mikrostruktursimulation - T-MACH-105303 .. 343
3.215. Mikrosystem Simulation - T-MACH-108383 ... 345
3.216. Mobile Arbeitsmaschinen - T-MACH-105168 .. 346
3.218. Modellbildung und Simulation - T-MACH-105297 ... 349
3.219. Modellierung thermodynamischer Prozesse - T-MACH-105396 350
3.220. Modellierung und Simulation - T-MACH-100300 ... 352
3.221. Moderne Regelungskonzepte I - T-MACH-105539 ... 355
3.222. Motoren labor - T-MACH-105337 ... 357
Inhaltsverzeichnis

3.223. Motorenmesstechnik - T-MACH-105169 ... 358
3.224. Nanotechnologie für Ingenieure und Naturwissenschaftler - T-MACH-105180 ... 359
3.225. Neue Akten und Sensoren - T-MACH-102152 ... 360
3.226. Neutronenphysik für Kern- und Fusionsreaktoren - T-MACH-105435 ... 361
3.228. Numerische Mathematik für die Fachrichtung Informatik - T-MATH-102242 ... 363
3.229. Numerische Modellierung von Mehrphasenströmungen - T-MACH-105420 ... 364
3.230. Numerische Simulation turbulenter Strömungen - T-MACH-105397 ... 365
3.231. Numerische Strömungsmechanik - T-MACH-105338 ... 367
3.232. Numerische Strömungsmechanik mit PYTHON - T-MACH-110838 ... 368
3.233. Patente und Patentstrategien in innovativen Unternehmen - T-MACH-105442 ... 369
3.234. Patentrecht - T-INFO-101310 ... 372
3.235. Photovoltaik - T-ETIT-101939 ... 373
3.236. Physikalische Grundlagen der Lasertechnik - T-MACH-102102 ... 374
3.237. Physikalische Messtechnik - T-MACH-111022 ... 376
3.238. Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung - T-MACH-105537 ... 378
3.239. Plastizität auf verschiedenen Skalen - T-MACH-105516 ... 380
3.240. Polymerengineering I - T-MACH-102137 .. 382
3.241. Polymerengineering II - T-MACH-102138 .. 383
3.243. Polymers in MEMS B: Physics, Microstructuring and Applications - T-MACH-102191 .. 386
3.244. Polymers in MEMS C: Biopolymers and Bioplastics - T-MACH-102200 .. 387
3.245. Praktikum für rechnergestützte Strömungsmechinenk - T-MACH-106707 .. 389
3.246. Praktikum Lasermaterialbearbeitung - T-MACH-102154 .. 392
3.248. Praktikum "Technische Keramik" - T-MACH-105178 .. 397
3.249. Praktikum zu Grundlagen der Mikrosystemtechnik - T-MACH-102164 .. 398
3.250. Product and Innovation Management - T-WIWI-109864 .. 400
3.251. Produkt- und Produktionskonzepte für moderne Automobile - T-MACH-110318 .. 402
3.252. Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung - T-MACH-102155 .. 404
3.253. Produktentstehung - Bauteildimensionierung - T-MACH-105383 .. 405
3.255. Produktionsplanung und -steuerung - T-MACH-105470 .. 408
3.256. Produktionstechnisches Labor - T-MACH-105346 .. 410
3.257. Produktivitätsmanagement in ganzheitlichen Produktionssystemen - T-MACH-105523 .. 412
3.258. Project Management - T-WIWI-103134 .. 413
3.261. Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems - T-MACH-105457 .. 417
3.262. Projektierung und Entwicklung olhydraulischer Antriebsysteme - T-MACH-105441 .. 418
3.263. Projektmanagement in globalen Produktentwicklungsstrukturen - T-MACH-105347 .. 419
3.264. Prozesssimulierung in der Umformtechnik - T-MACH-105348 .. 420
3.265. Pulvermetallurgische Hochleistungswerkstoffe - T-MACH-102157 .. 421
3.266. Qualitätsmanagement - T-MACH-102107 .. 422
3.267. Reaktorsicherheit I: Grundlagen - T-MACH-105405 .. 424
3.268. Rechnergestützte Dynamik - T-MACH-105349 .. 426
3.269. Rechnergestützte Fahrzeudynamik - T-MACH-105350 .. 427
3.270. Rechnergestützte Mehrkörperrdynamik - T-MACH-105384 .. 429
3.271. Rechnerunterstützte Mechanik I - T-MACH-105351 .. 430
3.272. Rechnerunterstützte Mechanik II - T-MACH-105352 .. 431
3.273. Reduktionsmethoden für die Modellierung und Simulation von Verbrennungsprozessen - T-MACH-105421 .. 432
3.274. Reliability Engineering 1 - T-MACH-107447 .. 433
3.276. Robotik I - Einführung in die Robotik - T-INFO-108014 .. 436
3.277. Robotik II - Humanoide Robotik - T-INFO-105723 .. 438
3.278. Robotik III - Sensoren und Perzeption in der Robotik - T-INFO-109931 .. 440
3.279. Robotik in der Medizin - T-INFO-101357 .. 442
3.280. Schadenskunde - T-MACH-105724 .. 444
3.281. Schaltungstechnik in der Industrielektronik - T-ETIT-100716 .. 445
3.282. Schieneneinführungstechnik - T-MACH-105353 .. 446
3.283. Schweißtechnik - T-MACH-105170 .. 448

Maschinenbau für Erasmus-Studierende , Stand 29.09.2022

Modulhandbuch gültig ab Wintersemester 2022/23
Inhaltsverzeichnis

3.284. Schwingfestigkeit - T-MACH-112106 ... 450
3.287. Sensoren - T-ETIT-101911 ... 453
3.288. Sicherheitstechnik - T-MACH-105171 ... 454
3.289. Signale und Systeme - T-ETIT-109313 ... 455
3.290. Simulation gekoppelter Systeme - T-MACH-105172 ... 456
3.291. Simulation gekoppelter Systeme - Vorleistung - T-MACH-108888 458
3.292. Simulator-Praktikum Gas- und Dampfkraftwerke - T-MACH-105445 459
3.293. Skalierungsgesetze der Strömungsmechanik - T-MACH-105400 460
3.294. Smoothed Particle Hydrodynamics (SPH) in der numerischen Strömungsmechanik - T-MACH-111396 ... 461
3.297. Stabilitätstheorie - T-MACH-105372 ... 466
3.298. Steuerungstechnik - T-MACH-105185 ... 467
3.299. Strategische Potenzialfindung zur Entwicklung innovativer Produkte - T-MACH-1056896 ... 469
3.300. Strömungen mit chemischen Reaktionen - T-MACH-105422 470
3.301. Strömungen und Wärmeübertragung in der Energietechnik - T-MACH-105403 471
3.302. Strömungsschleife 1&2 - T-MACH-105207 ... 472
3.303. Strukturberechnung von Faserverbundlagern - T-MACH-105970 475
3.304. Strukturkeramiken - T-MACH-102179 ... 477
3.305. Superconducting Materials for Energy Applications - T-ETIT-106970 478
3.306. Superharte Dünnsschichtmaterialien - T-MACH-102103 479
3.307. Sustainable Product Engineering - T-MACH-105358 .. 481
3.308. Systematische Werkstoffschaft - T-MACH-100531 .. 482
3.309. Systemdynamik und Regelungstechnik - T-ETIT-101921 484
3.310. Systemintegration in der Mikro- und Nanotechnik - T-MACH-105555 485
3.311. Systemintegration in der Mikro- und Nanotechnik 2 - T-MACH-110272 486
3.312. Systems Engineering for Automotive Electronics - T-ETIT-100677 487
3.313. Technische Energiesysteme für Gebäude 1: Verfahren, Komponenten - T-MACH-105559 ... 488
3.314. Technische Energiesysteme für Gebäude 2: Systemkonzepte - T-MACH-105560 489
3.315. Technische Grundlagen des Verbrennungsmotors - T-MACH-105652 490
3.316. Technische Informationssysteme - T-MACH-102083 ... 491
3.317. Technische Schwingungsschlehe - T-MACH-105290 .. 493
3.318. Technische Thermodynamik und Wärmeübertragung I - T-MACH-104747 494
3.319. Technische Thermodynamik und Wärmeübertragung I, Vorleistung - T-MACH-105204 ... 496
3.320. Technische Thermodynamik und Wärmeübertragung II - T-MACH-105287 497
3.321. Technische Thermodynamik und Wärmeübertragung II, Vorleistung - T-MACH-105288 ... 499
3.322. Technisches Design in der Produktentwicklung - T-MACH-105361 500
3.323. Technologie der Stahlbauteile - T-MACH-105362 .. 502
3.324. Ten Lectures on Turbulence - T-MACH-105456 ... 504
3.325. Thermische Solarernergie - T-MACH-105225 .. 505
3.326. Thermische Turbomaschinen I - T-MACH-105363 ... 507
3.327. Thermische Turbomaschinen II - T-MACH-105364 ... 510
3.328. Thermofluidodynamik - T-MACH-106372 .. 513
3.329. Thin Film and Small-scale Mechanical Behavior - T-MACH-105554 515
3.330. Traktoren - T-MACH-105423 .. 517
3.331. Tribologie - T-MACH-105531 .. 519
3.332. Turbinen und Verdichterkonstruktionen - T-MACH-105365 521
3.334. Übungen - Ermüdungsverhalten geschweißer Bauteile und Strukturen - T-MACH-109304 ... 524
3.335. Übungen - Tribologie - T-MACH-109303 ... 525
3.336. Übungen zu Angewandte Werkstoffsimulation - T-MACH-107671 527
3.337. Übungen zu Einführung in die Finite-Elemente-Methode - T-MACH-110330 529
3.338. Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion - T-MACH-107632 ... 530
3.339. Übungen zu Mathematische Methoden der Mikromechanik - T-MACH-110379 531
3.340. Übungen zu Werkstoffanalytik - T-MACH-107685 ... 532
3.341. Umformtechnik - T-MACH-105177 ... 533
3.342. Unternehmensführung und Strategisches Management - T-WIWI-102629 535
3.343. Vakuumechnik und Tritiumbrennstoffkreislauf - T-MACH-108784 537
3.344. Vehicle Ride Comfort & Acoustics I - T-MACH-102206 538
3.345. Vehicle Ride Comfort & Acoustics II - T-MACH-102205 540
3.346. Verbrennungsmotoren I - T-MACH-102194 ... 542
3.347. Verbrennungsmotoren II - T-MACH-104609 .. 543
3.348. Verbrennungs technisches Praktikum - T-CIWVT-108873 ... 544
3.349. Verhaltensgenerierung für Fahrzeuge - T-MACH-105367 .. 545
3.350. Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen - T-MACH-102139 ... 547
3.351. Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch - T-MACH-102140 ... 549
3.352. Verzahntechnik - T-MACH-102148 ... 551
3.353. Virtual Engineering I - T-MACH-102123 .. 553
3.354. Virtual Engineering II - T-MACH-102124 .. 555
3.356. Wahrscheinlichkeitstheorie - T-ETIT-101952 .. 557
3.357. Wahrscheinlichkeitstheorie und Statistik - T-MATH-109620 ... 558
3.358. Wärme- und Stoffübertragung - T-MACH-105292 .. 559
3.359. Wärmepumpen - T-MACH-105430 ... 561
3.360. Wärmeübergang in Kernreaktoren - T-MACH-105529 ... 563
3.361. Wasserstofftechnologie - T-MACH-105416 ... 564
3.362. Water Distribution Systems - T-BGU-108486 .. 565
3.363. Wellenausbreitung - T-MACH-105443 .. 566
3.364. Werkstoffanalytik - T-MACH-107684 ... 567
3.365. Werkstoffe für den Leichtbau - T-MACH-105211 .. 568
3.366. Werkstoffkunde III - T-MACH-105301 ... 570
3.367. Werkstoffmodellierung: versetzungsbasierte Plastizität - T-MACH-105369 571
3.368. Werkstoffprozesstechnik - T-MACH-100295 ... 573
3.369. Werkzeugmaschinen und hochpräzise Fertigungssysteme - T-MACH-110962 575
3.370. Windkraft - T-MACH-105234 ... 577
3.371. Zweiphasenströmung mit Wärmeübergang - T-MACH-105406 578
1 Aufbau des Studiengangs

Pflichtbestandteile

| Leistungen der KIT-Fakultät für Maschinenbau | 90 LP |
| Leistungen anderer Fakultäten und Überfachliche Qualifikationen | 90 LP |

1.1 Leistungen der KIT-Fakultät für Maschinenbau

Der Aufbau des Studiengangs besteht aus Sammelmodulen verschiedener Vertiefungsrichtungen:

- Energie- und Umwelttechnik
- Fahrzeugtechnik
- Ingenieurwissenschaftliche Grundlagen
- Mechatronik und Mikrosystemtechnik
- Produktentwicklung und Konstruktion
- Produktionstechnik
- Spezialisierung im Maschinenbau
- Theoretischer Maschinenbau
- Werkstoffe und Strukturen für Hochleistungssysteme

und optional aus einem Projekt.

Die Module und Teilleistungen sollen entsprechend des Learning Agreements gewählt werden.

Austauschstudierende dürfen Teilleistungen aus jedem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen.

Austauschstudierende müssen nicht das ganze Modul absolvieren, sondern können einzelne Teilleistungen wählen.

Leistungen der KIT-Fakultät Maschinenbau (Wahl:)

<table>
<thead>
<tr>
<th>Leistungscode</th>
<th>Leistungstitel</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104847</td>
<td>Schwerpunkt Ingenieurwissenschaftliche Grundlagen</td>
<td>60 LP</td>
</tr>
<tr>
<td>M-MACH-104848</td>
<td>Schwerpunkt Energie- und Umwelttechnik</td>
<td>90 LP</td>
</tr>
<tr>
<td>M-MACH-104849</td>
<td>Schwerpunkt Fahrzeugtechnik</td>
<td>90 LP</td>
</tr>
<tr>
<td>M-MACH-104850</td>
<td>Schwerpunkt Mechatronik und Mikrosystemtechnik</td>
<td>90 LP</td>
</tr>
<tr>
<td>M-MACH-104851</td>
<td>Schwerpunkt Produktentwicklung und Konstruktion</td>
<td>90 LP</td>
</tr>
<tr>
<td>M-MACH-104852</td>
<td>Schwerpunkt Produktionstechnik</td>
<td>90 LP</td>
</tr>
<tr>
<td>M-MACH-104853</td>
<td>Schwerpunkt Theoretischer Maschinenbau</td>
<td>90 LP</td>
</tr>
<tr>
<td>M-MACH-104854</td>
<td>Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme</td>
<td>90 LP</td>
</tr>
<tr>
<td>M-MACH-104878</td>
<td>Spezialisierung im Maschinenbau</td>
<td>60 LP</td>
</tr>
<tr>
<td>M-MACH-105134</td>
<td>Wahlmodul Allgemeiner Maschinenbau</td>
<td>60 LP</td>
</tr>
</tbody>
</table>

1.2 Leistungen anderer Fakultäten und Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Leistungscode</th>
<th>Leistungstitel</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104882</td>
<td>Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik</td>
<td>90 LP</td>
</tr>
<tr>
<td>M-MACH-104883</td>
<td>Teilleistungen von der KIT-Fakultät für Informatik</td>
<td>30 LP</td>
</tr>
<tr>
<td>M-MACH-104884</td>
<td>Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften</td>
<td>20 LP</td>
</tr>
<tr>
<td>M-MACH-104885</td>
<td>Teilleistungen von der KIT-Fakultät für Mathematik</td>
<td>10 LP</td>
</tr>
<tr>
<td>M-MACH-105100</td>
<td>Teilleistungen von der KIT-Fakultät für Chemieingenieurwesen</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-MACH-105405</td>
<td>Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
<td>10 LP</td>
</tr>
</tbody>
</table>
2 Module

2.1 Modul: Schwerpunkt Energie- und Umwelttechnik [M-MACH-104848]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Maas</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Notenberechnung</th>
<th>Verantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105428</td>
<td>Ausgewählte Kapitel der Verbrennung</td>
<td>4</td>
<td>Ja</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105462</td>
<td>Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</td>
<td>4</td>
<td>Ja</td>
<td>Dagan</td>
</tr>
<tr>
<td>T-MACH-105313</td>
<td>CFD-Praktikum mit OpenFOAM Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td>4</td>
<td>Nein</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-105391</td>
<td>Differenzenverfahren zur numerischen Lösung von thermischen und fluid-dynamischen Problemen</td>
<td>4</td>
<td>Ja</td>
<td>Günther</td>
</tr>
<tr>
<td>T-MACH-105525</td>
<td>Einführung in die Kernenergie</td>
<td>4</td>
<td>Nein</td>
<td>Cheng</td>
</tr>
<tr>
<td>T-MACH-102211</td>
<td>Energie- und Prozesstechnik für Wirtschaftsingenieure I</td>
<td>9</td>
<td>Ja</td>
<td>Bauer, Maas, Schwitzke, Velji</td>
</tr>
<tr>
<td>T-MACH-102212</td>
<td>Energie- und Prozesstechnik für Wirtschatsingenieure II</td>
<td>9</td>
<td>Nein</td>
<td>Maas, Schwitzke</td>
</tr>
<tr>
<td>T-MACH-105715</td>
<td>Energiebedarf von Gebäuden – Grundlagen und Anwendungen mit Übungen zur Gebäudesimulation</td>
<td>6</td>
<td>Nein</td>
<td>Schmidt</td>
</tr>
<tr>
<td>T-MACH-105408</td>
<td>Energiesysteme I - Regenerative Energien</td>
<td>4</td>
<td>Ja</td>
<td>Dagan</td>
</tr>
<tr>
<td>T-MACH-105550</td>
<td>Energiesysteme II: Grundlagen der Reaktorphysik</td>
<td>4</td>
<td>Nein</td>
<td>Badea</td>
</tr>
<tr>
<td>T-MACH-105564</td>
<td>Energieumsetzung und Wirkungsgradsteigerung bei Verbrennungsmotoren</td>
<td>4</td>
<td>Ja</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-105512</td>
<td>Experimentelle Strömungsmechanik</td>
<td>4</td>
<td>Nein</td>
<td>Kriegseis</td>
</tr>
<tr>
<td>T-MACH-110331</td>
<td>Fusionstechnologie</td>
<td>4</td>
<td>Ja</td>
<td>Badea</td>
</tr>
<tr>
<td>T-MACH-105411</td>
<td>Fusionstechnologie A</td>
<td>4</td>
<td>Nein</td>
<td>Stieglitz</td>
</tr>
<tr>
<td>T-MACH-105433</td>
<td>Fusionstechnologie B</td>
<td>4</td>
<td>Nein</td>
<td>Stieglitz</td>
</tr>
<tr>
<td>T-MACH-105533</td>
<td>Gasdynamik</td>
<td>4</td>
<td>Nein</td>
<td>Gatti, Kriegseis</td>
</tr>
<tr>
<td>T-MACH-105220</td>
<td>Grundlagen der Energie Technik</td>
<td>8</td>
<td>Ja</td>
<td>Badea, Cheng</td>
</tr>
<tr>
<td>T-MACH-105326</td>
<td>Hydraulische Strömungs maschinen</td>
<td>8</td>
<td>Nein</td>
<td>Pritz</td>
</tr>
<tr>
<td>T-MACH-105404</td>
<td>Innovative nuklear Systeme</td>
<td>4</td>
<td>Ja</td>
<td>Cheng</td>
</tr>
<tr>
<td>T-MACH-110332</td>
<td>Kernkraft und Reaktortecnologie</td>
<td>4</td>
<td>Nein</td>
<td>Badea</td>
</tr>
<tr>
<td>T-MACH-105414</td>
<td>Kühlung thermisch hochbelasteter Gasturbinenkomponenten</td>
<td>4</td>
<td>Ja</td>
<td>Bauer, Schulz</td>
</tr>
<tr>
<td>T-MACH-105331</td>
<td>Lehrlabor: Energietechnik Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td>4</td>
<td>Nein</td>
<td>Bauer, Maas, Wirbser</td>
</tr>
<tr>
<td>T-MACH-105426</td>
<td>Magnetohydrodynamik</td>
<td>4</td>
<td>Nein</td>
<td>Bühler</td>
</tr>
<tr>
<td>T-MACH-105434</td>
<td>Magnet-Technologie für Fusionsreaktoren</td>
<td>4</td>
<td>Nein</td>
<td>Fietz, Weiss</td>
</tr>
<tr>
<td>T-MACH-105419</td>
<td>Mathematische Modelle und Methoden der Theorie der Verbrennung</td>
<td>4</td>
<td>Nein</td>
<td>Bykov</td>
</tr>
<tr>
<td>T-MACH-105167</td>
<td>Methoden zur Analyse der motorischen Verbrennung</td>
<td>4</td>
<td>Nein</td>
<td>Bykov</td>
</tr>
<tr>
<td>T-MACH-105435</td>
<td>Neutronenphysik für Kern- und Fusionsreaktoren</td>
<td>4</td>
<td>Nein</td>
<td>Fischer</td>
</tr>
<tr>
<td>T-MACH-105397</td>
<td>Numerische Simulation turbulenter Strömungen</td>
<td>4</td>
<td>Nein</td>
<td>Grötzbach</td>
</tr>
<tr>
<td>T-MACH-105338</td>
<td>Numerische Strömungsmechanik</td>
<td>4</td>
<td>Nein</td>
<td>Gatti, Magagnato</td>
</tr>
<tr>
<td>T-MACH-110838</td>
<td>Numerische Strömungsmechanik mit PYTHON</td>
<td>4</td>
<td>Nein</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>Modulbezeichnung</td>
<td>LP</td>
<td>Lehrstuhl</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111022</td>
<td>Physikalische Messtechnik</td>
<td>4</td>
<td>Buchenau, Stieglitz</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105405</td>
<td>Reaktorsicherheit I: Grundlagen</td>
<td>4</td>
<td>Sanchez-Espinoza</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105421</td>
<td>Reduktionsmethoden für die Modellierung und Simulation von Verbrennungsprozessen</td>
<td>4</td>
<td>Bykov</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105400</td>
<td>Skalierungsgesetze der Strömungsmechanik</td>
<td>4</td>
<td>Bühler</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111396</td>
<td>Smoothed Particle Hydrodynamics (SPH) in der numerischen Strömungsmechanik</td>
<td>4</td>
<td>Koch</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105422</td>
<td>Strömungen mit chemischen Reaktionen</td>
<td>4</td>
<td>Class</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105403</td>
<td>Strömungen und Wärmeübertragung in der Energiotechnik</td>
<td>4</td>
<td>Cheng</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105559</td>
<td>Technische Energiesysteme für Gebäude 1: Verfahren, Komponenten</td>
<td>4</td>
<td>Schmidt</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105560</td>
<td>Technische Energiesysteme für Gebäude 2: Systemkonzepte</td>
<td>4</td>
<td>Schmidt</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105225</td>
<td>Thermische Solarenergie</td>
<td>4</td>
<td>Stieglitz</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>6</td>
<td>Bauer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105364</td>
<td>Thermische Turbomaschinen II</td>
<td>6</td>
<td>Bauer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-106372</td>
<td>Thermofluidodynamik</td>
<td>4</td>
<td>Ruck</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105365</td>
<td>Turbinen und Verdichterkonstruktionen</td>
<td>4</td>
<td>Bauer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108784</td>
<td>Vakuumtechnik und Tritiumbrennstoffkreislauf</td>
<td>4</td>
<td>Day</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105292</td>
<td>Wärme- und Stoffübertragung</td>
<td>4</td>
<td>Maas, Yu</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105430</td>
<td>Wärmepumpen</td>
<td>4</td>
<td>Maas, Wirbser</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105416</td>
<td>Wasserstofftechnologie</td>
<td>4</td>
<td>Jordan</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105234</td>
<td>Windkraft</td>
<td>4</td>
<td>Lewald</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105406</td>
<td>Zweiphasenströmung mit Wärmeübergang</td>
<td>4</td>
<td>Schulenberg, Wörner</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Schwerpunkt Energie- und Umwelttechnik dient der umfassenden, vertieften Auseinandersetzung in ausgewählten Bereichen des Maschinenbaus.

Inhalt
Siehe einzelne Teilleistungen.
2.2 Modul: Schwerpunkt Fahrzeugtechnik [M-MACH-104849]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

Leistungspunkte: 90
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 5

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

<table>
<thead>
<tr>
<th>Exchange Students_Fahrzeugtechnik (Wahl:)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105173 Abgas- und Schmierölanalyse am Verbrennungsmotor</td>
<td>4 LP Gohl</td>
</tr>
<tr>
<td>T-MACH-105655 Alternative Antriebe für Automobile</td>
<td>4 LP Noreikat</td>
</tr>
<tr>
<td>T-MACH-105307 Antriebsstrang mobiler Arbeitsmaschinen</td>
<td>4 LP Geimer, Wydra</td>
</tr>
<tr>
<td>T-MACH-105311 Auslegung mobiler Arbeitsmaschinen</td>
<td>4 LP Geimer, Siebert</td>
</tr>
<tr>
<td>T-MACH-108887 Auslegung Mobiler Arbeitsmaschinen - Vorleistung</td>
<td>0 LP Geimer, Siebert</td>
</tr>
<tr>
<td>T-MACH-110958 Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben</td>
<td>4 LP Albers, Faust</td>
</tr>
<tr>
<td>T-MACH-106424 Bahnsystemtechnik</td>
<td>4 LP Geimer, Gratfeld</td>
</tr>
<tr>
<td>T-MACH-105184 Betriebsstoffe für Verbrennungsmotoren</td>
<td>4 LP Kehrwald, Kubach</td>
</tr>
<tr>
<td>T-MACH-102150 BUS-Steuerungen</td>
<td>4 LP Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-108889 BUS-Steuerungen - Vorleistung</td>
<td>0 LP Geimer</td>
</tr>
<tr>
<td>T-MACH-105540 Die Eisenbahn im Verkehrsmarkt</td>
<td>4 LP Geimer, Gratfeld</td>
</tr>
<tr>
<td>T-MACH-105226 Dynamik des Kfz-Antriebsstrangs</td>
<td>5 LP Fidlin</td>
</tr>
<tr>
<td>T-MACH-102121 Elektrische Schienenfahrzeuge</td>
<td>4 LP Geimer, Gratfeld</td>
</tr>
<tr>
<td>T-MACH-105152 Fahreigenschaften von Kraftfahrzeugen I</td>
<td>4 LP Unrau</td>
</tr>
<tr>
<td>T-MACH-105153 Fahreigenschaften von Kraftfahrzeugen II</td>
<td>4 LP Unrau</td>
</tr>
<tr>
<td>T-MACH-105154 Fahrzeugkomfort und -akustik I</td>
<td>4 LP Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155 Fahrzeugkomfort und -akustik II</td>
<td>4 LP Gauterin</td>
</tr>
<tr>
<td>T-MACH-105237 Fahrzeuggleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td>4 LP Henning</td>
</tr>
<tr>
<td>T-MACH-102207 Fahrzeugreifen- und Räderentwicklung für PKW</td>
<td>4 LP Leister</td>
</tr>
<tr>
<td>T-MACH-105218 Fahrzeugsehen</td>
<td>6 LP Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-102093 Fluidtechnik</td>
<td>4 LP Geimer</td>
</tr>
<tr>
<td>T-MACH-100092 Grundlagen der Fahrzeugtechnik I</td>
<td>8 LP Gauterin, Unrua</td>
</tr>
<tr>
<td>T-MACH-102117 Grundlagen der Fahrzeugtechnik II</td>
<td>4 LP Gauterin, Unrua</td>
</tr>
<tr>
<td>T-MACH-105044 Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>4 LP Deutschmann, Gruenwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-102116 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>2 LP Bardehle</td>
</tr>
<tr>
<td>T-MACH-102119 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II</td>
<td>2 LP Bardehle</td>
</tr>
<tr>
<td>T-MACH-111389 Grundsätze der Nutzfahrzeugentwicklung</td>
<td>4 LP Weber</td>
</tr>
<tr>
<td>T-MACH-105162 Grundsätze der PKW-Entwicklung I</td>
<td>2 LP Frech</td>
</tr>
<tr>
<td>T-MACH-105163 Grundsätze der PKW-Entwicklung II</td>
<td>2 LP Frech</td>
</tr>
<tr>
<td>T-MACH-105375 Industriearadynamik</td>
<td>4 LP Frohnappel, Kröber</td>
</tr>
<tr>
<td>T-MACH-105188 Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>4 LP Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105222 Kraftfahrzeuglaboratorium</td>
<td>4 LP Frey</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Schwerpunkt Fahrzeugtechnik dient der umfassenden, vertieften Auseinandersetzung in ausgewählten Bereichen des Maschinenbaus.

Inhalt
Siehe einzelne Teilleistungen

Lehr- und Lernformen
Vorlesungen, Übungen
2.3 Modul: Schwerpunkt Ingenieurwissenschaftliche Grundlagen [M-MACH-104847]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

Leistungspunkte 60
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch/Englisch
Level 4
Version 3

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Exchange Students_Ingenieurwissenschaftliche Grundlagen (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte (LP)</th>
<th>Ersterbeauftragter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104745</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>7</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-105208</td>
<td>Maschinen und Prozesse</td>
<td>7</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
<tr>
<td>T-MACH-105232</td>
<td>Maschinen und Prozesse, Vorleistung</td>
<td>0</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematische Methoden der Dynamik</td>
<td>6</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-110378</td>
<td>Mathematische Methoden der Mikromechanik</td>
<td>5</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>6</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105295</td>
<td>Mathematische Methoden der Strömungslehre</td>
<td>6</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-105189</td>
<td>Mathematische Modelle und Methoden für Produktionsysteme</td>
<td>6</td>
<td>Baumann, Furmans</td>
</tr>
<tr>
<td>T-MACH-109192</td>
<td>Methoden und Prozesse der PGE - Produktgenerationsentwicklung</td>
<td>6</td>
<td>Albers, Burkardt, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105297</td>
<td>Modellbildung und Simulation</td>
<td>7</td>
<td>Furmans, Geimer, Pritz, Proppe</td>
</tr>
<tr>
<td>T-MACH-105383</td>
<td>Produktentstehung - Bauteildimensionierung</td>
<td>7</td>
<td>Dietrich, Schulze</td>
</tr>
<tr>
<td>T-MACH-105207</td>
<td>Strömungslehre 1 & 2</td>
<td>8</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-105204</td>
<td>Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td>0</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-104747</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>8</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105288</td>
<td>Technische Thermodynamik und Wärmeübertragung II, Vorleistung</td>
<td>0</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105287</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>7</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-110379</td>
<td>Übungen zu Mathematische Methoden der Mikromechanik</td>
<td>1</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Im Schwerpunkt "Ingenieurwissenschaftliche Grundlagen" erwerben die Studierenden ingenieurwissenschaftliches Grundwissen. Mit diesen fundierten Kenntnissen der wissenschaftlichen Theorien, Prinzipien und Methoden können die Studierenden spezifizierte Probleme des Maschinenbaus mit eindeutigem Lösungsweg erfolgreich bearbeiten.

Inhalt
Siehe einzelne Teilleistungen

Lehr- und Lernformen
Vorlesungen, Übungen
2.4 Modul: Schwerpunkt Mechatronik und Mikrosystemtechnik [M-MACH-104850]

Verantwortung: Prof. Dr. Jan Gerrit Korvink
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Exchange Students_Mechatronik und Mikrosystemtechnik (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Modulleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102172</td>
<td>Bionik für Ingenieure und Naturwissenschaftler</td>
<td>4</td>
<td>Hölscher</td>
</tr>
<tr>
<td>T-MACH-102169</td>
<td>Chemische, physikalische und werkstoffkundliche Aspekte von Kunststoffen in der Mikrotechnik</td>
<td>3</td>
<td>Worgull</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>4</td>
<td>Last</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Praktikum</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik</td>
<td>4</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digitale Regelungen</td>
<td>4</td>
<td>Knoop</td>
</tr>
<tr>
<td>T-MACH-105300</td>
<td>Messtechnisches Praktikum</td>
<td>4</td>
<td>Richter, Stiller</td>
</tr>
<tr>
<td>T-MACH-105334</td>
<td>Mechanik von Mikrosystemen</td>
<td>4</td>
<td>Greiner, Gruber</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Messtechnik II</td>
<td>4</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Ersatz menschlicher Organe durch technische Systeme</td>
<td>4</td>
<td>Pylatiuk</td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Einführung in die Mechatronik</td>
<td>6</td>
<td>Böhnand, Reischl</td>
</tr>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II</td>
<td>4</td>
<td>Guber</td>
</tr>
<tr>
<td>T-MACH-100966</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I</td>
<td>4</td>
<td>Guber</td>
</tr>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4</td>
<td>Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digitale Regelungen</td>
<td>4</td>
<td>Knoop</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Messtechnisches Praktikum</td>
<td>4</td>
<td>Richter, Stiller</td>
</tr>
<tr>
<td>T-MACH-105334</td>
<td>Mechanik von Mikrosystemen</td>
<td>4</td>
<td>Greiner, Gruber</td>
</tr>
<tr>
<td>T-MACH-105300</td>
<td>Messtechnisches Praktikum</td>
<td>4</td>
<td>Richter, Stiller</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Neue Aktoren und Sensoren</td>
<td>4</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4</td>
<td>Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>4</td>
<td>Last</td>
</tr>
<tr>
<td>T-MACH-105341</td>
<td>Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik</td>
<td>4</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-102192</td>
<td>Polymers in MEMS A: Chemistry, Synthesis and Applications</td>
<td>4</td>
<td>Rapp</td>
</tr>
<tr>
<td>T-MACH-102200</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics</td>
<td>4</td>
<td>Rapp, Worgull</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Neue Aktoren und Sensoren</td>
<td>4</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Modern Regelungskonzepte I</td>
<td>4</td>
<td>Groell, Matthes</td>
</tr>
<tr>
<td>T-MACH-101910</td>
<td>Mikroaktorik</td>
<td>4</td>
<td>Kohl</td>
</tr>
<tr>
<td>T-MACH-105180</td>
<td>Nanotechnologie für Ingenieure und Naturwissenschaftler</td>
<td>4</td>
<td>Dienwiebel, Hölscher, Walheim</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Neue Aktoren und Sensoren</td>
<td>4</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4</td>
<td>Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Praktikum</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>4</td>
<td>Last</td>
</tr>
<tr>
<td>T-MACH-105555</td>
<td>Systemintegration in der Mikro- und Nanotechnik</td>
<td>4</td>
<td>Gengenbach</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>4</td>
<td>Last</td>
</tr>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4</td>
<td>Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>4</td>
<td>Last</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>4</td>
<td>Last</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Schwerpunkt Mechatronik und Mikrosystemtechnik dient der umfassenden, vertieften Auseinandersetzung in ausgewählten Bereichen des Maschinenbaus.

Inhalt
Siehe einzelne Teilleistungen
2.M5 Modul: Schwerpunkt Produktentwicklung und Konstruktion [M-MACH-104851]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlinformationen

Austauschstudernde dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmeranzahl, aufweisen. Austauschstudernde müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Exchange Students Produktentwicklung und Konstruktion (Wahl:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name des Moduls</th>
<th>Leistungspunkte</th>
<th>Lehrer/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106744</td>
<td>Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte</td>
<td>4 LP</td>
<td>Kläger</td>
</tr>
<tr>
<td>T-MACH-105215</td>
<td>Angewandte Tribologie in der industriellen Produktentwicklung</td>
<td>4 LP</td>
<td>Albers, Lorentz, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-102185</td>
<td>CAD-Praktikum CATIA - Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td>2 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Antriebssystemtechnik B: Stationäre Antriebssysteme</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-102187</td>
<td>CAD-Praktikum NX - Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td>2 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 LP</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105312</td>
<td>CATIA für Fortgeschrittene</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Grundlagen der Mikrosystemtechnik I</td>
<td>4 LP</td>
<td>Badilita, Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Grundlagen der Mikrosystemtechnik II</td>
<td>4 LP</td>
<td>Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-106743</td>
<td>IoT Plattform für Ingenieursanwendungen</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105330</td>
<td>Konstruieren mit Polymerwerkstoffen</td>
<td>4 LP</td>
<td>Liedel</td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Konstruktiver Leichtbau</td>
<td>4 LP</td>
<td>Albers, Burkard</td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ploch</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-105440</td>
<td>Management- und Führungstechniken</td>
<td>4 LP</td>
<td>Hatzl</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>4 LP</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td>3 LP</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-105361</td>
<td>Technisches Design in der Produktentwicklung</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Schmid</td>
</tr>
<tr>
<td>T-MACH-102123</td>
<td>Virtual Engineering I</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102124</td>
<td>Virtual Engineering II</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.
Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Schwerpunkt Produktentwicklung und Konstruktion dient der umfassenden, vertieften Auseinandersetzung in ausgewählten Bereichen des Maschinenbaus.

Inhalt
Siehe einzelne Teilleistungen
2.6 Modul: Schwerpunkt Produktionstechnik [M-MACH-104852]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Exchange Students Produktionstechnik (Wahl:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>4</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>4</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-105830</td>
<td>Arbeitswissenschaft III: Empirische Forschungsmethoden</td>
<td>4</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>8</td>
<td>Schulze</td>
</tr>
<tr>
<td>T-MACH-105159</td>
<td>Globale Produktion und Logistik - Teil 2: Globale Logistik</td>
<td>4</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>4</td>
<td>Mittwollen, Oellerich</td>
</tr>
<tr>
<td>T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>6</td>
<td>Hochstein</td>
</tr>
<tr>
<td>T-MACH-105388</td>
<td>Industrielle Fertigungswirtschaft</td>
<td>4</td>
<td>Dürrschnabel</td>
</tr>
<tr>
<td>T-MACH-108849</td>
<td>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</td>
<td>8</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>3</td>
<td>Kilger</td>
</tr>
<tr>
<td>T-MACH-105174</td>
<td>Lager- und Distributionssysteme</td>
<td>3</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-102151</td>
<td>Materialfluss in Logistiksystemen</td>
<td>9</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-105470</td>
<td>Produktionsplanung und -steuerung</td>
<td>4</td>
<td>Rinn</td>
</tr>
<tr>
<td>T-MACH-105346</td>
<td>Produktionsstechnisches Labor</td>
<td>4</td>
<td>Deml, Fleischer, Furmans, Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105523</td>
<td>Produktivitätsmanagement in ganzheitlichen Produktionssystemen</td>
<td>4</td>
<td>Stowasser</td>
</tr>
<tr>
<td>T-MACH-105457</td>
<td>Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems</td>
<td>5</td>
<td>Schulze</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>4</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-105171</td>
<td>Sicherheitstechnik</td>
<td>4</td>
<td>Kany</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Steuerungstechnik</td>
<td>4</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105177</td>
<td>Umformtechnik</td>
<td>4</td>
<td>Herlan</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Verzahntechnik</td>
<td>4</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>8</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-110771</td>
<td>Logistik und Supply Chain Management</td>
<td>9</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.
Qualifikationsziele
Schwerpunkt Produktionstechnik dient der umfassenden, vertieften Auseinandersetzung in ausgewählten Bereichen des Maschinenbaus.

Inhalt
Siehe einzelne Teilleistungen
2.7 Modul: Schwerpunkt Theoretischer Maschinenbau [M-MACH-104853]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

Leistungskenote 90
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch/Englisch
Level 4
Version 3

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Schwerpunkt Theoretischer Maschinenbau dient der umfassenden, vertieften Auseinandersetzung in ausgewählten Bereichen des Maschinenbaus.

Inhalt
Siehe einzelne Teilleistungen
2.8 Modul: Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme [M-MACH-104854]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Exchange Students_Werkstoffe und Strukturen für Hochleistungssysteme (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel der Leistung</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105527</td>
<td>Angewandte Werkstoffsimulation</td>
<td>4</td>
<td>Gumbsch, Schneider</td>
</tr>
<tr>
<td>T-MACH-107671</td>
<td>Übungen zu Angewandte Werkstoffsimulation</td>
<td>2</td>
<td>Gumbsch, Schneider</td>
</tr>
<tr>
<td>T-MACH-100288</td>
<td>Arbeitstechniken der Materialwissenschaft und Werkstofftechnik</td>
<td>2</td>
<td>Heilmaier</td>
</tr>
<tr>
<td>T-MACH-105150</td>
<td>Aufbau und Eigenschaften von Schutzschichten</td>
<td>4</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-105310</td>
<td>Auslegung hochbelasteter Bauteile</td>
<td>4</td>
<td>Aktaa</td>
</tr>
<tr>
<td>T-MACH-108721</td>
<td>Dimensionierung mit Verbundwerkstoffen</td>
<td>4</td>
<td>Schnack</td>
</tr>
<tr>
<td>T-MACH-105320</td>
<td>Einführung in die Finite-Elemente-Methode</td>
<td>3</td>
<td>Böhike, Langhoff</td>
</tr>
<tr>
<td>T-MACH-110330</td>
<td>Übungen zu Einführung in die Finite-Elemente-Methode</td>
<td>1</td>
<td>Böhike, Langhoff</td>
</tr>
<tr>
<td>T-MACH-105321</td>
<td>Einführung in die Materialtheorie</td>
<td>4</td>
<td>Kamlah</td>
</tr>
<tr>
<td>T-MACH-105984</td>
<td>Ermüdungsverhalten geschweißer Bauteile und Strukturen</td>
<td>3</td>
<td>Farajian</td>
</tr>
<tr>
<td>T-MACH-109304</td>
<td>Übungen - Ermüdungsverhalten geschweißer Bauteile und Strukturen</td>
<td>1</td>
<td>Farajian</td>
</tr>
<tr>
<td>T-MACH-105447</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>4</td>
<td>Heilmaier, Mühl</td>
</tr>
<tr>
<td>T-MACH-102099</td>
<td>Experimentelles Schweißtechnisches Praktikum, in Gruppen</td>
<td>4</td>
<td>Dietrich</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>4</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-105392</td>
<td>FEM Workshop - Stoffgesetze</td>
<td>4</td>
<td>Schulz, Weygand</td>
</tr>
<tr>
<td>T-MACH-107667</td>
<td>Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</td>
<td>4</td>
<td>Franke, Seifert</td>
</tr>
<tr>
<td>T-MACH-107632</td>
<td>Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</td>
<td>2</td>
<td>Franke, Seifert</td>
</tr>
<tr>
<td>T-MACH-105417</td>
<td>Finite-Elemente Workshop</td>
<td>4</td>
<td>Mattheck, Weygand</td>
</tr>
<tr>
<td>T-MACH-105179</td>
<td>Funktionskeramiken</td>
<td>4</td>
<td>Hinterstein, Rheinheimer</td>
</tr>
<tr>
<td>T-MACH-105157</td>
<td>Gießereikunde</td>
<td>4</td>
<td>Wilhelm</td>
</tr>
<tr>
<td>T-MACH-102111</td>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</td>
<td>4</td>
<td>Schell</td>
</tr>
<tr>
<td>T-MACH-105398</td>
<td>High Performance Computing</td>
<td>5</td>
<td>Nestler, Selzer</td>
</tr>
<tr>
<td>T-MACH-100287</td>
<td>Keramik-Grundlagen</td>
<td>6</td>
<td>Hoffmann</td>
</tr>
<tr>
<td>T-MACH-106722</td>
<td>Keramische Faserverbundwerkstoffe</td>
<td>4</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-100293</td>
<td>Konstruktionswerkstoffe</td>
<td>6</td>
<td>Guth</td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Lasereinsatz im Automobilbau</td>
<td>4</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-100285</td>
<td>Materialphysik und Metalle</td>
<td>13</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>Lehrinhalt</td>
<td>Leistungspunkte</td>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>T-MACH-100290</td>
<td>Materialwissenschaftliches Seminar (Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105333</td>
<td>Mechanik und Festigkeitslehre von Kunststoffen</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105468</td>
<td>Metalle</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>T-MACH-100300</td>
<td>Modellierung und Simulation</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>T-MACH-105516</td>
<td>Plastizität auf verschiedenen Skalen</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102137</td>
<td>Polymerengineering I</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102138</td>
<td>Polymerengineering II</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102154</td>
<td>Praktikum Lasermaterialbearbeitung (Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105178</td>
<td>Praktikum 'Technische Keramik'</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102157</td>
<td>Pulvermetallurgische Hochleistungswerkstoffe</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105724</td>
<td>Schadenskunde</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105170</td>
<td>Schweißtechnik</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-112106</td>
<td>Schwingfestigkeit</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102179</td>
<td>Strukturkeramiken</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102103</td>
<td>Superharte Dünnschichtmaterialien</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105362</td>
<td>Technologie der Stahlbauteile</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105531</td>
<td>Tribologie</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>T-MACH-109303</td>
<td>Übungen - Tribologie</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T-MACH-102139</td>
<td>Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-107684</td>
<td>Werkstoffanalytik</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-107685</td>
<td>Übungen zu Werkstoffanalytik</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105211</td>
<td>Werkstoffe für den Leichtbau</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105301</td>
<td>Werkstoffkunde III</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>T-MACH-105369</td>
<td>Werkstoffmodellierung: versetzungsbasierte Plastizität</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-100295</td>
<td>Werkstoffprozesstechnik</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt

Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen

Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele

Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme dient der umfassenden, vertieften Auseinandersetzung in ausgewählten Bereichen des Maschinenbaus.

Inhalt

Siehe einzelne Teilleistungen
2.9 Modul: Spezialisierung im Maschinenbau [M-MACH-104878]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Exchange Students_Englischsprachige Teilleistungen_Wahl (Wahl:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehrer/Lehrerin/Lehrpersonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108689</td>
<td>Advanced Materials Thermodynamics: Experiments and Modelling</td>
<td>4 LP</td>
<td>Seifert</td>
</tr>
<tr>
<td>T-MACH-105308</td>
<td>Atomistische Simulation und Molekulardynamik</td>
<td>4 LP</td>
<td>Gumbsch, Schneider, Weygand</td>
</tr>
<tr>
<td>T-MACH-105381</td>
<td>Ausgewählte Themen virtueller Ingenieursanwendungen</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105407</td>
<td>CFD in der Energietechnik</td>
<td>4 LP</td>
<td>Otic</td>
</tr>
<tr>
<td>T-MACH-112238</td>
<td>Der Betrieb von Kraftwerken unter volatilen und unberechenbaren Marktbetreuungen</td>
<td>4 LP</td>
<td>Seidl, Stieglitz</td>
</tr>
<tr>
<td>T-ETIT-100807</td>
<td>Electrical Machines</td>
<td>4 LP</td>
<td>Becker</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>4 LP</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>4 LP</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105444</td>
<td>Gas- und Dampfkraftwerke</td>
<td>4 LP</td>
<td>Schulenberg</td>
</tr>
<tr>
<td>T-MACH-105220</td>
<td>Grundlagen der Energietechnik</td>
<td>8 LP</td>
<td>Badea, Cheng</td>
</tr>
<tr>
<td>T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>8 LP</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Grundlagen der Fahrzeugtechnik II</td>
<td>4 LP</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105379</td>
<td>Grundlagen der globalen Logistik</td>
<td>4 LP</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Grundlagen der Mikrosystemtechnik I</td>
<td>4 LP</td>
<td>Badilita, Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Grundlagen der Mikrosystemtechnik II</td>
<td>4 LP</td>
<td>Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>2 LP</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Grundsätze der PKW-Entwicklung II</td>
<td>2 LP</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105459</td>
<td>High Temperature Materials</td>
<td>4 LP</td>
<td>Heilmaier</td>
</tr>
<tr>
<td>T-MACH-105466</td>
<td>Introduction to Neutron Cross Section Theory and Nuclear Data Generation</td>
<td>4 LP</td>
<td>Dagan</td>
</tr>
<tr>
<td>T-MACH-105402</td>
<td>Kernkraftwerkstechnik</td>
<td>4 LP</td>
<td>Badea, Cheng, Schulenberg</td>
</tr>
<tr>
<td>T-MACH-105410</td>
<td>Kohlekraftwerkstechnik</td>
<td>4 LP</td>
<td>Schulenberg</td>
</tr>
<tr>
<td>T-MACH-105223</td>
<td>Machine Vision</td>
<td>8 LP</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105434</td>
<td>Magnet-Technologie für Fusionsreaktoren</td>
<td>4 LP</td>
<td>Fietz, Weiss</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Maschinen dynamik</td>
<td>5 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Maschinen dynamik II</td>
<td>4 LP</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105189</td>
<td>Mathematische Modelle und Methoden für Produktionssysteme</td>
<td>6 LP</td>
<td>Baumann, Furmans</td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4 LP</td>
<td>Kohl</td>
</tr>
<tr>
<td>T-MACH-105782</td>
<td>Mikro NMR Technologie</td>
<td>4 LP</td>
<td>Korvink, MacKinnon</td>
</tr>
<tr>
<td>T-MACH-111026</td>
<td>Nonlinear Continuum Mechanics</td>
<td>3 LP</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-WIWI-100806</td>
<td>Renewable Energy-Resources, Technologies and Economics</td>
<td>3,5 LP</td>
<td>Jochem</td>
</tr>
<tr>
<td>T-MACH-105445</td>
<td>Simulator-Praktikum Gas- und Dampfkraftwerken</td>
<td>2 LP</td>
<td>Schulenberg</td>
</tr>
<tr>
<td>T-MACH-105456</td>
<td>Ten Lectures on Turbulence</td>
<td>4 LP</td>
<td>Otic</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden haben auf Basis allgemeiner Grundlagen in ausgewählten Bereichen des Maschinenbaus spezialisiertes Wissen erworben.

Inhalt
Siehe einzelne Teilleistungen

Anmerkungen
Die Teilleistungen in diesem Modul werden in englischer Sprache angeboten.

Arbeitsaufwand
Bis zu 30 LP pro Semester, je nach gewählten Teilleistungen.

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltungsdetails</th>
<th>ECTS</th>
<th>Lehrperson(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>6 LP</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-105364</td>
<td>Thermische Turbomaschinen II</td>
<td>6 LP</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-105554</td>
<td>Thin Film and Small-scale Mechanical Behavior</td>
<td>4 LP</td>
<td>Gruber, Kirchlechner, Weygand</td>
</tr>
<tr>
<td>T-MACH-111027</td>
<td>Tutorial Nonlinear Continuum Mechanics</td>
<td>1 LP</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-102123</td>
<td>Virtual Engineering I</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102124</td>
<td>Virtual Engineering II</td>
<td>4 LP</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105529</td>
<td>Wärmeübergang in Kernreaktoren</td>
<td>4 LP</td>
<td>Cheng</td>
</tr>
</tbody>
</table>
2.10 Modul: Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik [M-MACH-104882]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Leistungen anderer Fakultäten und Überfachliche Qualifikationen

Leistungspunkte

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>90</th>
</tr>
</thead>
</table>

Notenskala

Zehntelnoten

Turnus

Jedes Semester

Dauer

2 Semester

Sprache

Deutsch/Englisch

Level

4

Version

2

Wahlinformationen

Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

<table>
<thead>
<tr>
<th>Exchange Students_ETIT (Wahl: zwischen 0 und 90 LP)</th>
<th>Leistungspunkte</th>
<th>Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101930 Bildgebende Verfahren in der Medizin I</td>
<td>3 LP Dössel</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101931 Bildgebende Verfahren in der Medizin II</td>
<td>3 LP Dössel</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101956 Bioelektrische Signale</td>
<td>3 LP Loewe</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-106492 Biomedizinische Messtechnik I</td>
<td>3 LP Nahm</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101918 Digitaltechnik</td>
<td>6 LP Becker</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-103608 Electric Power Generation and Power Grid</td>
<td>3 LP Hoferer</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-110883 Electric Power Transmission & Grid Control</td>
<td>4 LP Leibfried</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100807 Electrical Machines</td>
<td>4 LP Becker</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101954 Elektrische Maschinen und Stromrichter</td>
<td>6 LP Hiller</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101923 Elektroenergiesysteme</td>
<td>5 LP Leibfried</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109318 Elektronische Schaltungen</td>
<td>6 LP Ulusoy</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-108386 Elektrotechnik und Elektronik</td>
<td>8 LP De Carne</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109820 Elektrotechnik und Elektronik</td>
<td>8 LP Doppelbauer</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-104644 Energy Storage and Network Integration</td>
<td>4 LP Noe</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100784 Hybride und elektrische Fahrzeuge</td>
<td>4 LP Doppelbauer</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100772 Lichttechnik</td>
<td>4 LP Neumann</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100694 Methoden der Signalverarbeitung</td>
<td>6 LP Heizmann</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101939 Photovoltaik</td>
<td>6 LP Powalla</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100716 Schaltungstechnik in der Industrielelektronik</td>
<td>3 LP Liske</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-108344 Seminar Novel Concepts for Solar Energy Harvesting</td>
<td>3 LP Richards</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101911 Sensoren</td>
<td>3 LP Menesklou</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109313 Signale und Systeme</td>
<td>6 LP Heizmann</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100774 Solar Energy</td>
<td>6 LP Richards</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-106970 Superconducting Materials for Energy Applications</td>
<td>4 LP Grilli</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101921 Systemdynamik und Regelungstechnik</td>
<td>6 LP Hohmann</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100677 Systems Engineering for Automotive Electronics</td>
<td>4 LP Bortolazzi</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101952 Wahrscheinlichkeitstheorie</td>
<td>5 LP Jäkel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt

Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen

Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.
Qualifikationsziele
Die Studierenden sind in der Lage, ausgewählte Themen der Elektrotechnik und Informationstechnik zu rekonstruieren.

Inhalt
Siehe einzelne Teilleistungen
2.11 Modul: Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften [M-MACH-105405]

- **Einrichtung:** KIT-Fakultät für Maschinenbau
- **Bestandteil von:** Leistungen anderer Fakultäten und Überfachliche Qualifikationen

Leistungspunkte
- 10

Notenskala
- Zehntelnoten

Turnus
- Jedes Semester

Dauer
- 1 Semester

Sprache
- Deutsch/Englisch

Level
- 4

Version
- 1

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Exchange Students_BGU (Wahl:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-109581</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>4</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-109953</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td>3</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-100047</td>
<td>Grundlagen Finite Elemente</td>
<td>5</td>
<td>Betsch</td>
</tr>
<tr>
<td>T-BGU-110842</td>
<td>Modeling of Turbulent Flows - RANS and LES</td>
<td>6</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-108485</td>
<td>Project Report Water Distribution Systems</td>
<td>2</td>
<td>Oberle</td>
</tr>
<tr>
<td>T-BGU-108486</td>
<td>Water Distribution Systems</td>
<td>4</td>
<td>Oberle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Die Studierenden sind in der Lage, ausgewählte Themen der Mathematik zu rekonstruieren.

Inhalt
Siehe einzelne Teilleistungen
2.12 Modul: Teilleistungen von der KIT-Fakultät für Chemieingenieurwesen [M-MACH-105100]

Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Leistungen anderer Fakultäten und Überfachliche Qualifikationen

Leistungspunkte: 12
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

<table>
<thead>
<tr>
<th>Exchange Students_CIW (Wahl: zwischen 0 und 90 LP)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108915 Cryogenic Engineering</td>
<td>6 LP</td>
<td>Grohmann</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-110571 Design of a Jet Engine Combustion Chamber</td>
<td>6 LP</td>
<td>Harth</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-110576 Energy from Biomass</td>
<td>6 LP</td>
<td>Bajohr, Dahmen</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-111095 Liquid Transportation Fuels</td>
<td>6 LP</td>
<td>Rauch</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-108873 Verbrennungstechnisches Praktikum</td>
<td>4 LP</td>
<td>Harth</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Die Studierenden sind in der Lage, ausgewählte Themen des Chemieingenieurwesens zu rekonstruieren.

Inhalt
Siehe Teilleistungen

Lehr- und Lernformen
Vorlesung
2.13 Modul: Teilleistungen von der KIT-Fakultät für Informatik [M-MACH-104883]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
 Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Leistungen anderer Fakultäten und Überfachliche Qualifikationen

Leistungspunkte: 30
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

<table>
<thead>
<tr>
<th>Exchange Students_INFO (Wahl: zwischen 0 und 90 LP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101466 Informationsverarbeitung in Sensornetzwerken</td>
<td>6 LP Hanebeck</td>
</tr>
<tr>
<td>T-INFO-101356 Kognitive Systeme</td>
<td>6 LP Neumann, Waibel</td>
</tr>
<tr>
<td>T-INFO-101377 Lokalisierung mobiler Agenten</td>
<td>6 LP Hanebeck</td>
</tr>
<tr>
<td>T-INFO-101294 Mechano-Informatik in der Robotik</td>
<td>4 LP Asfour</td>
</tr>
<tr>
<td>T-INFO-101266 Mensch-Maschine-Interaktion</td>
<td>6 LP Beigl</td>
</tr>
<tr>
<td>T-INFO-101310 Patentrecht</td>
<td>3 LP Hössle, Koch</td>
</tr>
<tr>
<td>T-INFO-101357 Robotik in der Medizin</td>
<td>3 LP Kröger, Mathis-Ullrich</td>
</tr>
<tr>
<td>T-INFO-108014 Robotik I - Einführung in die Robotik</td>
<td>6 LP Asfour</td>
</tr>
<tr>
<td>T-INFO-105723 Robotik II - Humanoide Robotik</td>
<td>3 LP Asfour</td>
</tr>
<tr>
<td>T-INFO-109931 Robotik III – Sensoren und Perzeption in der Robotik</td>
<td>3 LP Asfour</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Die Studierenden sind in der Lage, ausgewählte Themen der Informatik zu rekonstruieren.

Inhalt
Siehe einzelne Teilleistungen
2.14 Modul: Teilleistungen von der KIT-Fakultät für Mathematik [M-MACH-104885]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
 Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Leistungen anderer Fakultäten und Überfachliche Qualifikationen

Leistungspunkte: 10
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Wahlinformationen

Exchange Students_MATH (Wahl: zwischen 0 und 90 LP)

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Inhalt</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103323</td>
<td>Differentialgleichungen - Klausur</td>
<td>4 LP</td>
<td>Grimm, Hochbruck, Neher</td>
</tr>
<tr>
<td>T-MATH-102242</td>
<td>Numerische Mathematik für die Fachrichtung Informatik</td>
<td>4,5 LP</td>
<td>Rieder, Weiß, Wieners</td>
</tr>
<tr>
<td>T-MATH-109620</td>
<td>Wahrscheinlichkeitstheorie und Statistik</td>
<td>5 LP</td>
<td>Bäuerle, Ebner, Fasen-Hartmann, Hug, Klar, Last, Trabs, Winter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudenten dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudenten müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Die Studierenden sind in der Lage, ausgewählte Themen der Mathematik zu rekonstruieren.

Inhalt
Siehe einzelne Teilleistungen
2.15 Modul: Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften [M-MACH-104884]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Leistungen anderer Fakultäten und Überfachliche Qualifikationen

Leistungspunkte: 20
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Wahlinformationen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

<table>
<thead>
<tr>
<th>Wahl</th>
<th>LP</th>
<th>Lehrer/-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102758</td>
<td>9</td>
<td>Nickel, Rebennack, Stein</td>
</tr>
<tr>
<td>T-WIWI-107501</td>
<td>4,5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102864</td>
<td>3</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>4,5</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-107043</td>
<td>3</td>
<td>Fichtner</td>
</tr>
<tr>
<td>T-WIWI-102870</td>
<td>3,5</td>
<td>Klein, Schultmann</td>
</tr>
<tr>
<td>T-WIWI-102800</td>
<td>4,5</td>
<td>Wouters</td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>3</td>
<td>Klamann</td>
</tr>
<tr>
<td>T-WIWI-103091</td>
<td>3</td>
<td>Rausch</td>
</tr>
<tr>
<td>T-WIWI-103134</td>
<td>3,5</td>
<td>Schultmann</td>
</tr>
<tr>
<td>T-WIWI-100806</td>
<td>3,5</td>
<td>Jochem</td>
</tr>
<tr>
<td>T-WIWI-102629</td>
<td>3,5</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Austauschstudierende dürfen Teilleistungen aus diesem Modul wählen. Teilleistungen können Vorleistungen oder mögliche Einschränkungen, beispielsweise eine Begrenzung der Teilnehmerzahl, aufweisen. Austauschstudierende müssen nicht das ganze Modul, sondern können einzelne Teilleistungen wählen.

Qualifikationsziele
Die Studierenden sind in der Lage, ausgewählte Themen der Wirtschaftswissenschaften zu rekonstruieren.

Inhalt
Siehe einzelne Teilleistungen
2.16 Modul: Wahlmodul Allgemeiner Maschinenbau [M-MACH-105134]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Martin Heilmayer

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Leistungen der KIT-Fakultät für Maschinenbau

Leistungspunkte 60
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch/Englisch
Level 4
Version 4

Wahlinformationen

<table>
<thead>
<tr>
<th>Wahlbereich A (Wahl:)</th>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Notenbereich</th>
<th>Verantwortliche Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105308</td>
<td>Atomistische Simulation und Molekulardynamik</td>
<td>4</td>
<td>60</td>
<td>Gumbsch, Schneider, Weygand</td>
</tr>
<tr>
<td>T-MACH-105407</td>
<td>CFD in der Energietechnik</td>
<td>4</td>
<td>60</td>
<td>Otic</td>
</tr>
<tr>
<td>T-MACH-109302</td>
<td>Computational Homogenization on Digital Image Data</td>
<td>6</td>
<td>60</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-108407</td>
<td>Design und Entwicklung eines MRT-Probenkopfes</td>
<td>4</td>
<td>60</td>
<td>Korvink</td>
</tr>
<tr>
<td>T-MACH-112238</td>
<td>Der Betrieb von Kraftwerken unter volatileen und unberechenbaren Marktbedingungen</td>
<td>4</td>
<td>60</td>
<td>Seidl, Stieglitz</td>
</tr>
<tr>
<td>T-MACH-110431</td>
<td>Digital microstructure characterization and modeling</td>
<td>6</td>
<td>60</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-112215</td>
<td>Elastizität als Feldtheorie</td>
<td>4</td>
<td>60</td>
<td>Agiasofitou, Lazar</td>
</tr>
<tr>
<td>T-MACH-105444</td>
<td>Gas- und Dampfkraftwerke</td>
<td>4</td>
<td>60</td>
<td>Schulenberg</td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Grundlagen der Mikrosystemtechnik I</td>
<td>4</td>
<td>60</td>
<td>Badilita, Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Grundlagen der Mikrosystemtechnik II</td>
<td>4</td>
<td>60</td>
<td>Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105530</td>
<td>Grundlagen der Reaktorsicherheit für den Betrieb und Rückbau von Kernkraftwerken</td>
<td>4</td>
<td>60</td>
<td>Sanchez-Espinoza</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>2</td>
<td>60</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Grundsätze der PKW-Entwicklung II</td>
<td>2</td>
<td>60</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105459</td>
<td>High Temperature Materials</td>
<td>4</td>
<td>60</td>
<td>Heilmayer</td>
</tr>
<tr>
<td>T-MACH-109185</td>
<td>Innovatives Projekt</td>
<td>6</td>
<td>60</td>
<td>Class, Terzidis</td>
</tr>
<tr>
<td>T-MACH-105466</td>
<td>Introduction to Neutron Cross Section Theory and Nuclear Data Generation</td>
<td>4</td>
<td>60</td>
<td>Dagan</td>
</tr>
<tr>
<td>T-MACH-105402</td>
<td>Kernkraftwerkstechnik</td>
<td>4</td>
<td>60</td>
<td>Badea, Cheng, Schulenberg</td>
</tr>
<tr>
<td>T-MACH-105410</td>
<td>Kohlekraftwerkstechnik</td>
<td>4</td>
<td>60</td>
<td>Schulenberg</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Maschinendynamik II</td>
<td>4</td>
<td>60</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105223</td>
<td>Machine Vision</td>
<td>8</td>
<td>60</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105189</td>
<td>Mathematische Modelle und Methoden für Produktionssysteme</td>
<td>6</td>
<td>60</td>
<td>Baumann, Furmans</td>
</tr>
<tr>
<td>T-MACH-105782</td>
<td>Mikro NMR Technologie</td>
<td>4</td>
<td>60</td>
<td>Korvink, MacKinnon</td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4</td>
<td>60</td>
<td>Kohl</td>
</tr>
<tr>
<td>T-MACH-108383</td>
<td>Mikrosystem Simulation</td>
<td>4</td>
<td>60</td>
<td>Korvink</td>
</tr>
<tr>
<td>T-MACH-111026</td>
<td>Nonlinear Continuum Mechanics</td>
<td>3</td>
<td>60</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-102191</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications</td>
<td>4</td>
<td>60</td>
<td>Worgull</td>
</tr>
<tr>
<td>T-MACH-102192</td>
<td>Polymers in MEMS A: Chemistry, Synthesis and Applications</td>
<td>4</td>
<td>60</td>
<td>Rapp</td>
</tr>
<tr>
<td>T-MACH-102200</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics</td>
<td>4</td>
<td>60</td>
<td>Rapp, Worgull</td>
</tr>
<tr>
<td>T-MACH-107447</td>
<td>Reliability Engineering 1</td>
<td>3</td>
<td>60</td>
<td>Konnov</td>
</tr>
<tr>
<td>T-MACH-105445</td>
<td>Simulator-Praktikum Gas- und Dampfkraftwerke</td>
<td>2</td>
<td>60</td>
<td>Schulenberg</td>
</tr>
<tr>
<td>T-MACH-105456</td>
<td>Ten Lectures on Turbulence</td>
<td>4</td>
<td>60</td>
<td>Otic</td>
</tr>
<tr>
<td>T-MACH-105363</td>
<td>Thermische Turbosysteme I</td>
<td>6</td>
<td>60</td>
<td>Bauer</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>Modulname</td>
<td>LP</td>
<td>Lehrer/Innen</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105364</td>
<td>Thermische Turbomaschinen II</td>
<td>6</td>
<td>Bauer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105554</td>
<td>Thin Film and Small-scale Mechanical Behavior</td>
<td>4</td>
<td>Gruber, Kirchlechner, Weygand</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111027</td>
<td>Tutorial Nonlinear Continuum Mechanics</td>
<td>1</td>
<td>Böhlke</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102206</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td>3</td>
<td>Gauterin</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102205</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>3</td>
<td>Gauterin</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102123</td>
<td>Virtual Engineering I</td>
<td>4</td>
<td>Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102124</td>
<td>Virtual Engineering II</td>
<td>4</td>
<td>Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105529</td>
<td>Wärmeübergang in Kernreaktoren</td>
<td>4</td>
<td>Cheng</td>
<td></td>
</tr>
</tbody>
</table>

Wahlbereich B (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrer/Innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102141</td>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>4</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-105451</td>
<td>Antriebssysteme und Möglichkeiten zur Effizienzsteigerung</td>
<td>2</td>
<td>Kollmeier</td>
</tr>
<tr>
<td>T-MACH-105530</td>
<td>Grundlagen der Reaktorsicherheit für den Betrieb und Rückbau von Kernkraftwerken</td>
<td>4</td>
<td>Sanchez-Espinoza</td>
</tr>
<tr>
<td>T-MACH-105786</td>
<td>Kontaktmechanik</td>
<td>4</td>
<td>Greiner</td>
</tr>
<tr>
<td>T-MACH-106700</td>
<td>Do it! – Service-Learning für angehende Maschinenbauingenieure</td>
<td>2</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-105527</td>
<td>Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstürzfälle und nukleare Entsorgung</td>
<td>4</td>
<td>Dagan</td>
</tr>
<tr>
<td>T-MACH-105235</td>
<td>Grundlagen der Medizin für Ingenieure</td>
<td>4</td>
<td>Pylatiuk</td>
</tr>
<tr>
<td>T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>4</td>
<td>Dagan</td>
</tr>
<tr>
<td>T-MACH-105574</td>
<td>Mechatronische Systeme und Produkte</td>
<td>3</td>
<td>Hohmann, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-106707</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>4</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>5</td>
<td>Bernhardt, Kuba, Pfeil, Toedter, Wagner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen

keine

Qualifikationsziele

Im Wahlmodul "Allgemeiner Maschinenbau" erwerben die Studierenden ingenieurwissenschaftliches Wissen. Mit diesen fundierten Kenntnissen der wissenschaftlichen Theorien, Prinzipien und Methoden können die Studierenden spezifizierte Probleme des Maschinenbaus mit eindeutigem Lösungsweg erfolgreich bearbeiten.

Arbeitsaufwand

Je nach gewählten Teilleistungen bis zu 30 LP pro Semester.

Lehr- und Lernformen

Vorlesungen, Übungen
3.1 Teilleistung: Abgas- und Schmierölanalyse am Verbrennungsmotor [T-MACH-105173]

Verantwortung: Dr.-Ing. Marcus Gohl
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2134150</th>
<th>Gas-, Schmieröl- und Betriebsmittelanalyse in der Antriebsentwicklung</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Gohl</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76--T-Mach-105173</th>
<th>Gas-, Schmieröl- und Betriebsmittelanalyse in der Antriebsentwicklung</th>
<th>Gohl</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105173</td>
<td>Abgas- und Schmierölanalyse am Verbrennungsmotor</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎬 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Hörerschein oder Möglichkeit einer mündlichen Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Gas-, Schmieröl- und Betriebsmittelanalyse in der Antriebsentwicklung
2134150, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise
Die Vorlesungsunterlagen werden vor jeder Veranstaltung an die Studenten verteilt.
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung (ca. 30 Min.)

Voraussetzungen

keine

Empfehlungen

Grundkenntnisse in Thermodynamik aus dem Bachelor-Studiengang Maschinenbau, MatWerk, Physik oder Chemie
3.3 Teilleistung: Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte [T-MACH-106744]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Hon.-Prof. Dr. Roland Kläger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion</td>
</tr>
</tbody>
</table>

| Teilleistungsart | Prüfungsleistung mündlich | Leistungspunkte | 4 | Notenskala | Drittelnoten | Turnus | Jedes Sommersemester | Version | 3 |

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Min.

Voraussetzungen
Keine
3.4 Teilleistung: Aktoren und Sensoren in der Nanotechnik [T-MACH-105238]

Verantwortung: Prof. Dr. Manfred Kohl
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte
4
Notenskala
Drittelnoten
Turnus
Jedes Wintersemester
Version
1

Erfolgskontrolle(n)
mündliche Prüfung

Voraussetzungen
keine
3.5 Teilleistung: Alternative Antriebe für Automobile [T-MACH-105655]

Verantwortung: Prof. Dipl.-Ing. Karl Ernst Noreikat
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Betriebseinheit</th>
<th>SWS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>Nachhaltige Fahrzeugantriebe</td>
<td>2 SWS</td>
<td>Vorlesung / Präsenz</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltung</th>
<th>Betriebseinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Nachhaltige Fahrzeugantriebe (Alternative Antriebe für Automobile)</td>
<td>Toedter</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Nachhaltige Fahrzeugantriebe</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🔄 Präsenz/Online gemischt, ⏯️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Nachhaltige Fahrzeugantriebe
2133132, WS 22/23, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Nachhaltigkeit
Umweltbilanzierung
Gesetzgebung
Alternative Kraftstoffe
BEV
Brennstoffzelle
Hybridantriebe
Teilleistung: Angewandte Tribologie in der industriellen Produktentwicklung [T-MACH-105215]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Benoit Lorentz
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
Keine
3.7 Teilleistung: Angewandte Werkstoffsimulation [T-MACH-105527]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesungs- und Übungseinheit</th>
<th>SS 2022</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Werkstoffsimulation</td>
<td>2182614</td>
<td>4 SWS</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Vorlesung / Übung (VÜ) / 🖥️

Gumbsch, Schulz

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesungs- und Übungseinheit</th>
<th>SS 2022</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Werkstoffsimulation</td>
<td>76-T-MACH-105527</td>
<td>4 SWS</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Gumbsch, Schulz

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung ca. 30 Minuten
keine Hilfsmittel

Voraussetzungen

Die erfolgreiche Teilnahme an Übungen zu Angewandte Werkstoffsimulation ist Voraussetzung für die Zulassung zur mündlichen Prüfung Angewandte Werkstoffsimulation.

T-MACH-110928 – Exercises for Applied Materials Simulation darf nicht begonnen sein.
T-MACH-110929 – Applied Materials Modelling darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Angewandte Werkstoffsimulation

2182614, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) 🖥️

Online

Inhalt

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analyseren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasiert der Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

Präsenzzeit: 34 Stunden
Übung: 11 Stunden
Selbststudium: 165 Stunden
Mündliche Prüfung ca. 35 Minuten
Hilfsmittel: keine
Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen
Organisatorisches
Die Vorlesung wir nur als Aufzeichnung angeboten!
Bitte besuchen Sie die englischsprachige Veranstaltung "Applied Materials Simulation" (2182616)!
Weitere Informationen finden Sie in ILIAS.
Kontakt: johannes.schneider@kit.edu

Literaturhinweise
3.8 Teilleistung: Antriebsstrang mobiler Arbeitsmaschinen [T-MACH-105307]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
 Marco Wydra

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
 KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart
Prüfungsteil mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Art</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2113077</td>
<td>Antriebsstrang mobiler Arbeitsmaschinen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2113078</td>
<td>Übung zu 'Antriebsstrang mobiler Arbeitsmaschinen'</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Geimer, Herr</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105307</td>
<td>Antriebsstrang mobiler Arbeitsmaschinen</td>
<td>Geimer</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105307</td>
<td>Antriebsstrang mobiler Arbeitsmaschinen</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗭 Präsenz/Online gemischt, 🗣 Präsenz, x Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen
- Allgemeine Grundlagen des Maschinenbaus
- Grundkenntnisse Hydraulik
- Interesse an mobilen Arbeitsmaschinen

Anmerkungen

Lernziele:
Die Studierenden können den Aufbau und die Funktionsweise aller diskutierten Antriebsstränge mobiler Arbeitsmaschinen erläutern. Sie können sowohl komplexe Getriebeschaupläne analysieren als auch mittels überschlagsrechnungen einfache Getriebefunktionen synthetisieren.

Inhalt:
Innerhalb dieser Vorlesung werden die Variationsmöglichkeiten der Fahrantriebsstränge von mobilen Arbeitsmaschinen vorgestellt und diskutiert. Die Schwerpunkte der Vorlesung sind wie folgt:

- Mechanische Getriebe
- Hydrodynamische Wandler
- Hydrostatische Antriebe
- Leistungsverzweigte Getriebe
- Elektrische Antriebe
- Hybridantriebe
- Achsen
- Terramechanik (Rad-Boden Effekte)

Medien:
Beamer-Präsentation

Literatur:
Foliensatz zur Vorlesung downloadbar über ILIAS
Literaturhinweise in der Vorlesung
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Antriebsstrang mobiler Arbeitsmaschinen

2113077, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Innerhalb dieser Vorlesung sollen die Variationsmöglichkeiten der Fahrantriebsstränge von mobilen Arbeitsmaschinen vorgestellt und diskutiert werden. Die Schwerpunkte der Vorlesung sind wie folgt:

- Vertiefen der bisherigen Grundlagen
- Mechanische Getriebe
- Hydrodynamische Wandler
- Hydrostatische Antriebe
- Leistungsverzweigte Getriebe
- Elektrische Antriebe
- Hybridantriebe
- Achsen
- Terramechanik (Rad-Boden Effekte)

Empfehlungen:

- Allgemeine Grundlagen des Maschinenbaus
- Grundkenntnisse Hydraulik
- Interesse an mobilen Arbeitsmaschinen

- Präsenzzeit: 21 Stunden
- Selbststudium: 89 Stunden

Literaturhinweise

Skriptum zur Vorlesung downloadbar über ILIAS
3.9 Teilleistung: Antriebssysteme und Möglichkeiten zur Effizienzsteigerung [T-MACH-105451]

Verantwortung: Dr.-Ing. Hans-Peter Kollmeier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
2

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer 30 min., keine Hilfsmittel

Voraussetzungen
keine
3.10 Teilleistung: Antriebssystemtechnik B: Stationäre Antriebssysteme [T-MACH-105216]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Sascha Ott

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurs</th>
<th>Antriebssystemtechnik B: Stationäre Antriebssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2145150</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurs</th>
<th>Antriebssystemtechnik B: Stationäre Antriebssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105216</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105216</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung: 60 min Prüfungsdauer

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Antriebssystemtechnik B: Stationäre Antriebssysteme

2145150, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden erwerben die grundlegenden Kompetenzen, die benötigt werden, um zukünftige energieeffiziente und sicherer Antriebssystemlösungen für den Einsatz im industriellen Umfeld zu entwickeln. Hierbei werden ganzheitliche Entwicklungsmethoden und Bewertungen von Antriebssystemen betrachtet. Die Schwerpunkte lassen sich hierbei in folgende Kapitel gliedern:

- System Antriebsstrang
- System Bediener
- System Umgebung
- Systemkomponenten
- Entwicklungsprozess

Empfehlungen für ergänzende Lehrveranstaltungen:

- Antriebssystemtechnik A: Fahrzeugantriebssysteme

Literaturhinweise

VDI-2241: "Schaltare fremdbetätigte Reibkupplungen und -bremsen", VDI Verlag GmbH, Düsseldorf
3.11 Teilleistung: Arbeitstechniken der Materialwissenschaft und Werkstofftechnik [T-MACH-100288]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
3.12 Teilleistung: Arbeitswissenschaft I: Ergonomie [T-MACH-105518]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Voraussetzung</th>
<th>SWS</th>
<th>Vorlesung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2109035</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Voraussetzung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td></td>
<td>Prüfung</td>
<td>Deml</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td></td>
<td>Prüfung</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 💬 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 60 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Arbeitswissenschaft I: Ergonomie
2109035, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Prüfungsveranstaltung

Vorlesung (V) Prüfung
Präsenz/Online gemischt

Inhalt

1. Grundlagen menschlicher Arbeit
2. Verhaltenswissenschaftliche Datenerhebung
3. Arbeitsplatzgestaltung
4. Arbeitsumweltgestaltung
5. Arbeitswirtschaft
6. Arbeitsrecht und Interessensvertretung

Lernziele:

Die Studierenden erwerben vor allem grundlegendes Wissen im Bereich der Ergonomie:

- Sie können Arbeitsplätze hinsichtlich kognitiver, physiologischer, anthropometrischer und sicherheitstechnischer Aspekte ergonomisch gestalten.
- Ebenso kennen sie physikalische und psychophysische Grundlagen (z. B. Lärm, Beleuchtung, Klima) im Bereich der Arbeitsumweltgestaltung.
- Die Studierenden sind zudem in der Lage, Arbeitsplätze arbeitswirtschaftlich zu bewerten, indem sie wesentliche Methoden des Zeitstudiums und der Entgeltfindung kennen und anwenden können.
- Schließlich erwerben sie auch einen ersten, überblickhaften Einblick in das deutsche Arbeitsrecht und die Organisation der überbetrieblichen Interessensvertretung.

Darüber hinaus lernen die Teilnehmer wesentliche Methoden der verhaltenswissenschaftlichen Datenerhebung (z. B. Eyetracking, EKG, Dual-Task-Paradigma) kennen.
Organisatorisches

In der zweiten Hälfte des Semesters, ab dem **28.12.2022** findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.

- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
3.13 Teilleistung: Arbeitswissenschaft II: Arbeitsorganisation [T-MACH-105519]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Präsenz</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2109036</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>4</td>
<td></td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Prüfungsleistung schriftlich</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>Drittelnoten</td>
<td>Deml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>Drittelnoten</td>
<td>Deml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 60 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Arbeitswissenschaft II: Arbeitsorganisation
2109036, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

Lehrinhalt:
1. Grundlagen der Arbeitsorganisation
2. Empirische Forschungsmethoden
3. Individualebene
 - Personalauswahl
 - Personalentwicklung
 - Personalbeurteilung
 - Arbeitszufriedenheit und Arbeitsmotivation
4. Gruppenebene
 - Interaktion und Kommunikation
 - Führung von Mitarbeitern
 - Teamarbeit
5. Organisationsebene
 - Aufbauorganisation
 - Ablauforganisation
 - Produktionsorganisation

Lernziele:
Die Studierenden erwerben einen ersten Einblick in empirische Forschungsmethoden (z. B. Experimentaldesign, statistische Datenauswertung). Darüber hinaus erwerben sie vor allem grundlegendes Wissen im Bereich der Arbeitsorganisation:

- **Organisationsebene.** Im Rahmen des Moduls erwerben die Studierenden auch grundlegendes Wissen im Bereich der Aufbau-, Ablauf- und Produktionsorganisation.
- **Gruppenebene.** Außerdem lernen sie wesentliche Aspekte der betrieblichen Teamarbeit kennen und kennen einschlägige Theorien aus dem Bereich der Interaktion und Kommunikation, der Führung von Mitarbeitern sowie der Arbeitszufriedenheit und -motivation.
- **Individualebene.** Schließlich lernen die Studierenden auch Methoden aus dem Bereich der Personalauswahl, -entwicklung und -beurteilung kennen.
Organisatorisches
In der zweiten Hälfte des Semesters, ab dem 28.12.2022 findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.
- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).
Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
Teilleistung: Arbeitswissenschaft III: Empirische Forschungsmethoden [T-MACH-105830]

Verantwortung: Prof. Dr.-Ing. Barbara Deml

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Teilleistungsart
- Prüfungsleistung anderer Art

Leistungspunkte
- 4

Notenskala
- Drittelnoten

Turnus
- Jedes Sommersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2110036</th>
<th>Arbeitswissenschaft III: Empirische Forschungsmethoden</th>
<th>2 SWS</th>
<th>Seminar (S)</th>
<th>Deml</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105830</th>
<th>Arbeitswissenschaft III: Empirische Forschungsmethoden</th>
<th>Deml</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, ☑ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
- Wissenschaftlicher Bericht (ung. 6 Seiten), Poster und Präsentation

Voraussetzungen
Der Besuch dieser Veranstaltung setzt voraus, dass entweder "Arbeitswissenschaft I" oder "Arbeitswissenschaft II" erfolgreich absolviert worden sind.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Arbeitswissenschaft III: Empirische Forschungsmethoden

| 2110036, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen | Seminar (S) Präsenz |

Inhalt
Ziel der Veranstaltung ist es, dass die Teilnehmer arbeitswissenschaftliche Forschungsmethoden kennen und anwenden können. Hierzu erhalten die Teilnehmer eine Einführung in die Grundlagen der Versuchsplanung und sie lernen wesentliche Methoden der Datenerhebung und der statistischen Datenauswertung kennen. Im Anschluss daran werden die Teilnehmer eigene experimentelle Untersuchungen zu den Themenfeldern Verhalten von Autofahrern und Fahrsimulation durchführen, auswerten und präsentieren.

Die wöchentliche persönliche Teilnahme an den Vorlesungseinheiten sowie an den Kleingruppenterminen im Labor ist obligatorisch. Je nachdem wie die Corona-Situation sich entwickelt, wird die Veranstaltung präsent oder online stattfinden.

Darüber hinaus ist im Rahmen der Veranstaltung ein ungefähr sechsseitiger Forschungsbericht sowie eine Präsentation zu erstellen.

Organisatorisches
Die Veranstaltung ist teilnahmebeschränkt. Die Anmeldung erfolgt über ILIAS. Die Veranstaltung kann nur belegt werden, wenn entweder Arbeitswissenschaft I (Ergonomie) oder Arbeitswissenschaft II (Arbeitsorganisation) erfolgreich absolviert worden ist.

Die Prüfungsleistung besteht in Form eines schriftlichen Forschungsberichts und einer Präsentation.
3.15 Teilleistung: Atomistische Simulation und Molekulardynamik [T-MACH-105308]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von:
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2181740</th>
<th>Atomistische Simulation und Molekulardynamik</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🗣</th>
<th>Weygand, Gumbsch</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76T-MACH-105308</th>
<th>Atomistische Simulation und Molekulardynamik</th>
<th>Weygand, Gumbsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105308-W</td>
<td>Atomistische Simulation und Molekulardynamik (Wiederholung)</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76T-MACH-105308</td>
<td>Atomistische Simulation und Molekulardynamik</td>
<td>Weygand, Gumbsch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Atomistische Simulation und Molekulardynamik
2181740, SS 2022, 3 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)
[2181740, SS 2022, 3 SWS, Sprache: Englisch](#)
Inhalt
Die Vorlesung gibt eine Einführung in partikelbasierte Simulationsmethoden weitgehend am Beispiel der Molekulardynamik:

1. Einführung
2. Werkstoffphysik
3. MD Basics, Atom-Billard
 * Teilchen, Ort, Energie, Kräfte -- Paarpotenzial
 * Anfangs- und Randbedingungen
 * Zeitintegration
4. Algorithmisches
5. Statik, Dynamik, Thermodynamik
6. MD Output
7. Wechselwirkung zwischen Teilchen
 * Paarpotenziale -- Mehrkörperpotenziale
 * Quantenmechanische Prinzipien
 * Tight Binding Methoden
 * dissipative Partikeldynamik
8. Anwendung von teilchenbasierten Methoden

Übungen dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für ausführliche Rückfragen der Studierenden.

Der/die Studierende kann

* die physikalischen Grundlagen partikelbasierter Simulationsmethoden (z. Bsp. Molekulardynamik) erläutern.
* partikelbasierte Simulationsmethoden anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu bearbeiten.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzzeit: 22,5 Stunden
Übung: 22,5 Stunden
Selbststudium: 75 Stunden
Mündliche Prüfung ca. 30 Minuten

Organisatorisches
Die Vorlesung wird auf Englisch angeboten!

Literaturhinweise

3.16 Teilleistung: Aufbau und Eigenschaften verschleißfester Werkstoffe [T-MACH-102141]

Verantwortung: apl. Prof. Dr. Sven Ulrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2194643</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>2 SWS</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-102141</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>Ulrich</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- mündliche Prüfung (ca. 30 min)
- keine Hilfsmittel

Voraussetzungen

- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Aufbau und Eigenschaften verschleißfester Werkstoffe

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2194643, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
<tr>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt
Die Blockveranstaltung findet in folgendem Zeitraum statt:
11.04.-13.04.2022: jeweils von 8:00-16:00 Uhr;
Ort: online per MS-Teams
(KIT-Campus Nord, Geb. 681, SR 214, IAM-Angewandte Werkstoffphysik (IAM-AWP))
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 min.) zum vereinbarten Termin (nach §4(2), 2 SPO).
Die Wiederholungsprüfung findet nach Vereinbarung statt.
Lehrinhalt:
Einführung
Werkstoffe und Verschleiß
Unlegierte und legierte Werkzeugstähle
Schnellarbeitsstähle
Stellite und Hartlegierungen
Hartstoffe
Hartmetalle
Schneidkeramik
Superharte Materialien
Neueste Entwicklungen
Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden
Empfehlungen: keine

Organisatorisches
Aufgrund der aktuellen Situation findet die Blockveranstaltung online in folgendem Zeitraum statt:
11.04.-13.04.2022: jeweils von 8:00-16:00 Uhr;
Ort: online per MS-Teams
Anmeldung verbindlich bis zum 08.04.2022 unter sven.ulrich@kit.edu.
Nach der Anmeldung wird Ihnen der Link zur Vorlesung per E-Mail am 08.04.2022 mitgeteilt.

Literaturhinweise
Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995
Kopien der Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
3.17 Teilleistung: Aufbau und Eigenschaften von Schutzschichten [T-MACH-105150]

Verantwortung:
apl. Prof. Dr. Sven Ulrich

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von:
M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

WS 22/23 2177601 Aufbau und Eigenschaften von Schutzschichten 2 SWS Vorlesung (V) / 🕒 Ulrich

Prüfungsveranstaltungen

SS 2022 76-T-MACH-105150 Aufbau und Eigenschaften von Schutzschichten Ulrich

Erfolgskontrolle(n)

mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Aufbau und Eigenschaften von Schutzschichten
2177601, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

mündliche Prüfung (ca. 30 min); keine Hilfsmittel

Lehrinhalt:

Einführung und Übersicht

Konzepte zur Oberflächenmodifizierung

Schichtkonzepte

Schichtmaterialien

Verfahren zur Oberflächenmodifizierung

Verfahren zur Schichtaufbringung

Methoden zur Charakterisierung der Schichten und Stoffverbunde

Stand der industriellen Werkzeug- und Bauteilbeschichtung

Neueste Entwicklungen der Beschichtungstechnologie

Präsenzzeit: 22 Stunden

Selbststudium: 98 Stunden

Lernziele:

Empfehlungen: keine
Organisatorisches
Falls die Vorlesung online stattfinden muss, bitte um Anmeldung unter sven.ulrich@kit.edu bis zum 24.10.22.
Den entsprechenden MS Teams Link erhalten Sie dann per E-Mail am 26.10.22.

Literaturhinweise

Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
3.18 Teilleistung: Ausgewählte Kapitel der Verbrennung [T-MACH-105428]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte
4
Notenskala
Drittelnoten
Turnus
Jedes Semester
Version
1

Lehrveranstaltungen

SS 2022
2167541
Ausgewählte Kapitel der Verbrennung
2 SWS
Vorlesung (V) / 🧩
Maas

WS 22/23
2167541
Ausgewählte Kapitel der Verbrennung
2 SWS
Vorlesung (V) / 🧩
Maas

Prüfungsveranstaltungen

SS 2022
76-T-MACH-105428
Ausgewählte Kapitel der Verbrennung
Maas

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☢ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung mündlich; Dauer ca. 20 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auszgewählte Kapitel der Verbrennung

Vorlesung (V)

Auszgewählte Kapitel der Verbrennung

2167541, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Je nach Vorlesung: Grundlagen der chemischen Reaktionskinetik, der statistischen Modellierung von turbulenten Flammen oder der Tropfen- und Sprayverbrennung.

Organisatorisches
Blockveranstaltung. Termine siehe Schaukasten und Internetseite des Instituts.

Literaturhinweise
Vorlesungsunterlagen

Auszgewählte Kapitel der Verbrennung

Vorlesung (V)

Auszgewählte Kapitel der Verbrennung

2167541, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Je nach Vorlesung: Grundlagen der chemischen Reaktionskinetik, der statistischen Modellierung von turbulenten Flammen oder der Tropfen- und Sprayverbrennung.

Organisatorisches
Nach Vereinbarung, siehe Aushang.

Literaturhinweise
Vorlesungsunterlagen
3.19 Teilleistung: Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen [T-MACH-105462]

Verantwortung: apl. Prof. Dr. Ron Dagan

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Leistungspunkte

- **4**

Notenskala

- Drittelnoten

Turnus

- Jedes Sommersemester

Version

- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2190411</th>
<th>Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Dagan, Metz</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105462</th>
<th>Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</th>
<th>Dagan</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- mündliche Prüfung, ca. 1/2 Stunde

Voraussetzungen

- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen

2190411, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt

- Kernenergie und -kräfte
- Radioaktive Umwandlungen der Atomkerne
- Kernprozesse
- Kernspaltung und verzögerte Neutronen
- Grundbegriffe der Wirkungsquerschnitt
- Grundprinzipien der Kettenreaktion
- Statische Theorie des monoenergetischen Reaktors
- Einführung in Reaktorkinetik
- Kernphysikalisches Praktikum

Lernziel: Die Studierenden

- kennen die grundlegenden Begriffe, die in der Reaktorphysik vorkommen
- verstehen und berechnen den Prozess von Zunahme oder Zerfall von radioaktiven Materialien und die dazu gehörige biologische Schädigung
- kennen fundamentale Parameter, um einem stabilen Reaktor zu betreiben
- verstehen wichtige dynamische Prozesse von Kernreaktoren.

Präsenzzeit

- 26 Stunden

Selbststudium

- 94 Stunden

- mündlich ca. 30 min

Literaturhinweise

- K. Wirtz Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
- J. Duderstadt and L. Hamilton, Nuclear reactor Analysis, J. Wiley & Sons, Inc. 1975 (in English)
3.20 Teilleistung: Ausgewählte Themen virtueller Ingenieursanwendungen [T-MACH-105381]

- **Verantwortung:** Prof. Dr.-Ing. Jivka Ovtcharova
- **Einrichtung:** KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
- **Bestandteil von:** M-MACH-104878 - Spezialisierung im Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>3122031</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>2</td>
<td>Vorlesung (V) / 🖥</td>
<td>Ovtcharova, Maier</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105381</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>2</td>
<td></td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105381</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>2</td>
<td></td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 20 Min.

Voraussetzungen

keine

Virtual Engineering (Specific Topics)

<table>
<thead>
<tr>
<th>Vorlesungsnummer</th>
<th>SS 2022</th>
<th>SWS</th>
<th>Sprache: Englisch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3122031</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Studierende können

- die Grundlagen des Virtual Engineerings erläutern und exemplarisch Modellierungswerkzeuge benennen und den entsprechenden Methoden und Prozessen zuordnen
- Validierungsfragenstellungen im Produktentstehungsprozess formulieren und naheliegende Lösungsmethoden benennen
- die Grundlagen des Systems Engineering erläutern und den Zusammenhang zum Produktentstehungsprozess herstellen
- einzelne Methoden der Digitalen Fabrik erläutern sowie die Funktionen der Digitalen Fabrik im Kontext des Produktentstehungsprozesses darstellen
- die theoretischen und technischen Grundlagen der Virtual Reality Technologie erläutern und den Zusammenhang zum Virtual Engineering aufzeigen

Organisatorisches

Vorlesungszeiten siehe ILIAS / Lecture times see ILIAS

Literaturhinweise

Lecture slides / Vorlesungsfolien
3.21 Teilleistung: Auslegung hochbelasteter Bauteile [T-MACH-105310]

Verantwortung: apl. Prof. Dr. Jarir Aktaa
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2181745</th>
<th>Auslegung hochbelasteter Bauteile</th>
<th>2 SWS</th>
<th>Vorlesung (V) /</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aktaa</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105310</th>
<th>Auslegung hochbelasteter Bauteile</th>
<th>Aktaa</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Auslegung hochbelasteter Bauteile
2181745, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Inhalte der Vorlesung:
Regeln gängiger Auslegungsvorschriften
Klassische Stoffgesetze der Elasto-Plastizität und des Kriechens
Lebensdauerregeln für Kriechen, Ermüdung und Kriech-Ermüdung-Wechselwirkung
Fortgeschrittene Stoffgesetze der Thermo-Elasto-Viskoplastizität
Kontinuumsmechanische Stoffgesetze für die Schädigung bei hohen Temperaturen
Einsatz fortgeschrittener Stoffgesetze in FE-Programmen

Die Studierenden können die Regeln gängiger Auslegungsvorschriften für die Beurteilung von Bauteilen, die im Betrieb hohen thermo-mechanischen und/oder Bestrahlungsbelastungen unterliegen benennen. Sie verstehen, welche Stoffgesetze beim Stand der Technik sowie Stand der Forschung zur Abschätzung der unter diesen Belastungen auftretenden Verformung und Schädigung und zur Vorhersage der zu erwartenden Lebensdauer verwendet werden. Sie haben einen Einblick über den Einsatz dieser in der Regel nichtlinearen Stoffgesetze in Finite-Elemente-Programmen und können die wesentlichen Punkte, die dabei zu beachten sind beurteilen.

Voraussetzungen: Werkstoffkunde, Technische Mechanik II
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten

Organisatorisches
Die Vorlesung findet ab dem 08.11.2022 statt

Literaturhinweise
3.22 Teilleistung: Auslegung mobiler Arbeitsmaschinen [T-MACH-105311]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Inhalt:
Die mündliche Prüfung (20 min) wird in der vorlesungsfreien Zeit des Semesters angeboten. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Eine vorherige Anmeldung ist erforderlich, die Details werden auf den Webseiten des Instituts Fahrzeugsystemtechnik / Teilinstitut Mobile Arbeitsmaschinen angekündigt. Bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten nach Qualifikation statt.

Die Veranstaltung wird um interessante Vorträge von Referenten aus der Praxis ergänzt.

Voraussetzungen
Voraussetzung zur mündlichen Prüfung ist die Anfertigung eines Semesterberichts. Die Teilleistung mit der Kennung T-MACH-108887 muss bestanden sein.

Empfehlungen
Kenntnisse in Fluidtechnik (LV 2114093) werden vorausgesetzt.

Anmerkungen

Lernziele:
Am Ende der Veranstaltung können die Studenten:

- Die Arbeits- und Fahrhydraulik einer mobilen Arbeitsmaschine auslegen und charakteristische Größen ermitteln.
- Geeignete Auslegungsmethoden aus der Praxis auswählen und zielführend anwenden.
- Eine mobile Arbeitsmaschine analysieren und als komplexes System in einzelne Subbaugruppen zerlegen.
- Wechselwirkungen und Verknüpfungen zwischen den Subbaugruppen einer mobilen Arbeitsmaschine identifizieren und beschreiben.
- Eine technische Fragestellung und deren Lösung wissenschaftlich präsentieren und schriftlich dokumentieren.

Die Anzahl der Teilnehmer ist begrenzt.

Literatur:
Buch "Grundlagen mobiler Arbeitsmaschinen", Karlsruher Schriftenreihe Fahrzeugsystemtechnik, Band 22, KIT Scientific Publishing
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auslegung mobiler Arbeitsmaschinen

2113079, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V) Präsenz

Inhalt

Bagger und Radlader sind hochgradig spezialisierte mobile Arbeitsmaschinen. Ihre Funktion besteht darin, Gut zu lösen und aufzunehmen und in geringer Entfernung wieder abzusetzen/abzuschütten.

Maßgebliche Größe zur Dimensionierung ist der Inhalt der Standardschaufel. Anhand eines Radladers oder Baggers werden in dieser Veranstaltung die wesentlichen Dimensionierungsschritte zur Auslegung durchgearbeitet. Das beinhaltet unter anderem:

- das Festlegen der Größenklasse und Hauptabmaße,
- die Dimensionierung eines elektrischen Antriebsstrangs,
- die Auslegung der Primärenergieversorgung,
- das Bestimmen der Kinematik der Ausrüstung,
- das Dimensionieren der Arbeitshydraulik sowie
- Festigkeitsberechnungen.

Der gesamte Auslegungs- und Entwurfsprozess dieser Maschinen ist stark geprägt von der Verwendung von Normen und Richtlinien. Auch dieser Aspekt wird behandelt.

Aufgebaut wird auf das Wissen aus den Bereichen Mechanik, Festigkeitslehre, Maschinenelemente, Antriebstechnik und Fluidtechnik.

Die Veranstaltung erfordert eine aktive Teilnahme und kontinuierliche Mitarbeit.

Empfehlungen:

Kenntnisse in Fluidtechnik (SoSe, LV 21093)

- Präsenzzeit: 21 Stunden
- Selbststudium: 99 Stunden

Literaturhinweise

Keine.
3.23 Teilleistung: Auslegung Mobiler Arbeitsmaschinen - Vorleistung [T-MACH-108887]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Veranstaltung</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-108887</td>
<td>Auslegung Mobiler Arbeitsmaschinen - Vorleistung</td>
<td>Geimer</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-108887</td>
<td>Auslegung Mobiler Arbeitsmaschinen - Vorleistung</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Anfertigung Semesterbericht

Voraussetzungen
keine
3.24 Teilleistung: Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben [T-MACH-110958]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Hartmut Faust

Einzrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2022 2146208 Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben 2 SWS Vorlesung (V) / 🗣 Faust

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105536 Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben Faust, Albers

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,❌ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben
2146208, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Getriebetypen: Handschalt- (MT) & automatisierte Schaltgetriebe (AMT), Planeten-Wandler-Automaten (AT), Doppelkupplungs- (DCT), stufenlose (CVT) und geared neutral Getriebe (IVT), Hybridgetriebe (Seriele, parallele, Multimode-, Powersplit-Hybride), E-Achsantrieb
- Drehschwingungsdämpfer: Gedämpfte Kupplungsscheibe, Zweimassenschwungrad, Fliehkraftpendel (FKP), Lock-Up-Dämpfer für Drehmomentwandler
- Anfahrelemente: Trockene Einfachkupplung, trockene und Nasslaufende Doppelkupplung, hydrodynamischer Drehmomentwandler, Sonderformen, e-motorisch
- Kraftübertragung: Vorgelege-Getriebe, Planetensatz, CVT-Variator, Kette, Synchronisierung, Schalt- und Klauenkupplungen, Reversierung, Differenziale und Sperrsysteme, koaxiale und achsparallele E-Achsantriebe
- Getriebesteuerung: Schaltsysteme für MT, Aktuatoren für Kupplungen und Schaltung, hydraulische Steuerung, elektronische Steuerung, Softwareapplikation, Komfort und Sportlichkeit
- Sonderbauformen: Triebstränge von Nutzfahrzeugen, Hydrostat mit Leistungsverzweigung, Torque Vectoring
- E-Mobilität: Einteilung in 5 Ausbaustufen der Elektrifizierung, 4 Hybrid-Konfigurationen, 7 Parallelhybrid-Architekturen, Hybridisierter Getriebe (P2, P2.5, P3, P4), Dedicated Hybrid Transmissions (DHT; seriell/parallel/Multimode, Powersplit, neue Konzepte), Getriebe für Elektrofahrzeuge (E-Achsgetriebe, koaxial und achsparallel)
Organisatorisches

Lernziele
Die Studenten erwerben das Wissen aus aktuellen Getriebe-, Hybrid- und reinen Elektroantriebs-Entwicklungen über …

- die Funktionsweise und Auslegung von konventionellen und elektrifizierten Fahrzeuggetrieben und deren Komponenten;
- Konstruktions- und Funktionsprinzipien der wichtigsten Komponenten von Handschalt-, Doppelkupplungs-, stufenlosen und Planetenautomat-Getrieben;
- komfortrelevante Zusammenhänge und Abhilfemaßnahmen;
- die Hybridisierung und Elektrifizierung der Triebstränge auf Basis bekannter Getriebetypen und mit speziellen sogenannten Dedicated Hybrid Transmissions (DHT) sowie Bewertung der Konzepte auf Systemebene.
3.25 Teilleistung: Automatisierte Produktionsanlagen [T-MACH-108844]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Lehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modul</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2150904</td>
<td>6</td>
<td>Vorlesung / Übung</td>
</tr>
<tr>
<td></td>
<td>Automatisierte Produktionsanlagen</td>
<td></td>
<td>(VÜ) / 🧩 Fleischer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Modul</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-108844</td>
<td>6</td>
<td>Vorlesung / Übung</td>
</tr>
<tr>
<td></td>
<td>Automatisierte Produktionsanlagen</td>
<td></td>
<td>(VÜ) / 🧩 Fleischer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (40 Minuten)

Voraussetzungen
"T-MACH-102162 - Automatisierte Produktionsanlagen" darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Automatisierte Produktionsanlagen

2150904, SS 2022, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt
Inhalt
Die Vorlesung gibt einen Überblick über den Aufbau und die Funktionsweise von automatisierten Produktionsanlagen. In einem Grundlagenkapitel werden die grundlegenden Elemente zur Realisierung automatisierter Produktionsanlagen vermittelt. Hierunter fallen:

- Antriebs- und Steuerungstechnik
- Handhabungstechnik zur Handhabung von Werkstücken und Werkzeugen
- Industrieroboterstechnik
- Qualitätssicherung in automatisierten Produktionsanlagen
- Automaten, Zellen, Zentren und Systeme zur Fertigung und Montage
- Strukturen von Mehrmaschinensystemen
- Projektierung von automatisierten Produktionsanlagen

Durch eine interdisziplinäre Betrachtung dieser Teilgebiete ergeben sich Schnittstellen zu Industrie 4.0 Ansätzen. Im zweiten Teil der Vorlesung werden die vermittelten Grundlagen anhand praktisch ausgeführter Produktionsprozesse zur Herstellung von Komponenten im Automobilbau (Karosserie und Antriebstechnik) verdeutlicht und die automatisierten Produktionsanlagen zur Herstellung dieser Komponenten analysiert. Im Bereich der KFZ-Antriebstechnik wird sowohl der automatisierte Produktionsprozess zur Herstellung des konventionellen Verbrennungsmotors als auch der automatisierte Produktionsprozess zu Herstellung des zukünftigen Elektroantriebsstranges im KFZ für die Elektromobilität (Elektromotor und Batterie) betrachtet. Im Bereich des Karosseriebaus liegt der Fokus auf der Analyse der Prozesskette zur automatisierten Herstellung konventioneller Blech-Karosseriebauteile sowie zur automatisierten Herstellung von Karosseriebauteilen aus faserverstärkten Kunststoffen. Innerhalb von Übungen werden die Inhalte aus der Vorlesung vertieft und auf konkrete Problem- und Aufgabenstellungen angewendet.

Lernziele:
Die Studierenden …

- sind fähig, ausgeführte automatisierte Produktionsanlagen zu analysieren und ihre Bestandteile zu beschreiben.
- können die an ausgeführten Beispielen umgesetzte Automatisierung von Produktionsanlagen beurteilen und auf neue Problemstellungen anwenden.
- sind in der Lage, die Automatisierungsaufgaben in Produktionsanlagen und die zur Umsetzung erforderlichen Komponenten zu nennen.
- sind fähig, bzgl. einer gegebenen Aufgabenstellung die Projektierung einer automatisierten Produktionsanlage durchzuführen sowie die zur Realisierung erforderlichen Komponenten zu ermitteln.
- sind in der Lage, unterschiedliche Konzepte für Mehrmaschinensysteme zu vergleichen und für einen gegebenen Anwendungsfall geeignet auszuwählen.

Arbeitsaufwand:
MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches
Start: 21.04.2022
Vorlesungsstermine dienstags 8:00 Uhr und donnerstags 8:00 Uhr, Übungstermine donnerstags 09:45 Uhr.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.26 Teilleistung: Bahnsystemtechnik [T-MACH-106424]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Drittelnoten</td>
<td></td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 2115919</td>
</tr>
<tr>
<td>WS 22/23 2115919</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 76-T-MACH-106424</td>
</tr>
<tr>
<td>SS 2022 76-T-MACH-106425</td>
</tr>
<tr>
<td>WS 22/23 76-T-MACH-106424</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfung: mündlich
Dauer: ca. 20 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bahnsystemtechnik

Vorlesung (V) Präsenz

2115919, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klochoide, Längsneigung), Bahnöhfe, (Bahnsteiglängen, Bahnsteighöhen), Lichtraumpföl und Fahrzeugbegrenzung
5. Fahrdynamik: Zug- und Bremskraft, Fahrwiderstandsakt, Trägheitsakt, Typische Fahrzyklen (Nah-, Fernverkehr)

Literaturhinweise

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Inhalt

1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klothoide, Längsneigung), Bahnhöfe, (Bahnsteiglängen, Bahnsteighöhen), Lichtraumprofil und Fahrzeugbegrenzung
5. Fahrdynamik: Zug- und Bremskraft, Fahrraderstandskraft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
3.27 Teilleistung: Betriebsstoffe für Verbrennungsmotoren [T-MACH-105184]

Verantwortung:
Hon.-Prof. Dr. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistung: Betriebsstoffe für Verbrennungsmotoren

Prüfungsleistung mündlich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) /</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2133108</td>
<td>Betriebsstoffe für motorische Antriebe</td>
<td>2 SWS</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105184</td>
<td>Betriebsstoffe für motorische Antriebe</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, Dauer ca. 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebsstoffe für motorische Antriebe

2133108, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Vorgestellt werden auch elektrische Antriebe und Brennstoffzellen-Antrieb mit den zugehörigen Betriebsstoffen

- Einführung, Grundlagen, Primärenergie und Energieketten
- Anschauliche Chemie der Kohlenwasserstoffe
- Fossile Energieträger, Exploration, Verarbeitung, Normen
- Betriebsstoffe nicht fossil, regenerativ, alternativ
- Kraftstoffe, Schmierstoffe, Kühlmittel, AdBlue
- Laboranalytik, Testing, Prüfstände und Messtechnik
- Exkursion Prüffelder für motorische Antriebe 0,5 bis 3.500 kW

Literaturhinweise

Skript
3.28 Teilleistung: Bildgebende Verfahren in der Medizin I [T-ETIT-101930]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsaufschlag</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2305261</td>
<td>Bildgebende Verfahren in Medizin I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsaufschlag</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Schenkel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>7305261</td>
<td>Bildgebende Verfahren in Medizin I</td>
<td></td>
<td>Loewe</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

die Voraussetzungen

keine
3.29 Teilleistung: Bildgebende Verfahren in der Medizin II [T-ETIT-101931]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2305262 | Bildgebende Verfahren in der Medizin II | 2 SWS | Vorlesung (V) / | Potyagaylo, Nahm |

Prüfungsveranstaltungen

| SS 2022 | 7305262 | Bildgebende Verfahren in der Medizin II | Potyagaylo |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120.

Voraussetzungen

keine

Empfehlungen

Die Inhalte des Moduls (M-ETIT-100384) werden benötigt.
3.30 Teilleistung: Bioelektrische Signale [T-ETIT-101956]

Verantwortung: Dr.-Ing. Axel Loewe
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2305264</td>
<td>Bioelektrische Signale</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Loewe</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7305264</td>
<td>Bioelektrische Signale</td>
<td>Loewe</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Prüfung im Umfang von 90 Minuten.

Voraussetzungen

keine
3.31 Teilleistung: Biomedizinische Messtechnik I [T-ETIT-106492]

Verantwortung: Prof. Dr. Werner Nahm
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 2305269 | Biomedizinische Messtechnik I | 2 SWS | Vorlesung (V) / 🧩 | Nahm, Schaufelberger |

Prüfungsveranstaltungen

| WS 22/23 | 7305269 | Biomedizinische Messtechnik I | | Nahm |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

T-ETIT-101928 - Biomedizinische Messtechnik I darf weder begonnen noch abgeschlossen sein.

Empfehlungen

Grundlagen in physikalischer Messtechnik, analoger Schaltungstechnik und in Signalverarbeitung

Anmerkungen

3.32 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I

Verantwortung: Prof. Dr. Andreas Guber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Reihe</th>
<th>Semester</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2141864</td>
<td>BioMEMS I - Mikrosystemtechnik für Life-Sciences und Medizin 2 SWS Vorlesung (V) / 🧩 Guber, Ahrens</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Reihe</th>
<th>Semester</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100966</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I Guber</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online,
🧩 Präsenz/Online gemischt,
🗣 Präsenz,
🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (75 Min.)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BioMEMS I - Mikrosystemtechnik für Life-Sciences und Medizin

2141864, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Prüfung (75 Min.)

Präsenz/Online gemischt

Literaturhinweise

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

3.33 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II [T-MACH-100967]

Verantwortung: Prof. Dr. Andreas Guber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Lehrveranstaltungen
SS 2022 2142883 BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin II 2 SWS Vorlesung (V) / Guber, Ahrens

Prüfungsveranstaltungen
SS 2022 76-T-MACH-100967 BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II Guber

Erfolgskontrolle(n)
Schriftliche Prüfung (75 Min.)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin II
2142883, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Einsatzbeispiele aus den Life-Sciences und der Medizin: Mikrofluidische Systeme:
Lab-CD, Proteinkristallisation,
Microarray, BioChips
Tissue Engineering
Biohybride Zell-Chip-Systeme
Drug Delivery Systeme
Mikroverfahrenstechnik, Mikroreaktoren
Mikrofluidische Messzellen für FTIR-spektroskopische Untersuchungen
in der Mikroverfahrenstechnik und in der Biologie
Mikrosystemtechnik für Anästhesie, Intensivmedizin (Monitoring)
und Infusionstherapie
Atemgas-Analyse / Atemluft-Diagnostik
Neurobionik / Neuroprothetik
Nano-Chirurgie

Organisatorisches
Die Vorlesung findet im Sommersemester aufgrund der aktuellen Situation bis auf Weiteres online statt. Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.
Die Vorlesung wird voraussichtlich mit der Software ZOOM oder MS Teams zu den im Vorlesungsverzeichnis angekündigten Terminen (hier: Montag 11:30 - 13:00 Uhr) durchgeführt werden. Weitere Informationen werden sobald wie möglich via ILIAS zur Verfügung gestellt.

Literaturhinweise
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
3.34 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III [T-MACH-100968]

Verantwortung: Prof. Dr. Andreas Guber

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfung: schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022 2142879 BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin III 2 SWS Vorlesung (V) Guber, Ahrens

Prüfungsveranstaltungen

SS 2022 76-T-MACH-100968 BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III 2 SWS Vorlesung (V) Guber

Legende: 🌐 Online, 📚 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (75 Min.)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin III 2142879, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Online

Inhalt

Einsatzbeispiele aus dem Bereich der operativen Minimal Invasiven Therapie (MIT):
Minimal Invasive Chirurgie (MIC)
Neurochirurgie / Neuroendoskopie
Interventionelle Kardiologie / Interventionelle Gefäßtherapie
NOTES
Operationsroboter und Endosysteme
Zulassung von Medizinprodukten (Medizinproduktgesetz)
und Qualitätsmanagement

Organisatorisches

Die Vorlesung findet im Sommersemester aufgrund der aktuellen Situation bis auf Weiteres online statt. Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.
Die Vorlesung wird voraussichtlich mit der Software ZOOM oder MS Teams zu den im Vorlesungsverzeichnis angekündigten Terminen (hier: Montag: 14:00 - 15:30 Uhr) durchgeführt werden. Weitere Informationen werden sobald wie möglich via ILIAS zur Verfügung gestellt.

Literaturhinweise

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
3.35 Teilleistung: Bionik für Ingenieure und Naturwissenschaftler [T-MACH-102172]

Verantwortung: apl. Prof. Dr. Hendrik Hölscher

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102172 | Einführung in die Bionik | Hölscher |
| WS 22/23 | 76-T-MACH-102172 | Einführung in die Bionik | Hölscher |

Erfolgskontrolle(n)
schriftliche oder mündliche Prüfung

Voraussetzungen
keine
3.36 Teilleistung: BUS-Steuerungen [T-MACH-102150]

Verantwortung: Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-108889 - Schwerpunkt Fahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2114080</th>
<th>Steuerung mobiler Arbeitsmaschinen</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🖥</th>
<th>Geimer, Becker</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🗂️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Voraussetzung zur Teilnahme an der Prüfung ist die Erstellung eines Steuerungsprogramms. Die Teilleistung mit der Kennung T-MACH-108889 muss bestanden sein.

Empfehlungen

Anmerkungen

Lernziele:

Inhalt:

- Erlernen der Grundlagen der Datenkommunikation in Netzwerken
- Übersicht über die Funktionsweise aktueller Feldbusse
- Detaillierte Betrachtung der Funktionsweise und Einsatzgebiete von CAN-Bussen
- Praktische Umsetzung des Erlernten durch die Programmierung einer Beispielanwendung (Hardware wird gestellt)

Literatur:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V) Prüfungsleistung mündlich

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Literatur:

Maschinenbau für Erasmus-Studierende, Stand 29.09.2022
Modulhandbuch gültig ab Wintersemester 2022/23
Inhalt

• Grundlagen Sensorik, Steuerungen und Steuerungsarchitekturen in mobilen Arbeitsmaschinen
• Grundlagen und Funktionsweisen der Datenkommunikation in mobilen Arbeitsmaschinen (CAN-Bus, PROFIBUS, Ethernet, …)
• Rechtlicher Grundlage und Rahmenbedingungen (SIL-Level, …)
• Anforderungen an Sensoren beim Einsatz in mobilen Arbeitsmaschinen für unterschiedliche Steuerungsaufgaben
• Einführung in Methoden des maschinellen Lernens und deren Anwendung für die Steuerung mobiler Arbeitsmaschinen
• Überblick über aktuelle Forschung und Entwicklungen im Bereich der Agrarrobotik
• Praktische Umsetzung des Vorlesungsinhalts durch die Bearbeitung einer Aufgabe in der zugehörigen Übung
• Die Ergebnisse der Aufgabe werden in einem kurzen Bericht als Vorleistung für die Prüfung zusammengefasst.

Lernziele:

Empfehlungen:

Zeitaufwand

Präsenzzeit 21h
Selbststudienzeit 92h

Literaturhinweise

AN-Bus-Technik einfach, anschaulich und praxisnah dargestellt; Poing: Franzis Verlag, 2002.
3.37 Teilleistung: BUS-Steuerungen - Vorleistung [T-MACH-108889]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erstellung Steuerungsprogramm

Voraussetzungen
keine
3.38 Teilleistung: CAD-Praktikum CATIA [T-MACH-102185]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2123358</th>
<th>CAD-Praktikum CATIA</th>
<th>2 SWS</th>
<th>Praktikum (P) / 🧩</th>
<th>Ovtcharova, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2123358</td>
<td>CAD-Praktikum CATIA</td>
<td>2 SWS</td>
<td>Praktikum (P) / 🧩</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102185 | CAD-Praktikum CATIA | Ovtcharova |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Praktische Prüfung am CAD Rechner, Dauer 60 min.

Voraussetzungen

Keine

Empfehlungen

Umgang mit technischen Zeichnungen wird vorausgesetzt.

Anmerkungen

Für das Praktikum besteht Anwesenheitspflicht.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CAD-Praktikum CATIA

2123358, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz/Online gemischt

Inhalt

- Grundlagen zu CATIA wie Benutzeroberfläche, Bedienung etc.
- Erstellung und Bearbeitung unterschiedlicher CAD-Modellarten
- Erzeugung von Basisgeometrien und Einzelteilen
- Erstellung von Einzelteilzeichnungen
- Integration von Teillösungen in Baugruppen
- Arbeiten mit Constraints
- Festigkeitsuntersuchung mit FEM
- Kinematische Simulation mit DMU
- Umgang mit CATIA Knowledgeware

Die Studierenden sind in der Lage:

- selbständig 3D-Geometriemodelle im CAD-System CATIA zu erstellen und aufgrund der erstellten Geometrie Konstruktionszeichnungen zu generieren
- die integrierten CAE-Werkzeuge für FE-Untersuchungen anzuwenden sowie kinematische Simulationen durchzuführen
- mit erweiterten, wissensbasierten Funktionalitäten von CATIA die Geometrieerstellung zu automatisieren und die Wiederverwendbarkeit von Modelle umzusetzen

Organisatorisches

Das Praktikum wird einerseits vorlesungsbegleitend sowie andererseits als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit angeboten. Weitere Informationen siehe ILIAS.
Literaturhinweise
Praktikumslektüre

CAD-Praktikum CATIA
2123358, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Praktikum (P)
Präsenz/Online gemischt

Inhalt

• Grundlagen zu CATIA wie Benutzeroberfläche, Bedienung etc.
• Erstellung und Bearbeitung unterschiedlicher CAD-Modellarten
• Erzeugung von Basisgeometrien und Einzelteilen
• Erstellung von Einzelteilzeichnungen
• Integration von Teillösungen in Baugruppen
• Arbeiten mit Constraints
• Festigkeitsuntersuchung mit FEM
• Kinematische Simulation mit DMU
• Umgang mit CATIA Knowledgeware

Die Studierenden sind in der Lage:

• selbständig 3D-Geometriemodelle im CAD-System CATIA zu erstellen und aufgrund der erstellten Geometrie Konstruktionszeichnungen zu generieren
• die integrierten CAE-Werkzeuge für FE-Untersuchungen anzuwenden sowie kinematische Simulationen durchzuführen
• mit erweiterten, wissensbasierten Funktionalitäten von CATIA die Geometrierestellung zu automatisieren und die Wiederverwendbarkeit von Modelle umzusetzen

Organisatorisches
Das Praktikum kann vorlesungsbegleitend absolviert werden oder als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit. Weitere Informationen siehe ILIAS.

Literaturhinweise
Praktikumslektüre
3.39 Teilleistung: CAD-Praktikum NX [T-MACH-102187]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Teilleistungsart
Studienleistung praktisch

Leistungspunkte
2

Notenskala
best./nicht best.

Turnus
Jedes Semester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2123357</td>
<td>CAD-Praktikum NX</td>
<td>2</td>
<td>Praktikum (P)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2123357</td>
<td>CAD-Praktikum NX</td>
<td>2</td>
<td>Praktikum (P)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Praktikum (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102187</td>
<td>CAD-Praktikum NX</td>
<td>2</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Praktische Nachweis als Studienleistung durch Bearbeitung einer Konstruktionsaufgabe am CAD Rechner, Dauer 60 min.

Voraussetzungen
Keine

Empfehlungen
Umgang mit technischen Zeichnungen wird vorausgesetzt.

Anmerkungen
Für das Praktikum besteht Anwesenheitspflicht.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CAD-Praktikum NX
2123357, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, [Im Studierendenportal anzeigen]
Praktikum (P) Präsenz/Online gemischt

Inhalt
- Überblick über den Funktionsumfang
- Einführung in die Arbeitsumgebung von NX
- Grundlagen der 3D-CAD Modellierung
- Feature-basiertes Modellieren
- Freiformflächenmodellierung
- Erstellen von technischen Zeichnungen
- Baugruppenmodellierung
- Finite Elemente Methode (FEM) und Mehrkörpersimulation (MKS) mit NX

Die Studierenden sind in der Lage:
- selbständig 3D-Geometriemodelle im CAD-System NX zu erstellen und aufgrund der erstellten Geometrie Konstruktionszeichnungen zu generieren
- die integrierten CAE-Werkzeuge für FE-Untersuchungen anzuwenden sowie kinematische Simulationen durchzuführen
- mit erweiterten, wissensbasierten Funktionalitäten von NX die Geometrieerstellung zu automatisieren und die Wiederverwendbarkeit von Modelle umzusetzen

Organisatorisches
Das Praktikum wird zum einen vorlesungs begleitend sowie zum anderen als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit angeboten. Weitere Informationen siehe ILIAS.

Literaturhinweise
Praktikumsskript
Inhalt

- Überblick über den Funktionsumfang
- Einführung in die Arbeitsumgebung von NX
- Grundlagen der 3D-CAD Modellierung
- Feature-basiertes Modellieren
- Freiformflächenmodellierung
- Erstellen von technischen Zeichnungen
- Baugruppenmodellierung
- Finite Element Methode (FEM) und Mehrkörpersimulation (MKS) mit NX

Die Studierenden sind in der Lage:

- selbständig 3D-Geometriemodelle im CAD-System NX zu erstellen und aufgrund der erstellten Geometrie Konstruktionszeichnungen zu generieren
- die integrierten CAE-Werkzeuge für FE-Untersuchungen anzuwenden sowie kinematische Simulationen durchzuführen
- mit erweiterten, wissensbasierten Funktionalitäten von NX die Geometrierestellung zu automatisieren und die Wiederverwendbarkeit von Modelle umzusetzen

Organisatorisches

Das Praktikum kann entweder vorlesungsbegleitend oder als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit absolviert werden. Weitere Informationen siehe ILIAS.

Literaturhinweise

Praktikumsskript
3.40 Teilleistung: CAE-Workshop [T-MACH-105212]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfungsveranstaltungsform</th>
<th>Prüfungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2147175</td>
<td>CAE-Workshop</td>
<td>3 SWS Block (B) / 🗣</td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2147175</td>
<td>CAE-Workshop</td>
<td>3 SWS Block (B) / 🗣</td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Prüfungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>Albers</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (mit praktischem Teil am Computer), Dauer 60 min

Voraussetzungen
Keine

Anmerkungen
Für eine erfolgreiche Teilnahme an der Prüfung ist eine durchgängige Anwesenheit an den Workshoptagen erforderlich. Teilnehmerzahl beschränkt. Auswahl erfolgt nach einem Auswahlverfahren

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Im Studierendenportal anzeigen

CAE-Workshop
2147175, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block (B)
Präsenz

Inhalt

Inhalt:
- Einführung in die Finite Elemente Analyse (FEA)
- Spannungs- und Modalanalyse von FE-Modellen unter Nutzung von Abaqus CAE als Preprocessor und Abaqus als Solver
- Einführung in die Topologie- und Gestaltoptimierung
- Erstellung und Berechnung verschiedener Optimierungsmodelle mit dem Abaqus Optimierungspaket

Die Studierenden sind fähig ...
- die Einsatzzwecke und Grenzen der numerischen Simulation und Optimierung bei der virtuellen Produktentwicklung zu nennen.
- einfache praxisnahe Aufgaben aus dem Bereich der Finiten Elemente Analyse und Strukturoptimierung in industriegerätechlicher Software zu lösen.
- Ergebnisse einer Simulation oder Optimierung zu hinterfragen und zu bewerten.
- Fehler in einer Simulation oder Optimierung zu identifizieren und zu verbessern.

Präsenzzeit: 31,5 h
Selbststudium: 88,5 h
Prüfung: 1h in der Regel schriftlich

Organisatorisches
Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht
Literaturhinweise
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.

CAE-Workshop
2147175, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Inhalt:

- Einführung in die Finite Elemente Analyse (FEA)
- Spannungs- und Modalanalyse von FE-Modellen unter Nutzung von Abaqus CAE als Preprocessor und Abaqus als Solver
- Einführung in die Topologie- und Gestaltoptimierung
- Erstellung und Berechnung verschiedener Optimierungsmodelle mit dem Abaqus Optimierungspaket

Die Studierenden sind fähig ...

- die Einsatzwecke und Grenzen der numerischen Simulation und Optimierung bei der virtuellen Produktentwicklung zu nennen.
- einfache praxisnahe Aufgaben aus dem Bereich der Finiten Elemente Analyse und Strukturoptimierung in industriegebrauchlicher Software zu lösen.
- Ergebnisse einer Simulation oder Optimierung zu hinterfragen und zu bewerten.
- Fehler in einer Simulation oder Optimierung zu identifizieren und zu verbessern.

Präsenzzeit: 31,5 h
Selbststudium: 88,5 h
Prüfung: 1h in der Regel schriftlich

Organisatorisches
Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht

Literaturhinweise
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.
3.41 Teilleistung: CATIA für Fortgeschrittene [T-MACH-105312]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2123380</td>
<td>CATIA für Fortgeschrittene</td>
<td>3</td>
<td>Proj. und #</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2123380</td>
<td>CATIA für Fortgeschrittene</td>
<td>3</td>
<td>Proj. und #</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105312</td>
<td>CATIA für Fortgeschrittene</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CATIA für Fortgeschrittene
2123380, SS 2022, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Organisatorisches
Siehe ILIAS-Kurs.

Literaturhinweise
Keine / None

Inhalt
Studierende entwickeln in diesem Konstruktionsprojekt in kleinen Gruppen nach agiler Vorgehensweise ein Produkt mit der 3DEXPERIENCE Plattform (CATIA V6) von Dassault Systèmes. Dabei wird auf die erweiterten Funktionalitäten der Plattform eingegangen und modellbasiert gearbeitet.

Von der Idee bis zum fertigen Modell wird der Entwicklungsprozess nachvollzogen. Im Vordergrund stehen die selbstständige Lösungsfindung, Teamfähigkeit, Funktionserfüllung, Fertigung und Design. Am Ende des Semesters werden die Projektergebnisse präsentiert.

CATIA für Fortgeschrittene
2123380, WS 22/23, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Organisatorisches
Siehe ILIAS zur Lehrveranstaltung
Literaturhinweise
Keine / None
3.42 Teilleistung: CFD in der Energietechnik [T-MACH-105407]

Verantwortung: Dr. Ivan Otic
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Kurs</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2130910</td>
<td>CFD in der Energietechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Otic</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Kurs</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105407</td>
<td>CFD in der Energietechnik</td>
<td>Otic</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V CFD in der Energietechnik
2130910, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Das Ziel der Vorlesung ist die Vermittlung der Grundlagen der Numerischen Strömungsberechnung im Bereich der Energietechnik. Zu Beginn werden auf Basis physikalischer Phänomene die Gleichungen und numerischen Methoden diskutiert, sowie das Thema Turbulenzmodellierung präsentiert.

Die Vorlesung besteht aus einem theoretischen und praktischen Anteil. Der praktische Teil wird im Rahmen eines Projekts durch die Anwendung des opensource CFD-Rechenprogramms OpenFOAM abgedeckt.

Nach Abschluss des Kurses sind die Studierenden in der Lage, Theorie und CFD-Modellierung und Simulation für Energieanwendungen anzuwenden.

Lernziele:

Nach der Teilnahme an dieser Veranstaltung sind die Studierenden in der Lage:

- die Grundlagen nichtlinearer partieller Differentialgleichungen zu verstehen
- die Rechentechniken zu verstehen, die zur Lösung von Problemen mit der Wärme- und Stoffübertragung eingesetzt werden
- Grundlagen der statistischen Strömungsmechanik zu verstehen und RANS-Transportgleichungen abzuleiten
- turbulente Wärme- und Stoffübergangsprobleme mit der OpenFOAM-Software rechnerisch zu lösen
- ihre Ergebnisse in Form eines technischen Berichts zu präsentieren.

Literaturhinweise

Vorlesungsskript
Projektskript und Unterlagen

3.43 Teilleistung: CFD-Praktikum mit OpenFOAM [T-MACH-105313]

Verantwortung: Dr.-Ing. Rainer Koch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnr.</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Voraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2169459</td>
<td>CFD-Praktikum mit OpenFOAM</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣️</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnr.</th>
<th>Lehrveranstaltung</th>
<th>Turnus</th>
<th>Voraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105313</td>
<td>CFD-Praktikum mit Open Foam</td>
<td>Koch</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Lösung der Übungsaufgaben

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Praktikum zu Vorlesung Nr. 2169458: 'Numerische Simulation reagierender Zweiphasenströmungen'
Die Teilnehmerzahl ist beschränkt.
Termin/Ort der Veranstaltung: wird bekannt gegeben, siehe Institutshomepage

- Erfolgreiche Lösung der Übungsaufgaben
- Eine CD mit dem Kursmaterial wird an die Teilnehmer übergeben

Lehrinhalt:
- Einführung in Open Foam
- Gittergenerierung
- Randbedingungen
- Numerische Fehler
- Diskretisierungsverfahren
- Turbulenzmodelle
- 2-Phasenströmung - Spray
- 2-Phasenströmung - Volume of Fluid Methode

Voraussetzungen/Empfehlungen:
- Strömungslehre
- Vorlesung zur numerischen Strömungsmechanik
- Grundwissen in LINUX

Arbeitsaufwand:
- 5 Tage zu je 8 h = 40 h

Lernziele:
Die Studenten können:
- OpenFOAM anwenden
- Gitter in OpenFOAM generieren oder importieren
- Geeignete Randbedingungen bestimmen und definieren
- Numerische Fehler abschätzen und beurteilen
- Turbulenzmodelle bewerten und auswählen
- 2-Phasenströmungen mit geeigneten Modellen simulieren

Organisatorisches

Literaturhinweise
- Dokumentation zu Open Foam
- www.openfoam.com/docs
3.44 Teilleistung: Chemische, physikalische und werkstoffkundliche Aspekte von Kunststoffen in der Mikrotechnik [T-MACH-102169]

Verantwortung: Dr.-Ing. Matthias Worgull
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 30 min. mündlichen Prüfung (nach §4(2), 2 SPO).

Voraussetzungen
keine
Teilleistung: Computational Homogenization on Digital Image Data [T-MACH-109302]

Verantwortung: Jun.-Prof. Dr. Matti Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung mündlich</td>
<td>Computational homogenization on digital image data (Lecture)</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Schneider</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfung mündlich</td>
<td>Computational homogenization on digital image data (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Ernesti, Schneider</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 22/23 | 2161123 | Computational homogenization on digital image data (Lecture) | 2 SWS | Vorlesung (V) / 📚 | Schneider |
| WS 22/23 | 2161124 | Computational homogenization on digital image data (Tutorial) | 2 SWS | Übung (Ü) / 📚 | Ernesti, Schneider |

Lehrveranstaltungen

| WS 22/23 | 2161123 | Computational homogenization on digital image data (Lecture) | 2 SWS | Vorlesung (V) / 📚 | Schneider |
| WS 22/23 | 2161124 | Computational homogenization on digital image data (Tutorial) | 2 SWS | Übung (Ü) / 📚 | Ernesti, Schneider |

Erfolgskontrolle(n)

Mündliche Prüfung, 30 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Computational homogenization on digital image data (Lecture)

2161123, WS 22/23, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]
Vorlesung (V) Präsenz/Online gemischt

Inhalt

- Grundgleichungen zur Berechnung effektiver elastischer Materialeigenschaften
- Das FFT-basierte numerische Homogenisierungsverfahren von Moulinec-Suquet
- Verfahren zur Behandlung von Materialien mit hohem Kontrast, Poren oder Fehlstellen
- Nichtlineare und zeitabhängige mechanische Probleme

Literaturhinweise

V Computational homogenization on digital image data (Tutorial)

2161124, WS 22/23, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]
Übung (Ü) Präsenz/Online gemischt

Inhalt

Siehe Informationen zur Vorlesung "Computational homogenization on digital image data".
T

3.46 Teilleistung: Computational Intelligence [T-MACH-105314]

Verantwortung: apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Lehrveranstaltungen
WS 22/23 2105016 Computational Intelligence 2 SWS Vorlesung (V) / 🧩 Mikut, Reischl

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105314 Computational Intelligence Mikut

Legende: Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Computational Intelligence
2105016, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden können die grundlegenden Methoden der Computational Intelligence (Fuzzy-Logik, Künstliche Neuronale Netze, Evolutionäre Algorithmen, Deep Learning) zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen sowohl die wichtigsten mathematischen Methoden als auch den Transfer zu praktischen Anwendungsfällen.

Content:
- Begriff Computational Intelligence, Anwendungsgebiete und -beispiele
- Fuzzy Logik: Fuzzy-Mengen; Fuzzifizierung und Zugehörigkeitsfunktionen; Inferenz: T-Normen und -Konormen, Operatoren, Prämisseauswertung, Aktivierung, Akkumulation; Defuzzifizierung, Reglerstrukturen für Fuzzy-Regler
- Künstliche Neuronale Netze: Biologie neuronaler Netze, Neuronen, Multi-Layer-Perceptrons, Radiale-Basis-Funktionen, Kohonen-Karten, Lernverfahren (Backpropagation, Levenberg-Marquardt)
- Evolutionäre Algorithmen: Basisalgorithmen, Genetische Algorithmen und Evolutionsstrategien, Evolutionärer Algorithmus GLEAM, Einbindung lokaler Suchverfahren, Memetische Algorithmen, Anwendungsbeispiele
- Deep Learning

Lernziele:
Die Studierenden können die grundlegenden Methoden der Computational Intelligence (Fuzzy-Logik, Künstliche Neuronale Netze, Evolutionäre Algorithmen, Deep Learning) zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen sowohl die wichtigsten mathematischen Methoden als auch den Transfer zu praktischen Anwendungsfällen.

Literaturhinweise
Kroll, A. Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet)
3.47 Teilleistung: Cryogenic Engineering [T-CIWVT-108915]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-MACH-105100 - Teilleistungen von der KIT-Fakultät für Chemieingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>22053</td>
<td>Cryogenic Engineering</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Grohmann</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>22054</td>
<td>Cryogenic Engineering - Exercises</td>
<td>1</td>
<td>Übung (Ü) / 🗣</td>
<td>Grohmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungstitel</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7200201</td>
<td>Cryogenic Engineering</td>
<td>Grohmann</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7200201</td>
<td>Cryogenic Engineering</td>
<td>Grohmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine
Keine Biharmonie für Ingenieure [T-MACH-105694]

Verantwortung: Stefan Meisenbacher
 apl. Prof. Dr. Ralf Mikut
 apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2022 2106014 Datenanalyse für Ingenieure 3 SWS Vorlesung / Übung (VÜ) Mikut, Reischl, Meisenbacher

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105694 Datenanalyse für Ingenieure Mikut, Reischl

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenanalyse für Ingenieure
2106014, SS 2022, 3 SWS, Sprache: Deutsch,
Im Studierendenportal anzeigen

Inhalt
Lerninhalten:

- Einführung und Motivation
- Begriffe und Definitionen (Arten von mehrdimensionalen Merkmalen - Zeitreihen und Bilder, Einteilung Problemstellungen)
- Einsatzszenario: Problemformulierungen, Merkmalsextraktion, -bewertung, -selektion und -transformation, Distanzmaße, Bayes-Klassifikation, Support-Vektor-Maschinen, Entscheidungsbäume, Cluster-Verfahren, Regression, Validierung
- 14tägige Rechnerübungen und Anwendungen (Software-Übung mit SciXMiner): Import von Daten, Verschiedene Benchmarkdatensätze, Steuerung Handprothese, Energieprognose
- 2 SWS Vorlesungen, 1 SWS Übung

Lernziele:
Literaturhinweise

Vorlesungsunterlagen (ILIAS)

Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe.
2008 (PDF frei im Internet)

3.49 Teilleistung: Der Betrieb von Kraftwerken unter volatilen und unberechenbaren Marktbedingungen [T-MACH-112238]

Verantwortung: Dr. Marcus Seidl
Prof. Dr. Robert Stieglitz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von:
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2189405</td>
<td>Der Betrieb von Kraftwerken unter volatilen und unberechenbaren Marktbedingungen</td>
<td>2</td>
<td>Mündliche Prüfung</td>
<td>ca. 30 Minuten</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Der Betrieb von Kraftwerken unter volatilen und unberechenbaren Marktbedingungen
2189405, WS 22/23, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)
Inhalt
Wesentliche Inhalte:
Die Struktur der Strommärkte
Die Anforderungen der Netzbetreiber
Grundlagen der Rohstoffmärkte
Die regulatorischen Rahmenbedingungen
Die Rolle der Marktstimmung für das Flottenmanagement
Die Integration erneuerbarer Energien in die Kraftwerksflotte
Anpassung des Flottenbetriebs an die Marktanforderung
Anforderungen an die Wartung und Instandhaltung der Kraftwerke
Statistische Modelle zu Optimierung des Flottenmanagements
Steuerung der Kraftwerksflotte im Tagesbetrieb

Die Vorlesung vermittelt eine Übersicht über die verschiedenen Aspekte des Kraftwerksbetriebs in der Praxis. Dazu gehören Kenntnisse der Struktur der Energie- und Rohstoffmärkte, die regulatorischen Rahmenbedingungen, die Instrumente des Energiehandels, die Prinzipien des Flottenmanagements und die Anforderung an die Wartung und Instandhaltung der Kraftwerke.

Für die effiziente Steuerung einer Kraftwerksflotte wird dargelegt, wie mit Hilfe von verschiedenen Prognose-Modellen die optimale Kombination aus Ressourcenbedarf, Wartungsmanagement und Leistungsangebot ermittelt werden kann.

Die Studierenden sind in der Lage die verschiedenen Aspekte des Kraftwerksbetriebs zu verstehen: die Struktur der Energie- und Rohstoffmärkte, die regulatorischen Rahmenbedingungen, die Instrumente des Energiehandels, die Prinzipien des Flottenmanagements und die Anforderung an die Wartung und Instandhaltung der Kraftwerke.

Weiterhin sind Sie selbständig in der Lage, Konzepte für die Steuerung einer Kraftwerksflotte abzuleiten.

Mündliche Prüfung, ca. 25 Min.

Literaturhinweise
G. Balzer, C. Schorn, Asset Management für Infrastruktur anlagen - Energie und Wasser, VDI
R. Weron, Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, Wiley
3.50 Teilleistung: Design of a Jet Engine Combustion Chamber [T-CIWVT-110571]

Verantwortung: Dr.-Ing. Stefan Raphael Harth
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-MACH-105100 - Teilleistungen von der KIT-Fakultät für Chemieingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Projekt / Seminar (PJ/S)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>22527 Design of a Jet Engine Combustion Chamber</td>
<td>2</td>
<td>Projekt / Seminar (PJ/S)</td>
<td>Harth</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7231207 Auslegung einer Gasturbinenbrennkammer</td>
<td></td>
<td>Zarzalis</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7231207 Design of a Jet Engine Combustion Chamber</td>
<td></td>
<td>Zarzalis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.
Projekt: Bewertet werden Mitarbeit und Präsentation sowie eine mündliche Abschlussprüfung im Umfang von max. 30 Minuten.

Voraussetzungen

Keine
3.51 Teilleistung: Design und Entwicklung eines MRT-Probenkopfes [T-MACH-108407]

Verantwortung: Prof. Dr. Jan Gerrit Korvink
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart

<table>
<thead>
<tr>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2142551 | Design und Entwicklung eines MRT-Probenkopfes | 2 SWS | Praktikum (P) | Korvink, Jouda |

Prüfungsveranstaltungen

| SS 2022 | 7600001 | Design und Entwicklung eines MRT-Probenkopfes | Korvink |

Legende: 🖥 Online, ⚽ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Teilnahme.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Design und Entwicklung eines MRT-Probenkopfes
2142551, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz/Online gemischt

Inhalt

The aim of this practical block course is to familiarize the students with magnetic resonance imaging as a substantial non-invasive non-destructive imaging technique that is widely used for medical diagnosis. It is also to give them hands-on experience on how to build the MRI probe from A to Z including:

- Mechanical design
- High frequency electrical circuitry
- Testing on a commercial MRI scanner.

The course includes a concise introduction to the theory of MRI and the hardware of the MRI scanner. This will be followed by a number of work-packages through which the participants will construct and test their own functioning MRI probehead, with which it will be possible to record a proton-MRI image of a sample containing sufficient water. The probehead will be operated inside a Bruker MRI machine at the end of the one week course.

Organisatorisches

Blockveranstaltung am CN, Bau 301, Raum 322, Anmeldung an Mazin.Jouda@kit.edu
3.52 Teilleistung: Die Eisenbahn im Verkehrsmarkt [T-MACH-105540]

Verantwortung:
Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von:
M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungssorten
- Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2114914</th>
<th>Die Eisenbahn im Verkehrsmarkt</th>
<th>2 SWS</th>
<th>Block (B) / 🗣️</th>
<th>Gratzfeld</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105540 | Die Eisenbahn im Verkehrsmarkt | Gratzfeld |

Legende: 🖥️ Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfung: mündlich

Dauer: ca. 20 Minuten

Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Die Eisenbahn im Verkehrsmarkt

2114914, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Vorlesung vermittelt einen Überblick über Perspektiven, Herausforderungen und Chancen der Eisenbahn im nationalen und europäischen Verkehrsmarkt. Im Einzelnen werden behandelt:

- Einführung und Grundlagen
- Bahnreform in Deutschland
- Deutsche Bahn im Überblick
- Eisenbahnregulierung
- Infrastrukturfinanzierung und -entwicklung
- Konzernstrategie Starke Schiene und ihre Ausbausteine: (Klima, Umwelt, Digitalisierung, Starke Schiene in Baden-Württemberg)
- Trends im Verkehrsmarkt
- Verkehrspolitische Handlungsfelder
- Intra- und Intermodaler Wettbewerb
- Zusammenfassung

Lernziele:

- Unternehmerische Perspektive von Verkehrs- und Infrastrukturerunternehmen erfassen
- Intra- und intermodale Wettbewerbssituation abschätzen
- Ordnungs- und verkehrspolitische Determinanten verstehen
- Trends im Verkehrsmarkt reflektieren
- Strategische Herausforderungen, Chancen und Handlungsfelder der Unternehmen nachvollziehen
- Verkehrsträgerübergreifende Perspektive anwenden
- Wesentliche Kennzahlen zur Eisenbahn im Verkehrsmarkt verinnerlichen
- Relevanz von Nachhaltigkeit und Digitalisierung für Unternehmen erkennen
Organisatorisches

Literaturhinweise
keine
3.53 Teilleistung: Differentialgleichungen - Klausur [T-MATH-103323]

Verantwortung: PD Dr. Volker Grimm
Prof. Dr. Marlis Hochbruck
PD Dr. Markus Neher

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MACH-104885 - Teilleistungen von der KIT-Fakultät für Mathematik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Leistungsträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>0132200</td>
<td>Höhere Mathematik 3 für die Fachrichtung Bauingenieur*inwesen (Differentialgleichungen)</td>
<td>2</td>
<td>Neher</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>0132300</td>
<td>Übungen zu 0132200</td>
<td>1</td>
<td>Neher</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Prüfungstitel</th>
<th>Leistungsträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>010157660908003808_HM3-Bau-Ing.</td>
<td>Differentialgleichungen - Klausur</td>
<td>Hochbruck</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>0101586609080808_HM3_Bau-Ing.</td>
<td>Differentialgleichungen - Klausur</td>
<td>Hochbruck</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Höhere Mathematik 3 für die Fachrichtung Bauingenieur*inwesen (Differentialgleichungen)
0132200, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

V Übungen zu 0132200
0132300, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
3.54 Teilleistung: Differenzenverfahren zur numerischen Lösung von thermischen und fluid-dynamischen Problemen [T-MACH-105391]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Claus Günther
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine
3.55 Teilleistung: Digital microstructure characterization and modeling [T-MACH-110431]

Verantwortung: Jun.-Prof. Dr. Matti Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-110431 | Digital microstructure characterization and modeling | Schneider |

Erfolgskontrolle(n)

Mündliche Prüfung
3.56 Teilleistung: Digitale Regelungen [T-MACH-105317]

Verantwortung: Dr.-Ing. Michael Knoop
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
WS 22/23 2137309 Digitale Regelungen 2 SWS Vorlesung (V) / Knoop, Hauser

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105317 Digitale Regelungen Stiller

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung
60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Digitale Regelungen 2137309, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lehrinhalt:

Inhalt
1. Einführung in digitale Regelungen:
 Motivation für die digitale Realisierung von Reglern
 Grundstruktur digitaler Regelungen
 Abtastung und Halteeinrichtung
2. Analyse und Entwurf im Zustandsraum: Zeitdiskretisierung kontinuierlicher Strecken,
 Zustand-differenzengleichung,
 Stabilität - Definition und Kriterien,
 Zustandsreglerentwurf durch Eigenwertvorgabe, PI-Zustandsregler, Zustandsbeobachter,
 Separationstheorem, Strecken mit Totzeit, Entwurf auf endliche Einstellzeit
3. Analyse und Entwurf im Bildbereich der z-Transformation:
 z-Transformation, Definition und Rechenregeln Beschreibung des Regelkreises im Bildbereich
 Stabilitätskriterien im Bildbereich
 Reglerentwurf mit dem Wurzelortskurvenverfahren
 Übertragung zeitkontinuierlicher Regler in zeitdiskrete Regler

Voraussetzungen:
Grundstudium mit abgeschlossenem Vorexamen, Grundvorlesung in Regelungstechnik

Lernziele:
Die Studierenden werden in die wesentlichen Methoden zur Beschreibung, Analyse und zum
Entwurf digitaler Regelungssysteme eingeführt. Ausgangspunkt ist die Zeitdiskretisierung linearer, kontinuierlicher
Systemmodelle. Entwurfstechniken im Zustandsraum und im Bildbereich der z-Transformation werden für zeitdiskrete
Eingrößensysteme vorgestellt. Zusätzlich werden Strecken mit Totzeit und der Entwurf auf endliche Einstellzeit behandelt.

Nachweis: schriftlich

Dauer: 60 Minuten
Hilfsmittel: keine
Arbeitsaufwand: 120 Stunden
Literaturhinweise

3.57 Teilleistung: Digitaltechnik [T-ETIT-101918]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2311615</td>
<td>Digitaltechnik</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 📚 Becker</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2311617</td>
<td>Übungen zu 2311615 Digitaltechnik</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📚 Höfer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7311615</td>
<td>Digitaltechnik</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Legende: 📚 Online, 📚 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine
Teilleistung: Dimensionierung mit Verbundwerkstoffen [T-MACH-108721]

Verantwortung: Prof. Dr. Eckart Schnack

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4

Notenskala: Drittelnoten

Turnus: Jedes Sommersemester
Version: 1

Prüfungsveranstaltungen
SS 2022 76-T-MACH-108721 Dimensionierung mit Verbundwerkstoffen

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
Keine

Anmerkungen
Das Vorlesungsskript wird über ILIAS bereitgestellt.
Teilleistung: Do it! – Service-Learning für angehende Maschinenbauingenieure [T-MACH-106700]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do it! – Service-Learning für angehende Maschinenbauingenieure</td>
<td>2 SWS</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 2109039 | Do it! – Service-Learning für angehende Maschinenbauingenieure | 2 SWS | Seminar (S) / 🗣 | Deml |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Scheinerwerb durch regelmäßige und aktive Teilnahme an allen Terminen; die Veranstaltung ist nicht benotet.

Voraussetzungen
Termingerechte Voranmeldung im ILIAS, da teilnahmebeschränkt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Do it! – Service-Learning für angehende Maschinenbauingenieure
2109039, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Wegen Teamarbeit und Kommunikation in den Werkstätten werden gute Deutschkenntnisse vorausgesetzt. Teilnahmebeschränkt; unbenotet.

1) Einführungsworkshop
Fachliche sowie überfachliche Vorbereitung des Arbeitseinsatzes

2) Phase der Mitarbeit und Arbeitsanalyse (3 Termine)
Kennenlernen der Lebenswelt in den Werkstätten sowie Arbeitsanalyse in Kleingruppen

3) Zwischenreflexion
Austausch über die gemachten Erfahrungen

4) Umsetzungsphase (2 Termine)
Umsetzung von Verbesserungen in der Arbeitsplatzgestaltung in Kleingruppen

5) Auswertungsworkshop
Auswertung und Reflexion sowie Transfer und Integration der neuen Erfahrungen in Studium und Beruf

Termine jeweils zweiwöchig von 08.15-11.15 Uhr (unter Vorbehalt)

Lernziele:
Die Studierenden sollen andere gesellschaftliche Arbeitswelten (z. B. Werkstatt für behinderte Menschen) kennenlernen, sich in ihrer Rolle als angehende Maschinenbauingenieure gesellschaftlich engagieren und sich dabei in ihrer Persönlichkeit weiterentwickeln.

Die Veranstaltung wird in Kooperation mit externen Partnern durchgeführt; das Konzept existiert auch an anderen Hochschulen (siehe http://www.agentur-mehrwert.de/de/hochschulen/do-it-studierendenprojekte.html).

Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
3.60 Teilleistung: Dynamik des Kfz-Antriebsstrangs [T-MACH-105226]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23 2163111</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>2 SWS</td>
<td>Vorlesung (V) / ‗</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>WS 22/23 2163112</td>
<td>Übungen zu Dynamik des Kfz-Antriebsstrangs</td>
<td>2 SWS</td>
<td>Übung (U)</td>
<td>Fidlin, Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Dynamik des Kfz-Antriebsstrangs
2163111, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Vorlesung (V)
Präsenz

Inhalt
- Hauptkomponenten eines KFZ-Antriebsstrangs und ihre Modelle
- Typische Fahrmanöver
- Problembezogene Modelle für einzelne Fahrsituationen
- Gesamtsystem: Betrachtung und Optimierung vom Antriebsstrang in Bezug auf dynamisches Verhalten

Literaturhinweise
- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Übungen zu Dynamik des Kfz-Antriebsstrangs
2163112, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Übung (Ü)

Inhalt
- Übung des Vorlesungsstoffs

Erfolgskontrolle(n)
- mündliche Prüfung, 30 Min.

Voraussetzungen
- keine

Empfehlungen
- Antriebssystemtechnik A: Fahrzeugantriebssysteme
 - Maschinendynamik
 - Technische Schwingungslehre

Maschinenbau für Erasmus-Studierende, Stand 29.09.2022
Modulhandbuch gültig ab Wintersemester 2022/23
3.61 Teilleistung: Einführung in das Operations Research I und II [T-WIWI-102758]

Verantwortung: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Drittelnoten</td>
<td>siehe Anmerkungen</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung/Vorlesung (V)</th>
<th>Tutorium/Tutorium (Tu)</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Einführung in das Operations Research I</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Tutorien zu Einführung in das Operations Research II</td>
<td>SWS</td>
<td>Tutorium (Tu) / 🗣</td>
<td>Dunke</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Einführung in das Operations Research II</td>
<td>2+2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung/Vorlesung (V)</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Einführung in das Operations Research I und II</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtklausur (120 min.) (nach §4(2), 1 SPO).

Die Klausur wird in jedem Semester (in der Regel im März und Juli) angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Empfehlungen

Es werden die Kenntnisse aus Mathematik I und II, sowie Programmierkenntnisse für die Rechnerübungen vorausgesetzt.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in das Operations Research I

2550040, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Beispiele für typische OR-Probleme.
Lineare Optimierung: Grundbegriffe, Simplexmethode, Dualität, Sonderformen des Simplexverfahrens (duale Simplexmethode, Dreiphasenmethode), Sensitivitätsanalyse, Parametrische Optimierung, Spieltheorie.
Lernziele:
Der/die Studierende
• benennt und beschreibt die Grundbegriffe der Linearen Optimierung sowie von Graphen und Netzwerken,
• kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
• modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um einfache Optimierungsprobleme selbständig zu lösen,
• validiert, illustriert und interpretiert erhaltene Lösungen.
Literaturhinweise
• Murty: Operations Research, Prentice-Hall, 1995

Einführung in das Operations Research II
2550043, WS 22/23, 2+2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Nichtlineare Optimierung: Grundbegriffe, Optimalitätsbedingungen, Lösungsverfahren für konvexe und nichtkonvexe Optimierungsprobleme.
Dynamische und stochastische Modelle und Methoden: Dynamische Optimierung, Bellman-Verfahren, Losgrößenmodelle und dynamische und stochastische Modelle der Lagerhaltung, Warteschlangen
Lernziele:
Der/die Studierende
• benennt und beschreibt die Grundbegriffe der Ganzzahligen und kombinatorischen Optimierung, der Nichtlinearen Optimierung und der Dynamischen Optimierung,
• kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
• modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um einfache Optimierungsprobleme selbständig zu lösen,
• validiert, illustriert und interpretiert erhaltene Lösungen.
Literaturhinweise
• Murty: Operations Research, Prentice-Hall, 1995
3.62 Teilleistung: Einführung in die Finite-Elemente-Methode [T-MACH-105320]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteile von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 4

Lehrveranstaltungen
SS 2022 2162282 Einführung in die Finite-Elemente-Methode 2 SWS Vorlesung (V) / Präsenz/Online gemischt Langhoff, Böhlke

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105320 Einführung in die Finite-Elemente-Methode Böhlke, Langhoff

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min)

Klausurzulassung: bestandene Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330)

Voraussetzungen
Das Bestehen der Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330) ist Klausurvoraussetzung.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen. Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Finite-Elemente-Methode
2162282, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
- Einführung und Motivation, Elemente der Tensorrechnung
- Diskrete FEM: Stab- und Federsysteme
- Formulierungen eines Randwertproblems (1D)
- Approximationsansätze in der FEM
- FEM für skalare und vektorwertige Feldprobleme
- Lösungsverfahren für lineare Gleichungssysteme

Literaturhinweise
- Fish, J., Belytschko, T.: A First Course in Finite Elements, Wiley 2007
3.63 Teilleistung: Einführung in die Kernenergie [T-MACH-105525]

Verantwortung: Prof. Dr.-Ing. Xu Cheng
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

WS 22/23 2189903 Einführung in die Kernenergie 2 SWS Vorlesung (V) / 🧩 Cheng

Erfolgskontrolle(n)
Mündliche Prüfung, 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Kernenergie 2189903, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen Vorlesung (V) Präsenz/Online gemischt

Inhalt

1. Nukleare Energieerzeugung
2. Grundlagen der Reaktorphysik
3. Reaktortypen und Struktur
4. Reaktorsicherheit und Wärmeabfuhr
5. Kerntechnische Werkstoffe
6. Brennstoffkreislauf und Abfallbehandlung
7. Strahlenschutz
8. Wirtschaftlichkeit
9. Übungen mit Kernkraftwerkssimulation
3.64 Teilleistung: Einführung in die Materialtheorie [T-MACH-105321]

Verantwortung: apl. Prof. Marc Kamlah

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2182732</th>
<th>Einführung in die Materialtheorie</th>
<th>2 SWS</th>
<th>Vorlesung (V) /</th>
<th>Kamlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105321</td>
<td>Einführung in die Materialtheorie</td>
<td></td>
<td></td>
<td>Kamlah</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Materialtheorie
2182732, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden können für ein vorgelegtes Berechnungsproblem beurteilen, welches Materialmodell (Stoffgesetz) in Abhängigkeit von Materialauswahl und Belastung verwendet werden sollte. Bei Berechnungsprogrammen wie zum Beispiel kommerziellen Finite-Elemente-Programmen können die Studierenden die Dokumentation zu den implementierten Materialmodellen verstehen und die Auswahl auf der Basis ihres Wissens treffen. Die Studierenden besitzen grundlegende Kenntnisse zur Entwicklung von Materialmodellen.

Voraussetzungen: Technische Mechanik; Höhere Mathematik
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten

Literaturhinweise
[2] Skript
3.65 Teilleistung: Einführung in die Mechatronik [T-MACH-100535]

Verantwortung: Moritz Böhland
apl. Prof. Dr. Markus Reischl

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von:
M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich | 6 | Drittelnoten | Jedes Wintersemester | 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfung</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2105011</td>
<td>Einführung in die Mechatronik</td>
<td>3</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfung</th>
<th>Lehrveranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100535</td>
<td>Einführung in die Mechatronik</td>
<td>Reischl</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 2h)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Mechatronik

2105011, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) | Präsenz/Online gemischt

Inhalt

Lerninhalt:

- Einleitung
- Aufbau mechatronischer Systeme
- Mathematische Behandlung mechatronischer Systeme
- Sensorik und Aktorik
- Messwerterfassung und –interpretation
- Modellierung mechatronischer Systeme
- Steuerung und Regelung
- Informationsverarbeitung

Lernziele:

Der Studierende kennt die fachspezifischen Herausforderungen in der interdisziplinären Zusammenarbeit im Rahmen der Mechatronik. Er ist in der Lage Ursprung, Notwendigkeit und methodische Umsetzung dieser interdisziplinären Zusammenarbeit zu erläutern und kann deren wesentliche Schwierigkeiten benennen, sowie die Besonderheiten der Entwicklung mechatronischer Produkte aus entwicklungsmethodischer Sicht erläutern. Der Studierende hat grundlegende Kenntnisse zu Grundlagen der Modellbildung mechanischer, pneumatischer, hydraulischer und elektrischer Teilsysteme, sowie geeigneter Optimierungsstrategien. Der Studierende kennt den Unterschied des Systembegriffs in der Mechatronik im Vergleich zu rein maschinenbaulichen Systemen.

Literaturhinweise

3.66 Teilleistung: Einführung in die Mehrkörperdynamik [T-MACH-105209]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Lehrveranstaltungen
SS 2022 2162235 Einführung in die Mehrkörperdynamik 3 SWS Vorlesung (V) / 🩳 Römer

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105209 Einführung in die Mehrkörperdynamik Seemann
WS 22/23 76-T-MACH-105209 Einführung in die Mehrkörperdynamik Seemann

Erfolgskontrolle(n)
Schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Empfehlungen
Technische Mechanik III/IV

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Mehrkörperdynamik
2162235, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Mehrkörpersysteme und ihre technische Bedeutung, Kinematik des einzelnen starren Körpers, Drehmatrizen, Winkelgeschwindigkeiten, Ableitungen in verschiedenen Bezugssystemen, Relativmechanik, holonome und nichtholonome Bindungsgleichungen für geschlossene kinematische Ketten, Newton-Eulersche Gleichungen, Prinzip von d'Alembert, Prinzip der virtuellen Leistung, Lagrangesche Gleichungen, Kanescher Formalismus, Struktur der Bewegungsgleichungen

Literaturhinweise
Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
Kane, T.: Dynamics of rigid bodies.
3.67 Teilleistung: Einführung in die Technische Mechanik I: Statik [T-MACH-108808]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Lehrveranstaltungen

SS 2022	2162238	Einführung in die Technische Mechanik I: Statik und Festigkeitslehre	2 SWS	Vorlesung (V)	Fidlin
SS 2022	2162239	Übungen zu Einführung in die Technische Mechanik I: Statik und Festigkeitslehre	1 SWS	Übung (Ü)	Fidlin, Gießler
SS 2022	5016642	BUT - Einführung in die Technische Mechanik I: Statik	SWS	Vorlesung / Übung (VÜ)	Fidlin

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-108808 | Einführung in die Technische Mechanik I: Statik | Fidlin |
| WS 22/23 | 76-T-MACH-108808 | Einführung in die Technische Mechanik I: Statik | Fidlin |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 min) in der vorlesungsfreien Zeit des Semesters (nach §4 (2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Erlaubte Hilfsmittel: keine

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Technische Mechanik I: Statik und Festigkeitslehre
2162238, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Statik: Kraft · Moment · Allgemeine Gleichgewichtsbedingungen · Massenmittelpunkt · Innere Kräfte in Tragwerken · Ebene Fachwerke · Theorie des Haftens
3.68 Teilleistung: Einführung in die Technische Mechanik I: Statik und Festigkeitslehre [T-MACH-102208]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2162238 | Einführung in die Technische Mechanik I: Statik und Festigkeitslehre | 2 SWS | Vorlesung (V) / 🗣 | Fidlin |
| SS 2022 | 2162239 | Übungen zu Einführung in die Technische Mechanik I: Statik und Festigkeitslehre | 1 SWS | Übung (Ü) / 🕰 | Fidlin, Gießler |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102208-1 | Einführung in die Technische Mechanik I: Statik (75 Min) | Fidlin |
| SS 2022 | 76-T-MACH-102208-2 | Einführung in die Technische Mechanik I: Statik und Festigkeitslehre (120 Min) | Fidlin |

Legende: 🖥 Online, 🕰 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) in der vorlesungsfreien Zeit des Semesters (nach §4 (2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Für Wirtschaftsingenieurwesen erfolgt die Erfolgskontrolle in Form einer schriftlichen Prüfung (Einführung in die Technische Mechanik I: Statik - 75 min).

Erlaubte Hilfsmittel: nicht-programmierbare Taschenrechner

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Technische Mechanik I: Statik und Festigkeitslehre

2162238, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Statik: Kraft · Moment · Allgemeine Gleichgewichtsbedingungen · Massenmittelpunkt · Innere Kräfte in Tragwerken · Ebene Fachwerke · Theorie des Haftens
3 TEILLEISTUNGEN

3.69 Teilleistung: Einführung in nichtlineare Schwingungen [T-MACH-105439]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2162247</td>
<td>Einführung in nichtlineare Schwingungen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2162248</td>
<td>Übungen zu Einführung in nichtlineare Schwingungen</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Fidlin, Fischer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105439</td>
<td>Einführung in nichtlineare Schwingungen</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗿 Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 30 Min.

Voraussetzungen
keine

Empfehlungen
Technische Schwingungslehre, Mathematische Methoden der Schwingungslehre, Stabilitätstheorie

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in nichtlineare Schwingungen
2162247, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

• Dynamische Systeme
• Die Grundideen asymptotischer Verfahren
• Störungsmethoden: Linstedt-Poincare, Mittelwertbildung, Multiple scales
• Grenzyklen
• Nichtlineare Resonanz
• Grundlagen der Bifurkationsanalyse, Bifurkationsdiagramme
• Typen der Bifurkationen
• Unstetige Systeme
• Dynamisches Chaos
Literaturhinweise

Übungen zu Einführung in nichtlineare Schwingungen
2162248, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Übung des Vorlesungsstoffs
3.70 Teilleistung: Elastizität als Feldtheorie [T-MACH-112215]

Verantwortung: Dr. Eleni Agiasofitou
Dr. rer. nat. Markus Lazar

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.70</td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2162260 | Elastizität als Feldtheorie | 2 SWS | Vorlesung (V) / 🗣 | Agiasofitou, Lazar |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-112215 | Elastizität als Feldtheorie |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (90 min)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V
Elastizität als Feldtheorie
2162260, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz

Inhalt

- Einführung
- Tensoren
- Geometrische Grundbegriffe (Deformationstensor, Verzerrungstensor)
- Kompatibilitätsbedingungen
- Hookesches Gesetz, Cauchyscher Spannungstensor
- Lagrange-Formalismus: Euler-Lagrange-Gleichungen oder Bewegungsgleichungen
- Naviergleichungen
- Greenscher Tensor der Naviergleichung
- Elastische Wellen in isotropen Medien
- Konfigurationsmechanik oder Eschelbysche Mechanik:
 - Erhaltungssätze in der Elastizitätstheorie (Translationssymmetrie, Rotationssymmetrie, Skalierungssymmetrie)
 - Eschelbyscher Spannungstensor, Energie-Impuls-Tensor
 - Konfigurationskräfte (Cherepanov Kraft, Eschelbysche Kraft)
- J-Integral mit Anwendungen in den Ingenieurwissenschaften

Literaturhinweise

3.71 Teilleistung: Electric Power Generation and Power Grid [T-ETIT-103608]

Verantwortung: Dr.-Ing. Bernd Hoferer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Dreifachnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2307399</td>
<td>Electric Power Generation and Power Grid</td>
<td>2</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>737307399</td>
<td>Electric Power Generation and Power Grid</td>
<td>Hoferer</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7307399</td>
<td>Electric Power Generation and Power Grid</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕰 Präsenz/Online gemischt, 🗺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 20 Minuten)

Voraussetzungen

keine
3.72 Teilleistung: Electric Power Transmission & Grid Control [T-ETIT-110883]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Modul (V/P)</th>
<th>Vorlesung/Vorlesung/Übung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2307376</td>
<td>Electric Power Transmission & Grid Control</td>
<td>2 SWS</td>
<td>(V)</td>
<td>Leibfried</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, ♻ Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
The examination consists of a written paper and an oral presentation of the students’ work. The overall impression is rated.

Voraussetzungen
none
3.73 Teilleistung: Electrical Machines [T-ETIT-100807]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von:
- M-MACH-104878 - Spezialisierung im Maschinenbau
- M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Master über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen
keine
3.74 Teilleistung: Elektrische Maschinen und Stromrichter [T-ETIT-101954]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr.-Ing. Marc Hiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2306387</td>
<td>Elektrische Maschinen und Stromrichter</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Hiller</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2306389</td>
<td>Übung zu 2306387 Elektrische Maschinen und Stromrichter</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🧩</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7306307</td>
<td>Elektrische Maschinen und Stromrichter</td>
<td>Hiller</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7306307</td>
<td>Elektrische Maschinen und Stromrichter</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine
3.75 Teilleistung: Elektrische Schienenfahrzeuge [T-MACH-102121]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2114346</td>
<td>Elektrische Schienenfahrzeuge</td>
<td>2</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102121</td>
<td>Elektrische Schienenfahrzeuge</td>
<td>2</td>
<td>Deutsch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102122</td>
<td>Elektrische Schienenfahrzeuge (Wiederholungsprüfung)</td>
<td>2</td>
<td>Deutsch</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-102121</td>
<td>Elektrische Schienenfahrzeuge</td>
<td>2</td>
<td>Deutsch</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-102122</td>
<td>Elektrische Schienenfahrzeuge (Wiederholungsprüfung)</td>
<td>2</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfung: mündlich
Dauer: ca. 20 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt
1. Einführung: Geschichte des elektrischen Zugbetriebs, wirtschaftliche Bedeutung
2. Rad-Schiene-Kontakt: Tragen des Fahrzeuggewichts, Übertragen der Fahrr- und Bremskräfte, Rückführen des Stromes bei elektrischen Triebfahrzeugen
3. Fahrdynamik: Zug- und Bremskraft, Fahrwiderstandskraft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)
5. Fahrzeugleittechnik: Definitionen, Bussysteme, Komponenten, Netzwerkarbeitungen, Beispiele, zukünftige Entwicklungen
6. Fahrzeugkonzepte: Moderne Fahrzeugkonzepte für elektrischen Nah- und Fernverkehr

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
3.76 Teilleistung: Elektroenergiesysteme [T-ETIT-101923]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungsmethode</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2307391</td>
<td>Elektroenergiesysteme</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Leibfried</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2307393</td>
<td>Übungen zu 2307391 Elektroenergiesysteme</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Steinle</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7307391</td>
<td>Elektroenergiesysteme</td>
<td>Leibfried</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7307391</td>
<td>Elektroenergiesysteme</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online,
🧩 Präsenz/Online gemischt,
🗣 Präsenz,
🗙 Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine
3.77 Teilleistung: Elektronische Schaltungen [T-ETIT-109318]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltnamen</th>
<th>SWS</th>
<th>Art 1</th>
<th>Art 2</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2308655</td>
<td>Elektronische Schaltungen</td>
<td>3</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Ulusoy</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2308657</td>
<td>Übungen zu 2312655 Elektronische Schaltungen</td>
<td>1</td>
<td>Übung (Ü) / 🗣️</td>
<td>Ulusoy</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2308658</td>
<td>Tutorien zu 2312655 Elektronische Schaltungen</td>
<td>SWS</td>
<td>Zusatzübung (ZÜ) / 🗣️</td>
<td>Ulusoy</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltnamen</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7308655</td>
<td>Elektronische Schaltungen</td>
<td>Ulusoy</td>
</tr>
</tbody>
</table>

Legende: 🖥️ Online, 🕐 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Empfehlungen

Der erfolgreiche Abschluss von LV „Lineare elektrische Netze“ wird dringend empfohlen, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.
3.78 Teilleistung: Elektrotechnik und Elektronik [T-ETIT-109820]

Verantwortung: Prof. Dr. Martin Doppelbauer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Professor/Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2306339</td>
<td>Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2306340</td>
<td>Übung zu 2306339 Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🧩</td>
<td>Hähnlein, Digel, Bremer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Professor/Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7306351</td>
<td>Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>Becker</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle findet im Rahmen einer schriftlichen Prüfung statt, Dauer 3 Stunden.

Voraussetzungen
keine

Anmerkungen
Die Prüfung findet in deutscher Sprache statt.
3.79 Teilleistung: Elektrotechnik und Elektronik [T-ETIT-108386]

Verantwortung: Dr. Giovanni De Carne
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kursnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Art der Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2306350</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>De Carne</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2306351</td>
<td>Tutorial for 2306350 Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>De Carne, Hähnlein, Digel, Bremer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Kursnummer</th>
<th>Veranstaltungsname</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7306350</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
The control of success takes place by a written examination, duration 3 hours.
By successfully completing two additional exercise sheets (on a voluntary basis), a bonus of up to 6 exam points can be earned (corresponds to a maximum grade improvement of the written exam by the value 0.3 or 0.4).

Voraussetzungen
deine

Anmerkungen
Exam will be held in english language.
3.80 Teilleistung: Energie- und Prozesstechnik für Wirtschaftsingenieure I [T-MACH-102211]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Prof. Dr. Ulrich Maas
Dr.-Ing. Corina Schwitzke
Dr. Amin Velji

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2157961</th>
<th>Energie- und Prozesstechnik für Wirtschaftsingenieure I</th>
<th>6 SWS</th>
<th>Vorlesung / Übung (VÜ) /</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bauer, Mitarbeiter, Wagner, Maas, Schwitzke, Wirbser</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102211 | Energie- und Prozesstechnik für Wirtschaftsingenieure I | Bauer, Wirbser, Schwitzke, Pritz |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🎤 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) (nach §4(2), 1 SPO).

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energie- und Prozesstechnik für Wirtschaftsingenieure I
2157961, WS 22/23, 6 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz

Inhalt

Das letzte Drittel der Vorlesung befasst sich im Teilbereich Thermischer Strömungsmaschinen mit den Grundlagen, der Funktionsweise und den Einsatzgebieten von Gas- und Dampfturbinen für die Erzeugung elektrischer Energie und in der Antriebstechnik.

Die Studenten können:

- die zugrundeliegenden physikalisch-technischen Prozesse beschreiben und berechnen
- die mathematischen und thermodynamischen Beschreibungen anwenden
- die Diagramme und Schaltbilder korrekt wiedergeben
- Diagramme erläutern und analysieren
- die Funktionsweise von Gas- und Dampfturbinen und deren Komponenten erklären
- die Einsatzgebiete von thermischen Turbomaschinen nennen und deren Bedeutung für die Energieerzeugung und die Antriebstechnik beurteilen
3.81 Teilleistung: Energie- und Prozesstechnik für Wirtschaftsingenieure II [T-MACH-102212]

Verantwortung: Prof. Dr. Ulrich Maas
Dr.-Ing. Corina Schwitzke

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2170832</th>
<th>Energie- und Prozesstechnik für Wirtschaftsingenieure II</th>
<th>6 SWS</th>
<th>Vorlesung / Übung (VÜ) / Teacher</th>
<th>Schwitzke, Pritz, Maas</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-102212</th>
<th>Energie- und Prozesstechnik für Wirtschaftsingenieure II</th>
<th>Wirbser, Schwitzke, Bauer, Pritz</th>
</tr>
</thead>
</table>

Legende:
Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) (nach §4(2), 1 SPO). Die Note ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energie- und Prozesstechnik für Wirtschaftsingenieure II

2170832, SS 2022, 6 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung / Übung (VÜ) Prüfung

Inhalt

Lernziele:

Die Studenten können:

- Energieressourcen und -resserven und ihre Einsatzgebiete diskutieren und beurteilen
- den Einsatz von Energieträgern zur Bereitstellung elektrischer Energie bewerten
- die Konzepte und Eigenschaften der Kraft-Wärme-Kopplung, der regenerativen Energiewandlung und der Brennstoffzellen und deren Anwendungsgebiete erklären
- zentrale und dezentrale Versorgungskonzepte erläutern und vergleichen
- die Potenziale, Risiken und die Wirtschaftlichkeit der verschiedenen Strategien zur Ressourcenschonung und CO2-Senkung abwägen
- die Möglichkeiten der Solarenergienutzung benennen und bewerten
- über das Potential der Geothermie und deren Nutzung diskutieren
3.82 Teilleistung: Energiebedarf von Gebäuden – Grundlagen und Anwendungen mit Übungen zur Gebäudesimulation [T-MACH-105715]

Verantwortung: Dr. Ferdinand Schmidt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Fachgebiet Strömungsmaschinen

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105715 Energiebedarf von Gebäuden – Grundlagen und Anwendungen mit Übungen zur Gebäudesimulation Schmidt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Energiesysteme I - Regenerative Energien
2129901, WS 22/23, 3 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt
Die Lehrveranstaltung behandelt im wesentlichen fundamentalen Aspekte von "Erneuerbaren Energien".

2. Als weitere Nutzung der Sonnenenergie zur Stromerzeugung werden die Grundlagen der Photovoltaik diskutiert.
3. Im letzten Teil werden andere regenerative Energiequellen wie Wind und Erdwärme dargestellt.

Lernziel: Der Studierende beherrscht die Grundlagen für die Energieumwandlung mit "Erneuerbaren Energien", vor allem durch die Sonne.

Präsenzzeit: 34 Stunden
Selbststudium: 146 Stunden

Mündliche Prüfung - als Wahlfach ca. 30 Minuten, in Kombination mit Energiesysteme-II oder anderen Vorlesungen aus dem Energiesektor als Hauptfach 1 Stunde

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.
3.84 Teilleistung: Energiesysteme II: Grundlagen der Reaktorphysik [T-MACH-105550]

Verantwortung: Dr. Aurelian Florin Badea
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Leistungspunkte
- **Teilleistungsart:** Prüfungsleistung mündlich
- **Leistungspunkte:** 4
- **Notenskala:** Drittelnoten
- **Turnus:** Jedes Sommersemester
- **Version:** 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Kurzbeschreibung</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2130929</td>
<td>Energiesysteme II: Grundlagen der Reaktorphysik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Badea</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Kurzbeschreibung</th>
<th>Lehrveranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105550</td>
<td>Energiesysteme II: Grundlagen der Reaktorphysik</td>
<td>Badea</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105550</td>
<td>Energiesysteme II: Grundlagen der Reaktorphysik</td>
<td>Badea</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
- Mündliche Prüfung, 20 Minuten

Voraussetzungen
- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Energiesysteme II: Grundlagen der Reaktorphysik
- **Vorlesung (V) Online**
- **2130929, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen**

Inhalt

- Kernspaltung & Kernfusion,
- Radioaktiver Zerfall, Neutronenüberschuss,
- Spaltungs, schnelle und thermische Neutronen,
- leicht und schwer spaltbare Kerne,
- Neutronenfluss, Wirkungsgesetze, Reaktionsrate,
- mittlere freie Weglänge, Kettenreaktion, kritische Größe,
- Moderation,
- Reaktordynamik,
- Transport- und Diffusions-Gleichung für die Neutronenflussverteilung, Leistungsverteilungen im Reaktor,
- Ein- und Zweigruppentheorie,
- Leichtwasserreaktoren,
- Reaktorsicherheit,
- Auslegung von Kernreaktoren,
- Brutprozesse,
- KKW der Generation IV

Organisatorisches
- Mi (27.07.2022), 09:00 bis 17:00
- Do (28.07.2022), 09:00 bis 17:00
- Fr (29.07.2022), 09:00 bis 17:00
Literaturhinweise
Dieter Schmidt, Reaktortechnik, Band 1: Grundlagen, ISBN 3 7650 2003 6
3.85 Teilleistung: Energieumsetzung und Wirkungsgradsteigerung bei Verbrennungsmotoren [T-MACH-105564]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105564 | Wasserstoff und reFuels – motorische Energieumwandlung | Koch, Kubach |

Erfolgskontrolle(n)

mündliche Prüfung, 25 Minuten, keine Hilfsmittel

Voraussetzungen

keine
3.86 Teilleistung: Energy from Biomass [T-CIWVT-110576]

Verantwortung:
Dr.-Ing. Siegfried Bajohr
Prof. Dr. Nicolaus Dahmen

Einrichtung:
KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von:
M-MACH-105100 - Teilleistungen von der KIT-Fakultät für Chemieingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>22325</th>
<th>Energy from Biomass</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🚔</th>
<th>Dahmen, Bajohr</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🚔 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine
3.87 Teilleistung: Energy Market Engineering [T-WIWI-107501]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2540464</td>
<td>Energy Market Engineering</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Henni, Weinhardt</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2540465</td>
<td>Übung zu Energy Market Engineering</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Semmelmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>79852</td>
<td>Energy Market Engineering (Hauptklausur)</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Legende: Online, 🛡️ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (nach §4(2), 1 SPOs).
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Frühere Bezeichnung bis einschließlich SS17: T-WIWI-102794 "eEnergy: Markets, Services, Systems".
Die Veranstaltung wird neben den Modulen des IISM auch im Modul Energiewirtschaft und Energiemärkte des IIP angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energy Market Engineering
2540464, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Literaturhinweise

3.88 Teilleistung: Energy Storage and Network Integration [T-ETIT-104644]

Verantwortung: Prof. Dr. Mathias Noe
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung (V) / Ü</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2312687</td>
<td>Energy Storage and Network Integration</td>
<td>2</td>
<td>Vorlesung (V) /</td>
<td>Grilli, De Carne</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2312689</td>
<td>Tutorial for 2312687 Energy Storage and Network Integration</td>
<td>1</td>
<td>Übung (Ü) /</td>
<td>De Carne, Grilli</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7312687</td>
<td>Energy Storage and Network Integration</td>
<td>Noe, De Carne, Grilli</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (30 Minuten).

Voraussetzungen

Empfehlungen
Basic knowledge in the fields of Electrical Engineering and Thermodynamics is helpful.

Anmerkungen
Prüfung und Vorlesung finden in englischer Sprache statt.
3.89 Teilleistung: Entrepreneurship [T-WIWI-102864]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2545001</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Terzidis, Kuschel</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2545001</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7900002</td>
<td>Entrepreneurship</td>
<td>Terzidis</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7900192</td>
<td>Entrepreneurship</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Note ist die Note der schriftlichen Prüfung.

Den Studierenden wird durch gesonderte Aufgabenstellungen die Möglichkeit geboten einen Notenbonus zu erwerben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um maximal eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Entrepreneurship
2545001, SS 2022, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]
Vorlesung (V)
Präsenz/Online gemischt
Inhalt

Schwerpunkte bilden hierbei die Einführung in Methoden zur Generierung innovativer Geschäftsideen, zur Übersetzung von Patenten in Geschäfts konzepte sowie allgemeine Grundlagen der Geschäftsmodellierung und Geschäftsplanung. Insbesondere werden Ansätze wie Lean-Startup und Effectuation sowie Konzepte zur Finanzierung von jungen Unternehmen behandelt.

Teil der Vorlesung ist jeweils von 16:15 bis 17:15 Uhr ein „KIT Entrepreneurship Talk“, in welchem erfahrene Gründer- und Unternehmerpersönlichkeiten von ihren Erfahrungen in der Praxis der Unternehmensgründung berichten.

Termine und Referenten werden rechtzeitig über die Homepage des EnTechnon bekannt gegeben.

Lernziele:
Die Studierenden werden an die Thematik Entrepreneurship herangeführt. Nach erfolgreichem Besuch der Veranstaltung sollen sie einen Überblick über die Teilbereiche des Entrepreneurships haben und in der Lage sein, Grundkonzepte des Entrepreneurships zu verstehen und Schlüsselkonzepte anzuwenden.

Arbeitsaufwand:
- Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
- Präsenzzzeit: 30 Stunden
- Vor – und Nachbereitung der LV: 45.0 Stunden
- Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Prüfung:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Note ist die Note der schriftlichen Prüfung.

Durch die erfolgreiche Teilnahme an einer Fallstudie im Rahmen der Entrepreneurship Vorlesung kann ein Notenbonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu 0,3 oder 0,4. Der Bonus gilt nur, wenn Sie die Prüfung mindestens mit 4,0 bestanden haben. Mehr Details werden in der Vorlesung bekannt gegeben. Die Teilnahme an der Fallstudie ist freiwillig.

Klausurtermin:
- 24.06.2022, 18:00 - 19.10 Uhr, 30.46 Chemie, Neuer Hörsaal
- 24.06.2022, 18:00 - 19.10 Uhr, 30.95 Forum Hörsaal (Audimax)

Literaturhinweise
Füglistaller, Urs, Müller, Christoph und Volery, Thierry (2008): Entrepreneurship
Ries, Eric (2011): The Lean Startup
Inhalt

Teil der Vorlesung ist jeweils von 17:05 bis 18:00 Uhr ein „KIT Entrepreneurship Talk“, in welchem erfahrene Gründer- und Unternehmerpersönlichkeiten von ihren Erfahrungen in der Praxis der Unternehmensgründung berichten. Termine und Referenten werden rechtzeitig über die Homepage des EnTechnon bekannt gegeben.

Lernziele:
Die Studierenden werden an die Thematik Entrepreneurship herangeführt. Nach erfolgreichem Besuch der Veranstaltung sollen sie einen Überblick über die Teilbereiche des Entrepreneurships haben und in der Lage sein, Grundkonzepte des Entrepreneurships zu verstehen und Schlüsselkonzepte anzuwenden.

Arbeitsaufwand:
- Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
- Präsenzzeit: 30 Stunden
- Vor- und Nachbereitung der LV: 45.0 Stunden
- Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Prüfung:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Note ist die Note der schriftlichen Prüfung. Durch die erfolgreiche Teilnahme an einer Fallstudie im Rahmen der Entrepreneurship Vorlesung kann ein Notenbonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu 0,3 oder 0,4. Der Bonus gilt nur, wenn Sie die Prüfung mindestens mit 4,0 bestanden haben. Mehr Details werden in der Vorlesung bekannt gegeben. Die Teilnahme an der Fallstudie ist freiwillig.

Klausurtermin: 20.12.2022

Literaturhinweise
Füglistaller, Urs, Müller, Christoph and Volery, Thierry (2008): Entrepreneurship
3.90 Teilleistung: Ermüdungsverhalten geschweißter Bauteile und Strukturen [T-MACH-105984]

Verantwortung: Dr. Majid Farajian

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>Ermüdungsverhalten geschweißer Bauteile und Strukturen</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗿 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Voraussetzungen
Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen [T-MACH-109304]

Empfehlungen
Vorkenntnisse in Werkstoffkunde und Mechanik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Ermüdungsverhalten geschweißer Bauteile und Strukturen 2181731, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block (B) / 🧩

Präsenz/Online gemischt

Inhalt
Die Vorlesung gibt eine Einführung in die folgenden Themen:
- Schweißnahtqualität
- Schadensfälle bei Schweißverbindungen
- Bewertung von Kerben, Fehlern und Eigenspannungen
- Festigkeitskonzepte: Nenn-, Struktur-, Kerbspannungskonzepte, Bruchmechanik
- Lebensdauerbewertung
- Maßnahmen zur Verlängerung der Lebensdauer mittels Nachbehandlungsverfahren
- Instandsetzung, Ertüchtigung und Reparaturmaßnahmen.

Der/die Studierende kann
 • den Einfluss von Schweißprozess bedingten Kerben, Fehlern und Eigenspannungen auf das Bauteilverhalten beschreiben
 • die Grundlagen numerischer und experimenteller Nachweisverfahren statisch und zyklisch beanspruchter Schweißverbindungen mittels Festigkeitskonzepten erläutern und diese anwenden
 • Maßnahmen ableiten, um die Lebensdauer bei neu gebauten und auch bei den schon vorhandenen schwingbeanspruchten geschweißten Konstruktionen zu erhöhen

Vorkenntnisse in Werkstoffkunde und Mechanik empfohlen

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Es werden regelmäßig Übungszettel ausgeteilt
mündliche Prüfung (ca. 30 min)
keine Hilfsmittel

Organisatorisches

Blockveranstaltung. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich. Vorlesungstermine und Hörsaal werden den angemeldeten Teilnehmern mitgeteilt.
Literaturhinweise

2. FKM-Richtlinie, Bruchmechanischer Festigkeitsnachweis, Forschungskuratorium Maschinenbau, VDMA Verlag, 2009
3.91 Teilleistung: Ersatz menschlicher Organe durch technische Systeme [T-MACH-105228]

Verantwortung: apl. Prof. Dr. Christian Pylatiuk
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittenotes</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022 2106008 Ersatz menschlicher Organe durch technische Systeme 2 SWS Vorlesung (V) Pylatiuk

Prüfungsveranstaltungen

SS 2022 76-T-MACH-105228 Ersatz menschlicher Organe durch technische Systeme Pyli	uk

Legende: 🌐 Online, 📚 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 45min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Ersatz menschlicher Organe durch technische Systeme

2106008, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Online

Inhalt

Lerninhalt:

• Einführung: Definition und Klassifikation Organunterstützung und Organersatz.

Lernziele:

Organisatorisches

Die Vorlesung findet ausschließlich online statt. Dies gilt auch für den ersten Termin. Alle weiteren Informationen erhalten Sie im Ilias.

Literaturhinweise

• Jürgen Werner: Kooperative und autonome Systeme der Medizintechnik: Funktionswiederherstellung und Organersatz. Oldenbourg Verlag.
• E. Wintermantel, Suk-Woo Ha: Medizintechnik. Springer Verlag.
3.92 Teilleistung: Experimentelle Dynamik [T-MACH-105514]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Stud.</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 22</td>
<td>2162225</td>
<td>Experimentelle Dynamik</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Fidlin</td>
</tr>
<tr>
<td>SS 22</td>
<td>2162228</td>
<td>Übungen zu Experimentelle Dynamik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Fidlin, Genda</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Stud.</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 22</td>
<td>76-T-MACH-105514</td>
<td>Experimentelle Dynamik</td>
<td></td>
<td></td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Voraussetzungen
Kann nicht mit Schwingungstechnisches Praktikum (T-MACH-105373) kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelle Dynamik
2162225, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Einführung
2. Messprinzipien
3. Sensoren als gekoppelte, multiphysikalische Systeme
4. Digitale Signalverarbeitung, Messung von Frequenzgängen
5. Zwangserregte Schwingungen nichtlinearer Schwinger
6. Stabilitätsprobleme (Mathieu-Schwinger, reibungserregte Schwingungen)
7. Elementare Rotordynamik
8. Modalanalyse
3.93 Teilleistung: Experimentelle Strömungsmechanik [T-MACH-105512]

Verantwortung: Dr. Jochen Kriegseis
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>LV Nr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2154446</td>
<td>Experimentelle Strömungsmechanik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Kriegseis</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2153530</td>
<td>Experimental Fluid Mechanics</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Kriegseis</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>LV Nr.</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105512</td>
<td>Experimentelle Strömungsmechanik</td>
<td>Kriegseis</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105512 W</td>
<td>Experimentelle Strömungsmechanik Wiederholung</td>
<td>Kriegseis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung - 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimental Strömungsmechanik
2154446, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt
Die Vorlesung behandelt experimentelle Methoden der Strömungsmechanik und deren Anwendung zur Lösung praxisrelevanten strömungstechnischer Fragestellungen. Darüber hinaus werden Messsignale und Messdaten, die auf verschiedenen Verfahren basieren, ausgewertet, präsentiert und diskutiert.

In der Veranstaltung werden folgende Themen behandelt:

- Messmethoden und messbare Größen der Strömungsmechanik
- Messungen in turbulenten Strömungen
- Druckmessungen
- Hitzdrahtmessungen
- optische Messtechniken
- Fehlerberechnung und Fehleranalyse
- Skalierungsgesetze
- Signal- und Datenauswertung

Organisatorisches
Die Vergabe von Leistungspunkten zu den Veranstaltungen mit LVNr 2154446 und 2153530 schließt sich gegenseitig aus.

Literaturhinweise

Experimental Fluid Mechanics
2153530, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt
Inhalt
Die Studierenden können die relevanten physikalischen Messprinzipien der experimentellen Strömungsmechanik beschreiben. Sie sind in der Lage, die behandelten Messtechniken gegenüberstellend zu diskutieren und können dabei die jeweiligen Vor- und Nachteile herausstellen. Die Studierenden können Messsignale und Messdaten, die mit den gängigen Messtechniken der Strömungsmechanik aufgenommen wurden, auswerten und beurteilen.

Die Vorlesung behandelt experimentelle Methoden der Strömungsmechanik und deren Anwendung zur Lösung praxisrelevanter strömungsmechanischer Fragestellungen. Darüber hinaus werden Messsignale und Messdaten, die auf verschiedenen Verfahren basieren, ausgewertet, präsentiert und diskutiert.

In der Veranstaltung werden folgende Themen behandelt:

- Messmethoden und messbare Größen der Strömungsmechanik
- Messungen in turbulenten Strömungen
- Druckmessungen
- Hitzdrahtmessungen
- optische Messtechniken
- Fehlerberechnung und Fehleranalyse
- Skalierungsgesetze
- Signal- und Datenauswertung

Literaturhinweise
3.94 Teilleistung: Experimentelles metallographisches Praktikum [T-MACH-105447]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Dr.-Ing. Fabian Mühl

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Notenskala: best./nicht best.
Turnus: Jedes Semester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursschlüssel</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Modul</th>
<th>Betreuer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2175590</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Heilmaier, Kauffmann</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2175590</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Kauffmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursschlüssel</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>Modul</th>
<th>Betreuer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105447</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>Heilmaier, Kauffmann</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Kolloquium zu jedem Versuch, ca. 60 Minuten, Protokoll

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Experimentelles metallographisches Praktikum
2175590, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Grundlagen eignen sich der Studierende vorab an - sie werden in einem Online-Kolloquium vor dem Beginn des Praktikums abgefragt und sind Voraussetzung für die Teilnahme. Zur Orientierung und Aneignung erster Grundlagen steht ein Skript zur Verfügung, die weiterführende Literatur ist zu beachten.

Lernziele:

Voraussetzungen:
Werkstoffkunde I und II oder Materialphysik und Metalle

Arbeitsaufwand:
Präsenzzzeit: 25 Stunden
Selbststudium: 95 Stunden
Organisatorisches
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise
Praktikumsskript
Weiterführende Informationen gibt es hier:
http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)
https://www.ifw-dresden.de/de/ifw-institutes/km/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften
http://services.bibliothek.kit.edu/primo/start.php?recordID=KITSRC309606810
http://services.bibliothek.kit.edu/primo/start.php?recordID=KITSRC052463656
http://services.bibliothek.kit.edu/primo/start.php?recordID=KITSRC27759961X
http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)
http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)
http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)
http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)

Experimentelles metallographisches Praktikum

2175590, WS 22/23, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeige]n

<table>
<thead>
<tr>
<th>Praktikum (P)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
</table>

Inhalt

Die Grundlagen eignet sich der Studierende vorab an - sie werden in einem Online-Kolloquium vor dem Beginn des Praktikums abgefragt und sind Voraussetzung für die Teilnahme. Zur Orientierung und Aneignung erster Grundlagen steht ein Skript zur Verfügung, die weiterführende Literatur ist zu beachten.

Lernziele:

Voraussetzungen:
Werkstoffkunde I und II oder Materialphysik und Metalle

Arbeitsaufwand:
Präsenzzzeit: 25 Stunden
Selbststudium: 95 Stunden

Organisatorisches
Anmeldung erfolgt bis spätestens 30.10.2022 durch eine Mail mit Angabe von Name, Immatrikulations-Nr., Studiengang, Semester an alexander.kauffmann@kit.edu. Das Praktikum ist kapazitätsbegrenzt. Das Praktikum hat folgende Bestandteile: (i) Online-Test in Ilias, (ii) 5 bis 7 Versuchstage in Präsenz sowie (iii) Einzelprotokoll mit spezifischen Auswertaufgaben zu den Tätigkeiten im Labor.

Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php
Literaturhinweise
Praktikumsskript
Weiterführende Informationen gibt es hier:

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
3.95 Teilleistung: Experimentelles Schweißtechnisches Praktikum, in Gruppen [T-MACH-102099]

Verantwortung: Dr.-Ing. Stefan Dietrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart Studienleistung
Leistungspunkte 4
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Praktikum (P)</th>
<th>Prüfung Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23 2173560</td>
<td>Präsenz</td>
<td>Dietrich, Schulze</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Ausstellung eines Scheins nach Begutachtung des Praktikumsberichts.

Voraussetzungen
Hörschein in Schweißtechnik (Die Teilnahme an der Veranstaltung Schweißtechnik I/II wird vorausgesetzt.).

Anmerkungen
Es ist festes Schuhwerk und lange Kleidung erforderlich!

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelles schweißtechnisches Praktikum, in Gruppen
2173560, WS 22/23, 3 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt

Lernziele:
Die Studierenden können gängige Schweißverfahren und deren Anwendbarkeit beim Fügen verschiedener metallischer Werkstoffe nennen. Die Studierenden können die verschiedenen Schweißverfahren hinsichtlich ihrer Vor- und Nachteile miteinander vergleichen. Die Studierenden haben selber mit verschiedenen Schweißverfahren geschweißt.

Voraussetzungen:
Hörschein in Schweißtechnik I
Es ist festes Schuhwerk und lange Kleidung erforderlich!

Arbeitsaufwand:
Präsenzzeit: 31,5 Stunden
Vorbereitung: 8,5 Stunden
Praktikumsbericht: 80 Stunden

Literaturhinweise
wird im Praktikum ausgegeben
3.96 Teilleistung: Fahreigenschaften von Kraftfahrzeugen I [T-MACH-105152]

Verantwortung: Dr.-Ing. Hans-Joachim Unrau
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Prüfung (P)</th>
<th>Ausbildungsmodus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2113807</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Unrau</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Ausbildungsmodus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105152</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>Unrau</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105152</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlich
Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fahreigenschaften von Kraftfahrzeugen I

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Prüfung (P)</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Ausbildungsmodus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V)</td>
<td>Unrau</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>2 SWS</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Inhalt
1. Problemstellung: Regelkreis Fahrer - Fahrzeug - Umgebung (z.B. Koordinatensysteme, Schwingungsformen des Aufbaus und der Räder)
2. Simulationsmodelle: Erstellung von Bewegungsgleichungen (Methode nach D'Alembert, Methode nach Lagrange, Automatische Gleichungsgenerierer), Modell für Fahreigenschaften (Aufgabenstellung, Bewegungsgleichungen)
3. Reifenverhalten: Grundlagen, trockene, nasse und winterglatte Fahrbahn

Lernziele:
Die Studierenden kennen die grundsätzlichen Zusammenhänge zwischen Fahrer, Fahrzeug und Umgebung. Sie sind in der Lage, ein Fahrzeugsimulationsmodell aufzubauen, bei dem Trägheitskräfte, Luftkräfte und Reifenkräfte sowie die zugehörigen Momente berücksichtigt werden. Sie besitzen gute Kenntnisse im Bereich Reifeneigenschaften, denen bei der Fahrdynamiksimulation eine besondere Bedeutung zukommt. Damit sind sie in der Lage, die wichtigsten Einflussgrößen auf das Fahrverhalten analysieren und an der Optimierung der Fahreigenschaften mitwirken zu können.

Literaturhinweise
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahreigenschaften von Kraftfahrzeugen II

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2114838</th>
<th>Fahreigenschaften von Kraftfahrzeugen II</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105153</th>
<th>Fahreigenschaften von Kraftfahrzeugen II</th>
<th>Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105153</td>
<td>Fahreigenschaften von Kraftfahrzeugen II</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündlich

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Lernziele:

Literaturhinweise

3.98 Teilleistung: Fahrzeugkomfort und -akustik I [T-MACH-105154]

Verantwortung: Prof. Dr. Frank Gauterin

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik
M-MACH-104878 - Spezialisierung im Maschinenbau

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| SS 2022 | 2114856 | Vehicle Ride Comfort & Acoustics I | 2 SWS | Vorlesung (V) / 📚 | Gauterin |
| WS 22/23 | 2113806 | Fahrzeugkomfort und -akustik I | 2 SWS | Vorlesung (V) / 🗣 | Gauterin |

Prüfungsveranstaltungen

SS 2022	76-T-MACH-105154	Fahrzeugkomfort und -akustik I	Gauterin
SS 2022	76T-MACH-105154_Wiederholer_2	Fahrzeugkomfort und -akustik I	Gauterin
SS 2022	76T-MACH-105154_Wiederholung	Fahrzeugkomfort und -akustik I	Gauterin
WS 22/23	76-T-MACH-105154	Fahrzeugkomfort und -akustik I	Gauterin

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündlich
Dauer: ca. 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen
Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics I T-MACH-102206 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vehicle Ride Comfort & Acoustics I
2114856, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seitens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsphänomenen beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analyseren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.
Organisatorisches
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]
Genaue Termine entnehmen Sie bitte der Institutshomepage.
Scheduled dates:
see homepage of the institute.
Classroom attendance depends on the development of the pandemic situation.

Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

V Fahrzeugkomfort und -akustik I
2113806, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen
Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seitens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsphänomenen beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analyseren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.

Organisatorisches
Kann nicht mit der Veranstaltung [2114856] kombiniert werden.
Can not be combined with lecture [2114856]

Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
3.99 Teilleistung: Fahrzeugkomfort und -akustik II [T-MACH-105155]

Verantwortung: Prof. Dr. Frank Gauterin

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
- M-MACH-104849 - Schwerpunkt Fahrzeugtechnik
- M-MACH-104878 - Spezialisierung im Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrzeugkomfort und -akustik II</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsserie</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2114825</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsserie</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105155_Wiederholung</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Gauterin</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündlich

Dauer: ca. 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen

Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics II T-MACH-102205 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fahrzeugkomfort und -akustik II

2114825, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt
1. Zusammenfassung der Grundlagen Akustik und Schwingungen
2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
3. Geräuschemission von Kraftfahrzeugen
 - Geräuschbelastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

Lernziele:

Organisatorisches
Kann nicht mit der Veranstaltung [2114857] kombiniert werden.
Can not be combined with lecture [2114857]
Je nach Pandemie Lage wird evtl. kurzfristig auf "Online Veranstaltung" geändert.

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

Vehicle Ride Comfort & Acoustics II
2114857, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Zusammenfassung der Grundlagen Akustik und Schwingungen
2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
3. Geräuschemission von Kraftfahrzeugen
 - Geräuschbelastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

Lernziele:
Organisatorisches
Genaue Termine entnehmen Sie bitte der Institushomepage.
Kann nicht mit der Veranstaltung [2114825] kombiniert werden.

Scheduled dates:
see homepage of the institute.
Can not be combined with lecture [2114825].
Classroom attendance depends on the development of the pandemic situation

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
3.100 Teilleistung: Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe [T-MACH-105237]

Verantwortung: Prof. Dr.-Ing. Frank Henning
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbautechnologie

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Vorlesung (V) / 🧩</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2113102</td>
<td>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td>2</td>
<td></td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105237</td>
<td>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td></td>
<td>Henning</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105237</td>
<td>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td></td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung schriftlich; Dauer ca. 90 min

Voraussetzungen
keine

Empfehlungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe

2113102, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt
Leichtbausstrategien
- Stoffleichtbau
- Formleichtbau
- Konzeptleichtbau
- Multi-Material-Design

Ingenieurtechnische Bauweisen
- Differentialbauweise
- Integralbauweise
- Sandwichbauweise
- Modulbauweise
- Bionik

Karosseriebauweisen
- Schalenbauweise
- Space Frame
- Gitterrohrrahmen
- Monocoque

Metallische Leichtbauwerkstoffe
- Hoch- und Höchstfeste Stähle
- Aluminiumlegierungen
- Magnesiumlegierungen
- Titanlegierungen

Lernziele:

Literaturhinweise
3.101 Teilleistung: Fahrzeugreifen- und Räderentwicklung für PKW [T-MACH-102207]

Verantwortung: Hon.-Prof. Dr. Günter Leister

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Lehnveranstaltungen

| SS 2022 | 2114845 | Fahrzeugreifen- und Räderentwicklung für PKW | 2 SWS | Vorlesung (V) | Leister |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102207 | Fahrzeugreifen- und Räderentwicklung für PKW | Leister |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündlich

- Dauer: 30 bis 40 Minuten
- Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugreifen- und Räderentwicklung für PKW

2114845, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Die Rolle von Reifen und Räder im Fahrzeugumfeld
2. Geometrische Verhältnisse von Reifen und Rad, Package, Tragfähigkeit und Betriebsfestigkeit, Lastenheftprozess
3. Mobilitätsstrategie: Reserverad, Notlaufsysteme und Pannensets
4. Projektmanagement: Kosten, Gewicht, Termine, Dokumentation
5. Reifenprüfungen und Reifeneigenschaften
6. Räder technik im Spannungsfeld Design und Herstellungsprozess, Radprüfung
7. Reifendruck: Indirekt und direkt messende Systeme
8. Reifenbeurteilung subjektiv und objektiv

Lernziele:

Die Studierenden kennen die Wechselwirkungen von Reifen, Rädern und Fahrwerk. Sie haben einen Überblick über die Prozesse, die sich rund um die Reifen- und Räderentwicklung abspielen. Ihnen sind die physikalischen Zusammenhänge klar, die hierfür eine wesentliche Rolle spielen.

Organisatorisches

Voraussichtliche Termine, nähere Informationen und eventuelle Terminänderungen:
siehe Institutshomepage.

Literaturhinweise

Manuskript zur Vorlesung
Manuscript to the lecture
3.102 Teilleistung: Fahrzeugsehen [T-MACH-105218]

Verantwortung: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2022 2138340 Automotive Vision / Fahrzeugsehen 3 SWS Vorlesung (V) / Lauer, Fehler

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105218 Fahrzeugsehen 60 Minuten Stiller, Lauer

Erfolgskontrolle(n)
Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Automotive Vision / Fahrzeugsehen 2138340, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Lernziele:

Lehrinhalt:
1. Fahrerassistenzsysteme
2. Stereosehen
3. Merkmalspunktverfahren
4. Optischer Fluss/Tracking im Bild
5. Tracking und Zustandsschätzung
6. Selbstonkalisierung und Kartierung
7. Fahrradkennung
8. Verhaltenserkennung

Nachweis: Schriftlich 60 Min.
Arbeitsaufwand: 120 Stunden

Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3.103 Teilleistung: Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung [T-MACH-105535]

Verantwortung: Prof. Dr.-Ing. Frank Henning

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbautechnologie

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart Prüfungsleistung schriftlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Vorlesung (V)</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2114053</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>2 SWS</td>
<td>Henning</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Vorlesung (V)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105535</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>Henning</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105535</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>Henning</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung 90 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung
2114053, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Physikalische Zusammenhänge der Faserverstärkung
- Paradoxa der FVW
Anwendungen und Beispiele
- Automobilbau
- Transportanlage
- Energie- und Bauwesen
- Sportgeräte und Hobby
Matrixwerkstoffe
- Aufgaben der Matrix im Faserverbundwerkstoff
- Grundlagen Kunststoffe
- Duromere
- Thermoplaste
Verstärkungfasern und ihre Eigenschaften
- Aufgaben im FVW, Einfluss der Fasern
- Glasfasern
- Kohlenstofffasern
- Aramidfasern
- Naturfasern
Halbzeuge/Prepregs
Verarbeitungsverfahren
Recycling von Verbundstoffen
Lernziele:

Organisatorisches
Die Vorlesung wird online stattfinden. Wenn die Corona-Verordnung und die Infektionslage es zulässt evtl. auch in Präsenz. Dies entscheidet sich zu Beginn des Semesters.
The lecture will be online. If the Corona regulations and the infection situation permit, possibly also in attendance. This will be decided at the beginning of the semester.

Literaturhinweise
Literatur Leichtbau II
[1-7]
3.104 Teilleistung: FEM Workshop - Stoffgesetze [T-MACH-105392]

Verantwortung: Dr. Katrin Schulz
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

| SS 2022 | 2183716 | FEM Workshop -- Stoffgesetze | 2 SWS | Block (B) / 🌀 | Schulz, Weygand |

Legende: Online, 🌀 Präsenz/Online gemischt, 🆕 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Bearbeitung einer FEM Aufgabe
Erstellung eines Protokolls
Erstellung eines Kurzreferats

Voraussetzungen
keine

Empfehlungen
Technische Mechanik, Höhere Mathematik, Einführung in die Materialtheorie

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

FEM Workshop -- Stoffgesetze

2183716, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block (B) Präsenz/Online gemischt

Inhalt

Der/die Studierende

• besitzt das grundlegende Verständnis zur Materialtheorie und Klassifizierung von Werkstoffen
• kann mit Hilfe des kommerziellen Software-Paketes ABAQUS selbständig numerische Modelle erstellen und hierfür passende Stoffgesetze auswählen und anwenden

Technische Mechanik, Höhere Mathematik, Einführung in die Materialtheorie empfohlen

Präsenzzeit: 28 Stunden
Selbststudium: 92 Stunden

Mündliche Prüfung (ca. 20 min) im Wahlfachmodul, ansonsten unbenotet.

Bearbeitung einer FEM Aufgabe
Erstellung eines Protokolls
Erstellung eines Kurzreferats.

Organisatorisches

Blockveranstaltung, Termine werden noch bekannt gegeben!

Kontakt: katrin.schulz@kit.edu
3.105 Teilleistung: Fertigungsprozesse der Mikrosystemtechnik [T-MACH-102166]

Verantwortung: Dr. Klaus Bade
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2143882 | Fertigungsprozesse der Mikrosystemtechnik | 2 SWS | Vorlesung (V) / 🗣️ | Bade |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102166 | Fertigungsprozesse der Mikrosystemtechnik | Bade |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fertigungsprozesse der Mikrosystemtechnik
2143882, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

1. Grundlagen der mikrotechnischen Fertigung
2. Allgemeine Fertigungsschritte
 2.1 Vorbehandlung / Reinigung / Spülen
 2.2 Beschichtungsverfahren (vom Spincoaten bis zur Selbstorganisation)
 2.3 Mikrostrukturierung: additiv und subtraktiv
 2.4 Entschichtung
3. Mikrotechnische Werkzeugherstellung: Masken und Formwerkzeuge
4. Interconnects (Damascene-Prozess), moderner Leiterbahnaufbau
5. Nassprozesse im LIGA-Verfahren
6. Gestaltung von Prozessabläufen

Literaturhinweise
M. Madou
Fundamentals of Microfabrication
CRC Press, Boca Raton, 1997
W. Menz, J. Mohr, O. Paul
Mikrosystemtechnik für Ingenieure
Dritte Auflage, Wiley-VCH, Weinheim 2005
L.F. Thompson, C.G. Willson, A.J. Bowden
Introduction to Microlithography
3.106 Teilleistung: Fertigungstechnik [T-MACH-102105]

Verantwortung:
Prof. Dr.-Ing. Volker Schulze

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kurs</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2149657</td>
<td>Fertigungstechnik</td>
<td>6</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Kurs</th>
<th>Veranstaltungstyp</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td></td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (180 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| Fertigungstechnik | Vorlesung / Übung (VÜ) | 2149657, WS 22/23, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen | Präsenz/Online gemischt |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt
Inhalt
Ziel der Vorlesung ist es, die Fertigungstechnik im Rahmen der Produktionstechnik einzuordnen, einen Überblick über die Verfahren der Fertigungstechnik zu geben und ein vertieftes Prozesswissen der gängigen Verfahren aufzubauen. Dazu werden im Rahmen der Vorlesung fertigungstechnische Grundlagen vermittelt und die Fertigungsverfahren entsprechend ihrer Hauptgruppen sowohl unter technischen als auch wirtschaftlichen Gesichtspunkten behandelt. Durch die Vermittlung von Themen wie Prozessketten in der Fertigung wird die Vorlesung abgerundet.

Die Themen im Einzelnen sind:

- Qualitätsregelung
- Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung, Kunststofftechnik)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung
- Prozessketten in der Fertigung

Eine Exkursion zu einem Industrieunternehmen gehört zum Angebot dieser Vorlesung.

Lernziele:
Die Studierenden ...

- sind fähig, die verschiedenen Fertigungsverfahren anzugeben und deren Funktionen zu erläutern.
- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der Hauptgruppen klassifizieren.
- sind in der Lage, für vorgegebene Verfahren auf Basis deren Eigenschaften eine Prozessauswahl durchzuführen.
- sind befähigt, Zusammenhänge einzelner Verfahren zu identifizieren, und können diese hinsichtlich ihrer Einsatzmöglichkeiten auswählen.
- können die Verfahren für gegebene Anwendungen unter technischen und wirtschaftlichen Gesichtspunkten beurteilen und eine spezifische Auswahl treffen.
- sind in der Lage, die Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen und deren jeweiligen Einfluss im Kontext der gesamten Prozesskette auf die resultierenden Werkstückeigenschaften zu beurteilen.

Arbeitsaufwand:
Präsenzzzeit: 63 Stunden
Selbststudium: 177 Stunden

Organisatorisches
Start: 24.10.2022
Vorlesungstermine montags und dienstags, Übungstermine mittwochs. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
3.107 Teillistung: Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion [T-MACH-107667]

Verantwortung: Dr. Peter Franke
Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23 2193003</td>
<td>2 SWS</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
<tr>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Franke</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 76-T-MACH-107667</td>
<td>Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
<tr>
<td>Vorlesung (V)</td>
<td>Seifert, Franke</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Empfehlungen
Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
Grundvorlesungen in Mathematik
Vorlesung Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teillistung:

Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion
2193003, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt
Inhalt
Mündliche Prüfung (ca. 30 min)
Lehrinhalt:
1. Kristallfehler und Diffusionsmechanismen
2. Mikroskopische Beschreibung der Diffusion
3. Phänomenologische Beschreibung
4. Diffusionskoeffizienten
5. Diffusionsprobleme; analytische Lösungen
6. Diffusion mit Phasenumwandlung
7. Gefügekinetik
8. Diffusion entlang Oberflächen, Korngrenzen, Versetzungen
9. Numerische Behandlung von diffusionskontrollierten Phasenumwandlungen

Empfehlungen: Kenntnisse aus der Vorlesung "Heterogene Gleichgewichte" (Seifert) sind zu empfehlen; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Grundvorlesungen in Mathematik; Vorlesung Physikalische Chemie

Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden

Die Studierenden sollen nach der Teilnahme an den Lehrveranstaltungen fähig sein:

- Diffusionsmechanismen zu beschreiben
- die Fickschen Gesetze zu formulieren
- einfache Lösungen der Diffusionsgleichung anzugeben
- Diffusionsexperimente auszuwerten
- Interdiffusionprozesse zu beschreiben
- den thermodynamischen Faktor zu erklären
- parabolisches Schichtwachstum zu beschreiben
- die Perlitbildung zu erläutern
- Gefügeumwandlungen gemäß den Modellen von Avrami und Johnson-Mehl darzulegen
- ZTU-Schaubilder zu erklären und anzuwenden

Literaturhinweise

Verantwortung: Dr. Torsten Luedecke
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2530205 Financial Analysis</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2530206 Übungen zu Financial Analysis</td>
<td>2 SWS</td>
<td>Übung (Ü) / Präsenz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7900075 Financial Analysis</td>
<td></td>
<td>Luedecke</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7900059 Financial Analysis</td>
<td></td>
<td>Ruckes, Luedecke</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Die Note ist das Ergebnis der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Es werden Kenntnisse in Finanzwirtschaft und Rechnungswesen sowie Grundlagen der Unternehmensbewertung vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Financial Analysis
2530205, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Literaturhinweise

Teilleistung: Finite-Elemente Workshop [T-MACH-105417]

Verantwortung: Prof. Dr. Claus Mattheck
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart Studienleistung
Leistungspunkte 4
Notenskala best./nicht best.
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2182731</th>
<th>Finite-Elemente Workshop</th>
<th>2 SWS</th>
<th>Block (B) / 🗣</th>
<th>Weygand, Mattheck, Tesari</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105417</th>
<th>Finite-Elemente Workshop</th>
<th>Mattheck, Gruber, Weygand</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Teilnahmebescheinigung bei Teilnahme an allen Veranstaltungsterminen

Voraussetzungen
keine

Empfehlungen
Grundlagen der Kontinuumsmechanik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Finite-Elemente Workshop
2182731, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Die Teilnehmer lernen die Grundlagen der FEM-Spannungsanalyse und der Bauteiloptimierung mit der Methode der Zugdreiecke. Auf Praxisbezug wird Wert gelegt.

Der/die Studierende kann

- mit Hilfe der kommerziellen Finite Element Software ANSYS für einfache Bauteile Spannungsanalysen durchführen
- die Methode der Zugdreiecke einsetzen, um die Gestaltung von Bauteilen hinsichtlich der Spannungsverteilung zu optimieren

Grundlagen der Kontinuumsmechanik werden vorausgesetzt.

Präsenzzeit: 22,5 Stunden

Teilnahmebescheinigung bei regelmäßiger Teilnahme

Organisatorisches
Finite-Elemente WS findet vom 19.-22. April 2022 am CN, Bau 421, Raum 413 statt.

Bei Interesse wenden Sie sich bitte an: iwiza.tesari@kit.edu
3.110 Teilleistung: Fluid Mechanics of Turbulent Flows [T-BGU-109581]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-MACH-105405 - Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsnachweis mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 6221806 | Fluid Mechanics of Turbulent Flows | 4 SWS | Vorlesung / Übung (VÜ) / 🗣 | Uhlmann |

Prüfungsveranstaltungen

| SS 2022 | 8244110841 | Fluid Mechanics of Turbulent Flows | Uhlmann |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
T 3.111 Teilleistung: Fluid-Festkörper-Wechselwirkung [T-MACH-105474]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnnapfel
Dr.-Ing. Mark-Patrick Mühlhausen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2154453</th>
<th>Fluid-Struktur-Interaktion mit Python</th>
<th>2 SWS</th>
<th>Block-Vorlesung (BV) / Block-Vorlesung (BV)</th>
<th>Mühlhausen</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fluid-Struktur-Interaktion mit Python
2154453, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)
Präsenz/Online gemischt

Inhalt
"Die Vorlesung liefert die Grundlagen zur Beschreibung und Modellierung von Strömungen, Strukturen und deren Wechselwirkung. Im praktischen Teil werden die behandelten Methoden und Verfahren an verschiedenen Übungen und Beispielen mit Python und Ansys Fluent vertieft.

- Kurze Einführung in Python und Ansys Fluent
- Grundgleichungen der Kontinuumsmechanik
- Smoothing und Remeshing Algorithmen zur Netzverformung
- Finite-Volumen und Finite-Elemente Methode
- Methoden der Fluid-Struktur-Interaktion
- Kopplungsbedingungen
- Monolithische und partitionierte Kopplungsverfahren
- Kopplungsalgorithmen für partitionierte Verfahren
- Stabilität und Konvergenz von gekoppelten Systemen"

Literaturhinweise
wird in der Vorlesung vorgestellt
3.112 Teilleistung: Fluidtechnik [T-MACH-102093]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modul</th>
<th>WS 22/23</th>
<th>2114093</th>
<th>Fluidtechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Geimer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Modul</th>
<th>SS 2022</th>
<th>76-T-MACH-102093</th>
<th>Fluidtechnik</th>
<th>Geimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul</td>
<td>WS 22/23</td>
<td>76-T-MACH-102093</td>
<td>Fluidtechnik</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
keine

Anmerkungen

Lernziele:
Der Studierende ist in der Lage:

- die physikalischen Prinzipien der Fluidtechnik anzuwenden und zu bewerten,
- gängige Komponenten zu nennen und deren Funktionsweisen zu erläutern,
- die Vor- und Nachteile unterschiedlicher Komponenten aufzuzeigen,
- Komponenten für einen gegeben Zweck zu dimensionieren
- sowie einfache Systeme zu berechnen.

Inhalt:
Im Bereich der Hydrostatik werden die Themenkomplexe

- Druckflüssigkeiten,
- Pumpen und Motoren,
- Ventile,
- Zubehör und Hydraulische Schaltungen behandelt.

Im Bereich der Pneumatik werden die Themenkomplexe

- Verdichter,
- Antriebe,
- Ventile und Steuerungen behandelt.

Literatur:
Skiptum zur Vorlesung Fluidtechnik, über die Lernplattform ILIAS downloadbar.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Im Bereich der Hydrostatik werden die Themenkomplexe

- Druckflüssigkeiten,
- Pumpen und Motoren,
- Ventile,
- Zubehör und
- Hydraulische Schaltungen betrachtet.

Im Bereich der Pneumatik die Themenkomplexe

- Verdichter,
- Antriebe,
- Ventile und
- Steuerungen betrachtet.

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literaturhinweise
Skriptum zur Vorlesung Fluidtechnik
Institut für Fahrzeugsystemtechnik
downloadbar
3.113 Teilleistung: Fundamental Numerical Algorithms for Engineers [T-BGU-109953]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-MACH-105405 - Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>6221912</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Uhlmann, Herlina</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>8244109953</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td>Uhlmann, Herlina</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗺 Präsenz, ☝ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.114 Teilleistung: Funktionskeramiken [T-MACH-105179]

Verantwortung: Dr. Manuel Hinterstein
Dr.-Ing. Wolfgang Rheinheimer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105179 Funktionskeramiken | Hinterstein |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) zum vereinbarten Termin.

Hilfsmittel: keine

Die Wiederholungsprüfung findet nach Vereinbarung statt.

Voraussetzungen

keine
3.115 Teilleistung: Fusionstechnologie [T-MACH-110331]

Verantwortung: Dr. Aurelian Florin Badea

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik/Bereich Innovative Reaktorsysteme

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Dauer 1 Sem.
Version 1

Lehrveranstaltungen
WS 22/23 2189920 Fusionstechnologie 2 SWS Vorlesung (V) / 🧩 Badea

Prüfungsveranstaltungen
WS 22/23 76-T-MACH-110331 Fusionstechnologie Badea

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fusionstechnologie 2189920, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
This lecture is dedicated to Master students of mechanical engineering and other engineering studies. Goal of the lecture is the understanding of the physics of fusion, the components of a fusion reactor and their functions. The technological requirements for using fusion technology for future commercial production of electricity and the related environmental impact are also addressed. The students are capable of giving technical assessment of the usage of the fusion energy with respect to its safety and sustainability. The students are qualified for further training in fusion energy field and for research-related professional activity.

- nuclear fission & fusion
- neutronics for fusion
- fuel cycles, cross sections
- gravitational, magnetic and inertial confinement
- fusion experimental devices
- energy balance for fusion systems; Lawson criterion and Q-factor
- materials for fusion reactors
- plasma physics, confinement
- plasma heating
- timeline of the fusion technology
- ITER, DEMO
- safety and waste management

Verantwortung: Prof. Dr. Robert Stieglitz
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2169483</th>
<th>Fusionstechnologie A</th>
<th>2 SWS</th>
<th>Vorlesung / Übung (VÜ) / 📚 Stieglitz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105411</td>
<td>Fusionstechnologie A</td>
<td>Jedes Wintersemester</td>
<td>Stieglitz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105411 | Fusionstechnologie A | Stieglitz |

Legende: 📚 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
hilfreich sind Kenntnisse der Wärme- und Stoffübertragung und der Elektrotechnik,
Grundkenntnisse der Strömungslehre, Werkstoffkunde und Physik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fusionstechnologie A
2169483, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung / Übung (VÜ)
Präsenz

Inhalt

Empfehlungen/Vorkenntnisse:
Grundkenntnisse der Strömungslehre, Werkstofftechnik und Physik. Hilfreich sind Kenntnisse der Wärme- und Stoffübertragung und der Elektrotechnik
Präsenzzeit: 21 h
Selbststudium: 90 h
Prüfung mündlich:
Dauer: ca. 30 Minuten, Hilfsmittel: keine
Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise
Innerhalb jedes Teilblockes wird eine Literaturliste der jeweiligen Fachliteratur angegeben. Zusätzlich erhalten die Studenten/-innen das Studienmaterial in gedruckter und elektronischer Version.

Übung zu Fusionstechnologie A
2169484, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
3.117 Teilleistung: Fusionstechnologie B [T-MACH-105433]

Verantwortung: Prof. Dr. Robert Stieglitz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

| SS 2022 | 2190492 | Fusionstechnologie B | 2 SWS | Vorlesung (V) / 🗣 | Stieglitz |
| SS 2022 | 2190493 | Übungen zu Fusionstechnologie B | 2 SWS | Übung (Ü) / 📐 | Stieglitz |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105433 | Fusionstechnologie B | Stieglitz |

Legende: 📐 Online, 🗣 Präsenz/Online gemischt, 📐 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
Besuch der Vorlesung Fusionstechnologie A
sicherer Umgang der im Bachelor vermittelten Kenntnisse der Physik, Werkstoffkunde, der Elektrotechnik und der Konstruktionslehre

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fusionstechnologie B
2190492, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Die Fusionstechnologie B ist eine Fortführung der Fusionstechnologie-A-Vorlesung und beinhaltet folgende Themen:
Empfehlungen/Voraussetzung:
Sicherer Umgang der im Bachelor vermittelten Kenntnisse der Physik, der Wärme- und Stoffübertragung und der Konstruktionslehre. Besuch der Vorlesung Fusionstechnology A
Präsenzzzeit: 21 h
Selbststudium: 49 h
Mündlicher Nachweis der Teilnahme an den Übungen
Dauer: ca. 25 Minuten, Hilfsmittel: keine

Literaturhinweise
Lecture notes

Übungen zu Fusionstechnologie B
2190493, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches
S. Institutshomepage
3.118 Teilleistung: Gas- und Dampfkraftwerke [T-MACH-105444]

Verantwortung: Hon.-Prof. Dr. Thomas Schulenberg
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2170490 2 SWS Gas- und Dampfkraftwerke Vorlesung (V) Schulenberg

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105444 Gas- und Dampfkraftwerke Schulenberg

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 min

Voraussetzungen
keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Gas- und Dampfkraftwerke
2170490, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Literaturhinweise
Die gezeigten Vorlesungsfolien und weiteres Unterrichtsmaterial werden bereitgestellt.
Ferner empfohlen:
3.119 Teilleistung: Gasdynamik [T-MACH-105533]

Verantwortung:
Dr.-Ing. Davide Gatti
Dr. Jochen Kriegseis

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von:
M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsmuster
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lerntestsveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2154200</th>
<th>Gasdynamik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🕵️</th>
<th>Gatti, Kriegseis</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105533</th>
<th>Gasdynamik</th>
<th>Magagnato</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🕵️ Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung - 30 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Gasdynamik
2154200, WS 22/23, 2 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Inhalt

Sie sind in der Lage die Ruhewerte der strömungsmechanischen Variablen zu berechnen und deren kritische Werte zu bestimmen. Die Studierenden können die Stromfadentheorie bei veränderlichem Querschnitt anwenden und damit verbundenen unterschiedlichen Strömungen in einer Lavaldüse beurteilen.

Sie sind in der Lage schräge Verdichtungstöße zu berechnen und können abgelöste und nicht abgelöste Verdichtungstöße unterscheiden. Die Studenten können die Prandtl-Meyer Expansionsfächer berechnen.

In dieser Lehrveranstaltung werden folgende Themen behandelt:

- Einführung in die Gasdynamik
- Numerische und experimentelle Beispiele
- Die Grundgleichungen in differentieller und integraler Form
- Stationäre Stromfadentheorie mit und ohne senkrechten Verdichtungsstoß
- Diskussion des Energiesatzes: Ruhewerte und kritische Werte
- Stromfadentheorie bei veränderlichem Querschnitt. Strömung in einer Lavaldüse
- Schräger Verdichtungsstoß und abgelöster Verdichtungsstoß
- Prandtl-Meyer Expansionsfächer
- Strömungen mit Reibung (Fanno Linie)

Organisatorisches

Diese Veranstaltung wird im SS angeboten.
These Lecture is offered in SS.
3 TEILLEISTUNGEN

Teilleistung: Gasdynamik [T-MACH-105533]

Literaturhinweise
Zierep, J.: Theoretische Gasdynamik, Braun Verlag, Karlsruhe. 1991
3.120 Teilleistung: Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie [T-INFO-101262]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Hon.-Prof. Dr. Uwe Spetzger

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Veranstaltungsleistung</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
</table>
| SS 2022 | 24678 | Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie | 2 SWS | Vorlesung (V) / Prüfung
| WS 22/23 | 24139 | Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie | 2 SWS | Vorlesung (V) / Prüfung

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7500145</td>
<td>Gehirn und zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie</td>
<td>Spetzger</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7500118</td>
<td>Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie</td>
<td>Spetzger</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 45 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
keine

Empfehlungen
Der Besuch der Praktika und Seminare im Bereich Medizintechnik am Institut ist empfehlenswert, da erste praktische und theoretische Erfahrungen in den vielen unterschiedlichen Bereichen vermittelt und vertieft werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie

Vorlesung (V) Präsentz

24678, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Die Lehrveranstaltung vermittelt einen Überblick über die Neuromedizin und bewirkt ein grundsätzliches Verständnis für die Sinnes- und Neurophysiologie, was eine wichtige Schnittstelle zu den innovativen Forschungsgebieten der Neuroprothetik (optische, akustische Prothesen) darstellt. Zudem besteht hier ebenso eine enge Anbindung zu den motorischen Systemen in der Robotik. Weitere Verknüpfungen bestehen zu den Bereichen der Bildgebung und Bildverarbeitung, der intraoperativen Unterstützungsanlagen. Es wird ein Praxisbezug hergestellt sowie konkrete Anwendungsbeispiele in der medizinischen Diagnostik und Therapie dargestellt.

Lernziele:

Arbeitsaufwand: ca. 40 Stunden

V Gehirn und Zentrales Nervensystem: Struktur, Informationstransfer, Reizverarbeitung, Neurophysiologie und Therapie

24139, WS 22/23, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt

Die Lehrveranstaltung vermittelt einen Überblick über die Neuromedizin und bewirkt ein grundsätzliches Verständnis für die Sinnes- und Neurophysiologie, was eine wichtige Schnittstelle zu den innovativen Forschungsgebieten der Neuroprothetik (optische, akustische Prothesen) darstellt. Zudem besteht hier ebenso eine enge Anbindung zu den motorischen Systemen in der Robotik. Weitere Verknüpfungen bestehen zu den Bereichen der Bildgebung und Bildverarbeitung, der intraoperativen Unterstützungsanlagen. Es wird ein Praxisbezug hergestellt sowie konkrete Anwendungsbeispiele in der medizinischen Diagnostik und Therapie dargestellt.

Lernziele:

Arbeitsaufwand: 40 Stunden
3.121 Teilleistung: Gießereikunde [T-MACH-105157]

Verantwortung: Dr.-Ing. Christian Wilhelm
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2174575</td>
<td>Gießereikunde</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Wilhelm</td>
</tr>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105157</td>
<td>Gießereikunde</td>
<td></td>
<td></td>
<td>Wilhelm</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung; ca. 25 Minuten

Voraussetzungen
Werkstoffkunde I & II muss bestanden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Gießereikunde
2174575, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt
Form- und Gießverfahren
Erstarrung metall. Schmelzen
Gießbarkeit
Fe-Metalllegierungen
Ne-Metalllegierungen
Form- und Hilfsstoffe
Kernherstellung
Sandregenerierung
Gießgerechtes Konstruieren
Gieß- und Erstarrungssimulation
Arbeitsablauf in der Gießerei

Lernziele:
Die Studenten kennen die einzelnen Form- und Gießtechnischen Verfahren und können sie detailliert beschreiben. Sie kennen die Anwendungsgebiete der einzelnen Form- und Gießtechnischen verfahren hinsichtlich Gussteilen und Metallen, deren Vor- und Nachteile sowie deren Anwendungsgrenzen und können diese detailliert beschreiben.

Die Studenten kennen die im Einsatz befindlichen Gusswerkstoffe und können die Vor- und Nachteile sowie das jeweilige Einsatzgebiet der Gussmaterialien detailliert beschreiben.

Die Studenten sind in der Lage, den Aufbau verlorender Formen, die eingesetzten Form- und Hilfsstoffe, die notwendigen Fertigungsverfahren, deren Einsatzzentrenpunkte sowie formstoffbedingte Gussfehler detailliert zu beschreiben.

Die Studenten kennen die Grundlagen der Herstellung beliebiger Gussteile hinsichtlich o.a. Kriterien und können sie konkret beschreiben.

Voraussetzungen:
Pflicht: Werkstoffkunde I und II

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Gießereikunde beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).
3 TEILLEISTUNGEN

Teilleistung: Gießereikunde [T-MACH-105157]

Organisatorisches
29.4.
13.5. und 20.5.
3.6. und 24.6.
8.7., 15.7., 22.7. und 29.7

Literaturhinweise
Literaturhinweise werden in der Vorlesung gegeben
Reference to literature, documentation and partial lecture notes given in lecture

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2149600 | Globale Logistik | 2 SWS | Vorlesung (V) / 💻 | Furmans |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105159 | Globale Produktion und Logistik - Teil 2: Globale Logistik / Neu: Globale Logistik | Furmans |

Legende: 💻 Online, 💻 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
T-MACH-105159: Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Globale Logistik
2149600, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt

Inhalt:
Rahmenbedingungen des internationalen Handels

• Incoterms
• Zollabfertigung, Dokumente und Ausfuhrkontrolle

Internationaler Transport

• Seefracht, insbesondere Containertransport
• Luftfracht

Modellierung von Logistikketten

• SCOR-Modell
• Wertstromanalyse

Standortplanung in länderübergreifenden Netzwerken

• Anwendung des Warehouse-Location-Problems
• Transportplanung

Bestandsmanagement in globalen Lieferketten

• Lagerhaltungspolitiken
• Einfluss der Lieferzeit und Transportkosten auf das Bestandsmanagement

Medien:
Präsentationen, Tafelanschrieb

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Lernziele:
Die Studierenden können:

• grundlegende Fragestellungen der Planung und des Betriebs von globalen Lieferketten einordnen und mit geeigneten Verfahren Planungen durchführen,
• Rahmenbedingungen und Besonderheiten von globaler Handel und Transport beschreiben und Gestaltungsmerkmale von Logistikketten in Bezug auf ihre Eignung bewerten.

Prüfung:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.
Die Prüfung wird jedes Sommersemester angeboten. Die Nachprüfung im Wintersemester wird nur für Wiederholer angeboten.

Literaturhinweise
Weiterführende Literatur:

• Arnold/Isermann/Kuhn/Tempelmeier. HandbuchLogistik, Springer Verlag, 2002 (Neuausgabe in Arbeit)
• Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
• Domschke/Drexl. Logistik, Standorte, Oldenbourg Verlag, 1996
• Gudehus. Logistik, Springer Verlag, 2007
• Neumann-Morlock. Operations-Research, Hanser-Verlag, 1993
• Tempelmeier. Bestandsmanagement in SupplyChains, Books on Demand 2006
3.123 Teilleistung: Grundlagen der Energietechnik [T-MACH-105220]

Verantwortung: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von:
M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik
M-MACH-104878 - Spezialisierung im Maschinenbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2130927</th>
<th>Grundlagen der Energietechnik</th>
<th>3 SWS</th>
<th>Vorlesung (V) / 🍪</th>
<th>Cheng, Badea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>3190923</td>
<td>Fundamentals of Energy Technology</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🍪</td>
<td>Badea</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105220</th>
<th>Grundlagen der Energietechnik</th>
<th>Cheng, Badea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105220 Fundamentals of Energy Technology</td>
<td>Grundlagen der Energietechnik</td>
<td>Badea</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105220</td>
<td>Grundlagen der Energietechnik</td>
<td>Badea, Cheng</td>
</tr>
</tbody>
</table>

Legende: 🍬 Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 90 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Energietechnik

2130927, SS 2022, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Das Ziel des Kurses ist es, die Studierenden mit dem neuesten Stand der Technik in den anspruchsvollen Bereichen der Energiewirtschaft und dem permanenten Wettbewerb zwischen wirtschaftlicher Rentabilität und langfristiger Nachhaltigkeit vorzubereiten. Die Studierenden erwerben grundlegende Kenntnisse über die für die Energiebranche relevante Thermodynamik und umfassende Kenntnisse über die Energiebranche: Nachfrage, Energiearten, Energiemix, Anlagen zur Energierzeugung (konventionelle, nukleare und erneuerbare), Transport und Energiespeicherung, Umweltauswirkungen und künftige Tendenzen. Die Studierenden sind in der Lage Methoden der Wirtschaftlichkeitsoptimierung für die Energiebranche kreativ, praxisorientiert - im dazugehörigen Tutorium gezielt vertieft anzuwenden. Die Studierenden sind für die Weiterbildung in energietechnischen Bereichen und für die (auch forschungsbezogene) berufliche Tätigkeit im Energiesektor qualifiziert.

Die Vorlesung umfasst folgende Themengebiete:

- Energiebedarf und Energiesituation
- Energietypen und Energiemix
- Grundlagen. Thermodynamik relevant für den Energiesektor
- Konventionelle Fossil befeuerte Kraftwerke, inkl. GuD
- Kraft-Wärme-Kopplung
- Kernenergie
- Regenerative Energien: Wasserkraft, Windenergie, Solarenergie, andere Energiesysteme
- Energiebedarfsstrukturen. Grundlagen der Kostenrechnung / Optimierung
- Energiespeicher
- Transport von Energie
- Energierzeugung und Umwelt. Zukunft des Energiesektors
Inhalt

Die Vorlesung umfasst folgende Themengebiete:
- Energieformen
 - Thermodynamik relevant für den Energiesektor
 - Energiequellen: fossile Brennstoffe, Kernenergie, regenerative Energien
- Energiebedarf, -versorgung, -reserven; Energiebedarfsstrukturen
- Energieerzeugung und Umwelt
- Energiewandlung
- Prinzip thermisch/elektrischer Kraftwerke
- Transport von Energie
- Energiespeicher
- Systemen zur Nutzung regenerativer Energiequellen
- Grundlagen der Kostenrechnung / Optimierung
- Zukunft des Energiesektors
Teilleistung: Grundlagen der Fahrzeugtechnik I [T-MACH-100092]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
M-MACH-104849 - Schwerpunkt Fahrzeugtechnik
M-MACH-104878 - Spezialisierung im Maschinenbau

Teilleistungsart
Prüfungsleistung
schriftlich

Leistungspunkte
8

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Dauer
1 Sem.

Sprache

Version
3

Lehrveranstaltungen
WS 22/23 2113805 Grundlagen der Fahrzeugtechnik I 4 SWS Vorlesung (V) / 🗣 Gauterin, Unrau
WS 22/23 2113809 Automotive Engineering I 4 SWS Vorlesung (V) / 🗣 Gauterin, Gießler

Prüfungsveranstaltungen
SS 2022 76-T-MACH-100092 Grundlagen der Fahrzeugtechnik I Gauterin, Unrau
WS 22/23 76-T-MACH-100092 Grundlagen der Fahrzeugtechnik I Unrau, Gauterin

Erfolgskontrolle(n)
schriftlich

Dauer: 120 Minuten

Hilfsmittel: keine

Voraussetzungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik I
2113805, WS 22/23, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanische Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differentiale

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsrädern sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches
Kann nicht mit der Veranstaltung [2113809] kombiniert werden.
Can not be combined with lecture [2113809].
Literaturhinweise

V Automotive Engineering I
2113809, WS 22/23, 4 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanisches Schaltgetriebe, Strömungsgetriebe)
5. Leistungübertragung und -verteilung: Wellen, Wellengelenke, Differentiale

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsrädern sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches
Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.

Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literaturhinweise
3.125 Teilleistung: Grundlagen der Fahrzeugtechnik II [T-MACH-102117]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik
M-MACH-104878 - Spezialisierung im Maschinenbau

Lehrveranstaltungen

| SS 2022 | 2114835 | Grundlagen der Fahrzeugtechnik II | 2 SWS | Vorlesung (V) / 🗣 | Unrau |
| SS 2022 | 2114855 | Automotive Engineering II | 2 SWS | Vorlesung (V) / 🧩 | Gießler |

Prüfungsveranstaltungen

SS 2022	76-T-MACH-102117	Grundlagen der Fahrzeugtechnik II		Unrau, Gauterin
WS 22/23	76-T-MACH-102117	Grundlagen der Fahrzeugtechnik II		Unrau, Gauterin
WS 22/23	76T-MACH-102117-2	Automotive Engineering II		Gauterin, Unrau

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftlich

Dauer: 90 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik II

2114835, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele:

Organisatorisches

Kann nicht mit der Veranstaltung [2114855] kombiniert werden.
Can not be combined with lecture [2114855]
Automotive Engineering II
2114855, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele:

Literaturhinweise

Elective literature:
3.126 Teilleistung: Grundlagen der globalen Logistik [T-MACH-105379]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>3118095</td>
<td>Grundlagen der globalen Logistik</td>
<td>2 SWS</td>
<td>Block-Vorlesung (BV) / Online</td>
<td>Furmans, Kivelä, Jacobi</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsbezeichnung</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105379</td>
<td>Global Logistics</td>
<td>Furmans, Jacobi</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7600002</td>
<td>Global Logistics</td>
<td>Furmans, Jacobi, Oellerich</td>
</tr>
</tbody>
</table>

Legende: 📑 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 20 Min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der globalen Logistik

- 3118095, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
- Block-Vorlesung (BV)
- Präsenz/Online gemischt
Inhalt

Fördersysteme

• Grundelemente von Förderanlagen
• Wesentliche Kennzahlen
• Verzweigungselemente
• kontinuierlich/teilkontinuierlich
• deterministisch/stochastischer Richtungswechsel
• Zusammenführung
• kontinuierlich/teilkontinuierlich
• Vorfahrtsregeln

Warteschlangen-Theorie und Produktionslogistik

• Grundlegende Bediensysteme
• Verteilungsfunktionen und Umgang mit diesen
• Modell M|M|1 und M|G|1 Modelle

Anwendung auf Produktionslogistik Distributionszentren und Kommissionierung

• Standortwahl-Probleme
• Distributionszentren
• Bestandsmanagement
• Auftragszusammenstellung und Kommissionierung

Tourenplanung und Arten von Tourenplanungsproblemen

• Lineare (optimierungs-)Modelle und Graphentheorie
• Heuristiken
• Unterstützende Technologien

Optimierung in logistischen Netzwerken

• Ziele und Nebenbedingungen
• Kooperation
• Supply Chain Management
• Umsetzung und Anwendung

Organisatorisches

Attendance during lecture is required. Admission to the exam is only possible when attending the lecture.

Literaturhinweise

Arnold, Dieter; Furmans, Kai : Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg
3.127 Teilleistung: Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie [T-MACH-102111]

Verantwortung: Dr. Günter Schell
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Prüfung - mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2193010</th>
<th>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🛌 Schell</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-102111</th>
<th>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</th>
<th>Schell</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🛌 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 20-30 min. mündlichen Prüfung zu einem vereinbarten Termin. Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie
2193010, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise

- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
3.128 Teilleistung: Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren [T-MACH-105044]

Verantwortung: Prof. Dr. Olaf Deutschmann
Prof. Dr. Jan-Dierk Grunwaldt
Dr.-Ing. Heiko Kubach
Hon.-Prof. Dr. Egbert Lox

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2022 2134138 Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren 2 SWS Vorlesung (V) / ው Lox, Grunwaldt, Deutschmann

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105044 Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren Lox
WS 22/23 76-T-MACH-105044 Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren Lox

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Organisatorisches
Blockvorlesung, Termin und Ort werden auf der Homepage des IFKM und ITCP bekannt gegeben.

Literaturhinweise
Skript, erhältlich in der Vorlesung
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Medizin für Ingenieure

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Inhalt:

- Einführung: Definition von Krankheit und Gesundheit, Geschichte der Medizin und Paradigmenwechsel hin zu "Evidenzbasierte Medizin" und "Personalisierte Medizin".

Lernziele:

Literaturhinweise:

- Adolf Faller, Michael Schünke: Der Körper des Menschen. Thieme Verlag.
3.130 Teilleistung: Grundlagen der Mess- und Regelungstechnik [T-MACH-104745]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- **WS 22/23** 2137301 Grundlagen der Mess- und Regelungstechnik
 3 SWS Vorlesung (V) / 🗣️ Stiller
- **WS 22/23** 2137302 Übungen zu Grundlagen der Mess- und Regelungstechnik
 1 SWS Übung (Ü) / 🗣️ Stiller, Fischer, Müßigmann
- **WS 22/23** 3137020 Measurement and Control Systems
 3 SWS Vorlesung (V) / 🗣️ Stiller
- **WS 22/23** 3137021 Measurement and Control Systems (Tutorial)
 1 SWS Übung (Ü) / 🗣️ Stiller, Fischer, Müßigmann

Prüfungsveranstaltungen

- **SS 2022** 76-T-MACH-104745 Grundlagen der Mess- und Regelungstechnik
 Stiller

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung
2,5 Stunden

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mess- und Regelungstechnik

2137301, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

Lehrinhalt

1. Dynamische Systeme
2. Eigenschaften wichtiger Systeme und Modellbildung
3. Übertragungsverhalten und Stabilität
4. Synthese von Reglern
5. Grundbegriffe der Messtechnik
6. Estimation
7. Messaufnehmer
8. Einführung in digitale Messverfahren

Lernziele:

Voraussetzungen:

Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace-Transformation

Arbeitsaufwand:

210 Stunden

Literaturhinweise

Buch zur Vorlesung:
C. Stillier: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

• Measurement and Control Systems:
R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:
J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
O. Föllinger: Regelungstechnik, Hüthig-Verlag
W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:
W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
Literaturhinweise

• Measurement and Control Systems:

 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:

 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Meßtechnische Bücher:

 E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
3.131 Teilleistung: Grundlagen der Mikrosystemtechnik I [T-MACH-105182]

Verantwortung: Dr. Vlad Badilita
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4

Notenskala Drittelnoten

Turnus Jedes Wintersemester

Version 1

Lehrveranstaltungen

| WS 22/23 | 2141861 | Grundlagen der Mikrosystemtechnik I | 2 SWS | Vorlesung (V) / 📲 | Korvink, Badilita |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105182 | Grundlagen der Mikrosystemtechnik I | Korvink, Badilita |
| WS 22/23 | 76-T-MACH-105182 | Grundlagen der Mikrosystemtechnik I | Korvink, Badilita |

Legende: 🖥 Online, 📲 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (ca. 60 Min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mikrosystemtechnik I
2141861, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise
Mikrosystemtechnik für Ingenieure, W. Menz und J. Mohr, VCH Verlagsgesellschaft, Weinheim 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
3.132 Teilleistung: Grundlagen der Mikrosystemtechnik II [T-MACH-105183]

Verantwortung: Dr. Mazin Jouda
 Prof. Dr. Jan Gerrit Korvink

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion
 M-MACH-104878 - Spezialisierung im Maschinenbau
 M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Register</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2142874</td>
<td>Grundlagen der Mikrosystemtechnik II</td>
<td>2 SWS</td>
<td>Eng</td>
<td>Vorlesung (V) / Kursaal</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105183</td>
<td>Grundlagen der Mikrosystemtechnik II</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105183</td>
<td>Grundlagen der Mikrosystemtechnik II</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (60 Min.).

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mikrosystemtechnik II

2142874, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
- Einführung in Nano- und Mikrotechnologien
- Lithographie
- Das LIGA-Verfahren
- Mechanische Mikrofertigung
- Strukturierung mit Lasern
- Aufbau- und Verbindungstechnik
- Mikrosysteme

Organisatorisches
Topic: Grundlagen der Mikrosystemtechnik II (MST II) SS 21
Time: Thursdays 14:00 - 15:30
10.91 Redtenbacher-Hörsaal

Literaturhinweise
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
3.133 Teilleistung: Grundlagen der nichtlinearen Kontinuumsmechanik [T-MACH-105324]

Verantwortung: apl. Prof. Marc Kamlah
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| Wintersemester | Vorlesungsleistung | Vorlesung (V) / | | | |
|----------------|-------------------|----------------|---|---|
| WS 22/23 | Grundlagen der nichtlinearen Kontinuumsmechanik | 2 SWS | Vorlesung (V) / | Kamlah |

Prüfungsveranstaltungen

| Sommersemester | Vorlesungsleistung | Vorlesung (V) / | | | |
|----------------|-------------------|----------------|---|---|
| SS 2022 | Grundlagen der nichtlinearen Kontinuumsmechanik | | | Kamlah |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der nichtlinearen Kontinuumsmechanik
2181720, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Voraussetzungen: Technische Mechanik - Höhere Mathematik
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten

Literaturhinweise
Vorlesungsskript
3.134 Teilleistung: Grundlagen der Reaktorsicherheit für den Betrieb und Rückbau von Kernkraftwerken [T-MACH-105530]

Verantwortung: Dr. Victor Hugo Sanchez-Espinoza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von:
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung ca. 30 Minuten

Voraussetzungen
keine
3.135 Teilleistung: Grundlagen der Technischen Logistik I [T-MACH-109919]

Verantwortung: Dr.-Ing. Martin Mittwollen
Dr.-Ing. Jan Oellerich

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2117095</td>
<td>Grundlagen der technischen Logistik I</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Prüfung</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-109919-mPr</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

keine

Empfehlungen

Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Logistik I

2117095, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt

- Wirksmodell fördertechnischer Maschinen
- Elemente zur Orts- und Lageveränderung
- fördertechnische Prozesse
- Identifikationssysteme
- Antriebe
- Betrieb fördertechnischer Maschinen
- Elemente der Intralogistik
- Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten während der Übungen

Die Studierenden können:

- Prozesse und Maschinen der Technischen Logistik beschreiben,
- Den grundsätzlichen Aufbau und die Wirkungsweise fördertechnischer Maschinen mit Hilfe mathematischer Modelle modellieren,
- Den Bezug zu industriell eingesetzten Maschinen herstellen
- Mit Hilfe der erworbenen Kenntnisse reale Maschinen modellieren und rechnerisch dimensionieren.
Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder mündlichen Prüfung (nach §4 (2), 1 bzw. 2SPO).
The assessment consists of a written or oral exam according to Section 4 (2), 1 or 2 of the examination regulation.
Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.
Basics knowledge of technical mechanics is preconditioned.
Ergänzungsblätter, Präsentationen, Tafel.
Supplementary sheets, presentations, blackboard.
Präsenz: 48 Std
Nacharbeit: 132 Std
presence: 48h
rework: 132h

Literaturhinweise
Empfehlungen in der Vorlesung / Recommendations during lessons
3.136 Teilleistung: Grundlagen der Technischen Logistik II [T-MACH-109920]

Verantwortung: Dr.-Ing. Maximilian Hochstein
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 6

Notenskala
- Drittelnoten

Turnus
- Jedes Wintersemester

Version
- 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurs-ID</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Anzahl SWS</th>
<th>Sprache</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2117098</td>
<td>Grundlagen der technischen Logistik II</td>
<td>3</td>
<td>Deutsch</td>
<td>Oellerich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurs-ID</th>
<th>Vorlesung / Übung</th>
<th>Anzahl SWS</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>3</td>
<td>Oellerich, Hochstein, Mittwollen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-109920-mPr</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>3</td>
<td>Mittwollen, Oellerich, Hochstein</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>3</td>
<td>Hochstein, Mittwollen, Oellerich</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☢️ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

keine

Empfehlungen

Es werden Kenntnis der Grundlagen der Technischen Mechanik und die Inhalte der Teilleistung "Grundlagen der Technischen Logistik I" (T-MACH-109919) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Logistik II

<table>
<thead>
<tr>
<th>Kurs-ID</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Anzahl SWS</th>
<th>Sprache</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117098</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>3</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Maschinenbau für Erasmus-Studierende, Stand 29.09.2022
Modulhandbuch gültig ab Wintersemester 2022/23
Inhalt
Lehrinhalte:

- Prozesse und Prozessnetzwerke der Intralogistik
- Materialfluss und Materialflusselement
- Aufbau von Fördermitteln
- Risikobeurteilung und Sicherheitstechnik
- Steuerung von Intralogistiksystemen

Lernziele: Die Studierenden können

- Prozesse und Prozessnetzwerke in der Intralogistik bescheiden und auslegen
- Den Materialfluss zwischen den Prozessen abbilden und analysieren
- Materialflusselemente beschreiben und gezielt einsetzen
- Materialflusselemente auf deren Sicherheit überprüfen

Beschreibung:
Diese Vorlesung baut auf GTL I auf und hat zum Ziel weitere Einblick in die drei großen Themengebiete der technischen Logistik zu ermöglichen:

- Prozesse in Intralogistiksystemen
- Technik der technischen Logistik
- Organisation und Steuerung von Intralogistikprozessen

Am Beispiel eines Intralogistiksystems werden über den Vorlesungszeitraum hinweg die einzelnen Themengebiete vorgestellt, so dass die Studierenden am Ende in der Lage sind, ein solches Gesamtsystem zu verstehen und im Detail zu beschreiben.

Voraussetzungen:

- GTL I muss zuvor gehört worden sein.

Arbeitsaufwand:

- Präsenz: 36 Std.
- Nacharbeit: 114 Std.
3.137 Teilleistung: Grundlagen Finite Elemente [T-BGU-100047]

Verantwortung: Prof. Dr.-Ing. Peter Betsch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-MACH-105405 - Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen Finite Elemente</td>
<td>Vorlesung (V) / 🗣</td>
<td>5</td>
<td>Drittnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

| WS 22/23 | 6215901 | Grundlagen Finite Elemente | 2 SWS | Vorlesung (V) / 🗣 | Betsch |
| WS 22/23 | 6215902 | Übungen zu Grundlagen Finite Elemente | 2 SWS | Übung (Ü) / 🗣 | Kinon |

Prüfungsveranstaltungen

| SS 2022 | 8243100047 | Grundlagen Finite Elemente | | | Betsch |

Legende: 🖥 Online, 🕰 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
Teilleistung: Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I [T-MACH-102116]

Verantwortung: Dipl.-Ing. Horst Dietmar Bardehle

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>2 SWS</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2113814</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>1 SWS</td>
<td>Deutsch</td>
<td>Vorlesung (V) / Präsenz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102116</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>Mündliche Gruppenprüfung</td>
<td>Bardehle, Unrau</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-102116</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>Mündliche Gruppenprüfung</td>
<td>Unrau, Bardehle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Gruppenprüfung

Dauer: 30 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I

2113814, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Historie und Design
2. Aerodynamik
3. Konstruktionstechnik (CAD/CAM, FEM)
4. Herstellungsverfahren von Aufbauteilen
5. Verbindungstechnik
6. Rohbau / Rohbaufertigung, Karosserieoberflächen

Lernziele:

Organisatorisches

CO, Geb. 70.04, Raum 219.

Termine und nähere Informationen: siehe Institutshomepage

Dates and further information will be published on the homepage of the institute

Literaturhinweise

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
3.139 Teilleistung: Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II [T-MACH-102119]

Verantwortung: Dipl.-Ing. Horst Dietmar Bardehle
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 2
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2114840 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II 1 SWS Vorlesung (V) / Bardehle

Prüfungsveranstaltungen
SS 2022 76-T-MACH-102119 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II Bardehle, Gauterin
WS 22/23 76-T-MACH-102119 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II Bardehle

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Gruppenprüfung
Dauer: 30 Minuten
Hilfsmittel: keine
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II
2114840, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
1. Karosserieeigenschaften / Prüfverfahren
2. Äußere Karosseriebauteile
3. Innenraum-Anbauteile
4. Fahrzeug-Klimatisierung
5. Elektrische Anlagen, Elektronik
6. Aufpralluntersuchungen
7. Projektmanagement-Aspekte und Ausblick

Lernziele:

Organisatorisches
Voraussichtliche Termine, nähere Informationen und evtl. Änderungen: siehe Institutshomepage. Präsenzveranstaltung unter Vorbehalt der Pandemie-Entwicklung
Scheduled dates, further Information and possible changes of date: see homepage of the institute.
Literaturhinweise
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
3.140 Teilleistung: Grundsätze der Nutzfahrzeugentwicklung [T-MACH-111389]

Verantwortung: Christof Weber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>siehe Anmerkungen</td>
<td>2 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2114844</th>
<th>Grundsätze der Nutzfahrzeugentwicklung II</th>
<th>1 SWS</th>
<th>Vorlesung (V) / 🖥</th>
<th>Weber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2113812</td>
<td>Grundsätze der Nutzfahrzeugentwicklung I</td>
<td>1 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Weber</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76T-MACH-111389</th>
<th>Grundsätze der Nutzfahrzeugentwicklung</th>
<th>Weber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>76T-MACH-111389</td>
<td>Grundsätze der Nutzfahrzeugentwicklung</td>
<td>Weber</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Gruppenprüfung
Dauer: ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Anmerkungen
Grundsätze der Nutzfahrzeugentwicklung I, WS
Grundsätze der Nutzfahrzeugentwicklung II, SoSe

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der Nutzfahrzeugentwicklung II
2114844, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Nfz-Getriebe
2. Triebstrangzwischenelemente
3. Achssysteme
4. Vorderachsen und Fahrdynamik
5. Rahmen und Achsaufhängung
6. Bremsanlage
7. Systeme
8. Exkursion

Lernziele:
Organisatorisches
Vorlesung findet nochmals als digitale Veranstaltung über ILIAS statt. Genaue Termine, nähere Informationen und eventuelle Terminänderungen:

siehe Institutshomepage.

Literaturhinweise
1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803

Grundsätze der Nutzfahrzeugentwicklung
2113812, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Einführung, Definitionen, Historik
2. Entwicklungswerkzeuge
3. Gesamtfahrzeug
4. Fahrerhaus, Rohbau
5. Fahrerhaus, Innenausbau
6. Alternative Antriebe
7. Antriebsstrang
8. Antriebsquelle Dieselmotor
9. Ladeluftgekühlte Dieselmotoren

Lernziele:
Die Studierenden kennen den Prozess der Nutzfahrzeugentwicklung von der Idee über die Konzeption bis hin zur Konstruktion. Sie wissen, dass bei der Umsetzung von Kundenwünschen neben der technischen Realisierbarkeit und der Funktionalität auch der Aspekt der Wirtschaftlichkeit beachtet werden muss.
Sie haben gute Kenntnisse in Bezug auf die Entwicklung von Einzelkomponenten und haben einen Überblick über die unterschiedlichen Fahrerhauskonzepte, einschließlich Innenraum und Innenraumgestaltung. Damit sind sie in der Lage, Nutzfahrzeugkonzepte zu analysieren und zu beurteilen und bei der Nutzfahrzeugentwicklung kompetent mitzuarbeiten.

Organisatorisches
CO, Geb. 70.04, Raum 219. Termine und Nähere Informationen: siehe Institutshomepage
Dates and further information will be published on the homepage of the institute.

Literaturhinweise
3.141 Teilleistung: Grundsätze der PKW-Entwicklung I [T-MACH-105162]

Verantwortung: Prof.Dipl.-Ing. Rolf Frech
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
2
Notenskala
Drittelnoten
Turnus
Jedes Wintersemester
Version
1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstyp</th>
<th>ECTS</th>
<th>Veranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2113810</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Frech</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2113851</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Frech</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstyp</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105162</td>
<td>Prüfung</td>
<td>Frech, Unrau</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105162</td>
<td>Prüfung</td>
<td>Frech, Unrau</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftlich
Dauer: 90 Minuten
Hilfmittel: keine
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der PKW-Entwicklung I
2113810, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Prozess der PKW-Entwicklung
2. Konzeptionelle Auslegung und Gestaltung eines PKW
3. Gesetze und Vorschriften – Nationale und internationale Randbedingungen
4. Aerodynamische Auslegung und Gestaltung eines PKW I
5. Aerodynamische Auslegung und Gestaltung eines PKW II
6. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben I
7. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben II

Lernziele:

Organisatorisches
Campus Ost, geb. 70.04., Raum 219
Termine und nähere Informationen finden Sie auf der Institutshomepage.
Kann nicht mit Lehrveranstaltung 2113851 kombiniert werden.

Date and further information will be published on the homepage of the institute.
Cannot be combined with lecture 2113851.
Literaturhinweise
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons

Principles of Whole Vehicle Engineering I
2113851, WS 22/23, 1 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
1. Prozess der PKW-Entwicklung
2. Konzeptionelle Auslegung und Gestaltung eines PKW
3. Gesetze und Vorschriften – Nationale und internationale Randbedingungen
4. Aerodynamische Auslegung und Gestaltung eines PKW I
5. Aerodynamische Auslegung und Gestaltung eines PKW II
6. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben I
7. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben II

Lernziele:

Organisatorisches
CO, Geb.70.04, Raum 219. Termine und nähere Informationen finden Sie auf der Institutshomepage.

Kann nicht mit Lehrveranstaltung 2113810 kombiniert werden
Cannot be combined with lecture 2113810.

Literaturhinweise
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons
3.142 Teilleistung: Grundsätze der PKW-Entwicklung II [T-MACH-105163]

Verantwortung: Prof.Dipl.-Ing. Rolf Frech
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen
SS 2022 2114842 Grundsätze der PKW-Entwicklung II 1 SWS Block (B) / 📖 Frech
SS 2022 2114860 Principles of Whole Vehicle Engineering II 1 SWS Block-Vorlesung (BV) / 📖 Frech

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105163 Grundsätze der PKW-Entwicklung II Frech, Unrau
WS 22/23 76-T-MACHINE-105163 Grundsätze der PKW-Entwicklung II Frech, Unrau

Legende: 🖥 Online, 🟩 Präsenz/Online gemischt, 📖 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftlich

Dauer: 90 Minuten

Hilfsmittel: keine

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der PKW-Entwicklung II
2114842, SS 2022, 1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
1. Anwendungsorientierte Werkstoff- und Fertigungstechnik I
2. Anwendungsorientierte Werkstoff- und Fertigungstechnik II
3. Gesamtfahrzeugakustik in der PKW-Entwicklung
4. Antriebsakustik in der PKW-Entwicklung
5. Gesamtfahrzeugerprobung
6. Gesamtfahrzeugeigenschaften

Lernziele:

Organisatorisches
Vorlesung findet als Blockvorlesung am Campus Ost, Geb. 70.04, Raum 219 statt. Termine werden über die Homepage bekannt gegeben.

Kann nicht mit der Veranstaltung [2114860] kombiniert werden.
Cannot be combined with lecture [2114860].
Literaturhinweise
Skript zur Vorlesung ist über ILIAS verfügbar.

Principles of Whole Vehicle Engineering II
2114860, SS 2022, 1 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]

Inhalt
1. Anwendungsorientierte Werkstoff- und Fertigungstechnik I
2. Anwendungsorientierte Werkstoff- und Fertigungstechnik II
3. Gesamtfahrzeugakustik in der PKW-Entwicklung
4. Antriebsakustik in der PKW-Entwicklung
5. Gesamtfahrzeugerprobung
6. Gesamtfahrzeugeigenschaften

Lernziele:

Organisatorisches
Kann nicht mit der Veranstaltung [2114842] kombiniert werden.

Cannot be combined with lecture [2114842].

Veranstaltung findet am Campus Ost, Geb. 70.04, Raum 219 statt. Genaue Termine entnehmen Sie bitte der Institushomepage.

Scheduled dates: see homepage of the institute.

Literaturhinweise
Das Skript zur Vorlesung ist über ILIAS verfügbar.
3.143 Teilleistung: Hands-on BioMEMS [T-MACH-106746]

Verantwortung: Prof. Dr. Andreas Guber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2143874</th>
<th>Hands-on BioMEMS</th>
<th>2 SWS</th>
<th>Vorlesung (V) / X</th>
<th>Guber</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündlicher Vortrag mit Diskussion (30 Min.)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Hands-on BioMEMS</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2143874, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Abgesagt</td>
</tr>
</tbody>
</table>

Inhalt
14-tägig, Dienstag 13 - 16 Uhr, KIT-Campus Nord, Bau 307, Raum 322; weitere Informationen s. IMT-Homepage
3.144 Teilleistung: High Performance Computing [T-MACH-105398]

Verantwortung: Prof. Dr. Britta Nestler
Dr.-Ing. Michael Selzer

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2183721</th>
<th>High Performance Computing</th>
<th>2 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🖥</th>
<th>Nestler, Selzer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 22/23 | 76-T-MACH-105398 | High Performance Computing | Nestler, August, Selzer |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Am Ende des Semesters findet eine schriftliche Klausur (90 min) statt.

Voraussetzungen

keine

Empfehlungen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde
regelmäßige Teilnahme an den ergänzend angebotenen Computer-Übungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

High Performance Computing

<table>
<thead>
<tr>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online</td>
</tr>
</tbody>
</table>

2183721, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt
Die Inhalte der Vorlesung Hochleistungsrechnen sind:

- Architektur paralleler Plattformen
- Parallele Programmiermodelle
- Laufzeitanalyse paralleler Programme
- Parallelisierungskonzepte
- MPI und OpenMP
- Monte-Carlo Methode
- 1D & 2D Wärmeleitung
- Raycasting
- N-Körper Problem
- einfache Phasenfeldmodelle

Der/die Studierende

- kann die Grundlagen und Strategien der parallelen Programmierung erläutern.
- kann Hochleistungsrechner durch den Einsatz entsprechender Parallelisierungstechniken effizient für die Durchführung von Simulationen nutzen.
- besitzt einen Überblick über typische Anwendungen und ihre speziellen Anforderungen an die Parallelisierung.
- kennt Konzepte zur Parallelisierung und kann diese anwenden, um Hochleistungsrechner mit Mehrkernprozessoren für den Einsatz in Wissenschaft und Industrie effizient zu nutzen.
- besitzt Erfahrung in der Umsetzung paralleler Algorithmen durch ein begleitendes Rechnerpraktikum.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden

Es werden regelmäßig Übungen am Computer durchgeführt.

Am Ende des Semesters findet eine Klausur statt.

Organisatorisches
Termine für die Vorlesung HPC im WS 2021/2022 werden noch bekannt gegeben.

Literaturhinweise

1. Vorlesungsskript; Übungsaufgabenblätter; Programmgerüste
2. Parallele Programmierung, Thomas Rauber, Gudula Rügner; Springer 2007
3.145 Teilleistung: High Temperature Materials [T-MACH-105459]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105459 | High Temperature Materials | Heilmaier |
| SS 2022 | 76-T-MACH-105459-W | High Temperature Materials | Heilmaier |

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine
3.146 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybride und elektrische Fahrzeuge</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Doppelbauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übungen zu 2306321 Hybride und elektrische Fahrzeuge</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Doppelbauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- WS 22/23 2306321 Hybride und elektrische Fahrzeuge 2 SWS Vorlesung (V) / ⬆ Doppelbauer
- WS 22/23 2306323 Übungen zu 2306321 Hybride und elektrische Fahrzeuge 1 SWS Übung (Ü) / ⬆ Doppelbauer

Prüfungsveranstaltungen

- SS 2022 7306321 Hybride und elektrische Fahrzeuge Doppelbauer
- WS 22/23 7300006 Hybride und elektrische Fahrzeuge Doppelbauer

Legende: 🖥 Online, ⬆ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Empfehlungen
Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").
3.147 Teilleistung: Hydraulische Strömungsmaschinen [T-MACH-105326]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr. Balazs Pritz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik</td>
</tr>
</tbody>
</table>

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 8

Notenskala
- Drittelnoten

Turnus
- Jedes Sommersemester

Version
- 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

Legende:
- 🖥 Online,
- 🧩 Präsenz/Online gemischt,
- 🗣️ Präsenz,
- ✗ Abgesagt

Erfolgskontrolle(n)
- mündliche Prüfung, 40 Min.

Voraussetzungen
- Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Hydraulische Strömungsmaschinen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2157432, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
Fachgebiet: Strömungsmaschinen

Lehrinhalt:
1. Einleitung
2. Grundlagen
3. Systemanalyse
4. Elementare Theorie
5. Betriebsverhalten, Kennlinien
6. Ähnlichkeit, Kennzahlen
7. Regelung
8. Windturbinen, Propeller
9. Kavitation

Voraussetzungen:
keine

Empfehlungen:
2154512 Strömungslehre I
2153512 Strömungslehre II

Lernziele:
Die Studierenden erwerben Fähigkeiten die Grundlagen der Hydraulischen Strömungsmaschinen (Pumpen, Ventilatoren, Wasserturbinen, Windturbinen) zu benennen und auf Problemstellungen in verschiedenen Bereichen des Ingenieurwesens, insbesondere des Maschinenbaus anzuwenden.

Die Studenten sind damit in der Lage die Wirkungsweise hydraulischer Strömungsmaschinen und deren Wechselwirkung mit typischen Systemen in denen sie eingesetzt werden zu verstehen und zu bewerten.

Arbeitsaufwand:
Präsenzzzeit: 56 Stunden
Selbststudium: 150 Stunden
Prüfungsvorbereitung: 40 Stunden

Nachweis:
mündlich oder schriftlich (siehe Ankündigung)

Hilfsmittel: keine

Literaturhinweise
1. Fister, W.: Fluidenergiemaschinen I & II. Springer-Verlag
2. Bohl, W.: Strömungsmaschinen I & II. Vogel-Verlag
6. Kreiselpumpenlexikon. KSB Aktiengesellschaft
3.148 Teilleistung: Industrieaerodynamik [T-MACH-105375]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Stefan Kröber

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Industrieaerodynamik
2153425, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
In dieser Vorlesung werden Strömungen behandelt, die in der Fahrzeugtechnik von Bedeutung sind. Besonderen Raum wird die Optimierung der Fahrzeugumströmung sowie die Vorstellung moderner industrieller Windkanaltechnik einnehmen. Der zweite große Themenblock umfasst sowohl aeroakustische Grundlagen als auch praktische Beispiele der Aeroakustik insbesondere aus dem Bereich der Fahrzeugtechnik.

Die Felder werden in ihrer Bedeutung und Phänomenologie erläutert, die theoretischen Grundlagen dargelegt und die Werkzeuge zur Simulation der Strömungen sowie deren Schallfeldern vorgestellt. Anhand dieser Beispiele werden Messverfahren und die industrierelevanten Methoden zur Erfassung und Beschreibung von Kräften, Strömungsstrukturen, Turbulenz sowie Schall im Überblick aufbereitet.

Eine Exkursion zu den Forschungs- und Entwicklungseinrichtungen der Mercedes-Benz AG ist geplant.

- Einführung
- Aerodynamik stumpfer Körper
- Industriell eingesetzte Strömungsmesstechnik und moderne Windkanalmesstechnik
- Überblick Strömungssimulation in der Automobilindustrie
- Fahrzeugumströmung
- Komfort beim offenen Fahren (Roadster & Cabriolet)
- Schmutzfreihaltung
- Aeroakustik: Grundlagen und praktische Beispiele insbesondere aus dem Bereich der Fahrzeugtechnik inklusive Messtechnik & numerische Methoden

Die Studierenden können die unterschiedlichen aerodynamischen und aeroakustischen Problemstellungen in der Fahrzeugtechnik beschreiben. Sie sind in der Lage, sowohl die Fahrzeugumströmung als auch die Aeroakustik von Fahrzeugen zu analysieren.

Organisatorisches
Blockvorlesung - Anmeldung erfolgt über ILIAS, max. Teilnehmerzahl ist 20 Studierende.

Literaturhinweise
Vorlesungsskript
3.149 Teilleistung: Industrielle Fertigungswirtschaft [T-MACH-105388]

Verantwortung: Simone Dürrschnabel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
keine
3.150 Teilleistung: Informationssysteme in Logistik und Supply Chain Management [T-MACH-102128]

Verantwortung:
Dr.-Ing. Christoph Kilger

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-104852 - Schwerpunkt Produktionstechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2118094</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>2</td>
<td>Online</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102128</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>Kilger</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Literaturhinweise
3.151 Teilleistung: Informationsverarbeitung in Sensornetzwerken [T-INFO-101466]

Verantwortung: Prof. Dr.-Ing. Uwe Hanebeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7500011</td>
<td>Informationsverarbeitung in Sensornetzwerken</td>
<td>Hanebeck, Pfaff</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7500030</td>
<td>Informationsverarbeitung in Sensornetzwerken</td>
<td>Pfaff</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 15 Minuten nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
Keine.

Empfehlungen
Kenntnis der Vorlesungen Lokalisierung mobiler Agenten oder Stochastische Informationsverarbeitung sind hilfreich.
3.152 Teilleistung: Innovative nukleare Systeme [T-MACH-105404]

Verantwortung: Prof. Dr.-Ing. Xu Cheng
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen

| SS 2022 | 2130973 | Innovative nukleare Systeme | 2 SWS | Block-Vorlesung (BV) / 🧩 | Cheng |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105404 | Innovative nukleare Systeme | Cheng |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🙋 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Innovative nukleare Systeme
2130973, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Aktueller Stand und Entwicklungstendenz der Kerntechnik
2. Fortgeschrittene Konzepte des wassergekühlten Reaktors
3. Neue Entwicklung des schnellen Reaktors
4. Entwicklungsrichtungen des gasgekühlten Reaktors
5. Transmutationssysteme zur Behandlung nuklearer Abfälle
6. Fusionssysteme

Organisatorisches
Mo (25.07.2022), Di (26.07.2022), Mi (27.07.2022), 09:00 bis 17:00
3.153 Teilleistung: Innovatives Projekt [T-MACH-109185]

Verantwortung: apl. Prof. Dr. Andreas Class
 Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit

Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Studierenden müssen einen Kurzvortrag über ein fiktives Projekt halten, unterstützt durch PowerPoint-Folien, um ihre Ergebnisse zu präsentieren. PowerPoint-Folien 10 bis 15 Seiten.

Voraussetzungen
keine

Empfehlungen
Die Teilnehmer müssen Ihren eigenen Laptop mit Skype installiert mitbringen.
Empfohlene Englischkenntnisse äquivalent zu:

- IELTS Akademischer Test
 Eine Gesamtleistung von mindestens 6,5 (keine Abschnitt unter 5,5)
- University of Cambridge
 Zertifikat: Fortgeschrittenem Englisch, CAE (Klasse A – C)
 Certificate of Proficiency in English, CPE (Klasse A – C)
- TOEFL internetbasierter Test, IBT
 Eine Gesamtpunktzahl von mindestens 92, mit einer Mindestpunktzahl von 22 im schriftlichen Teil

Anmerkungen
Das Thema des Projekts wird von Industriepartner, der Innovationsabteilung des KIT oder INP Grenoble zur Verfügung gestellt. Vertreter von Industriepartner nehmen am Kurzvortrag teil.
3.154 Teilleistung: Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen [T-MACH-105188]

Verantwortung: Karl-Hubert Schlichtenmayer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilnehmergruppe:
Semester: SS 2022, WS 22/23
Sprache: Deutsch

Vorlesung (V) / 🧩 Präsenz/Online gemischt

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2022</th>
<th>WS 22/23</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150601</td>
<td>2 SWS</td>
<td>2 SWS</td>
<td>4</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Integrierte Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>Vorlesung (V) / 🧩 Präsenz/Online gemischt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>SS 2022</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105188</td>
<td>2 SWS</td>
<td>4</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Integrierte Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>Vorlesung (V) / 🧩 Präsenz/Online gemischt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

| Schriftliche Prüfung (60 min) |

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Integrierte Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150601, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>
Inhalt

Die Themen im Einzelnen sind:

- Einführung und gesellschaftliche Trends mit Auswirkungen auf das Sportwagengeschäft
- Automobile Produktionsprozesse – von der Idee bis zum Ende des Lebenszyklus
- Integrierte Entwicklungsstrategie und ganzheitliches Kapazitätsmanagement
- Management von Entwicklungsprojekten (Matrixorganisation, Multiprojektmanagement, Entwicklungscontrolling)
- Zusammenspiel zwischen Entwicklung, Produktion und Einkauf
- Rolle der Produktion aus Entwicklungssicht - Restriktion und Befähiger?
- Global verteilte Produktion und Entwicklung – Herausforderung China
- Methoden zur Identifikation von technologischen Kernkompetenzen

Lernziele:
Die Studierenden …

- können die technologischen und gesellschaftlichen Herausforderungen der Automobilindustrie erörtern.
- sind befähigt Zusammenhänge zwischen Produktentwicklungsprozess und Produktionssystem zu diskutieren.
- sind in der Lage die Herausforderungen globaler Märkte auf Produktion und Entwicklung von exportfähigen Premium-Produkten zu diskutieren.
- sind in der Lage Methoden zur Identifikation von Kernkompetenzen eines Unternehmens zu erläutern.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Inhalt
Die Themen im Einzelnen sind:

- Einführung und gesellschaftliche Trends mit Auswirkungen auf das Sportwagengeschäft
- Automobile Produktionsprozesse – von der Idee bis zum Ende des Lebenszyklus
- Integrierte Entwicklungsstrategie und ganzheitliches Kapazitätsmanagement
- Management von Entwicklungsprojekten (Matrixorganisation, Multiprojektmanagement, Entwicklungscontrolling)
- Zusammenspiel zwischen Entwicklung, Produktion und Einkauf
- Rolle der Produktion aus Entwicklungssicht - Restriktion und Befähiger?
- Global verteilte Produktion und Entwicklung – Herausforderung China
- Methoden zur Identifikation von technologischen Kernkompetenzen

Lernziele:
Die Studierenden …

- können die technologischen und gesellschaftlichen Herausforderungen der Automobilindustrie erörtern.
- sind befähigt Zusammenhänge zwischen Produktentwicklungsprozess und Produktionssystem zu diskutieren.
- sind in der Lage die Herausforderungen globaler Märkte auf Produktion und Entwicklung von exportfähigen Premium-Produkten zu diskutieren.
- sind in der Lage Methoden zur Identifikation von Kernkompetenzen eines Unternehmens zu erläutern.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Die LV wird einmalig im WS 2022/23 als Ersatz für die Absage im SS 2022 angeboten. Im SS 2023 findet die LV wieder regulär statt.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.155 Teilleistung: Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 [T-MACH-108849]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2150660</th>
<th>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</th>
<th>6 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lanza</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-108849</th>
<th>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</th>
<th>Lanza</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-108849-Wdh</td>
<td>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 - Wiederholungsprüfung</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (40 min)

Voraussetzungen
Weder "T-MACH-109054 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" noch "T-MACH-102106 Integrierte Produktionsplanung" dürfen begunben sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Integrierte Produktionsplanung im Zeitalter von Industrie 4.0
2150660, SS 2022, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung / Übung (VÜ) Präsenz/Online gemischt
Inhalt
Im Rahmen dieser ingenieurwissenschaftlichen Veranstaltung wird die Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 vermittelt. Neben einer umfassenden Einführung in Industrie 4.0 werden zu Beginn der Vorlesung folgende Themenfelder adressiert:

- Grundlagen, Geschichte und zeitliche Entwicklung der Produktion
- Integrierte Produktionsplanung und durchgängiges digitales Engineering
- Prinzipien Ganzheitlicher Produktionssysteme und Weiterentwicklung mit Industrie 4.0

Darauf aufbauend werden die Phasen der Integrierten Produktionsplanung in Anlehnung an die VDI-Richtlinie 5200 vermittelt, wobei im Rahmen von Fallstudien auf Besonderheiten der Teilefertigung und Montage eingegangen wird:

- Systematik der Fabrikplanung
- Zielfestlegung
- Datenerhebung und -analyse
- Konzeptplanung (Strukturentwicklung, Strukturdimensionierung und Groblayout)
- Detailplanung (PPS, Ablaufsimulation als Validierungswerkzeug, Planung von Fördertechnik und Lagersysteme zur Verkettung der Produktion und IT-Systeme in der I4.0 Fabrik)
- Realisierungsvorbereitung und -uberwachung
- Hochlauf und -serienbetreuung

Lernziele:
Die Studierenden …

- können grundlegende Fragestellungen der Produktionstechnik erörtern.
- können die grundlegenden Fragestellungen der Produktionstechnik zur Planung von Produktionsprozessen anwenden.
- sind in der Lage die Methoden, Vorgehensweisen und Techniken der Integrierten Produktionsplanung zu analysieren und zu bewerten und können die vorgestellten Inhalte und Herausforderungen und Handlungsfelder in der Praxis.
- können die Methoden der Integrierten Produktionsplanung auf neue Problemstellungen anwenden.
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen.
- können ihr Wissen zielgerichtet für eine effiziente Produktionstechnik einsetzen.
- kennen die Grundzüge der nachhaltigen Produktionsplanung und können zugrundeliegendes Wissen anwenden.

Arbeitsaufwand:
MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden
WING:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches
Vorlesungstermine dienstags 14.00 Uhr und donnerstags 14.00 Uhr, Übungstermine donnerstags 15.45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.156 Teilleistung: Introduction to Neutron Cross Section Theory and Nuclear Data Generation [T-MACH-105466]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2190490 | Introduction to Neutron Cross Section Theory and Nuclear Data Generation | 2 SWS | Vorlesung (V) / ∈ Dagan |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105466 | Introduction to Neutron Cross Section Theory and Nuclear Data Generation | Dagan |

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Introduction to Neutron Cross Section Theory and Nuclear Data Generation

2190490, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, [Im Studierendenportal anzeigen](#)

Vorlesung (V) | Präsenz

Inhalt

Wirkungsquerschnittscharakterisierung
Grundlegende Kenntnisse der Wirkungsquerschnittslehre
Resonanz Wirkungsquerschnitt
Dopplerverbreitung
Der zweifach differentielle Wirkungsquerschnitt
Neutronenbremsung
Einheit Zelle basierende Wirkungsquerschnitt
Wirkungsquerschnitt Databibliotheken
Experimentelle Messungen

Die Studierenden:

- verstehen die Bedeutung von Wirkungsquerschnitten für verschiedene Fachgebiete der Naturwissenschaft (Reaktorphysik, Materialforschung, Sonnenenergie, usw.)
- kennen die theoretischen Methoden und den experimentellen Aufwand zur Bestimmung der Wirkungsquerschnitte.

Präsenzzeit: 26 h
Selbststudium: 94 h
mündlich ca. 30 min.
Literaturhinweise
Handbuch von Nuklearen Reaktoren Vol I. Y. Ronen CRC press 1986 (in English)
P. Tippler, R. Llewellyn Modern Physics 2008 (in English)
Teilleistung: IoT Plattform für Ingenieursanwendungen [T-MACH-106743]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Teilleistungsart
- Prüfungsleistung anderer Art

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2123352 | IoT Plattform für Ingenieursanwendungen | 3 SWS | Projekt (PRO) / Online: Ovtcharova, Maier |
| WS 22/23 | 2123352 | IoT Plattform für Ingenieursanwendungen | 3 SWS | Projekt (PRO) / Online: Ovtcharova, Maier |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-106743 | IoT Plattform für Ingenieursanwendungen | Ovtcharova |

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet), Gruppen-Lehrprojekt zu Industrie 4.0 bestehend aus: Konzeption, Umsetzung, begleitende Dokumentation und Schlusspräsentation

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

IoT Plattform für Ingenieursanwendungen

- **2123352, SS 2022, 3 SWS, Sprache: Deutsch,** Im Studierendenportal anzeigen

Inhalt

Industrie 4.0, IT-Systeme im Fertigungs- und Montageumfeld, Prozessmodellierung und -ausführung. Projektarbeiten im Team, praxisrelevante I4.0 Fragestellungen im Bereich Automatisierung, Fertigungsindustrie und Dienstleistungssektor. Studierende können:

- Prozesse im Kontext von Industrie 4.0 mit speziellen Methoden der Prozessmodellierung abbilden und analysieren.
- kollaborativ Praxisrelevante I4.0 Fragestellungen unter Nutzung vorhandener Hard- und Software erfassen und Lösungsvorschläge für einen kontinuierlichen Verbesserungsprozess im Team ausarbeiten.
- die selbsterarbeiteten Lösungsvorschläge mit den vorgegebenen IT-Systemen und der vorhandenen Hardwareeinrichtung prototypisch umzusetzen und abschließend präsentieren.

Literaturhinweise

Keine / None

IoT Plattform für Ingenieursanwendungen

- **2123352, WS 22/23, 3 SWS, Sprache: Deutsch,** Im Studierendenportal anzeigen

Inhalt

Industrie 4.0, IT-Systeme im Fertigungs- und Montageumfeld, Prozessmodellierung und -ausführung. Projektarbeiten im Team, praxisrelevante I4.0 Fragestellungen im Bereich Automatisierung, Fertigungsindustrie und Dienstleistungssektor. Studierende können:

- Prozesse im Kontext von Industrie 4.0 mit speziellen Methoden der Prozessmodellierung abbilden und analysieren.
- kollaborativ Praxisrelevante I4.0 Fragestellungen unter Nutzung vorhandener Hard- und Software erfassen und Lösungsvorschläge für einen kontinuierlichen Verbesserungsprozess im Team ausarbeiten.
- die selbsterarbeiteten Lösungsvorschläge mit den vorgegebenen IT-Systemen und der vorhandenen Hardwareeinrichtung prototypisch umzusetzen und abschließend präsentieren.
Literaturhinweise
Keine / None
3.158 Teilleistung: Keramik-Grundlagen [T-MACH-100287]

Verantwortung: Prof. Dr. Michael Hoffmann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

WS 22/23

<table>
<thead>
<tr>
<th>Vorlesung (V) / Präsenz</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>STunden</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keramik-Grundlagen</td>
<td>2125757</td>
<td></td>
<td>3 SWS</td>
<td>Hoffmann</td>
</tr>
</tbody>
</table>

SS 2022

<table>
<thead>
<tr>
<th>Vorlesung (V) / Präsenz</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>STunden</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keramik-Grundlagen</td>
<td>76-T-MACH-100287</td>
<td></td>
<td></td>
<td>Hoffmann, Schell, Wagner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesung (V) / Präsenz</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>STunden</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keramik-Grundlagen</td>
<td>76-T-MACH-100287</td>
<td></td>
<td></td>
<td>Hoffmann, Schell, Wagner</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min) zu einem festgelegten Termin.
Die Wiederholungsprüfung findet an einem festgelegten Termin statt.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Keramik-Grundlagen

2125757, WS 22/23, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Literaturhinweise

- Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
- S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier
Teilleistung: Keramische Faserverbundwerkstoffe [T-MACH-106722]

Verantwortung: Prof. Dr.-Ing. Dietmar Koch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine
3.160 Teilleistung: Kernkraft und Reaktortechnologie [T-MACH-110332]

Verantwortung: Dr. Aurelian Florin Badea
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik/Bereich Innovative Reaktorsysteme

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Dauer 1 Sem.
Version 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>Kernkraft und Reaktortechnologie</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🧩 Badea</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-110332 Kernkraft und Reaktortechnologie Badea</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 20 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kernkraft und Reaktortechnologie
2189921, WS 22/23, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

- Kernspaltung & Kernfusion,
- Radioaktiver Zerfall, Neutronenüberschuß, Spaltung, schnelle und thermische Neutronen,
- leicht und schwer spaltbare Kerne, Anreicherung, Neutronenfluss, Wirkungsquerschnitt, Reaktionsrate, mittlere freie Weglänge,
- Kettenreaktion, kritische Größe, Moderation,
- Reaktordynamik,
- Transport- und Diffusionsgleichung für die Neutronenflußverteilung,
- Leistungsverteilungen im Reaktor,
- Ein- und Zweigruppentheorie,
- Leichtwasserreaktoren,
- Reaktorsicherheit,
- Auslegung von Kernreaktoren,
- Brutprozesse,
- KKW der Generation IV
3.161 Teilleistung: Kernkraftwerkstechnik [T-MACH-105402]

Verantwortung: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng
Hon.-Prof. Dr. Thomas Schulenberg

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit

Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

| SS 2022 | 2170460 | Kernkraftwerkstechnik | 2 SWS | Vorlesung (V) / 🕰️ | Cheng |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105402 | Kernkraftwerkstechnik | Cheng, Schulenberg |

Legende: 🖥 Online, 🕰️ Präsenz/Online gemischt, 🕰️ Präsenz, 🗑️ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kernkraftwerkstechnik
2170460, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt

Kraftwerke mit Druckwasserreaktoren:
Konstruktion des Druckwasserreaktors

- Brennelemente
- Steuerstäbe und Antriebe
- Kerninstrumentierung
- Druckbehälter und Einbauten

Komponenten des Primärsystems

- Hauptkühlmittelpumpen
- Druckhalter
- Dampferzeuger
- Kühlwasseraufbereitung

Sekundärsystem

- Turbinen
- Dampfabscheider und Zwischenüberhitzer
- Speisewassersystem
- Kühlwassersysteme

Containment

- Containmentdesign
- Komponenten der Sicherheitssysteme
- Komponenten der Notkühlssysteme

Regelung eines Kraftwerks mit Druckwasserreaktor

Kraftwerke mit Siedewasserreaktoren:
Konstruktion des Siedewasserreaktors

- Brennelemente
- Steuerstäbe und Antriebe
- Druckbehälter und Einbauten

Containment und Komponenten der Sicherheits- und Notkühlssysteme

Regelung eines Kraftwerks mit Siedewasserreaktor

Literaturhinweise
Vorlesungsmanuskript
3.162 Teilleistung: Kognitive Automobile Labor [T-MACH-105378]

Verantwortung: Bernd Kitt
Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2138341 Kognitive Automobile Labor 3 SWS Praktische Übung (PU) / §3 Stiller, Lauer, Le Large

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105378 Kognitive Automobile Labor Stiller

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung
30 Minuten

Voraussetzungen
keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Kognitive Automobile Labor 2138341, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Praktische Übung (PU) Präsenz/Online gemischt

Inhalt
Anmeldung erforderlich, Teilnehmerbegrenzung

Lehrinhalt:
1. Fahrbahnerkennung
2. Objektdetektion
3. Fahrzeugquerführung
4. Fahrzeuglängsführung
5. Kollisionsvermeidung

Lernziele:

Nachweis: Kolloquien, Abschlusswettbewerb.

Arbeitsaufwand: 120 Stunden
Literaturhinweise
Dokumentation zur SW und HW werden als pdf bereitgestellt.
3.163 Teilleistung: Kognitive Systeme [T-INFO-101356]

Verantwortung: Prof. Dr. Gerhard Neumann
 Prof. Dr. Alexander Waibel

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

Lehrveranstaltungen

| SS 2022 | 24572 | Kognitive Systeme | 4 SWS | Vorlesung / Übung (VÜ) | Waibel, Neumann |
| WS 22/23 | 2400158 | Grundlagen der künstlichen Intelligenz | 3 SWS | Vorlesung / Übung (VÜ) | Neumann, Friederich, Dahlinger, Shaj Kumar |

Prüfungsveranstaltungen

| SS 2022 | 7500157 | Kognitive Systeme Waibel/Neumann | Waibel, Neumann |
| WS 22/23 | 7500158 | Kognitive Systeme Waibel/Neumann | Waibel, Neumann |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 der SPO.

Durch die Bearbeitung von Übungsblättern kann zusätzlich ein Notenbonus von max. 0,4 Punkte (entspricht einem Notenschritt) erreicht werden. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester.

Voraussetzungen

Keine.

Empfehlungen

- Einfache Programmierkenntnisse (für die Übungen)
- Kenntnisse in der Programmierung von Python. Die Grundlagen werden aber am Anfang der Vorlesung kurz wiederholt sodass man sich diese Kenntnisse auch noch für diese Vorlesung aneignen kann.
- Gute mathematische Grundkenntnisse

Anmerkungen

Diese Lehrveranstaltung läuft zum WS 2024/25 aus.

Bis Ende des SS 2024 werden die Prüfungen (inkl. Wiederholungsversuche) angeboten.

Die Stammmodule Kognitive Systeme und Sicherheit werden ab WS 2022 / 2023 nicht mehr angeboten. Übergangsweise können alle Studierenden der SPO 15 die neuen Pflichtmodule Grundlagen der künstlichen Intelligenz und Informationssicherheit als Stammmodule (mit 6 statt 5 ECTS) belegen. Um die Pflichtmodule als Stammmodule anzuerkennen, müssen Studierende 1 bis 2 Kapitel mehr belegen und bekommen voraussichtlich 1 bis 2 Aufgaben mehr in der Klausur.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kognitive Systeme

24572, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

<table>
<thead>
<tr>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
</tr>
</tbody>
</table>
Inhalt

Voraussetzungen:
Keine

Empfehlungen:
- Einfache Programmierkenntnisse (für die Übungen)
- Kenntnisse in der Programierung von Python

Die Grundlagen werden aber am Anfang der Vorlesung kurz wiederholt sodass man sich diese Kenntnisse auch noch für diese Vorlesung aneignen kann.

- Gute mathematische Grundkenntnisse

Arbeitsaufwand:
180h, aufgeteilt in:
- ca 30h Vorlesungsbesuch
- ca 9h Übungsbesuch
- ca 90h Nachbearbeitung und Bearbeitung der Übungsbänder
- ca 50 + 1h Prüfungsvorbereitung

Lernziele:

Studierende beherrschen

- Die relevanten Elemente eines technischen kognitiven Systems und deren Aufgaben.
- Die Problemstellungen dieser verschiedenen Bereiche können erkannt und bearbeitet werden.
- Weiterführende Verfahren können selbständig erschlossen und erfolgreich bearbeitet werden.
- Variationen der Problemstellung können erfolgreich gelöst werden.
- Die Lernziele sollen mit dem Besuch der zugehörigen Übung erreicht sein.

Erfolgskontrolle:
Siehe Modulhandbuch!

Grundlagen der künstlichen Intelligenz
2400158, WS 22/23, 3 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz
Inhalt
Dieses Modul behandelt die theoretischen und praktischen Aspekte der künstlichen Intelligenz, incl. Methoden der klassischen KI (Problem Solving & Reasoning), Methoden des maschinellen Lernens (überwacht und unüberwacht), sowie deren Anwendung in den Bereichen computer vision, natural language processing, sowie der Robotik.

Überblick

Einführung
- Historischer Überblick und Entwicklungen der KI und des maschinellen Lernens, Erfolge, Komplexität, Einteilung von KI-Methoden und Systemen
- Lineare Algebra, Grundlagen, Lineare Regression

Teil 1: Problem Solving & Reasoning
- Problem Solving, Search, Knowledge, Reasoning & Planning
- Symbolische und logikbasierte KI
- Graphische Modelle, Kalman/Bayes Filter, Hidden Markov Models (HMMs), Viterbi
- Markov Decision Processes (MDPs)

Teil 2: Machine Learning - Grundlagen
- Klassifikation, Maximum Likelihood, Logistische Regression
- Deep Learning, MLPs, Back-Propagation
- Over/Underfitting, Model Selection, Ensembles
- Unsupervised Learning, Dimensionalitätsreduktion, PCA, (V)AE, k-means clustering
- Density Estimation, Gaussian Mixture models (GMMs), Expectation Maximization (EM)

Teil 3: Machine Learning - Vertiefung und Anwendung
- Computer Vision, Convolutions, CNNs
- Natural Language Processing, RNNs, Encoder/Decoder
- Robotik, Reinforcement Learning

Qualifikations-/ Lernziele:
- Die Studierenden kennen die grundlegenden Konzepte der klassischen künstlichen Intelligenz und des maschinellen Lernens.
- Die Studierenden verstehen die Algorithmen und Methoden der klassischen KI, und können diese sowohl abstrakt beschreiben als auch praktisch implementieren und anwenden.
- Die Studierenden verstehen die Methoden des maschinellen Lernens und dessenmathematische Grundlagen. Sie kennen Verfahren aus den Bereichen des überwachten und unüberwachten Lernens sowie des bestärkenden Lernens, und können diese praktisch einsetzen.
- Die Studierenden kennen und verstehen grundlegende Anwendungen von Methoden des maschinellen Lernens in den Bereichen Computer Vision, Natural Language Processing und Robotik.
- Die Studierenden können dieses Wissen auf neue Anwendungen übertragen, sowie verschiedene Methoden analysieren und vergleichen.

Leistungspunkte/

ECTS:

Als Pflichtvorlesung im BA (neue PO 2022): 5 ECTS
Als Stammvorlesung (Übergang, alte PO): 6 ECTS

Erfolgskontrollen:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min) nach § 4 Abs. 2 Nr. 1 SPO erfolgen.

Falls 6 ECTS: Eine zusätzliche Prüfungsaufgabe und 20 min zusätzlicher Klausurzeit zu einem Thema im dritten Vorlesungssblock.

Arbeitsaufwand
2 SWS Vorlesung + 1 SWS Übung
8 Stunden Arbeitsaufwand pro Woche, plus 30 Stunden Klausurvorbereitung: 150 Stunden
Organisatorisches
Mittwochs: Vorlesung
Freitags: Übung
3.164 Teilleistung: Kohlekraftwerkstechnik [T-MACH-105410]

Verantwortung: Hon.-Prof. Dr. Thomas Schulenberg

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit

Bestandteil von:
- M-MACH-104878 - Spezialisierung im Maschinenbau
- M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, Dauer ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine
3.165 Teilleistung: Konstruieren mit Polymerwerkstoffen [T-MACH-105330]

Verantwortung: Dipl.-Ing. Markus Liedel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2174571</td>
<td>Konstruieren mit Polymerwerkstoffen</td>
<td>2 SWS</td>
<td>Block (B) / 🕵️‍♂️</td>
<td>Liedel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105330</td>
<td>Konstruieren mit Polymerwerkstoffen</td>
<td></td>
<td></td>
<td>Liedel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕵️‍♂️ Präsenz/Online gemischt, 🕵️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 minutes

Voraussetzungen
keine

Empfehlungen
Poly I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Konstruieren mit Polymerwerkstoffen
2174571, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Lernziele:
Studierende sind in der Lage,

- Polymercompounds von anderen Konstruktionswerkstoffen in ihren chemischen Grundlagen, Temperaturverhalten sowie Festkörpereigenschaften zu unterscheiden.
- wesentliche Verarbeitungstechniken hinsichtlich Möglichkeiten und Einschränkungen in Stoffauswahl und Bauteilgeometriegerüst selbst zu erörtern und geeignet auszuwählen.
- komplexe Applikationsanforderungen bzgl. festigkeitsverändernder Einflüsse zu analysieren und die klassische Festigkeitsdimensionierung in anwendungsorientiertem Sinne anzuwenden und die Lebensdauerfestigkeit zu bewerten.
- Bauteilgeometrien mit Berücksichtigung von Verarbeitungsschwindung, Herstelltoleranzen, Nachschwindung, Wärmeausdehnung, Quellen, elastische Verformung und Kriechen mit geeigneten Methoden zu bewerten und zu tolerieren.
- Fügegeometrien für Schnapphaken, Kunststoffdirektverschraubungen, Verschweißungen und Filmscharniere kunststoffgerecht zu konstruieren.
- klassische Spritzgussfehler und Fügefehler zu erkennen, mögliche Ursachen zu finden und die Fehlerwahrscheinlichkeit durch konstruktive Maßnahmen zu reduzieren.
- Nutzen und Grenzen von ausgewählten Simulationstools der Kunststofftechnik (Festigkeit, Verformung, Füllung, Verzug) zu benennen.
- Polymerklassen und Kunststoffkonstruktionen bzgl. möglicher Recyclingkonzepte und möglicher ökologischer Auswirkungen einzuschätzen.

Voraussetzungen:
keine

Empfehlung: Polymerengineering I

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Konstruieren mit Polymerwerkstoffen beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).

Organisatorisches
Anmeldung unter Markus.Liedel@de.bosch.com

Literaturhinweise
Materialien werden in der Vorlesung ausgegeben. Literaturhinweise werden in der Vorlesung gegeben.
3.166 Teilleistung: Konstruktionswerkstoffe [T-MACH-100293]

Verantwortung: Dr.-Ing. Stefan Guth

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Vorkurs</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2174580</td>
<td>Konstruktionswerkstoffe</td>
<td></td>
<td>4</td>
<td>Guth</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100293</td>
<td>Konstruktionswerkstoffe</td>
<td>Guth</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-100293</td>
<td>Konstruktionswerkstoffe</td>
<td>Guth</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Konstruktionswerkstoffe

2174580, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Präsenz/Online gemischt

Inhalt

Die Vorlesung wird online angeboten. Nähere Infos werden über ILIAS verteilt.

Vorlesungen und Übungen zu den Themen:

- Grundbeanspruchungen und überlagerte Beanspruchungen
- Hochtemperaturbeanspruchung
- Auswirkung von Kerben
- einachsige, mehrachsige und überlagerte schwingende Beanspruchung
- Kerbschwingfestigkeit
- Betriebsfestigkeit
- Bewertung rissbehafteter Bauteile
- Einfluss von Eigenspannungen
- Grundlagen der Werkstoffauswahl
- Dimensionierung von Bauteilen

Lernziele:

Voraussetzungen:

keine

Arbeitsaufwand:

Präsenzzeit: 42h
Selbstarbeitszeit: 138h
3.167 Teilleistung: Konstruktiver Leichtbau [T-MACH-105221]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltungsart</th>
<th>ECTS</th>
<th>Vorlesungsbeginn</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2146190</td>
<td>Konstruktiver Leichtbau</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣 Albers, Burkardt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Veranstaltungsart</th>
<th>ECTS</th>
<th>Vorlesungsbeginn</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105221</td>
<td>Konstruktiver Leichtbau</td>
<td>4</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105221</td>
<td>Konstruktiver Leichtbau</td>
<td>4</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, �.HtmlControls Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

| Schriftliche Prüfung (90 min) |

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Konstruktiver Leichtbau

2146190, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Präsenz

Inhalt

Die Vorlesung wird durch Gastvorträge "Leichtbau aus Sicht der Praxis" aus der Industrie ergänzt.

Die Studierenden ...

- können zentrale Leichtbaustategien hinsichtlich ihres Potenzials bewerten und beim Konstruieren anwenden.
- sind fähig, unterschiedliche Versteifungsmethoden qualitativ anzuwenden und hinsichtlich ihrer Wirksamkeit zu bewerten.
- sind in der Lage, die Leistungsfähigkeit der rechnergestützten Gestaltung und der damit verbundenen Grenzen und Einflüsse auf die Fertigung zu bewerten.
- können Grundlagen des Leichtbaus aus Systemsicht und in dessen Kontext zum Produktentstehungsprozess wiedergeben.
3 TEILLEISTUNGEN

Teilleistung: Konstruktiver Leichtbau [T-MACH-105221]

Organisatorisches
Vorlesungsfolien können über die eLearning-Plattform ILIAS bezogen werden.
Die Prüfungsart wird gemäß der Prüfungsordnung zu Vorlesungsbeginn angekündigt:

- Schriftliche Prüfung: 90 min Prüfungsdauer
- Mündliche Prüfung: 20 min Prüfungsdauer
- Erlaubte Hilfsmittel: keine

Medien: Beamer
Arbeitsbelastung:
- Präsenzzeit: 21 h
- Selbststudium: 99 h

Lecture slides are available via eLearning-Platform ILIAS.
The type of examination (written or oral) will be announced at the beginning of the lecture:

- written examination: 90 min duration
- oral examination: 20 min duration
- auxiliary means: None

Media: Beamer
Workload:
- regular attendance: 21 h
- self-study: 99 h

Literaturhinweise
Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
3.168 Teilleistung: Kontaktmechanik [T-MACH-105786]

Verantwortung: Prof. Dr. Christian Greiner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstaltungstyp</th>
<th>Lehrveranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2181220</td>
<td>Kontaktmechanik</td>
<td>2</td>
<td>Vorlesung (V) /</td>
<td>Greiner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Online/-Präsenz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105786</td>
<td>Kontaktmechanik</td>
<td>Greiner</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/-Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kontaktmechanik

2181220, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

1. Einführung: Kontaktfläche und Kontaktsteifigkeit
2. Elastische Halbraumtheorie
3. Kontakt nichtadhäsiver Kugeln: Hertz Theorie
4. Physikalische Grundlagen adhäsiver Wechselwirkungen an Grenzflächen
6. Oberflächenrauigkeit: Topographie, Leistungsdichte, Struktur realer Oberflächen, fraktale Oberflächen als Modell, Messmethoden
8. Kontakt adhäsiver rauer Oberflächen: Fuller-Tabor, Persson und neuere numerische Theorien
10. Tangential- und gleitender Kontakt: Cattaneo-Mindlin, Savkoor, Persson
11. Anwendungen von Kontaktmechanik

Der/die Studierende

- kennt Kontaktmodelle für glatte und rau sowie nicht-adhäsive und adhäsive Grenzflächen und kann diese gegeneinander abgrenzen
- kennt grundlegende Skalierungseigenschaften der funktionellen Abhängigkeit von Kontaktfläche, -steifigkeit und Anpresskraft
- kann numerische kontaktmechanische Methoden anwenden, um Fragstellungen aus der Werkstoffwissenschaft zu bearbeiten

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten
Literaturhinweise
K. L. Johnson, Contact Mechanics (Cambridge University Press, 1985)
D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer-Verlag, 2000)
3.169 Teilleistung: Kraftfahrzeuglaboratorium [T-MACH-105222]

Verantwortung: Dr.-Ing. Michael Frey

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungseinheit</th>
<th>SWS</th>
<th>Sprache</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2115808</td>
<td>Kraftfahrzeuglaboratorium</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Frey</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2115808</td>
<td>Kraftfahrzeuglaboratorium</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Frey</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungseinheit</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105222</td>
<td>Kraftfahrzeuglaboratorium</td>
<td>Frey, Unrau</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105222</td>
<td>Kraftfahrzeuglaboratorium</td>
<td>Frey, Unrau</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Kolloquium vor jedem Versuch
Nach Abschluss aller Versuche: schriftliche Erfolgskontrolle
Dauer: 90 Minuten
Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kraftfahrzeuglaboratorium

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Prüfung</th>
<th>Praktikum (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2115808, SS 2022</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Prüfung</td>
<td>Praktikum (P)</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen

Inhalt

1. Ermittlung der Fahrwiderstände eines Personenwagens auf einem Rollenprüfstand; Messung der Motorleistung des Versuchsfahrzeugs

2. Untersuchung eines Zweirohr- und eines Einrohrstoßdämpfers

3. Verhalten von Pkw-Reifen unter Umfangs- und Seitenführungskräften

4. Verhalten von Pkw-Reifen auf nasser Fahrbahn

5. Rollwiderstand, Verlustleistung und Hochgeschwindigkeitsfestigkeit von Pkw-Reifen

6. Untersuchung des Momentenübertragungsverhaltens einer Visko-Kupplung

Lernziele:

Organisatorisches
Genauer Ort und Termine sowie weitere Infos siehe Institutshomepage.

Einteilung in
- Gruppe A: Mo 14:00 - 15:30
- Gruppe B: Mo 16:00 - 17:30
- Gruppe C: Di 09:00 - 10:30
- Gruppe D: Di 11:00 - 12:30
- Gruppe E: Di 14:00 - 15:30
- Gruppe F: Di 16:00 - 17:30

Literaturhinweise

Inhalt
1. Ermittlung der Fahrwiderstände eines Personenwagens auf einem Rollenprüfstand; Messung der Motorleistung des Versuchsfahrzeugs
2. Untersuchung eines Zweirohr- und eines Einrohrstoßdämpfers
3. Verhalten von Pkw-Reifen unter Umfangs- und Seitenführungskräften
4. Vorbeifahrtmessungen zur akustischen Beurteilung eines Fahrzeugs
5. Rollwiderstand, Verlustleistung und Hochgeschwindigkeitsfestigkeit von Pkw-Reifen
6. Untersuchung des Momentenübertragungsverhaltens einer Visko-Kupplung

Lernziele:

Organisatorisches
Genaue Termine und weitere Hinweise: siehe Institutshomepage.

Einteilung:
Gruppe A: Mo 14:00-15:30
Gruppe B: Mo 16:00-17:30
Gruppe C: Di 09:00-10:30
Gruppe D: Di 11:00-12:30
Gruppe E: Di 14:00-15:30
Gruppe F: Di 16:00-17:30

Literaturhinweise
3.170 Teilleistung: Kühlung thermisch hochbelasteter Gasturbinenkomponenten
[T-MACH-105414]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Achmed Schulz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
SS 2022 | 76-T-MACH-105414 Kühlung thermisch hochbelasteter Gasturbinenkomponenten Bauer

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Min.

Voraussetzungen
keine
3.171 Teilleistung: Lager- und Distributionssysteme [T-MACH-105174]

Verantwortung: Prof. Dr.-Ing. Kai Furmans

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Teilleistungsart

Prüfungsleistung schriftlich

Leistungspunkte

3

Notenskala

Drittelnoten

Turnus

Jedes Sommersemester

Version

2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2118097</th>
<th>Lager- und Distributionssysteme</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Furmans</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105174</th>
<th>Lager- und Distributionssysteme</th>
<th>Furmans</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🛒 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Literaturhinweise

ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag

ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag

Warehouse Science

GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISSER, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag

Eine ausführliche Übersicht wissenschaftlicher Paper findet sich bei:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature
3.172 Teilleistung: Lasereinsatz im Automobilbau [T-MACH-105164]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2022 2182642 Lasereinsatz im Automobilbau 2 SWS Vorlesung (V) / Schneider

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105164 Lasereinsatz im Automobilbau Schneider

Erfolgskontrolle(n)
mündliche Prüfung (30 min)
keine Hilfsmittel

Voraussetzungen

Empfehlungen
Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lasereinsatz im Automobilbau
2182642, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Nd:YAG-, CO2-, Hochleistungs-Dioden-Laser)
- Strahleigenschaften, -führung, -formung
- Grundlagen der Materialbearbeitung mit Lasern
- Laseranwendungen im Automobilbau
- Wirtschaftliche Aspekte
- Lasersicherheit

Der/die Studierende

- kann die Grundlagen der Lichtentstehung, die Voraussetzungen für die Lichtverstärkung sowie den prinzipiellen Aufbau und die Funktionsweise von Nd:YAG-, CO2- und Hochleistungs-Dioden-Laserstrahlquellen erläutern.
- kann die wichtigsten lasergestützten Materialbearbeitungsprozesse für die Anwendung im Automobilbau benennen und für diese den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben
- kann Bearbeitungsaufgaben bzgl. ihrer Anforderungen analysieren und geeignete Laserstrahlquellen und Prozessparameter auswählen.
- kann die Gefahren beim Umgang mit Laserstrahlung beschreiben und geeignete Maßnahmen zur Gewährleistung der Arbeitssicherheit ableiten.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
mündliche Prüfung (ca.30 min)
keine Hilfsmittel

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.173 Teilleistung: Leadership and Management Development [T-MACH-105231]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Andreas Ploch

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte 4

Notenskala Drittelnoten

Turnus Jedes Wintersemester

Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>Semesterwochenstunden</th>
<th>Prüfung</th>
<th>Letzte Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2145184</td>
<td>Leadership and Management Development</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Ploch</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🤖 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Leadership and Management Development
2145184, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Überblick über Führungstheorien und deren Anwendung
Ausgewählte Führungsinstrumente und deren Einsatz in Organisationen
Kommunikation und Führung
Change Management
Management Development und MD-Programme
Assessment-Center und Management-Audits
Teamarbeit, Teamentwicklung und Teamrollen
Coaching als Instrument moderner Führung
Interkulturelle Kompetenz und cross-cultural leadership
Führung und Ethik, Corporate Governance
Praxisübungen und -beispiele zur Vertiefung ausgewählter Inhalte

Organisatorisches
Vorlesungsanmeldung und Informationen zur Veranstaltung werden im ILIAS Kurs zur Verfügung gestellt.
Weitere Information siehe IPEK-Homepage

Literaturhinweise
Vorlesungsumdruck
3.174 Teilleistung: Lehrlabor: Energietechnik [T-MACH-105331]

Verantwortung:
Prof. Dr.-Ing. Hans-Jörg Bauer
Prof. Dr. Ulrich Maas
Dr.-Ing. Heinrich Wirbser

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von:
M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrlabor: Energietechnik</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Jedes Semester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 22/23</th>
<th>Lehrveranstaltung</th>
<th>Studienleistung</th>
<th>SWS</th>
<th>Praktikum (P) / 🗣</th>
<th>Betreuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2171487</td>
<td>Lehrlabor: Energietechnik</td>
<td>3 SWS</td>
<td>Bauer, Maas, Bykov, Schißl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 22/23</th>
<th>Prüfungsveranstaltung</th>
<th>Studienleistung</th>
<th>SWS</th>
<th>Praktikum (P) / 🗣</th>
<th>Betreuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105331</td>
<td>Lehrlabor: Energietechnik</td>
<td>3 SWS</td>
<td>Bauer, Maas, Wirbser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

1 Protokoll, à 12 Seiten

Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Lehrlabor: Energietechnik

2171487, SS 2022, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Praktikum (P)

Präsident
Inhalt
Information auf Internetseite des Instituts; Anmeldung erfolgt online.
Anmeldung innerhalb der ersten beiden Wochen der Vorlesungszeit auf der Institutshomepage: http://www.its.kit.edu

Lehrinhalt:
• Modellgasturbine
• Verschiedene Messstrecken zur Untersuchung des Wärmeübergangs an thermische hochbelasteten Bauteilen.
• Optimierung von Komponenten des internen Luft- und Ölsystems
• Sprühstrahlarzügerung von Zerstäuberdüsen
• Untersuchung von Schadstoff-emissionen, Lärmemissionen, Zuverlässigkeit und Material-schädigung in Brennkammern
• Abgasnachbehandlung
• Abgas-Turbolader
• Kühlturm
• Wärmepumpe
• Pflanzenölkocher
• Wärmekapazität
• Holzverbrennung

Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudium: 78h

Lernziele:
Durch die Teilnahme an der Veranstaltung sollen Studierende:
• in einem wissenschaftlichen Rahmen sowohl experimentelle und konstruktive, als auch theoretische Aufgaben bearbeiten können
• erhaltene Daten korrekt auswerten
• Ergebnisse dokumentieren und im wissenschaftlichen Kontext darstellen

Nachweis:
1 Protokoll, á 12 Seiten
Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Dauer: 30 Minuten

Hilfsmittel: keine

Organisatorisches
Information zum Lehrlabor finden Sie auf der Instituts-homepage

Lehrlabor: Energietechnik
2171487, WS 22/23, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Maschinenbau für Erasmus-Studierende , Stand 29.09.2022
Modulhandbuch gültig ab Wintersemester 2022/23
3 TEILLEISTUNGEN

Teilleistung: Lehrlabor: Energietechnik [T-MACH-105331]

Inhalt
Information auf Internetseite des Instituts; Anmeldung erfolgt online.
Anmeldung innerhalb der ersten beiden Wochen der Vorlesungszeit auf der Institutshomepage: http://www.its.kit.edu

Lehrinhalt:

- Modellgasturbine
- Verschiedene Messstrecken zur Untersuchung des Wärmeübergangs an thermische hochbelasteten Bauteilen
- Optimierung von Komponenten des internen Luft- und Ölsystems
- Sprühstrahlcharakterisierung von Zerstäuberdüsen
- Untersuchung von Schadstoff-emptionen, Lärmemissionen, Zuverlässigkeit und Material-schädigung in Brennkammern
- Abgasnachbehandlung
 - Abgas-Turbolader
 - Kühlturn
 - Wärme Pumpen
 - Pflanzenölkocher
 - Wärme Kapazität
 - Holzverbrennung

Präsenzzeit: 42h
Selbststudium: 78h

Durch die Teilnahme an der Veranstaltung sollen Studierende:

- in einem wissenschaftlichen Rahmen sowohl experimentelle und konstruktive, als auch theoretische Aufgaben bearbeiten können
- erhaltene Daten korrekt auswerten
- Ergebnisse dokumentieren und im wissenschaftlichen Kontext darstellen

Nachweis:
1 Protokoll, à 12 Seiten

Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Dauer: 30 Minuten

Hilfsmittel: keine
3.175 Teilleistung: Liberalised Power Markets [T-WIWI-107043]

Verantwortung: Prof. Dr. Wolf Fichtner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungcode</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2581998</td>
<td>Liberalised Power Markets</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Fichtner, Kraft</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscodes</th>
<th>Lehrveranstaltungsname</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7900253</td>
<td>Liberalised Power Markets</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Liberalised Power Markets

2581998, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
1. Power markets in the past, now and in future
2. Designing liberalised power markets
 2.1. Unbundling Dimensions of liberalised power markets
 2.2. Central dispatch versus markets without central dispatch
 2.3. The short-term market model
 2.4. The long-term market model
 2.5. Market flaws and market failure
 2.6. Regulation in liberalised markets
3. The power (sub)markets
 3.1 Day-ahead market
 3.2 Intraday market
 3.3 (Long-term) Forwards and futures markets
 3.4 Emission rights market
 3.5 Market for ancillary services
 3.6 The “market” for renewable energies
 3.7 Future market segments
4. Grid operation and congestion management
 4.1 Grid operation
 4.2 Congestion management
5. Market power
 5.1 Defining market power
 5.2 Indicators of market power
 5.3 Reducing market power
6. Future market structures in the electricity value chain

Literaturhinweise
Weiterführende Literatur:
3.176 Teilleistung: Lichttechnik [T-ETIT-100772]

Verantwortung: Prof. Dr. Cornelius Neumann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung(m)</th>
<th>Übung(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2313739 Lichttechnik 2 SWS Vorlesung (V) / 🗣 Neumann</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2313741 Übungen zu 2313739 Lichttechnik 1 SWS Übung (Ü) Neumann</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7313739 Lichttechnik Neumann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen
keine
3.177 Teilleistung: Liquid Transportation Fuels [T-CIWVT-111095]

Verantwortung: Prof. Dr. Reinhard Rauch
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-MACH-105100 - Teilleistungen von der KIT-Fakultät für Chemieingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung / Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>22314</td>
<td>Liquid Transportation Fuels</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣 Rauch</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>22315</td>
<td>Übung zu 22314 Liquid Transportation Fuels</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣 Rauch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsveranstaltungscode</th>
<th>Lehrveranstaltung</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7230020</td>
<td>Liquid Transportation Fuels</td>
<td>Rauch</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7230010</td>
<td>Liquid Transportation Fuels</td>
<td>Rauch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
Keine
3.178 Teilleistung: Logistics and Supply Chain Management [T-WIWI-102870]

Verantwortung: Dr.-Ing. Miriam Klein
Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3,5

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2581996</th>
<th>Logistics and Supply Chain Management</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Schultmann, Klein</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2581997</td>
<td>Übung zu Logistics and Supply Chain Management</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Lüttenberg, Eberhardt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 781996 | Logistics and Supply Chain Management | Schultmann |

Legende: Online, Präsenz/Online gemischt, Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Logistics and Supply Chain Management
2581996, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Students are introduced to the methods and tools of logistics and supply chain management. They students learn the key terms and components of supply chains together with key economic trade-offs. In detail, students gain knowledge of decisions in supply chain management, such as facility location, supply chain planning, inventory management, pricing and supply chain cooperation. In this manner, students will gain knowledge in analyzing, designing and steering of decisions in the domain of logistics and supply chain management.

- Introduction: Basic terms and concepts
- Facility location and network optimization
- Supply chain planning I: flexibility
- Supply chain planning II: forecasting
- Inventory management & pricing
- Supply chain coordination I: the Bullwhip-effect
- Supply chain coordination II: double marginalization
- Supply chain risk management

Literaturhinweise

Wird in der Veranstaltung bekannt gegeben.
3.179 Teilleistung: Logistik und Supply Chain Management [T-MACH-110771]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 9

Notenskala
- Drittelnoten

Turnus
- Jedes Sommersemester

Version
- 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2118078</th>
<th>Logistik und Supply Chain Management</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Fürmans, Alicke</th>
</tr>
</thead>
</table>

| SS 2022 | 76-T-MACH-110771 | Logistik und Supply Chain Management | | | Furmans |

Legende: 🌐 Online, 💻 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
Keine

Anmerkungen
Die Teilleistung kann nicht belegt werden, wenn eine der Teilleistungen "T-MACH-102089 – Logistik - Aufbau, Gestaltung und Steuerung von Logistiksystemen" und "T-MACH-105181 – Supply Chain Management (mach und wiwi)" belegt wurde.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Logistik und Supply Chain Management
- 2118078, SS 2022, 4 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Vorlesung (V)
- Präsenz/Online gemischt

Inhalt

Unter anderem werden die folgenden Themengebiete behandelt:

- Lagerbestandsmanagement
- Forecasting
- Bullwhip Effekt
- Segmentierung und Zusammenarbeit in Supply Chains
- Kennzahlen
- Risikomanagement in Supply Chains
- Produktionslogistik
- Standortplanung
- Tourenplanung

Die Vorlesung soll ein interaktives Format ermöglichen, bei dem auch die Studierenden zu Wort (und zum Arbeiten alleine und in Gruppen) kommen sollen. Da Logistik und Supply Chain Management (auch in Zeiten während und nach Corona) ein Arbeiten in einer internationalen Umgebung erfordert und deshalb viele Begrifflichkeiten aus dem Englischen stammen, wird die Veranstaltung auf Englisch gehalten.
3.180 Teilleistung: Lokalisierung mobiler Agenten [T-INFO-101377]

Verantwortung: Prof. Dr.-Ing. Uwe Hanebeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

Teilleistung: Lokalisierung mobiler Agenten [T-INFO-101377]

Verantwortung: Prof. Dr.-Ing. Uwe Hanebeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 6
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2022 24613 Lokalisierung mobiler Agenten 3 SWS Vorlesung (V) / Zea Cobo, Li

Prüfungsveranstaltungen
SS 2022 7500004 Lokalisierung mobiler Agenten Zea Cobo, Noack
WS 22/23 7500020 Lokalisierung mobiler Agenten Zea Cobo

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i. d. R. 15 Minuten nach § 4 Abs. 2 Nr. 2 der SPO. Es wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

• in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
• in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen
Keine.

Empfehlungen
Grundlegende Kenntnisse der linearen Algebra und Stochastik sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lokalisierung mobiler Agenten
24613, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Organisatorisches
Prüfungsterminvorschläge und das Verfahren dazu sind auf der Webseite der Vorlesung zu finden.

Literaturhinweise
Grundlegende Kenntnisse der linearen Algebra und Stochastik sind hilfreich.
3.181 Teilleistung: Machine Vision [T-MACH-105223]

Verantwortung: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von:
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2137308</th>
<th>Machine Vision</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lauer, Kinzig</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105223 | Machine Vision | Stiller, Lauer |

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, x Abgesagt

Erfolgskontrolle(n)

Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 60 Minuten

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Machine Vision
2137308, WS 22/23, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Lernziele:
Nachweis: schriftlich 60 Minuten
Arbeitsaufwand 240 Stunden
Voraussetzungen: keine

Literaturhinweise

Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3.182 Teilleistung: Magnetohydrodynamik [T-MACH-105426]

Verantwortung: apl. Prof. Dr. Leo Bühler

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 2153429 | Magnetohydrodynamik | 2 SWS | Vorlesung (V) / 🗣 | Bühler |

Erfolgskontrolle(n)

mündlich

Dauer: 30 Minuten

Hilfsmittel: keine

Voraussetzungen

Die Teilleistung T-MACH-108845 - "Magnetohydrodynamik" (Nat/Inf/Etit) darf nicht begonnen oder abgeschlossen sein.

Die Teilleistungen T-MACH-108845 - "Magnetohydrodynamik" (Nat/Inf/Etit) und T-MACH-105426 - "Magnetohydrodynamik " schließen einander aus.

Empfehlungen

Strömungslehre (T-MACH-105207)

Mathematische Methoden der Strömungslehre (T-MACH-105295)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Magnetohydrodynamik

2153429, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

- Einführung
- Grundlagen der Elektro- und Fluidynamik
- Exakte Lösungen, Hartmann Strömung, Pumpe, Generator, Kanalströmungen,
- Induktionsfreie Approximation
- Freie Scherschichten
- Einlaufprobleme, Querschnittsänderungen, variable Magnetfelder
- Alfven Wellen
- Stabilität, Übergang zur Turbulenz
- Flüssige Dynamos

Lernziel: Die Studierenden können die Grundlagen der Magnetohydrodynamik beschreiben. Sie sind in der Lage, die Zusammenhänge der Elektro- und Fluidynamik zu erklären und können magnetohydrodynamischen Strömungen in technischen Anwendungen oder bei Phänomenen in der Geo- und Astrophysik analysieren.

Literaturhinweise

R. Moreau, 1990, Magnetohydrodynamics, Kluwer Academic Publisher

3.183 Teilleistung: Magnet-Technologie für Fusionsreaktoren [T-MACH-105434]

Verantwortung: Dr. Walter Fietz
Dr. Klaus-Peter Weiss

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von:
M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik
M-MACH-104878 - Spezialisierung im Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2190496 | Magnet-Technologie für Fusionsreaktoren | 2 SWS | Vorlesung (V) / 🗣 | Weiss, Wolf |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105434 | Magnet-Technologie für Fusionsreaktoren | Fietz, Weiss |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung von ca. 30 Minuten Dauer

Voraussetzungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Magnet-Technologie für Fusionsreaktoren

<table>
<thead>
<tr>
<th>2190496, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V) Präsenz</td>
</tr>
</tbody>
</table>
In Deutschland ist in Greifswald die Experimentieranlage Wendelstein 7-X in Betrieb gegangen, mit der die Leistungsfähigkeit von Fusionsanlagen des Typs "Stellarator" demonstriert werden soll. In Süd-Frankreich wird der Fusionsreaktor ITER gebaut, der die Energiegewinnung durch Fusion demonstrieren wird. Der Einschluss des Plasmas wird bei beiden Maschinen durch Magnete gewährleistet. Um starke Magnetfelder energieeffizient zu erzeugen, sind supraleitende Magnete zwingend notwendig. Konstruktion, Bau und Betrieb solcher Magnete sind technologische Herausforderungen aufgrund der tiefen Temperaturen (4.5 Kelvin) und der hohen Ströme (typ. 68 kA).

Die Vorlesung wird die Grundprinzipien für Konstruktion und Bau supraleitender Magnete aufzeigen und umfasst hierbei:

- Einführung mit Beispielen zur Kernfusion und zum magnetischen Plasmaeinschluss
- Grundlagen von Tieftemperatur- und Hochtemperatur-Supraleitern und Kryotechnik
- Materialtests und kritische Materialeigenschaften bei tiefen Temperaturen
- Designprinzipien, Konstruktion und sicherer Betrieb supraleitender Magnete
- Aktueller Status und Magnetbeispiele von Fusionsprojekten ITER, W7-X, JT-60SA
- Auswirkung von Hochtemperatursupraleitern auf Fusion und Energietechnik

In Rahmen dieser Vorlesung werden folgende Schwerpunkte behandelt

Inhaltsverzeichnis:

- Grundlagen der Kernfusion und Designaspekte von Fusionsmagneten
- Supraleitung - Grundlagen und Stabilität
- Erzeugung tiefer Temperaturen, Kryotechnik
- Tieftemperatur- und Hochtemperatur-Supraleiter
- Kryogene Materialtests und Materialeigenschaften bei tiefen Temperaturen
- Quenchsicherheit und Hochspannungsschutz von Magneten
- Status und Magnetbeispiele der Fusionsprojekte ITER, W7-X, JT-60SA und des künftigen DEMO
- Hochtemperatursupraleiter Anwendungen in Fusion und Netztechnik

Lernziel: Die Studierenden kennen:

- Arten des magnetischen Plasma-Einschlusses in Verbindung zu Fusionsmaschinen
- Beispiele und grundlegende Eigenschaften von verschiedenen technischen Supraleitern
- Grundlagen der Herstellung von Supraleiterkabeln und vom Magnetbau
- Erzeugung tiefer Temperaturen, Kryostatbau
- Grundlagen von Magnetauslegung und Magnetsicherheit
- Materialtest und Materialeigenschaften bei tiefen Temperaturen
- Hochtemperatur supraeleiter und Anwendungen in Magnetbau und Energietechnik

Empfehlungen:

Vorkenntnisse in Energietechnik, Kraftwerkstechnik, Materialtests wünschenswert
- Präsenzzeit: 2 SWS, Sonstiges: Exkursion, etc. 5 Stunden
- Selbststudium: Vor- und Nachbereitung LV: 1 Stunde / Woche
- Vorbereitungsklausur: 80 Stunden pro Semester
- Mündliche Prüfung von ca. 30 Minuten Dauer
3.184 Teilleistung: Management Accounting 1 [T-WIWI-102800]

Verantwortung: Prof. Dr. Marcus Wouters
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 4,5

Notenskala
- Drittelnoten

Turnus
- Jedes Sommersemester

Version
- 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2579900</th>
<th>Management Accounting 1</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Wouters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2579901</td>
<td>Übung zu Management Accounting 1 (Bachelor)</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Dickemann</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2579902</td>
<td>Übung zu Management Accounting 1 (Master)</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Dickemann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>79-2579900-B</th>
<th>Management Accounting 1 (Bachelor)</th>
<th>Wouters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>79-2579900-M</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 120-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen
Keine

Anmerkungen
Bachelorstudierende dürfen nur die betreffende Übung und Prüfung wählen, Masterstudierende und Studierende mit Mastervorzug dürfen nur die betreffende Übung und Prüfung belegen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Management Accounting 1

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2579900, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
</table>
Inhalt
Die Lehrveranstaltung beschäftigt sich mit Fragestellungen des Controlling (Management Accounting) im Rahmen von Entscheidungsprozessen. Einige dieser Themen in der LV MA1 sind: Kurzzeitplanung, Investitionsentscheidungen, Budgetierung und Kostenrechnung.

Es werden internationale Lektüren/Publikationen in englischer Sprache verwendet.

Diese Fragestellung wird hauptsächlich aus der Perspektive der Nutzer von Finanzinformationen behandelt, nicht so sehr auch der Perspektive von Controllern, die diese Informationen erstellen.

Die Lehrveranstaltung baut auf Grundwissen von Buchhaltungskonzepten auf, die im Rahmen von betriebswirtschaftlichen Lehrveranstaltungen im Kernprogramm (Basis) erworben wurden. Der Kurs richtet sich an die Studierenden der Fachrichtung Wirtschaftsingenieurwesen.

Lernziele:
- Die Studierenden kennen die Theorie und Anwendungsmöglichkeiten des Controlling (Management Accounting).
- Die Teilnehmer sind in der Lage Finanzdaten für verschiedene Zwecke in Unternehmen auszuwerten.

Nachweis:
- Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung: schriftliche Prüfung (120 min) nach § 4 Abs. 2 Nr. 1 SPO; am Ende von jedem Semester.
- Die Note ist die Note der schriftlichen Prüfung.

Arbeitsaufwand:
- Gesamtaufwand: 135 Stunden
- Präsenzzeit: [56] Stunden (4 SWS)
- Vor-/Nachbereitung: [54] Stunden
- Prüfung und Prüfungsvorbereitung: [25] Stunden

Literaturhinweise
- In addition, several papers that will be available on ILIAS.

Übung zu Management Accounting 1 (Bachelor)
2579901, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung zu Management Accounting 1 (Master)
2579902, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
siehe Modulhandbuch
3.185 Teilleistung: Management- und Führungstechniken [T-MACH-105440]

Verantwortung: Hans Hatzl
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>Vorlesung (V)</th>
<th>2 SWS</th>
<th>Hatzl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2110017</td>
<td>Management- und Führungstechniken</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>Prüfungsleistung mündlich</th>
<th>Deml, Hatzl</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105440</td>
<td>Management- und Führungstechniken</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
keine

Anmerkungen
Diese Veranstaltung wird einmalig auch im WS 20/21 angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Management- und Führungstechniken
Vorlesung (V)
Präsenz

Inhalt
In dieser Kompaktveranstaltung werden Management- und Führungstechniken vermittelt, die zu den Schlüsselqualifikationen für Führungsaufgaben gehören. Des Weiteren werden Sie auf Management- und Führungsaufgaben vorbereitet.

Die Veranstaltung besteht aus den folgenden Lehrinhalten:

1. Einführung in das Thema
2. Zielfindung und Zielerreichung
3. Managementtechniken in der Planung
4. Kommunikation und Information
5. Entscheidungslehre
6. Führung und Zusammenarbeit
7. Selbstmanagement
8. Konfliktbewältigung und -strategie
9. Fallstudien

Empfehlungen:

- Arbeits- und wirtschaftswissenschaftliche Kenntnisse vorteilhaft

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.186 Teilleistung: Maschinen und Prozesse [T-MACH-105208]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Heiko Kubach
Prof. Dr. Ulrich Maas
Dr. Balazs Pritz

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Kurs</th>
<th>SWS</th>
<th>Veranstaltungsart (VÜ)</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>3134140</td>
<td>Machines and Processes</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Bauer, Maas, Kubach, Pritz</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2185000</td>
<td>Maschinen und Prozesse</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Kurs</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105208</td>
<td>Maschinen und Prozesse (Exam in German Language)</td>
<td>4</td>
<td>Klausur</td>
<td>Kubach, Bauer, Maas, Pritz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105208e</td>
<td>Machines and Processes (Exam in English Language)</td>
<td>4</td>
<td>Klausur</td>
<td>Kubach, Bauer, Maas, Pritz</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105208</td>
<td>Maschinen und Prozesse (Klausur in deutscher Sprache)</td>
<td>4</td>
<td>Klausur</td>
<td>Kubach, Maas, Bauer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, ❗ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 120 min)

Voraussetzungen

Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Grundlagen der Thermodynamik

Thermische Strömungsmaschinen
- Dampfturbinen
- Gasturbinen
- GuD Kraftwerke
- Turbinen und Verdichter
- Flugtriebwerke

Hydraulische Strömungsmaschinen
- Betriebsverhalten
- Charakterisierung
- Regelung
- Kavitation
- Windturbinen, Propeller

Verbrennungsmotoren
- Kenngrößen
- Konstruktionselemente
- Kinematik
- Motorprozesse
- Emissionen
3.187 Teilleistung: Maschinen und Prozesse, Vorleistung [T-MACH-105232]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Heiko Kubach
Prof. Dr. Ulrich Maas
Dr. Balazs Pritz

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2187000</th>
<th>Maschinen und Prozesse (Praktikum)</th>
<th>1 SWS</th>
<th>Praktikum (P) / 🗣</th>
<th>Bauer, Kubach, Maas, Pritz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2187000</td>
<td>Maschinen und Prozesse (Praktikum)</td>
<td>1 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Bauer, Kubach, Pritz, Schmidt, Bykov</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105232 | Maschinen und Prozesse, Vorleistung (German and English) | Kubach, Bauer, Maas, Pritz |

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
erfolgreich absolvierter Praktikumsversuch

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Maschinen und Prozesse (Praktikum)</th>
<th>2187000, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum (P)</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>
Inhalt

Nachweis:
erfolgreich absolviert Praktikumsversuch und schriftliche Klausur (2 h)
Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein

Anmerkung:
Praktikum und Vorlesung finden im Sommer- und Wintersemester statt.
Im SS findet die VL auf englisch statt. Das Praktikum ist immer zweisprachig.

Medien:
Folien zum Download
Dokumentation des Praktikumsversuchs
Lehrinhalte:
Grundlagen der Thermodynamik
Thermische Strömungsmaschinen
- Dampfturbinen
- Gasturbinen
- GuD Kraftwerke
- Turbinen und Verdichter
- Flugtriebwerke

Hydraulische Strömungsmaschinen
- Betriebsverhalten
- Charakterisierung
- Regelung
- Kavitation
- Windturbinen, Propeller

Verbrennungsmotoren
- Kenngrößen
- Konstruktionselemente
- Kinematik
- Motorprozesse
- Emissionen

Arbeitsaufwand: Präsenzzeit: 48 h, Selbststudium 160 h

Lernziele:
Die Studenten können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen

Maschinen und Prozesse (Praktikum)
2187000, WS 22/23, 1 SWS, Im Studierendenportal anzeigen

Inhalt
Praktisches Experiment
3.188 Teilleistung: Maschinendynamik [T-MACH-105210]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 5
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2161224</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2161225</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2161224</td>
<td></td>
</tr>
</tbody>
</table>

Maschinendynamik
2 SWS
Vorlesung (V) / 🖥 Proppe

Übungen zu Maschinendynamik
1 SWS
Übung (Ü) / 🖥 Proppe, Fischer

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105210 Maschinendynamik</td>
</tr>
</tbody>
</table>

Maschinendynamik
2 SWS
Vorlesung (V) / 🖥 Proppe

Erfolgskontrolle(n)
Schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinendynamik
2161224, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Online

Inhalt
1. Zielsetzung
2. Maschinen als mechatronische Systeme
3. Starre Rotoren: Bewegungsgleichungen, instationäres Anfahren, stationärer Betrieb, Auswuchten (mit Schwingungen)
4. Elastische Rotoren (Lavalrotor, Bewegungsgleichungen, instationärer und stationärer Betrieb, biegekritische Drehzahl, Zusatzimpulse), mehrfach und kontinuierlich besetzte Wellen, Auswuchten
5. Dynamik der Hubkolbenmaschine: Kinematik und Bewegungsgleichungen, Massen- und Leistungsausgleich

Course Language: English / Vorlesungssprache: Englisch

Literaturhinweise
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989

Übungen zu Maschinendynamik
2161225, SS 2022, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt
Übung des Vorlesungsstoffs
Course Language: English / Vorlesungssprache: Englisch

Maschinendynamik
2161224, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Online
Inhalt
1. Zielsetzung
2. Maschinen als mechatronische Systeme
3. Starre Rotoren: Bewegungsgleichungen, instationäres Anfahren, stationärer Betrieb, Auswuchten (mit Schwingungen)
4. Elastische Rotoren (Lavalrotor, Bewegungsgleichungen, instationärer und stationärer Betrieb, biegekritische Drehzahl, Zusatzeinflüsse), mehrfach und kontinuierlich besetzte Wellen, Auswuchten
5. Dynamik der Hubkolbenmaschine: Kinematik und Bewegungsgleichungen, Massen- und Leistungsausgleich

Course Language: English / Vorlesungssprache: Englisch

Literaturhinweise
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953

Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979

Dresig, Vulfson: Dynamik der Mechanismen, 1989
3.189 Teilleistung: Maschinendynamik II [T-MACH-105224]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
- M-MACH-104878 - Spezialisierung im Maschinenbau
- M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Vorlesung</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2162220</td>
<td>Maschinendynamik II</td>
<td>2 SWS</td>
<td>Deutsch/Englisch</td>
<td>Vorlesung (V) / 🖥 Proppe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2162220</td>
<td>Maschinendynamik II</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥 Proppe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltung</th>
<th>Vorlesung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105224</td>
<td>Maschinendynamik II</td>
<td>Proppe</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, 30 min.

Voraussetzungen

keine

Empfehlungen

Maschinendynamik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Vorlesung (V)

Maschinendynamik II

2162220, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt

Studierende sind in der Lage, detaillierte Modelle in der Maschinendynamik zu entwickeln und zu analysieren, die Kontinuumsmodelle, Fluid-Struktur-Interaktion, Stabilitätsanalysen umfassen.

Gleitlager

- Rotierende Wellen in Gleitlagern
- Riementriebe
- Schaufenelschwingungen

Literaturhinweise

V Vorlesung (V)

Maschinendynamik II

2162220, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Gleitlager

- Rotierende Wellen in Gleitlagern
- Riementriebe
- Schaufenelschwingungen

Course language: English, Vorlesungssprache: Englisch

Literaturhinweise

3.190 Teilleistung: Materialfluss in Logistiksystemen [T-MACH-102151]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>9</td>
<td>Drittenoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 2117051 | Materialfluss in Logistiksystemen (mach und wiwi) | 15 SWS | Sonstige (sonst.) / Präsenz/Online gemischt | Furmans, Fleischmann, Köhler |

Prüfungsveranstaltungen

| WS 22/23 | 76-T-MACH-102151 | Materialfluss in Logistiksystemen | Furmans |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Diese setzt sich wie folgt zusammen:

- 40% Bewertung der Abschlussfallstudie als Einzelleistung,
- 60% Bewertung der Semesterleistung aus Bearbeitung und Verteidigung von 5 Fallstudien (Es werden jeweils die besten 4 aus 5 Leistungen gewertet.):
 - 40% Bewertung der Fallstudienlösungen als Gruppenleistung,
 - 20% Bewertung der mündlichen Leistung in den Fallstudienkolloquien als Einzelleistung.

Eine detaillierte Beschreibung der Erfolgskontrolle findet sich unter Anmerkungen.

Voraussetzungen
keine

Empfehlungen
Empfohlenes Wahlpflichtfach: Wahrscheinlichkeitstheorie und Statistik

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Materialfluss in Logistiksystemen (mach und wiwi)</th>
<th>Sonstige (sonst.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117051, WS 22/23, 15 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Maschinenbau für Erasmus-Studierende , Stand 29.09.2022
Modulhandbuch gültig ab Wintersemester 2022/23
Inhalt
Lehrinhalte:
- Materialflusselemente (Förderstrecke, Verzweigung, Zusammenführung)
- Beschreibung vernetzter MF-Modelle mit Graphen, Matrizen etc.
- Warteschlangentheorie: Berechnung von Wartezeiten, Auslastungsgraden etc.
- Lagern und Kommissionieren
- Shuttle-Systeme
- Sorter
- Simulation
- Verfügbarkeitsrechnung
- Wertstromanalyse

Lernziele:
Nach erfolgreichem Abschluss der Lehrveranstaltung können Sie alleine und im Team:
- In einem Gespräch mit Fachkundigen ein Materialflusssystem zutreffend beschreiben.
- Die Systemlast und die typischen Materialflusselemente modellieren und parametrieren.
- Daraus ein Materialflusssystem für eine Aufgabe konzipieren.
- Die Leistungsfähigkeit einer Anlage in Bezug auf die Anforderungen qualifiziert beurteilen.
- Die Grenzen der heutigen Methoden und Systemkomponenten konzeptionell bei Bedarf erweitern.

Literatur:
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 7. Auflage 2019

Beschreibung:
Die Veranstaltung unterteilt sich in 5 Themenblöcke, die sich jeweils in folgende Phasen und Terminen gliedern:
- Selbststudium
- Übung
- Plenary
- Bearbeitung Fallstudie (Gruppenarbeit)
- Kolloquium
- Besprechung Fallstudie

Es wird dringend empfohlen die Einführungsveranstaltung in der ersten Vorlesungswoche (26.10.2022) zu besuchen. Wir stellen zu diesem Termin das Konzept vor und wollen offene Fragen klären.

Die Anmeldung zum Kurs inklusive Gruppenzuteilung über Ilias ist zwingend erforderlich. Die Anmeldung wird nach der Einführungsveranstaltung für mehrere Tage freigeschaltet (Anmeldezeitraum: 26.10.2022 14:00 Uhr - 01.11.2022 14:00 Uhr).

Arbeitsaufwand:
- Präsenzzeit: 35 h
- Selbststudium: 135 h
- Gruppenarbeit: 100 h

Nachweis:
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Diese setzt sich wie folgt zusammen:
- 40% Bewertung der Abschlussfallstudie als Einzelleistung,
- 60% Bewertung der Semestereistung aus Bearbeitung und Verteidigung von 5 Fallstudien (Es werden jeweils die besten 4 aus 5 Leistungen gewertet.):
 - 40% Bewertung der Fallstudienlösungen und deren Präsentation als Gruppenleistung,
 - 20% Bewertung der mündlichen Leistung in den Kolloquien als Einzelleistung.
3.191 Teilleistung: Materialphysik und Metalle [T-MACH-100285]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte 13
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen
SS 2022 2174598 Metalle 4 SWS Vorlesung (V) / 📱 Pundt, Kauffmann
SS 2022 2174599 Übungen zur Vorlesung "Metalle" 1 SWS Übung (Ü) / 📱 Pundt, Kauffmann
WS 22/23 2177010 Materialphysik 3 SWS Vorlesung (V) / 📱 Gruber

Prüfungsveranstaltungen
SS 2022 76-T-MACH-100285 Materialphysik und Metalle 5 SWS Pundt, Gruber
WS 22/23 76-T-MACH-100285-W Materialphysik und Metalle (Wiederholung) 5 SWS Gruber, Pundt

Legende: 🖥 Online, 📱 Präsenz/Online gemischt, 📱 Präsenz, ☢ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 45 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Metalle
2174598, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Eigenschaften von reinen Stoffen; Thermodynamische Grundlagen ein- und zweikomponentiger Systeme, sowie mehrphasiger Systeme; Keimbildung und Keimwachstum; Diffusionsprozesse in kristallinen Werkstoffen; Zustandsschaubilder; Auswirkungen von Legierungselementen auf Legierungsbildung; Nichtgleichgewichtszustände; Wärmebehandlungsverfahren

Lernziele:

Voraussetzungen:
Materialphysik

Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h

Organisatorisches
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php
Übungen zur Vorlesung "Metalle"

2174599, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Präsenz/Online gemischt

Vorlesung (V)

Präsenz

Materialphysik

2177010, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Präsenz
Inhalt
Mechanische Eigenschaften (Steifigkeit, Festigkeit, Zähigkeit, Ermüdung, Kriechen)
Elektrische, magnetische, optische und thermische Eigenschaften
Oxidation und Korrosion
Anwendungsbeispiele

Organisatorisches

Literaturhinweise
J. Rösler, H. Harders, M. Bäker, Mechanisches Verhalten der Werkstoffe, Vieweg-Teubner, 3. Auflage
3.192 Teilleistung: Materialwissenschaftliches Seminar [T-MACH-100290]

Verantwortung: Dr. Patric Gruber
Dr. rer. nat. Stefan Wagner

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von:
M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2178450</td>
<td>Materialwissenschaftliches Seminar</td>
<td>2 SWS</td>
<td>Seminar (S) / 🗣</td>
<td>Gruber, Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nummer</th>
<th>Veranstaltung</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100290</td>
<td>Materialwissenschaftliches Seminar</td>
<td>Gruber, Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Teilnahme an allen Seminarterminen
- Vorbereitung eines Vortrages (Abstimmungstreffen mit Betreuer)
- Präsentation eines Vortrages

Voraussetzungen

Materialphysik, Metalle, Keramik-Grundlagen

Literaturhinweise

Themenspezifisch
3.193 Teilleistung: Mathematische Methoden der Dynamik [T-MACH-105293]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 6
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltungsart</th>
<th>Prüfung</th>
<th>Dauer</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2161206</td>
<td>Mathematische Methoden der Dynamik</td>
<td>Vorlesung (V) / Online</td>
<td>2 SWS</td>
<td>Proppe</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2161206</td>
<td>Mathematische Methoden der Dynamik</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>2 SWS</td>
<td>Proppe</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2161207</td>
<td>Übungen zu Mathematische Methoden der Dynamik</td>
<td>Übung (Ü) / Präsenz</td>
<td>1 SWS</td>
<td>Proppe, Bitner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungstitel</th>
<th>Veranstaltungsart</th>
<th>Prüfung</th>
<th>Dauer</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105293</td>
<td>Mathematische Methoden der Dynamik</td>
<td>Proppe</td>
<td>180 min</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Dynamik
2161206, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden können die mathematischen Methoden der Dynamik zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen die grundlegenden mathematischen Methoden zur Modellbildung für das dynamische Verhalten elastischer und starrer Körper. Die Studierenden besitzen ein grundsätzliches Verständnis für die Darstellung der Kinematik und Kinetik elastischer und starrer Körper, für die alternativen Formulierungen auf der Basis von schwachen Formulierungen und Variationsmethoden sowie der Approximationsmethoden zur numerischen Berechnung des Bewegungsverhaltens elastischer Körper.

Dynamik der Kontinua: Kontinuumsbegriff, Geometrie der Kontinua, Kinematik und Kinetik der Kontinua

Analytische Methoden: Prinzip der virtuellen Arbeit, Variationsrechnung, Prinzip von Hamilton

Approximationsmethoden: Methoden des gewichteten Restes, Ritz-Methode

Literaturhinweise
Vorlesungsverzeichnis (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994

P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000

M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Mathematische Methoden der Dynamik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td></td>
<td>Präsenz</td>
</tr>
<tr>
<td></td>
<td>2161206, WS 22/23, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen</td>
</tr>
<tr>
<td></td>
<td>Inhalt</td>
</tr>
<tr>
<td></td>
<td>Dynamik der Kontinua: Kontinuumsbegriff, Geometrie der Kontinua, Kinematik und Kinetik der Kontinua</td>
</tr>
<tr>
<td></td>
<td>Dynamik des starren Körpers: Kinematik und Kinetik des starren Körpers</td>
</tr>
<tr>
<td></td>
<td>Analytische Methoden: Prinzip der virtuellen Arbeit, Variationsrechnung, Prinzip von Hamilton</td>
</tr>
<tr>
<td></td>
<td>Approximationsmethoden: Methoden der gewichteten Restes, Ritz-Methode</td>
</tr>
<tr>
<td></td>
<td>Anwendungen</td>
</tr>
<tr>
<td></td>
<td>Literaturhinweise</td>
</tr>
<tr>
<td></td>
<td>Vorlesungsskript (erhältlich im Internet)</td>
</tr>
<tr>
<td></td>
<td>J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994</td>
</tr>
<tr>
<td></td>
<td>P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000</td>
</tr>
<tr>
<td></td>
<td>M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Übungen zu Mathematische Methoden der Dynamik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td></td>
<td>Präsenz</td>
</tr>
<tr>
<td></td>
<td>2161207, WS 22/23, 1 SWS, Sprache: Deutsch, im Studierendenportal anzeigen</td>
</tr>
<tr>
<td></td>
<td>Inhalt</td>
</tr>
<tr>
<td></td>
<td>Übung des Vorlesungsstoffs</td>
</tr>
</tbody>
</table>
3.194 Teilleistung: Mathematische Methoden der Mikromechanik [T-MACH-110378]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

Legende: Online, 🗺 Präsenz/Online gemischt, 🗺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung (180 min). Hilfsmittel gemäß Ankündigung.
Klausurzulassung: bestandene Studienleistung Übung zu Mathematische Methoden der Mikromechanik (T-MACH-110379)

Voraussetzungen
Bestehen der Übungen zu Mathematische Methoden der Mikromechanik (T-MACH-110379)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematische Methoden der Mikromechanik</td>
</tr>
<tr>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Inhalt
Grundlagen der linearen isotropen und anisotropen Thermoelastizitätstheorie,
Beschreibung von Mikrostrukturen,
Mikro-Makro-Relationen der linearen Thermoelastizitätstheorie,
Approximationen und Schranken für das effektive thermomechanische Materialverhalten,
Mikrostrukturendurosentes Design von Materialien,
Ausgewählte Probleme im Kontext der Homogenisierung nichtlinearer Materialeigenschaften

Organisatorisches
Nähere Informationen zu Zeit und Ort der Vorlesung im SS 2022: siehe ITM-KM Homepage

Literaturhinweise

- Vorlesungsskript
- Klingbeil, E.: Variationsrechnung, BI Wissenschaftsverlag, 1977
3.195 Teilleistung: Mathematische Methoden der Schwingungslehre [T-MACH-105294]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstyp</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Online</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Vorlesung (V)</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>2</td>
<td>Deutsch</td>
<td>🖥</td>
<td>Fidlin</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Übung (Ü)</td>
<td>Übungen zu Mathematische Methoden der Schwingungslehre</td>
<td>2</td>
<td>Deutsch</td>
<td>🖥</td>
<td>Fidlin, Schröders</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstyp</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td></td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td></td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td></td>
<td></td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🤸 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

| Schriftliche Prüfung, 180 min. |

Voraussetzungen

keine

Empfehlungen

Technische Mechanik III/IV

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Schwingungslehre

<table>
<thead>
<tr>
<th>Veranstaltungstyp</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Prüfungsveranstaltung anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V)</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>2</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
<tr>
<td>Übung (Ü)</td>
<td>Übungen zu Mathematische Methoden der Schwingungslehre</td>
<td>2</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

Lineare, zeitinvariante, gewöhnliche Einzeldifferentialgleichungen: homogene Lösung, harmonische periodische und nichtperiodische Anregung, Faltungsintegral, Fourier- und Laplacetransformation, Einführung in die Distributionstheorie; Systeme gewöhnlicher Differentialgleichungen: Matrixschreibweise, Eigenwerttheorie, Fundamentalmatrix; fremderregte Systeme mittels Modalentwicklung und Transitionsmatrix; Einführung in die Stabilitätstheorie; Partielle Differentialgleichungen: Produktansatz, Eigenwertproblem, gemischter Ritz-Ansatz; Variationsrechnung mit Prinzip von Hamilton; Störungsrechnung

Literaturhinweise

Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik

Übungen zu Mathematische Methoden der Schwingungslehre

<table>
<thead>
<tr>
<th>Veranstaltungstyp</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Prüfungsveranstaltung anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung (Ü)</td>
<td>Übungen zu Mathematische Methoden der Schwingungslehre</td>
<td>2</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

Sieben vorgerechnete Übungen mit Beispielen zum Vorlesungsstoff

Literaturhinweise

Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
3.196 Teilleistung: Mathematische Methoden der Strömungslehre [T-MACH-105295]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Lehrveranstaltungen

SS 2022	2154432	Mathematische Methoden der Strömungslehre	4 SWS	Vorlesung / Übung (VÜ) / 🧩	Frohnapfel, Gatti
SS 2022	2154433	Übungen zu Mathematische Methoden der Strömungslehre	1 SWS	Übung (Ü) / 🧩	Frohnapfel
SS 2022	2154540	Mathematical Methods in Fluid Mechanics	4 SWS	Vorlesung / Übung (VÜ) / 🧩	Gatti, Frohnapfel

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105295 | Mathematische Methoden der Strömungslehre | | Frohnapfel, Gatti |
| SS 2022 | 76-T-MACH-105295 (engl.) | Mathematische Methoden der Strömungslehre (engl.) | | Gatti, Frohnapfel |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung - 3 Stunden

Voraussetzungen
keine

Empfehlungen
Allgemeines Grundwissen im Bereich Strömungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Strömungslehre
2154432, SS 2022, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Vorlesung / Übung (VÜ)
Präsenz/Online gemischt

Inhalt

Die Studierenden können die zugrunde liegenden Navier-Stokes-Gleichungen für spezielle Strömungsprobleme vereinfachen. Sie können mathematische Methoden in der Strömungsmechanik zielgerichtet und effizient anwenden, um die resultierenden Erhaltungsgleichungen, wenn möglich, analytisch zu lösen oder sie einer einfacheren numerischen Lösung zugänglich zu machen. Sie können die Grenzen der Anwendbarkeit der getroffenen Modellannahmen erläutern.

In der Vorlesung wird eine Auswahl der folgenden Themen behandelt:

- Schleichende Strömungen (Stokes Strömungen)
- Schmierfilmtheorie
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitäts-theorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)
Literaturhinweise

Übungen zu Mathematische Methoden der Strömungslehre
2154433, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
In der Übung wird die Auswahl der Vorlesungsthemen vertieft:
- Krummlinige Koordinaten und Tensorrechnung
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitätstheorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)

Literaturhinweise

Mathematical Methods in Fluid Mechanics
2154540, SS 2022, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden können die zugrunde liegenden Navier-Stokes-Gleichungen für spezielle Strömungsprobleme vereinfachen. Sie können mathematische Methoden in der Strömungsmechanik zielgerichtet und effizient anwenden, um die resultierenden Erhaltungsgleichungen, wenn möglich, analytisch zu lösen oder sie einer einfacheren numerischen Lösung zugänglich zu machen. Sie können die Grenzen der Anwendbarkeit der getroffenen Modellannahmen erläutern.

In der Vorlesung wird eine Auswahl der folgenden Themen behandelt:
- Schleichende Strömungen (Stokes Strömungen)
- Schmierfilmtheorie
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitätstheorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)
3.197 Teilleistung: Mathematische Modelle und Methoden der Theorie der Verbrennung [T-MACH-105419]

Verantwortung: Dr. Viatcheslav Bykov
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Universität</th>
<th>WS 22/23</th>
<th>2165525</th>
<th>Mathematische Modelle und Methoden der Theorie der Verbrennung</th>
<th>2 SWS</th>
<th>Vorlesung (V) / ᴾ</th>
<th>Bykov</th>
</tr>
</thead>
</table>

Legende: ᶜ Online, ᵃ Präsenz/Online gemischt, ᴾ Präsenz, ᵐ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung mündlich; Dauer ca. 20 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Modelle und Methoden der Theorie der Verbrennung

2165525, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches
Termine und Raum: siehe Aushang und Internetseite des Instituts.

Literaturhinweise
Teilleistung: Mathematische Modelle und Methoden für Produktionssysteme [T-MACH-105189]

Verantwortung: Dr.-Ing. Marion Baumann
Prof. Dr.-Ing. Kai Furmans

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Vorlesung (V)</th>
<th>Kurs</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117059 WS 22/23</td>
<td>Mathematische Modelle und Methoden für Produktionssysteme</td>
<td>4 SWS</td>
<td>Vorlesung (V) / Baumann, Furmans</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗒️ Präsenz/Online gemischt, 🗒️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

keine

Inhaltsangaben

Inhalt

Medien:

Tafelanschrieb, Skript, Präsentationen

Lehrinhalte:

- Einzelsysteme: M/M/1; M/G/1; Prioritätsregeln, Abbildung von Störungen
- Vernetzte Systeme: Offene und geschlossene Approximationen, exakte Lösungen und Approximationen
- Anwendung auf flexible Fertigungssysteme, FTS-Anlagen
- Modellierung von Steuerungsverfahren (Conwip, Kanban)
- zeitdiskrete Modellierung von Bediensystemen

Lernziele:

Die Studierenden können:

- Warteschlangensysteme mit analytisch lösbarer stochastischen Modellen zu beschreiben.
- Ansätze zur Modellierung und Steuerung von Materialfluss- und Produktionssystemen auf der Grundlage von Modellen der Warteschlangentheorie ableiten,
- Simulationsmodelle und exakte Berechnungsverfahren anzuwenden.

Empfehlungen:

- Statistische Grundkenntnisse und -verständnisd
- Empfohlene Wahlpflichtfach: Stochastik
- Empfohlene Vorlesung: Materialfluss in Logistiksystemen (kann auch parallel gehört werden)

Arbeitsaufwand:

Präsenzzzeit: 42 Stunden
Selbststudium: 198 Stunden
Literaturhinweise
3.199 Teilleistung: Mechanik und Festigkeitslehre von Kunststoffen [T-MACH-105333]

Verantwortung: Hon.-Prof. Dr. Bernd-Steffen von Bernstorff
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanik und Festigkeitslehre von Kunststoffen</td>
<td>mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Empfehlungen
Grundkenntnisse Werkstoffkunde (z. B. durch die Vorlesung Werkstoffkunde I und II)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mechanik und Festigkeitslehre von Kunststoffen
2173580, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Molekülstruktur und Morphologie von Kunststoffen, Temperatur- und Zeitabhängigkeit der mechanischen Eigenschaften, Viskoelastisches Materialverhalten, Zeit/Temperatur-Superpositiosprinzip, Fließen, Crazing und Bruch, Versagenskriterien, Stoßartige und schwingende Beanspruchung, Korrespondenzprinzip, Zäh/Spröd-Übergang, Grundlagen der Faserverstärkung und Mehrfachrissbildung

Lernziele:
Die Studierenden sind in der Lage,

- die Berechnung von Kunststoffbauteilen für komplexe Belastungszustände nachzuvollziehen,
- die Einflussgrößen Zeit und Temperatur auf die Festigkeit von Polymerwerkstoffen zu beurteilen,
- die Bauteilfestigkeit auf die Molekülstruktur und die Morphologie der Werkstoffe zurückzuführen und daraus Versagenskriterien für homogene Polymerwerkstoffe und für Verbundwerkstoffe abzuleiten.

Voraussetzungen:
Grundkenntnisse Werkstoffkunde (z. B. durch die Vorlesung Werkstoffkunde I und II)

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Mechanik und Festigkeitslehre von Kunststoffen beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (28 h) sowie Vor- und Nachbearbeitungszeit zuhause (92 h).

Organisatorisches
berndvonbernstorff@t-online.de

Literaturhinweise
Literaturliste, spezielle Unterlagen und ein Teilmanuskript werden in der Vorlesung ausgegeben
3.200 Teilleistung: Mechanik von Mikrosystemen [T-MACH-105334]

Verantwortung: Prof. Dr. Christian Greiner
Dr. Patric Gruber

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
WS 22/23 2181710 Mechanik von Mikrosystemen 2 SWS Vorlesung (V) / Gruber, Greiner

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105334 Mechanik von Mikrosystemen Gruber, Greiner

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mechanik von Mikrosystemen
2181710, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
1. Einleitung: Anwendungen und Herstellungsverfahren
2. Physikalische Skalierungseffekte
3. Grundlagen: Spannung und Dehnung, (anisotropes) Hookesches Gesetz
4. Grundlagen: Mechanik von Balken und Membranen
5. Dünnschichtmechanik: Ursachen und Auswirkung mechanischer Spannungen
6. Charakterisierung der mechanischen Eigenschaften dünner Schichten und kleiner Strukturen: Eigenspannungen und Spannungsgradienten; mechanische Kenngrößen wie z.B. Fließgrenze, E-Modul oder Bruchzähigkeit; Haftfestigkeit der Schicht auf dem Substrat; Stiction
7. Elektro-mechanische Wandlung: piezo-resistiv, piezo-elektrisch, elektrostatisch,...
8. Aktorik: inverser Piezoeffekt, Formgedächtnis, elektromagnetisch

Die Studierenden können Größen- und Skalierungseffekte in Mikro- und Nanosystemen benennen und verstehen. Sie verstehen die Bedeutung von mechanischen Phänomenen in kleinen Dimensionen und können darauf aufbauend beurteilen, wie diese die Werkstofftechnik sowie die Wirkprinzipien und das Design von Mikrosensoren und Mikroaktoren mitbestimmen.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten

Literaturhinweise
Folien,
2. L.B. Freund und S. Suress: "Thin Film Materials"
3.201 Teilleistung: Mechano-Informatik in der Robotik [T-INFO-101294]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Prüfung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2400077</td>
<td>Mechano-Informatik in der Robotik</td>
<td>2 SWS</td>
<td>Deutsch/Englisch</td>
<td>Vorlesung (V) / 🗣</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfungscode</th>
<th>Prüfungsbezeichnung</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7500217</td>
<td>Nachprüfung: Mechano-Informatik in der Robotik</td>
<td>Asfour</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7500176</td>
<td>Mechano-Informatik in der Robotik</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Empfehlungen

Basispraktikum Mobile Roboter

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesungscode</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400077</td>
<td>Mechano-Informatik in der Robotik</td>
<td>2 SWS</td>
<td>Deutsch/Englisch</td>
<td>Vorlesung (V) / 🗣</td>
</tr>
</tbody>
</table>

Inhalt

Lernziele:

Organisatorisches
Zugehörige Veranstaltungen: Empfehlung - Basispraktikum Mobile Roboter
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand:
2h Präsenz
+ 2*2h = 4h Vor/Nachbereitung
+ 30h Prüfungsvorbereitung
120h
3.202 Teilleistung: Mechatronik-Praktikum [T-MACH-105370]

Verantwortung: Prof. Dr. Veit Hagenmeyer
Prof. Dr.-Ing. Wolfgang Seemann
Prof. Dr.-Ing. Christoph Stiller

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modul</th>
<th>Kursnummer</th>
<th>Kursname</th>
<th>WS 22/23</th>
<th>3 SWS</th>
<th>Praktikum (P) / 🗣</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2105014</td>
<td>Mechatronik-Praktikum</td>
<td>Praktikum (P) / 🗣</td>
<td></td>
<td></td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Das Praktikum wird ausschließlich als unbenotete Studienleistung angeboten. Die Erfolgskontrolle erfolgt in Form eines Gruppenkolloquiums zu Beginn der einzelnen Vertiefungsphasen (Teil 1). Zusätzlich muss in der Gruppenphase (Teil 2) eine Robotersteuerung für eine Pick-and-Place Aufgabe erfolgreich realisiert werden.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mechatronik-Praktikum

2105014, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Teil I
Steuerung, Programmierung und Simulation von Robotersystemen
CAN-Bus Kommunikation
Bildverarbeitung
Dynamische Simulation von Robotern in ADAMS

Teil II
Bearbeitung einer komplexen Aufgabenstellung in Gruppenarbeit

Lernziele:
Der Student ist in der Lage ...

• die einzelnen Teile eines Manipulators in Teamarbeit zu einem funktionierenden Gesamtsystem zu integrieren.

Nachweis: Schein über erfolgreiche Teilnahme

Voraussetzung: keine

Arbeitsaufwand:

Präsenzzeit: 33,5 h
Selbststudium: 88,5 h

Organisatorisches
Das Praktikum ist anmeldepflichtig.

Die Anmeldungsmodalitäten/-fristen werden auf https://www.iai.kit.edu/Pruefungen.php bekannt gegeben.
Siehe Internet / Aushang Raum 033 EG, im Gebäude 40.32.
Literaturhinweise
Materialien zum Mechatronik-Praktikum
Manuals for the laboratory course on Mechatronics
3.203 Teilleistung: Mechatronische Systeme und Produkte [T-MACH-105574]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik/Institut für Regelungs- und Steuerungssysteme
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 3
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>SWS</th>
<th>Übung zu</th>
<th>Hrs.</th>
<th>Vorlesung / Übung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>1</td>
<td>2303003</td>
<td>1 SWS</td>
<td>Übung (Ü) / 👤</td>
<td>Matthiesen, Hohmann, N.N.</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2</td>
<td>2303161</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Matthiesen, Hohmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>SWS</th>
<th>Lehramt</th>
<th>Hrs.</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105574</td>
<td>Mechatronische Systeme und Produkte</td>
<td>Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, 🧩 Präsenz/Online gemischt, 👤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung (Dauer: 60min)

Voraussetzungen
Für die Zulassung zu der Prüfung ist die erfolgreiche Teilnahme am Workshop Mechatronische Systeme und Produkte verpflichtend.

Anmerkungen
Alle relevanten Inhalte (Skript, Übungsbänder, etc.) zur Lehrveranstaltung können über die eLearning-Plattform ILIAS bezogen werden. Zur Teilnahme an der Lehrveranstaltung schließen Sie bitte die Umfrage Anmeldung und Gruppeneinteilung in ILIAS schon vor dem Semesterstart ab.
3.204 Teilleistung: Mensch-Maschine-Interaktion [T-INFO-101266]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Professur</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>24659</td>
<td>Mensch-Maschine-Interaktion</td>
<td>2</td>
<td>Vorlesung (V) / Online</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Professur</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7500048</td>
<td>Mensch-Maschine-Interaktion</td>
<td></td>
<td></td>
<td>Beigl</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7500076</td>
<td>Mensch-Maschine-Interaktion</td>
<td></td>
<td></td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mensch-Maschine-Interaktion</td>
<td>Online</td>
</tr>
</tbody>
</table>

24659, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Beschreibung:

Lehrinhalt:
Themenbereiche sind:

1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse),
2. Designgrundlagen und Designmethoden, Ein- und Ausgabeinheiten für Computer, eingebettete Systeme und mobile Geräte,
3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
4. Technische Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen (Textdialoge und Formulare, Menüsysteneme, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Aktivität
Arbeitsaufwand
Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min
Präsenzzeit: Besuch der Übung
8x 90 min
12 h 00 min
Vor-/Nachbereitung der Vorlesung
15 x 150 min
37 h 30 min
Vor-/Nachbereitung der Übung
8x 360min
48h 00min
Foliensatz/Scriptum 2x durchgehen
2 x 12 h
24 h 00 min
Prüfung vorbereiten
36 h 00 min
SUMME
180h 00 min
Arbeitsaufwand für die Lerneinheit "Mensch-Maschine-Interaktion"

Lernziele:
Die Vorlesung führt in Grundlagen der Mensch-Maschine Kommunikation ein. Nach Abschluss der Veranstaltung können die Studierenden

• grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
• grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
• grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
• existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Organisatorisches
Die Vorlesung ist ein Stammmodul und wird schriftlich abgeprüft (Klausur).
Literaturhinweise

3.205 Teilleistung: Messtechnik II [T-MACH-105335]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
</table>

Lehrveranstaltungen
SS 2022 2138326 Messtechnik II 2 SWS Vorlesung (V) / Stiller, Bieder

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105335 Messtechnik II Stiller

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung
60 Minuten
Selbstverfasste Formelsammlung über 2 DIN A4 erlaubt

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Messtechnik II 2138326, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
Lerninhalt:
1. Signalverstärker
2. Digitale Schaltungstechnik
3. Stochastische Modellierung in der Messtechnik
4. Stochastische Schätzverfahren
5. Kalman-Filter
6. Umfeldwahrnehmung

Lernziele:
Die wachsende Leistungsfähigkeit der Messtechnik eröffnet Ingenieuren laufend innovative Anwendungsfelder. Dabei kommt digitalen Messverfahren eine wachsende Bedeutung zu, da sie gerade für komplexe Aufgaben eine hohe Leistungsfähigkeit bieten. Stochastische Modelle des Messaufbaus und der Messgrößenentstehung sind Grundlage für aussagekräftige Informationsverarbeitung und bilden zunehmend ein unverzichtbares Handwerkszeug des Ingenieurs, nicht nur in der Messtechnik.

Die Vorlesung richtet sich an Studenten des Maschinenbaus und benachbarter Studiengänge, die interdisziplinäre Qualifikation erwerben möchten. Sie vermittelt einen Einblick in die Digitaltechnik und die Grundlagen der Stochastik. Darauf aufbauend lassen sich Estimationsverfahren entwickeln, die auf natürliche Weise in die elegante Theorie von Zustandsbeobachttern überführen. Anwendungen in der Messsignalverarbeitung moderner Umfeldsensorik (Video, Lidar) (Bearbeiten) geben der Vorlesung Praxisnähe und dienen der Vertiefung des Erlernten.

Nachweis:
Schriftlich
Dauer: 60 Minuten
Eigene Formelsammlung

Arbeitsaufwand:
120 Stunden
Literaturhinweise
Skript und Foliensatz zur Veranstaltung werden als kostenlose pdf-Dateien bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
Idealerweise haben Sie zuvor 'Grundlagen der Mess- und Regelungstechnik' gehört oder verfügen aus einer Vorlesung anderer Fakultäten über grundlegende Kenntnisse der Mess- und Regelungstechnik und der Systemtheorie.
Teilleistung: Messtechnisches Praktikum [T-MACH-105300]

Verantwortung: Sven Richter
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart
Studienleistung
Leistungspunkte 4
Notenskala best./nicht best.
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2022 2138328 Messtechnisches Praktikum 2 SWS Praktikum (P) / 🗣️ Stiller, Immel

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105300 Messtechnisches Praktikum Stiller

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
unbenotete Kolloquien

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Messtechnisches Praktikum
2138328, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz

Inhalt
Bitte Aushang auf unserer Homepage beachten!

A Signalaufnahme
- Temperaturmessung
- Wegmessung

B Signalaufbereitung
- Brückenschaltung und Messprinzipien
- Analog und digitale Signalverarbeitung

C Signalverarbeitung
- Messen stochastischer Signale

D Gesamtsysteme
- Systemidentifikation
- Überkopfpendel
- Mobile Roboterplattform

Empfehlungen:
Kenntnisse der Vorlesung "Grundlagen der Mess- und Regelungstechnik"
Arbeitsaufwand: 90 Stunden

Lernziele:
Das Praktikum ist eng auf die Vorlesung "Grundlagen der Mess- und Regelungstechnik" abgestimmt.
Im Praktikum stehen Messverfahren für die wichtigsten industriellen Messgrößen und regelungstechnische Gesamtsysteme im Vordergrund.

Literaturhinweise
Anleitungen auf der Homepage des Instituts erhältlich.
Instructions to the experiments are available on the institute's website
3.207 Teilleistung: Metalle [T-MACH-105468]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lernziele:

Voraussetzungen:
Materialphysik
Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h

Organisatorisches
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise
E. Hornbogen, H. Warlimont, Metalle (Struktur und Eigenschaften von Metallen und Legierungen), Springer-Verlag, Berlin 2001
H.-J. Bargel, G. Schulze, Werkstoffkunde, Springer-Verlag Berlin 2005
J. Freudenberger: http://www.ifw-dresden.de/institutes/imw/lectures/lectures/pwe
Übungen zur Vorlesung "Metalle"
2174599, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz/Online gemischt

Inhalt
Eigenschaften von reinen Stoffen; Thermodynamische Grundlagen ein- und zweikomponentiger Systeme, sowie mehrphasiger Systeme; Keimbildung und Keimwachstum; Diffusionsprozesse in kristallinen Werkstoffen; Zustandsschaubilder; Auswirkungen von Legierungselementen auf Legierungsbildung; Nichtgleichgewichtsgefüge; Wärmebehandlungsverfahren

Lernziele:

Voraussetzungen:
Vorlesung und Übung zu Materialphysik sowie Vorlesung zu Metalle

Arbeitsaufwand:
Präsenzzeit: 14 h
Selbststudium: 16 h

Organisatorisches
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise
http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

http://services.bibliothek.kit.edu/primo/start.php?recordId=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordId=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
Teileistung: Methoden der Signalverarbeitung [T-ETIT-100694]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2302113</td>
<td>Methoden der Signalverarbeitung</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Heizmann</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2302115</td>
<td>Übungen zu 2302113 Methoden der Signalverarbeitung</td>
<td>1+1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Heizmann, Diaz Ocampo</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7302113</td>
<td>Methoden der Signalverarbeitung</td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Die Kenntnis der Inhalte der Module "Signale und Systeme" und "Wahrscheinlichkeitstheorie" wird dringend empfohlen.
3.209 Teilleistung: Methoden und Prozesse der PGE - Produktgenerationsentwicklung [T-MACH-109192]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 6

Notenskala Drittelnoten

Turnus Jedes Sommersemester

Version 1

Lehrveranstaltungen

| SS 2022 | 2146176 | Methoden und Prozesse der PGE - Produktgenerationsentwicklung | 4 SWS | Vorlesung (V) / 🗣 | Albers |

| **Prüfungsveranstaltungen** |
SS 2022	76-T-MACH-105382	Methoden und Prozesse der PGE - Produktgenerationsentwicklung	Albers
SS 2022	76-T-MACH-105382-en	Methods and Processes of PGE - Product Generation Engineering	Albers
WS 22/23	76-T-MACH-105382	Methoden und Prozesse der PGE - Produktgenerationsentwicklung	Albers, Burkardt
WS 22/23	76-T-MACH-105382-en	Methods and Processes of PGE - Product Generation Engineering	Albers

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗫 Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (Bearbeitungszeit: 120 min + 10 min Einlesezeit)

Hilfsmittel:
- Nicht-programmierbare Taschenrechner
- Deutsche Wörterbücher (nur echte Bücher)

Voraussetzungen
Keine

Anmerkungen
Aufbauend auf dieser Vorlesung wird zur Vertiefung die Schwerpunkt-Vorlesung Integrierte Produktentwicklung angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Methoden und Prozesse der PGE - Produktgenerationsentwicklung

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung, 2146176, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen, Präsenz</td>
</tr>
</tbody>
</table>

Maschinenbau für Erasmus-Studierende, Stand 29.09.2022
Modulhandbuch gültig ab Wintersemester 2022/23
3 TEILLEISTUNGEN

Teilleistung: Methoden und Prozesse der PGE - Produktgenerationsentwicklung [T-MACH-109192]

Inhalt

Anmerkung:
Aufbauend auf dieser Vorlesung wird zur Vertiefung die Schwerpunkt-Vorlesung Integrierte Produktentwicklung angeboten.

Empfehlungen:
keine

Arbeitsaufwand:
Präsenzzeit: 39 h
Selbststudium: 141 h

Nachweis:
Schriftliche Prüfung
Dauer: 120 Minuten (+10 Minuten Einlesezeit)

Hilfsmittel:
- Nicht-programmierbare Taschenrechner
- Deutsche Wörterbücher (nur echte Bücher)

Lehrinhalt:
Grundlagen der Produktentwicklung: Grundbegriffe, Einordnung der Produktentwicklung in das industrielle Umfeld, Kostenentstehung/Kostenverantwortung

Konzeptentwicklung: Anforderungsliste/Abstraktion der Aufgabenstellung/ Kreativitätstechniken/ Bewertung und Auswahl von Lösungen

Entwerfen: Allgemein gültige Grundregeln der Gestaltung, Gestaltungsprinzipien als problemorientierte Hilfsmittel

Rationalisierung in der Produktentwicklung: Grundlagen des Entwicklungsmanagements, Simultaneous Engineering und integrierte Produktentwicklung, Baureihenentwicklung und Baukastensysteme

Qualitätssicherung in frühen Entwicklungsphasen: Methoden der Qualitätssicherung im Überblick, QFD, FMEA

Lernziele:
Die Studierenden können ...

- Produktentwicklung in Unternehmen einordnen und verschiedene Arten der Produktentwicklung unterscheiden.
- die für die Produktentwicklung relevanten Einflussfaktoren eines Marktes benennen.
- die zentralen Methoden und Prozessmodelle der Produktentwicklung benennen, vergleichen und diese auf die Entwicklung moderat komplexer technischer Systeme anwenden.
- Problemlösungssystematiken erläutern und zugehörige Entwicklungsmethoden zuordnen.
- Produktprofile erläutern sowie darauf aufbauend geeignete Kreativitätstechniken zur Lösungsfindung/Ideenfindung unterscheiden und auswählen.
- Gestaltungsrichtlinien für den Entwurf technischer Systeme erörtern und auf die Entwicklung gering komplexer technischer Systeme anwenden.
- Qualitätssicherungsmethoden für frühe Produktentwicklungsphasen nennen, vergleichen, situationsspezifisch auswählen und diese auf moderat komplexe technische Systeme anwenden.
- Methoden der statistischen Versuchsplanung erläutern.
- Kostenentstehung und Kostenverantwortung im Konstruktionsprozess erläutern.

Literaturhinweise
Vorlesungsunterlagen
Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997
Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag,1993
3.210 Teilleistung: Methoden zur Analyse der motorischen Verbrennung [T-MACH-105167]

Verantwortung: Jürgen Pfeil
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2134134 Methoden zur Analyse der motorischen Verbrennung 2 SWS Vorlesung (V) / Pfeil

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105167 Methoden zur Analyse der motorischen Verbrennung Koch
WS 22/23 76-T-MACH-105167 Methoden zur Analyse der motorischen Verbrennung Koch

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Methoden zur Analyse der motorischen Verbrennung
2134134, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Literaturhinweise
Skript, erhältlich in der Vorlesung
3.211 Teilleistung: Microenergy Technologies [T-MACH-105557]

Verantwortung: Prof. Dr. Manfred Kohl
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von:
- M-MACH-104878 - Spezialisierung im Maschinenbau
- M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

| SS 2022 | 2142897 | Microenergy Technologies | 2 SWS | Vorlesung (V) | Kohl |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105557 | Microenergy Technologies | Kohl |

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Microenergy Technologies
2142897, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

- Physikalische Grundlagen der Prinzipien zur Energiewandlung
- Layout und Designoptimierung
- Technologien
- ausgewählte Bauelemente
- Anwendungen

Die Vorlesung beinhaltet unter anderem folgende Themen:

- Mikro-Energy Harvesting von Schwingungen
- Thermisches Mikro-Energy Harvesting
- Mikrotechnische Anwendungen von Energy Harvesting
- Wärmepumpen in der Mikrotechnik
- Mikrokühlen

Literaturhinweise

- Folienskript "Micro Energy Technologies"
3.212 Teilleistung: Mikro NMR Technologie [T-MACH-105782]

Verantwortung: Prof. Dr. Jan Gerrit Korvink
Dr. Neil MacKinnon

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Erfolgskontrolle(n)
Eigener Seminarvortrag und Beteiligung an der Diskussion.

Voraussetzungen
keine
3.213 Teilleistung: Mikroaktorik [T-MACH-101910]

Verantwortung: Prof. Dr. Manfred Kohl
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2022 2142881 Mikroaktorik 2 SWS Vorlesung (V) / Kohl

Prüfungsveranstaltungen
SS 2022 76-T-MACH-101910 Mikroaktorik Kohl

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Mikroaktorik 2142881, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
- Materialwissenschaftliche Grundlagen der Aktorprinzipien
- Layout und Designoptimierung
- Herstellungsverfahren
- ausgewählte Entwicklungsbeispiele
- Anwendungen

Inhaltsverzeichnis:
Die Vorlesung beinhaltet unter anderem folgende Themen:

- Mikroelektromechanische Systeme: Linearaktoren, Mikrorelais, Mikromotoren
- Medizintechnik und Life Sciences: Mikroventile, Mikropumpen, mikrofluidische Systeme
- Mikrorobotik: Mikrogreifer, Polymeraktoren (smart muscle)
- Informationstechnik: Optische Schalter, Spiegelsysteme, Schreib-/Leseköpfe

Literaturhinweise
- Folienskript "Mikroaktorik"
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
3.214 Teilleistung: Mikrostruktursimulation [T-MACH-105303]

Verantwortung: Dr. Anastasia August
Prof. Dr. Britta Nestler

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von:
M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
5

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurzcode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Professor(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2183702</td>
<td>Mikrostruktursimulation</td>
<td>3</td>
<td>(VÜ)</td>
<td>August, Nestler</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurzcode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Professor(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>3</td>
<td>(VÜ)</td>
<td>August, Nestler, Weygand</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>3</td>
<td>(VÜ)</td>
<td>August, Weygand, Nestler</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung 30 min

Voraussetzungen

keine

Empfehlungen

Werkstoffkunde
mathematische Grundlagen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mikrostruktursimulation

2183702, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Online
Inhalt

- Einige Grundlagen der Thermodynamik
- Statistische Interpretation der Entropie
- Gibbs'sche Freie Energie und Phasendiagramme
- Freie Energie-Funktional für reine Stoffe
- Phasen-Feld-Gleichung
- Gibbs-Thomson-Gleichung
- Treibende Kräfte
- Großkannonische Potential Funktional und die Evolutionsgleichungen
- Zum Vergleich: Das Freie Energie-Funktional mit treibenden Kräften

Kenntnisse in Werkstoffkunde und mathematische Grundlagen empfohlen

Präsenzzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden

Es werden regelmäßig Übungszettel ausgeteilt. Die individuellen Lösungswege werden korrigiert zurückgegeben. mündliche Prüfung ca. 30 min

Literaturhinweise

4. Gaskell, D.R., Introduction to the thermodynamics of materials
5. Übungsblätter
3.215 Teilleistung: Mikrosystem Simulation [T-MACH-108383]

Verantwortung: Prof. Dr. Jan Gerrit Korvink
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

- Prüfungsleistung: schriftlich
- Leistungspunkte: 4
- Notenskala: Drittelnoten
- Turnus: Jedes Sommersemester
- Version: 1

Voraussetzungen
keine

Schriftliche Prüfung
3.216 Teilleistung: Mobile Arbeitsmaschinen [T-MACH-105168]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022 2114073 Mobile Arbeitsmaschinen 4 SWS Vorlesung (V) / Geimer, Lehr

Prüfungsveranstaltungen

SS 2022 76-T-MACH-105168 Mobile Arbeitsmaschinen Geimer
WS 22/23 76T-MACH-105168 Mobile Arbeitsmaschinen Geimer

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (45min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen

Anmerkungen

Lernziele:
Nach erfolgreicher Teilnahme an der Veranstaltung:

- kann der Studierende das breite Spektrum der mobilen Arbeitsmaschinen nennen
- kennt der Studierende die Einsatzmöglichkeiten und Arbeitsläufe der wichtigsten mobilen Arbeitsmaschinen
- kann der Studierende ausgewählte Teilsysteme und Komponenten beschreiben

Inhalt:
- Vorstellung der eingesetzten Komponenten und wichtigsten mobilen Arbeitsmaschinen
- Grundlagen und Aufbau der Maschinen
- Praktische Einblicke in die Entwicklung der Maschinen

Medien:
Foliensatz zur Vorlesung downloadbar
Buch "Grundlagen mobiler Arbeitsmaschinen", Karlsruher Schriftenreihe Fahrzeugsystemtechnik, Band 22, KIT Scientific Publishing

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mobile Arbeitsmaschinen
2114073, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

- Vorstellung der benötigten Komponenten und Maschinen
- Grundlagen zum Aufbau der Gesamtsysteme
- Praktischer Einblick in die Entwicklung

Kenntnisse im Bereich der Fluidtechnik werden vorausgesetzt.

Empfehlungen:
Der vorherige Besuch der Veranstaltung Fluidtechnik [2114093] wird empfohlen.

- Präsenzzeit: 42 Stunden
- Selbstdstudium: 184 Stunden
3.217 Teilleistung: Modeling of Turbulent Flows - RANS and LES [T-BGU-110842]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-MACH-105405 - Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsmittel mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 6221911 | Modelling of Turbulent Flows - RANS and LES | 4 SWS | Vorlesung / Übung (VÜ) / 🗣 | Uhlmann |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 45 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
Teilleistung: Modellbildung und Simulation [T-MACH-105297]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
 Prof. Dr.-Ing. Marcus Geimer
 Dr. Bela Z Pritz
 Prof. Dr.-Ing. Carsten Proppe

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
 KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen
 KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
 KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
 KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td></td>
<td>Modellbildung und Simulation</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Prüfung</td>
<td>Proppe, Furmans, Geimer, Kärger</td>
</tr>
<tr>
<td>WS 22/23</td>
<td></td>
<td>Übungen zu Modellbildung und Simulation</td>
<td>2 SWS</td>
<td>Übung (Ü) / Prüfung</td>
<td>Proppe, Bykov, Pritz, Völker, Furmans, Bolender</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Prüfungsleistung</th>
<th>Modellbildung und Simulation</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td></td>
<td>Modellbildung und Simulation</td>
<td></td>
<td>Geimer, Furmans, Proppe</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105297</td>
<td>Modellbildung und Simulation</td>
<td></td>
<td>Furmans, Geimer, Kärger, Proppe</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📌 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (180 min.).

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Modellbildung und Simulation

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>2185227, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
</table>

Inhalt

Einleitung: Übersicht, Begriffsbildung, Ablauf einer Simulationsstudie
Zeit-/ereignisdiskrete Modelle ereignisorientierte/processororientierte/transaktionsorientierte Sicht typische Modellklassen (Bedienung/Wartung, Lagerhaltung, ausfallanfällige Systeme)
Zeitkontinuierliche Modelle mit konzentrierten Parametern, Modelleigenschaften und Modellanalyse, Numerik gewöhnlicher Differentialgleichungen und differential-algebraischer Gleichungssysteme Gekoppelte Simulation mit konzentrierten Parametern
Zeitkontinuierliche Modelle mit verteilten Parametern, Beschreibung von Systemen mittels partieller Differentialgleichungen, Modellreduktion, numerische Lösungsverfahren für partielle Differentialgleichungen

Literaturhinweise

Keine.
3.219 Teilleistung: Modellierung thermodynamischer Prozesse [T-MACH-105396]

Verantwortung: Prof. Dr. Ulrich Maas
Dr.-Ing. Robert Schießl

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2167523</th>
<th>Modellierung thermodynamischer Prozesse</th>
<th>3 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Maas, Schießl</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2167523</td>
<td>Modellierung thermodynamischer Prozesse</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Schießl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105396</th>
<th>Modellierung thermodynamischer Prozesse</th>
<th>Maas</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Prüfungsleistung mündlich; Dauer ca. 30 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Modellierung thermodynamischer Prozesse
2167523, SS 2022, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Thermodynamische Grundlagen
Numerische Lösungsverfahren für algebraische Gleichungen
Optimierungsprobleme
Gewöhnliche und partielle Differentialgleichungen.
Anwendung auf diverse Probleme der Thermodynamik
(Maschinenprozesse, Bestimmung von Gleichgewichten, instationäre Prozesse in inhomogenen Systemen)

Literaturhinweise
Vorlesungsskript
Numerical Recipes C, FORTRAN; Cambridge University Press
R.W. Hamming; Numerical Methods for scientists and engineers; Dover Books On Engineering; 2nd edition; 1973
J. Kopitz, W. Polifke; Wärmeübertragung; Pearson Studium; 1. Auflage

Modellierung thermodynamischer Prozesse
2167523, WS 22/23, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Prinzipien der Modellierung: Darstellung physikalischer Systeme durch Gleichungen
Numerische Lösungsverfahren für nichtlineare Gleichungssysteme
Optimierungsprobleme mit Nebenbedingungen
Gewöhnliche und partielle Differentialgleichungen.
Anwendung auf diverse Probleme der Thermodynamik
(Maschinenprozesse, Bestimmung von Gleichgewichten, instationäre Prozesse in inhomogenen Systemen)
Literaturhinweise
Vorlesungsskript
Numerical Recipes C, FORTRAN; Cambridge University Press
R.W. Hamming; Numerical Methods for scientists and engineers; Dover Books On Engineering; 2nd edition; 1973
J. Kopitz, W. Polifke; Wärmeübertragung; Pearson Studium; 1. Auflage
3.220 Teilleistung: Modellierung und Simulation [T-MACH-100300]

Verantwortung: Prof. Dr. Peter Gumbsch
Prof. Dr. Britta Nestler

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2183703</td>
<td>Modellierung und Simulation</td>
<td>2+1 SWS</td>
<td>Nestler, August</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2183703</td>
<td>Modellierung und Simulation</td>
<td>3 SWS</td>
<td>Nestler, August</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100300</td>
<td>Modellierung und Simulation</td>
<td>Nestler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-100300</td>
<td>Modellierung und Simulation</td>
<td>Nestler, August</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Erfolgreiche Teilnahme am Computerpraktikum (unbenotet) und schriftliche Prüfung, 90 min (benotet)

Voraussetzungen

Keine

Empfehlungen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Modellierung und Simulation

<table>
<thead>
<tr>
<th>Vorlesungscode</th>
<th>SS 2022, 2+1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2183703</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗿 Abgesagt
Inhalt
Die Vorlesung gibt eine Einführung in Modellierungs- und Simulationsmethoden. Inhalte sind:
- Splines, Interpolationverfahren, Taylorreihe
- Finite Differenzenverfahren
- Dynamische Systeme
- Raum-Zeit-Probleme, Numerik partieller Differentialgleichungen
- Stoff- und Wärmemediation
- Werkstoffsimulation
- parallele und adaptive Algorithmen
- Hochleistungsrechnen
- Computerpraktikum

Der/die Studierende

- kann grundlegende Algorithmen und numerische Methoden erläutern, die u.a. bei der Werkstoffsimulation eingesetzt werden
- kann numerische Lösungsverfahren für dynamische Systeme und partielle Differentialgleichungen beschreiben und anwenden
- kann Methoden zur numerischen Lösung von Wärme- und Stoffdiffusionsprozessen anwenden, die ebenfalls für die Simulation von Mikrostrukturausbildungen genutzt werden können
- verfügt durch das begleitende Rechnerpraktikum über Erfahrungen mit der Implementierung / Programmierung der erarbeiteten numerischen Verfahren.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden

Es werden regelmäßig Übungszettel ausgeteilt. Außerdem wird die Veranstaltung ergänzt durch praktische Übungen am Computer.

Literaturhinweise

Modellierung und Simulation
2183703, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung gibt eine Einführung in Modellierungs- und Simulationsmethoden. Inhalte sind:
- Splines, Interpolationverfahren, Taylorreihe
- Finite Differenzenverfahren
- Dynamische Systeme
- Raum-Zeit-Probleme, Numerik partieller Differentialgleichungen
- Stoff- und Wärmemediation
- Werkstoffsimulation
- parallele und adaptive Algorithmen
- Hochleistungsrechnen
- Computerpraktikum

Der/die Studierende

- kann grundlegende Algorithmen und numerische Methoden erläutern, die u.a. bei der Werkstoffsimulation eingesetzt werden
- kann numerische Lösungsverfahren für dynamische Systeme und partielle Differentialgleichungen beschreiben und anwenden
- kann Methoden zur numerischen Lösung von Wärme- und Stoffdiffusionsprozessen anwenden, die ebenfalls für die Simulation von Mikrostrukturausbildungen genutzt werden können
- verfügt durch das begleitende Rechnerpraktikum über Erfahrungen mit der Implementierung / Programmierung der erarbeiteten numerischen Verfahren.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden

Es werden regelmäßig Übungszettel ausgeteilt. Außerdem wird die Veranstaltung ergänzt durch praktische Übungen am Computer.

Schriftliche Klausur: 90 Minuten
Organisatorisches
Termine für Rechnerübungen werden in der Vorlesung bekannt gegeben!

Literaturhinweise

3.221 Teilleistung: Moderne Regelungskonzepte I [T-MACH-105539]

Verantwortung:
apl. Prof. Dr. Lutz Groell
apl. Prof. Dr. Jörg Matthes

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von:
M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart	Prüfungsleistung schriftlich	Leistungspunkte	Notenskala	Turnus	Version

Lehrveranstaltungen
SS 2022 | 2105024 | Moderne Regelungskonzepte I | 2 SWS | Vorlesung (V) / 🧩 | Matthes, Groell

SS 2022 | 2106020 | Übung zu Moderne Regelungskonzepte I | 2 SWS | Übung (Ü) / 🖥 | Matthes

Prüfungsveranstaltungen
SS 2022 | 76-T-MACH-105539 | Moderne Regelungskonzepte I | | | Matthes

Legende: 🧩 Online, 🖥 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 1 h)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Moderne Regelungskonzepte I
2105024, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Lehrinhalt:
1. Einführung (Abgrenzung, Übersichten)
2. Ruhelagen (Bedeutung, Berechnung, mathematische Tools)
3. Linearisierung (Kleine-Delta-Methode, Hartman-Grobman-Theorem, Entwurfsmethodik für lineare Festwertregler)
4. PID-Regler (praktische Realisierung, Design-Tipps, Anti-Windup-Techniken, Smith-Prädiktor, Umschalttechniken, Komplexbeispiel)
5. Experimentelle Modellbildung (Identifikation für zeitkontinuierliche/zeitdiskrete Modelle)
6. Konzept der Zwei-Freiheitsgrade-Regelungen (Struktur, Sollsignaldesign)
7. Zustandsraum (Transformationen, Normalformen, Systemeigenschaften im Zustandsraum, geometrische Sichtweise)
8. Folgeregelungen mit Zustandsrückführung und Integratorerweiterung
9. Beobachter (LQG-Entwurf, Störgrößenbeobachter, reduzierte Beobachter)

Voraussetzungen:
Der Besuch folgender Vorlesung wird empfohlen::

• Grundlagen der Mess- und Regelungstechnik

Alternativ: Vergleichbare Lehrveranstaltungen der Fakultät für Elektrotechnik und Informationstechnik

Literaturhinweise
• Rugh, W.: Linear System Theory. Prentice Hall, 1996

Übung zu Moderne Regelungskonzepte I
2106020, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Online
Inhalt

Lehrinhalt:

1. Einführung (Abgrenzung, Übersichten)
2. Ruhelagen (Bedeutung, Berechnung, mathematische Tools)
3. Linearisierung (Kleine-Delta-Methode, Hartman-Grobman-Theorem, Entwurfsmethodik für lineare Festwertregler)
4. PID-Regler (praktische Realisierung, Design-Tipps, Anti-Windup-Techniken, Smith-Prädiktor, Umschalteinheiten, Komplexbeispiel)
5. Experimentelle Modellbildung (Identifikation für zeitkontinuierliche/zeitdiskrete Modelle)
6. Konzept der Zwei-Freiheitsgrade-Regelungen (Struktur, Sollsignaldesign)
7. Zustandsraum (Transformationen, Normalformen, Systemeigenschaften im Zustandsraum, geometrische Sichtweise)
8. Folgeregelungen mit Zustandsrückführung und Integratorenhinweise
9. Beobachter (LQG-Entwurf, Störgrößenbeobachter, reduzierte Beobachter)

Voraussetzungen:

Der Besuch folgender Vorlesung wird empfohlen::

- Grundlagen der Mess- und Regelungstechnik

Alternativ: Vergleichbare Lehrveranstaltungen der Fakultät für Elektrotechnik und Informationstechnik

Literaturhinweise

3.222 Teilleistung: Motorenlabor [T-MACH-105337]

Verantwortung: Dr.-Ing. Uwe Wagner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorenlabor</td>
<td>2 SWS</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2134001 | Motorenlabor | 2 SWS | Praktikum (P) / 🗤 Wagner |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105337 | Motorenlabor | Koch |

Legende:
🖥 Online, 🧩 Präsenz/Online gemischt, 🗤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Ausarbeitung über jeden Versuch, Schein über erfolgreiche Teilnahme, keine Benotung

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Motorenlabor

2134001, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Anmeldung im Sekretariat des IFKM.

Organisatorisches

voraussichtlich 1. vorlesungsfreie Woche im SS 2021. Wird auf der Homepage und in den Vorlesungen bekannt gegeben

Literaturhinweise

Versuchsbeschreibungen
3.223 Teilleistung: Motorenmesstechnik [T-MACH-105169]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr.-Ing. Sören Bernhardt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-MACH-104849 - Schwerpunkt Fahrzeugtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Sprachsprache</th>
<th>Pränz</th>
<th>2 SWS</th>
<th>Motorenmesstechnik</th>
<th>2134137</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernhardt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

SS 2022

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Sprachsprache</th>
<th>Pränz</th>
<th>2 SWS</th>
<th>Motorenmesstechnik</th>
<th>76-T-MACH-105169</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WS 22/23

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Sprachsprache</th>
<th>Pränz</th>
<th>2 SWS</th>
<th>Motorenmesstechnik</th>
<th>76-T-MACH-105169</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, Dauer 0,5 Stunden, keine Hilfsmittel

Voraussetzungen

keine

Empfehlungen

T-MACH-102194 Verbrennungsmotoren I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorenmesstechnik</td>
<td>2134137, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Literaturhinweise

1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C
3.224 Teilleistung: Nanotechnologie für Ingenieure und Naturwissenschaftler [T-MACH-105180]

Verantwortung: Prof. Dr. Martin Dienwiebel
 apl. Prof. Dr. Hendrik Hölscher
 Stefan Walheim

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
 KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Prüfung题目</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105180</td>
<td>Einführung in die Nanotechnologie</td>
<td>Hölscher</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105180</td>
<td>Einführung in die Nanotechnologie</td>
<td>Hölscher, Dienwiebel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung 90 min

Voraussetzungen

keine
3.225 Teilleistung: Neue Aktoren und Sensoren [T-MACH-102152]

Verantwortung: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von:
M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Leiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2141865</td>
<td>Neue Aktoren und Sensoren</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🛠</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Leiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-102152</td>
<td>Neue Aktoren und Sensoren</td>
<td></td>
<td></td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Legende: 🛠 Online, 🛠 Präsenz/Online gemischt, 🛤 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 60 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V

Neue Aktoren und Sensoren
2141865, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)
Präsenz/Online gemischt

Literaturhinweise

- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
3.226 Teilleistung: Neutronenphysik für Kern- und Fusionsreaktoren [T-MACH-105435]

Verantwortung: Dr. Ulrich Fischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
WS 22/23 2189473 Neutronenphysik für Kern- und Fusionsreaktoren 2 SWS Vorlesung (V) / Fischer

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105435 Neutronenphysik für Kern- und Fusionsreaktoren Prüfung Fischer

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Neutronenphysik für Kern- und Fusionsreaktoren 2189473, WS 22/23, 2 SWS, Sprache: Deutsch/Englisch, im Studierendenportal anzeigen Vorlesung (V) Präsenz

Inhalt
Kernphysikalische Wechselwirkungsprozesse und Energiefreisetzung
Kettenreaktion und Kritikalität
Neutronentransport,
Bolzmannungleichung
Diffusionsäquivalente, Monte-Carlo-Verfahren
Neutronophysikalische Auslegung

Präsenzzeit: 21 h
Selbststudium: 42 h

mündliche Prüfung, Dauer ca. 30 Minuten, Hilfsmittel: keine

Da für den Campus Nord eine Zutrittsberechtigung erforderlich ist, bitte für die Teilnahme an der Vorlesung anmelden unter: il-sekretariat@inr.kit.edu

Organisatorisches
Bitte vorherige Anmeldung über ILIAS

Literaturhinweise
K. H. Beckurts, K. Wirtz, Neutron Physics, Springer Verlag, Berlin, Germany (1964)
3.227 Teilleistung: Nonlinear Continuum Mechanics [T-MACH-111026]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022 2162344 Nonlinear Continuum Mechanics 2 SWS Vorlesung (V) / 🧩 Böhlke

Prüfungsveranstaltungen

SS 2022 76-T-MACH-111026 Nonlinear Continuum Mechanics Böhlke

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 25 min)

Voraussetzungen

Das Bestehen der Studienleistung “Übungen zu Nonlinear Continuum Mechanics” (T-MACH-111027) ist Prüfungsvorleistung.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nonlinear Continuum Mechanics

2162344, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V)

Präsenz/Online gemischt

Inhalt

- Tensorrechnung, Kinematik, Bilanzgleichungen
- Prinzipien der Materialtheorie
- Finite Elastizitätstheorie
- Infinitesimale Elasto(visko)plastizitätstheorie
- Exakte Lösungen der infinitesimalen Plastizitätstheorie
- Finite Elasto(visko)plastizitätstheorie
- Infinitesimale und finite Kristall(visko)plastizitätstheorie
- Verfestigung und Materialversagen
- Verformungslokalisierung

Organisatorisches

Nähere Informationen zum Format der Lehrveranstaltung: siehe Homepage des ITM-KM

Literaturhinweise

- Vorlesungsskript
3.228 Teilleistung: Numerische Mathematik für die Fachrichtung Informatik [T-MATH-102242]

Verantwortung: Prof. Dr. Andreas Rieder
Dr. Daniel Weiß
Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MACH-104885 - Teilleistungen von der KIT-Fakultät für Mathematik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>0187400</td>
<td>Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weiß</td>
</tr>
<tr>
<td>SS 2022</td>
<td>0187500</td>
<td>Übungen zu 0187400</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Weiß</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungsbezeichnung</th>
<th>SWS</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7700013</td>
<td>Numerische Mathematik für die Fachrichtung Informatik</td>
<td></td>
<td>Weiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (120 min).

Voraussetzungen
Keine
3.229 Teilleistung: Numerische Modellierung von Mehrphasenströmungen [T-MACH-105420]

Verantwortung: Dr. Martin Wörner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Ortsangabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2130934</td>
<td>Numerische Modellierung von Mehrphasenströmungen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Wörner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Ortsangabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105420</td>
<td>Numerische Modellierung von Mehrphasenströmungen</td>
<td>2 SWS</td>
<td></td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105420</td>
<td>Numerische Modellierung von Mehrphasenströmungen</td>
<td>2 SWS</td>
<td></td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 30 Min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Numerische Modellierung von Mehrphasenströmungen
2130934, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Einführung in die Thematik Mehrphasenströmungen (Begriffe, Definitionen, Beispiele)
2. Physikalische Grundlagen (Kennzahlen, Phänomenologie von Einzelblasen, Randbedingungen an fluiden Grenzflächen, Kräfte auf ein suspendiertes Partikel)
3. Mathematische Grundlagen (Grundgleichungen, Mittelung, Schließungsproblem)
4. Numerische Grundlagen (Diskretisierung in Raum und Zeit, Abbruchfehler und numerische Diffusion)
5. Modelle durchdringender Kontinua (Homogenes Modell, Algebraisches Schlupf Modell, Standard Zweifluid Modell und seine Erweiterungen)
7. Grenzflächenauflösende Methoden (Volume-of-Fluid-, Level-Set- und Frontverfolgungsmethode)

Organisatorisches
Mündliche Prüfung, Dauer: 30 Minuten, Hilfsmittel: keine

Literaturhinweise
Ein englischsprachiges Kurzskriptum kann unter https://publikationen.bibliothek.kit.edu/270056199 heruntergeladen werden.
Die Powerpoint-Folien werden nach jeder Vorlesung im ILIAS-System zum Herunterladen bereitgestellt.
Eine Liste mit Buchempfehlungen wird in der ersten Vorlesungsstunde ausgegeben.
3.230 Teilleistung: Numerische Simulation turbulenter Strömungen [T-MACH-105397]

Verantwortung: Dr. Günther Grötzbach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
WS 22/23 2153449 Numerische Simulation turbulenter Strömungen 3 SWS Vorlesung (V) / 🗣 Grötzbach

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105397 Numerische Simulation turbulenter Strömungen Grötzbach

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündlich

Dauer: 30 Minuten

Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Pflichtfächer, insbesondere Strömungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Numerische Simulation turbulenter Strömungen
2153449, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

In der Veranstaltung werden folgende Themen der Turbulenzsimulationsmethode behandelt:

- Erscheinungsformen von Turbulenz und daraus abgeleitet die Anforderungen und Grenzen der Simulationsmöglichkeiten.
- Erhaltungsgleichungen für Strömungen mit Wärmeübertragung, deren zeitliches oder räumliches Filtern.
- Einige Modelle für die Turbulenzfeinstruktur und ihre physikalische Begründung.
- Besonderheiten bei der Behandlung von Rand- und Anfangsbedingungen.
- Geeignete numerische Verfahren für die Integration in Raum und Zeit.
- Statistische und grafische Methoden zur Analyse der Simulationsergebnisse.
- Beispiele ausgeführter Turbulenzsimulationen aus Forschung und Ingenieurwesen.

Organisatorisches
Dauer der Vorlesung 3 h von 14:00 - 15:30 h und von 15:45 - 16:30 h./Duration of the lecture 3 h from 14:00 - 15:30 h and from 15:45 - 16:30 h
Literaturhinweise
G. Grötzbach, Script in English
3.231 Teilleistung: Numerische Strömungsmechanik [T-MACH-105338]

Verantwortung:
Dr.-Ing. Davide Gatti
Dr.-Ing. Franco Magagnato

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von:
M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Lehrveranstaltung-ID</th>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Vorlesung / Übung</th>
<th>Dozent(innen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2153441</td>
<td>Numerische Strömungsmechanik</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🧩</td>
<td>Gatti, Frede</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Lehrveranstaltung-ID</th>
<th>Bezeichnung</th>
<th>Dozent(innen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76T-Mach-105338</td>
<td>Numerische Strömungsmechanik</td>
<td>Gatti, Frohnapfel</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76T-Mach-105338</td>
<td>Numerische Strömungsmechanik</td>
<td>Gatti, Frohnapfel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung - 30 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V

Numerische Strömungsmechanik

2153441, WS 22/23, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt

Die Lehrveranstaltung behandelt folgende Themen:

1. Grundgleichungen der Numerischen Strömungsmechanik
2. Wichtigste Diskretisierungsmethoden für strömungsmechanische Probleme, mit Fokus auf finiten Differenzen und finiten Volumina
3. Rand- und Anfangsbedingungen
4. Netzgenerierung und Netzbehandlung
5. Lösungsalgorithmen für lineare und nichtlineare Gleichungssysteme
6. Lösungsstrategien für die inkompressiblen Navier-Stokes Gleichungen
7. Einführung in die Lösung der kompressiblen Navier-Stokes Gleichungen
8. Beispiele zur numerischen Simulation in der Praxis

Literaturhinweise

3.232 Teilleistung: Numerische Strömungsmechanik mit PYTHON [T-MACH-110838]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022 2154405 Numerische Strömungsmechanik mit Python 2 SWS Praktikum (P) / 🧩 Gatti, Frohnapfel

Prüfungsveranstaltungen

SS 2022 76-T-MACH-110838 Numerische Strömungsmechanik mit Python Frohnapfel, Gatti

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
unbenotete Hausarbeit

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Numerische Strömungsmechanik mit Python 2154405, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz/Online gemischt

Inhalt
Numerische Strömungsmechanik mit Phyton
- Einführung in Numerik und in der Programmiersprache Python
- Finite-Differenzen-Methodik
- Finite-Volumen-Methodik
- Rand- und Anfangsbedingungen
- explizite und implizite Zeitverfahren (Euler-Vorwärtss- und -Rückwärts-Verfahren, Crank-Nicholson-Verfahren)
- Druckkorrekturverfahren (SIMPLE-Methode, PISO-Methode)
- Numerisches Lösen der Navier-Stokes Gleichung von 2D Strömungsproblemen

Organisatorisches
Die Teilnehmerzahl ist begrenzt, bitte bis zum 08.08.22 per E-Mail anmelden sekretariat@istm.kit.edu.

Literaturhinweise
Teilleistung: Patente und Patentstrategien in innovativen Unternehmen [T-MACH-105442]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dipl.-Ing. Frank Zacharias

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>jedes Semester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2147160</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>2</td>
<td>Block-Vorlesung (BV) / Online</td>
<td>Zacharias</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2147161</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>2</td>
<td>Block (B) / Präsenz/Online gemischt</td>
<td>Zacharias</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltnummer</th>
<th>Veranstaltungstitel</th>
<th>Prüfungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105442</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>Mündliche Prüfung, benotet, Dauer: ca. 20 Minuten</td>
<td>Zacharias, Albers</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, benotet, Dauer: ca. 20 Minuten

Voraussetzungen

keine

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Patente und Patentstrategien in innovativen Unternehmen

2147160, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV) Online
Inhalt
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage oder ILIAS
Anwesenheit Vorlesung (5 VL): 24 Std
Persönliche Vor- und Nachbereitung Vorlesung: 5 Std
Vorbereitung Klausur: 91 Std

Vorlesungsumdruck:

1. Einführung in gewerbliche Schutzrechte (Intellectual Property)
2. Beruf des Patentanwalts
3. Anmelden und Erwirken von gewerblichen Schutzrechten
4. Patentliteratur als Wissens-/Informationsquelle
5. Arbeitnehmererfindungsrecht
6. Aktive, projektorientierte Schutzrechtsbetreuung
7. Strategisches Patentieren
8. Bedeutung gewerblicher Schutzrechte
9. Internationale Herausforderungen und Trends
10. Professionelle Verhandlungsführung und Konfliktbeilegungsverfahren
11. Aspekte des Gesellschaftsrechts
Organisatorisches
Weitere Informationen siehe IPEK-Homepage.
https://www.ipek.kit.edu/2976_2858.php
3.234 Teilleistung: Patentrecht [T/INFO-101310]

Verantwortung: Markus Hössle
Matthias Koch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

SS 2022 7500342 Patentrecht Dreier

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach § 4 Abs. 2 Nr. 1 SPO.

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen
die

Empfehlungen
Keine

Anmerkungen
Entfällt und wird ersetzt durch T/INFO-111403 Seminar: Patentrecht
3.235 Teilleistung: Photovoltaik [T-ETIT-101939]

Verantwortung: Prof. Dr.-Ing. Michael Powalla
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart (V/Ü)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2313737</td>
<td>Photovoltaik</td>
<td>3</td>
<td>Vorlesung (V) / 📚</td>
<td>Powalla, Lemmer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2313738</td>
<td>Übungen zu 2313737 Photovoltaik</td>
<td>1</td>
<td>Übung (Ü) / 📚</td>
<td>Powalla, Lemmer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7313737</td>
<td>Photovoltaik</td>
<td>Powalla, Lemmer</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7313737</td>
<td>Photovoltaik</td>
<td>Powalla, Lemmer</td>
</tr>
</tbody>
</table>

Legende: 📚 Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Modulnote ist die Note dieser schriftlichen Prüfung.

Voraussetzungen
"M-ETIT-100524 - Solar Energy" darf nicht begonnen sein.
3.236 Teilleistung: Physikalische Grundlagen der Lasertechnik [T-MACH-102102]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23 2181612</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 76-T-MACH-102102</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (30 min)
keine Hilfsmittel

Voraussetzungen

Empfehlungen
grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Physikalische Grundlagen der Lasertechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181612, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
<tr>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>
Inhalt

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Festkörper-, Halbleiter-, Gas-, Flüssigkeits- u.a. Laser)
- Strahleigenschaften, -führung, -formung
- Laser in der Materialbearbeitung
- Laser in der Messtechnik
- Laser in der Medizintechnik
- Lasersicherheit

Die Vorlesung wird durch eine Übung ergänzt.

Der/die Studierende

- kann die Grundlagen der Lichtentstehung, die Voraussetzungen für die Lichtverstärkung sowie den prinzipiellen Aufbau und die Funktionsweise unterschiedlicher Laserstrahlquellen erläutern.
- kann für die wichtigsten lasergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und auf dieser Basis anwendungsspezifisch geeignete Laserstrahlquellen auswählen.
- kann die Möglichkeiten zum Einsatz von Lasern in der Mess- und Medizintechnik erläutern.
- kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung beschreiben und daraus die erforderlichen Maßnahmen für die Gestaltung von Laseranlagen ableiten.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Präsenzzeit: 33,5 Stunden
Selbststudium: 116,5 Stunden

Die Erfolgskontrolle erfolgt in Form einer ca. 30 min. mündlichen Prüfung (nach §4(2), 2 SPO) zu einem vereinbarten Termin. Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Im Rahmen des Bachelor- und Master-Studiums darf nur eine der beiden Vorlesungen "Lasereinsatz im Automobilbau" (2182642) oder "Physikalische Grundlagen der Lasertechnik" (2181612) gewählt werden.

Organisatorisches
Termine für die Übung werden in der Vorlesung bekannt gegeben!

Literaturhinweise
T. Graf: Laser - Grundlagen der Laserstrahlerzeugung 2015, Springer Vieweg
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.237 Teilleistung: Physikalische Messtechnik [T-MACH-111022]

Verantwortung: Dr. Dominique Buchenau
Prof. Dr. Robert Stieglitz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfung

Leistungspunkte: 4

Notenskala: Drittelnoten

Turnus: Jedes Wintersemester

Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2189490</td>
<td>Physikalische Messtechnik</td>
<td>2</td>
<td>Vorlesung (V) / Online</td>
<td>Stieglitz, Buchenau</td>
</tr>
</tbody>
</table>

Legende: 📱 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>V</th>
<th>Physikalische Messtechnik</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2189490, WS 22/23, 2 SWS, Sprache: Deutsch/Englisch</td>
<td>Online</td>
<td></td>
</tr>
</tbody>
</table>

[Im Studierendenportal anzeigen]
Inhalt

Qualifikationsziele:

Erwerb von Kenntnissen:

- Grundlagen der elektrischen Messtechnik
- Prinzipien zur Wandlung physikalischer Größen in elektrische Signale
- Wandlung und Verarbeitung nichtelektrischer Größen
- Kenngrößen und Übertragungseigenschaften von Messaufnehmern
- Grundlagen der analogen und digitalen Messwerterfassung & Verarbeitung
- Grundlagen induktiver und optischer Messverfahren

Fertigkeiten:

- Umgang mit elektrischen Messgeräten und Verfahren
- Fähigkeit zum Aufbau einfacher Messschaltungen
- Messdatenaufnahme und Verarbeitung, Darstellung funktionaler Abhängigkeiten
- Analyse von Messaufgaben, Auswahl von Messverfahren und Messgeräten
- Beurteilung von Messfehlern, Reduktion systematischer Fehler

Kompetenzen:

- Analyse messtechnischer Problemstellungen, Erarbeitung von Lösungen
- Planung und Auslegung von Messsystemen in Messketten
- Planung und Aufbau automatisierter Messeinrichtungen
- Beurteilung der Güte von Messverfahren und Messergebnissen

Inhaltliche Gliederung:

- Allgemeine Einführung in die physikalische Mess- und Sensortechnik
- Auswertung von Messsignalen
- Wichtige Messverfahren
- Sensorkonzepte nach physikalischen Effekten
- Spezielle Konzepte der physikalischen Messtechnik
- Digital-Analog & Analog-Digitale Wandlungsverfahren
- Analog und digitale Modulationsverfahren

Verwendbarkeit:

Geeignet für Bachelor-Studiengänge mit den Schwerpunkten:

- Maschinenbau
- Physikalische Ingenieurwissenschaft
- Produktionstechnik / Verkehrswesen
- Informationstechnik im Maschinenwesen

Das ererbte Know-how ist für alle ingenieurtechnischen Disziplinen relevant, besonders in den Bereichen: Feinwerktechnik, Mechatronik, Medizintechnik, Mess- und Automatisierungstechnik etc.

Arbeitsaufwand:

Gesamtumfang ca. 120 h / davon 30 h in Präsenzvorlesung und Übung

Prüfung:

Am Ende des Kurses findet eine mündliche Prüfung statt, Dauer ca. 25 Minuten

Organisatorisches

Anmeldung erforderlich unter il-sekretariat@inr.kit.edu

Literaturhinweise

- Hecht, E., Optik, Oldenbourg-Verlag, 2005, ISBN 3-486-27359-0
3.238 Teilleistung: Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung [T-MACH-105537]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 2189906 | Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung | 1 SWS | Vorlesung (V) / 🗣 | Dagan, Metz |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105537 | Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung | Dagan |

Erfolgskontrolle(n)
mündlich, ca. 30 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung
2189906, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
3 TEILLEISTUNGEN

Inhalt

- Relevante physikalische Begriffe der Kernphysik
- Nachzerfallswärme-Borst-Wheeler Gleichung
- Die Unfälle von Three Mile Island und Fukushima
- Kernspaltung, Kettenreaktion und Reaktor- Kontrollsysteme
- Grundbegriffe der Wirkungsquerschnitte
- Prinzipien der Reaktorkinetik.
- Reaktorvergiftung
- Die Unfälle von Idaho und Tschernobyl
- Grundlagen des Kernbrennstoffkreislauf
- Wiederaufarbeitung ausgedienter Brennelemente und Verglasung von Spaltproduktlösungen
- Zwischenlagerung nuklearer Abfälle in Oberflächenlagern
- MultibARRIERenkoNzePT für ENDlAGERung in tiefen geologischen Formationen
- Die Situation in den ENDlAGern Asse II, Konrad und Morsleben

Die Studierenden

- gewinnen das physikalische Verständnis für die bekanntesten nuklearen Unfälle
- können vereinfachte Rechnungen ausführen, um die Ereignisse nachzuvollziehen
- können Sicherheits-relevante Eigenschaften von schwach-, mittel- und hochradioaktiven Abfällen definieren
- sind in der Lage, die Vorgehensweise und Auswirkungen der Wiederaufarbeitung, Zwischenlagerung und Endlagerung nuklearer Abfälle zu bewerten

Präsenzzeit: 14 Stunden
Selbststudium: 46 Stunden
mündlich, ca. 20 min

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise

AEA öffentliche Dokumentation zu den nuklearen Ereignissen
K. Wirtz: Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton: Nuclear reactor Analysis, J. Wiley $ Sons, Inc. 1975 (in Englisch)
3.239 Teilleistung: Plastizität auf verschiedenen Skalen [T-MACH-105516]

Verantwortung: Prof. Dr. Christian Greiner
 Dr. Katrin Schulz

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Greiner, Schulz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2181750</td>
<td>2 SWS</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 💬 Präsenz, ✕ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 min

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik, Mechanik und Werkstoffkunde

Anmerkungen
- beschränkte Teilnehmerzahl
- Voranmeldung erforderlich
- Anwesenheitspflicht

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Im Studierendenportal anzeigen

V Plastizität auf verschiedenen Skalen
2181750, WS 22/23, 2 SWS, Sprache: Deutsch

Inhalt

Der/die Studierende kann
- die physikalischen Grundlagen der Plastizität erläutern sowie aktuelle Forschungsergebnisse aus dem Bereich der Plastizität wiedergeben.
- wissenschaftliche Veröffentlichungen selbstständig lesen und strukturiert auswerten.
- Fachinformationen in klarer, lesbarer und verständlicher Form präsentieren.
- auf Basis der erworbenen Kenntnisse für oder/und gegen einen Forschungsansatz oder eine Idee argumentieren.

Vorkenntnisse in Mathematik, Physik, Mechanik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Prüfung: Vortrag (40%), mündliche Prüfung (30 min, 60%)

An der Vorlesung können maximal 14 Studierende pro Semester teilnehmen.
Organisatorisches
Termine werden bekannt gegeben. Seminarraum des IAM-CMS (Geb. 10.91, Raum 227/3) Anmeldung per Email an katrin.schulz@kit.edu bis zum 07.10.2022
Teilleistung: Polymerengineering I [T-MACH-102137]

Verantwortung: Dr.-Ing. Wilfried Liebig
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
WS 22/23 2173590 Polymerengineering I 2 SWS Vorlesung (V) / Liebig

Prüfungsveranstaltungen
SS 2022 76-T-MACH-102137 Polymerengineering I Liebig
WS 22/23 76-T-MACH-102137 Polymerengineering I Liebig

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Polymerengineering I
2173590, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
1. Wirtschaftliche Bedeutung der Kunststoffe
2. Einführung in mechanische, chemische und elektrische Eigenschaften
3. Überblick der Verarbeitungsverfahren
4. Werkstoffkunde der Kunststoffe
5. Synthese

Lernziele:

Der/die Studierende
- kann Polymere beschreiben und klassifizieren sowie die grundsätzlichen Synthese und Herstellungsverfahren erklären
- kann praxisgerechte Anwendungen für die verschiedenen Verfahren und Materialien finden,
- sind fähig die Verarbeitung und Anwendungen von Polymeren und Verbundwerkstoffen auf Basis werkstoffkundlicher Grundlagen zu reflektieren
- kann die speziellen mechanischen, chemischen und elektrischen Eigenschaften von Polymeren beschreiben und mit den Bindungsverhältnissen korrelieren
- kann die Einsatzgebiete und Einsatzgrenzen polymerer Werkstoffe definieren

Voraussetzungen:
keine

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
Teileistung: Polymerengineering II [T-MACH-102138]

Verantwortung: Dr.-Ing. Wilfried Liebig

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von:
- M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teileistungsart:
- Prüfungsleistung mündlich

Leistungspunkte:
- 4

Notenskala:
- Drittelnoten

Turnus:
- Jedes Sommersemester

Version:
- 1

Lehrveranstaltungen

| SS 2022 | 2174596 | Polymerengineering II | 2 SWS | Vorlesung (V) / 🧩 | Liebig |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102138 | Polymerengineering II | Liebig |
| WS 22/23 | 76-T-MACH-102138 | Polymerengineering II | Liebig |

Legende:
- 🖥 Online,
- 🧩 Präsenz/Online gemischt,
- 🗣 Präsenz,
- ☓ Abgesagt

Erfolgskontrolle(n)
- Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
- keine

Empfehlungen
- Kenntnisse in Polymerengineering I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Polymerengineering II
- 2174596, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)
- Präsenz/Online gemischt
Inhalt
1. Verarbeitungsverfahren con Polymeren
2. Bauteileigenschaften
 Anhand von praktischen Beispielen und Bauteilen
 2.1 Werkstoffauswahl
 2.2 Bauteilgestaltung, Design
 2.3 Werkzeugtechnik
 2.4 Verarbeitungs- und Fertigungstechnik
 2.5 Oberflächentechnik
 2.6 Nachhaltigkeit, Recycling

Lernziele:

Der/die Studierende
• kann Verarbeitungsverfahren von Polymeren beschreiben und klassifizieren, er/sie ist in der Lage, die Grundprinzipien der Werkzeugtechnik zur Herstellung von Kunststoffbauteilen anwendungsbezogen zu erläutern.
• kann diese bauteil- und fertigungsgerecht anwenden.
• ist in der Lage, Bauteile fertigungsgerecht zu gestalten.
• versteht es Polymere bauteilgerecht einzusetzen.
• hat die Fähigkeiten, den Werkstoff "Polymer" anforderungsgerecht, ökonomisch und ökologisch einzusetzen und die geeigneten Fertigungsverfahren festzulegen.

Voraussetzungen:
Polymerengineering I

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Polymerengineering II beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).

Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.

Recommended literature and selected official lecture notes are provided in the lecture.
3.242 Teilleistung: Polymers in MEMS A: Chemistry, Synthesis and Applications [T-MACH-102192]

Verantwortung: Dr.-Ing. Bastian Rapp
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102192 | Polymers in MEMS A: Chemistry, Synthesis and Applications | Rapp, Worgull |

Erfolgskontrolle(n)

mündlich

Voraussetzungen

keine
3.243 Teilleistung: Polymers in MEMS B: Physics, Microstructuring and Applications [T-MACH-102191]

Verantwortung: Dr.-Ing. Matthias Worgull

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von:
- M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik
- M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102191 | Polymers in MEMS B: Physics, Microstructuring and Applications | Worgull |

Erfolgskontrolle(n)

mündlich

Voraussetzungen

keine
3.244 Teilleistung: Polymers in MEMS C: Biopolymers and Bioplastics [T-MACH-102200]

Verantwortung: Dr.-Ing. Bastian Rapp
Dr.-Ing. Matthias Worgull

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

| SS 2022 | 2142855 | Polymers in MEMS C - Biopolymers and Bioplastics | 2 SWS | Block-Vorlesung (BV) / 🧩 | Worgull |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102200 | Polymers in MEMS C: Biopolymers and Bioplastics | Worgull, Rapp |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlich

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Polymers in MEMS C - Biopolymers and Bioplastics
2142855, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)
Präsenz/Online gemischt
Inhalt

Diese Vorlesung beschreibt die wichtigsten Kategorien dieser sogenannten Biopolymere. Dabei wird unterschieden in Polymere, die chemisch analoge Rohstoffe auf natürlichem Wege (beispielsweise mittels Fermentation) erzeugen, wie diese Ausgangsstoffe chemisch aufbereitet und polymerisiert werden und wie die daraus gewonnenen Polymere technologisch verarbeitet werden. Dabei werden zahlreiche Beispiele aus der Mikrotechnik aber auch aus dem Alltag beleuchtet.

Einige der behandelten Fragestellung sind:

- Was sind Biopolymurethane und warum kann man sie aus Rizinusöl herstellen?
- Was genau sind eigentlich "natürliche Klebstoffe" und wie unterscheiden sie sich von chemischen Klebstoffen?
- Wie entstehen Autoreifen aus Naturgummi?
- Was sind die beiden wichtigsten Polymere für das Leben auf der Erde?
- Kann man aus Kartoffeln Polymere machen?
- Kann man Holz spritzgießen?
- Wie macht man Knöpfe aus Milch?
- Kann man mit Biopolymeren Musik hören?
- Wo und wie kann man Biopolymer beispielsweise für das tissue engineering einsetzen?
- Wie funktionieren LEGO-Bausteine aus DNA?

Die Vorlesung wird in Deutsch gehalten, außer es befinden sich nicht deutschsprachende Studenten unter den Teilnehmern. In diesem Fall wird die Vorlesung in englicher Sprache gehalten und vereinzelt technische Terminologien ins Deutsche übersetzt. Die Vorlesung folien sind in englischer Sprache abgefasst und werden als Handout an die Teilnehmer ausgegeben. Zusätzliche vorlesungsbegleitende Literatur ist nicht notwendig.

Für weitere Rückfragen, wenden Sie sich bitte an PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Eine Voranmeldung ist nicht notwendig.

Organisatorisches

Für weitere Rückfragen, wenden Sie sich bitte an PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Eine Voranmeldung ist nicht notwendig.

Literaturhinweise

Zusätzliche vorlesungsbegleitende Literatur ist nicht notwendig.
3.245 Teilleistung: Praktikum für rechnergestützte Strömungsmesstechnik [T-MACH-106707]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2171488 | Praktikum für rechnergestützte Strömungsmesstechnik | 3 SWS | Praktikum (P) / 🗣 | Bauer, Mitarbeiter |
| WS 22/23 | 2171488 | Praktikum für rechnergestützte Strömungsmesstechnik | 3 SWS | Praktikum (P) / 🗣 | Bauer, Mitarbeiter |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-106707 | Praktikum für rechnergestützte Strömungsmesstechnik | Bauer |

Erfolgskontrolle(n)
Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten

Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum für rechnergestützte Strömungsmesstechnik
2171488, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz
Inhalt
siehe Internet-Seite des Instituts;
Anmeldung erfolgt über Anmeldeformular auf der Internet-Seite des Instituts.
Anmeldung während der Vorlesungszeit über die Webseite.

Lehrinhalt:

Aufbau von Meßsystemen
- Meßaufnehmer und Sensoren
- Analog/Digital-Wandlung
- Programmentwurf und Programmierstil in LabView
- Datenverarbeitung
- Bus-Systeme
- Aufbau eines rechnergestützten Messsystems für Druck, Temperatur und abgeleitete Größen
- Frequenzanalyse

Arbeitsaufwand:
Präsenzzeit: 52,5
Selbststudium: 67,5

Lernziele:
Die Studenten können:
- die wesentlichen Grundlagen der rechnergestützen Messwerterfassung theoretisch beschreiben und praktisch anwenden
- nach jedem Lernabschnitt den vorgestellten Stoff anhand eines Beispiels am PC in die Praxis umsetzen

Nachweis:
Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten

Hilfsmittel: keine

Organisatorisches
Der aktuelle Status wird auf der ITS-homepage bekannt gegeben.

Literaturhinweise
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011

Praktikum für rechnergestützte Strömungsmesstechnik
2171488, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz
Inhalt
siehe Internet-Seite des Instituts;
Anmeldung erfolgt über Anmeldeformular auf der Internet-Seite des Instituts.
Lerninhalt:
Aufbau von Meßsystemen
• Meßaufnehmer und Sensoren
• Analog/Digital-Wandlung
• Programmentwurf und Programmierstil in LabView
• Datenverarbeitung
• Bus-Systeme
• Aufbau eines rechnergestützten Messsystems für Druck, Temperatur und abgeleitete Größen
• Frequenzanalyse
Präsenzzeit: 52,5
Selbststudium: 67,5
Nachweis:
Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten

Hilfsmittel: keine

Organisatorisches
Ort und Zeit siehe Institutshomepage.

Literaturhinweise
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011
3.246 Teilleistung: Praktikum Lasermaterialbearbeitung [T-MACH-102154]

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Notenskala: best./nicht best.
Turnus: Jedes Semester
Version: 2

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr.-Ing. Johannes Schneider</th>
</tr>
</thead>
</table>
| Einrichtung: | KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science |
| Bestandteil von: | M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme |

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2183640</th>
<th>Praktikum "Lasermaterialbearbeitung"</th>
<th>3 SWS</th>
<th>Praktikum (P) / 🔄</th>
<th>Schneider, Pfleging</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2183640</td>
<td>Praktikum "Lasermaterialbearbeitung"</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🔄</td>
<td>Schneider, Pfleging</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-102154</th>
<th>Praktikum Lasermaterialbearbeitung</th>
<th>Schneider</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines übergreifenden Abschlusskolloquiums incl. einer 20 minütigen Präsentation.

Voraussetzungen
Keine

Empfehlungen
Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Praktikum "Lasermaterialbearbeitung"</th>
<th>Praktikum (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2183640, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt
Das Praktikum umfasst acht halbtägige praktische Versuche, die in Gruppen durchgeführt werden. Es werden folgende Themengebiete der Lasermaterialbearbeitung von Metallen, Polymeren und Keramiken behandelt:

- Sicherheit beim Umgang mit Laserstrahlung
- Härten und Umschmelzen
- Schmelz- und Brennschneiden
- Oberflächenmodifizierung durch Dispergieren und Legieren
- Fügen durch Schweißen bzw. Löten
- Materialabtrag (Oberflächenstrukturierung, Beschriften und Bohren)
- Messtechnik

Im Rahmen des Praktikums werden verschiedene Laserstrahlquellen wie CO2-, Nd:YAG-, Excimer- und Hochleistungs-Dioden-Laser vorgestellt und genutzt.

Der/die Studierende

- kann für die wichtigsten lasergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und geeignete Parameter auswählen.
- kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung erläutern.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Die Teilnahme an der Lehrveranstaltung Physikalische Grundlagen der Lasertechnik (2181612) oder Lasereinsatz im Automobilbau (2182642) wird dringend empfohlen.

Präsenzzeit: 34 Stunden
Selbststudium: 86 Stunden

Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines übergreifenden Abschlusskolloquiums inkl. einer 20 minütigen Präsentation.

Organisatorisches
Die Praktikumsplätze für das Sommersemester 2022 sind bereits ausgebucht!

Anmeldung per Email an johannes.schneider@kit.edu
Das Praktikum findet semesterbegleitend in Kleingruppen am IAM-CMS (CS) bzw. IAM-AWP (CN) statt!

Die Termine werden zu Beginn des Semesters bekannt gegeben.

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer

Praktikum "Lasermaterialbearbeitung"
2183640, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz/Online gemischt
Inhalt
Das Praktikum umfasst acht halbtägige praktische Versuche, die in Gruppen durchgeführt werden. Es werden folgende Themengebiete der Lasermaterialbearbeitung von Metallen, Polymeren und Keramiken behandelt:

- Sicherheit beim Umgang mit Laserstrahlung
- Härten und Umschmelzen
- Schmelz- und Brennschneiden
- Oberflächenmodifizierung durch Dispergieren und Legieren
- Fügen durch Schweißen bzw. Löten
- Materialabtrag (Oberflächenstrukturierung, Beschriften und Bohren)
- Messtechnik

Im Rahmen des Praktikums werden verschiedene Laserstrahlquellen wie CO2-, Nd:YAG-, Excimer- und Hochleistungs-Dioden-Laser vorgestellt und genutzt.

Der/die Studierende

- kann für die wichtigsten lagergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und geeignete Parameter auswählen.
- kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung erläutern.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Die Teilnahme an der Lehrveranstaltung Physikalische Grundlagen der Lasertechnik (2181612) oder Lasereinsatz im Automobilbau (2182642) wird dringend empfohlen.

Präsenzzzeit: 34 Stunden
Selbststudium: 86 Stunden

Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines übergreifenden Abschlusskolloquiums incl. einer 20 minütigen Präsentation.

Organisatorisches
Maximal 12 Teilnehmer/innen!
Aktuell sind nur noch wenige Plätze zu vergeben! Registrierung möglich per Email an johannes.schneider@kit.edu
Praktikum findet in Kleingruppen semesterbegleitend (dienstags bzw. mittwochs, ganztägig) bzw. als Blockpraktikum auf dem Campus Nord am IAM-AWP (Geb. 681) und auf dem Campus Süd am IAM-CMS (Geb. 30.48) statt!
Termine werden mit den Teilnehmern/innen direkt abgestimmt.

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.247 Teilleistung: Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik [T-MACH-105341]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von:
M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2137306</td>
<td>Praktikum "Rechnergestützte Verfahren der Mess- und Regelungstechnik"</td>
<td>3 SWS</td>
<td>praktikum (P) / Themenvertiefung</td>
<td>Stiller, Müßigmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📡 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Kolloquien

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum "Rechnergestützte Verfahren der Mess- und Regelungstechnik"

2137306, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

8 Parallelkurse

Lerninhalt:

1. Digitaltechnik
2. Digitales Speicherosilloskop und digitaler Spektrum-Analysator
3. Ultraschall-Computertomographie
4. Beleuchtung und Bildgewinnung
5. Digitale Bildverarbeitung
6. Bildauswertung
7. Reglersynthese und Simulation
8. Roboter: Sensorik
9. Roboter: Aktorik und Bahnplanung
Das Praktikum umfasst 9 Versuche.

Voraussetzungen: Empfehlungen:

Vorlesung 'Grundlagen der Mess- und Regelungstechnik'

Arbeitsaufwand: 120 Stunden

Lernziele:

Nachweis:

Kolloquien
Literaturhinweise
Übungsanleitungen sind auf der Institutshomepage erhältlich.
Instructions to the experiments are available on the institute's website
3.248 Teilleistung: Praktikum 'Technische Keramik' [T-MACH-105178]

Verantwortung: Dr. Günter Schell
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 2125751 | Praktikum 'Technische Keramik' | 2 SWS | Praktikum (P) / 🗣 | Schell |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kolloquium und Abschlussbericht zu den jeweiligen Versuchen.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum 'Technische Keramik'
2125751, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Maximal 8 Teilnehmer/innen!
Das Laborpraktikum erstreckt sich über eine Woche, voraussichtlich im Februar 2022
Anmeldung über ILIAS ab Dezember 2021

Organisatorisches
Elektronisch über das ILIAS-Portal

Literaturhinweise

Richerson, D. R.: Modern Ceramic Engineering, CRC Taylor & Francis, 2006
3.249 Teilleistung: Praktikum zu Grundlagen der Mikrosystemtechnik [T-MACH-102164]

Verantwortung: Dr. Arndt Last
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungseinheit</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Sprache</th>
<th>Prüfungtype</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2143875</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Praktikum (P) / 🗣</td>
<td>Last</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2143877</td>
<td>Laborpraktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Praktikum (P) / 🗣</td>
<td>Last</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2143875</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Praktikum (P) / 🗣</td>
<td>Last</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2143877</td>
<td>Laborpraktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Praktikum (P) / 🗣</td>
<td>Last</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungseinheit</th>
<th>Vorlesungstitel</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102164</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>Last</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-102164</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>Last</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum zu Grundlagen der Mikrosystemtechnik

2143875, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Im Praktikum werden Versuche zu neun Themen angeboten:
1. Heißprägen von Kunststoff-Mikrostrukturen
2. Mikrogalvanik
3. Mikrooptik am Beispiel "LIGA-Mikrospektrometer"
4. UV-Lithographie
5. Optische Wellenleiter
6. Kapillarelektrophorese im Chipformat
7. SAW Gassensorik
8. Messtechnik
9. Rasterkraftmikroskopie
Jeder Studierende kann während der Praktikumswoche nur an fünf Versuchen teilnehmen. Die Versuche werden an den realen Arbeitsplätzen am IMT durchgeführt und von IMT-Mitarbeitern betreut.

Organisatorisches
Teilnahmeanfragen an Frau Nowotny, marie.nowotny@kit.edu

Literaturhinweise
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'
Laborpraktikum zu Grundlagen der Mikrosystemtechnik
2143877, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Im Praktikum werden Versuche zu neun Themen angeboten:
1. Heißprägen von Kunststoff-Mikrostrukturen
2. Mikrogalvanik
3. Mikrooptik am Beispiel "LIGA-Mikrospektrometer"
4. UV-Lithographie
5. Optische Wellenleiter
6. Kapillarelektrophorese im Chipformat
7. SAW Gassensorik
8. Messtechnik
9. Rasterkraftmikroskopie
Jeder Studierende kann während der Praktikumswoche nur an fünf Versuchen teilnehmen. Die Versuche werden an den realen Arbeitsplätzen am IMT durchgeführt und von IMT-Mitarbeitern betreut.

Organisatorisches
Teilnahmeanfragen an Frau Nowotny, marie.nowotny@kit.edu

Literaturhinweise
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'
3.250 Teilleistung: Product and Innovation Management [T-WIWI-109864]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2571154 | Product and Innovation Management | 2 SWS | Vorlesung (V) / 🗣 | Klarmann |

Prüfungsveranstaltungen

| SS 2022 | 7900024 | Product and Innovation Management | 2 SWS | Klarmann |
| SS 2022 | 7900204 | Product and Innovation Management | 2 SWS | Klarmann |

Legende: 🗣 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ⬗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

Keine

Anmerkungen

Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.ism.kit.edu).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Product and Innovation Management

2571154, SS 2022, 2 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Inhalt

This course addresses topics around the management of new as well as existing products. After the foundations of product management, especially the product choice behavior of customers, students get to know in detail different steps of the innovation process. Another section regards the management of the existing product portfolio.

Students
- know the most important terms of the product and innovation concept
- understand the models of product choice behavior (e.g., the Markov model, the Luce model)
- are familiar with the basics of network theory (e.g. the Triadic Closure concept)
- know the central strategic concepts of innovation management (especially the market driving approach, pioneer and successor, Miles/Snow typology, blockbuster strategy)
- master the most important methods and sources of idea generation (e.g. open innovation, lead user method, crowdsourcing, creativity techniques, voice of the customer, innovation games, conjoint analysis, quality function deployment, online toolkits)
- are capable of defining and evaluating new product concepts and know the associated instruments like focus groups, product testing, speculative sales, test market simulation Assessor, electronic micro test market
- have advanced knowledge about market introduction (e.g. adoption and diffusion models Bass, Fourt/Woodlock, Mansfield)
- understand important connections of the innovation process (cluster formation, innovation culture, teams, stage-gate process)

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam.

Total effort for 3 credit points: approx. 90 hours

Presence time: 30 hours
Preparation and wrap-up of LV: 45.0 hours
Exam and exam preparation: 15.0 hours

For further information please contact Marketing & Sales Research Group (marketing.ism.kit.edu).
Organisatorisches
Die Veranstaltung findet in Geb. 20.21, Raum 217 statt. Während anstehender Bauarbeiten wird die Veranstaltung in Geb. 10.11, Raum 223 verlegt. Dies wird kurzfristig bekanntgegeben.

Literaturhinweise
3.251 Teilleistung: Produkt- und Produktionskonzepte für moderne Automobile
[T-MACH-110318]

Verantwortung: Dr. Stefan Kienzle
Dr. Dieter Steegmüller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 2149670 | Produkt- und Produktionskonzepte für moderne Automobile | 2 SWS | Vorlesung (V) / 🧩 | Steegmüller, Kienzle |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑️ Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
Die Teilleistung T-MACH-105166 – Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Produkt- und Produktionskonzepte für moderne Automobile
2149670, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Die Vorlesung beleuchtet die praktischen Herausforderungen des modernen Automobilbaus. Die Dozenten nehmen als ehemalige Führungspersönlichkeiten der Automobilindustrie Bezug auf aktuelle Gesichtspunkte der automobilen Produktentwicklung und Produktion.

Die behandelten Themen sind im Einzelnen:

- Rahmenbedingungen der Fahrzeug- und Karosserieentwicklung
- Integration neuer Antriebstechnologien
- Funktionale Anforderungen (Crashsicherheit etc.), auch an Elektrofahrzeuge
- Entwicklungsprozess an der Schnittstelle Produkt & Produktion, CAE/ Simulation
- Energiespeicher und Versorgungsinfrastruktur
- Aluminium- und Stahleichtbau
- FVK und Hybride Bauteile
- Batterie- Brennstoffzellen- und Elektromotorenproduktion
- Fügetechnik im modernen Karosseriebau
- Moderne Fabriken und Fertigungsverfahren, Industrie 4.0

Lernziele:
Die Studierenden …

- können die vorgestellten Rahmenbedingungen der Fahrzeugentwicklung nennen und können die Einflüsse dieser auf das Produkt Anhand von Beispielen verdeutlichen.
- können die unterschiedlichen Leichtbausätze benennen und mögliche Anwendungsfelder aufzeigen.
- sind fähig, die verschiedenen Fertigungsverfahren für die Herstellung von Fahrzeugkomponenten anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, mittels der kennengelernten Verfahren und deren Eigenschaften eine Prozessauswahl durchzuführen.

Arbeitsaufwand:
Präsenzzzeit: 25 Stunden
Selbststudium: 95 Stunden

Organisatorisches
Termine werden über Ilias bekannt gegeben.
Bei der Vorlesung handelt es sich um eine Blockveranstaltung. Eine Anmeldung über Ilias ist erforderlich.
The lecture is a block course. An application in Ilias is mandatory.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.252 Teilleistung: Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung [T-MACH-102155]

Verantwortung: Prof. Dr.-Ing. Sama Mbang
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2123364 | Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR) | 2 SWS | Vorlesung / Übung (VÜ) / 🗣 | Mbang |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102155 | Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung | Mbang |

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)
2123364, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

- Überblick zur Fahrzeugentstehung (Prozess- und Arbeitsabläufe, IT-Systeme)
- Integrierte Produktmodelle in der Fahrzeugindustrie (Produkt, Prozess und Ressource Sichten)
- Neue CAx-Modellierungsmethoden (intelligente Feature-Technologie, Template- & Skelett-Methodik, funktionale Modellierung)
- Automatisierung und wissensbasierte Mechanismen in der Konstruktion und Produktionsplanung
- Anforderungs- und Prozessgerechte Fahrzeugentstehung (3D-Master Prinzip, Toleranzmodelle)
- Concurrent Engineering, verteiltes Arbeiten
- Erweiterte Konzepte: Prinzip der digitalen und virtuellen Fabrik (Einsatz virtueller Techniken und Methoden in der Fahrzeugentstehung)

Organisatorisches

Blockveranstaltung

Literaturhinweise

Vorlesungsfolien
3.253 Teilleistung: Produktentstehung - Bauteildimensionierung [T-MACH-105383]

Verantwortung: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
7

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen
SS 2022
2150511
Produktentstehung - Bauteildimensionierung
3 / 1 SWS
Vorlesung / Übung (VÜ) / Präsenz
Schulze, Dietrich

Prüfungsveranstaltungen
SS 2022
76-T-MACH-105383
Produktentstehung - Bauteildimensionierung
Schulze

WS 22/23
76-T-MACH-105383
Produktentstehung - Bauteildimensionierung
Schulze

Erfolgskontrolle(n)
Prüfung (2 Stunden)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktentstehung - Bauteildimensionierung
2150511, SS 2022, 3 / 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt
Ziel der Vorlesung ist es, die Themengebiete der Bauteildimensionierung und der Werkstofftechnik in ihrer Verknüpfung darzustellen und den Umgang mit entsprechenden Methoden und deren Kombinationen zu erlernen.

Als wichtige Lehrmerkmale sollen hierbei dem angehenden Ingenieur die Schnittstellen dieser Themenbereiche und das Zusammenspiel der einzelnen Werkstoffbelastungen im Bauteil verdeutlicht werden.

Die Themen im Einzelnen sind:
Bauteildimensionierung: Grundbeanspruchungen, Überlagerte Beanspruchungen, Kerbeinfluss, Schwingfestigkeit, Kerbschwingfestigkeit, Bewertung rissbehafteter Bauteile, Betriebsfestigkeit, Eigenspannungen, Hochtemperaturbeanspruchung und Korrosion
Werkstoffauswahl: Grundlagen, Werkstoffindices, Werkstoffauswahladiagramme, Vorgehensweise nach Ashby, Mehrfache Randbedingungen, Zielkonflikte, Form und Effizienz.

Lernziele:
Der/die Studierende ist in der Lage

• Bauteile anhand ihrer Belastung zu dimensionieren und auszulegen
• Werkstoffkennwerte aus der mechanischen Werkstoffprüfung in der Auslegung zu verwenden
• Überlagerte Gesamtbelastungen und kritische Belastungen an einfachen Bauteilen zu erkennen und rechnerisch abzubilden zu können
• Werkstoffe anhand des Einsatzbereichs der Bauteile und deren Belastungen auszuwählen

Voraussetzungen:

Arbeitsaufwand:

Prüfungsleistung: schriftlich (2 Stunden)
Organisatorisches
Freitags generell nach Vereinbarung

Literaturhinweise
Vorlesungsskript
3.254 Teilleistung: Produktions- und Logistikcontrolling [T-WIWI-103091]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Alexander Rausch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) nach §4(2), 1 SPO. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine
3.255 Teilleistung: Produktionsplanung und -steuerung [T-MACH-105470]

Verantwortung: Dr.-Ing. Andreas Rinn

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Teilleistung: Produktionsplanung und -steuerung [T-MACH-105470]

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungscode</th>
<th>SWS</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2110032</td>
<td>Produktionsplanung und -steuerung</td>
<td>2</td>
<td>Block-Vorlesung (BV) / Präsenz</td>
<td>Rinn</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2110032</td>
<td>Produktionsplanung und -steuerung</td>
<td>2</td>
<td>Block-Vorlesung (BV) / Präsenz</td>
<td>Rinn</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungscode</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105470</td>
<td>Produktionsplanung und -steuerung</td>
<td>2</td>
<td>Deml</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung 60 Minuten (bei geringer Teilnehmerzahl ist die Prüfung mündlich, 20 Minuten)

Voraussetzungen

Termingerechte Vorabanmeldung im ILIAS, da teilnahmebeschränkt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktionsplanung und -steuerung

2110032, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)

Präsenz

Inhalt

1. Ziele und Rahmenbedingungen der Produktionsplanung und -steuerung
2. Strategien der Arbeitssteuerung
3. Fallbeispiel: Fertigung von Fahrrädern
4. FASI-Plus: Fahrradfabrik-Simulation zur Produktionsplanung und -steuerung
5. Simulation der Auftragsabwicklung in einem Rechnermodell
6. Entscheidungsfindung zur Betriebsauftragssteuerung und Kaufteilbeschaffung
7. Auswertung der Rückmeldedaten aus Betriebsdatenerfassung und Betriebsabrechnung
8. Realisierungsaspekte der Produktionsplanung und -steuerung

Voraussetzungen:

- Kompaktveranstaltung
- Teilnehmerbeschränkung: die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Voranmeldung über ILIAS erforderlich
- Anwesenheitspflicht in gesamten Vorlesung

Empfehlungen:

- Kenntnisse in Produktionsmanagement/Betriebsorganisation/Industrial-Engineering erforderlich
- Arbeits- und wirtschaftswissenschaftliche Kenntnisse vorteilhaft
- Kenntnisse der Betriebs-/Wirtschaftsinformatik nicht erforderlich, aber hilfreich

Lernziele:

- Lerninhalte zum Thema "Produktionsmanagement" vertiefen
- Kenntnisse über die Produktionsplanung und -steuerung erweitern
- Grundlegende Techniken der Modellierung und Simulation von Produktionssystemen verstehen

Literaturhinweise

Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
Produktionsplanung und -steuerung
2110032, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Ziele und Rahmenbedingungen der Produktionsplanung und -steuerung
2. Strategien der Arbeitssteuerung
3. Fallbeispiel: Fertigung von Fahrrädern
4. FASI-Plus: Fahrradfabrik-Simulation zur Produktionsplanung und -steuerung
5. Simulation der Auftragsabwicklung in einem Rechnermodell
6. Entscheidungsfindung zur Betriebsauftragssteuerung und Kaufteilbeschaffung
7. Auswertung der Rückmeldedaten aus Betriebsdatenerfassung und Betriebsabrechnung
8. Realisierungsaspekte der Produktionsplanung und -steuerung

Voraussetzungen:
- Kompaktveranstaltung
- Teilnehmerbeschränkung: die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Voranmeldung über ILIAS erforderlich
- Anwesenheitspflicht in gesamten Vorlesung

Empfehlungen:
- Kenntnisse in Produktionsmanagement/Betriebsorganisation/Industrial-Engineering erforderlich
- Arbeits- und wirtschaftswissenschaftliche Kenntnisse vorteilhaft
- Kenntnisse der Betriebs-/Wirtschaftsinformatik nicht erforderlich, aber hilfreich

Lernziele:
- Lerninhalte zum Thema "Produktionsmanagement" vertiefen
- Kenntnisse über die Produktionsplanung und -steuerung erweitern
- Grundlegende Techniken der Modellierung und Simulation von Produktionssystemen verstehen

Organisatorisches
- Anwesenheitspflicht in Einführungsveranstaltung und Blockvorlesung.
- Teilnehmerzahl ist beschränkt.
- Für eine verbindliche Kursteilnahme ist die Prüfungsanmeldung bis 10 Tage vor Veranstaltungsbeginn im ifab-Sekretariat nachzuweisen.
- Die Prüfung ist schriftlich, außer es sind zuwenig Teilnehmer, dann mündlich
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.256 Teilleistung: Produktionstechnisches Labor [T-MACH-105346]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Jürgen Fleischer
Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Lehreinrichtungen

| SS 2022 | 2110678 | Produktionstechnisches Labor | 4 SWS | Praktikum (P) / 🧩 | Deml, Fleischer, Furmans, Ovtcharova |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105346 | Produktionstechnisches Labor | Deml, Furmans, Ovtcharova, Schulze |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Fachpraktikum: Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien.

Ergänzungsfach: Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien sowie Aufbereitung und Präsentation eines ausgewählten Themas in einem Vortrag.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktionstechnisches Labor
2110678, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz/Online gemischt
Inhalt
Das Produktionstechnische Labor (PTL) ist eine gemeinsame Veranstaltung der Institute wbk, IFL, IMI und ifab:

1. Rechnergestützte Produktentwicklung (IMI)
2. Rechnerkommunikation in der Fabrik (IMI)
3. Teilefertigung mit CNC Maschinen (wbk)
4. Ablaufsteuerungen von Fertigungsanlagen (wbk)
5. Automatisierte Montage (wbk)
6. Optische Identifikation in Produktion und Logistik (IFL)
7. RFID-Identifikationssysteme im automatisierten Fabrikbetrieb (IFL)
8. Lager- und Kommissioniertechnik (IFL)
9. Fertigungssteuerung (ifab)
10. Zeitwirtschaft (ifab)
11. Durchführung einer Arbeitsplatzgestaltung (ifab)

Empfehlungen:
Teilnahme an folgenden Vorlesungen:

- Informationssysteme
- Materialflusselehre
- Fertigungstechnik
- Arbeitswissenschaft

Lernziele:

- vorgegebene Planungs- und Auslegungsprobleme aus den genannten Bereichen lösen,
- die Prozesse auf der Fabrik-, Produktions- und Prozessebene beurteilen und gestalten,
- die Produktion eines Unternehmens der Stückgüterindustrie grundlegend planen, steuern und bewerten,
- die IT-Architektur in einem produzierenden Unternehmen konzipieren und beurteilen,
- die geeignete Förder-, Lager- und Kommissioniertechnik für eine Produktion konzipieren und bewerten,
- Teilefertigung und Montage bezüglich der Abläufe und der Arbeitsplätze auslegen und evaluieren.

Organisatorisches
Anwesenheitspflicht, Teilnehmerzahl begrenzt. Anmeldung über ILIAS
Arbeitsaufwand von 120 h (=4 LP).
Nachweis: bestanden / nicht bestanden
Regelmäßige Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien.

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
Teilleistung: Produktivitätsmanagement in ganzheitlichen Produktionssystemen [T-MACH-105523]

Verantwortung: Prof. Dr.-Ing. Sascha Stowasser
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2110046</th>
<th>Produktivitätsmanagement in ganzheitlichen Produktionssystemen</th>
<th>2 SWS</th>
<th>Block-Vorlesung (BV) / 🗣</th>
<th>Stowasser</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105523</th>
<th>Produktivitätsmanagement in ganzheitlichen Produktionssystemen</th>
<th>Deml, Stowasser</th>
</tr>
</thead>
</table>

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktivitätsmanagement in ganzheitlichen Produktionssystemen

2110046, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Definition, Begriffe der Arbeitswirtschaft und des Prozessmanagements
2. Aufgabenfelder der Arbeitswirtschaft und des Industrial Engineering
3. Ansätze heutiger Produktionssysteme (Ganzheitliche Produktionssysteme, geführte Gruppenarbeit u.a.)
4. Moderne Methoden und Prinzipien der Arbeitswirtschaft, des Industrial Engineering und von Produktionssystemen
5. Praxisbeispiele und –übungen zur Analyse und Gestaltung der Prozessgestaltung
6. Industrie 4.0

Voraussetzungen:

- Kompaktveranstaltung (eine Woche ganztägig)
- Teilnehmerbeschränkung; die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Voranmeldung über ILIAS erforderlich
- Anwesenheitspflicht in gesamten Vorlesung

Empfehlungen:

- Arbeitswissenschaftliche Kenntnisse vorteilhaft

Lernziele:

- Befähigung der Studenten zur effektiven und effizienten Arbeitsablauf- und Arbeitsprozessgestaltung
- Ausbildung in arbeitswirtschaftlichen Methoden (MTM-Grundsystem, Prozessbausteine, Datenermittlung u.a.)
- Ausbildung in modernen Methoden und Prinzipien der Arbeitswirtschaft, des IE und von Produktionssystemen
- Die Studierende sind in der Lage, Methoden zur Gestaltung von Arbeitsplätzen und -prozessen praktisch anzuwenden.
- Die Studierende sind in der Lage, moderne Ansätze der Prozess- und Produktionsorganisation anzuwenden.

Literaturhinweise

Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrer(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2581963</td>
<td>Project Management</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Schultmann, Volk, Rosenberg, Gehring, Wehrle</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2581964</td>
<td>Übung zu Project Management</td>
<td>1</td>
<td>Übung (Ü) / 🗣</td>
<td>Volk, Rosenberg, Wehrle, Gehring</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Lehrer(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7981963</td>
<td>Project Management</td>
<td></td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕰 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Project Management

Vorlesung (V)

2581963, WS 22/23, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Inhalt

1. Introduction
2. Principles of Project Management
3. Project Scope Management
4. Time Management and Resource Scheduling
5. Cost Management
6. Quality Management
7. Risk Management
8. Stakeholder
9. Communication, Negotiation and Leadership
10. Project Controlling
11. Agile Project Management

Literaturhinweise
Wird in der Veranstaltung bekannt gegeben.

Verantwortung: Dr.-Ing. Peter Oberle
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-MACH-105405 - Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>6222905</th>
<th>Water Distribution Systems</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Oberle</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)
Schriftliche Ausarbeitung, ca. 15 Seiten, und Präsentation, ca. 15 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.260 Teilleistung: Project Workshop: Automotive Engineering [T-MACH-102156]

Verantwortung:
- Dr.-Ing. Michael Frey
- Prof. Dr. Frank Gauterin
- Dr.-Ing. Martin Gießler

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
- M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Vorlesung (V) / Online</th>
<th>Dauer</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>3 SWS</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Vorlesung (V) / Online</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>Gau terin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>Gau terin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- mündliche Prüfung
- Dauer: 30 bis 40 Minuten
- Hilfsmittel: keine

Voraussetzungen

- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Project Workshop: Automotive Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>SS 2022</th>
<th>2115817</th>
<th>Sprache: Deutsch, Im Studierendenportal anzeigen</th>
<th>Vorlesung (V) / Online gemischt</th>
</tr>
</thead>
</table>

Inhalt

Im Rahmen des Workshops Automotive Engineering wird in einem Team von ca. 6 Personen eine von einem deutschen Industriepartner gestellte Aufgabe bearbeitet. Die Aufgabe stellt für den jeweiligen Partner ein geschäftsrelevantes Thema dar und soll nach dem Abschluss des Workshops im Unternehmen umgesetzt werden.

Das Team erarbeitet dazu eigenständig Lösungsansätze und entwickelt diese zu einer praktikablen Lösung weiter. Hierbei wird das Team sowohl von Mitarbeitern des Unternehmens als auch des Instituts begleitet.

Lernziele:

Die Studierenden kennen den Entwicklungsprozess und die Arbeitsweise in Industrieunternehmen und können das im Studium erworbene Wissen praktisch anwenden. Sie sind befähigt, komplexe Zusammenhänge analysieren und beurteilen zu können. Sie sind in der Lage, sich selbständig mit einer Aufgabe auseinanderzusetzen, unterschiedliche Entwicklungsmethoden anzuwenden und Lösungsansätze auszuarbeiten, um Produkte oder Verfahren praxismäßig zu entwickeln.

Organisatorisches

- Begrenzte Teilnehmerzahl mit Auswahlverfahren, die Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
- Raum und Termine: s. Aushang bzw. Homepage
Literaturhinweise

Skripte werden beim Start-up Meeting ausgegeben.

Project Workshop: Automotive Engineering
2115817, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Im Rahmen des Workshops Automotive Engineering wird in einem Team von ca. 6 Personen eine von einem deutschen Industriepartner gestellte Aufgabe bearbeitet. Die Aufgabe stellt für den jeweiligen Partner ein geschäftsrelevantes Thema dar und soll nach dem Abschluss des Workshops im Unternehmen umgesetzt werden.

Das Team erarbeitet dazu eigenständig Lösungsansätze und entwickelt diese zu einer praktikablen Lösung weiter. Hierbei wird das Team sowohl von Mitarbeitern des Unternehmens als auch des Instituts begleitet.

Lernziele:
Die Studierenden kennen den Entwicklungsprozess und die Arbeitsweise in Industrieunternehmen und können das im Studium erworbene Wissen praktisch anwenden. Sie sind befähigt, komplexe Zusammenhänge analysieren und beurteilen zu können. Sie sind in der Lage, sich selbständig mit einer Aufgabe auseinanderzusetzen, unterschiedliche Entwicklungsmethoden anzuwenden und Lösungsansätze auszuarbeiten, um Produkte oder Verfahren praxisgerecht zu entwickeln.

Organisatorisches
Begrenzte Teilnehmerzahl mit Auswahlverfahren, in deutscher Sprache. Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Termin und Raum: siehe Institutshomepage.
Limited number of participants with selection procedure, in German language. Please send the application at the end of the previous semester.
Date and room: see homepage of institute.

Literaturhinweise

Skripte werden beim Start-up Meeting ausgegeben.
The scripts will be supplied in the start-up meeting.
Teilleistung: Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems [T-MACH-105457]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet):

- Präsentation (15 min) mit Gewichtung 40%
- Wissenschaftliches Kolloquium (ca. 15 min) mit Gewichtung 40%
- Projektarbeit (benotet) mit Gewichtung 20%

Voraussetzungen
keine
3.262 Teilleistung: Projektierung und Entwicklung ölhydraulischer Antriebssysteme [T-MACH-105441]

Verantwortung: Dr.-Ing. Isabelle Ays
Dr.-Ing. Gerhard Geerling

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>WS 22/23</td>
</tr>
<tr>
<td>2113072</td>
<td>76-T-MACH-105441</td>
</tr>
<tr>
<td>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</td>
<td>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Block (B) / 📈</td>
</tr>
<tr>
<td></td>
<td>Geerling</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📈 Präsenz/Online gemischt, 🗓 Präsenz, ❌ Abgesagt

Erfolgskontrollen
mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektierung und Entwicklung ölhydraulischer Antriebssysteme
2113072, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
In der am Lehrstuhl für Mobile Arbeitsmaschinen (Mobima) angebotenen Blockveranstaltung werden die Grundlagen der Projektierung und der Entwicklung mobiler und stationärer hydrostatischer Systeme vermittelt. Der Dozent kommt aus einem marktführenden Unternehmen der fluidtechnischen Antriebs- und Steuerungstechnik und gibt vertiefte Einblicke in den Projektierungs- und Entwicklungsprozess hydrostatischer Systeme an Hand praktischer Beispiele. Die Inhalte der Vorlesung sind:

- Marketing, Planung, Projektierung
- Kreislaufarten Öl-Hydrostatik
- Wärmehaushalt, Hydrospeicher
- Filtration, Geräuschminderung
- Auslegungsübungen + Praxislabor

Kenntnisse in der Fluidtechnik
- Präsenzzeit: 19 Stunden
- Selbststudium: 90 Stunden

Organisatorisches
siehe Homepage
3.263 Teilleistung: Projektmanagement in globalen Produktentwicklungsstrukturen [T-MACH-105347]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Peter Gutzmer
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsmäßige Leistung</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (20 min)

Hilfsmittel: Keine

Voraussetzungen
keine
3.264 Teilleistung: Prozesssimulation in der Umformtechnik [T-MACH-105348]

Verantwortung: Dr.-Ing. Dirk Helm
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Vorlesung (V)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>Prozesssimulation in der Umformtechnik</td>
<td>2 SWS, Vorlesung (V) / Helm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 Min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Prozesssimulation in der Umformtechnik
2161501, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Die Vorlesung gibt auf der Basis der Kontinuumsmechanik, der Materialtheorie und der Numerik eine Einführung in die Simulation von Umformprozessen für metallische Werkstoffe

- Metallplastizität: Versetzung, Zwillingsbildung, Phasenumwandlung, Anisotropie, Verfestigung
- Einteilung von Umformverfahren und Diskussion ausgewählter Umformprozesse
- Grundzüge der Tensoralgebra und Tensoranalysis
- Kontinuumsmechanik: Kinematik, finite Deformationen, Bilanzgleichungen, Thermodynamik
- Materialtheorie: Grundprinzipien, Modellkonzepte, Plastizität und Viskoplastizität, Fließfunktionen (von Mises, Hill, ...), kinematische und isotrope Verfestigungsmodelle, Schädigung,
 thermomechanische Kopplungspflanomene
- Kontaktmodellierung
- Methode der finiten Elemente: explizit und implizite Formulierungen, Elementtypen, grundsätzliche Vorgehensweise,
 numerische Integration der Materialmodelle
- Prozesssimulation an ausgewählten Beispielen aus dem Bereich der Massiv- und Blechumformung

Organisatorisches
Siehe Aushang am Institut bzw. Informationen auf der website
3.265 Teilleistung: Pulvermetallurgische Hochleistungswerkstoffe [T-MACH-102157]

Verantwortung: Dr. Günter Schell

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2126749 Pulvermetallurgische Hochleistungswerkstoffe 2 SWS Vorlesung (V) / Schell

Prüfungsveranstaltungen
SS 2022 76-T-MACH-102157 Pulvermetallurgische Hochleistungswerkstoffe Schell

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlichen Prüfung, 20-30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Pulvermetallurgische Hochleistungswerkstoffe
2126749, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise
- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
3.266 Teilleistung: Qualitätsmanagement [T-MACH-102107]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2149667</td>
<td>Qualitätsmanagement</td>
<td>2</td>
<td>/ Lanza</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Veranstaltung</th>
<th>Lanza</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (60 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Qualitätsmanagement</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149667, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt
Auf Basis der Qualitätsphilosophien Total Quality Management (TQM) und Six-Sigma wird in der Vorlesung speziell auf die Bedürfnisse eines modernen Qualitätsmanagements eingegangen. In diesem Rahmen werden intensiv der Prozessgedanke in einer modernen Unternehmung und die prozessspezifischen Einsatzgebiete von Qualitätssicherungsmöglichkeiten vorgestellt. Präventive sowie nicht-präventive Qualitätsmanagementmethoden, die heute in der betrieblichen Praxis Stand der Technik sind, sind neben Fertigungsmesstechnik, statistischer Methoden und servicebezogenem Qualitätsmanagement Inhalt der Vorlesung. Abgerundet werden die Inhalte durch die Vorstellung von Zertifizierungsmöglichkeiten und rechtlichen Aspekten im Qualitätsbereich.

Inhaltliche Schwerpunkte der Vorlesung:
- Der Begriff "Qualität"
- Total Quality Management (TQM) und Six-Sigma
- Universelle Methoden und Werkzeuge
- QM in frühen Produktphasen - Produktdenition
- QM in Produktentwicklung und Beschaffung
- QM in der Produktion - Fertigungsmeßtechnik
- QM in der Produktion - Statistische Methoden
- QM im Service
- Qualitätsmanagementsysteme
- Rechtliche Aspekte im QM

Lernziele:
Die Studierenden …
- sind fähig, die vorgestellten Inhalte zu erläutern.
- sind in der Lage, die wesentlichen Qualitätsphilosophien zu erläutern und voneinander abzugrenzen.
- können die in der Vorlesung erlernten Werkzeuge und Methoden des QM auf neue Problemstellungen aus dem Kontext der Vorlesung anwenden.
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Start: 24.10.2022
Vorlesungstermine montags 09:45 Uhr
Übung erfolgt während der Vorlesung

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt:
Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.267 Teilleistung: Reaktorsicherheit I: Grundlagen [T-MACH-105405]

Verantwortung: Dr. Victor Hugo Sanchez-Espinoza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2189465 Reaktorsicherheit I: Grundlagen 2 SWS Vorlesung (V) / 🧩 Sanchez-Espinoza

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105405 Reaktorsicherheit I: Grundlagen Sanchez-Espinoza

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☐ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Reaktorsicherheit I: Grundlagen
2189465, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt
Dies Vorlesung wird auf Englisch gehalten - bei Bedarf auf Deutsch

Die Vorlesung diskutiert die Grundprinzipien und Konzepte der Reaktorsicherheit einschließlich der Methoden zur Sicherheitsbewertung und die schwere Kernunfälle.

Inhaltsverzeichnis:

- National and international nuclear regulations
- Fundamental principles of reactor safety
- Implementation of safety principles in nuclear power plants of generation 2
- Methods for safety analysis and safety assessment
- Key physical phenomena during severe accidents determining radiological impact
- How to analyse reactor accidents with numerical simulation tools
- Discussion severe accidents e.g. the Fukushima accident

Lernziele

- Vermittlung der Grundlagen der Reaktorsicherheit (Technologie, Sicherheitskonzepte, Atomrecht)
- Gewinnung von Erkenntnissen über die Sicherheitseigenschaften von Kernkraftwerken
- Aufklärung über die für die Reaktorsicherheit wichtigen komplexen Wechselwirkungen unterschiedlicher Fachgebiete wie z.B. Thermohydraulik, Neutronik, Materialverhalten, menschliche Faktoren und Organisation/Management im Kernkraftwerk
- Kennenlernen wichtiger Methoden für die Sicherheitsbewertung von Krenkraftwerken
- Lernen über Störfälle und Unfälle sowie ihre radiologischen Folgen wie zum Beispiel Fukushima-Unfall

Vorkenntnisse in Energietechnik, Kernkraftwerkstechnik, Reaktorphysik, Thermohydraulik von Kernreaktoren wünschenswert

Präsenzzzeit: 30 h
Selbststudium: 60 h

Zielgruppe: Studenten der Maschinenbau, Physik, Verfahrenstechnik, Energietechnik

mündliche Prüfung, Dauer ca. 30 Minuten

Anmeldeinformation: Reaktorsicherheit I: Grundlagen, wöchentlich, Mo 9:45-11:15 am, Geb.30.28 Seminarraum Nr. 004, Anmeldung im ILIAS

Organisatorisches
Mündliche Prüfung (Oral examination)
Anmeldung im ILIAS (Registration through ILIAS)

Literaturhinweise

- A. Ziegler, Lehrbuch der Reaktortechnik Band 1 und 2, Springer Verlag, 1986
- D. Smidt, Reaktorsicherheitstechnik. Springer-Verlag Berlin Heidelberg New York. 1979
- D. Smidt, Reaktortechnik, Band 2, Verlag G. Braun, Karlsruhe, 1976
3.268 Teilleistung: Rechnergestützte Dynamik [T-MACH-105349]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung (Veranst.) / Online</th>
<th>Veranstaltung (Veranst.)</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Rechnergestützte Dynamik</td>
<td>Veranstaltung</td>
<td>Proppe</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Rechnergestützte Dynamik</td>
<td>Vorlesung (V)</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung (Veranst.) / Online</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105349</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, 30 'min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnergestützte Dynamik

2162246, SS 2022, 2 SWS, Sprache: Deutsch,
Im Studierendenportal anzeigen

Inhalt

1. Grundlagen der Elastokinik (Verschiebungsdifferentialgleichung, Prinzip von Hamilton und Hellinger-Reissner)
2. Schwingungsdifferentialgleichungen für Strukturelemente (Stäbe, Platten)
3. Numerische Lösung der Bewegungsgleichungen
4. Numerische Algorithmen
5. Stabilitätsanalysen

Organisatorisches

Fr., 15:45-17:15, Geb. 10.91, Grashof-Hörssaal

Literaturhinweise

1. Ein Vorlesungsskript wird bereitgestellt!

Rechnergestützte Dynamik

2162246, WS 22/23, 2 SWS, Sprache: Deutsch,
Im Studierendenportal anzeigen

Inhalt

1. Grundlagen der Elastokinik (Verschiebungsdifferentialgleichung, Prinzip von Hamilton und Hellinger-Reissner)
2. Schwingungsdifferentialgleichungen für Strukturelemente (Stäbe, Platten)
3. Numerische Lösung der Bewegungsgleichungen
4. Numerische Algorithmen
5. Stabilitätsanalysen

Literaturhinweise

1. Ein Vorlesungsskript wird bereitgestellt!
3.269 Teilleistung: Rechnergestützte Fahrzeugdynamik [T-MACH-105350]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2162256</th>
<th>Rechnergestützte Fahrzeugdynamik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / Online</th>
<th>Proppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2162256</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Online</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105350 | Rechnergestützte Fahrzeugdynamik | Vorlesung (V) / Online | Proppe |

Erfolgskontrolle(n) mündliche Prüfung, 30 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnergestützte Fahrzeugdynamik
2162256, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Einleitung
2. Modelle für Trag- und Führsysteme
3. Kontaktkräfte zwischen Rad und Fahrzeug
4. Fahrwegenregungen
5. Gesamtfahrzeugmodelle
6. Berechnungsmethoden
7. Beurteilungskriterien

Literaturhinweise

Inhalt

1. Einleitung
2. Modelle für Trag- und Führsysteme
3. Kontaktkräfte zwischen Rad und Fahrweg
4. Fahrwegsanregungen
5. Gesamtfahrzeugmodelle
6. Berechnungsmethoden
7. Beurteilungskriterien

Literaturhinweise
3.270 Teilleistung: Rechnergestützte Mehrkörperdynamik [T-MACH-105384]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Teilleistungsart
Prüfungsteil

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Erfolgskontrolle(n)
Mündliche Prüfung, 30 min.

Voraussetzungen
keine

Empfehlungen
Kenntnisse in TM III/IV
3.271 Teilleistung: Rechnerunterstützte Mechanik I [T-MACH-105351]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Sprache</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Übungsveranstaltungen</th>
<th>Sprechstunde zu Rechnerunterstützte Mechanik I</th>
<th>Sprecher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>Übungen zu Rechnerunterstützte Mechanik I</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Präsenz/Online gemischt</td>
<td>Präsenz/Online gemischt</td>
<td>Krause, Keursten, Schneider, Langhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Rechnerunterstützte Mechanik I</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Präsenz/Online gemischt</td>
<td>Präsenz/Online gemischt</td>
<td>Schneider, Langhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Sprechstunde zu Rechnerunterstützte Mechanik I</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Präsenz/Online gemischt</td>
<td>Präsenz/Online gemischt</td>
<td>Krause, Schneider, Langhoff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsveranstaltung</th>
<th>Prüfungsveranstaltung überprüft</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105351</td>
<td>Rechnerunterstützte Mechanik I</td>
<td>Schneider, Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Legende: Online, 📚 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 Min.

Voraussetzungen

keine

Empfehlungen

Die Inhalte der Vorlesungen "Mathematische Methoden der Festigkeitslehre" und "Einführung in die Finite Elemente Methode" werden als bekannt vorausgesetzt
Diese Lehrveranstaltung richtet sich an Studierende im MSc-Studiengang

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Rechnerunterstützte Mechanik I

<table>
<thead>
<tr>
<th>Übung (Ü)</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161147</td>
<td>2161250</td>
</tr>
</tbody>
</table>

Inhalt

Siehe Informationen zur Vorlesung "Rechnerunterstützte Mechanik I".

Organisatorisches

Weitere Information in der ersten Vorlesung

Literaturhinweise

Siehe Literaturhinweise Vorlesung "Rechnerunterstützte Mechanik I".

Rechnerunterstützte Mechanik I

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161250</td>
</tr>
</tbody>
</table>

Literaturhinweise

3.272 Teilleistung: Rechnerunterstützte Mechanik II [T-MACH-105352]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Lehrveranstaltungen

SS 2022 2162206 Sprechstunde zu Rechnerunterstützte Mechanik II 2 SWS Sprechstunde (Sprechst.) / 📲 Erdle, Krause
SS 2022 2162296 Rechnerunterstützte Mechanik II 2 SWS Vorlesung (V) / 📲 Böhlke, Schneider
SS 2022 2162297 Übungen zu Rechnerunterstützte Mechanik II 2 SWS Übung (Ü) / 📲 Krause, Keursten, Böhlke, Schneider

Prüfungsveranstaltungen

SS 2022 76-T-MACH-105352 Rechnerunterstützte Mechanik II Böhlke, Schneider

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnerunterstützte Mechanik II
2162296, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Überblick über quasistatische nichtlineare Phänomene; Numerik nichtlinerer Gleichungssysteme: Bilanzgleichungen der geometrisch nichtlinearen Festkörpermechanik; Infinitesimale Plastizität; Lineare und geometrisch nichtlineare Thermoelastizität

Organisatorisches
Nähere Informationen zu Zeit und Ort der Vorlesung im SS 2022: siehe Homepage des ITM-KM

Literaturhinweise

Übungen zu Rechnerunterstützte Mechanik II
2162297, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz/Online gemischt

Inhalt
siehe Vorlesung "Rechnerunterstützte Mechanik II"

Organisatorisches
siehe Vorlesung "Rechnerunterstützte Mechanik II"

Literaturhinweise
siehe Vorlesung "Rechnerunterstützte Mechanik II"
3.273 Teilleistung: Reduktionsmethoden für die Modellierung und Simulation von Verbrennungsprozessen [T-MACH-105421]

Verantwortung: Dr. Viatcheslav Bykov
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2166543 | Reduktionsmethoden für die Modellierung und Simulation von Verbrennungsprozessen | 2 SWS | Vorlesung (V) / 🧩 | Bykov |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105421 | Reduktionsmethoden für die Modellierung und Simulation von Verbrennungsprozessen | Maas |

Erfolgskontrolle(n)

Prüfungsleistung mündlich; Dauer ca. 20 min

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Reduktionsmethoden für die Modellierung und Simulation von Verbrennungsprozessen

2166543, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

Die Vorlesung stellt eine Einführung in die Grundlagen der mathematischen Methoden und die Analyse von kinetischen Modellen reagierender Strömungen dar. Hierzu werden die grundlegende Methodik zur Modellreduction sowie die Implementierung dieser Methodik umrissen. Im Verlauf der Vorlesung werden vereinfachte und idealierte Modelle angesprochen, mit denen verschiedene Verbrennungsprozesse (z.B. Selbstzündung, stationäre Flammen, Flammenlöschung etc.) beschrieben und reduziert werden können. Anhand von vielen einfachen Beispielen werden die Reduktionsmethoden vorgestellt und bewertet.

Organisatorisches

Termin: Mi, 14:00-15:30. Für Änderungen siehe Aushang im ITT-Schaukasten und auf der Internetseite des Instituts.

Literaturhinweise

3.274 Teilleistung: Reliability Engineering 1 [T-MACH-107447]

Verantwortung: Dr.-Ing. Alexei Konnov
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Erfolgskontrolle(n):
schriftliche Prüfung

Voraussetzungen:
keine
Teilleistung: Renewable Energy-Resources, Technologies and Economics

Verantwortung: PD Dr. Patrick Jochem

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-MACH-104878 - Spezialisierung im Maschinenbau
- M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 3,5

Notenskala
- Drittenoten

Turnus
- Jedes Wintersemester

Version
- 5

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>Veranstaltung</th>
<th>Ort</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Jochem</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>Veranstaltung</th>
<th>Ort</th>
<th>Fichtner</th>
</tr>
</thead>
<tbody>
<tr>
<td>7981012</td>
<td>Renewable Energy-Resources, Technologies and Economics</td>
<td>Fichtner</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten, englisch, Antworten auf deutsch oder englisch möglich) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt

1. General introduction: Motivation, Global situation
2. Basics of renewable energies: Energy balance of the earth, potential definition
3. Hydro
4. Wind
5. Solar
6. Biomass
7. Geothermal
8. Other renewable energies
9. Promotion of renewable energies
10. Interactions in systemic context
11. Excursion to the "Energieberg" in Mühlburg

Learning Goals:

The student

- understands the motivation and the global context of renewable energy resources.
- gains detailed knowledge about the different renewable resources and technologies as well as their potentials.
- understands the systemic context and interactions resulting from the increased share of renewable power generation.
- understands the important economic aspects of renewable energies, including electricity generation costs, political promotion and marketing of renewable electricity.
- is able to characterize and where required calculate these technologies.

Organisatorisches

Blockveranstaltung, freitags 14:00-17:00 Uhr, 28.10., 11.11., 25.11., 09.12., 13.01., 27.01., 10.02.
Literaturhinweise
Weiterführende Literatur:

3.276 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2424152</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>3/1 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7500218</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>Asfour</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7500106</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Empfehlungen

Anmerkungen

Dieses Modul darf nicht geprüft werden, wenn im Bachelor-Studiengang Informatik SPO 2008 die Lehrveranstaltung Robotik I mit 3 LP im Rahmen des Moduls Grundlagen der Robotik geprüft wurde.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
</table>
Inhalt

Empfehlungen:

Arbeitsaufwand:

Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
cia. 45 Std. Vorlesungsbesuch,
cia. 15 Std. Übungsbesuch,
cia. 90 Std. Nachbearbeitung und Bearbeitung der Übungslätter
cia. 30 Std. Prüfungsvorbereitung

Lernziele:

Studierende sind in der Lage die vorgestellten Konzepte auf einfache und realistische Aufgaben aus dem Bereich der Robotik anzuwenden. Dazu zählt die Beherrschung und Herleitung der für die Roboter-modellierung relevanten mathematischen Modelle.

Die Studierenden kennen die algorithmischen Grundlagen der Pfad-, Bewegungs- und Greifplanung und können diese Algorithmen auf Problemstellungen im Bereich der Robotik anwenden.

Sie kennen Algorithmen aus dem Bereich der maschinellen Bildverarbeitung und sind in der Lage, diese auf einfache Problemstellungen der Bildverarbeitung anzuwenden.

Die Studierenden besitzen Kenntnisse über den Entwurf passender Datenverarbeitungsarchitekturen und können gegebene, einfache Aufgabenstellungen als symbolisches Planungsproblem modellieren und lösen.

Organisatorisches

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Literaturhinweise

Weiterführende Literatur

Fu, Gonzalez,Lee: Robotics - Control, Sensing, Vision, and Intelligence

3.277 Teilleistung: Robotik II - Humanoide Robotik [T-INFO-105723]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

Teilleistungsart	Prüfungsleistung schriftlich	Leistungspunkte	Notenskala	Turnus	Version

Lehrveranstaltungen
| SS 2022 | 2400074 | Robotik II: Humanoide Robotik | 2 SWS | Vorlesung (V) / Asfour |

Prüfungsveranstaltungen
| SS 2022 | 7500086 | Robotik II: Humanoide Robotik | Asfour |
| WS 22/23 | 7500211 | Robotik II: Humanoide Robotik | Asfour |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
- M-INFØ-100816 - Robotik II - Lernende und planende Roboter Modul darf nicht begonnen sein.
- T-INFO-101391 - Anthropomatik: Humanoide RobotikTeilleistung darf nicht begonnen sein.

Empfehlungen
Der Besuch der Vorlesungen Robotik I – Einführung in die Robotik und Mechano-Informatik in der Robotik wird vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Robotik II: Humanoide Robotik
2400074, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V)	Präsenz

Inhalt
Die Vorlesung stellt aktuelle Arbeiten auf dem Gebiet der humanoiden Robotik vor, die sich mit der Implementierung komplexer sensomotorischer und kognitiver Fähigkeiten beschäftigen. In den einzelnen Themenkomplexen werden verschiedene Methoden und Algorithmen, deren Vor- und Nachteile, sowie der aktuelle Stand der Forschung diskutiert.

Es werden folgende Themen behandelt: Biomechanische Modelle des menschlichen Körpers; biologisch inspirierte und datengetriebene Methoden des Greifens, aktive Wahrnehmung; Imitationslernen und Programmieren durch Vormachen, sowie semantische Repräsentationen von sensomotorischem Erfahrungswissen.

Lernziele:
Die Studierenden haben einen Überblick über aktuelle Forschungsarbeiten bei autonomen lernenden Robotersystemen am Beispiel der humanoiden Robotik und sind dazu in der Lage aktuelle Entwicklungen auf dem Gebiet der kognitiven humanoiden Robotik einzuordnen und zu bewerten.

Die Studierenden kennen die wesentlichen Problemstellungen der humanoiden Robotik und können auf der Basis der existierenden Forschungsarbeiten Lösungsvorschläge erarbeiten.

Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand: 90 h
Voraussetzungen: Der Besuch der Vorlesungen Robotik I – Einführung in die Robotik und Mechano-Informatik in der Robotik wird vorausgesetzt
Zielgruppe: Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik
Literaturhinweise
Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema werden auf der VL-Website bereitgestellt.
3.278 Teilleistung: Robotik III – Sensoren und Perzeption in der Robotik [T-INFO-109931]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 3
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen
SS 2022 2400067 Robotik III – Sensoren und Perzeption in der Robotik 2 SWS Vorlesung (V) Asfour

Prüfungsveranstaltungen
SS 2022 7500242 Robotik III - Sensoren und Perzeption in der Robotik Asfour
WS 22/23 7500207 Robotik III - Sensoren und Perzeption in der Robotik Asfour

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Empfehlungen
Der Besuch der Vorlesung Robotik I – Einführung in die Robotik wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Robotik III – Sensoren und Perzeption in der Robotik 2400067, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung ergänzt die Vorlesung Robotik I um einen breiten Überblick über in der Robotik verwendete Sensorik und Methoden der Perzeption in der Robotik. Der Schwerpunkt der Vorlesung liegt auf der visuellen Perzeption, der Objekterkennung, der simultanen Lokalisierung und Kartenerstellung (SLAM) sowie der semantischen Szeneninterpretation. Die Vorlesung ist zweiteilig gegliedert:

Im ersten Teil der Vorlesung wird ein umfassender Überblick über aktuelle Sensortechnologien gegeben. Hierbei wird grundlegend zwischen Sensoren zur Wahrnehmung der Umgebung (exterozeptiv) und Sensoren zur Wahrnehmung des internen Zustandes (propriozeptiv) unterschieden. Der zweite Teil der Vorlesung konzentriert sich auf den Einsatz von exterozeptiver Sensorik in der Robotik. Die behandelten Themen umfassen insbesondere die taktile Exploration und die Verarbeitung visueller Daten, einschließlich weiterführender Themen wie der Merkmalsextraktion, der Objektklassifizierung, der simultanen Lokalisierung und Kartenerstellung (SLAM) sowie der semantischen Szeneninterpretation.

Lernziele:
Studierende kennen die wesentlichen in der Robotik gebräuchlichen Sensorprinzipien und verstehen den Datenfluss von der physikalischen Messung über die Digitalisierung bis hin zur Verwendung der aufgenommen Daten für Merkmalsextraktion, Zustandsabschätzung und Umweltmodellierung.

Studierende sind in der Lage, für gängige Aufgabenstellungen der Robotik, geeignete Sensorkonzepte vorzuschlagen und zu begründen.
Organisatorisches

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Voraussetzungen: Der Besuch der Vorlesung *Robotik I – Einführung in die Robotik* wird vorausgesetzt

Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Literaturhinweise

Eine Foliensammlung wird im Laufe der Vorlesung angeboten.

Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.
3.279 Teilleistung: Robotik in der Medizin [T-INFO-101357]

Verantwortung: Prof. Dr.-Ing. Torsten Kröger
 Jun.-Prof. Dr. Franziska Mathis-Ullrich

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-MACH-104883 - Teilleistungen von der KIT-Fakultät für Informatik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 24681 Robotik in der Medizin 2 SWS Vorlesung (V) / 🗣 Mathis-Ullrich

Prüfungsveranstaltungen
SS 2022 7500244 Robotik in der Medizin Mathis-Ullrich
SS 2022 7500331 Robotik in der Medizin (mündl.) Mathis-Ullrich

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO.
Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§4(2), 3 SPO 2008) bzw. Studienleistung (§4(3) SPO 2015) kann ein Bonus erworben werden. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Robotik in der Medizin
24681, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

Arbeitsbelastung: 3 LP

Erfolgskontrolle:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO.

Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§4(2), 3 SPO 2008) bzw. Studienleistung (§4(3) SPO 2015) kann ein Bonus erworben werden. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus

Organisatorisches
Achtung! Die erste Vorlesung am 20.04 fällt leider aus
3.280 Teilleistung: Schadenskunde [T-MACH-105724]

Verantwortung: Prof. Dr. Christian Greiner
Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungskennzeichen: Schadenskunde [T-MACH-105724]

Teilleistungskennzeichen: Schadenskunde [T-MACH-105724]

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2182572</th>
<th>Schadenskunde</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Greiner, Schneider</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105724</th>
<th>Schadenskunde</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Schneider</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min

Voraussetzungen
keine

Empfehlungen
Grundkenntnisse Werkstoffkunde (z.B. durch die Vorlesung Werkstoffkunde I und II)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Schadenskunde 2182572, WS 22/23, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
Ziel, Ablauf und Inhalt von Schadensanalysen
Untersuchungsmethoden
Schadensarten
Schäden durch mechanische Beanspruchung
Versagen durch Korrosion in Elektrolyten
Versagen durch thermische Beanspruchung
Versagen durch tribologische Beanspruchung
Grundzüge der Versagensbetrachtung

Grundkenntnisse Werkstoffkunde (z.B. durch die Vorlesung Werkstoffkunde I und II) empfohlen

Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
mündliche Prüfung, Dauer: ca. 30 Minuten
Hilfsmittel: keine

Literaturhinweise
3.281 Teilleistung: Schaltungstechnik in der Industrielektronik [T-ETIT-100716]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsform</th>
<th>Leistungspunkte</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2306327</td>
<td>Schaltungstechnik in der Industrielektronik</td>
<td>2 SWS</td>
<td>Liske</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsform</th>
<th>Leistungspunkte</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7306327</td>
<td>Schaltungstechnik in der Industrielektronik</td>
<td></td>
<td>Liske</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen

keine
3.282 Teilleistung: Schienenfahrzeugtechnik [T-MACH-105353]

Verantwortung:

Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld

Einrichtung:

KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von:

M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart

Prüfungsleistung mündlich

Leistungspunkte

4

Notenskala

Drittelnoten

Turnus

Jedes Semester

Version

1

Lehrveranstaltungen

SS 2022 2115996 Schienenfahrzeugtechnik 2 SWS Vorlesung (V) / Reimann, Gratzfeld
WS 22/23 2115996 Schienenfahrzeugtechnik 2 SWS Vorlesung (V) / Reimann, Gratzfeld

Prüfungsveranstaltungen

SS 2022 76-T-MACH-105353 Schienenfahrzeugtechnik Reimann, Gratzfeld
SS 2022 76-T-MACH-105355 Schienenfahrzeugtechnik (Wiederholungsprüfung) Reimann, Gratzfeld
WS 22/23 76-T-MACH-105353 Schienenfahrzeugtechnik Reimann, Heckele, Gratzfeld
WS 22/23 76-T-MACH-105355 Schienenfahrzeugtechnik (Wiederholungsprüfung) Reimann, Gratzfeld

Legende:

 ONLINE, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Prüfung: mündlich
Dauer: ca. 20 Minuten
Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schienenfahrzeugtechnik

2115996, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

1. Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystemtechnik
2. Wagenkasten: Funktionen, Anforderungen, Bauprinzipien, Bauweisen, Energieverzehrelemente, Kupplungen und Übergänge, Türen und Fenster
3. Fahrwerke: Kräfte am Rad, Radsatzführung, Lenkachsfahrwerk, Drehgestell, Jakobsdrehgestell, Aktive Fahrwerkskomponenten, Längskraftübertragung auf den Wagenkasten, Radsatzfolge
5. Bremsen: Grundlagen, Wirkprinzipien von Bremsen (Radbremsen, Schienenbremsen, Blending), Bremssteuerung (Anforderungen und Betriebsarten, Druckluftbremse, Elektropneumatische Bremsen, Notbremse, Parkbremse)
6. Fahrzeugleittechnik: Definition Fahrzeugleittechnik, Bussysteme & Komponenten, Netzwerkarchitekturen, Beispiele Steuerungen, zukünftige Entwicklungen

Literaturhinweise

Eine Bibliographie ist für Download (Ilias-Plattform) verfügbar.
1. Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystemtechnik
2. Wagenkasten: Funktionen, Anforderungen, Bauprinzipien, Bauweisen, Energieverzehrelemente, Kupplungen und Übergänge, Türen und Fenster
3. Fahrwerke: Kräfte am Rad, Radsatzführung, Lenkachsfahrwerk, Drehgestell, Jakobsdrehgestell, Aktive Fahrwerkskomponenten, Längskraftübertragung auf den Wagenkasten, Radsatzfolge
5. Bremsen: Grundlagen, Wirkprinzipien von Bremsen (Radbremsen, Schienenbremsen, Blending), Bremssteuerung (Anforderungen und Betriebsarten, Druckluftbremse, Elektropneumatische Bremse, Notbremse, Parkbremse)
6. Fahrzeugleittechnik: Definition Fahrzeugleittechnik, Bussysteme & Komponenten, Netzwerkarchitekturen, Beispiele Steuerungen, zukünftige Entwicklungen

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
3.283 Teilleistung: Schweißtechnik [T-MACH-105170]

Verantwortung: Dr. Majid Farajian
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsbeginn</th>
<th>Vorlesungsendetermine</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2173571</td>
<td>Schweißtechnik</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsbeginn</th>
<th>Vorlesungsendetermine</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105170</td>
<td>Schweißtechnik</td>
<td>Farajian</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, X Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 Minuten

Voraussetzungen
keine

Empfehlungen
Grundlagen der Werkstoffkunde (Eisen und NE-Legierungen), Werkstoffe, Verfahren und Fertigung, Konstruktive Gestaltung der Bauteile.
Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schweißtechnik

2173571, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block (B) Präsenz/Online gemischt
Inhalt
Definition, Anwendung und Abgrenzung: Schweißen, Schweißverfahren, alternative Fügeverfahren.
Geschichte der Schweißtechnik
Energiequellen der Schweißverfahren
Übersicht: Schmelzschweiß- und Pressschweißverfahren.
Nahtvorbereitung / Nahtformen
Schweißpositionen
Schweißbarkeit
Gasschmelzschweißen, Thermisches Trennen
Lichtbogenhandschweißen
Unterpulverschweißen
Metallschutzgasschweißen
Rührreibschweißen/Laserstrahlschweißen
Elektronenstrahlschweißen
Sonstige Schmelz- und Pressschweißverfahren
Übersicht: Schmelz- und Pressschweißverfahren.
Statische und zyklische Festigkeit von Schweißverbindungen
Maßnahmen zur Steigerung der Lebensdauer von Schweißverbindungen

Lernziele:
Die Studierenden können die wichtigsten Schweißverfahren und deren Einsatz/Anwendung in Industrie und Handwerk nennen, beschreiben und miteinander vergleichen.
Sie kennen, verstehen und beherrschen wesentliche Probleme bei Anwendung der verschiedenen Schweißtechnologien in Bezug auf Konstruktion, Werkstoffe und Fertigung.
Sie verstehen die Einordnung und Bedeutung der Schweißtechnik im Rahmen der Fügetechnik und können Vorteile/Nachteile und Alternativen nennen, analysieren und beurteilen.
Die Studierenden bekommen auch einen Einblick in die Schweißnahtqualität und deren Einfluss auf die Performance und Verhalten von Schweißverbindungen unter statischer und zyklischer Beanspruchung.
Wie die Lebensdauer von Schweißverbindungen erhöht werden kann, ist auch ein Bestandteil dieser Lehrveranstaltung.

Voraussetzungen:
Grundlagen der Werkstoffkunde (Eisen und NE-Legierungen), der Elektrotechnik, der Produktions-/Fertigungstechnologien

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Schweißtechnik beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (18 h) sowie Vor- und Nachbearbeitungszeit zuhause (102 h).

Prüfung:
mündlich, ca 20 Minuten, keine Hilfsmittel

Organisatorisches
Blockveranstaltung im Januar und Februar. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich: Vorlesungsstundene und Hörsaal werden den angemeldeten Teilnehmern Anfang des Jahres mitgeteilt.

Literaturhinweise
Für ergänzende, vertiefende Studien gibt das
Handbuch der Schweißtechnik von J. Ruge, Springer Verlag Berlin, mit seinen vier Bänden
Band I: Werkstoffe
Band II: Verfahren und Fertigung
Band III: Konstruktive Gestaltung der Bauteile
Band IV: Berechnung der Verbindungen

Nies: Lichtbogenschweißtechnik, Bibliothek der Technik Band 57, Verlag moderne Industrie AG und Co., Landsberg / Lech

Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.
3.284 Teilleistung: Schwingfestigkeit [T-MACH-112106]

Verantwortung: Dr.-Ing. Stefan Guth
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 2173586 | Schwingfestigkeit | 2 SWS | Vorlesung (V) / 📱 | Guth |

Prüfungsveranstaltungen

| WS 22/23 | 76-T-MACH-112106 | Schwingfestigkeit | Guth |

Legende: 🖥 Online, 📱 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 Minuten

Voraussetzungen
keine

Empfehlungen
Grundkenntnisse in Werkstoffkunde sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schwingfestigkeit
2173586, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt
- Einleitung: einige "interessante" Schadenfälle
- Zykliches Spannungs-Dehnungs-Verhalten
- Rissbildung
- Rissausbreitung
- Lebensdauer bei zyklischer Beanspruchung
- Kerbermüdung
- Eigenspannungen
- Betriebsfestigkeit

Lernziele:

Voraussetzungen:
keine, Grundkenntnisse in Werkstoffkunde sind hilfreich

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Ein Manuskript, das auch aktuelle Literaturhinweise enthält, wird in der Vorlesung verteilt.
3.285 Teilleistung: Schwingungstechnisches Praktikum [T-MACH-105373]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart Studienleistung</th>
<th>Leistungspunkte 4</th>
<th>Notenskala best./nicht best.</th>
<th>Turnus Jedes Sommersemester</th>
<th>Version 1</th>
</tr>
</thead>
</table>

Lehrveranstaltungen

| SS 2022 | 2162208 | Schwingungstechnisches Praktikum | SWS | Praktikum (P) / 🧩 | Genda, Fidlin |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105373 | Schwingungstechnisches Praktikum | Fidlin |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kolloquium zu jedem Versuch, 10 von 10 Kolloquien müssen bestanden sein

Voraussetzungen
Kann nicht mit Experimentelle Dynamik (T-MACH-105514) kombiniert werden.

Empfehlungen
Technische Schwingungslehre, Mathematische Methoden der Schwingungslehre, Stabilitätstheorie, Nichtlineare Schwingungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schwingungstechnisches Praktikum
2162208, SS 2022, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz/Online gemischt

Inhalt
1. Erzwungene Schwingungen eines deterministisch angeregten Systems mit einem Freiheitsgrad
2. Erzwungene Schwingungen eines stochastisch angeregten Systems mit einem Freiheitsgrad
3. Grundlagen der digitalen Verarbeitung von Messdaten
4. Biegekritische Drehzahlen eines elastisch gelagerten Läufers
5. Experimentelle Modalanalyse
6. Instabilitätserscheinungen eines parametererregten Drehschwingers
7. Zwangsschwingungen eines Duffing'schen Drehschwingers
8. Reibungserregte Schwingungen
9. Ausbreitung von Biegewellen; Messung durch Laservibrometrie

Organisatorisches
Anmeldung

Verantwortung: Prof. Dr. Bryce Sydney Richards
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>Seminar Novel Concepts for Solar Energy Harvesting</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2313761 | Seminar Novel Concepts for Solar Energy Harvesting | 2 SWS | Seminar (S) / Paetzold |

Prüfungsveranstaltungen

| SS 2022 | 7313761 | Seminar Novel Concepts for Solar Energy Harvesting | Paetzold |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 👤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
The examination consists of a written journal article and an oral presentation of the student's work, both given in English. The overall impression is rated.

Voraussetzungen
keine

Empfehlungen
Gute Kenntnisse der Halbleiterbauelemente/Optoelektronik sind wünschenswert.

Anmerkungen
Die Seminar- und Prüfungssprache ist Englisch.
3.287 Teilleistung: Sensoren [T-ETIT-101911]

Verantwortung: Dr. Wolfgang Menesklou

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2304231</td>
<td>Sensoren</td>
<td>2</td>
<td>Vorlesung (V) / 🎤</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7304231</td>
<td>Sensoren</td>
<td>2</td>
<td>Menesklou</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7304231</td>
<td>Sensoren</td>
<td>2</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗻 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 2 Stunden.

Voraussetzungen

keine

Empfehlungen

Grundlagen in Werkstoffkunde (z.B. Vorlesung „Passive Bauelemente“) sind hilfreich.

Anmerkungen

Inhalte und Qualifikationsziele unter: Modul: M-ETIT-100378 – Sensoren
3.288 Teilleistung: Sicherheitstechnik [T-MACH-105171]

Verantwortung: Hans-Peter Kany
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherheitstechnik</td>
<td>2117061, WS 22/23</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Kany</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Sicherheitstechnik

2117061, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Medien
Präsentationen

Lehrinhalte

Lernziele

Die Studierenden können:

- relevante Sicherheitskonzepte der Sicherheitstechnik benennen und beschreiben,
- Grundlagen von Gesundheit am Arbeitsplatz und Arbeitssicherheit in Deutschland erläutern,
- mit Hilfe der nationalen und europäischen Sicherheitsregeln und den Grundlagen sicherheitsgerechter Maschinenkonstruktionen Systeme beurteilen und
- diese Aspekte an Beispielen aus der Förder- und Lagertechnik umsetzen.

Empfehlungen

Keine

Arbeitsaufwand

Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches

Termine: siehe ILIAS.

Literaturhinweise

Defren/Wickert: Sicherheit für den Maschinen- und Anlagenbau, Druckerei und Verlag: H. von Ameln, Ratingen
3.289 Teilleistung: Signale und Systeme [T-ETIT-109313]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nr.</th>
<th>Veranstaltnamen</th>
<th>WS 22/23</th>
<th>SS 2022</th>
<th>Heizmann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2302109</td>
<td>Signale und Systeme</td>
<td></td>
<td>7302109</td>
<td></td>
</tr>
</tbody>
</table>

Prüfsungsveranstaltungen

| SS 2022 | 7302109 | Signale und Systeme | Heizmann |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ⌠ Abgesagt

Voraussetzungen

Keine

Empfehlungen

Höhere Mathematik I + II
3.290 Teilleistung: Simulation gekoppelter Systeme [T-MACH-105172]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Lehrveranstaltungen
SS 2022 2114095 Simulation gekoppelte Systeme 2 SWS Vorlesung (V) / 🗣 Geimer

Prüfungsveranstaltungen
SS 2022 76T-MACH-105172 Simulation gekoppelte Systeme Geimer
WS 22/23 76T-MACH-105172 Simulation gekoppelte Systeme Geimer

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Eine vorherige Anmeldung ist erforderlich, die Details werden auf den Webseiten des Instituts für Fahrzeugsystemtechnik / Teilinstitut Mobile Arbeitsmaschinen angekündigt. Bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten nach Qualifikation statt.

Voraussetzungen
Voraussetzung zur Teilnahme an der Prüfung ist die Erstellung eines Berichts während des Semesters. Die Teilleistung mit der Kennung T-MACH-108888 muss bestanden sein.

Empfehlungen
Empfehlungswerte sind:
- Kenntnisse in ProE (idealerweise in der aktuellen Version)
- Grundkenntnisse in Matlab/Simulink
- Grundkenntnisse Maschinenfabrikation
- Grundkenntnisse Hydraulik

Anmerkungen
Lernziele:
Nach Abschluss der Veranstaltung können die Studierenden:
- eine gekoppelte Simulation aufbauen
- Modelle parametrieren
- Simulation durchführen
- Troubleshooting
- Ergebnisse auf Plausibilität kontrollieren

Die Anzahl der Teilnehmer ist begrenzt.

Inhalt:
- Erlernen der Grundlagen von Mehrkörpersystemsimulationsprogrammen
- Möglichkeiten einer gekoppelten Simulation
- Durchführung einer Simulation am Beispiel des Radladers
- Darstellung der Ergebnisse in einem kurzen Bericht

Literatur:
Diverse Handbücher zu den Softwaretools in PDF-Form
Informationen zum verwendeten Radlader

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Simulation gekoppelter Systeme
2114095, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

- Erlernen der Grundlagen von Mehrkörper- und Hydrauliksimulationsprogrammen
- Möglichkeiten einer gekoppelten Simulation
- Durchführung einer Simulation am Beispiel des Radladers
- Darstellung der Ergebnisse in einem kurzen Bericht

Empfehlenswert sind:

- Kenntnisse in ProE (idealerweise in der aktuellen Version)
- Grundkenntnisse in Matlab/Simulink
- Grundkenntnisse Maschinendynamik
- Grundkenntnisse Hydraulik

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literaturhinweise
Weiterführende Literatur:

- Diverse Handbücher zu den Softwaretools in PDF-Form
- Informationen zum verwendeten Radlader
3.291 Teilleistung: Simulation gekoppelter Systeme - Vorleistung [T-MACH-108888]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Yusheng Xiang

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
<tr>
<td>WS 22/23</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Anfertigung Semesterbericht

Voraussetzungen
keine
3.292 Teilleistung: Simulator-Praktikum Gas- und Dampfkraftwerke [T-MACH-105445]

Verantwortung: Hon.-Prof. Dr. Thomas Schulenberg

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit

Bestandteil von:
- M-MACH-104878 - Spezialisierung im Maschinenbau
- M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
2

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2170491</th>
<th>Simulator-Praktikum Gas- und Dampfkraftwerke</th>
<th>2 SWS</th>
<th>Praktikum (P) / 🗣 Schulenberg</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105445 | Simulator-Praktikum Gas- und Dampfkraftwerke | Schulenberg |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, × Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (ca. 15 min)

Voraussetzungen
keine

Empfehlungen
Teilnahme an LV-Nr. 2170490 "Gas- und Dampfkraftwerke" (T-MACH-105444) wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Simulator-Praktikum Gas- und Dampfkraftwerke

Inhalt

Anfahren des Kraftwerks vom kalten Zustand; Laständerungen und Abfahren; Reaktion des Kraftwerks bei Fehlfunktionen und bei dynamischen Lastanforderungen; Manuelle Steuerung einiger Komponenten.

Organisatorisches
Termine zum Simulatorpraktikum werden in der Vorlesung und per ILIAS am Semesterbeginn mit den Studenten vereinbart.

Appointments for the simulator internship are arranged with the students in the lecture and via ILIAS at the beginning of the semester.

Literaturhinweise
Vorlesungsskript und weitere Unterlagen der Vorlesung Gas- und Dampfkraftwerke.
Slides and other documents of the lecture Combined Cycle Power Plants.
Teilleistung: Skalierungsgesetze der Strömungsmechanik [T-MACH-105400]

Verantwortung: apl. Prof. Dr. Leo Bühler
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen

| SS 2022 | 2154044 | Skalierungsgesetze der Strömungsmechanik | 2 SWS | Vorlesung (V) / 🗣 | Bühler |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105400 | Skalierungsgesetze der Strömungsmechanik | Bühler |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung
Dauer: 20-30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Strömungslehre (T-MACH-105207)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Skalierungsgesetze der Strömungsmechanik
2154044, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

• Einführung
• Ähnlichkeitsgesetze (Beispiele)
• Dimensionsanalyse (Pi-Theorem)
• Skalierung in Differentialgleichungen
• Skalierung in Grenzschichten
• Ähnliche Lösungen
• Skalierung in turbulenten Scherschichten
• Rotierende Strömungen
• Magnetohydrodynamische Strömungen

Literaturhinweise
G. I. Barenblatt, 1979, Similarity, Self-Similarity, and Intermediate Asymptotics, Plenum Publishing Corporation (Consultants Bureau)
J. Zierep, 1982, Ähnlichkeitsgesetze und Modellregeln der Strömungsmechanik, Braun
J. H. Spurk, 1992, Dimensionsanalyse in der Strömungslehre, Springer
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Smoothed Particle Hydrodynamics (SPH) in der numerischen Strömungsmechanik

2169452, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2022</th>
<th>WS 22/23</th>
</tr>
</thead>
<tbody>
<tr>
<td>2169452</td>
<td>Smoothed Particle Hydrodynamics (SPH) in der numerischen Strömungsmechanik</td>
<td>2169452</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

Organisatorisches

MSc.-Studierende der Fakultäten Maschinenbau, Chemieingenieurwesen, Bauingenieurwesen und Physik
Doktoranden der Fakultäten Maschinenbau, Chemieingenieurwesen, Bauingenieurwesen und Physik
MSc.-Studierende werden priorisiert.

Vorkenntnisse: Numerische Strömungsmechanik, SPH-Methode, LINUX

Die Veranstaltung ist ein Blockpraktikum. Dauer: 5 Tage (Mo-Fr) - je 8 Std.

Zeitraum: Ende Februar bis Anfang März - jährlich. Veranstaltung wird vom Wintersemester 2021/22 in Sommersemester 2022 verschoben; Datum wird noch bekannt gegeben: Siehe ILIAS u. Internetseite des Instituts.

Inhalt

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in numerischer Strömungsmechanik, SPH-Methode und LINUX

Legende:
🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt
Inhalt

Organisatorisches
MSc.-Studierende der Fakultäten Maschinenbau, Chemieingenieurwesen, Bauingenieurwesen und Physik
Doktoranden der Fakultäten Maschinenbau, Chemieingenieurwesen, Bauingenieurwesen und Physik
MSc.-Studierende werden priorisiert.
Vorkenntnisse: Numerische Strömungsmechanik, SPH-Methode, LINUX
Die Veranstaltung ist ein Blockpraktikum. Dauer: 5 Tage (Mo-Fr) - je 8 Std.
Veranstaltungsort: Seminarraum I des Geb. 30.60 (neben der Mensa), 2. OG
Zeitraum: Ende Februar bis Anfang März - jährlich. Siehe Internetseite des Instituts.

Veranstaltung aus WS 21/22 wurde auf das Sommersemester 2022 verschoben (Voraussichtlich im September 2022). Wird im Wintersemester 2022/23 ebenfalls angeboten werden (Voraussichtlich im Februar/März 2023). Siehe Internetseite des Instituts und ILIAS.

Verantwortung: Prof. Dr. Bryce Sydney Richards
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2313745</th>
<th>Solar Energy</th>
<th>3 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Richards, Paetzold</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2313750</td>
<td>Übungen zu 2313745 Solar Energy</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣️</td>
<td>Richards, Paetzold</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>7313745</th>
<th>Solar Energy</th>
<th>Richards, Paetzold</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>7313745</td>
<td>Solar Energy</td>
<td>Richards</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
"M-ETIT-100513 - Photovoltaik" oder "M-ETIT-100476 - Solarenergie" wurden nicht geprüft. Alledrei Prüfungen schließen sich gegenseitig aus.

Empfehlungen
Kenntnisse zu Grundlagen aus M-ETIT-100480 - Optoelektronik sind hilfreich.
3.296 Teilleistung: Solar Thermal Energy Systems [T-MACH-106493]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 4

Notenskala
- Drittelnoten

Turnus
- Jedes Wintersemester

Version
- 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Übung</th>
<th>Kurs</th>
<th>Sprache</th>
<th>Prüfung</th>
<th>Ort</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2189400</td>
<td></td>
<td>Solar Thermal Energy Systems</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Dagan</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-106493 | Solar Thermal Energy Systems | Dagan |

Legende: 🌐 Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
- mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
- keine

Empfehlungen
- Literatur

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Solar Thermal Energy Systems

<table>
<thead>
<tr>
<th>Code</th>
<th>WS 22/23</th>
<th>Sprache: Englisch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
</table>
Inhalt
The course deals with fundamental aspects of solar energy
1. Introduction to solar energy – global energy panorama
2. Solar energy resource-
 Structure of the sun, Black body radiation, solar constant, solar spectral distribution
 Sun-Earth geometrical relationship
3. Passive and active solar thermal applications.
4. Solar thermal systems- solar collector-types, concentrating collectors, solar towers,
 Heat losses, efficiency
5. Selected topics on thermodynamics and heat transfer which are relevant for solar systems.
6. Introduction to Solar induced systems: Wind, Heat pumps, Biomass, Photovoltaic
7. Energy storage
The course deals with fundamental aspects of solar energy. Starting from a global energy panorama the course deals with the sun as a thermal energy source. In this context, basic issues such as the sun’s structure, blackbody radiation and solar–earth geometrical relationship are discussed. In the next part, the lectures cover passive and active thermal applications and review various solar collector types including concentrating collectors and solar towers and the concept of solar tracking. Further, the collector design parameters determination is elaborated, leading to improved efficiency. This topic is augmented by a review of the main laws of thermodynamics and relevant heat transfer mechanisms.
The course ends with an overview on energy storage concepts which enhance practically the benefits of solar thermal energy systems.
The students get familiar with the global energy demand and the role of renewable energies learn about improved designs for using efficiently the potential of solar energy gain basic understanding of the main thermal hydraulic phenomena which support the work on future innovative applications will be able to evaluate quantitatively various aspects of the thermal solar systems.
Total 120 h, hereof 30 h contact hours and 90 h homework and self-studies
mündliche Prüfung ca. 30 min.

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise
• “Fundamentals of classical Thermodynamics”, G. Van Wylen & R. E. Sonntag. Published by Wiley & Sons
Teilleistung: Stabilitätstheorie [T-MACH-105372]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte 6
Notenskala Drittelnoten

Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2022 2163113 Stabilitätstheorie 2 SWS Vorlesung (V) / Fidlin
SS 2022 2163114 Übungen zu Stabilitätstheorie 2 SWS Übung (Ü) / Fidlin, Yüzbasioglu

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105372 Stabilitätstheorie Fidlin

Erfolgskontrolle(n)
Mündliche Prüfung, 30 min.

Voraussetzungen
keine

Empfehlungen
Technische Schwingungslehre, Mathematische Methoden der Schwingungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Stabilitätstheorie
2163113, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
- Grundbegriffe der Stabilität
- Lyapunov'sche Funktionen
- Direkte Lyapunov'sche Methode
- Stabilität der Gleichgewichtslage
- Einzugsgebiet einer stabilen Lösung
- Stabilität nach der ersten Näherung
- Systeme mit parametrischer Anregung
- Stabilitätsskriterien in der Regelungstechnik

Literaturhinweise
3.298 Teilleistung: Steuerungstechnik [T-MACH-105185]

Verantwortung: Hon.-Prof. Dr. Christoph Gönnheimer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2150683 | Steuerungstechnik | 2 SWS | Vorlesung (V) / 🧩 | Gönnheimer |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105185 | Steuerungstechnik | Gönnheimer |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🌹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (60 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Steuerungstechnik

2150683, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Die Vorlesung Steuerungstechnik gibt einen ganzheitlichen Überblick über den Einsatz steuerungstechnischer Komponenten in der industriellen Produktion.
Der erste Teil der Vorlesung befasst sich mit den Grundlagen der Signalverarbeitung und mit Steuerungsperipherie in Form von Sensoren und Aktoren, die in Produktionsanlagen für die Detektion und Beeinflussung von Prozesszuständen benötigt werden.
Der zweite Teil beschäftigt sich mit der Funktions-/Arbeitsweise elektrischer Steuerungen im Produktionsumfeld. Gegenstand der Betrachtung sind hier insbesondere die speicherprogrammierbare Steuerung, die CNC-Steuerung und die Robotersteuerung.
Den Abschluss der Lehrveranstaltung bildet das Thema Vernetzung und Dezentralisierung mithilfe von Bussystemen.
Die Vorlesung ist stark praxisorientiert und mit zahlreichen Beispielen aus der Produktionslandschaft unterschiedlicher Branchen versehen.
Die Themen im Einzelnen sind:
- Signalverarbeitung
- Steuerungsperipherie
- Speicherprogrammierbare Steuerungen
- NC-Steuerungen
- Steuerungen für Industrieroboter
- Verteilte/vernetzte Steuerungssysteme
- Feldbussysteme
- Trends im Bereich der Steuerungstechnik

Lernziele:
Die Studierenden …
- sind fähig, die in der Industrie vorkommenden elektrischen Steuerungen wie SPS, CNC und RC zu nennen und deren Funktions- und Arbeitsweise zu erläutern.
- können die Vorgehensweise zur Projektierung und Programmierung einer Speicherprogrammierbaren Steuerung des Typs Siemens Simatic S7 beschreiben und dabei verschiedene Programmiersprachen der IEC 1131 verdeutlichen.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Teilleistung: Strategische Potenzialfindung zur Entwicklung innovativer Produkte [T-MACH-105696]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Prof. Dr.-Ing. Andreas Siebe

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2146198</th>
<th>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Siebe</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105696 | Strategische Potenzialfindung zur Entwicklung innovativer Produkte | Siebe, Albers |

Erfolgskontrolle(n)
Mündliche Prüfung in Kleingruppen (30 Minuten)

Voraussetzungen
Die Voraussetzung der Teilleistung ist die erfolgreiche Bearbeitung einer Case-Study (T-MACH-110396): Dokumentation und Präsentation der Gesamtergebnisse (15 Minuten)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung

<table>
<thead>
<tr>
<th>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</th>
<th>Vorlesung (V) / Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2146198, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Organisatorisches
Anmeldung erforderlich; Termine/ Ort und weitere Informationen siehe IPEK-Homepage
3.300 Teilleistung: Strömungen mit chemischen Reaktionen [T-MACH-105422]

Verantwortung: apl. Prof. Dr. Andreas Class
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2153406</td>
<td>Strömungen mit chemischen Reaktionen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Strömungslehre (T-MACH-105207)
Mathematische Methoden der Strömungslehre (T-MACH-105295)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strömungen mit chemischen Reaktionen
2153406, WS 22/23, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden können Strömungsprobleme beschreiben, bei denen sich eine chemische Reaktion innerhalb einer dünnen Schicht vollzieht. Sie können vereinfachte Ansätze für die Chemie auswählen und schwerpunktmäßig die strömungsmechanischen Aspekte der Probleme erörtern. Die Studierenden können analytische Methoden zur Lösung einfacher Fragestellungen anwenden und sind in der Lage, relevante Vereinfachungen zur Anwendung effizienter numerische Lösungsverfahren auf komplexe Probleme zu diskutieren.

In der Vorlesung werden überwiegend Probleme betrachtet, bei denen sich die chemische Reaktion innerhalb einer dünnen Schicht vollzieht. Die Probleme werden mit analytischen Methoden gelöst oder zumindest so vereinfacht, dass effiziente numerische Lösungsverfahren verwendet werden können. Es werden vereinfachte Ansätze für die Chemie gewählt und schwerpunktmäßig die strömungsmechanischen Aspekte der Probleme herausgearbeitet.

Literaturhinweise
Vorlesungsskript

Buckmaster, J.D.; Ludford, G.S.S.: Lectures on Mathematical Combustion, SIAM 1983
3.301 Teilleistung: Strömungen und Wärmeübertragung in der Energietechnik [T-MACH-105403]

Verantwortung: Prof. Dr.-Ing. Xu Cheng
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Übungen zu "Strömungen und Wärmeübertragung in der Energietechnik"</th>
<th>SWS</th>
<th>Übung (U) / 🧩</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2189911</td>
<td>Übungen zu "Strömungen und Wärmeübertragung in der Energietechnik"</td>
<td>1 SWS</td>
<td>🧩</td>
<td>Cheng, Mitarbeiter</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine
3.302 Teilleistung: Strömungslehre 1&2 [T-MACH-105207]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nr.</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Prof.</th>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2154512</td>
<td>Strömungslehre I</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>3154510</td>
<td>Fluid Mechanics I</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2153512</td>
<td>Strömungslehre II</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>3153511</td>
<td>Fluid Mechanics II</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nr.</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105207</td>
<td>Strömungslehre (1+2)</td>
<td>Frohnapfel, Kriegseis</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105207 engl.</td>
<td>Strömungslehre 1&2 engl.</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105207</td>
<td>Strömungslehre (1+2)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105207 engl.</td>
<td>Strömungslehre 1&2 engl.</td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung 3 Stunden

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strömungslehre I

2154512, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt

Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik
Literaturhinweise

Fluid Mechanics I
3154510, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt

Inhalt
Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik

Literaturhinweise

Strömungslehre II
2153512, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt

Inhalt
Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Term der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet die sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton’scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise

Fluid Mechanics II
3153511, WS 22/23, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt
Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet die sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton'scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes-Gleichungen

Literaturhinweise
Teilleistung: Strukturberechnung von Faserverbundlaminaten [T-MACH-105970]

Verantwortung: Prof. Dr.-Ing. Luise Kärger
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbautechnologie
Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 22/23 | 2113106 | Strukturberechnung von Faserverbundlaminaten | 2 SWS | Vorlesung / Übung (VÜ) / Kärger |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strukturberechnung von Faserverbundlaminaten

Inhalt
Zur Reduktion von Kraftstoffverbrauch und CO2-Ausstoß kommen im Fahrzeugbau zunehmend Leichtbauwerkstoffe wie Faser-Verbund-Kunststoffe (FVK) zum Einsatz. Die Lehrveranstaltung widmet sich der Berechnung des Material- und Strukturverhaltens von FVK-Bauteilen mit folgenden Inhalten:

- Mikromechanik und Homogenisierung des Faser-Matrix-Verbundes
- Makromechanisches Verhalten der Einzelschicht
- Verhalten des Mehrschichtverbunds
- FE-Formulierungen
- Versagenskriterien
- Schädigungsanalyse
- Auslegung von FVK-Bauteilen

Literaturhinweise

3.304 Teilleistung: Strukturkeramiken [T-MACH-102179]

Verantwortung: Prof. Dr. Michael Hoffmann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2126775</th>
<th>Strukturkeramiken</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Hoffmann</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-102179</th>
<th>Strukturkeramiken</th>
<th>Hoffmann, Wagner, Schell</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| V | Strukturkeramiken | 2126775, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen | Vorlesung (V) | Präsenz |

Literaturhinweise

3.305 Teilleistung: Superconducting Materials for Energy Applications [T-ETIT-106970]

Verantwortung: apl. Prof. Dr. Francesco Grilli
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7312682</td>
<td>Superconductors for Energy Applications</td>
<td>Grilli</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7312685</td>
<td>Superconducting Materials for Energy Applications (2nd Exam)</td>
<td>Grilli</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO Master ETIT.

Voraussetzungen
keine

Empfehlungen
Basic knowledge in the fields of Electrical Engineering and Thermodynamics is helpful.

Anmerkungen
Prüfung und Vorlesung finden in englischer Sprache statt. Wahlfach in anderen Vertiefungsrichtungen.
3.306 Teilleistung: Superharte Dünnschichtmaterialien [T-MACH-102103]

Verantwortung: apl. Prof. Dr. Sven Ulrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 3

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2177618</td>
<td>Superharte Dünnschichtmaterialien</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102103</td>
<td>Superharte Dünnschichtmaterialien</td>
<td></td>
<td>Ulrich</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Superharte Dünnschichtmaterialien
2177618, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt
mündliche Prüfung (ca. 30 min), keine Hilfsmittel

Lehrinhalt:
Einführung

Grundlagen
Plasmadiagnostik
Teilchenflußanalyse
Sputter- und Implantationstheorie
Computersimulationen
Materialeigenschaften, Beschichtungsverfahren,
Schichtanalyse und Modellierung superharter Materialien
Amorpher, hydrogenisierter Kohlenstoff
Diamantartiger, amorpher Kohlenstoff
Diamant
Kubisches Bornitrid
Materialien aus dem System Übergangsmetall-Bor-Kohlenstoff-Stickstoff-Silizium

Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden

Lernziele:
Superharte Materialien sind Festkörper mit einer Härte größer als 4000 HV 0,05. In dieser Vorlesung wird die Modellierung, Herstellung, Charakterisierung und Anwendung dieser Materialien als Dünnschichten behandelt.
Empfehlungen: keine

Organisatorisches
Falls die Vorlesung online stattfinden muss, bitte um Anmeldung unter sven.ulrich@kit.edu bis zum 24.10.22.
Den entsprechenden MS Teams Link erhalten Sie dann per E-Mail am 26.10.22.

Literaturhinweise
G. Kienel (Herausgeber): Vakuumbeschichtung 1 - 5, VDI Verlag, Düsseldorf, 1994

Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
3.307 Teilleistung: Sustainable Product Engineering [T-MACH-105358]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr. Karl-Friedrich Ziegahn

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen
SS 2022 2146192 Sustainable Product Engineering 2 SWS Vorlesung (V) / 🗣 Ziegahn

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105358 Sustainable Product Engineering Ziegahn, Albers

Legende: Online, Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung (60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Sustainable Product Engineering 2146192, SS 2022, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Verständnisses der Nachhaltigkeitsziele und ihrer Bedeutung bei der Produktentwicklung, den Wechselwirkungen zwischen technischen Erzeugnissen und ihrer Umwelt, dem ganzheitlichen Ansatz und der Gleichrangigkeit von wirtschaftlichen, sozialen und ökologischen Aspekten sowie umweltbezogenen Leistungsmerkmalen

Vermittlung von Fähigkeiten zur lebenszyklusbezogenen Produktauslegung am Beispiel von komplexen Fahrzeugkomponenten wie Airbag-Systemen und anderen aktuellen Produkten

Verständnis von praxisrelevanten Produktbeanspruchungen durch Umgebungsbedingungen am Beispiel technikintensiver Komponenten; Robustheit und Lebensdauer von Produkten als Basis für eine nachhaltige Produktentwicklung; Entwicklung von Fähigkeiten zur Anwendung der Umweltsimulation im Entstehungsgang technischer Erzeugnisse

Förderung der Entwicklung von Schlüsselqualifikationen wie Teamfähigkeit / Projektplanung / Selbstorganisation / Präsentation anhand realitätsnaher Projekte

Ziel der Lehrveranstaltung ist die Vermittlung von Eckpunkten einer nachhaltigen Produktentwicklung im wirtschaftlichen, sozialen und ökologischen Kontext. Die Studierenden sind fähig...

- Lebenszyklusbezogene Produktauslegung am Beispiel von komplexen Fahrzeugkomponenten wie Airbag-Systemen und anderen aktuellen Produkten zu erörtern.
- praxisrelevanten Produktbeanspruchungen durch Umgebungsbedingungen am Beispiel technikintensiver Komponenten; Robustheit und Lebensdauer von Produkten als Basis für eine nachhaltige Produktentwicklung; Entwicklung von Fähigkeiten zur Anwendung der Umweltsimulation im Entstehungsgang technischer Erzeugnisse zu verstehen.
- Schlüsselqualifikationen wie Teamfähigkeit / Projektplanung / Selbstorganisation / Präsentation anhand realitätsnaher Projekte zu entwickeln.
3.308 Teilleistung: Systematische Werkstoffauswahl [T-MACH-100531]

Verantwortung: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Behördenleistung: Systematische Werkstoffauswahl [T-MACH-100531]

Verantwortung: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart: Prüfung, Leistungspunkte: 4

Prüfungsleistung schriftlich

Notenskala: Drittelnoten

Turnus: Jedes Sommersemester

Version: 4

Lehrveranstaltungen

SS 2022 2174576 Systematische Werkstoffauswahl 3 SWS Vorlesung (V) / 📚 Dietrich

SS 2022 2174577 Übungen zu 'Systematische Werkstoffauswahl' 1 SWS Übung (Ü) / 📚 Dietrich, Mitarbeiter

Prüfungsveranstaltungen

SS 2022 76-T-MACH-100531 Systematische Werkstoffauswahl Dietrich

WS 22/23 76-T-MACH-100531 Systematische Werkstoffauswahl Dietrich

Legende: 📚 Online, 📚 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung mit einer Dauer von 2 h.

Voraussetzungen
keine

Empfehlungen
Einfache Grundlagen in Werkstoffkunde, Mechanik und Konstruktionslehre wie sie in der Vorlesung Werkstoffkunde I/II vermittelt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systematische Werkstoffauswahl

2174576, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt
Die wichtigsten Aspekte und Kriterien der Werkstoffauswahl werden behandelt und Leitlinien für eine systematische Vorgehensweise beim Auswahlprozess erarbeitet. Dabei werden u.a. folgende Themen angesprochen:

- Informationen und Einleitung
- Erforderliche Grundlagen der Werkstoffkunde
- Ausgewählte Methoden / Herangehensweisen der Werkstoffauswahl
- Beispiele für Materialindices und Werkstoffeigenschaftsschaubilder
- Zielkonflikt und Formfaktoren
- Verbundwerkstoffe und Werkstoffverbunde
- Hochtemperaturwerkstoffe
- Berücksichtigung von Fertigungseinflüssen
- Werkstoffauswahl für eine bestehende Produktionslinie
- Fehlerhafter Werkstoffauswahl und abzuleitende Konsequenzen
- Zusammenfassung und Fragerunde

Lernziele:

Voraussetzungen:
Wing SPO 2007 (B.Sc.)
Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein
Wing (M.Sc.)
Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (30 h) sowie Vor- und Nachbearbeitungszeit zuhause (30 h) und Prüfungsvorbereitungszeit (60 h).

Literaturhinweise
Vorlesungsskriptum; Übungsblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7

Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
3.309 Teilleistung: Systemdynamik und Regelungstechnik [T-ETIT-101921]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittenoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsort</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2303155</td>
<td>Systemdynamik und Regelungstechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚 Hohmann</td>
</tr>
<tr>
<td></td>
<td>2303156</td>
<td>Tutorien zu 2303155 Systemdynamik und Regelungstechnik</td>
<td>SWS</td>
<td>Tutorium (Tu) / 📚 Schneider</td>
</tr>
<tr>
<td></td>
<td>2303157</td>
<td>Übungen zu 2303155 Systemdynamik und Regelungstechnik</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📚 Schneider</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsort</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7303155</td>
<td>Systemdynamik und Regelungstechnik</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Anmerkungen
wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten
3.310 Teilleistung: Systemintegration in der Mikro- und Nanotechnik [T-MACH-105555]

Verantwortung: Dr. Ulrich Gengenbach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte
4
Notenskala
Drittelnoten
Turnus
Jedes Sommersemester
Version
1

Lehrveranstaltungen
SS 2022
2106033
Systemintegration in der Mikro- und Nanotechnik I
2 SWS
Vorlesung (V) / 🗣️
Gengenbach

Prüfungsveranstaltungen
SS 2022
76-T-MACH-105555
Systemintegration in der Mikro- und Nanotechnik
Gengenbach

Erfolgskontrolle(n)
Mündliche Prüfung (Dauer: 30 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Systemintegration in der Mikro- und Nanotechnik I
2106033, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

- Einführung in die Systemintegration (Grundlagen)
- Kurzeinführung MEMS-Prozesse
- Festkörpergelenke
- Oberflächen und Plasmaverfahren für die Oberflächenbehandlung
- Technisches Kleben
- Aufbau- und Verbindungstechnik in der Elektronik
- Molded Interconnect devices (MID)
- Funktionelles Drucken
- Low temperature cofired ceramics in der Systemintegration
- 3D-Integration in der Halbleitertechnik

Lernziele:
Die Studierenden eignen sich grundlegende Kenntnisse der Herausforderungen von Systemintegrationstechnologien aus Maschinenbau, Feinwerktechnik und Elektronik an.

Literaturhinweise

- J. Franke, Räumliche elektronische Baugruppen (3D-MID), Carl Hanser-Verlag München, 2013
3.311 Teilleistung: Systemintegration in der Mikro- und Nanotechnik 2 [T-MACH-110272]

Verantwortung: Dr. Ulrich Gengenbach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 22/23</th>
<th>Vorlesung (V) / Sprache</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23 2105040</td>
<td>Systemintegration in der Mikro- und Nanotechnik 2</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester 2022</th>
<th>Vorlesung (V) / Sprache</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 76-T-MACH-110272</td>
<td>Systemintegration in der Mikro- und Nanotechnik 2</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 15 Min.

Voraussetzungen

Keine

Anmerkungen

Achtung: Die Vorlesung sowie Prüfung wird erstmalig im WS20/21 angeboten!

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systemintegration in der Mikro- und Nanotechnik 2

<table>
<thead>
<tr>
<th>Vorlesung (V) / Sprache</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23 2105040, Sprache: Deutsch</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

Inhalt

Einführung in die Systemintegration (neue Verfahren und Anwendungen)
Montage hybrider Mikrosysteme
Packaging Verfahren
Anwendungen:
- Mikroverfahrenstechnik
- Lab-on-Chip-Systeme
- Mikrooptische Systeme
- Silicon Photonics
Neue Integrationsverfahren:
- Direct Laser Writing
- Self Assembly

Lernziele

Die Studierenden eignen sich Kenntnisse neuer System-integrationstechnologien und ihrer Anwendung in mikrooptischen und mikrofluidischen Systemen an.

Literaturhinweise

N.-T. Nguyen, Fundamentals and Applications of Microfluidics, Artech House
G. T. Reed, Silicon Photonics: An Introduction, Wiley
3.312 Teilleistung: Systems Engineering for Automotive Electronics [T-ETIT-100677]

Verantwortung: Dr.-Ing. Jürgen Bortolazzi
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen

| SS 2022 | 2311642 | Systems Engineering for Automotive Electronics | 2 SWS | Vorlesung (V) / 🖥 | Bortolazzi |
| SS 2022 | 2311644 | Tutorial for 2311642 Systems Engineering for Automotive Electronics | 1 SWS | Übung (Ü) / 🖥 | Kraus |

Prüfungsveranstaltungen

| SS 2022 | 7311642 | Systems Engineering for Automotive Electronics | Bortolazzi |

Erfolgskontrolle(n)
Die Art und Weise (schriftliche oder mündliche Prüfung) der Erfolgskontrolle wird zu Beginn der Veranstaltung bekanntgegeben. Die Prüfung findet ohne Hilfsmittel statt.

Voraussetzungen
keine

Empfehlungen
Empfohlen wird der Besuch der Vorlesung SE (23611)

Anmerkungen
Der Besuch von Labor / Übung zur Vorlesung ist Voraussetzung für die Zulassung zur Prüfung.
3.313 Teilleistung: Technische Energiesysteme für Gebäude 1: Verfahren, Komponenten [T-MACH-105559]

Verantwortung: Dr. Ferdinand Schmidt
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Fachgebiet Strömungsmaschinen
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen

| WS 22/23 | 2157200 | Technische Energiesysteme für Gebäude 1: Verfahren, Komponenten | 2 SWS | Vorlesung (V) / 🧩 Schmidt |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105559 | Technische Energiesysteme für Gebäude 1: Verfahren, Komponenten | Schmidt |

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Energiesysteme für Gebäude 1: Verfahren, Komponenten
2157200, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
Einführung in Grundlagen der Heiz- und Kühltechnik, die Grundlagen der Solarenergienutzung in Gebäuden (Solarstrahlung, Solarthermie, Photovoltaik) und die Verfahren zur Energiespeich rung, die für die Anwendung in Gebäuden in Frage kommen (Wärmespeicher, elektrische Speicher). Behandelte Techniken:

- Brenner, Brennwerttechnik
- Anlagen der Kraft-Wärme-Kopplung für Einsatz in Gebäuden
- Wärmemigration: Grundlagen, Kompression, Absorption, Adsorption
- Solarenergienutzung: Grundlagen, Solarthermie-Kollektoren, Photovoltaik
- Energiespeicher: Wärmespeicher, Stromspeicher

Lernziele:
Die Studierenden kennen wichtige technische Komponenten für die Energieversorgung (Wärmever sorgung, Kältelieferung, Luftentfeuchtung) von Gebäuden. Sie kennen die in diesen Kom ponenten ablaufenden Energiewandlungen und können deren Effizienz sowie die wichtigsten Einflussfaktoren auf die Effizienz einschätzen.

Mündliche Prüfung: Dauer ca. 25 Minuten
Hilfsmittel: keine
3.314 Teilleistung: Technische Energiesysteme für Gebäude 2: Systemkonzepte [T-MACH-105560]

Verantwortung: Dr. Ferdinand Schmidt
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Fachgebiet Strömungsmaschinen
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2158201 Technische Energiesysteme für Gebäude 2: Systemkonzepte 2 SWS Vorlesung (V) / 🗣 Schmidt

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105560 Technische Energiesysteme für Gebäude 2: Systemkonzepte Schmidt

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Technische Energiesysteme für Gebäude 2: Systemkonzepte
2158201, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

- Wärmepumpen und Wärmepumpensysteme einschl. Kombination von Solarthermie und Wärmepumpen
- KWK-Systeme und KWKK-Systeme
- Solarthermische Anlagen: Brauchwasser, Heizungsunterstützung, Kühlung und Entfeuchtung
- Nah- und Fernwärme einschl. Solarthermie und Wärmenetze
- Photovoltaik und Wärmepumpe, Photovoltaik-Batterie-Systeme
- Netz-reaktive Gebäudetechnik: Smart-Metering, Smart Home, Smart Grid

Lernziele:

Arbeitsaufwand: 30 Stunden Anwesenheit, 90 Stunden Selbststudium
Mündliche Prüfung ca. 25 Minuten
3.315 Teilleistung: Technische Grundlagen des Verbrennungsmotors [T-MACH-105652]

Verantwortung: Dr.-Ing. Sören Bernhardt
Dr.-Ing. Heiko Kubach
Jürgen Pfeil
Dr.-Ing. Olaf Toedter
Dr.-Ing. Uwe Wagner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsart</th>
<th>Titel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2133123</td>
<td>Vorlesung (V)</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Kubach, Wagner, Toedter, Pfeil, Bernhardt, Velji</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsart</th>
<th>Titel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105652</td>
<td>Vorlesung (V)</td>
<td>Technische Grundlagen des Verbrennungsmotors (alle Module außer SP57)</td>
<td>Kubach</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105652(SP)</td>
<td>Vorlesung (V)</td>
<td>Technische Grundlagen des Verbrennungsmotors (Prüfung im SP57)</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Grundlagen des Verbrennungsmotors

<table>
<thead>
<tr>
<th>Vorlesungscode</th>
<th>SWS</th>
<th>Sprache</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2133123</td>
<td>2</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

Grundlagen der Motorprozesse
Bauteile von Verbrennungsmotoren
Gemischbildungssysteme
Ladungswechselsysteme
Einspritzsysteme
Abgasnachbehandlungssysteme
Kühlsysteme
Zündsysteme
3 TEILLEISTUNGEN

Teilleistung: Technische Informationssysteme [T-MACH-102083]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozentinnen/Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Dozentinnen/Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Informationssysteme

2121001, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Präsenz

Inhalt

- Informationssysteme und Informationsmanagement
- Datenbanken
- Wissensmanagement und Ontologie
- Prozess Modellierung
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme

Studierende können:

- den Aufbau und die Funktionsweise von Informationssystemen erläutern
- die Struktur von relationalen Datenbanken beschreiben
- die Grundlagen des Wissensmanagements und deren Einsatz im Ingenieurwesen beschreiben und Ontologie als Wissensrepräsentation anwenden
- unterschiedliche Prozessmodellierungsarten und deren Verwendung beschreiben und mit ausgewählten Werkzeugen exemplarisch einfache Workflows und Prozesse abbilden und zur Ausführung bringen
- die unterschiedlichen Ziele spezifischer IT-Systemen in der Produktentstehung (CAD, CAP, CAM, PPS, ERP, PDM) verdeutlichen und dem Produktentstehungsprozess zuordnen

Literaturhinweise

Vorlesungsfolien / lecture slides

Technische Informationssysteme

2121001, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Präsenz
Inhalt

- Informationssysteme und Informationsmanagement
- Datenbanken
- Wissensmanagement und Ontologie
- Prozess Modellierung
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme

Studierende können:

- den Aufbau und die Funktionsweise von Informationssystemen erläutern
- die Struktur von relationalen Datenbanken beschreiben
- die Grundlagen des Wissensmanagements und deren Einsatz im Ingenieurwesen beschreiben und Ontologie als Wissensrepräsentation anwenden
- unterschiedliche Prozessmodellierungsarten und deren Verwendung beschreiben und mit ausgewählten Werkzeugen exemplarisch einfache Workflows und Prozesse abbilden und zur Ausführung bringen
- die unterschiedlichen Ziele spezifischer IT-Systemen in der Produktentstehung (CAD, CAP, CAM, PPS, ERP, PDM) verdeutlichen und dem Produktentstehungsprozess zuordnen

Literaturhinweise
Vorlesungsfolien / lecture slides
3.317 Teilleistung: Technische Schwingungslehre [T-MACH-105290]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

Teilleistung: Technische Schwingungslehre [T-MACH-105290]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Erfolgskontrolle(n)

schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Technische Schwingungslehre
2161212, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt
Grundbegriffe bei Schwingungen, Überlagerung von Schwingungen, komplexe Frequenzgangrechnung.

Einführung in die Rotordynamik: Lavalrotor in starren und elastischen Lagern, Berücksichtigung innerer Dämpfung, Lavalrotor in anisotroper Lagerung, Gleich- und Gegenlauf, Rotoren mit unrunder Welle.

Literaturhinweise
Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978
Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Übungen zu Technische Schwingungslehre
2161213, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)

Inhalt
Übung des Vorlesungsstoffs
Teilleistung: Technische Thermodynamik und Wärmeübertragung I [T-MACH-104747]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Lehrveranstaltungen

| WS 22/23 | 2165501 | Technische Thermodynamik und Wärmeübertragung I | 4 SWS | Vorlesung (V) / 🗣 | Maas |
| WS 22/23 | 3165014 | Technical Thermodynamics and Heat Transfer I | 4 SWS | Vorlesung (V) / 🗣 | Schießl, Maas |

Prüfungsveranstaltungen

SS 2022	76-T-MACH-104747	Technische Thermodynamik und Wärmeübertragung I	Maas, Schießl
SS 2022	76-T-MACH-104747-englisch	Technische Thermodynamik und Wärmeübertragung I, englisch	Maas, Schießl
WS 22/23	76-T-MACH-104747	Technische Thermodynamik und Wärmeübertragung I	Maas, Schießl
WS 22/23	76-T-MACH-104747-english	Technische Thermodynamik und Wärmeübertragung I	Maas, Schießl

Erfolgskontrolle(n)

Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen

Erfolgreiche Teilnahme an der Übung (T-MACH-105204 - Technische Thermodynamik und Wärmeübertragung I, Vorleistung)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt

- System, Zustandsgrößen
- Absolute Temperatur, Modellsysteme
- Hauptsatz für ruhende und bewegte Systeme
- Entropie und 2. Hauptsatz
- Verhalten realer Stoffe beschrieben durch Tabellen, Diagramme und Zustandsgleichungen
- Maschinenprozesse
- Mischungen von idealen und realen Stoffen

Organisatorisches

Die Vorlesung findet bis Ende November online statt.

Literaturhinweise

Vorlesungsskriptum
Inhalt

- System, Zustandsgrößen
- Absolute Temperatur, Modellsysteme
- Hauptsatz für ruhende und bewegte Systeme
- Entropie und 2. Hauptsatz
- Verhalten realer Stoffe beschrieben durch Tabellen, Diagramme und Zustandsgleichungen
- Maschinenprozesse
- Mischungen von idealen und realen Stoffen

Literaturhinweise

Vorlesungsskriptum

3.319 Teilleistung: Technische Thermodynamik und Wärmeübertragung I, Vorleistung [T-MACH-105204]

Teilleistungsart
Studienleistung schriftlich

Leistungspunkte
0

Notenskala
best./nicht best.

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Modulnummer</th>
<th>Lehrveranstaltungsangaben</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2165502 Übungen zu Technische Thermodynamik und Wärmeübertragung I</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🙋</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>3165015 Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>2 SWS</td>
<td>Tutorium (Tu) / 🙋</td>
<td>Schießl, Maas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Modulnummer</th>
<th>Lehrveranstaltungsangaben</th>
<th>Notenkontrolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76T-MACH-105204 Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105204 Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende:
- 🖥 Online
- 🧩 Präsenz/Online gemischt
- 🗣 Präsenz
- 🗐 Abgesagt

Erfolgskontrolle(n)
Erfolgreiche Bearbeitung der Übungsblätter.

Voraussetzungen
keine
3.320 Teilleistung: Technische Thermodynamik und Wärmeübertragung II [T-MACH-105287]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfungsleistung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2166526</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>3 SWS</td>
<td>Vorlesung (V) / Prüfung</td>
<td>Maas</td>
</tr>
<tr>
<td>SS 2022</td>
<td>3166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>3 SWS</td>
<td>Vorlesung (V) / Prüfung</td>
<td>Schießl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfungsleistung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105287</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>3 SWS</td>
<td>Maas, Schießl</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105287-englisch</td>
<td>Technische Thermodynamik und Wärmeübertragung II, englisch</td>
<td>3 SWS</td>
<td>Maas, Schießl</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105287</td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>3 SWS</td>
<td>Maas, Schießl</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105287-english</td>
<td>Technische Thermodynamik und Wärmeübertragung II, englisch</td>
<td>3 SWS</td>
<td>Maas, Schießl</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsbüchern
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
Erfolgreiche Teilnahme an der Übung (T-MACH-105288 - Technische Thermodynamik und Wärmeübertragung II, Vorleistung)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Thermodynamik und Wärmeübertragung II
2166526, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt
- Wiederholung des Stoffes von "Thermodynamik und Wärmeübertragung I"
- Verhalten von Mischungen
- Feuchte Luft
- Kinetische Gastheorie
- Verhalten realer Stoffe beschrieben durch Zustandsgleichungen
- hemische Reaktionen und Anwendung der Hauptsätze auf chemische Reaktionen
- Reaktionskinetik
- Wärmeübertragung

Literaturhinweise
Vorlesungsskriptum

Technical Thermodynamics and Heat Transfer II
3166526, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt
Inhalt

- Wiederholung des Stoffes von "Thermodynamik und Wärmeübertragung I"
- Verhalten von Mischungen
- Feuchte Luft
- Kinetische Gastheorie
- Verhalten realer Stoffe beschrieben durch Zustandsgleichungen
- hemische Reaktionen und Anwendung der Hauptsätze auf chemische Reaktionen
- Reaktionskinetik
- Wärmeübertragung

Literaturhinweise
Vorlesungsskriptum

3.321 Teilleistung: Technische Thermodynamik und Wärmeübertragung II, Vorleistung [T-MACH-105288]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

Lehrveranstaltungen

| SS 2022 | 2166556 | Tutorien zu Technische Thermodynamik und Wärmeübertragung II | 2 SWS | Übung (Ü) / 📚 | Maas |
| SS 2022 | 3166033 | Technical Thermodynamics and Heat Transfer II (Tutorial) | 2 SWS | Übung (Ü) / 📚 | Schießl, Maas |

Prüfungsveranstaltungen

| SS 2022 | 76T-MACH-105288 | Technische Thermodynamik und Wärmeübertragung II, Vorleistung | Maas, Schießl |

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung der Übungsblätter.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Tutorien zu Technische Thermodynamik und Wärmeübertragung II
2166556, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Berechnung thermodynamischer Problemstellungen

Literaturhinweise

Vorlesungsskriptum
3.322 Teilleistung: Technisches Design in der Produktentwicklung [T-MACH-105361]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Markus Schmid

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erstellt

Lehrveranstaltungen

| SS 2022 | 2146179, SS 2022, 2 SWS, Sprache: Deutsch | Technisches Design in der Produktentwicklung | 2 SWS | Vorlesung (V) / x | Schmid |

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (60 min)

Hilfsmittel: nur Deutsche Wörterbücher

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technisches Design in der Produktentwicklung

2146179, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Abgesagt

Inhalt

Einleitung

Wertrelevante Parameter des Technischen Design

Grundlagen Interface-Design

Makroergonomie: Planung- u. Konzeptidephase

Mikroergonomie: Konzept- u. Entwurfsphase

Mikroergonomie: Ausarbeitsungsphase

Best Practice

Im Modul Technisches Design besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung.

Die Studierenden...

• erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer.

• beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen.

• beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produktsystems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses.

• beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung, haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

Organisatorisches

Die Veranstaltung findet 2022 nicht statt.
Literaturhinweise
Markus Schmid, Thomas Maier
Technisches Interface Design
Anforderungen, Bewertung, Gestaltung.
2017
Hartmut Seeger
Design technischer Produkte, Produktprogramme und -systeme
Industrial Design Engineering.
2., bearb. und erweiterte Auflage.
ISBN: 3540236538
September 2005 - gebunden - 396 Seiten
3.323 Teilleistung: Technologie der Stahlbauteile [T-MACH-105362]

Verantwortung: Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2174579</th>
<th>Technologie der Stahlbauteile</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Schulze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105362</td>
<td>Technologie der Stahlbauteile</td>
<td>Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105362</td>
<td>Technologie der Stahlbauteile</td>
<td>Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 minutes

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Technologie der Stahlbauteile
2174579, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Bedeutung, Entstehung und Charakterisierung von Bauteilzuständen
Beschreibung der Auswirkungen von Bauteilzuständen
Stabilität von Bauteilzuständen
Stahlgruppen
Bauteilzustände nach Umformprozessen
Bauteilzustände nach durchgreifenden Wärmebehandlungen
Bauteilzustände nach Randschichthärtungen
Bauteilzustände nach Zerspanprozessen
Bauteilzustände nach Oberflächenbehandlungen
Bauteilzustände nach Fügeprozessen
Zusammenfassende Bewertung

Lernziele:

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
Literaturhinweise
Skript wird in der Vorlesung ausgegeben

VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984
V. Schulze: Modern Mechanical Surface Treatments, Wiley, Weinheim, 2005
Verantwortung: Dr. Ivan Otic
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2189904</th>
<th>Ten lectures on turbulence</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Otic</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗾 Präsenz, ⋅ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Inhalt

1. Einleitung
2. Turbulenter Impuls und Wärme Transport
3. Statistische Beschreibung der Turbulenz
4. Skalen turbulenter Strömungen
5. Homogene turbulente Scherströmungen
6. Freie turbulente Scherströmungen
7. Wandgebundene turbulente Strömungen
8. Turbulenzmodellierung
9. Reynolds Averaged Navier-Stokes (RANS) - Simulationsansatz
10. Large Eddy Simulation (LES) - Ansatz

Lernziele:

Nach der Teilnahme an dieser Veranstaltung sind die Studierenden in der Lage:

- Grundlagen der statistischen Strömungsmechanik, der Turbulenztheorie und der Turbulenzmodellierung zu verstehen
- RANS- und LES-Transportgleichungen abzuleiten
- Modellierungstechniken, die zur Lösung des technischen Wärme- und Stoffübergangsproblems eingesetzt werden können, zu verstehen und anzuwenden.

Literaturhinweise

Reference texts:
- Lecture Notes
- Presentation slides

Recommended Books:
3.325 Teilleistung: Thermische Solarenergie [T-MACH-105225]

Verantwortung: Prof. Dr. Robert Stieglitz
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Leistung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2169472</td>
<td>Thermische Solarenergie</td>
<td>2</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Stieglitz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Leistung</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105225</td>
<td>Thermische Solarenergie</td>
<td>Stieglitz</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Solarenergie
2169472, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Grundlagen der thermischen Solarenergie (Strahlung, Leitung, Speicherung, Wirkungsgrad). Aktive und passive Nutzung der Solarenergie, Solarkollektoren (Bauformen, Wirkungsgrad, Systemtechnik), Solarkraftwerke (Heliostate, Parabolrinnen, Aufwindtypen), Solare Klimatisierung.

Im Detail:
5. Impuls- und Wärmetransport: Grundgleichungen des ein- u. mehrphasigen Transports, Berechnungsverfahren, Stabilitätsgrenzen.

Optional

Am Ende
Speicher: Energieinhalte, Speichertypen, Speichermaterialien, Kost
Solare Klimatisierung: Kühleistungsbestimmung, Raumklima, solare Kühlverfahren und Bewertung der Klimatisierung.

Empfehlung /Vorkenntnisse:
Grundlagen der Wärme-Stoffübertragung, der Werkstoffkunde und Strömungsmechanik, wünschenswert sind sichere Grundkenntnisse der Physik in Optik sowie Thermodynamik
Mündliche Prüfung, Dauer: ca. 25 Minuten, Hilfsmittel: keine

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise
Bereitstellung des Suidaenmaterials in gedruckter und elektronischer Form.
3.326 Teilleistung: Thermische Turbomaschinen I [T-MACH-105363]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Modul</th>
<th>Vorlesung/Vorübung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2169453</td>
<td>Thermische Turbomaschinen I (auf Deutsch)</td>
<td>3 SWS</td>
<td>V</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2169454</td>
<td>Übungen zu Thermische Turbomaschinen I</td>
<td>2 SWS</td>
<td>U</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2169553</td>
<td>Thermische Turbomaschinen I (auf Englisch)</td>
<td>3 SWS</td>
<td>V</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Kursbezeichnung</th>
<th>Vorlesung/Vorübung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76T-Mach-105363-Wdh</td>
<td>Thermische Turbomaschinen I (für Wiederholer)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Turbomaschinen I (auf Deutsch)
2169453, WS 22/23, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Energie transfer in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine und radiales Gleichgewicht
Verdichterstufen und Ausblick
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.
Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h
Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.
Prüfung:
mündlich
Dauer: 30 min
Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993

Thermische Turbomaschinen I (auf Englisch)
2169553, WS 22/23, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
Allgemeine Grundlagen der Thermischen Strömungsmaschinen

Dampfturbinen Systemanalyse

Gasturbinen Systemanalyse

Kombikraftwerke und Heizkraftanlagen

Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick

Arbeitsverfahren von Turbinen: Energie-Eingang in der Stufe

Bauarten und Ausführungsbeispiele von Turbinen

Ebene gerade Schaufelgitter

Räumliche Strömung in der Turbine und radiales Gleichgewicht

Verdichterstufen und Ausblick

Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.

Lernziele:
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.

Arbeitsaufwand:
Präsenzzzeit: 31,50 h
Selbststudium: 64,40 h
Prüfung: müdlich
Dauer: 30 min
Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)

Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993

Teilleistung: Thermische Turbomaschinen II [T-MACH-105364]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungs maschinen
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

SS 2022	2170476	Thermische Turbomaschinen II	3 SWS	Vorlesung (V) / 🗣	Bauer
SS 2022	2170477	Tutorial - Thermal Turbomachines II (Übung - Thermische Turbomaschinen II)	2 SWS	Übung (Ü) / 🗣	Bauer, Mitarbeiter
SS 2022	2170553	Thermische Turbomaschinen II (auf Englisch)	3 SWS	Vorlesung / Übung (VÜ) / 🗣	Bauer

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105364 | Thermische Turbomaschinen II | Bauer |

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V
Thermische Turbomaschinen II
2170476, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Maschinenbau für Erasmus-Studierende, Stand 29.09.2022
Modulhandbuch gültig ab Wintersemester 2022/23
Inhalt
Lehrinhalt:
Allgemeine Einführung, Entwicklungs-
tendenzen bei Turbomaschinen

Vergleich Turbine - Verdichter

Zusammenfassende Betrachtung der Verluste

Berechnungsgrundlagen und Korelationsansätze für die Turbinen- und Verdichterauslegung, Stufen-kennlinien

Betriebsverhalten mehrstufiger Turbomaschinen bei Abweichungen vom Auslegungspunkt

Regelung und Überwachung von Dampf- und Gasturbinenanlagen

Maschinenelemente

Hochbeanspruchte Bauteile

Werkstoffe für Turbinenschaufeln

Gekühlte Gasturbinenschaufeln (Luft, Flüssigkeit)

Kurzer Überblick über Betriebserfahrungen

Brennkammern und Umwelteinflüsse

Lernziele:
Ausgehend von den in 'Thermische Turbomaschinen I' erworbenen Kenntnissen können die Studenten Turbinen und Verdichter auslegen und deren Betriebsverhalten analysieren.

Empfehlungen:
Empfohlene Hauptfachkombination mit 'Thermische Turbomaschinen I'

Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h

Prüfung:
mündlich (nur in Verbindung mit 'Thermische Turbomaschinen I')
Dauer: 30 Min (--> 1 Stunde inkl. Thermische Turbomaschinen I)

Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Inhalt
Lehrinhalt:
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Energie- transfer in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine
und radiales Gleichgewicht
Verdichterstufen und Ausblick
Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.
Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h
Lernziele:
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.
Prüfung:
müdlich
Dauer: 30 min
Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
3.328 Teilleistung: Thermofluiddynamik [T-MACH-106372]

Verantwortung: Dr. Sebastian Ruck
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2189423</td>
<td>Thermofluiddynamik</td>
<td>2</td>
<td>Vorlesung (V) / 👤</td>
<td>Ruck</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-106372</td>
<td>Thermofluiddynamik</td>
<td>Ruck</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 👤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermofluiddynamik
2189423, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Wesentliche Inhalte

- Grundgleichungen und Kennzahlen der Thermofluiddynamik
- Beschreibungs- und Modellierungsmethoden thermischer Strömungen
- Geschwindigkeits- und Temperaturgesetze in Grenzschichten
- Konvektive Wärmeübergabe bei Umströmung und Durchströmung
- Wärmeübertragungsanalogien (Prandtl-, von Kármán, Martinelli,...)
- Methoden der Wärmeübertragungssteigerung des konvektiven Wärmeübergangs
- Strategien und Methoden für thermofluiddynamische Untersuchungen im F&E Prozess

Das Lernziel der Vorlesung ist die Vermittlung grundlegender und fachspezifischer Zusammenhänge des Impuls- und Energetransports wie sie in energietechnischen Komponenten auftreten. Die Basis bilden hierbei die kontinuums-mechanische Formulierung von laminaren und turbulenten thermischen Strömungen in energietechnischen Anlagen. Im Mittelpunkt steht die Beschreibung der konvektiven Wärmeübertragung. Ein Kernelement der Vorlesung ist u.a. der Transfer von analytischen Modellen und empirischen Erkenntnissen in „state-of-the-art“ Berechnungswerkzeugen, wie sie im Ingenieuralltag zum Einsatz kommen, sowie deren Validierung mit Hilfe experimenteller Messverfahren. Im Rahmen der Vorlesung lernen die Studierenden, (a) Differentialgleichungen für thermofluiddynamische Prozesse aufzustellen und dies mit dimensionslosen Kennzahlen zu beschreiben, (b) eine entsprechende ingenieurtechnische Fragestellung mit Hilfe von Kennzahlen in ein adäquates Modell zu überführen, (c) Analogien und Korrelationen für den konvektiven Wärmeübergang zu entwickeln, (d) Rechenverfahren und Modellierungsansätze für Strömungen mit Wärmeübertragung anwendungspezifisch auszuwählen und diese zu bewerten, (e) die Grundlagen kennen, geeignete Experimente und deren Instrumentierung zum Nachweis der erzielten Rechenergebnisse bei thermofluiddynamischen Untersuchungen zu entwickeln und (f) konstruktive Methode kennen, um die lokale und globale Effizienz sowie Effektivität von Wärmeüberträgern zu optimieren.

Präsenzzzeit: 21 h
Selbststudium: 90 h
Mündliche Prüfung ca. 30 Min.

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise

Maschinenbau für Erasmus-Studierende, Stand 29.09.2022
Modulhandbuch gültig ab Wintersemester 2022/23
3.329 Teilleistung: Thin Film and Small-scale Mechanical Behavior [T-MACH-105554]

Verantwortung: Dr. Patric Gruber
Prof. Dr. Christoph Kirchlechner
Dr. Daniel Weygand

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von:
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2178123</th>
<th>Thin film and small-scale mechanical behavior</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Kirchlechner, Gruber, Weygand</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-105554</th>
<th>Thin Film and Small-scale Mechanical Behavior</th>
<th>Kirchlechner, Gruber, Weygand</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105554-W</td>
<td>Thin Film and Small-scale Mechanical Behavior (Wiederholung)</td>
<td>Kirchlechner, Gruber, Weygand</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105554</td>
<td>Thin Film and Small-scale Mechanical Behavior</td>
<td>Kirchlechner, Gruber, Weygand</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 30 Minuten

Voraussetzungen
keine

Empfehlungen
Grundlagen in Werkstoffkunde, Physik und Mathematik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thin film and small-scale mechanical behavior
2178123, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
2. Grundlagen: Versetzung plastizität (Definition Versetzung, Versetzungsdichte, Versetzungsmobilität, Versetzungsquellmechanismen, statistische Betrachtung inkl. SSD und GND).

Die Studierenden können Größen- und Skalierungseffekte in Materialien benennen und verstehen diese Effekte auf Basis der zugrundeliegenden Mechanismen. Sie können das mechanische Verhalten von nano- und mikrostrukturierten Materialien beschreiben und die Ursachen für die Unterschiede im Vergleich zum klassischen Materialverhalten analysieren und erklären. Sie sind in der Lage geeignete Herstellungsverfahren, experimentelle Charakterisierungsmethoden und Modellierungsansätze für nano- und mikrostrukturierte Materialien zu erläutern.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 min

Literaturhinweise
2. L.B. Freund and S. Suresh: „Thin Film Materials"
3.330 Teilleistung: Traktoren [T-MACH-105423]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Hon.-Prof. Dr. Martin Kremmer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungs-ID</th>
<th>Befragte Personen</th>
<th>Veranstaltung</th>
<th>Kursleitende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2113080</td>
<td>Traktoren</td>
<td>2 SWS</td>
<td>Kremmer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungs-ID</th>
<th>Befragte Personen</th>
<th>Veranstaltung</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105423</td>
<td>Traktoren</td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-105423</td>
<td>Traktoren</td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Minuten) in der vorlesungsfreien Zeit des Semesters.

Voraussetzungen
keine

Empfehlungen
Allgemeine Grundkenntnisse des Maschinenbaus.

Anmerkungen

Lernziele:
Nach erfolgreicher Teilnahme kennen die Studierenden:
- wichtige Problemstellungen landtechnischer Entwicklungen
- Kundenanforderungen und deren Umsetzungsmöglichkeiten im Traktor
- Traktorentecnhnik in Breite und Tiefe

Inhalt:

Im Einzelnen werden folgende Punkte behandelt:
- Landwirtschaftliche Organisationen / Gesetzliche Rahmenbedingungen
- Historie der Ackerschlepper
- Traktor Engineering
- Traktormechanik
- Fahrwerk
- Motoren
- Getriebe
- Geräteschnittstellen
- Hydraulik
- Räder und Reifen
- Kabine
- Elektrik und Elektronik

Literatur:
- K.T. Renius: Traktoren - Technik und ihre Anwendung; DLG Verlag (Frankfurt); 1985
- E.Schilling: landmaschinen - Lehr- und Handbuch für den Landmaschinenbau; Schilling-Verlag (Köln), 1960
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Traktoren
2113080, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)
Präsenz/Online gemischt

Inhalt
Traktoren werden im Hinblick auf Leistungsfähigkeit und Technik gerne unterschätzt. Kaum ein anderes Fahrzeug ist so vielseitig und mit soviel High-Tec ausgerüstet. Angefangen von elektronischen Helfern wie automatischen Spurführsystemen über das speziell angepasste Fahrwerk bis hin zum Antriebsstrang finden sich Traktoren auf vielen Gebieten als Technologieführer wieder.

Im Einzelnen werden folgende Punkte behandelt:

- Landwirtschaftl. Organisationen/Gesetzl. Rahmenbedingungen
- Historie der Ackerschlepper
- Traktor Engineering
- Traktormechanik
- Fahrwerk
- Motoren
- Getriebe
- Geräteschnittstellen
- Hydraulik
- Räder und Reifen
- Kabine
- Elektrik und Elektronik

Allgemeine Grundkenntnisse des Maschinenbaus

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Organisatorisches
Ort/Zeit siehe Institutshomepage

Literaturhinweise
- K.T. Renius: Traktoren - Technik und ihre Anwendung; DLG Verlag (Frankfurt), 1985
- E. Schilling: Landmaschinen - Lehr- und Handbuch für den Landmaschinenbau; Schilling-Verlag (Köln), 1960
3.331 Teilleistung: Tribologie [T-MACH-105531]

Verantwortung: Prof. Dr. Martin Dienwiebel
Prof. Dr.-Ing. Matthias Scherge

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 8

Notenskala
- Drittelnoten

Turnus
- Jedes Wintersemester

Version
- 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23 2181114</td>
<td>Tribologie</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, x Abgesagt

Erfolgskontrolle(n)
- mündliche Prüfung (ca. 40 min)
- keine Hilfsmittel

Voraussetzungen
- Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen [T-MACH-109303]

Empfehlungen
- Vorkenntnisse in Mathematik, Mechanik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Tribologie
- Vorlesung / Übung (VÜ)
- 2181114, WS 22/23, 5 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Im Studierendenportal anzeigen
Inhalt

- Kapitel 1: Reibung
 Adhäsion, Geometrischer und realer Kontakt, Reibungsexperiment, Reibung und Kontaktfläche, Reibleistung, Tribologische Beanspruchung, Umwelteinflüsse, Tribologisches Lebensalter, Reibungsdichte, Kontaktmodelle, Simulation realer Kontakte, Rauheit
- Kapitel 2: Verschleiß
 plastisches Fließen, Fließen von Mikrorauheiten, Dissipationspfade, Mechanische Vermischung, Dynamik dritter Körper, Einlauf, Einlaufdynamik, Tangentiale Scherung
- Kapitel 3: Schmierung
 Striebeckkurve, Reibungsregimes (HD, EHD, Mischreibung), Ölarten, Additive, Ölanalytik, Feststoffschmierung
- Kapitel 4: Messtechnik
 Reibungsmessung, Tribometer, Leistungsumsatz, konventionelle Verschleißmessung, kontinuierliche Verschleißmessung (RNT)
- Kapitel 5: Rauheit
 Profilometrie, Profilkenngrößen, Messstrecken und -filter, Traganteilkurve, Messfehler
- Kapitel 6: Begleitende Analytik
 skalenübergreifende Topographiemessung, chemische Analytik, Strukturanalyse, mechanische Analyse

Übungen dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für die Beantwortung weitergehender Rückfragen der Studierenden.

Der/die Studierende kann

- die grundlegenden Reibungs- und Verschleißmechanismen beschreiben, die in tribologisch beanspruchten Systemen auftreten
- das Reibungs- und Verschleißverhalten von mechanischen Systemen beurteilen
- die Wirkung von Schmierstoffen sowie der wichtigsten Additive erläutern
- Lösungsansätze für die Optimierung von tribologisch beanspruchten Systemen identifizieren
- die wichtigsten Messmethoden zur Bestimmung tribologischen Kenngrößen beschreiben und zur Charakterisierung von Reibpaa rungen anwenden
- geeignete Messmethoden für die skalenübergreifende Ermittlung von Oberflächenrauheit und -topographie auswählen und die ermittelten Kennwerte hinsichtlich ihre Wirkung auf das tribologische Verhalten interpretieren
- die wichtigsten Verfahren und deren physikalische Messprinzipien zur oberrächenanalytischen Charakterisierung tribologisch belasteter Wirkflächen erläutern

Vorkenntnisse in Mathematik, Mechanik und Werkstoffkunde empfohlen

Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden
mündliche Prüfung (ca. 40 min)
keine Hilfsmittel

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

3.332 Teilleistung: Turbinen und Verdichterkonstruktionen [T-MACH-105365]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungscode</th>
<th>Thema</th>
<th>SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2169462</td>
<td>Turbinen und Verdichterkonstruktionen</td>
<td>2</td>
<td>🗣 Bauer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfungscode</th>
<th>Thema</th>
<th>Vorlesung (V)</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105365</td>
<td>Turbinen und Verdichterkonstruktionen</td>
<td>Bauer</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧱 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, Dauer: 20 Minuten.

Voraussetzungen

Prüfungen Thermische Turbomaschinen I & II erfolgreich bestanden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Turbinen und Verdichterkonstruktionen

2169462, WS 22/23, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt

Voraussetzung: Thermische Turbomaschinen I+II
Die Vorlesung Turbinen- und Verdichterkonstruktion vertieft die in Thermische Turbomaschinen I+II vermittelten Kenntnisse.
Thermische Turbomaschinen, allgemeine Übersicht
Auslegung einer Turbomaschine, Auslegungskriterien und Entwicklungsablauf

Radialmaschinen
Überschallverdichter
Brennkammer

Mehrelementenanlagen

Lernziele:

Die Studenten können:
- Sonderbauformen von Turbomaschinen, wie z. B. Radialmaschinen und Überschallverdichter beschreiben
- die Funktionsweise der Komponenten und Maschinen erklären und bewerten
- die zugrundeliegenden physikalischen Gesetzmäßigkeiten interpretieren und anwenden
- Einzelkomponenten praxisgerecht auslegen

Präsenzzeit: 21 h
Selbststudium: 42 h

Prüfung:
- mündlich
- Dauer: 30 Minuten

Hilfsmittel: keine
Literaturhinweise
3.333 Teilleistung: Tutorial Nonlinear Continuum Mechanics [T-MACH-111027]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

SS 2022 76-T-MACH-111027 Tutorial Nonlinear Continuum Mechanics Böhlke

Erfolgskontrolle(n)
Schriftliche Hausaufgaben

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Prüfung "Nonlinear Continuum Mechanics" (siehe Teilleistung 76-T-MACH-111026)

Voraussetzungen
keine
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ermüdungsverhalten geschweißter Bauteile und Strukturen

WS 22/23 2181731, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung gibt eine Einführung in die folgenden Themen:
- Schweißnahtqualität
- Schadensfälle bei Schweißverbindungen
- Bewertung von Kerben, Fehlern und Eigenspannungen
- Festigkeitskonzepte: Nenn-, Struktur-, Kerbspannungskonzepte, Bruchmechanik
- Lebensdauernachweis
- Maßnahmen zur Verlängerung der Lebensdauer mittels Nachbehandlungsverfahren
- Instandsetzung, Ertüchtigung und Reparaturmaßnahmen.

Der/die Studierende kann

- den Einfluss von Schweißprozess bedingten Kerben, Fehlern und Eigenspannungen auf das Bauteilverhalten beschreiben
- die Grundlagen numerischer und experimenteller Nachweisverfahren statisch und zyklisch beanspruchter Schweißverbindungen mittels Festigkeitskonzepten erläutern und diese anwenden
- Maßnahmen ableiten, um die Lebensdauer bei neu gebauten und auch bei den schon vorhandenen schwingbeanspruchten geschweißten Konstruktionen zu erhöhen

Vorkenntnisse
- in Werkstoffkunde und Mechanik empfohlen

Präsenzzeit: 22.5 Stunden
Selbststudium: 97.5 Stunden
Es werden regelmäßig Übungszettel ausgeteilt
mündliche Prüfung (ca. 30 min)
keine Hilfsmittel

Organisatorisches
Blockveranstaltung. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich. Vorlesungstermine und Hörsaal werden den angemeldeten Teilnehmern mitgeteilt.

Literaturhinweise
2. FKM-Richtlinie, Bruchmechanischer Festigkeitsnachweis, Forschungskuratorium Maschinenbau, VDMA Verlag, 2009
3.335 Teilleistung: Übungen - Tribologie [T-MACH-109303]

Verantwortung: Prof. Dr. Martin Dienwiebel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2181114</th>
<th>Tribologie</th>
<th>5 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🗣</th>
<th>Dienwiebel, Scherge</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

erfolgreiches Bearbeiten aller Übungsaufgaben

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Tribologie

2181114, WS 22/23, 5 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Präsenz
Inhalt

• Kapitel 1: Reibung
 Adhäsion, Geometrischer und realer Kontakt, Reibungsexperiment, Reibung und Kontaktfläche, Reibleistung, Tribologische Beanspruchung, Umwelteinflüsse, Tribologisches Lebensalter, Reibleistungsückdichte, Kontaktmodelle, Simulation realer Kontakte, Rauheit
• Kapitel 2: Verschleiß
 plastisches Fließen, Fließen von Mikroruhkeiten, Dissipationspfade, Mechanische Vermischung, Dynamik dritter Körper, Einlauf, Einlaufdynamik, Tangentielle Scherung
• Kapitel 3: Schmierung
 Striebeckkurve, Reibungsregimes (HD, EHD, Mischreibung), Ölrarten, Additive, Ölanalytik, Feststoffschmierung
• Kapitel 4: Messtechnik
 Reibungsmessung, Tribometer, Leistungsumsatz, konventionelle Verschleißmessung, kontinuierliche Verschleißmessung (RNT)
• Kapitel 5: Rauheit
 Profilometrie, Profilkenngrößen, Messstrecken und -filter, Traganteilkurve, Messfehler
• Kapitel 6: Begleitende Analytik
 skalenübergreifende Topographiemessung, chemische Analytik, Strukturanalyse, mechanische Analyse

Übungen dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für die Beantwortung weitergehender Rückfragen der Studierenden.

Der/die Studierende kann

• die grundlegenden Reibungs- und Verschleißmechanismen beschreiben, die in tribologisch beanspruchten Systemen auftreten
• das Reibungs- und Verschleißverhalten von mechanischen Systemen beurteilen
• die Wirkung von Schmierstoffen sowie der wichtigsten Additive erläutern
• Lösungsansätze für die Optimierung von tribologisch beanspruchten Systemen identifizieren
• die wichtigsten Messmethoden zur Bestimmung tribologischer Kenngrößen beschreiben und zur Charakterisierung von Reibpaarungen anwenden
• geeignete Messmethoden für die skalenübergreifende Ermittlung von Oberflächenrauheit und -topographie auswählen und die ermittelten Kennwerte hinsichtlich ihre Wirkung auf das tribologische Verhalten interpretieren
• die wichtigsten Verfahren und deren physikalische Messprinzipien zur oberflächenanalytischen Charakterisierung tribologisch belasteter Wirkflächen erläutern

Vorkenntnisse in Mathematik, Mechanik und Werkstoffkunde empfohlen

Präsenzzzeit: 45 Stunden
Selbststudium: 195 Stunden
mündliche Prüfung (ca. 40 min)
keine Hilfsmittel

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

3.336 Teilleistung: Übungen zu Angewandte Werkstoffsimulation [T-MACH-107671]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2182614</th>
<th>Angewandte Werkstoffsimulation</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🖥️</th>
<th>Gumbsch, Schulz</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-107671 | Übungen zu Angewandte Werkstoffsimulation | Gumbsch, Schulz |

Legende: 🖥️ Online, ⏩ Präsenz/Online gemischt, 🎤 Präsenz, ⏳ Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung aller Übungsaufgaben

Voraussetzungen

T-MACH-110928 – Exercises for Applied Materials Simulation darf nicht begonnen sein

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Angewandte Werkstoffsimulation

2182614, SS 2022, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung / Übung (VÜ) 🖥️ Online

Inhalt

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Craschsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasieter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

Präsenzzeit: 34 Stunden

Übung: 11 Stunden

Selbststudium: 165 Stunden

Mündliche Prüfung ca. 35 Minuten

Hilfsmittel: keine

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Organisatorisches

Die Vorlesung wir nur als Aufzeichnung angeboten!

Bitte besuchen Sie die englischsprachige Veranstaltung "Applied Materials Simulation" (2182616)!

Weitere Informationen finden Sie in ILIAS.

Kontakt: johannes.schneider@kit.edu
Literaturhinweise

3.37 Teilleistung: Übungen zu Einführung in die Finite-Elemente-Methode [T-MACH-110330]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

| SS 2022 | 2162257 | Übungen zu Einführung in die Finite-Elemente-Methode | 1 SWS | Übung (Ü) / Online, Präsenz/Online gemischt | Dyck, Lauff, Langhoff, Böhlke |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-110330 | Übungen zu Einführung in die Finite-Elemente-Methode | Böhlke, Langhoff |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Einführung in die Finite-Elemente-Methode" (siehe Teilleistung 76-T-MACH-105320)

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsblätter und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, und für Studierende anderer Fachrichtungen bestehen die Klausurvorleistungen in der Bearbeitung der schriftlichen Übungsaufgaben.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen. Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Einführung in die Finite-Elemente-Methode
2162257, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"

Literaturhinweise
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"
Teileistung: Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion [T-MACH-107632]

Verantwortung: Dr. Peter Franke
Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungsantriebe

Teilleistungsart: Studienleistung
Leistungspunkte: 2
Notenskala: best./nicht best.
Turnus: Jedes Wintersemester
Version: 4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 22/23</th>
<th>2193004</th>
<th>Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</th>
<th>1 SWS</th>
<th>Übung (Ü) / 📐</th>
<th>Franke, Ziebert</th>
</tr>
</thead>
</table>

Legende: 🖥️ Online, 📐 Präsenz/Online gemischt, 🗣️ Präsenz, ☝️ Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen

T-MACH-110926 – Exercises for Solid State Reactions and Kinetics of Phase Transformations darf nicht begonnen sein

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion

2193004, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Präsenz/Online gemischt

Inhalt

1. Ficksche Gesetze
2. Berechnung von Diffusionskoeffizienten
3. Diffusion und Erstarrungsvorgänge

Empfehlungen: Vorlesung Festkörperreaktionen/Kinetik von Phasenumwandlungen, Korrosion; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Vorlesung Physikalische Chemie

Vertiefung der Vorlesung anhand durchgerechneter Beispiele

Präsenzzeit: 14 Stunden
Selbststudium: 46 Stunden

Literaturhinweise

Vorlesungsskript;
Lecture notes
3.339 Teilleistung: Übungen zu Mathematische Methoden der Mikromechanik [T-MACH-110379]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-104847 - Schwerpunkt Ingenieurwissenschaftliche Grundlagen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-110379 | Übungen zu Mathematische Methoden der Mikromechanik | Böhlke |

Erfolgskontrolle(n)
Erfolgreiche Bearbeitung der Übungsblätter. Details dazu werden in der ersten Vorlesung bekanntgegeben.
Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teileistungsart Studienleistung
Leistungspunkte 2
Notenskala best./nicht best.
Turnus Jedes Sommersemester
Version 4

Lehrveranstaltungen
SS 2022 2174586 Werkstoffanalytik 2 SWS Vorlesung (V) / 🧩 Schneider, Gibmeier

Prüfungsveranstaltungen
SS 2022 76-T-MACH-107685 Übungen zu Werkstoffanalytik Gibmeier

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Regelmäßige Teilnahme

Voraussetzungen
T-MACH-110945 – Exercises for Materials Characterization darf nicht begonnen sein

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffanalytik
2174586, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Organisatorisches

The event will be held in accordance with the Corona rules currently in force at KIT. Status of 11.04.2022, the event will be held in presence. In any case, we still ask you to wear a nose and mouth covering. In the summer semester, the event will be held in German. The course (first lecture) will start on 26.04.2022.

Literaturhinweise
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
3.341 Teilleistung: Umformtechnik [T-MACH-105177]

Verantwortung: Dr.-Ing. Thomas Herlan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2150681 | Umformtechnik | 2 SWS | Vorlesung (V) / 🧩 | Herlan |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105177 | Umformtechnik | Herlan |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Umformtechnik
2150681, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Prüfung (V) Präsenz/Online gemischt
Inhalt

Die Themen im Einzelnen sind:

- Einführung und Grundlagen
- Warmumformung
- Umformmaschinen
- Werkzeuge
- Metallkunde
- Plastizitätstheorie
- Tribologie
- Blechumformung
- Fließpressen
- Numerische Simulation

Lernziele:
Die Studierenden …

- können die Grundlagen, Verfahren, Werkzeuge, Maschinen und Einrichtungen der Umformtechnik in einer ganzheitlichen und systematischen Darstellung wiedergeben.
- können die Unterschiede der Verfahren, Werkzeuge, Maschinen und Einrichtungen anhand konkreter Beispiele verdeutlichen sowie diese hinsichtlich ihrer Eignung für den jeweiligen Anwendungsfall analysieren und beurteilen.
- sind darüber hinaus in der Lage, das erarbeitete Wissen auf andere umformtechnische Fragestellungen zu übertragen und anzuwenden.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Vorlesungstermine freitags, wöchentlich.
Die konkreten Termine werden in der ersten Vorlesung bekannt gegeben und auf der Institutshomepage und ILIAS veröffentlicht.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
3.342 Teilleistung: Unternehmensführung und Strategisches Management [T-WIWI-102629]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-104884 - Teilleistungen von der KIT-Fakultät für Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>3,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lerneinheit</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Vorlesungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2577900</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lerneinheit</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Vorlesungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7900067</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7900199</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Unternehmensführung und Strategisches Management

2577900, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Inhalt in Stichworten:
- Grundlagen der Unternehmensführung
- Grundlagen des Strategischen Managements
- Strategische Analyse
- Wettbewerbsstrategie: Formulierung und Auswahl auf Geschäftsfeldebene
- Strategien in Oligopolen und Netzwerken: Antizipation von Abhängigkeiten
- Unternehmensstrategie: Formulierung und Auswahl auf Unternehmensebene
- Strategieimplementierung

Lernziele:
Nach der Veranstaltung sind die Studierenden in der Lage,
- strategische Entscheidungen entlang des idealtypischen Strategieprozesses im praktischen Umfeld vorzubereiten ("strategische Analyse"),
- strategische Optionen zu bewerten,
- das Portfoliomanagement zu erklären (Parental Advantage und bester Eigner von Geschäftseinheiten),
- Preis- und Kapazitätsentscheidungen in Oligopolen zu diskutieren und am Beispiel zu erläutern.

Empfehlungen:
Keine.

Arbeitsaufwand:
Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 75 Stunden

Nachweis:
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussichtlich wird die Prüfung zu Beginn der vorlesungsfreien Zeit des Semesters stattfinden.
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Literaturhinweise

Die relevanten Auszüge und zusätzliche Quellen werden in der Veranstaltung bekannt gegeben.
3.343 Teilleistung: Vakuumtechnik und Tritiumbrennstoffkreislauf [T-MACH-108784]

Verantwortung:
Dr. Christian Day

Einrichtung:
KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von:
M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen
| SS 2022 | 2190499 | Vakuumtechnik und Tritiumbrennstoffkreislauf | 2 SWS | Block-Vorlesung (BV) / 🧩 | Day, Größe |

Prüfungsveranstaltungen
| SS 2022 | 76-T-MACH-108784 | Vakuumtechnik und Tritiumbrennstoffkreislauf | Day, Bornschein |

Legende: 🥰 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 Minuten, ganzjährig

Voraussetzungen
Keine

Empfehlungen
Kenntnisse der Vorlesung "Fusionstechnologie A"

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vakuumtechnik und Tritiumbrennstoffkreislauf

2190499, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, [Im Studierendenportal anzeigen](#)

Inhalt

- **Einleitung**
- **Tritiumhandhabung**
 - Technologien in der Tritiumanlage eines Reaktors
 - Tritium und seine Erbrütung
 - Grundlagen der Vakuumtechnik
 - Vakuumsysteme in der Fusion
 - Materiezufuhr in die Plasmakammer
- **Der Brennstoffkreislauf von ITER und DEMO**
- **Empfohlen werden Kenntnisse der Vorlesung "Fusionstechnologie A"**
 - Mündliche Prüfung ca. 20 Minuten, ganzjährig

Organisatorisches

Anmeldung bis 20. April via E-Mail an: christian.day@kit.edu

Die Vorlesung findet an 4 Tagen in der Zeit von 08:00-17:15 Uhr am Campus Nord statt. Der Raum wird noch bekanntgegeben. Termine werden mit angemeldeten Teilnehmern Ende April für Juni vereinbart.
3.344 Teilleistung: Vehicle Ride Comfort & Acoustics I [T-MACH-102206]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2114856 Vehicle Ride Comfort & Acoustics I 2 SWS Vorlesung (V) / 🧩 Gauterin

Prüfungsveranstaltungen
SS 2022 76-T-MACH-102206 Vehicle Ride Comfort & Acoustics I Gauterin
SS 2022 76T-MACH-102206_Wiederholung Vehicle Ride Comfort & Acoustics I Gauterin
WS 22/23 76-T-MACH-102206 Vehicle Ride Comfort & Acoustics I Gauterin

Erfolgskontrolle(n)
mündliche Prüfung

Voraussetzungen
Kann nicht mit der Teilleistung Fahrzeugkomfort und -akustik I T-MACH-105154 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vehicle Ride Comfort & Acoustics I
2114856, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Auskunft zu den NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seitens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsgenomene beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analysieren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.

Organisatorisches
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]

Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.

Classroom attendance depends on the development of the pandemic situation.
Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
3.345 Teilleistung: Vehicle Ride Comfort & Acoustics II [T-MACH-102205]

Verantwortung: Prof. Dr. Frank Gauterin

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Lehrveranstaltungen

| SS 2022 | 2114857 | Vehicle Ride Comfort & Acoustics II | 2 SWS | Vorlesung (V) / 🍁 | Gauterin |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102205 | Vehicle Ride Comfort & Acoustics II | Gauertin |
| SS 2022 | 76-T-Mach-102205-Wiederholung | Vehicle Ride Comfort & Acoustics II | Gauertin |

Erfolgskontrolle(n)

- mündliche Prüfung

Voraussetzungen

Kann nicht mit der Teilleistung Fahrzeugkomfort und -akustik II T-MACH-105155 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vehicle Ride Comfort & Acoustics II

2114857, SS 2022, 2 SWS, Sprache: Englisch, *Im Studierendenportal anzeigen*

Inhalt

1. Zusammenfassung der Grundlagen Akustik und Schwingungen

2. Die Bedeutung von Fahrbahn, Radungleichförmitigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauprozesse
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

3. Geräuschemission von Kraftfahrzeugen
 - Geräuschbelastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

Lernziele:

Organisatorisches
Genaue Termine entnehmen Sie bitte der Institushomepage.
Kann nicht mit der Veranstaltung [2114825] kombiniert werden.

Scheduled dates:
see homepage of the institute.
Can not be combined with lecture [2114825].
Classroom attendance depends on the development of the pandemic situation

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
3.346 Teilleistung: Verbrennungsmotoren I [T-MACH-102194]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulnummer</th>
<th>Übungstitel</th>
<th>SWS</th>
<th>Unterrichtsform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2133113</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🗣️</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulnummer</th>
<th>Übungstitel</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102194</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td></td>
<td></td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-102194</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td></td>
<td></td>
<td>Kubach, Koch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Semester</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Prüfungsform Vorlesung / Übung (VÜ)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>2133113</td>
<td>WS 22/23</td>
<td>4</td>
<td>Präsenz</td>
<td>🗣️ Universeum</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Inhalt

Einleitung, Institutsvorstellung
Prinzip des Verbrennungsmotors
Charakteristische Kenngrößen
Bauteile
Kurbeltrieb
Brennstoffe
Ottomotorische Betriebsarten
Dieselmotorische Betriebsarten
Wasserstoffmotoren
Abgasemissionen

Organisatorisches

Übungstermine Donnerstags nach Bekanntgabe in der Vorlesung
3.347 Teilleistung: Verbrennungsmotoren II [T-MACH-104609]

Verantwortung: Dr.-Ing. Rainer Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
5

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2022</th>
<th>2134151</th>
<th>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Koch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>SS 2022</th>
<th>76-T-MACH-104609</th>
<th>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II</th>
<th>Koch, Kubach</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>76-T-MACH-104609</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II</td>
<td>Kubach, Koch</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 Minuten, keine Hilfsmittel

Voraussetzungen
keine

Empfehlungen
Grundlagen des Verbrennungsmotors I hilfreich

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II
2134151, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
3.348 Teilleistung: Verbrennungstechnisches Praktikum [T-CIWVT-108873]

Verantwortung: Dr.-Ing. Stefan Raphael Harth
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-MACH-105100 - Teilleistungen von der KIT-Fakultät für Chemieingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Beschreibung</th>
<th>ECTS</th>
<th>Prüfung</th>
<th>Raum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>22531</td>
<td>Laboratory Work in Combustion Technology</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣️</td>
<td>Harth</td>
</tr>
<tr>
<td>SS 2022</td>
<td>22542</td>
<td>Verbrennungstechnisches Praktikum</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣️</td>
<td>Trimis, Harth</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Beschreibung</th>
<th>Raum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7231401</td>
<td>Verbrennungstechnisches Praktikum</td>
<td>Harth</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7231401</td>
<td>Verbrennungstechnisches Praktikum</td>
<td>Harth</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine

Anmerkungen
Termine der Praktika werden in Absprache festgelegt. Anmeldungen bis spätestens 15. Mai per email an: stefan.harth@kit.edu
3.349 Teilleistung: Verhaltensgenerierung für Fahrzeuge [T-MACH-105367]

Verantwortung: Maximilian Naumann
Moritz Werling

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-104849 - Schwerpunkt Fahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich

Leistungspunkte: 6

Notenskala: Drittelnoten

Turnus: Jedes Wintersemester

Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungsleistung</th>
<th>Kurzdauer</th>
<th>Ort</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Werling, Naumann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfungsleistung</th>
<th>Kurzdauer</th>
<th>Ort</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>Stiller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>Stiller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- schriftliche Prüfung
 - 60 Minuten
 - Hilfsmittel: einfache wissenschaftliche Taschenrechner / programmierbare oder graphische Taschenrechner sind nicht erlaubt

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verhaltensgenerierung für Fahrzeuge

<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Kurzdauer</th>
<th>Ort</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2138336, WS 22/23, 3 SWS, Sprache: Deutsch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen

Inhalt

Kurzbeschreibung

Lernziele:

Nachweis: schriftliche Prüfung

Arbeitsaufwand: 180 Stunden
Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3 TEILLEISTUNGEN

Verantwortung: Dr. Patric Gruber
Prof. Dr. Peter Gumbsch

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart Prüfungsleistung mündlich
Leistungspunkte 4 Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Pädag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2181715</td>
<td>Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Gruber, Gumbsch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Pädag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102139</td>
<td>Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen</td>
<td>Gruber, Gumbsch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,❌ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen Vorlesung (V)
Vorlesung 2181715, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Präsenz
Inhalt
1 Ermüdung, Ermüdungsmechanismen
 1.1 Einführung
 1.2 Lebensdauer
 1.3 Stadien der Ermüdung
 1.4 Materialwahl
 1.5 Kerben und Kerbformoptimierung
 1.6 Fallbeispiele: ICE-Unglücke

2 Kriechen
 2.1 Einführung
 2.2 Hochtemperaturplastizität
 2.3 Phänomenologische Beschreibung
 2.4 Kriechmechanismen
 2.5 Legierungseinflüsse

Der/die Studierende
 • besitzt das grundlegende Verständnis der mechanischen Vorgänge, um die Zusammenhänge zwischen äußerer Belastung und Werkstoffwiderstand zu erklären.
 • kann die wichtigsten empirische Werkstoffmodelle für Ermüdung und Kriechen erläutern und anwenden.
 • besitzt das physikalische Verständnis, um Versagensphänomene beschreiben und erklären zu können.
 • kann statistische Ansätze zur Zuverlässigkeitsbeurteilung nutzen
 • kann seine im Rahmen der Veranstaltung erworbenen Fähigkeiten nutzen, um Werkstoffe anwendungsspezifisch auszuwählen und zu entwickeln

Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Die Erfolgskontrolle erfolgt in Form einer ca. 30 min. mündlichen Prüfung (nach §4 (2), 2 SPO).

Literaturhinweise
 • Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
 • Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); Standardwerk über Ermüdung, alle Materialklassen, umfangreich, für Einsteiger und Fortgeschrittene
3.351 Teilleistung: Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch [T-MACH-102140]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

| WS 22/23 | 2181711 | Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch | 3 SWS | Vorlesung / Übung (VÜ) | Gumbsch, Weygand |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102140 | Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch | | Weygand, Gumbsch |
| WS 22/23 | 76-T-MACH-102140 | Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch | | Weygand, Gumbsch, Kraft |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch
2181711, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

1. Einführung
2. Grundlagen der Elastizitätstheorie
3. Klassifizierung von Spannungen
4. Versagen durch plastische Verformung
 ◦ Zugversuch
 ◦ Versetzungen
 ◦ Verfestigungsmechanismen
 ◦ Dimensionierungsrichtlinien
5. Verbundwerkstoffe
6. Bruchmechanik
 ◦ Bruchhypothesen
 ◦ Linear elastische Bruchmechanik
 ◦ Risswiderstand
 ◦ Experimentelle Bestimmung der Rißzähigkeit
 ◦ Fehlerfeststellung
 ◦ Risswachstum
 ◦ Anwendungen der Bruchmechanik
 ◦ Atomistik des Bruchs

Der/die Studierende

• besitzt das grundlegende Verständnis der mechanischen Vorgänge, um die Zusammenhänge zwischen äußerer Belastung und Werkstoffwiderstand zu erklären.
• kann die Grundlagen der linearen elastischen Bruchmechanik erläutern und entscheiden, ob diese bei einem Versagensfall angewandt werden können.
• kann die wichtigsten empirische Werkstoffmodelle für Verformung und Bruch beschreiben und anwenden.
• besitzt das physikalische Verständnis, um Versagensphänomene beschreiben und erklären zu können.

Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Die Erfolgskontrolle erfolgt in Form einer ca. 30 min. mündlichen Prüfung (nach §4 (2), 2 SPO).

Organisatorisches

Übungstermine werden in der Vorlesung bekannt gegeben!

nach aktuellem Stand Präsenz

Literaturhinweise

• Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
3.352 Teilleistung: Verzahntechnik [T-MACH-102148]

Verantwortung: Dr.-Ing. Markus Klaiber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Vorlesungsname</th>
<th>Vorlesungsstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2149655</td>
<td>Verzahntechnik</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Prüfungsname</th>
<th>Prüfungsstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102148</td>
<td>Verzahntechnik</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (20 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verzahntechnik
2149655, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Lernziele:

Die Studierenden …

- sind in der Lage, die Grundbegriffe einer Verzahnung zu beschreiben und können die in der Vorlesung vermittelten Grundlagen der Zahnrad- und Verzahnungstheorie erläutern.
- sind fähig, die verschiedenen Fertigungsverfahren und deren Maschinentypen zur Herstellung von Verzahnungen anzuwenden und deren Funktionsweise sowie Vor- und Nachteile zu erläutern.
- können die Grundlagen der Zahnrad- und Verzahnungstheorie sowie der Herstellungsverfahren von Verzahnungen auf neue Problemstellungen anwenden.
- können Messschriebe zur Beurteilung von Verzahnungsqualitäten lesen und entsprechend interpretieren.
- sind in der Lage, auf Basis vorgegebener Anwendung eine geeignete Prozessauswahl für die Herstellung der Verzahnung zu treffen.
- sind in der Lage, die gesamte Prozesskette zur Herstellung von verzahnten Bauteilen zu benennen und deren jeweiligen Einfluss im Kontext der gesamten Prozesskette auf die resultierenden Werkstückeigenschaften zu beurteilen.

Arbeitsaufwand:

- Präsenzzzeit: 21 Stunden
- Selbststudium: 99 Stunden

Organisatorisches

Start: 27.10.2022
Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.353 Teilleistung: Virtual Engineering I [T-MACH-102123]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von:
M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsnummer</th>
<th>WS 22/23</th>
<th>2 SWS</th>
<th>Vorlesung (V) / Ovtcharova</th>
</tr>
</thead>
<tbody>
<tr>
<td>2121352</td>
<td>Virtual Engineering I</td>
<td>76-T-MACH-102123</td>
<td>Virtual Engineering I</td>
<td>Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>2121353</td>
<td>Übungen zu Virtual Engineering I</td>
<td>76-T-MACH-102123</td>
<td>Übung (Ü) / Ovtcharova</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungsnummer</th>
<th>Prüfung</th>
<th>WS 22/23</th>
<th>76-T-MACH-102123</th>
<th>Prüfung</th>
<th>Ovtcharova</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-102123</td>
<td>Virtual Engineering I</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,🗙 Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung 90 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Engineering I
2121352, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Die Lehrveranstaltung beinhaltet:

- Konzeption eines Produktes (Systemansätze, Anforderungen, Definitionen, Struktur)
- Erzeugung Domänenspezifischer Produktdaten (CAD, ECAD, Software, ...) und KI-Methoden
- Validierung von Produkteigenschaften und Produktionsprozessen durch Simulation
- Digitaler Zwilling zur Optimierung von Produkten und Prozessen unter Einsatz von KI-Methoden

Nach erfolgreichem Besuch der Lehrveranstaltung können Studierende:

- komplexe Systeme mit den Methoden des Virtual Engineerings konzeptionieren und die Produktentstehung in unterschiedlichen Domänen weiterführen.
- die Modellierung des digitalen Produktes im Hinblick auf die Planung, Konstruktion, Fertigung, Montage und Wartung durchführen.
- Validierungssysteme zur Absicherung von Produkt und Produktion exemplarisch einsetzen.
- KI-Methoden entlang der Produktentstehung beschreiben.

Literaturhinweise
Vorlesung/Referate / Lecture slides

Übungen zu Virtual Engineering I
2121353, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Die theoretischen Konzepte und Inhalte der Vorlesung werden anhand grundlegender Funktionen von VE Systemlösungen praxisnah geübt.
Organisatorisches
Practice dates will probably be offered on different afternoons (14:00 - 17:15) in two-week intervals at the IMI in Kriegsstrasse 77. The exercise dates will be offered on different afternoons (14:00 - 17:15) in two-week intervals at the IMI in Kriegsstrasse 77.

Literaturhinweise
Exercise script / Übungsskript
3.354 Teilleistung: Virtual Engineering II [T-MACH-102124]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-104851 - Schwerpunkt Produktentwicklung und Konstruktion
M-MACH-104878 - Spezialisierung im Maschinenbau
M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart Prüfungsleistung schriftlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 3

Lehrveranstaltungen
SS 2022 2122378 Virtual Engineering II 2/1 SWS Vorlesung / Übung (VÜ) Ovtcharova, Häfner

Prüfungsveranstaltungen
SS 2022 76-T-MACH-102124 Virtual Engineering II Ovtcharova, Häfner
WS 22/23 76-T-MACH-102124 Virtual Engineering II Ovtcharova

Erfolgskontrolle(n)
Schriftliche Prüfung 90 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Engineering II
2122378, SS 2022, 2/1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Die Lehrveranstaltung beinhaltet:

- Grundlagen (Computergrafik, VR, AR, MR)
- Hardware- und Software-Lösungen
- Virtueller Zwilling, Validierung und Anwendung

Nach erfolgreichem Besuch der Lehrveranstaltung können Studierende:

- Konzepte der virtuellen Realität beschreiben sowie die zugrunde liegenden Technologien erklären und vergleichen
- die Modellierung und die computerinterne Darstellung einer VR-Szene erläutern und die Funktionsweise der Pipeline zur Visualisierung der Szene erklären
- verschiedene Systeme zur Interaktion mit einer VR-Szene beschreiben und die Vor- und Nachteile von Manipulations- und Tracking Geräten bewerten
- zwischen statischen, dynamischen und funktionalen virtuellen Zwillingen unterscheiden sowie Anwendungen und Validierungsstudien mit virtuellen Zwillingen im Bereich Gebäude und Produktion beschreiben

Organisatorisches
Zusätzliche Übungszeiten (1 SWS) werden zu Vorlesungsbeginn bekannt gegeben / Additional practice times (1 SWS) will be announced at the beginning of the lecture.

Literaturhinweise
Vorlesungsskripten / Lecture slides
3.355 Teilleistung: Virtual Reality Praktikum [T-MACH-102149]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-104850 - Schwerpunkt Mechatronik und Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 22/23</th>
<th>Projekt (PRO) / Ovtcharova, Häfner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23 2123375</td>
<td>Virtual Reality Praktikum</td>
</tr>
<tr>
<td>Projekt (PRO)</td>
<td>Ovtcharova, Häfner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester 2022</th>
<th>Projekt (PRO) / Ovtcharova, Häfner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 76-T-MACH-102149</td>
<td>Virtual Reality Praktikum</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗯 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet)

Voraussetzungen

Keine

Anmerkungen

Teilnehmerzahl begrenzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Reality Praktikum

2123375, WS 22/23, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt

• Grundlagen und Einführung in VR (Hardware, Software, Anwendungen)
• Einarbeitung in die Entwicklungsumgebungen (PolyVR, Blender, ...)
• Erstellen eigener VR-Anwendungen in Kleingruppen

Organisatorisches

Siehe Homepage zur Lehrveranstaltung

Literaturhinweise

Keine / None
3.356 Teilleistung: Wahrscheinlichkeitstheorie [T-ETIT-101952]

Verantwortung: Dr.-Ing. Holger Jäkel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-104882 - Teilleistungen aus der KIT-Fakultät für Elektrotechnik und Informationstechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Zeitangaben</th>
<th>Ort</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2310505 Wahrscheinlichkeitstheorie</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Jäkel</td>
<td></td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2310507 Übungen zu 2310505 Wahrscheinlichkeitstheorie</td>
<td>1 SWS</td>
<td>Übung (Ü) / Präsenz/Online gemischt</td>
<td>Jäkel</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Ort</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7310505 Wahrscheinlichkeitstheorie</td>
<td></td>
<td>Jäkel</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>7310505 Wahrscheinlichkeitstheorie</td>
<td></td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Empfehlungen
Inhalte der Höheren Mathematik I und II und Digitaltechnik werden benötigt.
3.357 Teilleistung: Wahrscheinlichkeitstheorie und Statistik [T-MATH-109620]

Verantwortung: Prof. Dr. Nicole Bäuerle
Dr. rer. nat. Bruno Ebner
Prof. Dr. Vicky Fasen-Hartmann
Prof. Dr. Daniel Hug
PD Dr. Bernhard Klar
Prof. Dr. Günter Last
Prof. Dr. Mathias Trabs
PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MACH-104885 - Teilleistungen von der KIT-Fakultät für Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 00007 | Wahrscheinlichkeitstheorie und Statistik | Trabs |

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min.)

Voraussetzungen
Keine
3.358 Teilleistung: Wärme- und Stoffübertragung [T-MACH-105292]

Verantwortung: Prof. Dr. Ulrich Maas
Dr.-Ing. Chunkan Yu

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Präsenz/Online gemischt</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>3122512</td>
<td>Heat and Mass Transfer</td>
<td>2 SWS</td>
<td>Präsenz/Online gemischt</td>
<td>Maas</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2165512</td>
<td>Wärme- und Stoffübertragung</td>
<td>2 SWS</td>
<td>Präsenz/Online gemischt</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105292</td>
<td>Wärme- und Stoffübertragung</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung schriftlich; Dauer ca. 3 h

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Heat and Mass Transfer
3122512, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt

• Stationäre und instationäre Wärmeleitung in homogenen Materialien; Platten, Rohrschalen und Kugelschalen
• Molekulare Diffusion in Gasen; Analogie der Stoffdiffusion zur Wärmeleitung
• Konvektiver, erzwungener Wärmeübergang in durchströmten Rohren/Kanälen sowie bei überströmten Platten und umströmten Profilen
• Konvektiver Stoffübergang, Stoff-/Wärmeübergangs-Analogie
• Mehrphasiger konvektiver Wärmeübergang (Kondensation, Verdampfung)
• Strahlungswärmevertransport

Organisatorisches
Bitte beachten Sie den Aushang.

Literaturhinweise

• Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"
• Baehr, H.-D., Stephan, K.: "Wärme- und Stoffübertragung", Springer Verlag, 1993
Inhalt

- Stationäre und instationäre Wärmeleitung in homogenen Materialien; Platten, Rohrschalen und Kugelschalen
- Molekulare Diffusion in Gasen; Analogie der Stoffdiffusion zur Wärmeleitung
- Konvektiver, erzwungener Wärmeübergang in durchströmten Rohren/Kanälen sowie bei überströmten Platten und umströmten Profilen
- Konvektiver Stoffübergang, Stoff-/Wärmeübergangs-Analogie
- Mehrphasiger konvektiver Wärmeübergang (Kondensation, Verdampfung)
- Strahlungswärmevertrag

Literaturhinweise

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"
- Baehr, H.-D., Stephan, K.: "Wärme- und Stoffübertragung". Springer Verlag, 1993
3.359 Teilleistung: Wärmepumpen [T-MACH-105430]

Verantwortung: Prof. Dr. Ulrich Maas
Dr.-Ing. Heinrich Wirbser

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsart</th>
<th>Sprache</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2166534</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Anzeige</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>2166534</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Anzeige</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungsart</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105430</td>
<td>Mündlich</td>
<td>Anzeige</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung (20 min)

Voraussetzungen

keine

Inhalt

Literaturhinweise

Vorlesungsunterlagen

Bach, K.: Wärmepumpen, Bd. 26 Kontakt und Studium, Lexika Verlag, 1979

Inhalt

Literaturhinweise
Vorlesungsunterlagen
Bach, K.: Wärmepumpen, Bd. 26 Kontakt und Studium, Lexika Verlag, 1979
3.360 Teilleistung: Wärmeübergang in Kernreaktoren [T-MACH-105529]

Verantwortung: Prof. Dr.-Ing. Xu Cheng

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von:
- M-MACH-104878 - Spezialisierung im Maschinenbau
- M-MACH-105134 - Wahlmodul Allgemeiner Maschinenbau

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte:
- 4

Notenskala:
- Drittelnoten

Turnus:
- Jedes Wintersemester

Version:
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23 2189907</td>
<td>Wärmeübergang in Kernreaktoren</td>
<td>2 SWS</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Mündliche Prüfung, 20 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wärmeübergang in Kernreaktoren

2189907, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

This lecture is designed for students of mechanical engineering and other engineering disciplines in their Bachelor or Master studies. The students will understand the most important heat transfer processes and learn the methods for the analysis of flow and heat transfer in nuclear reactors. Students are capable of explaining the thermal-hydraulic processes occurring in nuclear reactors and of selecting suitable models or simulation codes for thermal-hydraulic design and analysis.

1. Reactor types and thermal-hydraulic design criteria
2. Heat transfer processes and modeling
3. Pressure drop calculation
4. Temperature distribution in nuclear reactor
5. Numerical analysis methods for nuclear reactor thermal-hydraulics

Organisatorisches

This compact English lecture will be given on October 24-26, 2022, 09:00-17:00.

Literaturhinweise

1. L.S. Tong, J. Weisman, Thermal-hydraulics of pressurized water reactors, American Nuclear Society, La Grande Park, Illinois, USA
3.361 Teilleistung: Wasserstofftechnologie [T-MACH-105416]

Verantwortung: Dr. Thomas Jordan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

Lehrveranstaltungen
SS 2022 2170495 Wasserstofftechnologie 2 SWS Vorlesung (V) / 🗣 Jordan

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105416 Wasserstofftechnologie Jordan

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Grundlagen der Thermodynamik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wasserstofftechnologie
2170495, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Grundlagen
- Produktion
- Transport und Speicherung
- Anwendung
- Sicherheitsaspekte

Literaturhinweise
Ullmann's Encyclopedia of Industrial Chemistry
3.362 Teilleistung: Water Distribution Systems [T-BGU-108486]

Verantwortung: Dr.-Ing. Peter Oberle
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-MACH-105405 - Teilleistungen der KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 22/23 | 6222905 | Water Distribution Systems | 4 SWS | Vorlesung / Übung (VÜ) / 📚 | Oberle |

Legende: 🕹️ Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen

Empfehlungen
keine

Anmerkungen
keine
3 TEILLEISTUNGEN

3.363 Teilleistung: Wellenausbreitung [T-MACH-105443]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-104853 - Schwerpunkt Theoretischer Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>Notenskala</td>
</tr>
<tr>
<td>4</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Version</td>
</tr>
<tr>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
<tr>
<td>76-T-MACH-105443</td>
</tr>
<tr>
<td>Wellenausbreitung</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.
3.364 Teilleistung: Werkstoffanalytik [T-MACH-107684]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2174586</th>
<th>Werkstoffanalytik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 📝</th>
<th>Schneider, Gibmeier</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>76-T-MACH-107684</th>
<th>Werkstoffanalytik</th>
<th>Gibmeier</th>
</tr>
</thead>
</table>

Legende: 📝 Online, 📃 Präsenz/Online gemischt, 📃 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
Die erfolgreiche Teilnahme an Übungen zu Werkstoffanalytik ist Voraussetzung für die Zulassung zur mündlichen Prüfung Werkstoffanalytik.

T-MACH-110945 – Exercises for Materials Characterization darf nicht begonnen sein.
T-MACH-110946 – Materials Characterization darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffanalytik
2174586, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Vorlesung (V)
Präsenz/Online gemischt

Inhalt
In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturanalysen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Organisatorisches

The event will be held in accordance with the Corona rules currently in force at KIT. Status of 11.04.2022, the event will be held in presence. In any case, we still ask you to wear a nose and mouth covering. In the summer semester, the event will be held in German. The course (first lecture) will start on 26.04.2022.

Literaturhinweise
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben). Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
3.365 Teilleistung: Werkstoffe für den Leichtbau [T-MACH-105211]

Verantwortung: Prof. Dr.-Ing. Peter Elsner
Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilnehmeraufwand

Lehrveranstaltungen

| SS 2022 | 2174574 | Werkstoffe für den Leichtbau | 2 SWS | Vorlesung (V) / 🧩 | Liebig |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105211 | Werkstoffe für den Leichtbau | Liebig |

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

keine

Empfehlungen

Werkstoffkunde I/II

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffe für den Leichtbau

| 2174574, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen | Vorlesung (V) Präsenz/Online gemischt |
Inhalt
Einführung
Konstruktive, fertigungstechnische und werkstoffkundliche Aspekte des Leichtbaus
Aluminiumbasislegierungen
Aluminiumknetlegierungen
Aluminiumgusslegierungen
Magnesiumbasislegierungen
Magnesiumknetlegierungen
Magnesiumgusslegierungen
Titanbasislegierungen
Titanknetlegierungen
Titangusslegierungen
Hochfeste Stähle
Hochfeste Baustähle
Vergütungsstähle, pressgehärtete Stähle
Aushärtbare Stähle
Verbundwerkstoffe, insbesondere mit polymerer Matrix
Matrixsysteme
Verstärkungswerkstoffe
Grundlagen der Verbundmechanik
Hybride Werkstoffsysteme
Sonderwerkstoffe des Leichtbaus
Berylliumlegierungen
Metallische Gläser
Anwendungen
Lernziele:
Voraussetzungen:
Werkstoffkunde I/II (empfohlen)
Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung „Werkstoffe für den Leichtbau“ beträgt pro Semester 120 h und besteht aus Präsenz in den Vorlesungen (24 h), Vor- und Nachbearbeitungszeit zuhause (48 h) und Prüfungsvorbereitungszeit (48 h)
Nachweis:
Mündliche Prüfung, Dauer ca. 25 min
Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung
3.366 Teilleistung: Werkstoffkunde III [T-MACH-105301]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Termine</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / Übung (Ü)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>Werkstoffkunde III</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Heilmaier, Guth</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Übungen zu Werkstoffkunde III</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Heilmaier, Kaufmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Termine</th>
<th>Veranstaltung</th>
<th>Vorlesung (V)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Workshop T-MACH-105301</td>
<td></td>
<td>Heilmaier, Guth</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Workshop T-MACH-105301</td>
<td></td>
<td>Heilmaier, Guth</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 35 Minuten

Voraussetzungen
T-MACH-110818 - Plasticity of Metals and Intermetallics darf nicht begonnen sein

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkstoffkunde III

2173553, WS 22/23, 4 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Eigenschaften von reinem Eisen; Thermodynamische Grundlagen ein- und zweikomponentiger Systeme; Keimbildung und Keimwachstum; Diffusionsprozesse in kristallinem Eisen; Zustandsschaubild Fe-Fe3C; Auswirkungen von Legierungselementen auf Fe-C-Legierungen; Nichtgleichgewichtsgefüge; Mehrkomponentige Eisenbasislegierungen; Wärmebehandlungsverfahren; Härtebarkeit und Härterbarkeitsprüfung

Lernziele:

Voraussetzungen:
Werkstoffkundliche Grundlagen (Werkstoffkunde I/II)

Arbeitsaufwand:
Präsenzzeit: 53 Stunden
Selbststudium: 187 Stunden

Literaturhinweise

Vorlesungsskript; Übungsaufgaben; Bhadeshia, H.K.D.H. & Honeycombe, R.W.K.
Steels – Microstructure and Properties
3.367 Teilleistung: Werkstoffmodellierung: versetzungsbasierte Plastizität [T-MACH-105369]

Verantwortung: Dr. Daniel Weygand
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2182740 | Werkstoffmodellierung: versetzungsbasierte Plastizität | 2 SWS | Vorlesung (V) / 🗣 | Weygand |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105369 | Werkstoffmodellierung: versetzungsbasierte Plastizität | Weygand |
| WS 22/23 | 76-T-MACH-105369 | Werkstoffmodellierung: versetzungsbasierte Plastizität | Weygand |

Legende: 🖥 Online, 🎩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffmodellierung: versetzungsbasierte Plastizität

2182740, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V) Präsenz

Inhalt
1. Einführung
2. Elastische Felder von Versetzungen
3. Abgleiten, Kristallographie
4. Bewegungsgesetze von Versetzungen
 a. kubisch flächenzentriert
 b. kubisch raumzentriert
5. Wechselwirkung zwischen Versetzungen
6. Molekulardynamik
7. Diskrete Versetzungsdynamik
8. Kontinuumsbeschreibung von Versetzungen

Der/die Studierende
- besitzt das Verständnis der physikalischen Grundlagen, um Versetzungen sowie die Wechselwirkungen zwischen Versetzungen und Punkt-, Linien- und Flächendefekten zu beschreiben
- kann Modellierungsansätze zur Beschreibung von Plastizität auf Versetzungsebene anwenden
- kann diskrete Methoden zur Modellierung der Mikrostrukturbedingung erläutern

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Mündliche Prüfung ca. 30 Minuten
Literaturhinweise

3.368 Teilleistung: Werkstoffprozesstechnik [T-MACH-100295]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung
Dr. Joachim Binder
Dr.-Ing. Wilfried Liebig

Einrichtung
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von
M-MACH-104854 - Schwerpunkt Werkstoffe und Strukturen für Hochleistungssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2173540</td>
<td>Werkstoffprozesstechnik</td>
<td>3</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100295</td>
<td>Werkstoffprozesstechnik</td>
<td>Liebig, Binder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 min, begleitendes Praktikum in Werkstoffprozesstechnik muss erfolgreich abgeschlossen sein.

Voraussetzungen
Begleitendes Praktikum in Werkstoffprozesstechnik muss erfolgreich absolviert sein.

Anmerkungen
Vorlesung: Skript, Beamer, Notizen an der Tafel
Praktikum: Versuchseinrichtungen, Papier, Schreibzeug, Versuchsskript, Taschenrechner

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffprozesstechnik

<table>
<thead>
<tr>
<th>Kurscode</th>
<th>Wintersemester</th>
<th>SWS</th>
<th>Sprache</th>
<th>Anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2173540</td>
<td>WS 22/23</td>
<td>3</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
3 TEILLEISTUNGEN
Teilleistung: Werkstoffprozesstechnik [T-MACH-100295]

Inhalt
Einführung
Polymere:
Rohstoffe, Materialgesetze, Modelle, Rheologie, Urformen, Umformen, Fügeverfahren
Keramik:
Rohstoffe, Pulversynthese, Additive und Masseaufbereitung, Urformen und Umformen von Glas, Urformgebung, abtragende Verfahren, Stoffeigenschaften ändern, Endbearbeitung
Metalle:
Rohstoffe, Materialgewinnung und –aufbereitung, Urformen, Umformen, Trennen, Fügen
Halbleiter:
Rohstoffe, Urformen, Stoffeigenschaft ändern
Zusammenfassung
Lernziele:
Die Studierenden sind in der Lage, die verschiedenen Verfahren der Werkstoff- und Fertigungstechnik zu benennen, die ihnen zugrundeliegenden Prinzipien zu beschreiben und diese den Hauptgruppen der Fertigungsverfahren zuzuordnen.
Die Studierenden können Fertigungsverfahren anhand gegebener Fragestellungen oder vorgegebener Anwendungsszenarien auswählen und beachten dabei werkstoffspezifische Randbedingungen, die sie aus den in vorausgehenden Modulen erarbeiteten werkstoffkundlichen Grundlagen ableiten können.
Die Studierenden sind in der Lage, mit fertigungstechnischen Einrichtungen im Labormaßstab einfache Experimente durchzuführen, Korrelationen zwischen verwendeten Fertigungsparametern und den resultierenden Materialeigenschaften zu ziehen, indem sie diese mit geeigneten Prüfverfahren analysieren und dazu jene geeignet auswählen, auswerten und dokumentieren.
Voraussetzungen:
keine, Empfehlung: Modul "Materialwissenschaftliche Grundlagen" sollte abgeschlossen sein.
Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung „Werkstoffprozesstechnik“ beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (36 h) inkl. der integrierten Übungen, Präsenzzeit im Praktikum (12 h), Vor- und Nachbearbeitungszeit zuhause (72 h), und Prüfungsvorbereitungszeit (60 h)
Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung
Presentation slides and additional lecture notes are handed out during the lecture, additional literature recommendations given
3.369 Teilleistung: Werkzeugmaschinen und hochpräzise Fertigungssysteme [T-MACH-110962]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-104852 - Schwerpunkt Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kurscode</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2149910</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>6</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Kurscode</th>
<th>Kursbezeichnung</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-110962</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung (40 Minuten)

Voraussetzungen

T-MACH-102158 - Werkzeugmaschinen und Handhabungstechnik darf nicht begonnen sein.
T-MACH-109055 - Werkzeugmaschinen und Handhabungstechnik darf nicht begonnen sein.
T-MACH-110963 - Werkzeugmaschinen und hochpräzise Fertigungssystem darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkzeugmaschinen und hochpräzise Fertigungssysteme

<table>
<thead>
<tr>
<th>Kurscode</th>
<th>WS 22/23</th>
<th>SWS</th>
<th>Sprache</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149910</td>
<td>22/23</td>
<td>6</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt
Mit Gastvorträgen aus der Industrie wird die Vorlesung durch Einblicke in die Praxis abgerundet.

Die Themen im Einzelnen sind:

- Strukturelemente dynamischer Fertigungssysteme
- Vorschubbachsen: Hochpräzise Positionierung
- Hauptantriebe spanender Werkzeugmaschinen
- Periphere Einrichtungen
- Maschinensteuerung
- Messtechnische Beurteilung
- Instandhaltungsstrategien und Zustandsüberwachung
- Prozessüberwachung
- Entwicklungsprozess für Fertigungsmaschinen
- Maschinenbeispiele

Lernziele:
Die Studierenden ...

- sind in der Lage, den Einsatz und die Verwendung von Werkzeugmaschinen und hochpräzisen Fertigungssystemen zu beurteilen und diese hinsichtlich ihrer Eigenschaften sowie ihres Aufbaus zu unterscheiden.
- können die wesentlichen Elemente von Werkzeugmaschinen und hochpräzisen Fertigungssystemen (Gestell, Hauptspeil, Vorschubbachsen, Periphere Einrichtungen, Steuerung und Regelung) beschreiben und erörtern.
- sind in der Lage, die wesentlichen Komponenten von Werkzeugmaschinen und hochpräzisen Fertigungssystemen auszuwählen und auszulegen.
- sind befähigt, Werkzeugmaschinen und hochpräzise Fertigungssysteme nach technischen und wirtschaftlichen Kriterien auszuwählen und zu beurteilen.

Arbeitsaufwand:

MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING/TWVL:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches
Start: 24.10.2022
Vorlesungstermine montags und mittwochs, Übungstermine donnerstags.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.
Lectures on Mondays and Wednesdays, tutorial on Thursdays.
The tutorial dates will announced in the first lecture.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.370 Teilleistung: Windkraft [T-MACH-105234]

Verantwortung: Norbert Lewald
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrverantwortliche</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>Windkraft</td>
<td>2</td>
<td>Lewald, Pritz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrverantwortliche</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Windkraft</td>
<td>Lewald</td>
</tr>
<tr>
<td>WS 22/23</td>
<td>Windkraft</td>
<td>Lewald</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ⌚ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 120 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Windkraft

2157381, WS 22/23, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Veranstaltung (Veranst.)
Präsenz
3.371 Teilleistung: Zweiphasenströmung mit Wärmeübergang [T-MACH-105406]

Verantwortung: Hon.-Prof. Dr. Thomas Schulenberg
Dr. Martin Wörner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Energietechnik und Sicherheit

Bestandteil von: M-MACH-104848 - Schwerpunkt Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine