Module Handbook
KIT Department of Mechanical Engineering - Non-degree Studies (Domestic Degree at Another Higher Education Institution)
SPO (none)
Summer term 2023
Date: 14/02/2023
KIT DEPARTMENT OF MECHANICAL ENGINEERING
Table Of Contents

1. **Field of study structure** .. 9
 1.1. Courses of the KIT Department of Mechanical Engineering 9
 1.2. Courses of Other KIT Departments and Interdisciplinary Qualifications 9

2. **Modules** ... 10
 2.1. Courses of the KIT Department of Architecture - M-MACH-106251 10
 2.2. Courses of the KIT Department of Chemical and Process Engineering - M-MACH-105100 .. 11
 2.3. Courses of the KIT Department of Chemistry and Biosciences - M-MACH-106252 12
 2.4. Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences - M-MACH-105405 ... 13
 2.5. Courses of the KIT Department of Economics and Management - M-MACH-104884 14
 2.6. Courses of the KIT Department of Electrical Engineering and Information Technology - M-MACH-104882 15
 2.7. Courses of the KIT Department of Humanities and Social Sciences - M-MACH-106253 17
 2.8. Courses of the KIT Department of Informatics - M-MACH-104883 18
 2.9. Courses of the KIT Department of Mathematics - M-MACH-104885 19
 2.10. Courses of the KIT Department of Mechanical Engineering - M-MACH-106250 20
 2.11. Courses of the KIT Department of Physics - M-MACH-106254 28
 2.12. Key Competences - M-MACH-106255 ... 29
 2.13. Project - M-MACH-104840 .. 30

3. **Courses** ... 31
 3.1. Actuators and Sensors in Nanotechnology - T-MACH-105238 31
 3.2. Advanced Materials Thermodynamics: Experiments and Modelling - T-MACH-108689 32
 3.3. Airport Logistics - T-MACH-105175 .. 33
 3.4. Alternative Powertrain for Automobiles - T-MACH-105655 ... 35
 3.5. Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines - T-MACH-105173 36
 3.6. Analysis Tools for Combustion Diagnostics - T-MACH-105167 37
 3.7. Applied Building Physics - T-BGU-100039 .. 38
 3.8. Applied Materials Simulation - T-MACH-105527 .. 39
 3.10. Atomistic Simulations and Molecular Dynamics - T-MACH-105308 42
 3.11. Automated Manufacturing Systems - T-MACH-108844 .. 44
 3.12. Automated Production Systems (MEI) - T-MACH-106732 .. 46
 3.13. Automotive Engineering I - T-MACH-100092 .. 47
 3.15. Automotive Vision - T-MACH-105218 .. 51
 3.16. Basics in Measurement and Control Systems - T-MACH-104745 52
 3.18. Basics of Manufacturing Technology (MEI) - T-MACH-108747 56
 3.20. Basics of Technical Logistics II - T-MACH-109920 ... 60
 3.22. Bioelectric Signals - T-ETIT-101956 .. 62
 3.23. Biomedical Measurement Techniques I - T-ETIT-106492 ... 63
 3.24. BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I - T-MACH-100966 64
 3.25. BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II - T-MACH-100967 65
 3.27. Building Technology - T-BGU-100040 ... 67
 3.28. BUS-Controls - T-MACH-102150 .. 68
 3.29. BUS-Controls - Advance - T-MACH-108889 .. 70
 3.30. Business Administration for Engineers and IT Professionals - T-MACH-109933 71
 3.31. CAD-NX Training Course - T-MACH-102187 .. 73
 3.32. CAE-Workshop - T-MACH-105212 .. 75
 3.33. CATIA Advanced - T-MACH-105312 .. 77
 3.34. CATIA CAD Training Course - T-MACH-102185 .. 79
 3.35. Ceramic Matrix Composites - T-MACH-106722 .. 81
 3.36. CFD for Power Engineering - T-MACH-105407 ... 82
 3.37. CFD-Lab Using OpenFOAM - T-MACH-105313 .. 84
 3.38. Chemical, Physical and Material Scientific Aspects of Polymers in Microsystem Technologies - T-MACH-102169 ... 85
 3.39. Coal Fired Power Plants - T-MACH-105410 .. 86
 3.40. Cognitive Automobiles - Laboratory - T-MACH-105378 .. 87
 3.41. Combined Cycle Power Plants - T-MACH-105444 .. 89
Table Of Contents

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.42. Combustion Engines I - T-MACH-102194</td>
<td>90</td>
</tr>
<tr>
<td>3.43. Combustion Engines II - T-MACH-104609</td>
<td>91</td>
</tr>
<tr>
<td>3.44. Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies - T-MACH-105535</td>
<td>92</td>
</tr>
<tr>
<td>3.45. Computational Dynamics - T-MACH-105349</td>
<td>94</td>
</tr>
<tr>
<td>3.46. Computational Homogenization on Digital Image Data - T-MACH-109302</td>
<td>95</td>
</tr>
<tr>
<td>3.47. Computational Intelligence - T-MACH-105314</td>
<td>96</td>
</tr>
<tr>
<td>3.48. Computational Mechanics I - T-MACH-105351</td>
<td>97</td>
</tr>
<tr>
<td>3.49. Computational Mechanics II - T-MACH-105352</td>
<td>98</td>
</tr>
<tr>
<td>3.50. Computational Vehicle Dynamics - T-MACH-105350</td>
<td>99</td>
</tr>
<tr>
<td>3.51. Computer Science for Engineers - T-MACH-105205</td>
<td>101</td>
</tr>
<tr>
<td>3.52. Computer Science for Engineers, Prerequisite - T-MACH-105206</td>
<td>103</td>
</tr>
<tr>
<td>3.53. Computerized Multibody Dynamics - T-MACH-105384</td>
<td>104</td>
</tr>
<tr>
<td>3.54. Constitution and Properties of Protective Coatings - T-MACH-105150</td>
<td>105</td>
</tr>
<tr>
<td>3.56. Contact Mechanics - T-MACH-105786</td>
<td>109</td>
</tr>
<tr>
<td>3.57. Continuum Mechanics of Solids and Fluids - T-MACH-110377</td>
<td>110</td>
</tr>
<tr>
<td>3.58. Control Technology - T-MACH-105108</td>
<td>111</td>
</tr>
<tr>
<td>3.59. Cooling of Thermally High Loaded Gas Turbine Components - T-MACH-105414</td>
<td>113</td>
</tr>
<tr>
<td>3.60. Cryogenic Engineering - T-CIWT-108915</td>
<td>114</td>
</tr>
<tr>
<td>3.61. Data Analytics for Engineers - T-MACH-105694</td>
<td>115</td>
</tr>
<tr>
<td>3.62. Design and Development of Mobile Machines - T-MACH-105311</td>
<td>116</td>
</tr>
<tr>
<td>3.63. Design and Development of Mobile Machines - Advance - T-MACH-108887</td>
<td>118</td>
</tr>
<tr>
<td>3.64. Design and Optimization of Conventional and Electrified Automotive Transmissions - T-MACH-110958</td>
<td>119</td>
</tr>
<tr>
<td>3.65. Design of a Jet Engine Combustion Chamber - T-CIWT-110571</td>
<td>120</td>
</tr>
<tr>
<td>3.66. Design of Highly Stresses Components - T-MACH-105310</td>
<td>121</td>
</tr>
<tr>
<td>3.67. Design with Polymers - T-MACH-105330</td>
<td>122</td>
</tr>
<tr>
<td>3.68. Designing with Composites - T-MACH-108721</td>
<td>124</td>
</tr>
<tr>
<td>3.69. Development of Oil-Hydraulic Powertrain Systems - T-MACH-105441</td>
<td>125</td>
</tr>
<tr>
<td>3.70. Differential Equations - T-MATH-103323</td>
<td>126</td>
</tr>
<tr>
<td>3.71. Digital Control - T-MACH-105317</td>
<td>127</td>
</tr>
<tr>
<td>3.72. Digital Microstructure Characterization and Modeling - T-MACH-110431</td>
<td>128</td>
</tr>
<tr>
<td>3.73. Digital Technology - T-ETT-101918</td>
<td>129</td>
</tr>
<tr>
<td>3.74. Do it! - Service-Learning for Prospective Mechanical Engineers - T-MACH-106700</td>
<td>130</td>
</tr>
<tr>
<td>3.75. Drive Systems and Possibilities to Increase Efficiency - T-MACH-105451</td>
<td>131</td>
</tr>
<tr>
<td>3.76. Drive Train of Mobile Machines - T-MACH-105307</td>
<td>132</td>
</tr>
<tr>
<td>3.77. Dynamics of the Automotive Drive Train - T-MACH-105226</td>
<td>134</td>
</tr>
<tr>
<td>3.78. Elasticity as a Field Theory - T-MACH-112215</td>
<td>135</td>
</tr>
<tr>
<td>3.79. Electric Energy Systems - T-ETT-101923</td>
<td>136</td>
</tr>
<tr>
<td>3.80. Electric Power Generation and Power Grid - T-ETT-103608</td>
<td>137</td>
</tr>
<tr>
<td>3.81. Electric Power Transmission & Grid Control - T-ETT-110883</td>
<td>138</td>
</tr>
<tr>
<td>3.82. Electrical Engineering and Electronics - T-ETT-108386</td>
<td>139</td>
</tr>
<tr>
<td>3.83. Electrical Engineering and Electronics - T-ETT-109820</td>
<td>140</td>
</tr>
<tr>
<td>3.84. Electrical Machines and Power Electronics - T-ETT-101954</td>
<td>141</td>
</tr>
<tr>
<td>3.85. Electronic Devices and Circuits - T-ETT-109318</td>
<td>142</td>
</tr>
<tr>
<td>3.86. Energy and Process Technology I - T-MACH-102211</td>
<td>143</td>
</tr>
<tr>
<td>3.87. Energy and Process Technology II - T-MACH-102212</td>
<td>144</td>
</tr>
<tr>
<td>3.88. Energy Conversion and Increased Efficiency in Internal Combustion Engines - T-MACH-105564</td>
<td>145</td>
</tr>
<tr>
<td>3.89. Energy Demand of Buildings – Fundamentals and Applications, with Building Simulation Exercises - T-MACH-105715</td>
<td>146</td>
</tr>
<tr>
<td>3.90. Energy from Biomass - T-CIWT-110576</td>
<td>147</td>
</tr>
<tr>
<td>3.92. Energy Storage and Network Integration - T-ETT-104644</td>
<td>149</td>
</tr>
<tr>
<td>3.94. Energy Systems II: Reactor Physics - T-MACH-105550</td>
<td>151</td>
</tr>
<tr>
<td>3.95. Engine Laboratory - T-MACH-105337</td>
<td>153</td>
</tr>
<tr>
<td>3.96. Engine Measurement Techniques - T-MACH-105169</td>
<td>154</td>
</tr>
<tr>
<td>3.97. Engineering Materials for the Energy Transition - T-MACH-109082</td>
<td>155</td>
</tr>
<tr>
<td>3.98. Engineering Mechanics III - T-MACH-100299</td>
<td>156</td>
</tr>
<tr>
<td>3.99. Entrepreneurship - T-WWI-102864</td>
<td>157</td>
</tr>
<tr>
<td>3.100. Exercises - Fatigue of Welded Components and Structures - T-MACH-109304</td>
<td>160</td>
</tr>
<tr>
<td>3.101. Exercises in Technical Thermodynamics and Heat Transfer I - T-MACH-105204</td>
<td>161</td>
</tr>
<tr>
<td>3.102. Exercises in Technical Thermodynamics and Heat Transfer II - T-MACH-105288</td>
<td>162</td>
</tr>
<tr>
<td>Course Title</td>
<td>Course Code</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>3.103. Exercises - Tribology - T-MACH-109303</td>
<td>163</td>
</tr>
<tr>
<td>3.104. Exercises for Applied Materials Simulation - T-MACH-107671</td>
<td>165</td>
</tr>
<tr>
<td>3.107. Experimental Dynamics - T-MACH-105514</td>
<td>170</td>
</tr>
<tr>
<td>3.108. Experimental Fluid Mechanics - T-MACH-105512</td>
<td>171</td>
</tr>
<tr>
<td>3.109. Experimental Lab Class in Welding Technology, in Groups - T-MACH-102099</td>
<td>173</td>
</tr>
<tr>
<td>3.110. Fabrication Processes in Microsystem Technology - T-MACH-102166</td>
<td>174</td>
</tr>
<tr>
<td>3.111. Failure Analysis - T-MACH-105724</td>
<td>176</td>
</tr>
<tr>
<td>3.112. Failure of Structural Materials: Deformation and Fracture - T-MACH-102140</td>
<td>177</td>
</tr>
<tr>
<td>3.113. Failure of Structural Materials: Fatigue and Creep - T-MACH-102139</td>
<td>179</td>
</tr>
<tr>
<td>3.114. Fatigue of Materials - T-MACH-112106</td>
<td>181</td>
</tr>
<tr>
<td>3.115. Fatigue of Welded Components and Structures - T-MACH-105964</td>
<td>182</td>
</tr>
<tr>
<td>3.116. FEM Workshop - Constitutive Laws - T-MACH-105392</td>
<td>184</td>
</tr>
<tr>
<td>3.117. Financial Analysis - T-WIWI-102900</td>
<td>185</td>
</tr>
<tr>
<td>3.119. Finite Element Workshop - T-MACH-105417</td>
<td>187</td>
</tr>
<tr>
<td>3.120. Flows and Heat Transfer in Energy Technology - T-MACH-105403</td>
<td>188</td>
</tr>
<tr>
<td>3.121. Flows with Chemical Reactions - T-MACH-105422</td>
<td>189</td>
</tr>
<tr>
<td>3.122. Fluid Mechanics 1&2 - T-MACH-105207</td>
<td>190</td>
</tr>
<tr>
<td>3.124. Fluid Power Systems - T-MACH-102093</td>
<td>193</td>
</tr>
<tr>
<td>3.125. Fluid-Structure-Interaction - T-MACH-105474</td>
<td>194</td>
</tr>
<tr>
<td>3.127. Foundry Technology - T-MACH-105157</td>
<td>196</td>
</tr>
<tr>
<td>3.128. Fuels and Lubricants for Combustion Engines - T-MACH-105184</td>
<td>198</td>
</tr>
<tr>
<td>3.129. Functional Ceramics - T-MACH-105179</td>
<td>199</td>
</tr>
<tr>
<td>3.130. Fundamental Numerical Algorithms for Engineers - T-BGU-109953</td>
<td>200</td>
</tr>
<tr>
<td>3.131. Fundamentals for Design of Motor-Vehicle Bodies I - T-MACH-102116</td>
<td>201</td>
</tr>
<tr>
<td>3.132. Fundamentals for Design of Motor-Vehicle Bodies II - T-MACH-102119</td>
<td>203</td>
</tr>
<tr>
<td>3.133. Fundamentals in the Development of Commercial Vehicles - T-MACH-111389</td>
<td>204</td>
</tr>
<tr>
<td>3.134. Fundamentals of Automobile Development I - T-MACH-105162</td>
<td>206</td>
</tr>
<tr>
<td>3.135. Fundamentals of Automobile Development II - T-MACH-105163</td>
<td>208</td>
</tr>
<tr>
<td>3.136. Fundamentals of Catalytic Exhaust Gas Aftertreatment - T-MACH-105044</td>
<td>210</td>
</tr>
<tr>
<td>3.137. Fundamentals of Combustion Engine Technology - T-MACH-105652</td>
<td>211</td>
</tr>
<tr>
<td>3.139. Fundamentals of Energy Technology - T-MACH-105220</td>
<td>214</td>
</tr>
<tr>
<td>3.140. Fundamentals of Reactor Safety for the Operation and Dismantling of Nuclear Power Plants - T-MACH-105530</td>
<td>216</td>
</tr>
<tr>
<td>3.141. Fusion Technology A - T-MACH-105411</td>
<td>217</td>
</tr>
<tr>
<td>3.142. Fusion Technology B - T-MACH-105433</td>
<td>219</td>
</tr>
<tr>
<td>3.143. Gasdynamics - T-MACH-105533</td>
<td>221</td>
</tr>
<tr>
<td>3.144. Gear Cutting Technology - T-MACH-102148</td>
<td>222</td>
</tr>
<tr>
<td>3.145. Global Logistics - T-MACH-105379</td>
<td>224</td>
</tr>
<tr>
<td>3.147. Global Production and Logistics - Part 2: Global Logistics - T-MACH-105159</td>
<td>228</td>
</tr>
<tr>
<td>3.149. Handling Characteristics of Motor Vehicles II - T-MACH-105153</td>
<td>231</td>
</tr>
<tr>
<td>3.151. Heat and Mass Transfer - T-MACH-105292</td>
<td>233</td>
</tr>
<tr>
<td>3.152. Heat Transfer in Nuclear Reactors - T-MACH-105529</td>
<td>235</td>
</tr>
<tr>
<td>3.153. Heatpumps - T-MACH-105430</td>
<td>236</td>
</tr>
<tr>
<td>3.156. High Temperature Materials - T-MACH-105459</td>
<td>241</td>
</tr>
<tr>
<td>3.158. Homework 'Basics of Finite Elements' - T-BGU-109908</td>
<td>244</td>
</tr>
<tr>
<td>3.159. Human Factors Engineering I - T-MACH-105518</td>
<td>245</td>
</tr>
<tr>
<td>3.160. Human Factors Engineering II - T-MACH-105519</td>
<td>247</td>
</tr>
<tr>
<td>3.162. Human-Machine-Interaction - T-INFO-101266</td>
<td>250</td>
</tr>
<tr>
<td>3.163. Hybrid and Electric Vehicles - T-ETIT-100784</td>
<td>251</td>
</tr>
<tr>
<td>3.164. Hydraulic Fluid Machinery - T-MACH-105326</td>
<td>252</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Hydrogen as Energy Carrier</td>
<td>T-CHEMBIO-112317</td>
</tr>
<tr>
<td>Hydrogen in Materials – Exercises and Lab Course</td>
<td>T-MACH-112159</td>
</tr>
<tr>
<td>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</td>
<td>T-MACH-110923</td>
</tr>
<tr>
<td>Hydrogen Technologies</td>
<td>T-MACH-105416</td>
</tr>
<tr>
<td>Industrial Aerodynamics</td>
<td>T-MACH-105375</td>
</tr>
<tr>
<td>Industrial Circuity</td>
<td>T-ETIT-100716</td>
</tr>
<tr>
<td>Information Processing in Sensor Networks</td>
<td>T-INCO-101466</td>
</tr>
<tr>
<td>Information Systems and Supply Chain Management</td>
<td>T-MACH-102128</td>
</tr>
<tr>
<td>Innovative Nuclear Systems</td>
<td>T-MACH-105404</td>
</tr>
<tr>
<td>Innovative Project</td>
<td>T-MACH-109185</td>
</tr>
<tr>
<td>Integrated Information Systems for Engineers</td>
<td>T-MACH-102083</td>
</tr>
<tr>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>T-MACH-108849</td>
</tr>
<tr>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>T-MACH-105188</td>
</tr>
<tr>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>T-MACH-105442</td>
</tr>
<tr>
<td>Introduction into Mechatronics</td>
<td>T-MACH-100535</td>
</tr>
<tr>
<td>Introduction to Bionics</td>
<td>T-MACH-111807</td>
</tr>
<tr>
<td>Introduction to Ceramics</td>
<td>T-MACH-100287</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics I: Statics</td>
<td>T-MACH-108808</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>T-MACH-102208</td>
</tr>
<tr>
<td>Introduction to Industrial Production Economics</td>
<td>T-MACH-105388</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology I</td>
<td>T-MACH-105182</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology II</td>
<td>T-MACH-105183</td>
</tr>
<tr>
<td>Introduction to Multi-Body Dynamics</td>
<td>T-MACH-105209</td>
</tr>
<tr>
<td>Introduction to nanotechnology</td>
<td>T-MACH-111814</td>
</tr>
<tr>
<td>Introduction to Neutron Cross Section Theory and Nuclear Data Generation</td>
<td>T-MACH-105466</td>
</tr>
<tr>
<td>Introduction to Nonlinear Vibrations</td>
<td>T-MACH-105439</td>
</tr>
<tr>
<td>Introduction to Nuclear Energy</td>
<td>T-MACH-105525</td>
</tr>
<tr>
<td>Introduction to Operations Research I and II</td>
<td>T-WIWI-102758</td>
</tr>
<tr>
<td>Introduction to the Finite Element Method</td>
<td>T-MACH-105320</td>
</tr>
<tr>
<td>Introduction to Theory of Materials</td>
<td>T-MACH-105321</td>
</tr>
<tr>
<td>IoT Platform for Engineering</td>
<td>T-MACH-106743</td>
</tr>
<tr>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
<td>T-MACH-105341</td>
</tr>
<tr>
<td>Laboratory Exercise in Energy Technology</td>
<td>T-MACH-105331</td>
</tr>
<tr>
<td>Laboratory Laser Materials Processing</td>
<td>T-MACH-102154</td>
</tr>
<tr>
<td>Laboratory Mechatronics</td>
<td>T-MACH-105370</td>
</tr>
<tr>
<td>Laser in Automotive Engineering</td>
<td>T-MACH-105164</td>
</tr>
<tr>
<td>Laser Material Processing</td>
<td>T-MACH-112763</td>
</tr>
<tr>
<td>Leadership and Conflict Management</td>
<td>T-MACH-105440</td>
</tr>
<tr>
<td>Leadership and Management Development</td>
<td>T-MACH-105231</td>
</tr>
<tr>
<td>Liberalised Power Markets</td>
<td>T-WIWI-107043</td>
</tr>
<tr>
<td>Lighting Engineering</td>
<td>T-ETIT-100772</td>
</tr>
<tr>
<td>Lightweight Engineering Design</td>
<td>T-MACH-105221</td>
</tr>
<tr>
<td>Liquid Transportation Fuels</td>
<td>T-CIWVT-111095</td>
</tr>
<tr>
<td>Localization of Mobile Agents</td>
<td>T-INCO-101377</td>
</tr>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>T-MACH-110771</td>
</tr>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>T-WIWI-102870</td>
</tr>
<tr>
<td>Machine Dynamics</td>
<td>T-MACH-105210</td>
</tr>
<tr>
<td>Machine Dynamics II</td>
<td>T-MACH-105224</td>
</tr>
<tr>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>T-MACH-110962</td>
</tr>
<tr>
<td>Machine Vision</td>
<td>T-MACH-105223</td>
</tr>
<tr>
<td>Machines and Processes</td>
<td>T-MACH-105208</td>
</tr>
<tr>
<td>Machines and Processes, Prerequisite</td>
<td>T-MACH-105232</td>
</tr>
<tr>
<td>Magnet Technology of Fusion Reactors</td>
<td>T-MACH-105434</td>
</tr>
<tr>
<td>Magnetohydrodynamics</td>
<td>T-MACH-105426</td>
</tr>
<tr>
<td>Management Accounting 1</td>
<td>T-WIWI-102800</td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>T-WIWI-102629</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>T-MACH-102105</td>
</tr>
<tr>
<td>Material Flow in Logistic Systems</td>
<td>T-MACH-102151</td>
</tr>
<tr>
<td>Materials Characterization</td>
<td>T-MACH-107684</td>
</tr>
<tr>
<td>Materials Modelling: Dislocation Based Plasticity</td>
<td>T-MACH-105369</td>
</tr>
<tr>
<td>Materials of Lightweight Construction</td>
<td>T-MACH-105211</td>
</tr>
<tr>
<td>Materials Physics and Metals</td>
<td>T-MACH-100285</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>3.227. T-MACH-100295</td>
<td>Materials Processing Technology</td>
</tr>
<tr>
<td>3.228. T-MACH-105301</td>
<td>Materials Science and Engineering III</td>
</tr>
<tr>
<td>3.229. T-MACH-110375</td>
<td>Mathematical Methods in Continuum Mechanics</td>
</tr>
<tr>
<td>3.230. T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
</tr>
<tr>
<td>3.232. T-MACH-110378</td>
<td>Mathematical Methods in Micromechanics</td>
</tr>
<tr>
<td>3.233. T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
</tr>
<tr>
<td>3.234. T-MACH-105189</td>
<td>Mathematical Models and Methods for Production Systems</td>
</tr>
<tr>
<td>3.236. T-MACH-105335</td>
<td>Measurement II</td>
</tr>
<tr>
<td>3.237. T-MACH-105300</td>
<td>Measurement Instrumentation Lab</td>
</tr>
<tr>
<td>3.238. T-MACH-105333</td>
<td>Mechanics and Strength of Polymers</td>
</tr>
<tr>
<td>3.239. T-MACH-105334</td>
<td>Mechanics in Microtechnology</td>
</tr>
<tr>
<td>3.240. T-MACH-101294</td>
<td>Mechatronics and Robotics</td>
</tr>
<tr>
<td>3.241. T-MACH-105574</td>
<td>Mechatronical Systems and Products</td>
</tr>
<tr>
<td>3.242. T-ETIT-101930</td>
<td>Medical Imaging Techniques I</td>
</tr>
<tr>
<td>3.243. T-ETIT-101931</td>
<td>Medical Imaging Techniques II</td>
</tr>
<tr>
<td>3.244. T-MACH-105177</td>
<td>Metal Forming</td>
</tr>
<tr>
<td>3.245. T-MACH-105447</td>
<td>Metallographic Lab Class</td>
</tr>
<tr>
<td>3.246. T-MACH-105468</td>
<td>Metals</td>
</tr>
<tr>
<td>3.247. T-MACH-109192</td>
<td>Methods and Processes of PGE Product Generation Engineering</td>
</tr>
<tr>
<td>3.248. T-ETIT-100694</td>
<td>Methods of Signal Processing</td>
</tr>
<tr>
<td>3.249. T-MACH-105782</td>
<td>Micro Magnetic Resonance</td>
</tr>
<tr>
<td>3.250. T-MACH-101910</td>
<td>Microactuators</td>
</tr>
<tr>
<td>3.251. T-MACH-105557</td>
<td>Microenergy Technologies</td>
</tr>
<tr>
<td>3.252. T-MACH-108383</td>
<td>Msycsystem Simulation</td>
</tr>
<tr>
<td>3.253. T-MACH-105168</td>
<td>Mobile Machines</td>
</tr>
<tr>
<td>3.254. T-MACH-105297</td>
<td>Modeling and Simulation</td>
</tr>
<tr>
<td>3.255. T-MACH-105396</td>
<td>Modeling of Thermodynamical Processes</td>
</tr>
<tr>
<td>3.256. T-MACH-105842</td>
<td>Modeling of Turbulent Flows RANS and LES</td>
</tr>
<tr>
<td>3.257. T-MACH-100300</td>
<td>Modelling and Simulation</td>
</tr>
<tr>
<td>3.258. T-MACH-105303</td>
<td>Modelling of Microstructures</td>
</tr>
<tr>
<td>3.259. T-MACH-105539</td>
<td>Modern Control Concepts I</td>
</tr>
<tr>
<td>3.260. T-MACH-105222</td>
<td>Motor Vehicle Labor</td>
</tr>
<tr>
<td>3.261. T-MACH-105516</td>
<td>Multi-Scale Plasticity</td>
</tr>
<tr>
<td>3.262. T-MACH-105435</td>
<td>Neutron Physics of Fusion Reactors</td>
</tr>
<tr>
<td>3.263. T-MACH-108407</td>
<td>NMR Micro Probe Hardware Conception and Construction</td>
</tr>
<tr>
<td>3.264. T-MACH-111026</td>
<td>Nonlinear Continuum Mechanics</td>
</tr>
<tr>
<td>3.265. T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
</tr>
<tr>
<td>3.266. T-MACH-110331</td>
<td>Nuclear Fusion Technology</td>
</tr>
<tr>
<td>3.267. T-MACH-110332</td>
<td>Nuclear Power and Reactor Technology</td>
</tr>
<tr>
<td>3.268. T-MACH-105402</td>
<td>Nuclear Power Plant Technology</td>
</tr>
<tr>
<td>3.269. T-MACH-105338</td>
<td>Numerical Fluid Mechanics</td>
</tr>
<tr>
<td>3.270. T-MACH-110838</td>
<td>Numerical Fluid Mechanics with PYTHON</td>
</tr>
<tr>
<td>3.271. T-MATH-102242</td>
<td>Numerical Mathematics for Students of Computer Science</td>
</tr>
<tr>
<td>3.272. T-MACH-105420</td>
<td>Numerical Simulation of Multi-Phase Flows</td>
</tr>
<tr>
<td>3.273. T-MACH-105397</td>
<td>Numerical Simulation of Turbulent Flows</td>
</tr>
<tr>
<td>3.274. T-MACH-105228</td>
<td>Organ Support Systems</td>
</tr>
<tr>
<td>3.276. T-ETIT-101939</td>
<td>Photovoltaics</td>
</tr>
<tr>
<td>3.278. T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
</tr>
<tr>
<td>3.279. T-MACH-111022</td>
<td>Physical Measurement Technology</td>
</tr>
<tr>
<td>3.280. T-MACH-110818</td>
<td>Plasticity of Metals and Intermetallics</td>
</tr>
<tr>
<td>3.281. T-MACH-102137</td>
<td>Polymer Engineering I</td>
</tr>
<tr>
<td>3.282. T-MACH-102138</td>
<td>Polymer Engineering II</td>
</tr>
<tr>
<td>3.283. T-MACH-102192</td>
<td>Polymers in MEMS A: Chemistry, Synthesis and Applications</td>
</tr>
<tr>
<td>3.284. T-MACH-102191</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications</td>
</tr>
<tr>
<td>3.285. T-MACH-102200</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics</td>
</tr>
<tr>
<td>3.286. T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
</tr>
<tr>
<td>3.287. T-CIWVT-108873</td>
<td>Practical Course Combustion Technology</td>
</tr>
</tbody>
</table>

KIT Department of Mechanical Engineering - Non-degree Studies (Domestic Degree at Another Higher Education Institution)
Module Handbook as of 14/02/2023
Table Of Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.288. Practical Course Technical Ceramics</td>
<td>T-MACH-105178</td>
<td>436</td>
</tr>
<tr>
<td>3.289. Practical Training in Basics of Microsystem Technology</td>
<td>T-MACH-102164</td>
<td>437</td>
</tr>
<tr>
<td>3.290. Practical Training in Measurement of Vibrations</td>
<td>T-MACH-105373</td>
<td>439</td>
</tr>
<tr>
<td>3.292. Principles of Medicine for Engineers</td>
<td>T-MACH-105235</td>
<td>441</td>
</tr>
<tr>
<td>3.294. Process Simulation in Forming Operations</td>
<td>T-MACH-105348</td>
<td>443</td>
</tr>
<tr>
<td>3.295. Product and Innovation Management</td>
<td>T-WIWI-109864</td>
<td>444</td>
</tr>
<tr>
<td>3.297. Product Development - Dimensioning of Components</td>
<td>T-MACH-105383</td>
<td>447</td>
</tr>
<tr>
<td>3.298. Product Lifecycle Management</td>
<td>T-MACH-105147</td>
<td>448</td>
</tr>
<tr>
<td>3.299. Product, Process and Resource Integration in the Automotive Industry</td>
<td>T-MACH-102155</td>
<td>449</td>
</tr>
<tr>
<td>3.300. Production Planning and Control</td>
<td>T-MACH-105470</td>
<td>450</td>
</tr>
<tr>
<td>3.301. Production Techniques Laboratory</td>
<td>T-MACH-105346</td>
<td>452</td>
</tr>
<tr>
<td>3.302. Productivity Management in Production Systems</td>
<td>T-MACH-105523</td>
<td>454</td>
</tr>
<tr>
<td>3.303. Project Management in Global Product Engineering Structures</td>
<td>T-MACH-105347</td>
<td>455</td>
</tr>
<tr>
<td>3.305. Project work</td>
<td>T-MACH-110106</td>
<td>457</td>
</tr>
<tr>
<td>3.306. Project Workshop: Automotive Engineering</td>
<td>T-MACH-102156</td>
<td>458</td>
</tr>
<tr>
<td>3.307. Python Algorithm for Vehicle Technology</td>
<td>T-MACH-110796</td>
<td>460</td>
</tr>
<tr>
<td>3.308. Quality Management</td>
<td>T-MACH-102107</td>
<td>462</td>
</tr>
<tr>
<td>3.309. Rail System Technology</td>
<td>T-MACH-106424</td>
<td>464</td>
</tr>
<tr>
<td>3.310. Rail Vehicle Technology</td>
<td>T-MACH-105353</td>
<td>466</td>
</tr>
<tr>
<td>3.311. Railways in the Transportation Market</td>
<td>T-MACH-105540</td>
<td>468</td>
</tr>
<tr>
<td>3.312. Reactor Safety I: Fundamentals</td>
<td>T-MACH-105405</td>
<td>470</td>
</tr>
<tr>
<td>3.314. Reliability Engineering I - T-MACH-107447</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>3.316. Robotics I - Introduction to Robotics</td>
<td>T/INFO-108014</td>
<td>476</td>
</tr>
<tr>
<td>3.317. Robotics II - Humanoid Robotics</td>
<td>T/INFO-105723</td>
<td>477</td>
</tr>
<tr>
<td>3.319. Safety Engineering I - T-MACH-105171</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>3.320. Scaling in Fluid Dynamics</td>
<td>T-MACH-105400</td>
<td>480</td>
</tr>
<tr>
<td>3.321. Selected Chapters of the Combustion Fundamentals</td>
<td>T-MACH-105428</td>
<td>481</td>
</tr>
<tr>
<td>3.322. Selected Problems of Applied Reactor Physics and Exercises</td>
<td>T-MACH-105462</td>
<td>482</td>
</tr>
<tr>
<td>3.323. Self-Booking-MSc-HOC-SPZ-ZAK-Graded</td>
<td>T-MACH-111687</td>
<td>484</td>
</tr>
<tr>
<td>3.324. Self-Booking-MSc-HOC-SPZ-ZAK-Non-Graded</td>
<td>T-MACH-111686</td>
<td>485</td>
</tr>
<tr>
<td>3.325. Seminar in Materials Science</td>
<td>T-MACH-100290</td>
<td>486</td>
</tr>
<tr>
<td>3.327. Sensors - T-ETIT-101911</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>3.328. Signals and Systems - T-ETIT-109313</td>
<td>489</td>
<td></td>
</tr>
<tr>
<td>3.329. Simulation of Coupled Systems</td>
<td>T-MACH-105172</td>
<td>490</td>
</tr>
<tr>
<td>3.330. Simulation of Coupled Systems - Advance</td>
<td>T-MACH-108888</td>
<td>492</td>
</tr>
<tr>
<td>3.331. Simulator Exercises Combined Cycle Power Plants</td>
<td>T-MACH-105445</td>
<td>493</td>
</tr>
<tr>
<td>3.332. Smoothed Particle Hydrodynamics (SPH) in Computational Fluid Dynamics</td>
<td>T-MACH-111396</td>
<td>494</td>
</tr>
<tr>
<td>3.333. Solar Energy - T-ETIT-100774</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>3.334. Solar Thermal Energy Systems</td>
<td>T-MACH-106493</td>
<td>496</td>
</tr>
<tr>
<td>3.335. Solid State Reactions and Kinetics of Phase</td>
<td>T-MACH-107667</td>
<td>498</td>
</tr>
<tr>
<td>3.336. Steuerung mobiler Arbeitsmaschinen</td>
<td>T-MACH-111821</td>
<td>500</td>
</tr>
<tr>
<td>3.337. Steuerung mobiler Arbeitsmaschinen-Vorleistung</td>
<td>T-MACH-111820</td>
<td>501</td>
</tr>
<tr>
<td>3.340. Structural Analysis of Composite Laminates</td>
<td>T-MACH-105970</td>
<td>504</td>
</tr>
<tr>
<td>3.341. Structural Ceramics</td>
<td>T-MACH-102179</td>
<td>506</td>
</tr>
<tr>
<td>3.342. Structural Materials</td>
<td>T-MACH-100293</td>
<td>507</td>
</tr>
<tr>
<td>3.343. Superconductors for Energy Applications</td>
<td>T-ETIT-110788</td>
<td>508</td>
</tr>
<tr>
<td>3.344. Superhard Thin Film Materials</td>
<td>T-MACH-102103</td>
<td>509</td>
</tr>
<tr>
<td>3.345. Sustainable Product Engineering</td>
<td>T-MACH-105358</td>
<td>511</td>
</tr>
<tr>
<td>3.346. System Dynamics and Control Engineering</td>
<td>T-ETIT-101921</td>
<td>512</td>
</tr>
<tr>
<td>3.347. System Integration in Micro- and Nanotechnology</td>
<td>T-MACH-105555</td>
<td>513</td>
</tr>
<tr>
<td>3.348. System Integration in Micro- and Nanotechnology 2</td>
<td>T-MACH-110272</td>
<td>514</td>
</tr>
</tbody>
</table>
Table Of Contents

3.349. Systematic Materials Selection - T-MACH-100531 ... 515
3.350. Systems Engineering for Automotive Electronics - T-ETIT-100677 .. 517
3.351. Technical Design in Product Development - T-MACH-105361 .. 518
3.354. Technical Thermodynamics and Heat Transfer I - T-MACH-104747 ... 522
3.355. Technical Thermodynamics and Heat Transfer II - T-MACH-105287 .. 524
3.356. Technology of Steel Components - T-MACH-105362 ... 526
3.357. Ten Lectures on Turbulence - T-MACH-105456 .. 528
3.358. Theory of Probability - T-ETIT-101952 ... 529
3.359. Theory of Stability - T-MACH-105372 ... 530
3.360. Thermal Solar Energy - T-MACH-105225 .. 531
3.361. Thermal Turbomachines I - T-MACH-105363 ... 533
3.362. Thermal Turbomachines II - T-MACH-105364 .. 536
3.363. Thermal-Fluid-Dynamics - T-MACH-106372 .. 539
3.364. Thesis (BSc) - T-MACH-110107 .. 541
3.365. Thesis (MSc) - T-MACH-109880 .. 542
3.366. Thin Film and Small-scale Mechanical Behavior - T-MACH-105554 ... 543
3.367. Tires and Wheel Development for Passenger Cars - T-MACH-102207 544
3.368. Tractors - T-MACH-105423 .. 545
3.369. Tribology - T-MACH-105531 .. 548
3.370. Turbine and Compressor Design - T-MACH-105365 ... 550
3.373. Tutorial Introduction to the Finite Element Method - T-MACH-110330 554
3.375. Tutorial Mathematical Methods in Micromechanics - T-MACH-110379 556
3.376. Tutorial Nonlinear Continuum Mechanics - T-MACH-111027 ... 557
3.377. Two-Phase Flow and Heat Transfer - T-MACH-105406 ... 558
3.378. Vacuum and Tritium Technology in Nuclear Fusion - T-MACH-108784 559
3.379. Vehicle Comfort and Acoustics I - T-MACH-105154 ... 560
3.380. Vehicle Comfort and Acoustics II - T-MACH-105155 ... 562
3.384. Vibration Theory - T-MACH-105290 ... 571
3.385. Virtual Engineering (Specific Topics) - T-MACH-105381 .. 572
3.386. Virtual Engineering I - T-MACH-102123 ... 573
3.387. Virtual Engineering II - T-MACH-102124 .. 575
3.388. Virtual Reality Practical Course - T-MACH-102149 ... 576
3.389. Warehousing and Distribution Systems - T-MACH-105174 .. 577
3.390. Water Distribution Systems - T-BGU-108486 ... 578
3.391. Wave Propagation - T-MACH-105443 ... 579
3.392. Welding Technology - T-MACH-105170 ... 580
3.393. Wildcard - T-MACH-112696 ... 582
3.394. Wildcard - T-MACH-112701 ... 583
3.395. Wildcard - T-MACH-112697 ... 584
3.396. Wildcard - T-MACH-112700 ... 585
3.397. Wildcard - T-MACH-112702 ... 586
3.398. Wildcard - T-MACH-112703 ... 587
3.399. Wildcard - T-MACH-112698 ... 588
3.400. Wildcard - T-MACH-112699 ... 589
3.401. Windpower - T-MACH-105234 .. 590
3.402. Working Methods in Materials Science and Technology - T-MACH-100288 591
3.403. Workshop Mechatronical Systems and Products - T-MACH-108680 592
1 Field of study structure

Mandatory

<table>
<thead>
<tr>
<th>Courses of the KIT Department of Mechanical Engineering</th>
<th>90 CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses of Other KIT Departments and Interdisciplinary Qualifications</td>
<td>90 CR</td>
</tr>
</tbody>
</table>

1.1 Courses of the KIT Department of Mechanical Engineering

Note regarding usage
First usage possible from 4/1/2023.

The study program consists of individual bricks and an optional project, both offered by the KIT Faculty of Mechanical Engineering. In addition, further optional bricks offered by other KIT faculties can be chosen. Exchange students may select individual bricks without having to complete the entire module. Some bricks, however, may have prerequisites or possible restrictions, such as a limit on the number of participants.

Bricks should be chosen according to the Learning Agreement.

<table>
<thead>
<tr>
<th>Courses of the KIT Department of Mechanical Engineering (Election:)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104840 Project</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-106250 Courses of the KIT Department of Mechanical Engineering</td>
<td>60 CR</td>
</tr>
</tbody>
</table>

1.2 Courses of Other KIT Departments and Interdisciplinary Qualifications

Note regarding usage
First usage possible from 4/1/2023.

<table>
<thead>
<tr>
<th>Courses of Other KIT Departments and Interdisciplinary Qualifications (Election:)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-106251 Courses of the KIT Department of Architecture</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-105405 Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-106252 Courses of the KIT Department of Chemistry and Biosciences</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-105100 Courses of the KIT Department of Chemical and Process Engineering</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-104882 Courses of the KIT Department of Electrical Engineering and Information Technology</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-106253 Courses of the KIT Department of Humanities and Social Sciences</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-104883 Courses of the KIT Department of Informatics</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-104885 Courses of the KIT Department of Mathematics</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-106254 Courses of the KIT Department of Physics</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-104884 Courses of the KIT Department of Economics and Management</td>
<td>30 CR</td>
</tr>
<tr>
<td>M-MACH-106255 Key Competences</td>
<td>6 CR</td>
</tr>
</tbody>
</table>
2 Modules

2.1 Module: Courses of the KIT Department of Architecture [M-MACH-106251]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering

Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

<table>
<thead>
<tr>
<th>Exchange Students_ARCH (Election: at most 90 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112696 Wildcard 15 CR</td>
</tr>
<tr>
<td>T-MACH-112697 Wildcard 15 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point

Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Architecture.

Content
See individual bricks
2 MODELS

Module: Courses of the KIT Department of Chemical and Process Engineering [M-MACH-105100]

2.2 Module: Courses of the KIT Department of Chemical and Process Engineering [M-MACH-105100]

Organisation: KIT Department of Mechanical Engineering
Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Exchange Students_CIW (Electoin: between 0 and 90 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108915</td>
<td>Cryogenic Engineering</td>
<td>6 CR</td>
<td>Grohmann</td>
</tr>
<tr>
<td>T-CIWVT-110571</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>6 CR</td>
<td>Harth</td>
</tr>
<tr>
<td>T-CIWVT-110576</td>
<td>Energy from Biomass</td>
<td>6 CR</td>
<td>Bajohr, Dahmen</td>
</tr>
<tr>
<td>T-CIWVT-111095</td>
<td>Liquid Transportation Fuels</td>
<td>6 CR</td>
<td>Rauch</td>
</tr>
<tr>
<td>T-CIWVT-108873</td>
<td>Practical Course Combustion Technology</td>
<td>4 CR</td>
<td>Harth</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Chemical and Process Engineering.

Content
See brick courses

Learning type
Tutorial
2.3 Module: Courses of the KIT Department of Chemistry and Biosciences [M-MACH-106252]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering
Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

Credits 30 Grading scale pass/fail Recurrence Each term Duration 2 terms Language German/English Level 4 Version 1

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Exchange Students_Chembio (Electio: at most 90 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMbio-112317</td>
<td>Hydrogen as Energy Carrier</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-MACH-112698</td>
<td>Wildcard</td>
<td>15 CR</td>
</tr>
<tr>
<td>T-MACH-112699</td>
<td>Wildcard</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Chemistry and Biosciences.

Content
See individual bricks
2.4 Module: Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences [M-MACH-105405]

Organisation:
KIT Department of Mechanical Engineering

Part of:
Courses of Other KIT Departments and Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election notes

Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Exchange Students_BGU (Election:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100039</td>
<td>Applied Building Physics</td>
<td>3 CR</td>
<td>Kotan</td>
</tr>
<tr>
<td>T-BGU-110841</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>6 CR</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-109953</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td>3 CR</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-100040</td>
<td>Building Technology</td>
<td>3 CR</td>
<td>Wirth</td>
</tr>
<tr>
<td>T-BGU-100047</td>
<td>Basics of Finite Elements</td>
<td>5 CR</td>
<td>Betsch</td>
</tr>
<tr>
<td>T-BGU-109908</td>
<td>Homework 'Basics of Finite Elements'</td>
<td>1 CR</td>
<td>Betsch</td>
</tr>
<tr>
<td>T-BGU-110842</td>
<td>Modeling of Turbulent Flows - RANS and LES</td>
<td>6 CR</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-108485</td>
<td>Project Report Water Distribution Systems</td>
<td>2 CR</td>
<td>Oberle</td>
</tr>
<tr>
<td>T-BGU-108486</td>
<td>Water Distribution Systems</td>
<td>4 CR</td>
<td>Oberle</td>
</tr>
</tbody>
</table>

Competence Certificate

Type and duration of the exam/ success control can vary according to the individually choice and is described in more detail within the individual brick.

Prerequisites

Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal

The students are able to reconstruct selected topics of Civil Engineering, Geo and Environmental Sciences.

Content

See individual bricks
2.5 Module: Courses of the KIT Department of Economics and Management [M-MACH-104884]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering
Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Exchange Students WIWI (Election: between 0 and 90 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102758</td>
<td>Introduction to Operations Research I and II</td>
<td>9 CR</td>
<td>Nickel, Rebennack, Stein</td>
</tr>
<tr>
<td>T-WIWI-107501</td>
<td>Energy Market Engineering</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102864</td>
<td>Entrepreneurship</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis</td>
<td>4,5 CR</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-107043</td>
<td>Liberalised Power Markets</td>
<td>3 CR</td>
<td>Fichtner</td>
</tr>
<tr>
<td>T-WIWI-102870</td>
<td>Logistics and Supply Chain Management</td>
<td>3,5 CR</td>
<td>Schultmann</td>
</tr>
<tr>
<td>T-WIWI-102800</td>
<td>Management Accounting 1</td>
<td>4,5 CR</td>
<td>Wouters</td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>Product and Innovation Management</td>
<td>3 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102629</td>
<td>Management and Strategy</td>
<td>3,5 CR</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Economics and Management.

Content
See individual bricks
Module: Courses of the KIT Department of Electrical Engineering and Information Technology [M-MACH-104882]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering

Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

Credits: 30
Grading scale: pass/fail
Recurrence: Each term
Duration: 2 terms
Language: German/English
Level: 4
Version: 3

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Exchange Students_ETIT (Elect: between 0 and 90 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101930</td>
<td>Medical Imaging Techniques I</td>
<td>3 CR</td>
<td>Spadea</td>
</tr>
<tr>
<td>T-ETIT-101931</td>
<td>Medical Imaging Techniques II</td>
<td>3 CR</td>
<td>Spadea</td>
</tr>
<tr>
<td>T-ETIT-101956</td>
<td>Bioelectric Signals</td>
<td>3 CR</td>
<td>Loewe</td>
</tr>
<tr>
<td>T-ETIT-106492</td>
<td>Biomedical Measurement Techniques I</td>
<td>3 CR</td>
<td>Nahm</td>
</tr>
<tr>
<td>T-ETIT-101918</td>
<td>Digital Technology</td>
<td>6 CR</td>
<td>Becker</td>
</tr>
<tr>
<td>T-ETIT-103608</td>
<td>Electric Power Generation and Power Grid</td>
<td>3 CR</td>
<td>Hoferer</td>
</tr>
<tr>
<td>T-ETIT-110883</td>
<td>Electric Power Transmission & Grid Control</td>
<td>4 CR</td>
<td>Leibfried</td>
</tr>
<tr>
<td>T-ETIT-101954</td>
<td>Electrical Machines and Power Electronics</td>
<td>6 CR</td>
<td>Hiller</td>
</tr>
<tr>
<td>T-ETIT-101923</td>
<td>Electric Energy Systems</td>
<td>5 CR</td>
<td>Leibfried</td>
</tr>
<tr>
<td>T-ETIT-109318</td>
<td>Electronic Devices and Circuits</td>
<td>6 CR</td>
<td>Ulusoy</td>
</tr>
<tr>
<td>T-ETIT-108386</td>
<td>Electrical Engineering and Electronics</td>
<td>8 CR</td>
<td>De Carne</td>
</tr>
<tr>
<td>T-ETIT-109820</td>
<td>Electrical Engineering and Electronics</td>
<td>8 CR</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>T-ETIT-104644</td>
<td>Energy Storage and Network Integration</td>
<td>4 CR</td>
<td>Noe</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>T-ETIT-100772</td>
<td>Lighting Engineering</td>
<td>4 CR</td>
<td>Neumann</td>
</tr>
<tr>
<td>T-ETIT-100694</td>
<td>Methods of Signal Processing</td>
<td>6 CR</td>
<td>Heizmann</td>
</tr>
<tr>
<td>T-ETIT-101939</td>
<td>Photovoltaics</td>
<td>6 CR</td>
<td>Powalla</td>
</tr>
<tr>
<td>T-ETIT-100716</td>
<td>Industrial Circuitry</td>
<td>3 CR</td>
<td>Liske</td>
</tr>
<tr>
<td>T-ETIT-101911</td>
<td>Sensors</td>
<td>3 CR</td>
<td>Menesklou</td>
</tr>
<tr>
<td>T-ETIT-109313</td>
<td>Signals and Systems</td>
<td>6 CR</td>
<td>Heizmann</td>
</tr>
<tr>
<td>T-ETIT-100774</td>
<td>Solar Energy</td>
<td>6 CR</td>
<td>Richards</td>
</tr>
<tr>
<td>T-ETIT-110788</td>
<td>Superconductors for Energy Applications</td>
<td>5 CR</td>
<td>Grilli</td>
</tr>
<tr>
<td>T-ETIT-101921</td>
<td>System Dynamics and Control Engineering</td>
<td>6 CR</td>
<td>Hohmann</td>
</tr>
<tr>
<td>T-ETIT-100677</td>
<td>Systems Engineering for Automotive Electronics</td>
<td>4 CR</td>
<td>Bortolazzi</td>
</tr>
<tr>
<td>T-ETIT-101952</td>
<td>Theory of Probability</td>
<td>5 CR</td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Electrical Engineering and Information Technology.
Content
See individual bricks
2.7 Module: Courses of the KIT Department of Humanities and Social Sciences [M-MACH-106253]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering
Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

<table>
<thead>
<tr>
<th>Exchange Students_GeistSoz (Election: at most 90 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112700 Wildcard 15 CR</td>
</tr>
<tr>
<td>T-MACH-112701 Wildcard 15 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Humanities and Social Sciences.

Content
See individual bricks
2.8 Module: Courses of the KIT Department of Informatics [M-MACH-104883]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering

Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

Credits: 30
Grading scale: pass/fail
Recurrence: Each term
Duration: 2 terms
Language: German/English
Level: 4
Version: 2

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Exchange Students INFO (Election: between 0 and 90 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101466</td>
<td>Information Processing in Sensor Networks</td>
<td>6 CR</td>
<td>Hanebeck</td>
</tr>
<tr>
<td>T-INFO-101377</td>
<td>Localization of Mobile Agents</td>
<td>6 CR</td>
<td>Hanebeck</td>
</tr>
<tr>
<td>T-INFO-101294</td>
<td>Mechatronics and Robotics</td>
<td>4 CR</td>
<td>Asfour</td>
</tr>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
<td>6 CR</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-INFO-101310</td>
<td>Patent Law</td>
<td>3 CR</td>
<td>Werner</td>
</tr>
<tr>
<td>T-INFO-108014</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
<td>Asfour</td>
</tr>
<tr>
<td>T-INFO-105723</td>
<td>Robotics II - Humanoid Robotics</td>
<td>3 CR</td>
<td>Asfour</td>
</tr>
<tr>
<td>T-INFO-109931</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
<td>3 CR</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Informatics.

Content
See individual bricks
Module: Courses of the KIT Department of Mathematics [M-MACH-104885]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering

Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Exchange Students_MATH (Election: between 0 and 90 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103323</td>
<td>Differential Equations - Exam</td>
<td>4 CR</td>
<td>Grimm, Hochbruck, Neher</td>
</tr>
<tr>
<td>T-MATH-102242</td>
<td>Numerical Mathematics for Students of Computer Science</td>
<td>4,5 CR</td>
<td>Rieder, Weiß, Wieners</td>
</tr>
<tr>
<td>T-MATH-109620</td>
<td>Probability Theory and Statistics</td>
<td>5 CR</td>
<td>Bäuerle, Ebner, Fasen-Hartmann, Hug, Klar, Last, Trabs, Winter</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Mathematics.

Content
See individual bricks
2.10 Module: Courses of the KIT Department of Mechanical Engineering [M-MACH-106250]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering
Part of: Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

KIT Department of Mechanical Engineering Courses (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>4 CR</td>
<td>Gohl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108689</td>
<td>Advanced Materials Thermodynamics: Experiments and Modelling</td>
<td>4 CR</td>
<td>Seifert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105238</td>
<td>Actuators and Sensors in Nanotechnology</td>
<td>4 CR</td>
<td>Kohl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105655</td>
<td>Alternative Powertrain for Automobiles</td>
<td>4 CR</td>
<td>Noreikat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105215</td>
<td>Applied Tribology in Industrial Product Development</td>
<td>4 CR</td>
<td>Albers, Lorentz, Matthiesen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105527</td>
<td>Applied Materials Simulation</td>
<td>4 CR</td>
<td>Gumbsch, Schneider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105307</td>
<td>Drive Train of Mobile Machines</td>
<td>4 CR</td>
<td>Geimer, Wydra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105451</td>
<td>Drive Systems and Possibilities to Increase Efficiency</td>
<td>2 CR</td>
<td>Kollmeier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ott</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100288</td>
<td>Working Methods in Materials Science and Technology</td>
<td>2 CR</td>
<td>Heilmaier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105518</td>
<td>Human Factors Engineering I</td>
<td>4 CR</td>
<td>Deml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td>4 CR</td>
<td>Deml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105830</td>
<td>Human Factors Engineering III: Empirical Research Methods</td>
<td>4 CR</td>
<td>Deml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105308</td>
<td>Atomistic Simulations and Molecular Dynamics</td>
<td>4 CR</td>
<td>Gumbsch, Schneider, Weygand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102141</td>
<td>Constitution and Properties of Wearresistant Materials</td>
<td>4 CR</td>
<td>Ulrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105150</td>
<td>Constitution and Properties of Protective Coatings</td>
<td>4 CR</td>
<td>Ulrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105428</td>
<td>Selected Chapters of the Combustion Fundamentals</td>
<td>4 CR</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105462</td>
<td>Selected Problems of Applied Reactor Physics and Exercises</td>
<td>4 CR</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105381</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>4 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105310</td>
<td>Design of Highly Stresses Components</td>
<td>4 CR</td>
<td>Aktaa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105311</td>
<td>Design and Development of Mobile Machines</td>
<td>4 CR</td>
<td>Geimer, Siebert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>0 CR</td>
<td>Geimer, Siebert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110958</td>
<td>Design and Optimization of Conventional and Electrified Automotive Transmissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106732</td>
<td>Automated Production Systems (MEI)</td>
<td>4 CR</td>
<td>Fleischer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106424</td>
<td>Rail System Technology</td>
<td>4 CR</td>
<td>Cichon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-109933</td>
<td>Business Administration for Engineers and IT Professionals</td>
<td>4 CR</td>
<td>Sebregondi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>4 CR</td>
<td>Kehrwald, Kubach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100966</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>4 CR</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>4 CR</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>4 CR</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Controls</td>
<td>4 CR</td>
<td>Becker, Geimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108889</td>
<td>BUS-Controls - Advance</td>
<td>0 CR</td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102185</td>
<td>CATIA CAD Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102187</td>
<td>CAD-NX Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthiesen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Title</td>
<td>Credits</td>
<td>Tutor(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105312</td>
<td>CATIA Advanced</td>
<td>4 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105407</td>
<td>CFD for Power Engineering</td>
<td>4 CR</td>
<td>Otic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105313</td>
<td>CFD-Lab Using OpenFOAM</td>
<td>4 CR</td>
<td>Koch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102169</td>
<td>Chemical, Physical and Material Scientific Aspects of Polymers in Microsystem Technologies</td>
<td>3 CR</td>
<td>Worgull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-109302</td>
<td>Computational Homogenization on Digital Image Data</td>
<td>6 CR</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4 CR</td>
<td>Mikut, Reischl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105694</td>
<td>Data Analytics for Engineers</td>
<td>5 CR</td>
<td>Meisenbacher, Mikut, Reischl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112238</td>
<td>Holistic Approach of Managing Power Plant Operation under Uncertainty and Volatility</td>
<td>4 CR</td>
<td>Seidl, Stiegitz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108407</td>
<td>NMR Micro Probe Hardware Conception and Construction</td>
<td>4 CR</td>
<td>Korvink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105540</td>
<td>Railways in the Transportation Market</td>
<td>4 CR</td>
<td>Cichon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105391</td>
<td>Finite Difference Methods for Numerical Solution of Thermal and Fluid Dynamical Problems</td>
<td>4 CR</td>
<td>Günther</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110431</td>
<td>Digital Microstructure Characterization and Modeling</td>
<td>6 CR</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digital Control</td>
<td>4 CR</td>
<td>Knoop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108721</td>
<td>Designing with Composites</td>
<td>4 CR</td>
<td>Schnack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106700</td>
<td>Do it! – Service-Learning for Prospective Mechanical Engineers</td>
<td>2 CR</td>
<td>Deml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>5 CR</td>
<td>Fidlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111807</td>
<td>Introduction to Bionics</td>
<td>4 CR</td>
<td>Hölscher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105320</td>
<td>Introduction to the Finite Element Method</td>
<td>3 CR</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105525</td>
<td>Introduction to Nuclear Energy</td>
<td>4 CR</td>
<td>Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105321</td>
<td>Introduction to Theory of Materials</td>
<td>4 CR</td>
<td>Kamlah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Introduction into Mechatronics</td>
<td>6 CR</td>
<td>Bühlard, Reischl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction to Multi-Body Dynamics</td>
<td>5 CR</td>
<td>Seemann</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111184</td>
<td>Introduction to nanotechnology</td>
<td>4 CR</td>
<td>Hölscher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108808</td>
<td>Introduction to Engineering Mechanics I: Statics</td>
<td>3 CR</td>
<td>Fidlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102208</td>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>5 CR</td>
<td>Fidlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105439</td>
<td>Introduction to Nonlinear Vibrations</td>
<td>7 CR</td>
<td>Fidlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112215</td>
<td>Elasticity as a Field Theory</td>
<td>4 CR</td>
<td>Agiasofitou, Lazar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102211</td>
<td>Energy and Process Technology I</td>
<td>9 CR</td>
<td>Bauer, Maas, Schwitzke, Velji</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102212</td>
<td>Energy and Process Technology II</td>
<td>9 CR</td>
<td>Maas, Schwitzke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105715</td>
<td>Energy Demand of Buildings – Fundamentals and Applications, with Building Simulation Exercises</td>
<td>6 CR</td>
<td>Schmidt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105550</td>
<td>Energy Systems II: Reactor Physics</td>
<td>4 CR</td>
<td>Badea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105564</td>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines</td>
<td>4 CR</td>
<td>Koch, Kubach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105984</td>
<td>Fatigue of Welded Components and Structures</td>
<td>3 CR</td>
<td>Farajian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105228</td>
<td>Organ Support Systems</td>
<td>4 CR</td>
<td>Pylatiuk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimental Dynamics</td>
<td>5 CR</td>
<td>Fidlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105512</td>
<td>Experimental Fluid Mechanics</td>
<td>4 CR</td>
<td>Krieges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105447</td>
<td>Metallographic Lab Class</td>
<td>4 CR</td>
<td>Heilmayer, Kauffmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102099</td>
<td>Experimental Lab Class in Welding Technology, in Groups</td>
<td>4 CR</td>
<td>Dietrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>4 CR</td>
<td>Unrau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105153</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>4 CR</td>
<td>Unrau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>4 CR</td>
<td>Gauterin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>4 CR</td>
<td>Gauterin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105237</td>
<td>Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td>4 CR</td>
<td>Henning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>4 CR</td>
<td>Leister</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
<td>6 CR</td>
<td>Lauer, Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>Authors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>4</td>
<td>Henning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105392</td>
<td>FEM Workshop - Constitutive Laws</td>
<td>4</td>
<td>Schulz, Weygand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105433</td>
<td>Fabrication Processes in Microsystem Technology</td>
<td>4</td>
<td>Bade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105444</td>
<td>Manufacturing Technology</td>
<td>8</td>
<td>Schulze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105533</td>
<td>Solid State Reactions and Kinetics of Phase</td>
<td>4</td>
<td>Franke, Seifert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105417</td>
<td>Finite Element Workshop</td>
<td>4</td>
<td>Mattheck, Weygand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105474</td>
<td>Fluid-Structure-Interaction</td>
<td>4</td>
<td>Frohnapfel, Mühlhausen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>4</td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105179</td>
<td>Functional Ceramics</td>
<td>4</td>
<td>Hinterstein, Rheinheimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110331</td>
<td>Nuclear Fusion Technology</td>
<td>4</td>
<td>Badea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105411</td>
<td>Fusion Technology A</td>
<td>4</td>
<td>Stieglitz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105433</td>
<td>Fusion Technology B</td>
<td>4</td>
<td>Stieglitz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105444</td>
<td>Combined Cycle Power Plants</td>
<td>4</td>
<td>Schulenberg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105533</td>
<td>Gasdynamics</td>
<td>4</td>
<td>Gatti, Kriegseis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105157</td>
<td>Foundry Technology</td>
<td>4</td>
<td>Wilhelm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105158</td>
<td>Global Production and Logistics - Part 1: Global Production</td>
<td>4</td>
<td>Lanza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105159</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>4</td>
<td>Furmans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>8</td>
<td>Badea, Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100092</td>
<td>Automotive Engineering I</td>
<td>8</td>
<td>Gauterin, Unrau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105220</td>
<td>Automotive Engineering II</td>
<td>4</td>
<td>Gauterin, Unrau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108747</td>
<td>Basics of Manufacturing Technology (MEI)</td>
<td>4</td>
<td>Schulze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105379</td>
<td>Global Logistics</td>
<td>4</td>
<td>Furmans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>4</td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105235</td>
<td>Principles of Medicine for Engineers</td>
<td>4</td>
<td>Pylatiuk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Fundamentals of Nonlinear Continuum Mechanics</td>
<td>4</td>
<td>Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Principles of Medicine for Engineers</td>
<td>4</td>
<td>Badiita, Jouda, Korvink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105324</td>
<td>Fundamentals of Reactor Safety for the Operation and Dismantling of Nuclear Power Plants</td>
<td>4</td>
<td>Sanchez-Espinoza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105530</td>
<td>Basics of Technical Logistics I</td>
<td>4</td>
<td>Mittwollen, Oellerich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics II</td>
<td>6</td>
<td>Furmans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>4</td>
<td>Frech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105530</td>
<td>Fundamentals of Design of Motor-Vehicle Bodies I</td>
<td>2</td>
<td>Bardehle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>2</td>
<td>Frech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>2</td>
<td>Frech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105846</td>
<td>Hands-on BioMEMS</td>
<td>4</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105398</td>
<td>Hydrogen in Materials – Exercises and Lab Course</td>
<td>4</td>
<td>Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105459</td>
<td>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</td>
<td>4</td>
<td>Pundt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105375</td>
<td>Industrial Aerodynamics</td>
<td>4</td>
<td>Frohnapfel, Kröber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105388</td>
<td>Introduction to Industrial Production Economics</td>
<td>4</td>
<td>Dürrschnabel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Title</td>
<td>Credits</td>
<td>Instructor(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105205</td>
<td>Computer Science for Engineers</td>
<td>6 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105206</td>
<td>Computer Science for Engineers, Prerequisite</td>
<td>0 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>3 CR</td>
<td>Kliger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105404</td>
<td>Innovative Nuclear Systems</td>
<td>4 CR</td>
<td>Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-109185</td>
<td>Innovative Project</td>
<td>6 CR</td>
<td>Class, Terzidis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>4 CR</td>
<td>Schlichtenmayer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108849</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>8 CR</td>
<td>Lanza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105466</td>
<td>Introduction to Neutron Cross Section Theory and Nuclear Data Generation</td>
<td>4 CR</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106743</td>
<td>IoT Platform for Engineering</td>
<td>4 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100287</td>
<td>Introduction to Ceramics</td>
<td>6 CR</td>
<td>Hoffmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106722</td>
<td>Ceramic Matrix Composites</td>
<td>4 CR</td>
<td>Koch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110332</td>
<td>Nuclear Power and Reactor Technology</td>
<td>4 CR</td>
<td>Badea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105402</td>
<td>Nuclear Power Plant Technology</td>
<td>4 CR</td>
<td>Badea, Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105378</td>
<td>Cognitive Automobiles - Laboratory</td>
<td>6 CR</td>
<td>Kitt, Lauer, Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105410</td>
<td>Coal Fired Power Plants</td>
<td>4 CR</td>
<td>Schulenberg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105330</td>
<td>Design with Plastics</td>
<td>4 CR</td>
<td>Liedel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100293</td>
<td>Structural Materials</td>
<td>6 CR</td>
<td>Guth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>4 CR</td>
<td>Albers, Burkarlt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105786</td>
<td>Contact Mechanics</td>
<td>4 CR</td>
<td>Greiner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110377</td>
<td>Continuum Mechanics of Solids and Fluids</td>
<td>3 CR</td>
<td>Böhlke, Frohnapfel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105222</td>
<td>Motor Vehicle Labor</td>
<td>4 CR</td>
<td>Frey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105414</td>
<td>Cooling of Thermally High Loaded Gas Turbine Components</td>
<td>4 CR</td>
<td>Bauer, Schulz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105174</td>
<td>Warehousing and Distribution Systems</td>
<td>3 CR</td>
<td>Furmans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Laser in Automotive Engineering</td>
<td>4 CR</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112763</td>
<td>Laser Material Processing</td>
<td>4 CR</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4 CR</td>
<td>Albers, Matthiesien, Ploch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105331</td>
<td>Laboratory Exercise in Energy Technology</td>
<td>4 CR</td>
<td>Bauer, Maas, Wirbser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110771</td>
<td>Logistics and Supply Chain Management</td>
<td>9 CR</td>
<td>Furmans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105175</td>
<td>Airport Logistics</td>
<td>3 CR</td>
<td>Richter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105223</td>
<td>Machine Vision</td>
<td>8 CR</td>
<td>Lauer, Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105426</td>
<td>Magnetohydrodynamics</td>
<td>4 CR</td>
<td>Bühler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105434</td>
<td>Magnet Technology of Fusion Reactors</td>
<td>4 CR</td>
<td>Fietz, Weiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105440</td>
<td>Leadership and Conflict Management</td>
<td>4 CR</td>
<td>Hatzl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105208</td>
<td>Machines and Processes</td>
<td>7 CR</td>
<td>Bauer, Kubach, Maas, Pritz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105232</td>
<td>Machines and Processes, Prerequisite</td>
<td>0 CR</td>
<td>Bauer, Kubach, Maas, Pritz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>4 CR</td>
<td>Proppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
<td>9 CR</td>
<td>Furmans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-109082</td>
<td>Engineering Materials for the Energy Transition</td>
<td>4 CR</td>
<td>Franke, Seifert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100285</td>
<td>Materials Physics and Metals</td>
<td>13 CR</td>
<td>Heilmaier, Pundt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100290</td>
<td>Seminar in Materials Science</td>
<td>2 CR</td>
<td>Gruber, Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>6 CR</td>
<td>Proppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110375</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>4 CR</td>
<td>Böhlke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110378</td>
<td>Mathematical Methods in Micromechanics</td>
<td>5 CR</td>
<td>Böhlke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6 CR</td>
<td>Seemann</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>6 CR</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105419</td>
<td>Mathematical Models and Methods in Combustion Theory</td>
<td>4 CR</td>
<td>Bykov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105189</td>
<td>Mathematical Models and Methods for Production Systems</td>
<td>6 CR</td>
<td>Baumann, Furmans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>Instructors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105333</td>
<td>Mechanics and Strength of Polymers</td>
<td>4 CR</td>
<td>von Bernstorff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105334</td>
<td>Mechanics in Microtechnology</td>
<td>4 CR</td>
<td>Greiner, Gruber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105370</td>
<td>Laboratory Mechatronics</td>
<td>4 CR</td>
<td>Hagenmeyer, Seemann, Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105574</td>
<td>Mechatronical Systems and Products</td>
<td>3 CR</td>
<td>Hohmann, Matthiesen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105335</td>
<td>Measurement II</td>
<td>4 CR</td>
<td>Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105300</td>
<td>Measurement Instrumentation Lab</td>
<td>4 CR</td>
<td>Klemp, Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105468</td>
<td>Metals</td>
<td>6 CR</td>
<td>Heilmaier, Pundt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-109192</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>6 CR</td>
<td>Albers, Burkardt, Matthiesen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105167</td>
<td>Analysis Tools for Combustion Diagnostics</td>
<td>4 CR</td>
<td>Pfeil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4 CR</td>
<td>Kohl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105782</td>
<td>Micro Magnetic Resonance</td>
<td>4 CR</td>
<td>Korvink, MacKinnon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-101910</td>
<td>Microactuators</td>
<td>4 CR</td>
<td>Kohl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>5 CR</td>
<td>August, Nestler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108383</td>
<td>Microsystem Simulation</td>
<td>4 CR</td>
<td>Korvink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105168</td>
<td>Mobile Machines</td>
<td>8 CR</td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105297</td>
<td>Modeling and Simulation</td>
<td>7 CR</td>
<td>Furmans, Geimer, Pritz, Proppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105396</td>
<td>Modeling of Thermodynamical Processes</td>
<td>6 CR</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>5 CR</td>
<td>Gumbsch, Nestler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105539</td>
<td>Modern Control Concepts I</td>
<td>4 CR</td>
<td>Groell, Matthes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105337</td>
<td>Engine Laboratory</td>
<td>4 CR</td>
<td>Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>4 CR</td>
<td>Bernhardt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
<td>Kohl, Sommer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105435</td>
<td>Neutron Physics of Fusion Reactors</td>
<td>4 CR</td>
<td>Fischer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111026</td>
<td>Nonlinear Continuum Mechanics</td>
<td>3 CR</td>
<td>Böhike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105420</td>
<td>Numerical Simulation of Multi-Phase Flows</td>
<td>4 CR</td>
<td>Wörner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105397</td>
<td>Numerical Simulation of Turbulent Flows</td>
<td>4 CR</td>
<td>Grötzbach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105338</td>
<td>Numerical Fluid Mechanics</td>
<td>4 CR</td>
<td>Gatti, Magagnato</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110838</td>
<td>Numerical Fluid Mechanics with PYTHON</td>
<td>4 CR</td>
<td>Frohnafel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Zacharias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td>5 CR</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111022</td>
<td>Physical Measurement Technology</td>
<td>4 CR</td>
<td>Buchenau, Steiglitz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110818</td>
<td>Plasticity of Metals and Intermetallics</td>
<td>8 CR</td>
<td>Heilmaier, Kauffmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105516</td>
<td>Multi-Scale Plasticity</td>
<td>4 CR</td>
<td>Greiner, Schulz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102137</td>
<td>Polymer Engineering I</td>
<td>4 CR</td>
<td>Liebig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102138</td>
<td>Polymer Engineering II</td>
<td>4 CR</td>
<td>Liebig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102192</td>
<td>Polymers in MEMS A: Chemistry, Synthesis and Applications</td>
<td>4 CR</td>
<td>Rapp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102191</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications</td>
<td>4 CR</td>
<td>Worgull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102200</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics</td>
<td>4 CR</td>
<td>Rapp, Worgull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106707</td>
<td>Workshop on Computer-based Flow Measurement Techniques</td>
<td>4 CR</td>
<td>Bauer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102154</td>
<td>Laboratory Laser Materials Processing</td>
<td>4 CR</td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105341</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
<td>4 CR</td>
<td>Klemp, Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105178</td>
<td>Practical Course Technical Ceramics</td>
<td>4 CR</td>
<td>Schell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Practical Training in Basics of Microsystem Technology</td>
<td>4 CR</td>
<td>Last</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110318</td>
<td>Product- and Production-Concepts for Modern Automobiles</td>
<td>4 CR</td>
<td>Kienzle, Steegmüller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>4 CR</td>
<td>Mbang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105383</td>
<td>Product Development - Dimensioning of Components</td>
<td>7 CR</td>
<td>Dietrich, Schulze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Instructor(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105470</td>
<td>Production Planning and Control</td>
<td>4 CR</td>
<td>Rinn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105346</td>
<td>Production Techniques Laboratory</td>
<td>4 CR</td>
<td>Deml, Fleischer, Furmans, Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105523</td>
<td>Productivity Management in Production Systems</td>
<td>4 CR</td>
<td>Stowasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>4 CR</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105036</td>
<td>Theory of Stability</td>
<td>6 CR</td>
<td>Fidlin, Geimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td>4 CR</td>
<td>Kärger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105422</td>
<td>Flows with Chemical Reactions</td>
<td>4 CR</td>
<td>Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105403</td>
<td>Flows and Heat Transfer in Energy Technology</td>
<td>4 CR</td>
<td>Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105207</td>
<td>Fluid Mechanics 1&2</td>
<td>8 CR</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td>4 CR</td>
<td>Kärger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Ulrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>4 CR</td>
<td>Dietrich, Schulze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105555</td>
<td>System Integration in Micro- and Nanotechnology</td>
<td>4 CR</td>
<td>Gengenbach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111396</td>
<td>Smoothed Particle Hydrodynamics (SPH) in Computational Fluid Dynamics</td>
<td>4 CR</td>
<td>Koch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105422</td>
<td>Flows with Chemical Reactions</td>
<td>4 CR</td>
<td>Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105403</td>
<td>Flows and Heat Transfer in Energy Technology</td>
<td>4 CR</td>
<td>Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105207</td>
<td>Fluid Mechanics 1&2</td>
<td>8 CR</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td>4 CR</td>
<td>Kärger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Ulrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>4 CR</td>
<td>Dietrich, Schulze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105555</td>
<td>System Integration in Micro- and Nanotechnology</td>
<td>4 CR</td>
<td>Gengenbach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111396</td>
<td>Smoothed Particle Hydrodynamics (SPH) in Computational Fluid Dynamics</td>
<td>4 CR</td>
<td>Koch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The course details include module codes, course titles, credits, and instructors. The format is consistent for each entry, providing a clear and structured view of the course offerings.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer/Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105560</td>
<td>Technical Energy Systems for Buildings 2: System Concept</td>
<td>4 CR</td>
<td>Schmidt</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>5 CR</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-100299</td>
<td>Engineering Mechanics III</td>
<td>5 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Vibration Theory</td>
<td>5 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-104747</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105204</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer I</td>
<td>0 CR</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>7 CR</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105288</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer II</td>
<td>0 CR</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105361</td>
<td>Technical Design in Product Development</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Schmid</td>
</tr>
<tr>
<td>T-MACH-105362</td>
<td>Technology of Steel Components</td>
<td>4 CR</td>
<td>Schulze</td>
</tr>
<tr>
<td>T-MACH-105456</td>
<td>Ten Lectures on Turbulence</td>
<td>4 CR</td>
<td>Otic</td>
</tr>
<tr>
<td>T-MACH-105225</td>
<td>Thermal Solar Energy</td>
<td>4 CR</td>
<td>Stieglitz</td>
</tr>
<tr>
<td>T-MACH-105363</td>
<td>Thermal Turbomachines I</td>
<td>6 CR</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-105364</td>
<td>Thermal Turbomachines II</td>
<td>6 CR</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-106372</td>
<td>Thermal-Fluid-Dynamics</td>
<td>4 CR</td>
<td>Ruck</td>
</tr>
<tr>
<td>T-MACH-105554</td>
<td>Thin Film and Small-scale Mechanical Behavior</td>
<td>4 CR</td>
<td>Gruber, Kirchlechner, Weygand</td>
</tr>
<tr>
<td>T-MACH-105423</td>
<td>Tractors</td>
<td>4 CR</td>
<td>Geimer, Kremmer</td>
</tr>
<tr>
<td>T-MACH-105531</td>
<td>Tribology</td>
<td>8 CR</td>
<td>Dienwiebel, Scherge</td>
</tr>
<tr>
<td>T-MACH-105365</td>
<td>Turbine and Compressor Design</td>
<td>4 CR</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-111027</td>
<td>Tutorial Nonlinear Continuum Mechanics</td>
<td>1 CR</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-109304</td>
<td>Exercises - Fatigue of Welded Components and Structures</td>
<td>1 CR</td>
<td>Farajian</td>
</tr>
<tr>
<td>T-MACH-109303</td>
<td>Exercises - Tribology</td>
<td>0 CR</td>
<td>Dienwiebel</td>
</tr>
<tr>
<td>T-MACH-107671</td>
<td>Exercises for Applied Materials Simulation</td>
<td>2 CR</td>
<td>Gumbsch, Schneider</td>
</tr>
<tr>
<td>T-MACH-110330</td>
<td>Tutorial Introduction to the Finite Element Method</td>
<td>1 CR</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-107632</td>
<td>Exercises for Solid State Reactions and Kinetics of Phase Transformations</td>
<td>2 CR</td>
<td>Franke, Seifert</td>
</tr>
<tr>
<td>T-MACH-110333</td>
<td>Tutorial Continuum Mechanics of Solids and Fluids</td>
<td>1 CR</td>
<td>Böhlke, Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-110376</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>2 CR</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-110379</td>
<td>Tutorial Mathematical Methods in Micromechanics</td>
<td>1 CR</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-105202</td>
<td>Tutorial Engineering Mechanics III</td>
<td>0 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-107685</td>
<td>Exercises for Materials Characterization</td>
<td>2 CR</td>
<td>Gumbsch, Schneider</td>
</tr>
<tr>
<td>T-MACH-105177</td>
<td>Metal Forming</td>
<td>4 CR</td>
<td>Herlan</td>
</tr>
<tr>
<td>T-MACH-108784</td>
<td>Vacuum and Tritium Technology in Nuclear Fusion</td>
<td>4 CR</td>
<td>Day</td>
</tr>
<tr>
<td>T-MACH-102206</td>
<td>Vehicle Ride Comfort & Acoustics 1</td>
<td>3 CR</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-102205</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>3 CR</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-102194</td>
<td>Combustion Engines I</td>
<td>4 CR</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-104609</td>
<td>Combustion Engines II</td>
<td>5 CR</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td>6 CR</td>
<td>Naumann, Werling</td>
</tr>
<tr>
<td>T-MACH-102139</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>4 CR</td>
<td>Gruber, Gumbsch</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>4 CR</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Gear Cutting Technology</td>
<td>4 CR</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-102123</td>
<td>Virtual Engineering I</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102124</td>
<td>Virtual Engineering II</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td>4 CR</td>
<td>Maas, Yu</td>
</tr>
<tr>
<td>T-MACH-105430</td>
<td>Heatpumps</td>
<td>4 CR</td>
<td>Maas, Wirbser</td>
</tr>
<tr>
<td>T-MACH-105529</td>
<td>Heat Transfer in Nuclear Reactors</td>
<td>4 CR</td>
<td>Cheng</td>
</tr>
<tr>
<td>T-MACH-105416</td>
<td>Hydrogen Technologies</td>
<td>4 CR</td>
<td>Jedicke, Jordan</td>
</tr>
<tr>
<td>T-MACH-105443</td>
<td>Wave Propagation</td>
<td>4 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Instructor(s)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>T-MACH-107684</td>
<td>Materials Characterization</td>
<td>4 CR</td>
<td>Gibmeier, Schneider</td>
</tr>
<tr>
<td>T-MACH-105211</td>
<td>Materials of Lightweight Construction</td>
<td>4 CR</td>
<td>Liebig</td>
</tr>
<tr>
<td>T-MACH-105301</td>
<td>Materials Science and Engineering III</td>
<td>8 CR</td>
<td>Heilmaier</td>
</tr>
<tr>
<td>T-MACH-105369</td>
<td>Materials Modelling: Dislocation Based Plasticy</td>
<td>4 CR</td>
<td>Weygand</td>
</tr>
<tr>
<td>T-MACH-100295</td>
<td>Materials Processing Technology</td>
<td>6 CR</td>
<td>Binder, Liebig</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105234</td>
<td>Windpower</td>
<td>4 CR</td>
<td>Lewald</td>
</tr>
<tr>
<td>T-MACH-108680</td>
<td>Workshop Mechatronical Systems and Products</td>
<td>3 CR</td>
<td>Hohmann, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105406</td>
<td>Two-Phase Flow and Heat Transfer</td>
<td>4 CR</td>
<td>Schulenberg, Wörner</td>
</tr>
</tbody>
</table>
2.11 Module: Courses of the KIT Department of Physics [M-MACH-106254]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering

Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election notes
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

<table>
<thead>
<tr>
<th>Exchange Students_Physics (Election: at most 90 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112702 Wildcard</td>
<td>15 CR</td>
</tr>
<tr>
<td>T-MACH-112703 Wildcard</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
Exchange students are allowed to choose bricks from this module. There may be prerequisites or restrictions, for instance regarding the number of places for individual courses. Exchange students do not need to choose the whole module, but can select individual bricks.

Competence Goal
The students are able to reconstruct selected topics of Physics.

Content
See individual bricks.
2.12 Module: Key Competences [M-MACH-106255]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering
Part of: Courses of Other KIT Departments and Interdisciplinary Qualifications

Election notes
Interdisciplinary qualifications (IQ) completed at the House of Competence (HoC), at the Zentrum für Angewandte Kulturwissenschaft und Studium Generale (ZAK), or at the Sprachenzentrum (SpZ), can be assigned in self-service. First, select a partial accomplishment named "self-assignment" in your study schedule, and second, assign an IQ-achievement via the tab "IQ achievements".

Key Competences (Elections:)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Success is monitored within the framework of academic achievements. Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
none

Competence Goal
After completing the module Key Competences students can

- determine and coordinate work steps, projects and goals, proceed systematically and purposefully, set priorities as well as assess the feasibility of a task,
- apply the principles of safeguarding good scientific practice,
- apply methods for the planning of a specific task under given framework conditions in a goal- and resource-oriented way,
- describe methods for scientific research and selection of technical information according to pre-established quality criteria and apply them to given problems,
- discuss empirical methods and apply them to selected examples,
- present technical information in a clear, readable, and convincingly argued manner in various forms of presentation (e.g. poster, exposé, abstract) in writing and appropriately visualize it graphically (e.g. engineering drawings, flowcharts),
- present and stand up for technical content in a convincing and appealing way,
- work as a team in a task-oriented manner, handle any conflicts on their own and take responsibility for themselves and others,
- communicate as a team in an objective, goal-oriented and interpersonal manner, represent their own interests, reflect and take into account the interests of others in their own words, and successfully organize the course of the conversation.

Content
The module Key Competences consists of freely selectable courses offered by the KIT-House of Competence (HoC), the Sprachenzentren (SpZ), the Zentrum für Angewandte Kulturwissenschaft und Studium Generale (ZAK), and the brick courses contained in the elective block of key qualifications with a work load corresponding to a total of at least 2 ECTS. Upon request, the examination board may approve further courses as freely selectable subjects in the module "Key Competences".

Module grade calculation
Certification without grade

Annotation
Only HoC/SPZ/ZAK courses and courses from the "Compulsory-elective block Key Competences" can be chosen.

Learning type
lectures, seminars, tutorials, lab courses.
Module: Project [M-MACH-104840]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering
Part of: Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Recurrence
Each term

Duration
1 term

Language
German/English

Level
5

Version
1

Project (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109880</td>
<td>Thesis (MSc)</td>
<td>30 CR</td>
<td>Heilmaier</td>
</tr>
<tr>
<td>T-MACH-110107</td>
<td>Thesis (BSc)</td>
<td>15 CR</td>
<td>Heilmaier</td>
</tr>
<tr>
<td>T-MACH-110106</td>
<td>Project work</td>
<td>20 CR</td>
<td>Heilmaier</td>
</tr>
</tbody>
</table>

Competence Certificate

The module Project consists of a written report of a scientific subject chosen by the student himself/herself or given by the supervisor. The Project work is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

Prerequisites

none

Competence Goal

The student is able to work independently on a defined, subject-relevant theme based on scientific criteria within a given period of time. The student is able to do research independently, to analyze information, to abstract as well as collect and recognize basic principles and regularities on the basis of less structured information. He/she overviews the given scientific question, is able to choose sophisticated scientific methods and techniques, and use them to solve this question and to identify further potentials, respectively. In addition, this will be carried out in consideration of social and/or ethical aspects.

Content

The student shall be allowed to make suggestions for the topic of his/her Project work.

Workload

Maximum: 900 hours.
Course: Actuators and Sensors in Nanotechnology [T-MACH-105238]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Modality</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2141866</td>
<td>Actuators and sensors in nanotechnology</td>
<td>2</td>
<td>Lecture / Blended</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105238</td>
<td>Actuators and Sensors in Nanotechnology</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate
oral exam

Prerequisites
none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Title</th>
<th>Term</th>
<th>Code</th>
<th>SWS</th>
<th>Modality</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuators and sensors in nanotechnology</td>
<td>WS 22/23</td>
<td>2141866</td>
<td>2</td>
<td>Lecture / Blended</td>
<td>Open study portal</td>
</tr>
</tbody>
</table>
3.2 Course: Advanced Materials Thermodynamics: Experiments and Modelling [T-MACH-108689]

Responsible: Prof. Dr. Hans Jürgen Seifert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (about 30 min)

Prerequisites
none

Recommendation
Basics in thermodynamics (lectures during bachelor degree course in engineering, materials science and engineering (MatWerk), physics or chemistry)
3.3 Course: Airport Logistics [T-MACH-105175]

- **Responsible:** Dr.-Ing. André Richter
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3</td>
<td>Written</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Airport logistics

- **2117056, WS 22/23, 2 SWS, Language: German, Open in study portal**

Content

Media

Presentations

Learning content

- Introduction
- Airport installations
- Luggage transport
- Passenger transport
- Security on the airport
- Legal bases of the air traffic
- Freight on the airport

Learning goals

The students are able to:

- Describe material handling and informations technology activities on airports,
- Evaluate processes and systems on airports as the law stands, and
- Choose appropriate processes and material handling systems for airports.

Recommendations

None

Workload

Regular attendance: 21 hours
Self-study: 99 hours

Note

Limited number of participants: allocation of places in sequence of registration (first come first served). Registration via "ILIAS" mandatory.
Personal presence during lectures mandatory.

Organizational issues

Termine: siehe ILIAS.
Literature
3.4 Course: Alternative Powertrain for Automobiles [T-MACH-105655]

Responsible: Prof. Dipl.-Ing. Karl Ernst Noreikat
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events
- **WT 22/23** 2133132 Sustainable Vehicle Drivetrains 2 SWS Lecture / Toedter
- **Exams**
 - **WT 22/23** 76-T-MACH-105655 Sustainable Vehicle Drivetrains
 - **ST 2023** 76-T-MACH-105655 Sustainable Vehicle Drivetrains (Alternative Powertrain for Automobiles)

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔉 On-Site, 🗙 Cancelled

Competence Certificate
- written exam

Below you will find excerpts from events related to this course:

Sustainable Vehicle Drivetrains
- 2133132, WS 22/23, 2 SWS, Open in study portal

Content
- Sustainability
- Environmental balance
- Legislation
- Alternative fuels
- BEV
- Fuel cell
- Hybrid drives
3.5 Course: Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines [T-MACH-105173]

Responsible: Dr.-Ing. Marcus Gohl
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2134150</td>
<td>Gas, lubricating oil and operating media analysis in drive train development</td>
<td>2 SWS</td>
<td>Gohl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>Koch</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76--T-Mach-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>Gohl</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Letter of attendance or oral exam (25 minutes, no auxiliary means)

Prerequisites
none

Below you will find excerpts from events related to this course:

Gas, lubricating oil and operating media analysis in drive train development
2134150, SS 2023, 2 SWS, Language: German, Open in study portal

Literature
Die Vorlesungsunterlagen werden vor jeder Veranstaltung an die Studenten verteilt.
3.6 Course: Analysis Tools for Combustion Diagnostics [T-MACH-105167]

Responsible
Jürgen Pfeil

Organisation
KIT Department of Mechanical Engineering

Part of
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2134134</td>
<td>Analysis tools for combustion diagnostics</td>
<td>Lecture</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105167</td>
<td>Analysis Tools for Combustion Diagnostics</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105167</td>
<td>Analysis Tools for Combustion Diagnostics</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Literature
Skript, erhältlich in der Vorlesung
3.7 Course: Applied Building Physics [T-BGU-100039]

Responsible: Dr.-Ing. Engin Kotan
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Dates</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6211909</td>
<td>Angewandte Bauphysik</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Vogel, Dehn</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Dates</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8241100039</td>
<td>Applied Building Physics</td>
<td>Dehn, Kotan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>8241100039</td>
<td>Applied Building Physics</td>
<td>Dehn, Kotan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
3.8 Course: Applied Materials Simulation [T-MACH-105527]

Responsible: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2182614</td>
<td>Applied Materials Simulation</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105527</td>
<td>Applied Materials Modelling</td>
<td>Lecture / Practice (VÜ)</td>
<td>4</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105527</td>
<td>Applied Materials Modelling</td>
<td>Lecture / Practice (VÜ)</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam ca. 30 minutes
no tools or reference materials

Prerequisites

The successful participation in Übungen zu Angewandte Werkstoffsimulation is the condition for the admittance to the oral exam in Angewandte Werkstoffsimulation.

T-MACH-110928 – Exercises for Applied Materials Simulation has not been started.

T-MACH-110929 – Applied Materials Modelling has not been started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-107671 - Exercises for Applied Materials Simulation must have been passed.

Below you will find excerpts from events related to this course:

Applied Materials Simulation

2182614, SS 2023, 4 SWS, Language: German, [Open in study portal](#)
Lecture / Practice (VÜ)
Online
Content
This lecture should give the students an overview of different simulation methods in the field of materials science and engineering. Numerical methods are presented and their use in different fields of application and size scales shown and discussed. On the basis of theoretical as well as practical aspects, a critical examination of the opportunities and challenges of numerical material simulation shall be carried out.

The student can

- define different numerical methods and distinguish their range of application
- approach issues by applying the finite element method and discuss the processes and results
- understand complex processes of metal forming and crash simulation and discuss the structural and material behavior
- define and apply the physical fundamentals of particle-based simulation techniques to applications of materials science
- illustrate the range of application of atomistic simulation methods and distinguish between different models

preliminary knowledge in mathematics, physics and materials science recommended

regular attendance: 34 hours
exercise: 11 hours
self-study: 165 hours
oral exam ca. 35 minutes
no tools or reference materials
admission to the exam only with successful completion of the exercises

Organizational issues
Die Vorlesung wir nur als Aufzeichnung angeboten!
Bitte besuchen Sie die englischsprachige Veranstaltung "Applied Materials Simulation" (2182616)!
Weitere Informationen finden Sie in ILIAS.
Kontakt: johannes.schneider@kit.edu

Literature
3.9 Course: Applied Tribology in Industrial Product Development [T-MACH-105215]

Responsible: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Benoit Lorentz
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (20 min)

Prerequisites
None
3.10 Course: Atomistic Simulations and Molecular Dynamics [T-MACH-105308]

Responsible:
Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider
Dr. Daniel Weygand

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2181740</td>
<td>Atomistic simulations and molecular dynamics</td>
<td>3 SWS</td>
<td>Lecture / Practice (/) Weygand, Gumbsch</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76T-MACH-105308</td>
<td>Atomistic Simulations and Molecular Dynamics</td>
<td></td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76T-MACH-105308</td>
<td>Atomistic Simulations and Molecular Dynamics</td>
<td></td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105308-W</td>
<td>Atomistic Simulations and Molecular Dynamics</td>
<td></td>
<td>Weygand, Gumbsch</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online,
🧩 Blended (On-Site/Online),
🗣 On-Site,
🗙 Cancelled

Competence Certificate

oral exam ca. 30 minutes

Prerequisites

none

Recommendation

preliminary knowledge in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

Atomistic simulations and molecular dynamics

2181740, SS 2023, 3 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ)
On-Site
Content
The lecture introduces the foundation of particle based simulation methods focussing on molecular dynamics:

1. Introduction
2. Physics of Materials
3. MD Basics, Atom-Billard
 * particle, position, energy, forces, pair potentials
 * initial and boundary conditions
 * time integration
4. Algorithms
5. Statics, dynamics, thermodynamics
6. MD output
 7. interaction between particles
 * pair potential -- many body potentials
 * principles of quantum mechanics
 * tight binding methods
 * dissipative particle dynamics
8. Application of particle based methods

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

- describe the physical foundation of particle based simulation method (e.g. molecular dynamics)
- apply particle based simulation methods to problems in materials science

preliminary knowlegde in mathematics, physics and materials science recommended

regular attendance: 22,5 hours
exercise: 22,5 hours
self-study: 75 hours
oral exam ca. 30 minutes

Organizational issues
Die Vorlesung wird auf Englisch angeboten!

Literature

3.11 Course: Automated Manufacturing Systems [T-MACH-108844]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Unit</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2150904</td>
<td>Automated Manufacturing Systems</td>
<td>6</td>
<td>Lecture / Practice (VÜ)</td>
<td>Fleischer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>Fleischer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⌚ On-Site, ✗ Cancelled

Competence Certificate
oral exam (40 minutes)

Prerequisites
"T-MACH-102162 - Automatisierte Produktionsanlagen" must not be commenced.

Below you will find excerpts from events related to this course:

Automated Manufacturing Systems
2150904, SS 2023, 6 SWS, Language: German, Open in study portal
Content
The lecture gives an overview of the structure and functioning of automated production plants. In a basic chapter, fundamental elements for the realization of automated production systems are taught. These include:

- Drive and control technology
- Handling technology for handling workpieces and tools
- Industrial robot technology
- Quality assurance in automated production plants
- Automated machines, cells, centers and systems for production and assembly
- Structures of multi-machine systems
- Project planning of automated production plants

An interdisciplinary view of these sub-areas results in interfaces to Industry 4.0 approaches. The basic chapters are supplemented by practical application examples and live demonstrations in the Karlsruhe Forschungsfabrik.

In the second part of the lecture, the fundamentals taught will be clarified using practically executed production processes for manufacturing and disassembling components, and the automated production facilities for manufacturing these components will be analyzed. In the field of automotive powertrain technology, the automated production process for both the manufacture and disassembly of batteries is considered. In the powertrain area, automated production facilities for the disassembly of electric motors are considered. Furthermore, automated production systems for the field of additive manufacturing are considered.

Within tutorials, the contents from the lecture are deepened and applied to concrete problems and tasks.

Learning Outcomes:
The students …

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: "Handling Technology", "Industrial Robotics", "Sensory" and "Controls".
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours
WING:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues
Vorlesungstermine dienstags 8:00 Uhr und donnerstags 8:00 Uhr, Übungstermine donnerstags 09:45 Uhr.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiserfahrungen im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstellt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.12 Course: Automated Production Systems (MEI) [T-MACH-106732]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
<td>Fleischer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam (approx. 20 min)

Prerequisites

T-MACH-102162 - Automated Manufacturing Systems must not have been started.
T-MACH-108844 - Automated Manufacturing Systems must not have been started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-108844 - Automated Manufacturing Systems must not have been started.

Below you will find excerpts from events related to this course:

Automated Production Systems (MEI)

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (V)</td>
<td>Blended (On-Site/Online)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Content

The lecture provides an overview of the structure and functioning of automated production systems. In the introduction chapter the basic elements for the realization of automated production systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- automatic machines, cells, centers and systems for manufacturing and assembly
- planning of automated manufacturing systems

In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components. The analysis of automated manufacturing systems for manufacturing of defined components is also included.

Learning Outcomes:

The students …

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.

Organizational issues

Die genauen Termine und Raum werden über die wbk-Homepage bekannt gegeben.
3.13 Course: Automotive Engineering I [T-MACH-100092]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113805</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Gauterin, Unrau</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2113809</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Gauterin, Gießler</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100092</td>
<td>Automotive Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100092_mdl</td>
<td>Automotive Engineering I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100092</td>
<td>Automotive Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100092_mdl</td>
<td>Automotive Engineering I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written examination

Duration: 120 minutes

Auxiliary means: none

Prerequisites
The brick "T-MACH-102203 - Automotive Engineering I" is not started or finished. The bricks "T-MACH-100092 - Grundlagen der Fahrzeugtechnik I" and "T-MACH-102203 - Automotive Engineering I" can not be combined.

Below you will find excerpts from events related to this course:

Content

1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performance, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:

The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".
Organizational issues

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIlias/

Kann nicht mit der Veranstaltung [2113809] kombiniert werden.
Can not be combined with lecture [2113809].

Literature

Organizational issues

You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/PasswoerterIlias/, students from eucor universities send an e-mail to martina.kaiser@kit.edu

Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literature

Automotive Engineering I

Course: Automotive Engineering I [T-MACH-100092]

V 2113809, WS 22/23, 4 SWS, Language: English, Open in study portal

Lecture (V)
On-Site

Content

1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

Organizational issues

You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/PasswoerterIlias/, students from eucor universities send an e-mail to martina.kaiser@kit.edu

Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literature

3.14 Course: Automotive Engineering II [T-MACH-102117]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Type</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>Automotive Engineering II</td>
<td>2</td>
<td>Lecture /</td>
<td>Unrau</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>Automotive Engineering II</td>
<td>2</td>
<td>Lecture /</td>
<td>Gießler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Name</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Automotive Engineering II</td>
<td>Unrau, Gauterin</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Automotive Engineering II</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Automotive Engineering II</td>
<td>Unrau, Gauterin</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Written Examination

Duration: 90 minutes
Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Automotive Engineering II
2114835, SS 2023, 2 SWS, Language: German, Open in study portal

Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of designs

Learning Objectives:

The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Organizational issues

Kann nicht mit der Veranstaltung [2114855] kombiniert werden.
Can not be combined with lecture [2114855]
Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of the designs

Learning Objectives:
The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Literature

Elective literature:

3.15 Course: Automotive Vision [T-MACH-105218]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Written examination
Credits: 6
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lectures</th>
<th>Code</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>2138340</td>
<td>Automotive Vision</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lectures</th>
<th>Code</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>76-T-MACH-105218</td>
<td>Automotive Vision</td>
</tr>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>76-T-MACH-105218</td>
<td>Automotive Vision</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate

Type of Examination: written exam
Duration of Examination: 60 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Content

Lernziele (EN):

Machine perception and interpretation of the environment for the basis for the generation of intelligent behaviour. Especially visual perception opens the door to novel automotive applications. First driver assistance systems can already improve safety, comfort and efficiency in vehicles. Yet, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on ‘seeing vehicles’. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

Lehrinhalt (EN):

1. Driver assistance systems
2. Binocular vision
3. Feature point methods
4. Optical flow/tracking in images
5. Tracking and state estimation
6. Self-localization and mapping
7. Lane recognition
8. Behavior recognition

Nachweis: Written examination 60 minutes
Arbeitsaufwand (EN): 120 hours

Literature

Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3.16 Course: Basics in Measurement and Control Systems [T-MACH-104745]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2137301</td>
<td>Measurement and Control Systems</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Stiller</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2137302</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Stiller, Fischer, Hauser</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3137020</td>
<td>Measurement and Control Systems</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Stiller</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3137021</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Stiller, Fischer, Hauser</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-104745</td>
<td>Basis of Measurement and Control Systems</td>
<td>Stiller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-104745</td>
<td>Basis of Measurement and Control Systems</td>
<td>Stiller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☓ Cancelled

Competence Certificate
written exam
2,5 hours

Prerequisites
none

Below you will find excerpts from events related to this course:

Measurement and Control Systems
2137301, WS 22/23, 3 SWS, Language: German, Open in study portal

Lecture (V)
On-Site
Content
Lehrinhalt (EN):

1. Dynamic systems
2. Properties of important systems and modeling
3. Transfer characteristics and modeling
4. Controller design
5. Fundamentals of measurement
6. Estimation
7. Sensors
8. Introduction to digital measurement

Lernziele (EN):

Measurement and control of physical entities is a vital requirement in most technical applications. Such entities may comprise e.g. pressure, temperature, flow, rotational speed, power, voltage and electrical current, etc.. From a general perspective, the objective of measurement is to obtain information about the state of a system while control aims to influence the state of a system in a desired manner. This lecture provides an introduction to this field and general systems theory. The control part of the lecture presents classical linear control theory. The measurement part discusses electrical measurement of non-electrical entities.

Voraussetzungen (EN)

Fundamentals in physics and electrical engineering; ordinary linear differential equations; Laplace transform

Nachweis (EN)

written exam; duration 2,5 h; paper reference materials only (no calculator)

Arbeitsaufwand (EN):

210 hours

Literature

Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

• Measurement and Control Systems:

R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:

J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag

R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag

O. Föllinger: Regelungstechnik, Hüthig-Verlag

W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:

E. Schrüber: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992

W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999

Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Measurement and Control Systems
3137020, WS 22/23, 3 SWS, Language: English, Open in study portal

Lecture (V)
On-Site
Content
Lehrinhalt (EN):
1 Dynamic systems
2 Properties of important systems and modeling
3 Transfer characteristics and stability
4 Controller design
5 Fundamentals of measurement
6 Estimation
7 Sensors
8 Introduction to digital measurement

Lernziele (EN):
Measurement and control of physical entities is a vital requirement in most technical applications. Such entities may comprise e.g. pressure, temperature, flow, rotational speed, power, voltage and electrical current, etc. From a general perspective, the objective of measurement is to obtain information about the state of a system while control aims to influence the state of a system in a desired manner. This lecture provides an introduction to this field and general systems theory. The control part of the lecture presents classical linear control theory. The measurement part discusses electrical measurement of non-electrical entities.

Nachweis (EN): written exam; duration 2,5 h; paper reference materials only (no calculator)
Arbeitsaufwand (EN): 180 hours

Literature
- Measurement and Control Systems:
 R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

- Regelungstechnische Bücher:
 J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 O. Föllinger: Regelungstechnik, Hüthig-Verlag
 W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

- Messtechnische Bücher:
 E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
3.17 Course: Basics of Finite Elements [T-BGU-100047]

Responsible: Prof. Dr.-Ing. Peter Betsch

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

Type
- Oral examination

Credits
- 5

Grading scale
- Grade to a third

Recurrence
- Each term

Version
- 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6215901</td>
<td>Grundlagen Finite Elemente</td>
<td>2 SWS</td>
<td>Lecture / 🗣 Betsch</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>6215902</td>
<td>Übungen zu Grundlagen Finite Elemente</td>
<td>2 SWS</td>
<td>Practice / 🗣 Kinon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8243100047</td>
<td>Fundamentals of Finite Elements</td>
<td>Betsch</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>8243100047</td>
<td>Fundamentals of Finite Elements</td>
<td>Betsch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- oral exam, appr. 30 min.

Prerequisites
- none

Recommendation
- none

Annotation
- none
Course: Basics of Manufacturing Technology (MEI) [T-MACH-108747]

Responsible: Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Number</th>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3118092</td>
<td>Basics of Manufacturing Technology (MEI)</td>
<td>2 SWS</td>
<td>Lecture / 🗣 Schulze</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Number</th>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-108747</td>
<td>Basics of Manufacturing Technology (MEI)</td>
<td>Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-108747</td>
<td>Basics of Manufacturing Technology (MEI)</td>
<td>Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate

written exam (duration: 60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

V Basics of Manufacturing Technology (MEI)

3118092, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture (V)

On-Site
Content
The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects. Regard is paid to classic manufacturing processes as well as new developments like additive manufacturing processes.

The following topics will be covered:

• Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
• Forming (sheet-metal forming, massive forming)
• Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
• Joining
• Coating
• Heat treatment and surface treatment

Learning Outcomes:
The students ...

• are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
• have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
• are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
• have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
• are enabled to perform a selection of suitable manufacturing processes for given components.
• are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Start: 28.10.2022
Vorlesungstermine, Vorlesungsunterlagen und weitere Informationen werden über Ilias bekannt gegeben.
The lecture notes and further information on organisation of the lecture will be available on ILIAS.

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
3.19 Course: Basics of Technical Logistics I [T-MACH-109919]

Responsible: Dr.-Ing. Martin Mittwollen
Dr.-Ing. Jan Oellerich

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2117095</td>
<td>Basics of Technical Logistics I</td>
<td>Lecture / Practice (VÜ)</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-109001</td>
<td>Basics of Technical Logistics I</td>
<td>Lecture / Practice (VÜ)</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>Lecture / Practice (VÜ)</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>Lecture / Practice (VÜ)</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

none

Recommendation

Knowledge of the basics of technical mechanics preconditioned.

Below you will find excerpts from events related to this course:

Basics of Technical Logistics I

2117095, WS 22/23, 4 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)

Blended (On-Site/Online)

Content

- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

Students are able to:

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines
- Model real machines applying knowledge from lessons and calculate their dimensions.
Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder mündlichen Prüfung (nach §4 (2), 1 bzw. 2SPO).

The assessment consists of a written or oral exam according to Section 4 (2), 1 or 2 of the examination regulation.

Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.

Basics knowledge of technical mechanics is preconditioned.

Ergänzungsblätter, Präsentationen, Tafel.

Supplementary sheets, presentations, blackboard.

Präsenz: 48Std

Nacharbeit: 132Std

presence: 48h

rework: 132h

Literature

Empfehlungen in der Vorlesung / Recommendations during lessons
3.20 Course: Basics of Technical Logistics II [T-MACH-109920]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2117098</td>
<td>Basics of Technical Logistics II</td>
<td>4 SWS</td>
<td>Oellerich</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-109002</td>
<td>Basics of Technical Logistics II</td>
<td>Hochstein, Mittwollen, Oellerich</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-109920</td>
<td>Basics of Technical Logistics II</td>
<td>Hochstein, Mittwollen, Oellerich</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-109920-mPr</td>
<td>Basics of Technical Logistics II</td>
<td>Oellerich, Hochstein, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-109920-mPr</td>
<td>Basics of Technical Logistics II</td>
<td>Mittwollen, Oellerich, Hochstein</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge of the basics of technical mechanics and out of "Basic of Technical Logistics I" (T-MACH-109919) preconditioned.
Course: Behaviour Generation for Vehicles [T-MACH-105367]

Responsible: Maximilian Naumann
Moritz Werling

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2138336</td>
<td>Behaviour Generation for Vehicles</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Werling, Naumann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td>Stiller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td>Stiller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: ![Online](image), ![Blended (On-Site/Online)](image), ![On-Site](image), ![Cancelled](image)

Competence Certificate

written examination

60 min.

Simple calculators are allowed, programmable or graphical ones are prohibited.

Prerequisites

none

Below you will find excerpts from events related to this course:

Behaviour Generation for Vehicles

2138336, WS 22/23, 3 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Blended (On-Site/Online)

Content

Lernziele (EN):

Modern vehicle control systems like ABS or ESP transform the intention of the driver into a corresponding behaviour of the vehicle. This is achieved by compensating disturbances like a varying traction for example. Within the recent years, vehicles have been increasingly equipped with sensors that gather information about the environment (Radar, Lidar and Video for example). This enables the vehicles to generate an 'intelligent' behaviour and transform this behaviour into control signals for actors. Several so called 'driver assistance systems' have already achieved remarkable improvements as far as comfort, safety and efficiency are concerned. But nevertheless, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator ('the driver'). The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Information technology, control theory and kinematic aspects are treated to provide a broad overview over vehicle guidance. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

Nachweis: written exam

Arbeitsaufwand: 180 hours

Literature

Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3.22 Course: Bioelectric Signals [T-ETIT-101956]

Responsible: Dr.-Ing. Axel Loewe
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2305264</th>
<th>Bioelectric Signals</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Loewe</th>
</tr>
</thead>
</table>

Exams

| ST 2023 | 7305264 | Bioelectric Signals | | Loewe |
|---------|---------|---------------------| | |

Legend: 🖥 Online, 📁 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is a written examination with a duration of 90 minutes.

Prerequisites
none
3.23 Course: Biomedical Measurement Techniques I [T-ETIT-106492]

Responsible: Prof. Dr. Werner Nahm

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2305269 | Biomedical Measurement Techniques I | 2 SWS | Lecture / 🧩 | Nahm, Schaufelberger |

Exams

| WT 22/23 | 7305269 | Biomedical Measurement Techniques I | Nahm |

Prerequisites

T-ETIT-101928 - Biomedizinische Messtechnik I darf weder begonnen noch abgeschlossen sein.
3.24 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I [T-MACH-100966]

Responsible: Prof. Dr. Andreas Guber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2141864</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>2 SWS</td>
<td>Lecture / .DTOG</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td>Guber, Ahrens</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100966</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>2 SWS</td>
<td>Guber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100966</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>2 SWS</td>
<td>Guber</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (75 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I
2141864, WS 22/23, 2 SWS, Language: German, Open in study portal

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
3 COURSES Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II [T-MACH-100967]

3.25 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II [T-MACH-100967]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Start Date</th>
<th>Event Code</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture / Online</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td></td>
<td>2142883</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Guber, Ahrens</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Start Date</th>
<th>Event Code</th>
<th>Description</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td></td>
<td>76-T-MACH-100967</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td></td>
<td></td>
<td>Guber</td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td>76-T-MACH-100967</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td></td>
<td></td>
<td>Guber</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Written exam (75 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II

2142883, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content

Examples of use in Life-Sciences and biomedicine: Microfluidic Systems: LabCD, Protein Crystallisation
Microarrays
Tissue Engineering
Cell Chip Systems
Drug Delivery Systems
Micro reaction technology
Microfluidic Cells for FTIR-Spectroscopy
Microsystem Technology for Anesthesia, Intensive Care and Infusion
Analysis Systems of Person’s Breath
Neurobionics and Neuroprosthesis
Nano Surgery

Organizational issues

Zu jedem Vorlesungstermin werden via ILLIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
3.26 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [T-MACH-100968]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2142879</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>Lecture</td>
<td>2</td>
<td>Guber, Ahrens</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>Guber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>Guber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written exam (75 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III
2142879, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content
Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Organizational issues
Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
3.27 Course: Building Technology [T-BGU-100040]

Responsible: PD Dr.-Ing. Stephan Wirth
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type / Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6211910</td>
<td>Gebäudetechnik</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Wirth</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course</th>
<th>Type / Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8241100040</td>
<td>Building Technology</td>
<td>Wirth, Kotan</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>8241100040</td>
<td>Building Technology</td>
<td>Wirth, Kotan</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤖 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, appr. 20 min.

Prerequisites

none

Recommendation

none

Annotation

none
3.28 Course: BUS-Controls [T-MACH-102150]

Responsible: Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Competence Certificate
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108889 must have been passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-108889 - BUS-Controls - Advance must have been passed.

Recommendation
Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

The number of participants is limited. A registration in mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

Annotation
The students will get an overview of the theoretic and practical functioning of different bus systems.

After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system.

Hereunto the students program in the practical orientated lessons IFM-controllers using the programming environment CoDeSys.

Content:

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Literature:

Below you will find excerpts from events related to this course:

Control of Mobile Machines
2114080, SS 2023, 2 SWS, Language: German, Open in study portal
Lecture (V)
Blended (On-Site/Online)
Content

- Basics of sensors, controls and control architectures in mobile machines
- Basics and functionalities of data communication in mobile machines (CAN-Bus, PROFIBUS, Ethernet, ...)
- Legal aspects and requirements (SIL-level, ...)
- Requirements for sensors for use in mobile machines
- Introduction to machine learning methods and their application for the control of mobile machines
- Overview of current research and developments in the field of agricultural robotics
- Implementation of a specific task within the exercise lessons
- The results of the semester task will be summarized in a short report as a pre-requisite for the exam.

Learning objectives
The students learn the theoretical basics of data communication as well as the architecture of control systems in mobile machines. Furthermore, they will be able to identify influences and general conditions during usage and derive practical and legal requirements for sensors and control systems. The students will learn methods of machine learning for control tasks in mobile machines as well as their architecture and the handling of training data. After participating in the exercise, they will be able to implement, train and validate a control system for a specific task.

Recommendations
Basic knowledge of electrical engineering and computer science is recommended. Initial programming knowledge, preferably in Python, is required. The number of participants is limited as hardware will be provided for the exercise. Prior registration is required, details will be announced on the web pages of the Institute of Vehicle Systems Engineering / Department of Mobile Machinery. In case of high registration numbers exceeding the capacities, a selection among all interested persons will take place according to qualification.

regular attendance: 21 hours
total self-study: 92 hours

Literature
AN-Bus-Technik einfach, anschaulich und praxisnah dargestellt; Poing: Franzis Verlag, 2002.
3.29 Course: BUS-Controls - Advance [T-MACH-108889]

Responsible: Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Creation of control program

Prerequisites

none
3.30 Course: Business Administration for Engineers and IT Professionals [T-MACH-109933]

Responsible: Heinz-Peter Sebregondi
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>2 SWS</td>
<td>Seminar / On-Site</td>
<td>Sebregondi</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>2 SWS</td>
<td>Seminar / On-Site</td>
<td>Sebregondi</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>2 SWS</td>
<td>Seminar / On-Site</td>
<td>Sebregondi</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>2 SWS</td>
<td>Seminar / On-Site</td>
<td>Sebregondi</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Assessment of another type. Two presentations and six written compositions in team work. Grading: each composition 1/8 and each presentation 1/8.

Prerequisites

None

Below you will find excerpts from events related to this course:

Business Administration for Engineers and IT professionals

2122303, WS 22/23, 2 SWS, Language: German/English, [Open in study portal](#)

Seminar (S)
On-Site

Content

Learning content

- Competitive strategies, customer value, corporate cultures, lifecycles (technology, business, product), market leadership dynamics.
- Continuum commoditization/differentiation.
- Value chain, core and support functions.
- A company’s business portfolio.
- Profit margin sensitivity.
- Profitable and non-profitable products, customers and businesses.
- Drivers of a company’s value (McKinsey model), return on invested capital (ROIC), ROIC value driver tree.
- Strategic planning
- Capital investments, discounted cash flow analysis, quantifying of and dealing with risks, cost-estimating methodologies per planning stage.
- Sales, procurement/purchasing, negotiation strategies

Learning objectives

- better understand a company’s business, financials and their executives/decision makers
- use the language and metrics of senior executives and hold effective conversations with them
- more effectively sell a solution’s or project’s operational and financial value to executives and decision makers

Organizational issues

Teilnehmerzahl ist auf 12 Personen begrenzt. / Number of participants limited to 12 people.

Literature

Understanding a company’s business and financials made easy; Heinz-Peter Sebregondi (Amazon 2017)
Erfolgsfaktoren für die nachhaltige Business-Karriere: Die menschliche und die Business-Perspektive; Heinz-Peter Sebregondi (Amazon 2018)

KIT Department of Mechanical Engineering - Non-degree Studies (Domestic Degree at Another Higher Education Institution)
Module Handbook as of 14/02/2023
Business Administration for Engineers and IT professionals
Course: Business Administration for Engineers and IT Professionals [T-MACH-109933]

Content
Learning content

- Competitive strategies, customer value, corporate cultures, lifecycles (technology, business, product), market leadership dynamics.
- Continuum commoditization/differentiation.
- Value chain, core and support functions.
- A company's business portfolio.
- Profit margin sensitivity.
- Profitable and non-profitable products, customers and businesses.
- Drivers of a company’s value (McKinsey model), return on invested capital (ROIC), ROIC value driver tree.
- Strategic planning
- Capital investments, discounted cash flow analysis, quantifying of and dealing with risks, cost-estimating methodologies per planning stage.
- Sales, procurement/purchasing, negotiation strategies

Learning objectives

- better understand a company’s business, financials and their executives/decision makers
- use the language and metrics of senior executives and hold effective conversations with them
- more effectively sell a solution’s or project’s operational and financial value to executives and decision makers

Organizational issues
Teilnehmerzahl ist begrenzt. / Number of participants is limited.

Literature
Understanding a company's business and financials made easy; Heinz-Peter Sebregondi (Amazon 2017)
Erfolgsfaktoren für die nachhalige Business-Karriere: Die menschliche und die Business-Perspektive; Heinz-Peter Sebregondi (Amazon 2018)
3.31 Course: CAD-NX Training Course [T-MACH-102187]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td></td>
<td>pass/fail</td>
<td>Each term</td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td>pass/fail</td>
<td>Each term</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗓 On-Site
- 🗿 Cancelled

Competence Certificate

Practical verification as academic achievement by working on a design task on the CAD computer, duration: 60 min.

Prerequisites

None

Recommendation

Dealing with technical drawings is required.

Annotation

For the practical course compulsory attendance exists.

Below you will find excerpts from events related to this course:

CAD-NX training course

2123357, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content

- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Students are able to:

- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

Organizational issues

Das Praktikum kann entweder vorlesungsbegleitend oder als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit absolviert werden. Weitere Informationen siehe ILIAS.

Literature

Praktikumsskript
CAD-NX training course
2123357, SS 2023, 2 SWS, Language: German/English, Open in study portal

Content

- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Students are able to:

- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

Organizational issues
Das Praktikum wird zum einen vorlesungsbegleitend sowie zum anderen als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit angeboten. Weitere Informationen siehe ILIAS.

Literature
Praktikumsskript
Course: CAE-Workshop [T-MACH-105212]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Code</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>CAE-Workshop</td>
<td>2147175</td>
<td>3 SWS</td>
<td>Block / On-Site</td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>CAE-Workshop</td>
<td>2147175</td>
<td>3 SWS</td>
<td>Block / On-Site</td>
<td>Albers, Düser, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105212</td>
<td>CAE-Workshop</td>
<td></td>
<td></td>
<td>Albers</td>
</tr>
</tbody>
</table>

Competence Certificate

Written test (with practical part on the computer), duration 60 min.

Prerequisites

None

Annotation

For a successful participation in the examination a continuous attendance at the workshop days is necessary. Limited number of participants. Selection is made according to a selection procedure.

Below you will find excerpts from events related to this course:

Content

Content:

- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:

- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).
- evaluate and to question the results of a simulation
- identify and improve the mistakes of a simulation or optimization.

Exam: 1h Regularly written

Regular attendance: 31.5 h
Self-study: 88.5 h

Organizational issues

Wir empfehlen den Workshop ab dem 5. Semester.

Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.

Anwesenheitspflicht
CAE-Workshop

2147175, SS 2023, 3 SWS, Language: German, Open in study portal

Content

Content:

- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:

- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Exam: 1h Regularly written
Regular attendance: 31.5 h
Self-study: 88.5 h

Organizational issues

Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.

Anwesenheitspflicht

Literature

Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.
Course: CATIA Advanced [T-MACH-105312]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>CATIA Advanced</td>
<td>3 SWS</td>
<td>Project (P / 💻)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Assessment of another type. Design project and written documentation in team work and final presentation. Grading: Project work 3/5, documentation 1/5 and presentation 1/5.

Prerequisites
none

Below you will find excerpts from events related to this course:

Advanced CATIA
2123380, WS 22/23, 3 SWS, Language: German/English, [Open in study portal](#)
Project (PRO)
Blended (On-Site/Online)

Content
In this design project, students develop a product in small groups according to an agile approach using the 3DEXPERIENCE platform (CATIA V6) from Dassault Systèmes. The extended functionalities of the platform are addressed and model-based work is carried out.
The development process is traced from the idea to the finished model. The main focus is on independent solution finding, teamwork, function fulfillment, production and design. The project results are presented at the end of the semester.

Organizational issues
Siehe ILIAS zur Lehrveranstaltung

Literature
Keine / None

CATIA advanced
2123380, SS 2023, 3 SWS, Language: German/English, [Open in study portal](#)
Project (PRO)
Blended (On-Site/Online)

Content
In this design project, students develop a product in small groups according to an agile approach using the 3DEXPERIENCE platform (CATIA V6) from Dassault Systèmes. The extended functionalities of the platform are addressed and model-based work is carried out.
The development process is traced from the idea to the finished model. The main focus is on independent solution finding, teamwork, function fulfillment, production and design. The project results are presented at the end of the semester.

Organizational issues
Siehe ILIAS-Kurs.
Literature
Keine / None
3.34 Course: CATIA CAD Training Course [T-MACH-102185]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>CATIA CAD training course</td>
<td>2 SWS</td>
<td>Practical course / 🌐</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2023</td>
<td>CATIA CAD training course</td>
<td>2 SWS</td>
<td>Practical course / 🌐</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>CATIA CAD Training Course</td>
<td>2 SWS</td>
<td>Practical course / 🌐</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2023</td>
<td>CATIA CAD Training Course</td>
<td>2 SWS</td>
<td>Practical course / 🌐</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🌐 Blended (On-Site/Online), 🌐 On-Site, ❌ Cancelled

Competence Certificate
Practical examination on CAD computer, duration: 60 min.

Prerequisites
None

Recommendation
Dealing with technical drawings is required.

Annotation
For the practical course attendance is compulsory.

Below you will find excerpts from events related to this course:

CATIA CAD training course
2123358, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
- Basics of CATIA such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

Students are able to:
- create their own 3D geometric models in the CAD system CATIA and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of CATIA to automate the creation of geometry and thus to ensure the reusability of the models.

Organizational issues
Das Praktikum kann vorlesungsbegleitend absolviert werden oder als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit. Weitere Informationen siehe ILIAS.
CATIA CAD training course
2123358, SS 2023, 2 SWS, Language: German/English, Open in study portal

Practical course (P)
Blended (On-Site/Online)

Content

- Basics of CATIA such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

Students are able to:

- create their own 3D geometric models in the CAD system CATIA and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of CATIA to automate the creation of geometry and thus to ensure the reusability of the models.

Organizational issues
Das Praktikum wird einerseits vorlesungsbegleitend sowie andererseits als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit angeboten. Weitere Informationen siehe ILIAS.

Literature
Praktikumskript
3.35 Course: Ceramic Matrix Composites [T-MACH-106722]

Responsible: Prof. Dr.-Ing. Dietmar Koch
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam
3.36 Course: CFD for Power Engineering [T-MACH-105407]

Responsible: Dr. Ivan Otic
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2130910</td>
<td>CFD for Power Engineering</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Otic</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate

Oral exam, 30 min

Prerequisites

none

Below you will find excerpts from events related to this course:

CFD for Power Engineering

2130910, SS 2023, 2 SWS, Language: English, [Open in study portal]

Lecture (V)

Blended (On-Site/Online)
Content

Contents:
The course is aimed at giving the fundamental of Computational Fluid Dynamics (CFD) for energy technologies. Starting from the basic physical phenomena equations an overview on computational methods and turbulence modeling is given. The course consists of both, a theoretical and a numerical component. The former will deal with the derivations and properties of the methods and models for CFD. The numerical part will make use of open source CFD computer program OpenFOAM to give a "hands on" insight into the simulation of turbulent flows. After completing the course you should be able to establish a connection between theory and CFD modeling and simulation for energy applications.

Tentative Course Outline:
The weekly coverage might change as it depends on the progress of the class.

Content
1 Introduction: What is Computational Fluid Dynamics?
2 Governing Equations
3 Numerical Methods: Introduction
4 Numerical Methods: Finite Volume
5 Numerical Methods: Solution of ordinary differential equations
6 Numerical Methods: Convergence and numerical stability
7 Turbulence and Turbulence Modelling
8 Reynolds Averaged Navier-Stokes Simulation Approach
9 Heat Transfer

CFD Project:
- Part of this class is performing CFD simulations of turbulent heat and mass transfer using open-source CFD software OpenFOAM
- After CFD analysis is completed students have to write a technical report
- Projects are to be performed individually or in teams of two but every student writes his own report
- The CFD analysis technical report is part of the final examination.

Objectives:
After completing the course students:
- are able to understand fundamentals of non-linear partial differential equations
- will get working knowledge of computational techniques that can be used for solving engineering heat and mass transfer problems
- are able to understand fundamentals of statistical fluid mechanics and to derive RANS transport equations
- have learned how to computationally solve turbulent heat and mass transfer problems using OpenFOAM software
- are able to present their results in form of technical report.

Literature
Vorlesungsskript
Projektskript und Unterlagen
3.37 Course: CFD-Lab Using OpenFOAM [T-MACH-105313]

 Responsible: Dr.-Ing. Rainer Koch
 Organisation: KIT Department of Mechanical Engineering
 Institute of Thermal Turbomachinery
 Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2169459</td>
<td>CFD-Lab using OpenFOAM</td>
<td>3 SWS</td>
<td>Practical course / Koch</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105313</td>
<td>CFD-Lab Using Open Foam</td>
<td></td>
<td>Koch</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Successful solution of problems

Prerequisites
none

Below you will find excerpts from events related to this course:

CFD-Lab using OpenFOAM
2169459, WS 22/23, 3 SWS, Language: German, Open in study portal

Practical course (P)
On-Site

Content

- Successful solution of problems
- A CD containing the course material will be handed out to the students
- Introduction to using Open Foam
- Grid generation
- Boundary conditions
- Numerical errors
- Discretization schemes
- Turbulence models
- Two phase flow - spray
- Two Phase flow - Volume of Fluid method

The students are able to:

- use OpenFOAM
- generate simple grids or import grids into OpenFOAM
- choose and define appropriate boundary conditions
- estimate numerical errors and assess them
- judge turbulence models and select an appropriate model
- simulate 2-phase flows using suitable models

Organizational issues

Literature

- Dokumentation zu Open Foam
- www.open foam.com/docs
3.38 Course: Chemical, Physical and Material Scientific Aspects of Polymers in Microsystem Technologies [T-MACH-102169]

Responsible: Dr.-Ing. Matthias Worgull
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment will consist of an oral exam (30 min) (following §4 (2), 2 of the examination regulation).

Prerequisites
one none
3.39 Course: Coal Fired Power Plants [T-MACH-105410]

Responsible: Hon.-Prof. Dr. Thomas Schulenberg
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination, Duration approximately 30 Minutes
no tools or reference materials may be used during the exam

Prerequisites
none
3.40 Course: Cognitive Automobiles - Laboratory [T-MACH-105378]

Responsible:
- Bernd Kitt
- Dr. Martin Lauer
- Prof. Dr.-Ing. Christoph Stiller

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Oral examination
Credits
6
Grading scale
Grade to a third
Recurrence
Each summer term
Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2138341</td>
<td>3 SWS</td>
<td>Oral exam</td>
<td>Each summer term</td>
<td>Stiller, Lauer, Le Large</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 76-T-MACH-105378</td>
<td>3 SWS</td>
<td>Oral exam</td>
<td>Each summer term</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam

30 minutes

Prerequisites

none

Annotation
The number of participants is limited. A registration is mandatory, the details are announced on the webpages of the institute of measurement and control systems (mrt). In case of too many interested students a subset will be selected (see website).

Below you will find excerpts from events related to this course:

V Cognitive Automobiles - Laboratory
2138341, SS 2023, 3 SWS, Language: German, Open in study portal

Content

Lehrinhalt (EN):
1. Lane recognition
2. Object detection
3. Vehicle lateral control
4. Vehicle longitudinal control
5. Collision avoidance

Lernziele (EN):
The laboratory accompanies the lectures "Automotive Vision" and "Behaviour Generation for Vehicles". It will provide the opportunity of turning theoretical skills taught in the lecture to practice. The laboratory is divided into four groups with a maximum number of five students in each group. During the lessons you will be supervised by scientific staff. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on "seeing vehicles". Each group is given the task to extract lane markings from video images and generate a suitable trajectory which the vehicle should follow. Apart from technical aspects in a highly innovative field of automotive technology, participants have the opportunity of gathering important qualifications as i.e. implementation skills, acquisition and comprehension of suitable literature, project and team work.

Nachweis: Colloquia, final race

Arbeitsaufwand: 120 hours
Literature
Dokumentation zur SW und HW werden als pdf bereitgestellt.
3.41 Course: Combined Cycle Power Plants [T-MACH-105444]

Responsible: Hon.-Prof. Dr. Thomas Schulenberg
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Schulenberg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Schulenberg</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Schulenberg</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam ca. 30 min

Prerequisites
none

Recommendation
We recommend to combine the lecture with the Simulator Exercises for Combined Cycle Power Plants (T-MACH-105445).

Below you will find excerpts from events related to this course:

Content
The training objective of the course is the qualification for a research-related professional activity in power plant engineering. The participants can name the most important components of the combined cycle power plant and describe their function. They can design or modify combined cycle power plants independently and creatively. They have acquired a broad knowledge of this power plant technology, including specific knowledge of gas turbine design, steam turbine design and boiler design. On this basis, they can describe and analyze the specific behavior of the power plant components as well as the entire power plant in the grid. Participants in the lecture have a trained analytical thinking and judgment in power plant design.

Layout of a combined cycle power plant, design and operation of gas turbines, of the heat recovery steam generator, of the feedwater system and cooling systems. Design and operation of steam turbines, of the generator and its electrical systems. System response to challenging grids, protection systems, water make-up and water chemistry. Design concepts of different power plant manufacturers, innovative power plant concepts.

Literature
Die gezeigten Vorlesungsfolien und weiteres Unterrichtsmaterial werden bereitgestellt.
Ferner empfohlen:
3.42 Course: Combustion Engines I [T-MACH-102194]

Responsible: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2133113 | CO2-neutral combustion engines and their fuels I | 4 SWS | Lecture / Practice (/) | Koch |

Exams

| WT 22/23 | 76-T-MACH-102194 | CO2-neutral combustion engines and their fuels I | Koch, Kubach |
| ST 2023 | 76-T-MACH-102194 | CO2-neutral combustion engines and their fuels I | Koch, Kubach |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

CO2-neutral combustion engines and their fuels I
2133113, WS 22/23, 4 SWS, Language: German, [Open in study portal]

Content
Introduction, Presentation of IFKM
Working Principle
Characteristic Parameters
Engine Parts
Drive Train
Fuels
Gasoline Engines
Diesel Engines
Hydrogen Engines
Exhaust Gas Emissions

Organizational issues
Übungstermine Donnerstags nach Bekanntgabe in der Vorlesung
3.43 Course: Combustion Engines II [T-MACH-104609]

Responsible: Dr.-Ing. Rainer Koch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2134151</td>
<td>CO2-neutral combustion engines and their fuels II</td>
<td>3</td>
<td>Lecture / Practice (/)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-104609</td>
<td>Combustion Engines, Hydrogen Engines and CO2 neutral Fuels II</td>
<td>3</td>
<td>Lecture / Practice (/)</td>
<td>Kubach, Koch</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-104609</td>
<td>Combustion Engines, Hydrogen Engines and CO2 neutral Fuels II</td>
<td>3</td>
<td>Lecture / Practice (/)</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral examination, duration: 25 minutes, no auxiliary means

Prerequisites
none

Recommendation
Fundamentals of Combustion Engines I helpful

Below you will find excerpts from events related to this course:
Course: Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies [T-MACH-105535]

Responsible: Prof. Dr.-Ing. Frank Henning
Organisation: KIT Department of Mechanical Engineering

Lightweight Design
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2114053</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105535</td>
<td></td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>Henning</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105535</td>
<td></td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⏰ On-Site, ❌ Cancelled

Competence Certificate
written exam 90 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Composite Manufacturing – Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies

2114053, SS 2023, 2 SWS, Language: German, Open in study portal
Content

Physical connections of fiber reinforcement

Use and examples
- Automotive construction
- Transport
- Energy and construction
- Sport and recreation

Resins
- Thermoplastics
- Duromeres

Mechanisms of reinforcements
- Glass fibers
- Carbon fibers
- Aramid fibers
- Natural fibers

Semi-finished products - textiles

Process technologies - prepregs

Recycling of composites

Aim of this lecture:
Students know different polymer resin materials and fiber materials and can deduce their character and use. They understand the reinforcing effect of fibers in a matrix surrounding as well as the tasks of the single components in a compound. They know about the influence of the length of fibers, their mechanical characters and performance in a polymer matrix compound.

Student know the important industrial production processes for continuous and discontinuous reinforced polymer matrix compounds.

Organizational issues
Die Vorlesung wird online stattfinden. Wenn die Corona-Verordnung und die Infektionslage es zulässt evtl. auch in Präsenz. Dies entscheidet sich zu Beginn des Semesters.

The lecture will be online. If the Corona regulations and the infection situation permit, possibly also in attendance. This will be decided at the beginning of the semester.

Literature

Literatur Leichtbau II

[1-7]

3.45 Course: Computational Dynamics [T-MACH-105349]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2162246</td>
<td>Computational Dynamics</td>
<td>2 SWS</td>
<td>Lecture / Online Proppe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2162246</td>
<td>Computational Dynamics</td>
<td>2 SWS</td>
<td>Lecture / On-Site Proppe</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105349</td>
<td>Computational Dynamics</td>
<td></td>
<td>Proppe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105349</td>
<td>Computational Dynamics</td>
<td></td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate

oral exam, duration approx. 20 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Computational Dynamics

2162246, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content

1. Fundamentals of elasto-kinetics (Equations of motion, principle of Hamilton and principle of Hellinger-Reissner)
2. Differential equations for the vibration of structure elements (bars, plates)
3. Numerical solutions of the equations of motion
4. Numerical algorithms
5. Stability analyses

Literature

1. Ein Vorlesungsskript wird bereitgestellt!

Computational Dynamics

2162246, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content

1. Fundamentals of elasto-kinetics (Equations of motion, principle of Hamilton and principle of Hellinger-Reissner)
2. Differential equations for the vibration of structure elements (bars, plates)
3. Numerical solutions of the equations of motion
4. Numerical algorithms
5. Stability analyses

Literature

1. Ein Vorlesungsskript wird bereitgestellt!
3.46 Course: Computational Homogenization on Digital Image Data [T-MACH-109302]

Responsible: Jun.-Prof. Dr. Matti Schneider
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚡ On-Site, ✗ Cancelled

Competence Certificate
oral exam, 30 min

Prerequisites
nein

Below you will find excerpts from events related to this course:

Computational homogenization on digital image data (Lecture)
2161123, WS 22/23, 2 SWS, Language: English, Open in study portal

Content

- Basic equations for computing effective elastic material properties
- Moulinec-Suquet's FFT-based computational homogenization method
- Schemes for treating highly contrasted/porous/defected media
- Treating non-linear and time dependent mechanical problems

Literature

3.47 Course: Computational Intelligence [T-MACH-105314]

Responsible: apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type

<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exam

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Computational Intelligence</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Mikut, Reischl</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>Mikut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>Mikut</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Written exam (Duration: 1h)

Prerequisites

none

Below you will find excerpts from events related to this course:

Computational Intelligence
2105016, WS 22/23, 2 SWS, Language: German, **Open in study portal**
Lecture (V) Blended (On-Site/Online)

Content

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Content:

- Terms and definitions Computational Intelligence, application fields and examples
- Fuzzy logic: fuzzy sets; fuzzification and membership functions; inference: T-norms and -conorms, operators, aggregation, activation, accumulation; defuzzification methods, structures for fuzzy control
- Artificial Neural Nets: biology of neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
- Evolutionary Algorithms: Basic algorithm, Genetic Algorithms and Evolution Strategies, Evolutionary Algorithm GLEAM, integration of local search strategies, memetic algorithms, application examples
- deep learning

Learning objectives:

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Literature

Kroll, A.: Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013

Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet)
3.48 Course: Computational Mechanics I [T-MACH-105351]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105351</td>
<td>Computational Mechanics I</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Schneider, Langhoff</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105351</td>
<td>Computational Mechanics I</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Schneider, Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, 30 min.

Prerequisites
none

Recommendation
The contents of the lectures "Mathematical Methods in Strength of Materials" and "Introduction to the Finite Element Method" are assumed to be known
This course is geared to MSc students.

Below you will find excerpts from events related to this course:

Literature

3.49 Course: Computational Mechanics II [T-MACH-105352]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Language</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2162296</td>
<td>German</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Each summer term</td>
<td>Schneider, Böhlke, Langhoff</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2162297</td>
<td>German</td>
<td>Practice (Ü)</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td></td>
<td>Krause, Keursten, Böhlke, Schneider</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Language</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105352</td>
<td>German</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td></td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, 30 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

V Computational Mechanics II
2162296, SS 2023, 2 SWS, Language: German, [Open in study portal]

Content
overview quasistatic nonlinear phenomena; numerics of nonlinear systems; balance equations of geometrically nonlinear solid mechanics; infinitesimal plasticity; linear and geometrically nonlinear thermoelasticity

Organizational issues
Nähere Informationen zu Zeit und Ort der Vorlesung im SS 2023: siehe Homepage des ITM-KM

Literature

V Tutorial Computational Mechanics II
2162297, SS 2023, 2 SWS, Language: German, [Open in study portal]

Content
see lecture "Computational Mechanics II"

Literature
siehe Vorlesung "Rechnerunterstützte Mechanik II"
3.50 Course: Computational Vehicle Dynamics [T-MACH-105350]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Oral examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Hours</th>
<th>Type</th>
<th>Language</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2162256</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>German</td>
<td>Online</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2162256</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>German</td>
<td>Online</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Hours</th>
<th>Type</th>
<th>Language</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105350</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>German</td>
<td>Online</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, 30 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Computational Vehicle Dynamics
2162256, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
Online

Content

This course serves as an introduction into the computational modelling and simulation of technical system road/vehicle. A method based perspective is taken which allows for a unified treatment of various kinds of vehicles. The vehicle model is obtained by dividing the system into functional subsystems and defining interfaces between these subsystems.

In the first part of the course, vehicle models will be developed based on models of the suspensions, the road, and the contact forces between road and vehicle. The focus of the second part of the course is on computational methods for linear and nonlinear models of vehicle systems. The third part of the course discusses design criteria for stability, safety and ride comfort. Multibody dynamics simulations will be carried out using Matlab/Simulink.

1. Introduction
2. Models of load bearing systems
3. Contact forces between wheels and roadway
4. Simulation of roadways
5. Vehicle models
6. Methods of calculation
7. Performance indicators

Literature

Content
This course serves as an introduction into the computational modelling and simulation of technical system road/vehicle. A method based perspective is taken which allows for a unified treatment of various kinds of vehicles. The vehicle model is obtained by dividing the system into functional subsystems and defining interfaces between these subsystems.

In the first part of the course, vehicle models will be developed based on models of the suspensions, the road, and the contact forces between road and vehicle. The focus of the second part of the course is on computational methods for linear and non-linear models of vehicle systems. The third part of the course discusses design criteria for stability, safety and ride comfort. Multibody dynamics simulations will be carried out using Matlab/Simulink.

1. Introduction
2. Models of load bearing systems
3. Contact forces between wheels and roadway
4. Simulation of roadways
5. Vehicle models
6. Methods of calculation
7. Performance indicators

Literature
3.51 Course: Computer Science for Engineers [T-MACH-105205]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Written examination

Credits
6

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Lecture / Practice (VÜ)</th>
<th>Credits</th>
<th>Weekly Teaching Hours (SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2121390</td>
<td>Lecture / Practice (VÜ)</td>
<td>4</td>
<td>4 SWS</td>
</tr>
<tr>
<td>ST 2023</td>
<td>3121034</td>
<td>Lecture / Practice (VÜ)</td>
<td>4</td>
<td>4 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Grade to a third</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105205</td>
<td>Computer Science for Engineers - German</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam [180 min]

Prerequisites

Computer Science for Engineers, passed

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105206 - Computer Science for Engineers, Prerequisite must have been passed.

Below you will find excerpts from events related to this course:

Computer Science for Engineers

2121390, SS 2023, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
Blended (On-Site/Online)

Content

- Basics: Information representation- and processing, terms and definitions: alphabet, data, signals, information, numeral systems, propositional logic and Boolean algebra, computer architectures, programming paradigms.
- Object Orientation: Definition and important characteristics of object orientation, Object-oriented modeling with UML.
- Data Structures: Definition, properties and application of graphs, trees, linked lists, queues and stacks.
- Algorithms: Characteristics of algorithms, complexity analysis, design methods, important examples.
- Database management systems: Relational data model, relational algebra, declarative language SQL.

Literature

- „Grundkurs Programmieren in Java“ Carl Hanser Verlag GmbH & CO. KG; Auflage 6, ISBN 10: 3446426639
Content

Basics: Information representation- and processing, terms and definitions: alphabet, data, signals, information, numeral systems, propositional logic and Boolean algebra, computer architectures, programming paradigms.

Object Orientation: Definition and important characteristics of object orientation, Object-oriented modeling with UML.

Data Structures: Definition, properties and application of graphs, trees, linked lists, queues and stacks.

Algorithms: Characteristics of algorithms, complexity analysis, design methods, important examples.

Database management systems: Relational data model, relational algebra, declarative language SQL.

Literature

3.52 Course: Computer Science for Engineers, Prerequisite [T-MACH-105206]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
- Completed coursework (practical)

Credits
- 0

Grading scale
- pass/fail

Recurrence
- Each summer term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Course Details</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2121392</td>
<td>Computer Lab for Computer Science in Mechanical Engineering</td>
<td>2 SWS</td>
<td>/ 🖥</td>
<td>Each summer term</td>
<td>Ovtcharova, Elstermann, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>3121036</td>
<td>Computer Science for Engineers Lab Course</td>
<td>2 SWS</td>
<td>/ 🖥</td>
<td>Each summer term</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Programming assignments, that are to be implemented at the computer, are given every two weeks. The students are supervised by tutors while they work on the assignments. Therefore online tests must be solved by the students to assess the understanding of the tasks and the lecture material. All assignments have to be handed in, before they can take part in the exam.

Prerequisites
none

Below you will find excerpts from events related to this course:

Computer Lab for Computer Science in Mechanical Engineering
2121392, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content
JAVA programming assignments, that are to be implemented at the computer, are given every two weeks. The students are supervised by tutors while they work on the assignments. Therefore online tests must be solved by the students to assess the understanding of the tasks and the lecture material. All assignments have to be handed in, before they can take part in the exam.

Organizational issues
Wenn Poolräume nutzbar, dann Poolräume

Literature
Übungsblätter / exercise sheets

Computer Science for Engineers Lab Course
3121036, SS 2023, 2 SWS, Language: English, [Open in study portal](#)

Content
JAVA programming assignments, that are to be implemented at the computer, are given every two weeks. The students are supervised by tutors while they work on the assignments. Therefore online tests must be solved by the students to assess the understanding of the tasks and the lecture material. All assignments have to be handed in, before they can take part in the exam.

Organizational issues
Wenn Präsenz möglich, dann ID-Raum Nutzung

Literature
Exercise sheets / Übungsblätter
3.53 Course: Computerized Multibody Dynamics [T-MACH-105384]

Responsible: Felix Boy
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

Events					
WT 22/23	2162216	Computerized Multibody Dynamics	2 SWS	Lecture	Boy

Exams

Events				
WT 22/23	7600035	Computerized Multibody Dynamics		Boy
WT 22/23	76-T-MACH-105384	Computerized Multibody Dynamics		Boy

Competence Certificate

Oral exam, 30 min.

Prerequisites

none

Recommendation

Knowledge of EM III/IV

Below you will find excerpts from events related to this course:

Computerized Multibody Dynamics

2162216, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)

Literature

AUTOLEV: User Manual
3 COURSES

Course: Constitution and Properties of Protective Coatings [T-MACH-105150]

3.54 Course: Constitution and Properties of Protective Coatings [T-MACH-105150]

Responsible: Prof. Sven Ulrich
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Constitution and Properties of Protective Coatings</td>
<td>2 SWS</td>
<td>Ulrich</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Constitution and Properties of Protective Coatings</td>
<td>Ulrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>Constitution and Properties of Protective Coatings</td>
<td>Ulrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral examination (about 30 min)
no tools or reference materials

Prerequisites

none

Below you will find excerpts from events related to this course:

Constitution and Properties of Protective Coatings

2177601, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

oral examination (about 30 min); no tools or reference materials
Teaching Content:
introduction and overview
concepts of surface modification
coating concepts
coating materials
methods of surface modification
coating methods
characterization methods
state of the art of industrial coating of tools and components
new developments of coating technology
regular attendance: 22 hours
self-study: 98 hours
Transfer of the basic knowledge of surface engineering, of the relations between constitution, properties and performance, of the manifold methods of modification, coating and characterization of surfaces.
Recommendations: none
Organizational issues
Falls die Vorlesung online stattfinden muss, bitte um Anmeldung unter sven.ulrich@kit.edu bis zum 24.10.22.
Den entsprechenden MS Teams Link erhalten Sie dann per E-Mail am 26.10.22.

Literature

Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
3 COURSES

Course: Constitution and Properties of Wearresistant Materials [T-MACH-102141]

Responsible: Prof. Sven Ulrich
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Oral examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each summer term

Version
3

Events

ST 2023 2194643 Constitution and Properties of Wear resistant materials 2 SWS Lecture / 🗣 Ulrich

Exams

WT 22/23 76-T-MACH-102141 Constitution and Properties of Wearresistant Materials Ulrich

ST 2023 76-T-MACH-102141 Constitution and Properties of Wearresistant Materials Ulrich

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral examination (about 30 min)

no tools or reference materials

Prerequisites
none

Below you will find excerpts from events related to this course:

Constitution and Properties of Wear resistant materials
2194643, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site
Content
The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Teaching Content:
introduction
materials and wear
unalloyed and alloyed tool steels
high speed steels
stellites and hard alloys
hard materials
hard metals
ceramic tool materials
superhard materials
new developments
regular attendance: 22 hours
self-study: 98 hours
Basic understanding of constitution of wear-resistant materials, of the relations between constitution, properties and performance, of principles of increasing of hardness and toughness of materials as well as of the characteristics of the various groups of wear-resistant materials.
Recommendations: none

Organizational issues
Die Blockveranstaltung findet in folgendem Zeitraum statt:
17.04.-19.04.2023: jeweils von 8:00-16:00 Uhr;
Ort: KIT-CN, Geb. 681, Raum 214
Anmeldung verbindlich bis zum 13.04.2023 unter sven.ulrich@kit.edu.
Nach der Anmeldung wird Ihnen im Falle einer Online-Veranstaltung der Link zur Vorlesung per E-Mail am 14.04.2023 mitgeteilt.

Literature
Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995
Kopien der Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
3.56 Course: Contact Mechanics [T-MACH-105786]

Responsible: Prof. Dr. Christian Greiner
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type Oral examination
Credits 4
Grading scale Grade to a third
Recurrence Each summer term
Version 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Course: Contact Mechanics
2181220, SS 2023, 2 SWS, Language: German, Open in study portal

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam ca. 30 minutes

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

Contact Mechanics
2181220, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content
The course introduces contact mechanics of smooth and rough surface for non-adhesive and adhesive interfacial conditions. There will a computer lab held in parallel to the lecture that teaches numerical approaches to contact mechanical problems.

1. Introduction: contact area and stiffness
2. Theory of the elastic half-space
3. Contact of nonadhesive spheres: Hertz theory
4. Physics and chemistry of adhesive interactions at interfaces
5. Contact of adhesive spheres: theories of Johnson-Kendall-Roberts, Derjaguin-Muller-Toporov and Maugis-Dugdale
6. Surface roughness: topography, power spectral density, structure of real surfaces, fractal surfaces as a model, metrology
8. Contact of adhesive rough surface: theories of Fuller-Tabor, Persson and recent numerical results
9. Contact of rough spheres: theory of Greenwood-Tripp and recent numerical results
10. Lateral and sliding contact: theories of Cattaneo-Mindlin, Savkoor, Persson
11. Applications of contact mechanics

The student
- knows models for smooth and rough surfaces under non-adhesive and adhesive conditions and understands their strengths and limits
- knows fundamental scaling relations for the functional dependency between contact area, stiffness and normal force
- can apply numerical methods to study questions from materials science

preliminary knowledge in mathematics, physics and materials science recommended

regular attendance: 22.5 hours
self-study: 97.5 hours
oral exam ca. 30 minutes

Literature
K. L. Johnson, Contact Mechanics (Cambridge University Press, 1985)
D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer-Verlag, 2000)
Course: Continuum Mechanics of Solids and Fluids [T-MACH-110377]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161252</td>
<td>Continuum mechanics of solids and fluids</td>
<td>2 SWS Lecture / 🧩</td>
<td>Böhlke, Frohnapfel</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-110377</td>
<td>Continuum mechanics of solids and fluids</td>
<td>Böhlke, Frohnapfel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (90 min). Additives as announced

Prerequisites

passing the corresponding "Tutorial Continuum Mechanics of Solids and Fluids" (T-MACH-110333)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110333 - Tutorial Continuum Mechanics of Solids and Fluids must have been passed.

Annotation

Due to capacity reasons it is possible that not all students of this course can be admitted to the computer tutorials. Students of the bachelor's degree program in mechanical engineering who have chosen the Major Field Continuum Mechanics (SP-Nr 13) and students of the bachelor's degree program in material science and material technology will be admitted to the computer tutorials in any case.

If additional places are available in the computer tutorials for this course, these will be allocated according to the BSc average grade.

Below you will find excerpts from events related to this course:

Continuum mechanics of solids and fluids

2161252, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

- introduction into tensor calculus
- kinematics
- balance laws of mechanics and thermodynamics
- material theory of solids and fluids
- field equations for solids and fluids
- thermomechanical couplings
- dimensional analysis

Literature

Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
3.58 Course: Control Technology [T-MACH-105185]

Responsible: Hon.-Prof. Dr. Christoph Gönnheimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Event Title</th>
<th>Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2150683</td>
<td>Control Technology</td>
<td>Lecture / Gönnheimer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Event Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105185</td>
<td>Control Technology</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105185</td>
<td>Control Technology</td>
<td>Gönnheimer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔁 On-Site, ✗ Cancelled

Competence Certificate

Written Exam (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Control Technology

2150683, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site
Content
The lecture control technology gives an integral overview of available control components within the field of industrial production systems. The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states. The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems. The lecture is very practice-oriented and illustrated with numerous examples from different branches. The following topics will be covered:

- Signal processing
- Control peripherals
- Programmable logic controls
- Numerical controls
- Controls for industrial robots
- Distributed control systems
- Field bus
- Trends in the area of control technology

Learning Outcomes:
The students …

- are able to name the electrical controls which occur in the industrial environment and explain their function.
- can explain fundamental methods of signal processing. This involves in particular several coding methods, error protection methods and analog to digital conversion.
- are able to choose and to dimension control components, including sensors and actors, for an industrial application, particularly in the field of plant engineering and machine tools. Thereby, they can consider both, technical and economical issues.
- can describe the approach for projecting and writing software programs for a programmable logic control named Simatic S7 from Siemens. Thereby they can name several programming languages of the IEC 1131.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
3.59 Course: Cooling of Thermally High Loaded Gas Turbine Components [T-MACH-105414]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Achmed Schulz

Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture/Blended</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2170463</td>
<td>2 SWS</td>
<td>Lecture/On-Site</td>
<td>Bauer, Schmid</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture/Blended</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 76-T-MACH-105414</td>
<td>2 SWS</td>
<td>Lecture/On-Site</td>
<td>Bauer</td>
</tr>
<tr>
<td>ST 2023 76-T-MACH-105414</td>
<td>2 SWS</td>
<td>Lecture/On-Site</td>
<td>Bauer, Schmid</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate

oral exam, 30 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Cooling of thermally high loaded gas turbine components

2170463, SS 2023, 2 SWS, Language: German, Open in study portal

Content

Hot gas temperatures of modern gas turbine engines exceed the maximum tolerable material temperatures by several hundreds of K. To ensure reliability of lifetime, complex cooling technology must be applied. Various cooling methods will be introduced in this lesson. Specific pros and cons will be identified and new concepts for further improvement of cooling will be discussed. Furthermore, the fundamentals of forced convection heat transfer and film cooling will be imparted and a simplified design process of a cooled gas turbine components will be demonstrated. Finally, experimental and numerical methods for the characterization of heat transfer will be presented.

regular attendance: 21 h
self-study: 42 h

The students are able to:

- name and differentiate between different cooling methods and analyse them
- judge on the advantages and disadvantages of cooling methods and discuss approaches for the improvement of complex cooling methods
- to outline the basics of forces convective heat transfer and film cooling
- design cooled gas turbine components in a simplified manner
- comment on the experimental and numerical methods for the characterisation of heat transfer

Exam:

oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam
3.60 Course: Cryogenic Engineering [T-CIWVT-108915]

Responsible: Prof. Dr.-Ing. Steffen Grohmann
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-MACH-105100 - Courses of the KIT Department of Chemical and Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22053</td>
<td>Cryogenic Engineering</td>
<td>2</td>
<td>Lecture</td>
<td>Grohmann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22054</td>
<td>Cryogenic Engineering - Exercises</td>
<td>1</td>
<td>Practice</td>
<td>Grohmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7200201</td>
<td>Cryogenic Engineering</td>
<td></td>
<td></td>
<td>Grohmann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7200201</td>
<td>Cryogenic Engineering</td>
<td></td>
<td></td>
<td>Grohmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏧 Blended (On-Site/Online), ⌧ On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
3.61 Course: Data Analytics for Engineers [T-MACH-105694]

Responsible: Stefan Meisenbacher
apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Mikut, Reischl, Meisenbacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105694</td>
<td>Data Analytics for Engineers</td>
<td>Mikut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105694</td>
<td>Datenanalyse für Ingenieure</td>
<td>Mikut, Reischl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (Duration: 1h)

Prerequisites

none

Below you will find excerpts from events related to this course:

Data Analytics for Engineers

2106014, SS 2023, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Blended (On-Site/Online)

Content

- Introduction and motivation
- Terms and definitions (types of multidimensional features - time series and images, problem classes)
- Scenario: Problem formulation, feature extraction, evaluation, selection and transformation, distance measures, Bayes classifiers, Support-Vector-Machines, decision trees, clustering, regression, validation
- Biweekly computer exercises (Software practice with SciXMiner): Data import, benchmark datasets, control of hand prostheses, energy prediction
- 2 hours per week lectures, 1 hour per week computer training

Learning objectives:

The students are able to apply the methods of data analysis efficiently. They know the basic mathematical data mining foundations for the analysis of single features and time series using classifiers, clustering and regression approaches. They are able to use various relevant methods as Bayes classifiers, Support Vector Machines, decision trees, fuzzy rulebases and they can adapt application scenarios (with data preprocessing and validation techniques) to real-world applications.

Literature

Vorlesungsunterlagen (ILIAS)

Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe.

2008 (PDF frei im Internet)

3.62 Course: Design and Development of Mobile Machines [T-MACH-105311]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2113079</td>
<td>Design and Development of Mobile Machines</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 76-T-MACH-105311</td>
<td>Design and Development of Mobile Machines</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>ST 2023 76-T-MACH-105311</td>
<td>Design and Development of Mobile Machines</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥: Online, ☰: Blended (On-Site/Online), 🗣: On-Site, ✗: Cancelled

Competence Certificate
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

A registration is mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

The course will be replenished by interesting lectures of professionals from leading hydraulic companies.

Prerequisites
Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108887 must have been passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-108887 - Design and Development of Mobile Machines - Advance must have been passed.

Recommendation
Knowledge in Fluid Power Systems (LV 2114093)

Annotation
After completion of the lecture, students can:

- design working and travel drive train hydraulics of mobile machines and can derive characteristic key factors.
- choose and apply suitable state of the art designing methods successfully
- analyse a mobile machines and break its structure down from a complex system to subsystems with reduced complexity
- identify and describe interactions and links between subsystems of a mobile machine
- present and document solutions of a technical problem according to R&D standards

The number of participants is limited.

Content:
The working scenario of a mobile machine depends strongly on the machine itself. Highly specialised machines, e.g. pavers are also as common as universal machines with a wide range of applications, e.g. hydraulic excavators. In general, all mobile machines are required to do their intended work in an optimal way and satisfy various criteria at the same time. This makes designing mobile machines to a great and interesting challenge. Nevertheless, usually key factors can be derived for every mobile machine, which affect other machine parameters. During this lecture, those key factors and designing mobile machines accordingly will be addressed. To do so, an exemplary mobile machine will be discussed and designed in the lecture as a semester project.

Literature:
See german recommendations

Below you will find excerpts from events related to this course:

KIT Department of Mechanical Engineering - Non-degree Studies (Domestic Degree at Another Higher Education Institution)
Module Handbook as of 14/02/2023

116
Content
Wheel loaders and excavators are highly specialized mobile machines. Their function is to detach, pick up and deposit materials near by. Significant size for dimensioning of the machines is the content of their standard shovel. In this lecture the main steps in dimensioning a wheel loader or excavator are being thought. This includes among others:

- Defining the size and dimensions,
- the dimensioning of the electric drive train,
- the dimensioning of the primary energy supply,
- Determining the kinematics of the equipment,
- the dimension of the working hydraulics and
- Calculations of strength

The entire design process of these machines is strongly influenced by the use of standards and guidelines (ISO/DIN-EN). Even this aspect is dealt with.

The lecture is based on the knowledge from the fields of mechanics, strength of materials, machine elements, propulsion and fluid technique. The lecture requires active participation and continued collaboration.

Recommendations:
Knowledge in Fluid Technology (SoSe, LV 21093)

- regular attendance: 21 hours
- self-study: 99 hours

Literature
Keine.
3.63 Course: Design and Development of Mobile Machines - Advance [T-MACH-108887]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Session</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>Geimer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

Preparation of semester report

Prerequisites

none
3.64 Course: Design and Optimization of Conventional and Electrified Automotive Transmissions [T-MACH-110958]

Responsible: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Hartmut Faust

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2146208</td>
<td>Design and Optimization of Conventional and Electrified Automotive Transmissions</td>
<td>Lecture / 🗣</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 💻 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

oral exam (20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Design and Optimization of Conventional and Electrified Automotive Transmissions

2146208, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) On-Site

Content

- Transmission types: Manual (MT) & automated manual transmissions (AMT), planetary torque converter machines (AT), double clutch (DCT), continuously variable (CVT) and geared neutral transmissions (IVT), hybrid transmissions (serial, parallel, multimode, Powersplit hybrid), E-axes
- Torsional vibration damper: damped clutch disc, dual mass flywheel, centrifugal pendulum (FPK), lock-up damper for torque converter
- Starting elements: dry single clutch, dry and wet double clutch, hydrodynamic torque converter, special shapes, e-motor
- Power transmission: countershaft transmission, planetary gear set, CVT variator, chain, synchronization, shift and claw clutches, reversing, differentials and locking systems, coaxial and axially parallel E-axis drives
- Transmission control: shift systems for MT, actuators for clutches and gear shifting, hydraulic control, electronic control, software application, comfort and sportiness
- Special designs: drive trains of commercial vehicles, hydrostat with power split, torque vectoring
- E-mobility: Classification into 5 stages of electrification, 4 hybrid configurations, 7 parallel hybrid architectures, hybridized transmissions (P2, P2.5, P3, P4), dedicated hybrid transmissions (DHT; serial / parallel / multimode, powersplit, new ones Concepts), gearbox for electric vehicles (E-axle gearbox, coaxial and axially parallel)

Organizational issues

Lernziele

Die Studenten erwerben das Wissen aus aktuellen Getriebe-, Hybrid- und reinen Elektroantriebs-Entwicklungen über …

- die Funktionsweise und Auslegung von konventionellen und elektrifizierten Fahrzeuggetrieben und deren Komponenten;
- Konstruktions- und Funktionsprinzipien der wichtigsten Komponenten von Handschalt-, Doppelkupplungs-, stufenlosen und Planetenautomat-Gebieten;
- komfortrelevante Zusammenhänge und Abhilfemaßnahmen;
- die Hybridisierung und Elektrifizierung der Triebstränge auf Basis bekannter Getriebetypen und mit speziellen sogenannten Dedicated Hybrid Transmissions (DHT) sowie Bewertung der Konzepte auf Systemebene.
Course: Design of a Jet Engine Combustion Chamber [T-CIWVT-110571]

Responsible: Dr.-Ing. Stefan Raphael Harth
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-MACH-105100 - Courses of the KIT Department of Chemical and Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22527</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>2</td>
<td>/ 👤</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7231207</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>Zarzalis</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7231207</td>
<td>Design of a Gas Turbine Combustor</td>
<td>Zarzalis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 👤 On-Site, ✗ Cancelled

Competence Certificate

Success control is an examination of another kind according to § 4 Abs. 2 Nr. 3 SPO.

Project: Participation and presentation as well as a final oral examination amounting to max. 30 minutes.

Prerequisites

None
3.66 Course: Design of Highly Stresses Components [T-MACH-105310]

Responsible: apl. Prof. Dr. Jarir Aktaa
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Oral examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

Events

WT 22/23 2181745 Design of highly stresses components 2 SWS Lecture / 📚 Aktaa

Exams

WT 22/23 76-T-MACH-105310 Design of Highly Stresses Components Aktaa
ST 2023 76-T-MACH-105310 Design of Highly Stresses Components Aktaa

Legend: 📱 Online, 🌐 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate
oral exam

Below you will find excerpts from events related to this course:

Design of highly stresses components
2181745, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

Contents of the lecture:
rules of common design codes
classical models for elasto-plasticity and creep
lifetime rules for creep, fatigue and creep-fatigue interaction
unified constitutive models for thermo-elasto-viscoplasticity
continuum mechanical models for damage at high temperatures
application of advanced material models in FE-codes

The students know about the rules of established design codes for the assessment of components which under operation are subjected to high thermo-mechanical and/or irradiation loadings. They understand which constitutive equations are used according to state-of-the-art of technology and research to estimate deformation and damage appearing under these loadings and to predict expected lifetime. They gained insight into the application of these generally non-linear constitutive equations in finite element codes and can judge the major issues which shall be thereby taken into account.

Qualification: Materials Science, solid mechanics II

regular attendance: 22.5 hours
self-study: 97.5 hours
oral exam ca. 30 minutes

Organizational issues
Die Vorlesung findet ab dem 08.11.2022 statt

Literature

Course: Design with Plastics [T-MACH-105330]

Responsibility: Dipl.-Ing. Markus Liedel

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2174571 | Design with Plastics | 2 SWS | Block / 🗣 | Liedel |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral exam, about 20 minutes

Prerequisites

none

Recommendation

Poly I

Below you will find excerpts from events related to this course:

Design with Plastics

2174571, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Block (B) On-Site
Content
Structure and properties of plastics materials,
Processing of plastics,
Behavior of plastics under environmental impacts,
Classic strength dimensioning,
Geometric dimensioning,
Plastic appropriate design,
Failure examples,
Joining of plastic parts,
Supporting simulation tools,
Structural foams,
Plastics Technology trends.

learning objectives:
Students will be able to

• distinguish polymer compounds from other construction materials regarding chemical differences, thermal behavior and solid conditions.
• discuss main plastics processes regarding advantages and disadvantages of materials selection and part geometry design and to make appropriate selections.
• analyze complex application requirements concerning material impacts on strength and to use the classic dimensioning method specific to the application to evaluate the lifetime part strength limit.
• evaluate part tolerances and geometry by appropriate methods considering molding shrinkage, production tolerances, post shrinkage, heat expansion, swelling, elastic and creep deformation.
• design plastic specific joining geometries like snap fits, screw bosses, weld seams and film hinges.
• detect classic molding failures and understand potential causes as well as to reduce the probability of molding failures by defining an optimized design.
• understand benefits and limits of selected simulation tools in the plastic technology discipline (strength, deformation, filling, warpage).
• assess polymer classes and plastic part designs with respect to suitable recycling concepts and ecological consequences.

requirements:
none,

recommendation: Polymerengineering I

workload:
The workload for the lecture Design with Plastics is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).

Organizational issues
Anmeldung unter Markus.Liedel@de.bosch.com

Literature
Materialien werden in der Vorlesung ausgegeben.
Literaturhinweise werden in der Vorlesung gegeben.
Course: Designing with Composites [T-MACH-108721]

Responsible: Prof. Dr. Eckart Schnack
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-108721</td>
<td>Designing with Composites</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-108721</td>
<td>Designing with Composites</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, 20 minutes

Prerequisites

None

Annotation

The lecture notes are made available via ILIAS.
Course: Development of Oil-Hydraulic Powertrain Systems [T-MACH-105441]

Responsible: Dr.-Ing. Isabelle Ays
Dr.-Ing. Gerhard Geerling

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Block / 🍃</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none

Below you will find excerpts from events related to this course:

Development of Oil-Hydraulic Powertrain Systems

2113072, WS 22/23, 2 SWS, Language: German, Open in study portal

Block (B)
Blended (On-Site/Online)

Content

The block course offered by the Chair of Mobile Machines (Mobima) conveys the basics of planning and development of mobile and industrial hydrostatic systems. The lecturer works for a market leading company producing fluid power drives and controls and gives a deep view into the process of planning and development using real life examples. The contents of the course are:

- marketing, project planning
- hydrostatic circuits
- heat balance, hydraulic accumulators
- filtration, noise lowering
- development exercises + laboratory tutorial

Organizational issues

siehe Homepage

Legend: 🖥 Online, 🍃 Blended (On-Site/Online), 🌱 On-Site, ✗ Cancelled

Competence Certificate

oral exam (20 min)

Knowledge in the fluidics

- regular attendance: 19 hours
- self-study: 90 hours
3.70 Course: Differential Equations - Exam [T-MATH-103323]

Responsible: PD Dr. Volker Grimm
Prof. Dr. Marlis Hochbruck
PD Dr. Markus Neher

Organisation: KIT Department of Mathematics
Part of: M-MACH-104885 - Courses of the KIT Department of Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lectures/Practice</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 0132200</td>
<td>Advanced Mathematics 3 for the Branch of Study Civil Engineering (differential equations)</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture</td>
<td>Neher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 0132300</td>
<td>Exercises to 0132200</td>
<td>1 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practice</td>
<td>Neher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-Site</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>010158660908008080_HM3_Bau-Ing.</td>
<td>Differential Equations - Exam</td>
<td>Hochbruck</td>
</tr>
<tr>
<td>ST 2023 010157660908003808_HM3-Bau-Ing.</td>
<td>Differential Equations - Exam</td>
<td>Hochbruck</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🎤 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

V Advanced Mathematics 3 for the Branch of Study Civil Engineering (differential equations)
0132200, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
On-Site

V Exercises to 0132200
0132300, WS 22/23, 1 SWS, Language: German, [Open in study portal](#)
Practice (Ü)
On-Site
Course: Digital Control [T-MACH-105317]

Responsible: Prof. Dr.-Ing. Michael Knoop
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2137309</td>
<td>Digital Control</td>
<td>2 SWS</td>
<td>Lecture / Knoop, Hauser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105317</td>
<td>Digital Control</td>
<td></td>
<td></td>
<td></td>
<td>Stiller</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105317</td>
<td>Digital Control</td>
<td></td>
<td></td>
<td></td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam
60 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Content
Lehrinhalt (EN):
1. Introduction into digital control:
 Motivation for digital implementation of controllers Structure of digital feedback control loops Sample and hold units
2. State space analysis and design:
 Discretisation of continuous-time systems Discrete-time state space equations Stability - definition and criteria State feedback design by eigenvalue assignment PI state feedback controller Luenberger observer, separation theorem
 Systems with dead-time Deadbeat design
3. Analysis and design based on z-transform: z-transform - definition and theorems Control loop description in the z domain
 Stability criteria Root locus controller design Transfer of continuous-time controllers into discrete-time controllers

Voraussetzungen (EN):
Basic studies and preliminary examination; basic lectures in automatic control

Lernziele (EN):
The lecture introduces key methods for the analysis and design of digital feedback control systems. Starting point is the discretisation of linear, continuous-time models. State space based and z-transform based controller design techniques are presented for discrete-time, single-input single-output systems. Furthermore, plants with dead-time and deadbeat design are covered.

Nachweis: written examination; duration: 60 minutes; no tools or reference materials may be used during the exam.

Arbeitsaufwand: 120 hours

Literature
- Föllinger, O.: Lineare Abtastsysteme. 4. Auflage, R. Oldenbourg Verlag, München Wien 1990
3.72 Course: Digital Microstructure Characterization and Modeling [T-MACH-110431]

Responsible: Jun.-Prof. Dr. Matti Schneider
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination
3.73 Course: Digital Technology [T-ETIT-101918]

Responsible: Prof. Dr.-Ing. Jürgen Becker

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>ID</th>
<th>Name</th>
<th>WS</th>
<th>Type</th>
<th>WS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2311615</td>
<td>Digital Technology</td>
<td>3</td>
<td>Lecture</td>
<td></td>
<td>Becker</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2311617</td>
<td>Tutorial for 2311615 Digital Technology</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td>Höfer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>ID</th>
<th>Name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7311615</td>
<td>Digital Technology</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
3.74 Course: Do it! – Service-Learning for Prospective Mechanical Engineers [T-MACH-106700]

Responsible: Prof. Dr.-Ing. Barbara Deml

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Do it! – Service-Learning for prospective mechanical engineers</td>
<td>2 SWS</td>
<td>Seminar / On-Site</td>
<td>Deml</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Active and regular participation (compulsory attendance) in all appointments; no marking.

Prerequisites
Timely enrollment in ILIAS; limited number of participants.

Below you will find excerpts from events related to this course:

Do it! – Service-Learning for prospective mechanical engineers

Legend: Online, Blended (On-Site/Online), On-Site, ⌂ Cancelled

Content
The course combines university learning with social engagement. The students leave the well-known academic working conditions and apply engineering skills (such as the ergonomic workplace design) within a social institution.

The course will take place every two weeks with each session lasting three hours. A part of the course will not be held at KIT, but at a workshop for persons with disabilities.

1) Introductory session
Technical and generic preparation of the work assignment

2) Work assignment (3 sessions)
Getting to know the working conditions in a workshop for persons with disabilities and conducting a work analysis in small groups

3) Interim review session
Sharing about the experiences

4) Implementation phase (2 sessions)
Implementing improvement measures concerning workplace/process design in small groups

5) Evaluation session
Evaluating and reflecting as well as transferring and integrating the new experiences in their student and working life

Learning target:
The aim of this course is to enable students to get to know different social living and working conditions (such as a workshop for persons with disabilities), to engage in society as prospective mechanical engineers, and in doing so to develop their personality.

The overall goal is to learn by service for people, which again is an important factor for client-oriented behavior. This kind of experience and action oriented learning by social engagement is also called “service-learning”. This is supposed to encourage students’ willingness to change their perspective and to achieve some level of understanding for other living and working conditions in order to enhance their social skills such as empathy, communication skills, individual initiative, and conflict management as well as to support self-organized learning.

This course is carried out in cooperation with external partners; the concept also exists at other universities (http://www.agentur-mehrwert.de/de/hochschulen/do-it-studierendenprojekte.html).

Literature
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
3.75 Course: Drive Systems and Possibilities to Increase Efficiency [T-MACH-105451]

Responsible: Dr.-Ing. Hans-Peter Kollmeier
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination, time duration 30 min., no aids

Prerequisites
none
3.76 Course: Drive Train of Mobile Machines [T-MACH-105307]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Marco Wydra

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Drive Train of Mobile Machines</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Übung zu 'Antriebsstrang mobiler Arbeitsmaschinen'</td>
<td>1 SWS</td>
<td>Practice /</td>
<td>Geimer, Herr</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Drive Train of Mobile Machines</td>
<td></td>
<td></td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Drive Train of Mobile Machines</td>
<td></td>
<td></td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The final assessment will be an oral examination (20 min) taking place during the recess period. The examination will be offered in every semester and can be repeated at any regular examination date.

Prerequisites

none

Recommendation

- General principles of mechanicals engineering
- Basic knowledge of hydraulics
- Interest in mobile machinery

Annotation

At the end of the lecture, participants can explain the structure and function of all discussed drive trains of mobile machines. They can analyze complex gearbox schematics and synthesize simple transmission functions using rough calculations.

Content

In this course the different drive trains of mobile machinery will be discussed. The focus of this course is:

- mechanical gears
- torque converter
- hydrostatic drives
- power split drives
- electrical drives
- hybrid drives
- axles
- terra mechanics

Media: projector presentation

Literature: Download of lecture slides from ILIAS. Further literature recommendations during lectures.

Below you will find excerpts from events related to this course:

Drive Train of Mobile Machines

2113077, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

On-Site
Content
In this course will be discussed the different drive train of mobile machinerys. The fokus of this course is:
- improve knowledge of fundamentals
- mechanical gears
- torque converter
- hydrostatic drives
- continuous variable transmission
- eletrical drives
- hybrid drives
- axles
- terra mechanic

Recommendations:

• general basics of mechanical engineering
• basic knowledge in hydraulics
• interest in mobile machines

• regular attendance: 21 hours
• self-study: 89 hours

Literature
Skriptum zur Vorlesung downloadbar über ILIAS
3.77 Course: Dynamics of the Automotive Drive Train [T-MACH-105226]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 💬</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Fidlin, Gießler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 💬</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none

Recommendation
Powertrain Systems Technology A: Automotive Systems Machine Dynamics Vibration Theory

Below you will find excerpts from events related to this course:

Dynamics of the Automotive Drive Train
2163111, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content
- Main components of the vehicle powertrain and their modelling
- Typical driving situations
- Problem-oriented models for particular driving situations
- System analysis and optimization with respect to dynamic behavior

Literature
- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Übungen zu Dynamik des Kfz-Antriebsstrangs
2163112, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content
Exercises related to the lecture
3.78 Course: Elasticity as a Field Theory [T-MACH-112215]

Responsible: Dr. Eleni Agiasofitou
Dr. Markus Lazar

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2162260</td>
<td>Advanced Aspects of Elasticity as a Field Theory</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grade to a third</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76T-MACH-112215</td>
<td>Elasticity as a Field Theory</td>
<td></td>
<td>Lecture / 🗣</td>
<td>Grade to a third</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate

written exam (90 min)

Below you will find excerpts from events related to this course:

Advanced Aspects of Elasticity as a Field Theory

2162260, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Content

- Some basics of calculus of variations
- Euler-Lagrange equations
- Basics of elasticity theory (tensors, strain tensor, compatibility conditions, Hooke's law, Cauchy stress tensor)
- Lagrangian formulation: Euler-Lagrange equations in elasticity or equations of motion
- Navier equations
- Elastic waves in isotropic media
- Configurational or Eshelbian mechanics:
 - Conservation laws in elasticity theory (symmetries of translations, rotations and scaling)
 - Eshelby stress tensor, energy-momentum tensor
 - Configurational forces (Cherepanov force, inhomogeneity force or Eshelby force)
 - J-, M- and L-integrals
- Applications in Engineering Science

Literature

3.79 Course: Electric Energy Systems [T-ETIT-101923]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2307391</th>
<th>Electric Energy Systems</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Leibfried</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2307393</td>
<td>Übungen zu 2307391 Elektroenergiesysteme</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Steinle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>7307391</th>
<th>Electric Energy Systems</th>
<th>Leibfried</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7307391</td>
<td>Electric Energy Systems</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Prerequisites

none
3.80 Course: Electric Power Generation and Power Grid [T-ETIT-103608]

Responsible: Dr.-Ing. Bernd Hoferer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Weekly Contact</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2307399</td>
<td>Electric Power Generation and Power Grid</td>
<td>2 SWS</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7307399</td>
<td>Electric Power Generation and Power Grid</td>
<td>Hoferer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>737307399</td>
<td>Electric Power Generation and Power Grid</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚽️ Blended (On-Site/Online), 🗣 On-Site, ⌚️ Cancelled

Prerequisites

none
3.81 Course: Electric Power Transmission & Grid Control [T-ETIT-110883]

Responsible: Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2307376</td>
<td>Electric Power Transmission & Grid Control</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Name</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7300018</td>
<td>Electric Power Transmission & Grid Control</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

The examination consists of a written paper and an oral presentation of the students' work. The overall impression is rated.

Prerequisites

None
3.82 Course: Electrical Engineering and Electronics [T-ETIT-108386]

Responsible: TT-Prof. Dr. Giovanni De Carne

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

Type
Written examination

Credits
8

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2306350</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>De Carne</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2306351</td>
<td>Tutorial for 2306350 Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>2 SWS</td>
<td>Practice</td>
<td>De Carne, Hähnlein, Digel, Bremer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>7306350</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>De Carne</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>7306350</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Doppelbauer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The control of success takes place by a written examination, duration 3 hours.

By successfully completing two additional exercise sheets (on a voluntary basis), a bonus of up to 6 exam points can be earned (corresponds to a maximum grade improvement of the written exam by the value 0.3 or 0.4).

Prerequisites
none

Annotation
Exam will be held in english language.
3.83 Course: Electrical Engineering and Electronics [T-ETIT-109820]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2306339</td>
<td>Lecture / 📚</td>
<td>Doppelbauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>4 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2306340</td>
<td>Practice / 📚</td>
<td>Hähnlein, Digel, Bremer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7306351</td>
<td>Lecture / 📚</td>
<td>Doppelbauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>4 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7306351</td>
<td>Lecture / 📚</td>
<td>Becker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annotation

Exam will be held in german language

Legend: 🖥 Online, 📚 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
3.84 Course: Electrical Machines and Power Electronics [T-ETIT-101954]

Responsible: Prof. Dr.-Ing. Marc Hiller
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>WT 22/23 2306387</td>
<td>Electrical Machines and Power Electronics</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Hiller</td>
</tr>
<tr>
<td>Practice</td>
<td>WT 22/23 2306389</td>
<td>Tutorial for 2306387 Electrical Machines and Power Electronics</td>
<td>2</td>
<td>Practice / Online</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>WT 22/23 7306307</td>
<td>Electrical Machines and Power Electronics</td>
<td>Hiller</td>
</tr>
<tr>
<td>Exam</td>
<td>ST 2023 7306307</td>
<td>Electrical Machines and Power Electronics</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Prerequisites

none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
Course: Electronic Devices and Circuits [T-ETIT-109318]

Responsible: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2308655</td>
<td>3 SWS</td>
<td>Lecture / 🗣️</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
<tr>
<td>Übungen zu 2312655</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronische Schaltungen</td>
<td>/ 🗣️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorien zu 2312655</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronische Schaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Exam Dates</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>7308655</td>
<td></td>
<td>Electronic Devices and Circuits</td>
<td></td>
<td>Ulusoy</td>
<td></td>
</tr>
<tr>
<td>7308655</td>
<td></td>
<td>Electronic Devices and Circuits</td>
<td></td>
<td>Ulusoy</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
3.86 Course: Energy and Process Technology I [T-MACH-102211]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Prof. Dr. Ulrich Maas
Dr.-Ing. Corina Schwitzke
Dr. Amin Velji

Organisation: KIT Department of Mechanical Engineering

Institute of Thermal Turbomachinery

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2157961</td>
<td>Energy and Process Technology I</td>
<td>6</td>
<td>Lecture / Practice (/)</td>
<td>Bauer, Mitarbeiter, Wagner, Maas, Schwitzke, Wirbser</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102211</td>
<td>Energy and Process Technology I</td>
<td></td>
<td></td>
<td>Bauer, Wirbser, Schwitzke, Pritz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Name</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102211</td>
<td>Energy and Process Technology I</td>
<td>Bauer, Wirbser, Schwitzke, Wagner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102211</td>
<td>Energy and Process Technology I</td>
<td>Bauer, Wirbser, Schwitzke, Pritz</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a written exam (120 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
none

Below you will find excerpts from events related to this course:

Energy and Process Technology I
2157961, WS 22/23, 6 SWS, Language: German, [Open in study portal]

Content
The last third of the lecture deals with the topic *Thermal Turbomachinery*. The basic principles, the functionality and the scope of application of gas and steam turbines for the generation of electrical power and propulsion technology are addressed.

The students are able to:

- describe and calculate the basic physical-technical processes
- apply the mathematical and thermodynamical description
- reflect on and explain the diagrams and schematics
- comment on diagrams
- explain the functionality of gas and steam turbines and their components
- name the applications of thermal turbomachinery and their role in the field of electricity generation and propulsion technology
3.87 Course: Energy and Process Technology II [T-MACH-102212]

Responsible: Prof. Dr. Ulrich Maas
Dr.-Ing. Corina Schwitzke

Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>6 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schwitzke, Pritz, Maas, Wirbser, Schmid</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (120 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
none

Below you will find excerpts from events related to this course:

Energy and Process Technology II
2170832, SS 2023, 6 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ)
On-Site

Content

Thermal Turbomachinery - In the first part of the lecture deals with energy systems. Questions regarding global energy resources and their use, especially for the generation and provision of electrical energy, are addressed. Common fossil and nuclear power plants for the centralized supply with electrical power as well as concepts of power-heat cogeneration for the decentralized electrical power supply by means of block-unit heat and power plants, etc. are discussed. Moreover, the characteristics and the potential of renewable energy conversion concepts, such as wind and hydro-power, photovoltaics, solar heat, geothermal energy and fuel cells are compare and evaluated. The focus is on the description of the potentials, the risks and the economic feasibility of the different strategies aimed to protect resources and reduce CO2 emissions.

The students are able to:

- discuss and evaluate energy resources and reserves and their utility
- review the use of energy carriers for electrical power generation
- explain the concepts and properties of power-heat cogeneration, renewable energy conversion and fuel cells and their fields of application
- comment on and compare centralized and decentralized supply concepts
- calculate the potentials, risks and economic feasibility of different strategies aiming at the protection of resources and the reduction of CO2 emissions
- name and judge on the options for solar energy utilization
- discuss the potential of geothermal energy and its utilization
3.88 Course: Energy Conversion and Increased Efficiency in Internal Combustion Engines [T-MACH-105564]

Responsible: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105564</td>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines</td>
<td>Koch</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105564</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 25 minutes, no auxiliary means

Prerequisites
none
3.89 Course: Energy Demand of Buildings – Fundamentals and Applications, with Building Simulation Exercises [T-MACH-105715]

Responsible: Dr. Ferdinand Schmidt
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course Code</th>
<th>Exam Title</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105715</td>
<td>Energy demand of buildings – fundamentals and applications, with building simulation exercises</td>
<td>Schmidt</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, approx. 30 minutes

Prerequisites
none
3.90 Course: Energy from Biomass [T-CIWVT-110576]

Responsible: Dr.-Ing. Siegfried Bajohr
Prof. Dr. Nicolaus Dahmen

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-MACH-105100 - Courses of the KIT Department of Chemical and Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22325</td>
<td>Written examination</td>
<td>2</td>
<td>Energy from Biomass</td>
<td>Dahmen, Bajohr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 7233102</td>
<td>Written examination</td>
<td>2</td>
<td>Energy from Biomass</td>
<td>Dahmen, Bajohr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO).

Prerequisites
None
3.91 Course: Energy Market Engineering [T-WIWI-107501]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2540464</td>
<td>Energy Market Engineering</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Henni, Weinhardt</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540465</td>
<td>Übung zu Energy Market Engineering</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Semmelmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7900127</td>
<td>Energy Market Engineering</td>
<td></td>
<td></td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 2023</td>
<td>79852</td>
<td>Energy Market Engineering</td>
<td></td>
<td></td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Recommendation

None

Annotation

Former course title until summer term 2017: T-WIWI-102794 "eEnergy: Markets, Services, Systems".

The lecture has also been added in the IIP Module Basics of Liberalised Energy Markets.

Below you will find excerpts from events related to this course:

Energy Market Engineering

2540464, SS 2023, 2 SWS, Language: German, Open in study portal

Literature

3 COURSES

Course: Energy Storage and Network Integration [T-ETIT-104644]

Responsible: Prof. Dr. Mathias Noe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2312687</td>
<td>2 SWS</td>
<td>Lecture / ➤</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>WT 22/23 2312689</td>
<td>1 SWS</td>
<td>Practice / ➤</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 7312687 | 2312687 | Energy Storage and Network Integration | Grilli, De Carne |
| ST 2023 7312687 | 2312687 | Energy Storage and Network Integration | Noe, De Carne, Grilli |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ➤ On-Site, ❌ Cancelled

Prerequisites

Neither participation in "Energiespeicher und Netzentegration" (ETIT) nor in "Energiespeicher und Netzintegration" (MACH). Only one out of these three exams is allowed.

Recommendation

Basic knowledge in the fields of Electrical Engineering and Thermodynamics is helpful.

Annotation

Exam and Lecture will be held in English.

Below you will find excerpts from events related to this course:

Tutorial for 2312687 Energy Storage and Network Integration

2312689, WS 22/23, 1 SWS, Language: English, Open in study portal

Content

Campus North - dates will be announced in the beginning of the semester in the lecture

In order to gain credits, both, the lecture and the tutorial, have to be completed (participation in VL 23687 "Energy Storage and Network Integration").

Organizational issues

The exact dates will be announced in the lecture.

Responsible: apl. Prof. Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>2129901</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Systems I - Renewable Energy</td>
<td>3 SWS</td>
<td>Lecture / On-Site</td>
<td>Dagan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>76-T-MACH-105408</td>
<td>3 SWS</td>
<td>Lecture / On-Site</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>76-T-MACH-105408</td>
<td>3 SWS</td>
<td>Lecture / On-Site</td>
<td>Dagan</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, approx. 1/2 hour

Prerequisites
none

Below you will find excerpts from events related to this course:

Energy Systems I - Renewable Energy
2129901, WS 22/23, 3 SWS, Language: German, Open in study portal

Content
The course deals with fundamental aspects of renewable energies.

1. The first part deals with the basic concepts of absorbing solar beams, in an efficient manner accounting for the minimization of heat losses. In this context, selective topics on thermodynamics as well as fluid dynamics are introduced. In the second part few applications are discussed and optimizations techniques of solar collectors construction and their heat transfer are presented.
2. The use of solar energy as a source for heat generation is followed by the idea of electricity generation. Introductive aspects of Photovoltaic technologies are illuminated.
3. The last part presents additional regenerative energy sources such as wind and geothermal energy.

The student knows the principles of the feasibility of energy gain by means of renewable energies, in particular the solar energy.

regular attendance: 34 hours
self-study: 146 hours

Oral examination – as an elective course 30 minutes, in combination with Energiesysteme-II or other courses within the energy courses, as a major course 1 hour

Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.
3.94 Course: Energy Systems II: Reactor Physics [T-MACH-105550]

Responsible: Dr. Aurelian Florin Badea
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Module</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Oral examination</td>
<td>4</td>
<td>Energy Systems II: Reactor Physics</td>
<td>Badea</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>4</td>
<td>Energy Systems II: Reactor Physics</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Prerequisites
none

Below you will find excerpts from events related to this course:

Energy systems II: Reactor Physics
2130929, SS 2023, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
Blended (On-Site/Online)

Content
The goal of the course is to train the students for the field of nuclear energy using fission reactors. The students acquire comprehensive knowledge on the physics of nuclear fission reactors: neutron flux, cross sections, fission, breeding processes, chain reaction, critical size of a nuclear system, moderation, reactor dynamics, transport- and diffusion-equation for the neutron flux distribution, power density distributions in reactor, one-group, two-group and multi-group theories for the neutron spectrum. Students are able to analyze and understand the obtained results. Based on the reactor physics knowledge, the students are able to understand, compare and evaluate the capabilities of different types of reactors - LWR, heavy water reactors, nuclear power systems of generation IV – as well as their fundamental nuclear safety concepts. The students are qualified for further training in nuclear energy and safety field and for (also research-related) professional activity in the nuclear industry.

- nuclear fission & fusion,
- radioactive decay, neutron excess, fission, fast and thermal neutrons, fissile and fertile nuclei,
- neutron flux, cross section, reaction rate, mean free path, chain reaction, critical size, moderation, reactor dynamics, transport- and diffusion-equation for the neutron flux distribution, power distributions in reactor, one-group and two-group theories, light-water reactors, reactor safety, design of nuclear reactors, breeding processes, nuclear power systems of generation IV

Organizational issues
Mo (31.07.2023), 09:00 bis 17:00
Di (01.08.2023), 09:00 bis 17:00
Mi (02.08.2023), 09:00 bis 17:00
Literature
Dieter Schmidt, Reaktortechnik, Band 1: Grundlagen, ISBN 3 7650 2003 6
3.95 Course: Engine Laboratory [T-MACH-105337]

Responsible: Dr.-Ing. Uwe Wagner
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>4</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2134001</th>
<th>Engine Laboratory</th>
<th>2 SWS</th>
<th>Practical course / Wagner</th>
</tr>
</thead>
</table>

Competition Certificate
written documentation of every experiment, certificate of successful attendance, no grading

Prerequisites

none

Below you will find excerpts from events related to this course:

Engine Laboratory
2134001, SS 2023, 2 SWS, Language: German, Open in study portal

Organizational issues
voraussichtlich 1. vorlesungsfreie Woche im SS 2021. Wird auf der Homepage und in den Vorlesungen bekannt gegeben

Literature
Versuchsbeschreibungen
3.96 Course: Engine Measurement Techniques [T-MACH-105169]

Responsible: Dr.-Ing. Sören Bernhardt

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2134137</th>
<th>Engine measurement techniques</th>
<th>2 SWS</th>
<th>Lecture / 🗣 Bernhardt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>76-T-MACH-105169</th>
<th>Engine Measurement Techniques</th>
<th>Koch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 0.5 hours, no auxiliary means

Prerequisites
none

Recommendation
T-MACH-102194 Combustion Engines I

Below you will find excerpts from events related to this course:

Engine measurement techniques
2134137, SS 2023, 2 SWS, Language: German, Open in study portal

Literature

1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Messotechnik
4. Hoffmann, Handbuch der Messotechnik
5. Klingenberg, Automobil-Messtechnik, Band C
3.97 Course: Engineering Materials for the Energy Transition [T-MACH-109082]

Responsible: Dr. Peter Franke
Prof. Dr. Hans Jürgen Seifert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2193007</td>
<td>Engineering Materials for the Energy Transition</td>
<td>2</td>
<td>Lecture</td>
<td>Seifert, Ziebert</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-109082</td>
<td>Engineering Materials for the Energy Transition</td>
<td></td>
<td>Lecture</td>
<td>Seifert</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-109082</td>
<td>Engineering Materials for the Energy Transition</td>
<td></td>
<td>Lecture</td>
<td>Seifert</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam; about 30 minutes

Prerequisites

T-MACH-108688 - The energetics of engineering materials for the energy transition must not have been started.

Recommendation

Knowledge of Materials Science.

Below you will find excerpts from events related to this course:

Engineering Materials for the Energy Transition

2193007, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content

oral examination (about 30 min)
Recommendations: Knowledge of Materials Science
Workload: 120 hours
3.98 Course: Engineering Mechanics III [T-MACH-100299]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161203</td>
<td>Engineering Mechanics III</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100299</td>
<td>Engineering Mechanics III</td>
<td>2 SWS</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100299</td>
<td>Engineering Mechanics III</td>
<td>2 SWS</td>
<td>Fidlin</td>
<td></td>
</tr>
</tbody>
</table>

Exams

Competence Certificate

written exam (90 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Engineering Mechanics III

2161203, WS 22/23, 2 SWS, Language: German, [Open in study portal]

Lecture (V)

On-Site

Content

Kinematics:

Kinetics of a particle:
Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems.

Systems of particles:
Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.

Plain motion of rigid bodies:

Literature

Hibbeler: Technische Mechanik 3, Dynamik, München, 2006

Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983

Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975

Göldner, Holzweissig: Leitfaden der Technischen Mechanik.

Hagedom: Technische Mechanik III.
3.99 Course: Entrepreneurship [T-WIWI-102864]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Code</th>
<th>Event</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2545001</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>Terzidis</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2545001</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>Terzidis, Dang</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Code</th>
<th>Event</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7900045</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Terzidis</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900229</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Terzidis</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900002</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Terzidis</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900192</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧬 Blended (On-Site/Online), ➔ On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). Students are offered the opportunity to earn a grade bonus through separate assignments. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by a maximum of one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the lecture.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Entrepreneurship

<table>
<thead>
<tr>
<th>Lecture Code</th>
<th>SWS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2545001</td>
<td>2</td>
<td>English</td>
<td></td>
</tr>
</tbody>
</table>

Kit of Technology Department of Mechanical Engineering - Non-degree Studies (Domestic Degree at Another Higher Education Institution)
Module Handbook as of 14/02/2023
Content
The lecture as an obligatory part of the module "Entrepreneurship" introduces the basic concepts of entrepreneurship. Important concepts and empirical facts are presented that relate to the conception and implementation of newly founded companies. The focus here is on the introduction to methods for generating innovative business ideas, for transferring patents into business concepts and general principles of business modelling and business planning. In particular approaches such as Lean Startup and Effectuation as well as concepts for the financing of young enterprises are treated.

A "KIT Entrepreneurship Talk" is part of each session (from 17.00-18.00), in which experienced founder and entrepreneur personalities report on their experiences in practice of the establishment of an enterprise. Dates and speakers will be announced on the EnTechnon homepage.

Learning objectives:
The students are introduced to the topic Entrepreneurship. After successful attendance of the meeting they are to have an overview of the subranges of the Entrepreneurships and be able to understand basic concepts of the Entrepreneurships and apply key concepts.

Workload:
Total effort with 3 credit points: approx. 90 hours
Presence time: 30 hours
Pre- and postprocessing of the LV: 45.0 hours
Exam and exam preparation: 15.0 hours

Examination:
The assessment of success takes place in the form of a written examination (60 min.) (according to §4(2), 1 SPO). The grade is the grade of the written exam. A grade bonus can be earned through successful participation in a case study in the Entrepreneurship lecture. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by up to 0.3 or 0.4. The bonus only applies if you have passed the exam with at least a 4.0. More details will be provided in the lecture. Participation in the case study is voluntary.

Exam date: 12/20/2022

Literature
Füglistaller, Urs, Müller, Christoph and Volery, Thierry (2008): Entrepreneurship

Entrepreneurship
2545001, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V)
Blended (On-Site/Online)
Content
The lecture as a compulsory part of the module "Entrepreneurship" introduces the basic concepts of entrepreneurship. Important concepts and empirical facts are introduced, which relate to the conception and implementation of newly founded companies.

The focus here is on introducing methods for generating innovative business ideas, translating patents into business concepts, and general principles of business modeling and business planning. In particular, approaches such as Lean-Startup and Effectuation as well as concepts for financing young companies are covered.

A "KIT Entrepreneurship Talk" is part of each session, in which experienced founder and entrepreneur personalities report on their experiences in the practice of the establishment of an enterprise. Dates and speakers will be announced on the EnTechnon homepage.

Learning objectives:
The students will be introduced to the topic of entrepreneurship. After successful attendance of the course they should have an overview of the sub-areas of entrepreneurship and be able to understand basic concepts of entrepreneurship and apply key concepts.

Workload:
The total effort with 3 credit points: approx. 90 hours
Presence time: 30 hours
Pre- and postprocessing of the LV: 45.0 hours
Exam and exam preparation: 15.0 hours

Examination:
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation)

A grade bonus can be earned by successfully participating in a case study as part of the Entrepreneurship lecture. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by up to 0.3 or 0.4. The bonus only applies if you have passed the exam with at least a 4.0. More details will be provided in the lecture. Participation in the case study is voluntary.

Exam dates: tbd, probably 22.06.2023, 6pm - 7.10pm

Organizational issues
VL findet jeweils Di, 15:45 - 19:00 an folgenden Terminen statt:
18.04.2023
25.04.2023
02.05.2023
09.05.2023
16.05.2023
23.05.2023
06.06.2023
13.06.2023 (Prep Session)
22.06.2023 (Klausur, 18.00 - 19.10 Uhr)

Literature
Füglistaller, Urs, Müller, Christoph und Volery, Thierry (2008): Entrepreneurship
Ries, Eric (2011): The Lean Startup
3.100 Course: Excercises - Fatigue of Welded Components and Structures [T-MACH-109304]

Responsible: Dr. Majid Farajian
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

| Legend: 🖥 Online, ⚠️ Blended (On-Site/Online), 🧩 On-Site, ❌ Cancelled |

Competence Certificate
successful solving of all exercises

Prerequisites
none

Below you will find excerpts from events related to this course:

Fatigue of Welded Components and Structures
2181731, WS 22/23, 2 SWS, Language: German, [Open in study portal]

Content
The lecture gives an introduction to the following topics:
- weld quality
- typical damages of welded joints
- evaluation of notches, defects and residual stresses
- strength concepts: nominal, structural and notch stress concepts, fracture mechanics
- life cycle analysis
- post-treatment methods for an extented lifetime
- maintenance, reconditioning and repair

The student can:
- describe the influence of welding induced notches, defects and residual stresses on component behavior
- explain the basics of numerical and experimental methods for the evaluation of statically or cyclically loaded welds
- explain and can apply them
- derive measures in order to increase the lifetime of structures with welded joints under cyclical load

Preliminary knowledge
materials science and mechanics recommended

Regular attendance: 22.5 hours
Self-study: 97.5 hours

Exercise sheets are handed out regularly.
Oral examination (ca. 30 min)
No tools or reference materials

Organizational issues
Blockveranstaltung. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich. Vorlesungstermine und Hörsaal werden den angemeldeten Teilnehmern mitgeteilt.

Literature

2. FKM-Richtlinie, Bruchmechanischer Festigkeitsnachweis, Forschungskuratorium Maschinenbau, VDMA Verlag, 2009
3.101 Course: Exercises in Technical Thermodynamics and Heat Transfer I [T-MACH-105204]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2165502</th>
<th>Exercise course Technical Thermodynamics and Heat Transfer I</th>
<th>2 SWS</th>
<th>Practice / 🗣</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3165015</td>
<td>Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>2 SWS</td>
<td>Tutorial / 🗣</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 | 76-T-MACH-105204 | Exercises in Technical Thermodynamics and Heat Transfer I | Maas, Schießl |
| ST 2023 | 76-T-MACH-105204 | Exercises in Technical Thermodynamics and Heat Transfer I | Maas, Schießl |

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Homework is mandatory.
3.102 Course: Excercises in Technical Thermodynamics and Heat Transfer II [T-MACH-105288]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type of Event</th>
<th>Subject</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2166556</td>
<td>Technical Thermodynamics and Heat Transfer II (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>3166033</td>
<td>Technical Thermodynamics and Heat Transfer II (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Schießl, Maas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type of Event</th>
<th>Subject</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105288</td>
<td>Excercises in Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76T-MACH-105288</td>
<td>Excercises in Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
Homework is mandatory.

Prerequisites
none

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II (Tutorial)
2166556, SS 2023, 2 SWS, Language: German, Open in study portal

Content
Calculation of thermodynamical problems

Literature
Vorlesungsskriptum
3.103 Course: Exercices - Tribology [T-MACH-109303]

Responsible: Prof. Dr. Martin Dienwiebel
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Tribology</td>
<td>5 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Dienwiebel, Scherge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Exercices - Tribology</td>
<td></td>
<td></td>
<td></td>
<td>Dienwiebel</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

successful solving of all exercises

Prerequisites

none

Below you will find excerpts from events related to this course:

Tribology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 SWS</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Lecture / Practice (VÜ)

on-Site

Open in study portal
Content

- Chapter 1: Friction
 adhesion, geometrical and real area of contact, Friction experiments, friction powder, tribological stressing, environmental influences, tribological age, contact models, Simulation of contacts, roughness.
- Chapter 2: Wear
 plastic deformation at the asperity level, dissipation modes, mechanical mixing, Dynamics of the third body, running-in, running- in dynamics, shear stress.
- Chapter 3: Lubrication
 base oils, Striebeck plot, lubrication regimes (HD, EHD, mixed lubrication), additives, oil characterization, solid lubrication.
- Chapter 4: Measurement Techniques
 friction measurement, tribometer, dissipated frictional power, conventional wear measurement, continuous wear measurement(RNT)
- Chapter 5: Roughness
 profilometry, surface roughness parameters, evaluation length and filters, bearing ratio curve, measurement error
- Chapter 6: Accompanying Analysis
 multi-scale topography measurement, chemical surface analysis, structural analysis, mechanical analysis

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

- describe the fundamental friction and wear mechanisms, which occur in tribologically stressed systems
- evaluate the friction and wear behavior of tribological systems
- explain the effects of lubricants and their most important additives
- identify suitable approaches to optimize tribological systems
- explain the most important experimental methods for the measurement of friction and wear, and is able to use them for the characterisation of tribo pairs
- choose suitable methods for the evaluation of roughness and topography from the nm-scale to the mm-scale and is able to interpret the determined values in respect to their effect on the tribological behavior
- describe the most important surface-analytical methods and their physical principles for the characterization of tribologically stressed sliding surfaces

preliminary knowledge in mathematics, mechanics and materials science recommended
regular attendance: 45 hours
self-study: 195 hours
oral examination (ca. 40 min)
no tools or reference materials
admission to the exam only with successful completion of the exercises

Literature

3.104 Course: Exercises for Applied Materials Simulation [T-MACH-107671]

Responsible: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Year</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture / Practice (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2182614</td>
<td>Applied Materials Simulation</td>
<td>4</td>
<td>Gumbsch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Year</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-107671</td>
<td>Exercises for Applied Materials Simulation</td>
<td>4</td>
<td>Gumbsch, Schulz</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Successful solving of all exercises

Prerequisites

T-MACH-110928 – Exercises for Applied Materials Simulation has not been started

Below you will find excerpts from events related to this course:

Applied Materials Simulation

2182614, SS 2023, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Online

Content

This lecture should give the students an overview of different simulation methods in the field of materials science and engineering. Numerical methods are presented and their use in different fields of application and size scales shown and discussed. On the basis of theoretical as well as practical aspects, a critical examination of the opportunities and challenges of numerical material simulation shall be carried out.

The student can

- define different numerical methods and distinguish their range of application
- approach issues by applying the finite element method and discuss the processes and results
- understand complex processes of metal forming and crash simulation and discuss the structural and material behavior
- define and apply the physical fundamentals of particle-based simulation techniques to applications of materials science
- illustrate the range of application of atomistic simulation methods and distinguish between different models

Preliminary knowledge in mathematics, physics, and materials science recommended

Regular attendance: 34 hours

Exercise: 11 hours

Self-study: 165 hours

Oral Exam: ca. 35 minutes

No tools or reference materials

Admission to the exam only with successful completion of the exercises

Organizational issues

Die Vorlesung wir nur als Aufzeichnung angeboten!

Bitte besuchen Sie die englischsprachige Veranstaltung "Applied Materials Simulation" (2182616)!

Weitere Informationen finden Sie in ILIAS.

Kontakt: johannes.schneider@kit.edu
Literature

3.105 Course: Exercises for Materials Characterization [T-MACH-107685]

Responsible: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Completed coursework
Credits: 2
Grading scale: pass/fail
Recurrence: Each summer term
Version: 4

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2174586</td>
<td>Materials Characterization</td>
<td>Lecture / Blended</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2174988</td>
<td>Tutorials and lab courses for "materials characterization"</td>
<td>Practice / Blended</td>
<td>Gibmeier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-107685</td>
<td>Exercises for Materials Characterization</td>
<td>Lecture / Blended</td>
<td>Gibmeier</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Regular attendance

Prerequisites
T-MACH-110945 – Exercises for Materials Characterization has not been started

Below you will find excerpts from events related to this course:

Materials Characterization
2174586, SS 2023, 2 SWS, Language: German, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content
The following methods will be introduced within this lecture:

- microscopic methods: optical microscopy, electron microscopy (SEM/TEM), atomic force microscopy
- material and microstructure analyses by means of X-ray, neutron and electron beams
- analysis methods at SEM/TEM (e.g. EELS)
- spectroscopic methods (e.g. EDS / WDS)

Learning objectives:
The students have fundamental knowledge about methods of material analysis. They have a basic understanding to transfer this fundamental knowledge on problems in engineering science. Furthermore, the students have the ability to describe technical material by its microscopic and submicroscopic structure.

Literature
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.

Tutorials and lab courses for "materials characterization"
2174988, SS 2023, 1 SWS, Language: German, Open in study portal
Practice (U)
Blended (On-Site/Online)

Content
s. lecture "materials characterization" (V-No. 2174586)

Organizational issues
Die Termine und der Ort zu den Übungen und Laborbesuche zur Vorlesung Werkstoffanalytik (V-Nr. 2174586) werden in der Vorlesung bekanntgegeben.
The dates and locations of the tutorials and lab courses for the lecture materials characterization (V-No. 2174586) will be announced in one of the first lectures.
Literatur
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.

Responsible: Dr. Peter Franke
Prof. Dr. Hans Jürgen Seifert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2193004</td>
<td>Exercises for Solid State Reactions and Kinetics of Phase Transformations</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Franke, Ziebert</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-107632</td>
<td>Exercises for Solid State Reactions and Kinetics of Phase Transformations</td>
<td>Seifert, Franke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏭 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
successful processing of exercises

Prerequisites
T-MACH-110926 – Exercises for Solid State Reactions and Kinetics of Phase Transformations has not been started

Below you will find excerpts from events related to this course:

V Exercises for Solid State Reactions and Kinetics of Phase Transformations
2193004, WS 22/23, 1 SWS, Language: German, Open in study portal

Practice (Ü)
On-Site

Content
1. Fick’s laws of diffusion
2. Calculation of diffusion coefficients
3. Diffusion and solidification

Recommendations: Lecture in Solid State Reactions and Kinetics of Phase Transformations; Basic course in materials science and engineering; physical chemistry

Reinforcement of the lecture by the solution of practical and lecture-relevant exercises

regular attendance: 14 hours
self-study: 46 hours

Literature
Vorlesungsskript;
Lecture notes
3.107 Course: Experimental Dynamics [T-MACH-105514]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Title</th>
<th>Credits</th>
<th>Lecture/Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>ST 2023</td>
<td>Experimental Dynamics</td>
<td>3 SWS</td>
<td>Lecture / Fidlin</td>
<td>Fidlin</td>
</tr>
<tr>
<td>ST 2023</td>
<td>ST 2023</td>
<td>Übungen zu Experimentelle Dynamik</td>
<td>2 SWS</td>
<td>Practice / Fidlin, Genda</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>ST 2023</td>
<td>76-T-MACH-105514 Experimental Dynamics</td>
<td>Fidlin</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⏰ On-Site, ❌ Cancelled

Competence Certificate
oral exam, 30 min.

Prerequisites
Can not be combined with Practical Training in Measurement of Vibrations (T-MACH-105373).

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105373 - Practical Training in Measurement of Vibrations must not have been started.

Below you will find excerpts from events related to this course:

Experimental Dynamics
2162225, SS 2023, 3 SWS, Language: German, Open in study portal

Content

1. Introduction
2. Measurement principles
3. Sensors as coupled multi-physical systems
4. Digital signal processing, measurements in frequency domain
5. Forced non-linear vibrations
6. Stability problems (Mathieu oscillator, friction induces vibrations)
7. Elementary rotor dynamics
8. Modal analysis
3.108 Course: Experimental Fluid Mechanics [T-MACH-105512]

Responsible: Dr. Jochen Kriegseis
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, 📑 Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam - 30 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Experimental Fluid Mechanics
2153530, WS 22/23, 2 SWS, Language: English, Open in study portal

Content
The students can describe the relevant physical principles of experimental fluid mechanics. They are qualified to comparatively discuss the introduced measurement techniques. Furthermore, they are able to distinguish (dis-)advantages of the respective approaches. The students can evaluate and discuss measurement signal and data obtained with the common fluid mechanical measuring techniques.

This lecture focuses on experimental methods of fluid mechanics and their application to solve flow problems of practical relevance. In addition, measurement signals and data, obtained with the discussed measuring techniques, are evaluated, presented and discussed.

The lecture covers a selection of the following topics:

- measuring techniques and measureable quantities
- measurements in turbulent flows
- pressure measurements
- hot wire measurements
- optical measuring techniques
- error analysis
- scaling laws
- signal and data evaluation

Literature
Experimental Fluid Mechanics
2154446, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content
This lecture focuses on experimental methods of fluid mechanics and their application to solve flow problems of practical relevance. In addition, measurement signals and data, obtained with the discussed measuring techniques, are evaluated, presented and discussed.

The lecture covers a selection of the following topics:

- measuring techniques and measurable quantities
- measurements in turbulent flows
- pressure measurements
- hot wire measurements
- optical measuring techniques
- error analysis
- scaling laws
- signal and data evaluation

Organizational issues
Die Vergabe von Leistungspunkten zu den Veranstaltungen mit LVNr 2154446 und 2153530 schließt sich gegenseitig aus.

Literature
3.109 Course: Experimental Lab Class in Welding Technology, in Groups [T-MACH-102099]

Responsible: Dr.-Ing. Stefan Dietrich

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2173560</td>
<td>Welding Lab Course, in groups</td>
<td>3 SWS</td>
<td>Practical course / Dietrich, Schulze</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102099</td>
<td>Experimental Lab Class in Welding Technology, in Groups</td>
<td>3 SWS</td>
<td>Dietrich</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☢ Cancelled

Competence Certificate

Certificate to be issued after evaluation of the lab class report.

Prerequisites

Certificate of attendance for Welding technique (The participation in the course Welding Technology I/II is assumed.).

Annotation

The lab takes place at the beginning of the winter semester break once a year. The registration is possible during the lecture period in the secretariat of the Institute of Applied Materials (IAM – WK). The lab is carried out in the Handwerkskammer Karlsruhe.

You need sturdy shoes and long clothes!

Below you will find excerpts from events related to this course:

Welding Lab Course, in groupes

2173560, WS 22/23, 3 SWS, Language: German, Open in study portal

Practical course (P)

On-Site

Content

The lab takes place at the beginning of the winter semester break once a year. The registration is possible during the lecture period in the secretariat of the Institute of Applied Materials (IAM – WK). The lab is carried out in the Handwerkskammer Karlsruhe.

learning objectives: The students are capable to name a survey of current welding processes and their suitability for joining different metals. The students can evaluate the advantages and disadvantages of the individual procedures. The students have weld with different welding processes.

requirements:

Certificate to be issued after evaluation of the lab class report

You need sturdy shoes and long clothes!

workload:

- regular attendance: 31,5 hours
- preparation: 8,5 hours
- lab report: 80 hours

Literature

wird im Praktikum ausgegeben
Course: Fabrication Processes in Microsystem Technology [T-MACH-102166]

Responsible: Dr. Klaus Bade
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Online</th>
<th>On-Site/Online</th>
<th>On-Site</th>
<th>Cancelled</th>
<th>Time</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>German</td>
<td>Online</td>
<td>Bade</td>
<td>Bade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>German</td>
<td></td>
<td>Bade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Online</th>
<th>On-Site/Online</th>
<th>On-Site</th>
<th>Cancelled</th>
<th>Time</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>German</td>
<td></td>
<td>Bade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>German</td>
<td></td>
<td>Bade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination, 20 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Fabrication Processes in Microsystem Technology

2143882, WS 22/23, 2 SWS, Language: German, Open in study portal
Lecture (V) Blended (On-Site/Online)

Organizational issues
Achtung: Diese Veranstaltung kann im Wintersemester erst Im Dezember beginnen, Ort und Termine werden rechtzeitig bekannt gegeben. Bitte melden Sie sich trotzdem bereits auf ILIAS an.

Literature

M. Madou
Fundamentals of Microfabrication
CRC Press, Boca Raton, 1997

W. Menz, J. Mohr, O. Paul
Mikrosystemtechnik für Ingenieure
Dritte Auflage, Wiley-VCH, Weinheim 2005

L.F. Thompson, C.G. Willson, A.J. Bowden
Introduction to Microlithography

Fabrication Processes in Microsystem Technology

2143882, SS 2023, 2 SWS, Language: German, Open in study portal
Lecture (V) On-Site

Content

The lecture offers an advanced understanding of manufacturing processes in microsystem technology. Basic aspects of microtechnological processing will be introduced. With examples from semiconductor microfabrication and microsystem technology the base processing steps for conditioning and finishing, patterning, removal are imparted. Nano-patterning is covered is also included and the micro-nano interface is discussed. By the help of typical processing steps elementary mechanisms, process execution, and equipment are explained. Additionally quality control, process control and environmental topics are included.
Literature
M. Madou
Fundamentals of Microfabrication
CRC Press, Boca Raton, 1997
W. Menz, J. Mohr, O. Paul
Mikrosystemtechnik für Ingenieure
Dritte Auflage, Wiley-VCH, Weinheim 2005
L.F. Thompson, C.G. Willson, A.J. Bowden
Introduction to Microlithography
3.111 Course: Failure Analysis [T-MACH-105724]

Responsible: Prof. Dr. Christian Greiner
Dr.-Ing. Johannes Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Greiner, Schneider</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Schneider</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

oral examination, ca. 30 min

Prerequisites

none

Recommendation

basic knowledge in materials science (e.g. lecture materials science I and II)

Below you will find excerpts from events related to this course:

V Failure Analysis

2182572, WS 22/23, 2 SWS, Open in study portal

Content

Aim, procedure and content of examining failure
Examination methods
Types of failure:
- Failure due to mechanical loads
- Failure due to corrosion in electrolytes
- Failure due to thermal loads
- Failure due to tribological loads
Damage systematics

The students are able to discuss damage evaluation and to perform damage investigations. They know the common necessary investigation methods and can regard failures considering load and material resistance. Furthermore they can describe and discuss the most important types of failure and damage appearance.

basic knowledge in materials science (e.g. lecture materials science I and II) recommended

regular attendance: 21 hours
self-study: 99 hours
oral exam, duration: ca. 30 minutes
no notes

Literature

3.112 Course: Failure of Structural Materials: Deformation and Fracture [T-MACH-102140]

Responsible: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Failure of structural materials: deformation and fracture</td>
<td>3 SWS</td>
<td>Lecture / Practice (/) Gumbsch, Weygand</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>Weygand, Gumbsch, Kraft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>Weygand, Gumbsch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☓ Cancelled

Competence Certificate
oral exam ca. 30 minutes
no tools or reference materials

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:

Failure of structural materials: deformation and fracture

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181711, WS 22/23</td>
<td>Failure of structural materials: deformation and fracture</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ) On-Site</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KIT Department of Mechanical Engineering - Non-degree Studies (Domestic Degree at Another Higher Education Institution)
Module Handbook as of 14/02/2023
Content

1. Introduction
2. linear elasticity
3. classification of stresses
4. Failure due to plasticity
 - tensile test
 - dislocations
 - hardening mechanisms
 - guidelines for dimensioning
5. composite materials
6. fracture mechanics
 - hypotheses for failure
 - linear elastic fracture mechanics
 - crack resistance
 - experimental measurement of fracture toughness
 - defect measurement
 - crack propagation
 - application of fracture mechanics
 - atomistics of fracture

The student

- has the basic understanding of mechanical processes to explain the relationship between externally applied load and materials strength.
- can explain the foundation of linear elastic fracture mechanics and is able to determine if this concept can be applied to a failure by fracture.
- can describe the main empirical materials models for deformation and fracture and can apply them.
- has the physical understanding to describe and explain phenomena of failure.

preliminary knowledge in mathematics, mechanics and materials science recommended

regular attendance: 22.5 hours
self-study: 97.5 hours

The assessment consists of an oral examination (ca. 30 min) according to Section 4(2), 2 of the examination regulation.

Organizational issues

Übungstermine werden in der Vorlesung bekannt gegeben!
nach aktuellem Stand Präsenz

Literature

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
Course: Failure of Structural Materials: Fatigue and Creep [T-MACH-102139]

Responsible: Dr. Patric Gruber
Prof. Dr. Peter Gumbsch

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Exam Type</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Gruber, Gumbsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Exam Type</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Gruber, Gumbsch</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Gruber, Gumbsch</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam ca. 30 minutes
no tools or reference materials

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:

V Failure of Structural Materials: Fatigue and Creep
2181715, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
On-Site
Content
1 Fatigue
1.1 Introduction
1.2 Lifetime
1.3 Fatigue Mechanisms
1.4 Material Selection
1.5 Notches and Shape Optimization
1.6 Case Studies: ICE-Accidents

2 Creep
2.1 Introduction
2.2 High Temperature Plasticity
2.3 Phenomenological Description of Creep
2.4 Creep Mechanisms
2.5 Alloying Effects

The student
• has the basic understanding of mechanical processes to explain the relationships between externally applied load and materials strength.
• can describe the main empirical materials models for fatigue and creep and can apply them.
• has the physical understanding to describe and explain phenomena of failure.
• can use statistical approaches for reliability predictions.
• can use its acquired skills, to select and develop materials for specific applications.

preliminary knowledge in mathematics, mechanics and materials science recommended

regular attendance: 22.5 hours
self-study: 97.5 hours

The assessment consists of an oral examination (ca. 30 min) according to Section 4(2), 2 of the examination regulation.

Literature
• Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
• Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); Standardwerk über Ermüdung, alle Materialklassen, umfangreich, für Einsteiger und Fortgeschrittene
3.114 Course: Fatigue of Materials [T-MACH-112106]

Responsible: Dr.-Ing. Stefan Guth
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Online</td>
<td>2 SWS</td>
<td>Guth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Guth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Guth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Guth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, about 20 minutes

Prerequisites

none

Recommendation

Basic knowledge in Materials Science will be helpful.

Below you will find excerpts from events related to this course:

Fatigue of Materials

2173586, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Legends: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Content

- Introduction: historical review and some fatigue damage cases
- Cyclic Stress Strain Behaviour
- Crack Initiation
- Crack Propagation
- Lifetime Behaviour under Cyclic Loading
- Fatigue of Notched Components
- Structural Durability
- Fatigue of composites and compound materials

Learning objectives:

The students are able to recognise the deformation and the failure behaviour of materials under cyclic loading and to assign it to the basic microstructural processes. They know the sequence and the development of fatigue damages and can evaluate the initiation and the growth of fatigue cracks.

The students can evaluate the cyclic strength behaviour of materials and components both qualitatively and quantitatively and know the procedures for the assessment of single-stage, multistage and stochastic cyclical loadings.

Requirements:

none, basic knowledge in Material Science will be helpful

Workload:

regular attendance: 21 hours
self-study: 99 hours

Literature

Ein Manuskript, das auch aktuelle Literaturhinweise enthält, wird in der Vorlesung verteilt.
3.115 Course: Fatigue of Welded Components and Structures [T-MACH-105984]

Responsible: Dr. Majid Farajian

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2181731 | Fatigue of Welded Components and Structures | 2 SWS | Block / 🧩 | Farajian |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

oral examination (ca. 30 min)

no tools or reference materials

Prerequisites

admission to the exam only with successful completion of the exercises [T-MACH-109304]

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-109304 - Excercises - Fatigue of Welded Components and Structures must have been passed.

Recommendation

preliminary knowledge materials science and mechanics

Below you will find excerpts from events related to this course:

Fatigue of Welded Components and Structures

2181731, WS 22/23, 2 SWS, Language: German, Open in study portal

Block (B) Blended (On-Site/Online)

Content

The lecture gives an introduction to the following topics:

- weld quality
- typical damages of welded joints
- evaluation of notches, defects and residual stresses
- strength concepts: nominal, structural and notch stress concepts, fracture mechanics
- life cycle analysis
- post-treatment methods for an extended lifetime
- maintenance, reconditioning and repair

The student can

- describe the influence of welding induced notches, defects and residual stresses on component behavior
- explain the basics of numerical and experimental methods for the evaluation of statically or cyclically loaded welds
- explain and apply them
- derive measures in order to increase the lifetime of structures with welded joints under cyclical load

preliminary knowledge materials science and mechanics recommended

regular attendance: 22.5 hours

self-study: 97.5 hours

Exercise sheets are handed out regularly.

oral examination (ca. 30 min)

no tools or reference materials
Organizational issues
Blockveranstaltung. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich. Vorlesungstermine und Hörsaal werden den angemeldeten Teilnehmern mitgeteilt.

Literature
2. FKM-Richtlinie, Bruchmechanisher Festigkeitsnachweis, Forschungskuratorium Maschinenbau, VDMA Verlag, 2009
Course: FEM Workshop - Constitutive Laws [T-MACH-105392]

Responsible: PD Dr.-Ing. Katrin Schulz
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

| Type | Completed coursework | Credits | 4 | Grading scale | pass/fail | Recurrence | Each term | Version | 1 |
|------|----------------------|---------|---|---------------|-----------|------------|-----------|---------|

Events

| ST 2023 | 2183716 | FEM Workshop -- Constitutive Laws | 2 SWS | Block / ☑ | Schulz, Weygand |

Legend:
Online, ☑ Blended (On-Site/Online), ☒ On-Site, ☓ Cancelled

Competence Certificate
solving of a FEM problem
preparation of a report
preparation of a short presentation

Prerequisites
none

Recommendation
Engineering Mechanics; Advanced Mathematics; Introduction to Theory of Materials

Below you will find excerpts from events related to this course:

FEM Workshop -- Constitutive Laws
2183716, SS 2023, 2 SWS, Language: German, Open in study portal
Block (B)
Blended (On-Site/Online)

Content
The course repeats the fundamentals of the theory of materials. It leads to the characterization and classification of material behavior as well as the specification by adequate material models. Here we focus on elastic, viscoelastic, plastic, and viscoplastic deformation behavior. Introducing the finite element program ABAQUS, the students learn how to analyze the material models numerically. Therefore ABAQUS-own and continuative constitutive equations are chosen.

The student

- has the basic understanding of the materials theory and the classification of materials
- is able to independently generate numerical models using ABAQUS and can choose and apply adequate constitutive equations

Engineering Mechanics; Advanced Mathematics; Introduction to Theory of Materials recommended

regular attendance: 28 hours

self-study: 92 hours

Oral examination (ca. 20 min) in the elective module MSc, otherwise no grading

solving of a FEM problem

preparation of a report

preparation of a short presentation

Organizational issues

Blockveranstaltung, Termine werden noch bekannt gegeben!

Kontakt: katrin.schulz@kit.edu
Course: Financial Analysis [T-WIWI-102900]

Responsible: Dr. Torsten Luedecke

Organisation: KIT Department of Economics and Management

Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2530205</td>
<td>Financial Analysis</td>
<td>2 SWS</td>
<td>Lecture / Luedecke</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2530206</td>
<td>Übungen zu Financial Analysis</td>
<td>2 SWS</td>
<td>Practice / Luedecke</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 7900059</td>
<td>Financial Analysis</td>
<td></td>
<td>Ruckes, Luedecke</td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900075</td>
<td>Financial Analysis</td>
<td></td>
<td>Luedecke</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
See German version.

Prerequisites
None

Recommendation
Basic knowledge in corporate finance, accounting, and valuation is required.

Below you will find excerpts from events related to this course:

Financial Analysis
2530205, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Literature

Responsible: Prof. Dr. Claus Günther
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, Duration: 30 minutes
no auxiliary means

Prerequisites
none
3.119 Course: Finite Element Workshop [T-MACH-105417]

Responsible: Prof. Dr. Claus Mattheck
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Finite Element Workshop</td>
<td>2 SWS</td>
<td>Block (B)</td>
<td>Weygand, Mattheck, Tesari</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Finite Element Workshop</td>
<td>76-T-MACH-105417</td>
<td>Mattheck, Gruber, Weygand</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
attendance certificate for participation in all course dates

Prerequisites
none

Recommendation
Continuum Mechanics

Events

Finite Element Workshop
2182731, SS 2023, 2 SWS, Language: German, [Open in study portal]

Content

The students will learn the foundations of the FEM stress analysis and the optimization method 'Zugdreiecke'. The student can

- perform stress analysis for simple components using the commercial software package ANSYS
- utilise the method of the tensile triangle to optimize the shape of components with respect to stress distribution

Fundamentals of Continuum Mechanics are required.

Organizational issues

Weitere Veranstaltung im Sommersemester 2023:

Bei Interesse wenden Sie sich bitte an: iwiza.tesari@kit.edu
3.120 Course: Flows and Heat Transfer in Energy Technology [T-MACH-105403]

Responsible: Prof. Dr.-Ing. Xu Cheng
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>1 SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189911</td>
<td>Tutorial 'Flows and Heat Transfer in Energy Technology'</td>
<td>Practice / 🧩</td>
<td>Cheng, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105403</td>
<td>Flows and Heat Transfer in Energy Technology</td>
<td>Cheng</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105403</td>
<td>Flows and Heat Transfer in Energy Technology</td>
<td>Cheng</td>
</tr>
</tbody>
</table>

Legend: 🇹 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ☑️ Cancelled

Competence Certificate
oral exam, 20 min

Prerequisites
none
3.121 Course: Flows with Chemical Reactions [T-MACH-105422]

Responsible: apl. Prof. Dr. Andreas Class
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Lecture / 🧩</td>
<td>Class</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Lecture / 🧩</td>
<td>Class</td>
</tr>
</tbody>
</table>

Legend: 🕹️ Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Competence Certificate
oral exam, duration 30 minutes
Auxiliary none

Prerequisites
none

Recommendation
Fluid Mechanics (T-MACH-105207)
Mathematical Methods in Fluid Mechanics (T-MACH-105295)

Below you will find excerpts from events related to this course:

Flows with chemical reactions
2153406, WS 22/23, 2 SWS, Language: German/English, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content
The students can describe flow scenarios, where a chemical reaction is confined to a thin layer. They can choose simplifying approaches for the underlying chemistry and discuss the problems with focus on the fluid mechanic aspects. The students are able to solve simple problems analytically. Furthermore, they are qualified to discuss simplifications as relevant for an efficient numerical solution of complex problems.

In the lecture we mainly consider problems, where chemical reaction is confined to a thin layer. The problems are solved analytically or they are at least simplified allowing for efficient numerical solution procedures. We apply simplified chemistry and focus on the fluid mechanic aspects of the problems.

Literature
Vorlesungsskript

Buckmaster, J.D.; Ludford, G.S.S.: Lectures on Mathematical Combustion, SIAM 1983
3.122 Course: Fluid Mechanics 1&2 [T-MACH-105207]

Responsibility: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2153512</td>
<td>Fluid Mechanics II</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Blended (On-Site/Online)</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3153511</td>
<td>Fluid Mechanics II</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Blended (On-Site/Online)</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2154512</td>
<td>Fluid Mechanics I</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Blended (On-Site/Online)</td>
</tr>
<tr>
<td>ST 2023</td>
<td>3154510</td>
<td>Fluid Mechanics I</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105207</td>
<td>Fluid Mechanics (1+2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105207 engl.</td>
<td>Fluid Mechanics 1&2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105207</td>
<td>Fluid Mechanics (1+2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105207 engl.</td>
<td>Fluid Mechanics 1&2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam 3 hours

Prerequisites

none

Below you will find excerpts from events related to this course:

Fluid Mechanics II
2153512, WS 22/23, 3 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ)
Blended (On-Site/Online)

Content

The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

- tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Literature

Fluid Mechanics II
3153511, WS 22/23, 3 SWS, Language: English, Open in study portal
Lecture / Practice (VÜ)
Blended (On-Site/Online)
Content
The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

Literature

Fluid Mechanics I
2154512, SS 2023, 3 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ) Blended (On-Site/Online)

Content
Properties of fluids, surface tension, hydro- and aerostatics, kinematics, stream tube theory (compressible and incompressible), losses in pipeline systems, dimensional analysis, dimensionless numbers

Literature

Fluid Mechanics I
3154510, SS 2023, 3 SWS, Language: English, Open in study portal
Lecture / Practice (VÜ) Blended (On-Site/Online)

Content
Properties of fluids, surface tension, hydro- and aerostatics, kinematics, stream tube theory (compressible and incompressible), losses in pipeline systems, dimensional analysis, dimensionless numbers

Literature
Course: Fluid Mechanics of Turbulent Flows [T-BGU-110841]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Number</th>
<th>Type</th>
<th>ECTS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>6221806</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>4 SWS</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>8244110841</td>
<td>Fluid Mechanics of Turbulent Flows</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, appr. 45 min.

Prerequisites

none

Recommendation

none

Annotation

none
3.124 Course: Fluid Power Systems [T-MACH-102093]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
none

Below you will find excerpts from events related to this course:

Fluid Technology
2114093, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content
In the range of hydrostatics the following topics will be introduced:

- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:

- Compressors
- Motors
- Valves
- Pneumatic circuits.

- regular attendance: 21 hours
- self-study: 92 hours

Literature
Skriptum zur Vorlesung *Fluidtechnik*
Institut für Fahrzeugsystemtechnik
downloadbar
3.125 Course: Fluid-Structure-Interaction [T-MACH-105474]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Mark-Patrick Mühlhausen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2154453</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗳 On-Site, ✗ Cancelled

Competence Certificate
oral exam 30 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Fluid-Structure-Interaction with Python
2154453, SS 2023, 2 SWS, Language: German, Open in study portal

Content
The lecture provides the basics for the description and modeling of flows, structures and their interaction. In the practical part, the covered methods and procedures are deepened with various exercises and examples with Python and Ansys Fluent.

- Brief introduction to Python and Ansys Fluent
- Basic equations of continuum mechanics
- Smoothing and remeshing algorithms for mesh deformation
- Finite volume and finite element method
- Methods of fluid-structure interaction
- coupling conditions
- Monolithic and partitioned coupling methods
- Coupling algorithms for partitioned methods
- Stability and convergence of coupled systems

Literature
wird in der Vorlesung vorgestellt
3 COURSES
Course: Foundations of Nonlinear Continuum Mechanics [T-MACH-105324]

Responsible: apl. Prof. Marc Kamlah
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events
WT 22/23 2181720 Foundations of nonlinear continuum mechanics 2 SWS Lecture / Kamlah

Exams
WT 22/23 76-T-MACH-105324 Foundations of Nonlinear Continuum Mechanics Kamlah
ST 2023 76-T-MACH-105324 Foundations of Nonlinear Continuum Mechanics Kamlah

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam

Below you will find excerpts from events related to this course:

V Foundations of nonlinear continuum mechanics
2181720, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
The lecture is organized in three parts. In the first part, the mathematical foundations of tensor algebra and tensor analysis are introduced, usually in cartesian representation. In the second part of the lecture, the kinematics, i.e. the geometry of deformation is presented. Besides finite deformation, geometric linearization is discussed. The third part of the lecture deals with the physical balance laws of thermomechanics. It is shown, how a special classical theory of continuum mechanics can be derived by adding a corresponding constitutive model. For the illustration of the theory, elementary examples are discussed repeatedly.

The students understand the fundamental structure of a continuum theory consisting of kinematics, balance laws and constitutive model. In particular, they recognize non-linear continuum mechanics as a common structure including all continuum theories of thermomechanics, which are obtained by adding a corresponding constitutive model. The students understand in detail the kinematics of finite deformation and know the transition to the geometrically linear theory they are familiar with. The students know the spatial and material representation of the theory and the different related tensors. The students take the balance laws as physical postulates and understand their respective physical motivation.

regular attendance: 22,5 hours
self-study: 97,5 hours
oral exam ca. 30 minutes

Literature
Vorlesungsskript
3.127 Course: Foundry Technology [T-MACH-105157]

Responsible: Dr.-Ing. Christian Wilhelm

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event ID</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2174575</td>
<td>Foundry Technology</td>
<td>2 SWS</td>
<td>Lecture / x</td>
<td>Wilhelm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event ID</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105157</td>
<td>Foundry Technology</td>
<td></td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>Wilhelm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam; about 25 minutes

Prerequisites
Materials Science I & II must be passed.

Below you will find excerpts from events related to this course:

V Foundry Technology
2174575, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) Cancelled

Content
Moulding and casting processes
Solidifying of melts
Castability
Fe-Alloys
Non-Fe-Alloys
Moulding and additive materials
Core production
Sand reclamation
Design in casting technology
Casting simulation
Foundry Processes

learning objectives:
The students know the specific moulding and casting techniques and are able to describe them in detail. The students know the application of moulding and casting techniques concerning castings and metals, their advantages and disadvantages in comparison, their application limits and are able to describe these in detail.

The students know the applied metals and are able to describe advantages and disadvantages as well as the specific range of use.

The students are able, to describe detailed mould and core materials, technologies, their application focus and mould-affected casting defects.

The students know the basics of casting process of any casting parts concerning the above mentioned criteria and are able to describe detailed.

requirements:
Required: Material Science and Engineering I and II

workload:
The workload for the lecture Foundry Technology is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).

Literature
Literaturhinweise werden in der Vorlesung gegeben
Reference to literature, documentation and partial lecture notes given in lecture
Course: Fuels and Lubricants for Combustion Engines [T-MACH-105184]

Responsible: Hon.-Prof. Dr. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: ca. 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Fuels and Lubricants for Combustion Engines
2133108, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

Electric drives and fuel cell drives with the associated operating materials will also be presented

- Introduction, basics, primary energy and energy chains
- Illustrative chemistry of hydrocarbons
- Fossil fuels, exploration, processing, standards
- Operating materials not fossil, renewable, alternative
- Fuels, lubricants, coolants, AdBlue
- Laboratory analysis, testing, test benches and measurement technology
- Excursion to test fields for motorized drives from 0.5 to 3,500 kW

Literature

Skript
3.129 Course: Functional Ceramics [T-MACH-105179]

Responsible: Dr. Manuel Hinterstein
Dr.-Ing. Wolfgang Rheinheimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76T-MACH-105179</td>
<td>Functional Ceramics</td>
<td>Hinterstein</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min) taking place at the agreed date.

Auxiliary means: none
The re-examination is offered upon agreement.

Prerequisites

none
3.130 Course: Fundamental Numerical Algorithms for Engineers [T-BGU-109953]

Responsible: Prof. Dr.-Ing. Markus Uhlmann

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6221912</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td>2 SWS</td>
<td>Uhlmann, Herlina</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8244109953</td>
<td>Fundamental Numerical Algorithms for Engineers</td>
<td></td>
<td>Uhlmann, Herlina</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate

written exam, 60 min.

Prerequisites

none

Recommendation

none

Annotation

none
3.131 Course: Fundamentals for Design of Motor-Vehicle Bodies I [T-MACH-102116]

Responsible: Dipl.-Ing. Horst Dietmar Bardehle
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>1 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2113814</td>
<td>Lecture</td>
<td>Bardehle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>Unrau, Bardehle</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>Bardehle, Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral group examination

Duration: 30 minutes

Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals for Design of Motor-Vehicle Bodies I
2113814, WS 22/23, 1 SWS, Language: German, Open in study portal

Content
1. History and design
2. Aerodynamics
3. Design methods (CAD/CAM, FEM)
4. Manufacturing methods of body parts
5. Fastening technology
6. Body in white / body production, body surface

Learning Objectives:
The students have an overview of the fundamental possibilities for design and manufacture of motor-vehicle bodies. They know the complete process, from the first idea, through the concept to the dimensioned drawings (e.g. with FE-methods). They have knowledge about the fundamentals and their correlations, to be able to analyze and to judge relating components as well as to develop them accordingly.

Organizational issues
Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIlias/
CO, Geb. 70.04, Raum 219.
Termine und nähere Informationen: siehe Institutshomepage
Dates and further information will be published on the homepage of the institute.
Literature
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
3 132 Course: Fundamentals for Design of Motor-Vehicle Bodies II [T-MACH-102119]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Course</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>1</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>1 SWS</td>
<td>Bardehle</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td></td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td></td>
<td>Bardehle</td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td></td>
<td>Bardehle, Gauterin</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral group examination

Duration: 30 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Content

1. Body properties/testing procedures
2. External body-parts
3. Interior trim
4. Compartment air conditioning
5. Electric and electronic features
6. Crash tests
7. Project management aspects, future prospects

Learning Objectives:

The students know that, often the design of seemingly simple detail components can result in the solution of complex problems. They have knowledge in testing procedures of body properties. They have an overview of body parts such as bumpers, window lift mechanism and seats. They understand, as well as, parallel to the normal electrical system, about the electronic side of a motor vehicle. Based on this they are ready to analyze and to judge the relation of these single components. They are also able to contribute competently to complex development tasks by imparted knowledge in project management.

Organizational issues

Voraussichtliche Termine, nähere Informationen und evtl. Änderungen:
siehe Institutshomepage. Präsenzveranstaltung unter Vorbehalt der Pandemie-Entwicklung

Scheduled dates, further Information and possible changes of date:
see homepage of the institute.

Literature

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
3 COURSES

Course: Fundamentals in the Development of Commercial Vehicles [T-MACH-111389]

3.133 Course: Fundamentals in the Development of Commercial Vehicles [T-MACH-111389]

Responsible: Christof Weber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Grade</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>Lecture</td>
<td>1 SWS</td>
<td>Weber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>Lecture</td>
<td>1 SWS</td>
<td>Weber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Grade</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76T-MACH-111389</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>Lecture</td>
<td>Weber</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76T-MACH-111389</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>Lecture</td>
<td>Weber</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral group examination
Duration: appr. 30 minutes
Auxiliary means: none

Prerequisites

none

Annotation

Fundamentals in the Development of Commercial Vehicles I, WT
Fundamentals in the Development of Commercial Vehicles II, ST

Below you will find excerpts from events related to this course:

Fundamentals in the Development of Commercial Vehicles I

2113812, WS 22/23, 1 SWS, Language: German, [Open in study portal](#)

Lecture (V)
On-Site

Content

1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodyshell work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Learning Objectives:

The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

The students are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.
Organizational issues
Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterillas/

CO, Geb. 70.04, Raum 219. Termine und Nähere Informationen: siehe Institutshomepage

Dates and further information will be published on the homepage of the institute.

Literature

V Fundamentals in the Development of Commercial Vehicles II
2114844, SS 2023, 1 SWS, Language: German, Open in study portal

Content
1. Gear boxes of commercial vehicles
2. Intermediate elements of the drive train
3. Axle systems
4. Front axles and driving dynamics
5. Chassis and axle suspension
6. Braking System
7. Systems
8. Excursion

Learning Objectives:
The students know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application.

Organizational issues
Genaue Termine sowie nähere Informationen und eventuelle Terminänderungen:
siehe Institutshomepage.

Literature
1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803
3.134 Course: Fundamentals of Automobile Development I [T-MACH-105162]

Responsible: Prof.Dipl.-Ing. Rolf Frech
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113810</td>
<td>Fundamentals of Automobile Development I</td>
<td>1</td>
<td>Lecture / On-Site</td>
<td>1</td>
<td>Frech</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2113851</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>1</td>
<td>Lecture / On-Site</td>
<td>1</td>
<td>Frech</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>Frech, Unrau</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>Frech, Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Written examination

Duration: 90 minutes
Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Automobile Development I

2113810, WS 22/23, 1 SWS, Language: German, [Open in study portal](https://fast-web-01.fast.kit.edu/Passwoerterilias/)

Lecture (V)
On-Site

Content

1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives

The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterilias/

Campus Ost, geb. 70.04., Raum 219
Termine und nähere Informationen finden Sie auf der Institutshomepage.
Kann nicht mit Lehrveranstaltung 2113851 kombiniert werden.
Date and further information will be published on the homepage of the institute.
Cannot be combined with lecture 2113851.
Principles of Whole Vehicle Engineering I

2113851, WS 22/23, 1 SWS, Language: English, Open in study portal

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aerodynamical dimensioning and design of an automobile I
5. Aerodynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues
You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/Passwoerterlias/

CO, Geb.70.04, Raum 219. Termine und nähere Informationen finden Sie auf der Institutshomepage. Dats and further information will be published on the homepage of the institute.

Kann nicht mit Lehrveranstaltung 2113810 kombiniert werden
Cannot be combined with lecture 2113810.

Literature
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben

The scriptum will be provided during the first lessons
Course: Fundamentals of Automobile Development II [T-MACH-105163]

Responsible: Prof.Dipl.-Ing. Rolf Frech
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Organising</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>1 SWS</td>
<td>Block / Online</td>
<td>Frech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>1 SWS</td>
<td>/ On-Site</td>
<td>Frech</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Organising</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>ST 76-T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>Frech, Unrau</td>
</tr>
<tr>
<td>ST 2023</td>
<td>ST 76-T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>Frech, Unrau</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Principles of Whole Vehicle Engineering II
2114842, SS 2023, 1 SWS, Language: German, Open in study portal

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues
Vorlesung findet als Blockvorlesung am Campus Ost, Geb. 70.04, Raum 219 statt. Termine werden über die Homepage bekannt gegeben.
Kann nicht mit der Veranstaltung [2114860] kombiniert werden.
Cannot be combined with lecture [2114860].

Literature
Skrift zur Vorlesung ist über ILIAS verfügbar.
Principles of Whole Vehicle Engineering II
2114860, SS 2023, 1 SWS, Language: English, Open in study portal

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues
Kann nicht mit der Veranstaltung [2114842] kombiniert werden.
Cannot be combined with lecture [2114842].
Veranstaltung findet am Campus Ost, Geb. 70.04, Raum 219 statt. Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.

Literature
Das Skript zur Vorlesung ist über ILIAS verfügbar.
3.136 Course: Fundamentals of Catalytic Exhaust Gas Aftertreatment [T-MACH-105044]

Responsible: Prof. Dr. Olaf Deutschmann
Prof. Dr. Jan-Dierk Grunwaldt
Dr.-Ing. Heiko Kubach
Hon.-Prof. Dr. Egbert Lox

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
- Oral examination

Credits
- 4

Grading scale
- Grade to a third

Recurrence
- Each summer term

Version
- 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Literature

Course: Fundamentals of Combustion Engine Technology [T-MACH-105652]

Responsible: Dr.-Ing. Sören Bernhardt
Dr.-Ing. Heiko Kubach
Jürgen Pfeil
Dr.-Ing. Olaf Toedter
Dr.-Ing. Uwe Wagner

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
- Written examination

Credits
- 5

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Mode</th>
<th>Responsible</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Mode</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76-T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>Online</td>
<td>Kubach</td>
</tr>
<tr>
<td></td>
<td>76-T-MACH-105652(SP)</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>Blended (On-Site/Online)</td>
<td>Kubach</td>
</tr>
<tr>
<td></td>
<td>76-T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>On-Site</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

Competence Certificate
- written exam, 60 min.

Prerequisites
- none

Below you will find excerpts from events related to this course:

Fundamentals of Combustion Engine Technology
- 2133123, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content
- Fundamentals of engine processes
- Components of combustion engines
- Mixture formation systems
- Gas exchange systems
- Injection systems
- Exhaust Gas Aftertreatment Systems
- Cooling systems
- Ignition Systems
3.138 Course: Fundamentals of Combustion I [T-MACH-105213]

Responsible: Prof. Dr. Ulrich Maas

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Event ID</th>
<th>Title</th>
<th>WS 22/23</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2165515</td>
<td>Fundamentals of Combustion I</td>
<td>2</td>
<td></td>
<td>Lecture / On-Site</td>
<td>Maas</td>
</tr>
<tr>
<td>Tutorial</td>
<td>3165016</td>
<td>Fundamentals of Combustion I</td>
<td>2</td>
<td></td>
<td>Lecture / On-Site</td>
<td>Maas</td>
</tr>
<tr>
<td>Lecture</td>
<td>3165017</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>1</td>
<td></td>
<td>Practice / On-Site</td>
<td>Bykov</td>
</tr>
<tr>
<td>Tutorial</td>
<td>3165017</td>
<td>Fundamentals of Combustion I</td>
<td>1</td>
<td></td>
<td>Practice / On-Site</td>
<td>Bykov</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Event ID</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>76-T-MACH-105213</td>
<td>Fundamentals of Combustion I - german exam</td>
<td>Maas</td>
</tr>
<tr>
<td>Exam</td>
<td>76-T-MACH-105464</td>
<td>Fundamentals of Combustion I - english exam</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, approx. 3 hours

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Combustion I

2165515, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames
- Ignition processes
- NOx formation
- Formation of hydrocarbons and soot

Literature

Vorlesungsskript,

Fundamentals of Combustion I (Tutorial)

2165017, WS 22/23, 1 SWS, Language: German, Open in study portal

Literature

- Vorlesungsskript
Fundamentals of Combustion I
3165016, WS 22/23, 2 SWS, Language: English, Open in study portal

Content

- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames
- Ignition processes
- NOx formation
- Formation of hydrocarbons and soot

Literature

Vorlesungsskript,
3 COURSES

Course: Fundamentals of Energy Technology [T-MACH-105220]

3.139 Course: Fundamentals of Energy Technology [T-MACH-105220]

Responsible: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2130927</td>
<td></td>
<td>Fundamentals of Energy Technology</td>
<td>3 SWS</td>
<td>Cheng, Badea</td>
</tr>
<tr>
<td>ST 2023 3190923</td>
<td></td>
<td>Fundamentals of Energy Technology</td>
<td>3 SWS</td>
<td>Badea</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 76-T-MACH-105220</td>
<td></td>
<td>Fundamentals of Energy Technology</td>
<td>Badea, Cheng</td>
</tr>
<tr>
<td>ST 2023 76-T-MACH-105220</td>
<td></td>
<td>Fundamentals of Energy Technology</td>
<td>Cheng, Badea</td>
</tr>
<tr>
<td>ST 2023 76-T-MACH-105220 Fundamentals of Energy Technology</td>
<td></td>
<td>Fundamentals of Energy Technology</td>
<td>Badea</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Written examination, 90 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Content
The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy demand and energy situation
- Energy types and energy mix
- Basics. Thermodynamics relevant to the energy sector
- Conventional fossil-fired power plants
- Combined Cycle Power Plants
- Cogeneration
- Nuclear energy
- Regenerative energies: hydropower, wind energy, solar energy, other energy systems
- Energy storage
- Transport of energy
- Power generation and environment. Future of the energy industry
Content
The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy forms
- Thermodynamics relevant to energy industry
- Energy sources: fossil fuels, nuclear energy, renewable sources
- Energy industry in Germany, Europe and worldwide
- Power generation and environment
- Evaluation of energy conversion processes
- Thermal/electrical power plants and processes
- Transport of energy / energy carriers
- Energy storage
- Systems utilizing renewable energy sources
- Basics of economic efficiency and calculus / Optimisation
- Future of the energy industry
3.140 Course: Fundamentals of Reactor Safety for the Operation and Dismantling of Nuclear Power Plants [T-MACH-105530]

Responsible: Dr. Victor Hugo Sanchez-Espinoza
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 | 76-T-MACH-105530 | Fundamentals of reactor safety for the operation and dismantling of nuclear power plants | Sanchez-Espinoza |

Competence Certificate
oral exam about 30 minutes

Prerequisites
none
3.141 Course: Fusion Technology A [T-MACH-105411]

Responsible: Prof. Dr. Robert Stieglitz

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2169483</th>
<th>Fusion Technology A</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Stieglitz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2169484</td>
<td>Exercise Fusion Technology A</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Stieglitz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>76-T-MACH-105411</th>
<th>Fusion Technology A</th>
<th>Stieglitz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105411</td>
<td>Fusion Technology A</td>
<td>Stieglitz</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam of about 30 minutes

Prerequisites
none

Recommendation
appreciated is knowledge in heat and mass transfer as well as in electrical engineering, basic knowledge in fluid mechanics, materials sciences and physics

Below you will find excerpts from events related to this course:

Fusion Technology A
2169483, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
On-Site

Content
To transfer the basic physical concepts of particle physics, fusion and nuclear fission; this includes fundamental questions such as how: What is a plasma? How can it be ignited? What is the difference between magnetic and inertial fusion? Based on this, aspects of the stability of plasmas, their control and particle transport are discussed. After characterizing the plasma, the "fire" of fusion, the confinement in magnetic fields is sketched, which are built up with the help of magnetic technology. Here, knowledge of superconductivity, production and design of magnets is imparted. A reactor operation with a plasma as an energy source requires a continuous operation of a tritium and fuel cycle, which is generated by the fusion reactor itself. Since fusion plasmas require small material densities, vacuum technology plays a central role. Finally, the heat generated in the fusion power plant must be converted into a power plant process and the reaction products removed. The functional basics and the structure of these fusion-typical in-vessel components are presented and the current challenges and the state of the art are demonstrated.

The course describes the essential functional principles of a fusion reactor, beginning with plasma, magnet technology, the tritium and fuel cycle, vacuum technology and the associated material sciences. The physical basics will be taught and the engineering laws of scaling will be demonstrated. Special importance is attached to the understanding of the interfaces between the different subject areas, which essentially determine the engineering technical interpretations. Methods for identifying and evaluating the central parameters will be demonstrated. Based on the acquired perception skills, methods for the design of solution strategies will be taught and technical solutions will be identified, their weak points discussed and evaluated.

Recommendations/Pre-knowledge:
Basic knowledge of fluid mechanics, materials engineering and physics. Knowledge of heat and mass transfer and electrical engineering is helpful.

Presence time: 21 h
Self-study: 90 h
Oral examination:
Duration: approx. 30 minutes, aids: none
Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
Innerhalb jedes Teilblockes wird eine Literaturliste der jeweiligen Fachliteratur angegeben. Zusätzlich erhalten die Studenten/-innen das Studienmaterial in gedruckter und elektronischer Version.
Course: Fusion Technology B [T-MACH-105433]

Responsible: Prof. Dr. Robert Stieglitz
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Technology B</td>
<td>2190492</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>🗣</td>
<td>Stieglitz</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Fusionstechnologie B</td>
<td>2190493</td>
<td>Practice / 🖥</td>
<td>2 SWS</td>
<td>🖥</td>
<td>Stieglitz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Technology B</td>
<td>76-T-MACH-105433</td>
<td></td>
<td></td>
<td>Stieglitz</td>
<td></td>
</tr>
<tr>
<td>Fusion Technology B</td>
<td>76-T-MACH-105433</td>
<td></td>
<td></td>
<td>Stieglitz</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

oral exam of about 30 minutes

Prerequisites

none

Recommendation

attendance of fusion technology A lecture

reliable capability to use fundamental knowledge communicated in the bachelor study in physics, material sciences, electrical engineering and engineering design

Annotation

none

Below you will find excerpts from events related to this course:

Fusion Technology B

2190492, SS 2023, 2 SWS, Language: German, [Open in study portal](#)
Content
Fusion Technology B is a continuation of Fusion Technology A lecture and includes the following topics:

Fusion neutronics, materials science of thermally and neutronically highly loaded components, reactor scaling and safety as well as plasma heating and current drive. The section fusion neutronics develops the basics of fusion neutronics and its calculation methods, the nuclear physical design of a fusion reactor and the corresponding components (blankets, shielding, activation, tritium breeding ratio and dose rate). Since both neutron fluxes and area power density in a fusion power plant are significantly higher than those of other power plants, they require special materials. After an extension of existing material knowledge by fundamentals and methods for the calculation of radiation damage in materials, strategies for the material selection of functional and structural materials are shown and deepened by examples. The arrangement of components close to the plasma in a fusion power plant means changed requirements for system integration and energy conversion; these questions are the subject of the block reactor scaling and safety. In addition to the explanation of the safety objectives, the methods for achieving the objectives and the computational tools required to achieve them are dealt with in particular. To ignite the plasma, extreme temperatures of several million degrees are required. Special plasma heating methods are used for this purpose, such as electron cyclotron resonance heating (ECRH), ion cyclotron resonance heating (ICRH), current drive at the lower hybrid frequency and neutral particle injection. Their basic mode of action, design criteria, transmission options and performance are presented and discussed. In addition, the heating processes can also be used for plasma stabilization. Some considerations and limitations are presented.

The lecture, which runs over 2 semesters, is aimed at students of engineering sciences and physics after the bachelor. The aim is an introduction to the current research and development on fusion and its long-term goal of a promising energy source. After a short insight into fusion physics, the lecture focuses on key technologies for a future fusion reactor. The lecture will be accompanied by exercises at Campus Nord (block event, 2-3 afternoons per topic).

Recommendations/Prerequisites:
Knowledge of physics, heat and mass transfer, and design theory taught in the bachelor's degree. Attendance of the lecture Fusion technology A

Presence time: 21 h
Self-study: 49 h

Oral proof of participation in the exercises
Duration: approx. 25 minutes, aids: none

Literature
Lecture notes

3.143 Course: Gasdynamics [T-MACH-105533]

Responsible: Dr.-Ing. Davide Gatti
Dr. Jochen Kriegseis

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Subject</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105533</td>
<td>Gasdynamics</td>
<td>Gatti, Serpieri, Magagnato</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam - 30 minutes

Prerequisites

none
3.144 Course: Gear Cutting Technology [T-MACH-102148]

Responsible: Dr.-Ing. Markus Klaiber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Gear Technology</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Klaiber</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102148</td>
<td>Gear Technology</td>
<td>Klaiber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Oral Exam (20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Gear Technology

2149655, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

Learning Outcomes:

The students …

- can describe the basic terms of gearings and are able to explain the imparted basics of the gearwheel and gearing theory.
- are able to specify the different manufacturing processes and machine technologies for producing gearings. Furthermore they are able to explain the functional principles and the dis-/advantages of these manufacturing processes.
- can apply the basics of the gearing theory and manufacturing processes on new problems.
- are able to read and interpret measuring records for gearings. are able to make an appropriate selection of a process based on a given application
- can describe the entire process chain for the production of toothed components and their respective influence on the resulting workpiece properties.

Workload:

regular attendance: 21 hours
self-study: 99 hours

Organizational issues

Start: 27.10.2022
Literature
Medien:
Skrift zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.
Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.145 Course: Global Logistics [T-MACH-105379]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 3118095 | Global Logistics | 2 SWS | 🧩 | Furmans, Kivelä, Jacobi |

Exams

| WT 22/23 | 76T-MACH-105379 | Global Logistics | Furmans, Jacobi, Oellerich |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate

oral exam (approx. 20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Global Logistics

3118095, SS 2023, 2 SWS, Language: English, Open in study portal

Blended (On-Site/Online)
Content
Conveyor Systems
- Basic elements of conveyor systems
- Key figures
- Branching elements
- continuous/partially-continuous
- deterministic/stochastic switch
- Integration elements
- continuous/partially-continuous
- dispatching rules

Queueing Theory and Production Logistics
- Basic queueing systems
- Distributions
- M|M|1 and M|G|1 model
- Application on production logistics

Distribution Centers and Order Picking
- The location problem
- Distribution centers
- Inventory management
- Order picking

Vehicle Routing
- Types of vehicle routing problems
- Linear programming model and graph theoretic model
- Heuristics
- Supporting technologies

Optimization of Logistical Networks
- Objectives
- Cooperative strategies
- Supply chain management
- Implementation

Organizational issues
Attendance during lecture is required. Admission to the exam is only possible when attending the lecture.

Literature
Arnold, Dieter; Furmans, Kai : Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg
3.146 Course: Global Production and Logistics - Part 1: Global Production [T-MACH-105158]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2149613</td>
<td>Global Production</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Lanza, Peukert</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-110991</td>
<td>Global Production</td>
<td>Lanza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-110991</td>
<td>Global Production</td>
<td>Lanza</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ❌ Cancelled

Competition Certificate

Written Exam (60 min)

Prerequisites

"T-MACH-108848 - Globale Produktion und Logistik - Teil 1: Globale Produktion" must not be commenced.

Below you will find excerpts from events related to this course:

Global Production

2149613, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Blended (On-Site/Online)
Content
The lecture examines the management of global production networks of manufacturing companies. It gives an overview of the influencing factors and challenges of global production. In-depth knowledge of common methods and procedures for planning, designing and managing global production networks is imparted.

Therefore, the lecture first of all discusses the connections and interdependencies between the business strategy and the production strategy and illustrates necessary tasks for the definition of a production strategy. Methods for site selection, for the site-specific adaptation of product design and production technology as well as for the establishment of new production sites and for the adaptation of existing production networks to changing framework conditions are subsequently taught within the context of the design of the network footprint. With regard to the management of global production networks, the lecture addresses challenges associated with coordination, procurement and order management in global networks. The lecture is complemented by a discussion on the use of industry 4.0 applications in global production and current trends in planning, designing and managing global production networks.

The topics include:

- Basic conditions and influencing factors of global production (historical development, targets, chances and threats)
- Framework for planning, designing and managing global production networks
- Production strategies for global production networks
 - From business strategy to production strategy
 - Tasks of the production strategy (product portfolio management, circular economy, planning of production depth, production-related research and development)
- Design of global production networks
 - Basic types of network structures
 - Planning process for the design of the network footprint
 - Adaptation of the network footprint
 - Site selection
 - Location-specific adaptation of production technology and product design
- Management of global production networks
 - Network coordination
 - Procurement process
 - Order management
- Trends in planning, designing and managing global production networks

Learning Outcomes:
The students …

- can explain the general conditions and influencing factors of global production
- are capable to apply defined procedures for site selection and to evaluate site decisions with the help of different methods
- are able to select the adequate scope of design for site-appropriate production and product construction case-specifically
- can state the central elements in the planning process of establishing a new production site.
- are capable to make use of the methods to design and scale global production networks for company-individual problems
- are able to show up the challenges and potentials of the departments sales, procurement as well as research and development on global basis.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Recommendations:
Combination with Global Production and Logistics – Part 2

Organizational issues
Start: 24.10.2022

Literature
Medien
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt
empfohlene Sekundärliteratur:

Media
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
recommended secondary literature:
3 COURSES

Course: Global Production and Logistics - Part 2: Global Logistics [T-MACH-105159]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2149600</td>
<td>Global Logistics</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Furmans</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105159</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>New: Global Logistics</td>
<td>Furmans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105159</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>New: Global Logistics</td>
<td>Furmans</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

Prerequisites
none

Below you will find excerpts from events related to this course:

Global Logistics
2149600, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content

Characteristics of global trade

- Incoterms
- Customs clearance, documents and export control

Global transport and shipping

- Maritime transport, esp. container handling
- Air transport

Modeling of supply chains

- SCOR model
- Value stream analysis

Location planning in cross-border-networks

- Application of the Warehouse Location Problem
- Transport Planning

Inventory Management in global supply chains

- Stock keeping policies
- Inventory management considering lead time and shipping costs

Media:
presentations, black board

Workload:
regular attendance: 21 hours
self-study: 99 hours

Students are able to:

- assign basic problems of planning and operation of global supply chains and plan them with apropriate methods,
- describe requirements and characteristics of global trade and transport, and
- evaluate characteristics of the design from logistic chains regarding their suitability.

Exam:
The exam consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).
The main exam is offered every summer semester. A second date for the exam is offered in winter semester only for students that did not pass the main exam.

Literature

Weiterführende Literatur:

- Arnold/Isermann/Kuhn/Tempelmeier. HandbuchLogistik, Springer Verlag, 2002 (Neuausgabe in Arbeit)
- Domschke. Logistik, Rundreisen und Touren,Oldenbourg Verlag, 1982
- Domschke/Drexl. Logistik, Standorte, OldenbourgVerlag, 1996
- Gudehus. Logistik, Springer Verlag, 2007
- Tempelmeier. Bestandsmanagement in SupplyChains, Books on Demand 2006
3.148 Course: Handling Characteristics of Motor Vehicles I [T-MACH-105152]

Responsible: Dr.-Ing. Hans-Joachim Unrau
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Unrau</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Unrau</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113807</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Unrau</td>
</tr>
<tr>
<td>76-T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>Unrau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>Unrau</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Verbally

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Handling Characteristics of Motor Vehicles I
2113807, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Learning Objectives:

The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Organizational issues

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerter/iliyas

Literature

KIT Department of Mechanical Engineering - Non-degree Studies (Domestic Degree at Another Higher Education Institution)

Module Handbook as of 14/02/2023
3.149 Course: Handling Characteristics of Motor Vehicles II [T-MACH-105153]

Responsible: Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Unrau</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Handling Characteristics of Motor Vehicles II

| 2114838, SS 2023, 2 SWS, Language: German, Open in study portal |
| Lecture (V) On-Site |

Content

1. Vehicle handling: Bases, steady state cornering, steering input step, single sine, double track switching, slalom, cross-wind behavior, uneven roadway

2. Stability behavior: Basics, stability conditions for single vehicles and for vehicles with trailer

Learning Objectives:

The students have an overview of common test methods, with which the handling of vehicles is gauged. They are able to interpret results of different stationary and transient testing methods. Apart from the methods, with which e.g. the driveability in curves or the transient behaviour from vehicles can be registered, also the influences from cross-wind and from uneven roadways on the handling characteristics are well known. They are familiar with the stability behavior from single vehicles and from vehicles with trailer. Consequently they are ready to judge the driving behaviour of vehicles and to change it by specific vehicle modifications.

Literature

3.150 Course: Hands-on BioMEMS [T-MACH-106746]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>SW</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2143874</td>
<td>Hands-on BioMEMS</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Guber, Ahrens</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Competence Certificate
Oral presentation and discussion (30 Min.)

Prerequisites
none
3.151 Course: Heat and Mass Transfer [T-MACH-105292]

Responsible: Prof. Dr. Ulrich Maas
Dr.-Ing. Chunkan Yu

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Event Code</th>
<th>Subject</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2165512</td>
<td>Heat and mass transfer</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Maas</td>
</tr>
<tr>
<td>ST 2023</td>
<td>3122512</td>
<td>Heat and Mass Transfer</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Period</th>
<th>Event Code</th>
<th>Subject</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td>Maas</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam, approx. 3 h

Prerequisites

none

Below you will find excerpts from events related to this course:

Heat and mass transfer

2165512, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) On-Site

Content

- Steady and unsteady heat transfer in homogeneous materials; Plates, pipe sections and spherical shells
- Molecular diffusion in gases; analogies between heat conduction and mass diffusion
- Convective, forced heat transfer in pipes/channels and around plates and profiles.
- Convective mass transfer, heat-/mass transfer analogy
- Multi phase convective heat transfer (condensation, evaporation)
- Radiative heat transfer

Literature

- Maas; Vorlesungsskript "Wärme- und Stoffübertragung"

Heat and Mass Transfer

3122512, SS 2023, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V) On-Site

Content

- Steady and unsteady heat transfer in homogeneous materials; Plates, pipe sections and spherical shells
- Molecular diffusion in gases; analogies between heat conduction and mass diffusion
- Convective, forced heat transfer in pipes/channels and around plates and profiles.
- Convective mass transfer, heat-/mass transfer analogy
- Multi phase convective heat transfer (condensation, evaporation)
- Radiative heat transfer

Organizational issues

Bitte beachten Sie den Aushang.
Literature

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"
3 COURSES

3.152 Course: Heat Transfer in Nuclear Reactors [T-MACH-105529]

Responsible: Prof. Dr.-Ing. Xu Cheng

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2189907</th>
<th>Flow and heat transfer in nuclear reactors</th>
<th>2 SWS</th>
<th>Lecture / 📡</th>
<th>Cheng</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 📡 Blended (On-Site/Online), 🌐 On-Site, ❌ Cancelled

Competence Certificate

oral exam, 20 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Flow and heat transfer in nuclear reactors

2189907, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V)

Blended (On-Site/Online)

Content

This lecture is designed for students of mechanical engineering and other engineering disciplines in their Bachelor or Master studies. The students will understand the most important heat transfer processes and learn the methods for the analysis of flow and heat transfer in nuclear reactors. Students are capable of explaining the thermal-hydraulic processes occurring in nuclear reactors and of selecting suitable models or simulation codes for thermal-hydraulic design and analysis.

1. Reactor types and thermal-hydraulic design criteria
2. Heat transfer processes and modeling
3. Pressure drop calculation
4. Temperature distribution in nuclear reactor
5. Numerical analysis methods for nuclear reactor thermal-hydraulics

Organizational issues

This compact English lecture will be given on October 24-26, 2022, 09:00-17:00.

Literature

1. L.S. Tong, J. Weisman, Thermal-hydraulics of pressurized water reactors, American Nuclear Society, La Grande Park, Illinois, USA
3.153 Course: Heatpumps [T-MACH-105430]

Responsible: Prof. Dr. Ulrich Maas
Dr.-Ing. Heinrich Wirbser

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2166534</td>
<td>Heatpumps</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>4</td>
<td>Wirbser</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2166534</td>
<td>Heatpumps</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td></td>
<td>Wirbser</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105430</td>
<td>Heatpumps</td>
<td>Oral exam (20 min)</td>
<td>Maas, Wirbser</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam (20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Heatpumps

2166534, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

The aim of this lecture is to promote heat pumps as heating systems for small and medium scale facilities and to discuss their advantages as well as their drawbacks. After considering the actual energy situation and the political requirements the different aspects of heat pumps are elucidated. The requirements concerning heat sources, the different components and the various types of heat pumps are discussed. In addition ecological and economical aspects are taken into consideration. The coupling of heat pumps with heat accumulators in heating systems will also be part of the lecture.

Literature

Vorlesungsunterlagen

Bach, K.: Wärmepumpen, Bd. 26 Kontakt und Studium, Lexika Verlag, 1979

Heatpumps

2166534, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

The aim of this lecture is to promote heat pumps as heating systems for small and medium scale facilities and to discuss their advantages as well as their drawbacks. After considering the actual energy situation and the political requirements the different aspects of heat pumps are elucidated. The requirements concerning heat sources, the different components and the various types of heat pumps are discussed. In addition ecological and economical aspects are taken into consideration. The coupling of heat pumps with heat accumulators in heating systems will also be part of the lecture.
Literature
Vorlesungsunterlagen
Bach, K.: Wärmepumpen, Bd. 26 Kontakt und Studium, Lexika Verlag, 1979
3.154 Course: High Performance Computing [T-MACH-105398]

Responsible: Prof. Dr. Britta Nestler
Dr.-Ing. Michael Selzer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Written examination

Credits
5

Grading scale
Grade to a third

Recurrence
Each winter term

Version
3

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Responsibility
Nestler, Selzer

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, physics and materials science
regular participation in the additionally offered computer exercises

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
At the end of the semester, there will be a written exam (90 min).

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, physics and materials science
regular participation in the additionally offered computer exercises

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

High Performance Computing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>
Content

PLEASE NOTE: This lecture is only offered in the winter semester!

Topics of the high performance computing course are:

- architectures of parallel platforms
- parallel programming models
- performance analysis of concurrent programs
- parallelization models
- MPI and OpenMP
- Monte-Carlo method
- 1D & 2D heat diffusion
- raycasting
- n-body problem
- simple phase-field models

The student

- can explain the foundations and strategies of parallel programming
- can efficiently apply high performance computers for simulations by elaborating respective parallelisation techniques.
- has an overview of typical applications and the specific requirements for parallelization.
- knows the concepts of parallelisation and is capable to apply these to efficiently use high performance computing resources and the growing performance of multi core processors in science and industry.
- has experiences in programming of parallel algorithms through integrated computer exercises.

Preliminary knowledge in mathematics, physics and materials science recommended

Regular attendance: 22.5 hours lecture, 11.5 hours exercises
Self-study: 116 hours

We regularly discuss exercises at the computer.

At the end of the semester, there will be a written exam.

Literature

1. Vorlesungsskript; Übungsaufgabenblätter; Programmgerüste
2. Parallele Programmierung, Thomas Rauber, Gudula Rügner; Springer 2007

Responsible: apl. Prof. Dr. Günter Schell

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2126749 | Advanced powder metals | 2 SWS | Lecture / 🧩 | Schell |

Exams

| WT 22/23 | 76-T-MACH-102157 | High Performance Powder Metallurgy Materials | Schell |
| ST 2023 | 76-T-MACH-102157 | High Performance Powder Metallurgy Materials | Schell |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 👤 On-Site, ❌ Cancelled

Competence Certificate

oral exam, 20-30 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Advanced powder metals

2126749, SS 2023, 2 SWS, Language: German, Open in study portal

Literature

- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
3.156 Course: High Temperature Materials [T-MACH-105459]

Responsible: Prof. Dr.-Ing. Martin Heilmayer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, about 25 minutes

Prerequisites
none
3.157 Course: Holistic Approach of Managing Power Plant Operation under Uncertainty and Volatility [T-MACH-112238]

Responsible: Dr. Marcus Seidl
Prof. Dr. Robert Stieglitz

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189405</td>
<td>Holistic approach of managing power plant operation under uncertainty and volatility</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-112238</td>
<td>Holistic approach of managing power plant operation under uncertainty and volatility</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam of about 30 minutes

Prerequisites
none

Annotation
none

Below you will find excerpts from events related to this course:

Holistic approach of managing power plant operation under uncertainty and volatility

2189405, WS 22/23, 2 SWS, Language: English, Open in study portal
Content
Main Contents:
The structure of electricity markets
Requirements from network operators
The basics of commodity markets
The impact of regulation on power plant operation
The role of behavioral economics in power plant decision making
Integration of renewable energy sources into the electricity market
Calibration of power plant operation and maintenance to market requirements
Asset management for power plant fleets
Applying financial engineering to optimize asset utilization
Day-to-day decision making for power plant operation

The lecture provides an overview of the many practical aspects of power plant operation. For this purpose, the knowledge of the energy and commodity markets, the regulatory boundary conditions, the energy trading instruments, the principles of fleet management and the requirements of power plant maintenance are required.

For the purpose of an efficient management of a power plant fleet it is explained how a variety of statistical models can be used to determine the optimal combination of resource purchases, outage management, load availability and ask prices.

Each credit point equals to 25-30 h working time of a student. Thereby, the time is based on an average student finishing with and average score. The working time can be split into: 1 attendance of the lectures, 2. pre- and post-processing of the lecture, 3 preparations for examination.

Students understand the many aspects of power plant operation: the structure of the energy and commodity markets, the regulatory boundary conditions, the energy trading instruments, the principles of fleet management and the requirements of power plant maintenance.

Furthermore, students can develop on their own a suitable strategy for the management of a power plant fleet.

Oral exam of about 25 min.

Literature
G. Balzer, C. Schorn, Asset Management für Infrastruktur anlagen - Energie und Wasser, VDI
R. Weron, Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, Wiley
3.158 Course: Homework 'Basics of Finite Elements' [T-BGU-109908]

Responsible: Prof. Dr.-Ing. Peter Betsch

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

Type
Completed coursework

Credits
1

Grading scale
pass/fail

Recurrence
Each winter term

Version
1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6215901</td>
<td>Grundlagen Finite Elemente</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Betsch</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>6215902</td>
<td>Übungen zu Grundlagen Finite Elemente</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Kinon</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8243109908</td>
<td>Homework 'Basics of Finite Elements'</td>
<td>2</td>
<td>Betsch</td>
</tr>
<tr>
<td>ST 2023</td>
<td>8243109908</td>
<td>Homework 'Basics of Finite Elements'</td>
<td>2</td>
<td>Betsch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
processing of two exercise sheets

Prerequisites
none

Recommendation
none

Annotation
none
3.159 Course: Human Factors Engineering I [T-MACH-105518]

Responsible: Prof. Dr.-Ing. Barbara Deml
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2109035</td>
<td>Human Factors Engineering I: Ergonomics</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105518</td>
<td>Human Factors Engineering I</td>
<td>Deml</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105518</td>
<td>Human Factors Engineering I</td>
<td>Deml</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔥 On-Site, ✗ Cancelled

Competence Certificate

written exam, 60 minutes
The exams are only offered in German!

Prerequisites

none

Below you will find excerpts from events related to this course:

Human Factors Engineering I: Ergonomics

2109035, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Blended (On-Site/Online)

Content

The course "Human Factors Engineering I: Ergonomics" takes place in the first half of the semester, until 2022/12/22, on Wednesday and Thursday.

In the second half of the semester, beginning with 2022/12/28, the course "Human Factors Engineering II: Work Organisation" takes place on Wednesday and Thursday.

Content of teaching:

1. Principles of human work
2. Behavioural-science data acquisition
3. workplace design
4. work environment design
5. work management
6. labour law and advocacy groups

Learning target:

The students acquire a basic knowledge in the field of ergonomics:

- They are able to consider cognitive, physiological, anthropometric, and safety technical aspects in order to design workplaces ergonomically.
- Just as well they know physical and psycho-physical fundamentals (e. g. noise, lighting, climate) in the field of work-environmental design.
- Furthermore the students are able to evaluate workplaces by knowing and being able to apply essential methods of time studies and payment systems.
- Finally, they get a first, overall insight into the German labour law as well as into the organisation of advocacy groups beyond companies.

Further on the participants get to know basic methods of behavioral-science data acquisition (e. g. eye-tracking, ECG, dual-task-paradigm).
Organizational issues
Die Veranstaltung "Arbeitswissenschaft I: Ergonomie" findet in der ersten Hälfte des Semesters, **bis zum 22.12.2022** am Mittwoch und Donnerstag statt.

In der zweiten Hälfte des Semesters, **ab dem 28.12.2022** findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.

- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literature
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
Course: Human Factors Engineering II [T-MACH-105519]

Responsible: Prof. Dr.-Ing. Barbara Deml
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Name</th>
<th>Term</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2109036</td>
<td>Human Factors Engineering II: Work Organisation</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Name</th>
<th>Term</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td></td>
<td>Deml</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td></td>
<td>Deml</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⨿ Cancelled

Competence Certificate

written exam, 60 minutes
The exams are only offered in German!

Prerequisites

none

Below you will find excerpts from events related to this course:
Content
The course "Human Factors Engineering I: Ergonomics" takes place in the first half of the semester, until 2022/12/22, on Wednesday and Thursday.

In the second half of the semester, beginning with 2022/12/28, the course "Human Factors Engineering II: Work Organisation" takes place on Wednesday and Thursday.

Content of teaching:

1. Fundamentals of work organization
2. Empirical research methods
3. Individual level
 - personnel selection
 - personnel development
 - personnel assessment
 - work satisfaction/motivation
4. Group level
 - interaction and communication
 - management of employees
 - team work
5. Organizational level
 - structural organization
 - process organization
 - production organization

Learning target:
The students gain a first insight into empirical research methods (e. g. experimental design, statistical data evaluation). Particularly, they acquire a basic knowledge in the field of work organisation:

- **Organizational level.** Within this module the students gain also a fundamental knowledge in the field of structural, process, and production organization.
- **Group level.** Besides, they get to know basic aspects of industrial teamwork and they know relevant theories in the field of interaction and communication, the management of employees as well as work satisfaction and motivation.
- **individual level.** Finally, the students get to know also methods in the field of personnel selection, development, and assessment.

Organizational issues

In der zweiten Hälfte des Semesters, ab dem 28.12.2022 findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.

- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literature
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.

Responsible: Prof. Dr.-Ing. Barbara Deml

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2110036</th>
<th>Human Factors Engineering III: Empirical research methods</th>
<th>2 SWS</th>
<th>Practical course / On-Site</th>
<th>Deml</th>
</tr>
</thead>
</table>

Organizational issues

Prerequisites

In order to attend this lecture, it is necessary having completed "Arbeitswissenschaft I" or "Arbeitswissenschaft II" successfully.

Modeled Conditions

You have to fulfill one of 2 conditions:

1. The course T-MACH-105518 - Human Factors Engineering I must have been passed.
2. The course T-MACH-105519 - Human Factors Engineering II must have been passed.

Below you will find excerpts from events related to this course:

Content

The aim of the course is for participants to become familiar with and apply research methods in occupational science. For this purpose, the participants will receive an introduction to the basics of experimental design and they will learn essential methods of data collection and statistical data analysis. Subsequently, the participants will conduct, evaluate and present their own experimental studies on the topics of driver behavior and driving simulation. Weekly face-to-face attendance at lecture sessions as well as small group sessions in the lab is mandatory. Depending on how the corona situation unfolds, the course will be present or online. In addition, an approximately six-page research report and presentation are required as part of the course.

Competence Certificate

Scientific report (about 6 pages), poster, and presentation
3.162 Course: Human-Machine-Interaction [T-INFO-101266]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-MACH-104883 - Courses of the KIT Department of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24659</td>
<td>Human-Computer-Interaction</td>
<td>2 SWS Lecture/oppel</td>
<td>Beigl, Lee</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7500076</td>
<td>Human-Machine-Interaction</td>
<td></td>
<td>Beigl</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500048</td>
<td>Human-Machine-Interaction</td>
<td></td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Prerequisites

none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
3.163 Course: Hybrid and Electric Vehicles [T-ETIT-100784]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>2</td>
<td>Lecture / Online</td>
<td>4</td>
<td>Grade to a third</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2306323</td>
<td>Tutorial for 2306323 Hybrid and Electric Vehicles</td>
<td>1</td>
<td>Practice / Online</td>
<td></td>
<td>Grade to a third</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>Online</td>
<td></td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>Online</td>
<td></td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Prerequisites

none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
3.164 Course: Hydraulic Fluid Machinery [T-MACH-105326]

Responsible: Dr. Balazs Pritz
Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Events
<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2157432</td>
<td>Hydraulic Fluid Machinery</td>
<td>Lecture / 🗣️</td>
<td>Pritz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105326</td>
<td>Hydraulic Fluid Machinery</td>
<td>Lecture / 🗣️</td>
<td>Pritz</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105326</td>
<td>Hydraulic Fluid Machinery</td>
<td>Lecture / 🗣️</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
oral exam, 40 min.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Hydraulic Fluid Machinery
2157432, SS 2023, 4 SWS, Language: German, [Open in study portal](#)

Lecture (V)
On-Site

Content
1. Introduction
2. Basic equations
3. System analysis
4. Elementary Theory (Euler's equation of Fluid Machinery)
5. Operation and Performance Characteristics
6. Similarities, Specific Values
7. Control technics
8. Wind Turbines, Propellers
9. Cavitation

Recommendations:
3154510 – Fluid Mechanics I
3153511 – Fluid Mechanics II

Students get to know the basics of hydraulic fluid machinery (pumps, fans, hydroturbines, windturbines, hydrodynamic transmissions) in general. Application of the knowledge in different fields of engineering.

The lecture introduces the basics of Hydraulic Fluid Machinery. The different types and shapes are presented. The basic equations for the preservation of mass, momentum and energy are discussed. Velocity schemes in typical cascades are shown, the Euler equation of fluid machinery and performance characteristics are deduced.

Similarities and dimensionless parameters are discussed. Fundamental aspects of operation and cavitation are shown.

Students are able to understand the working principle of Hydraulic Fluid Machinery as well as the interaction with typical systems, in which they are integrated.

regular attendance: 56 hours
self-study: 150 hours
preparation for exam: 40 hours

Oral or written examination (see announcement)

No tools or reference materials may be used during the exam.
Literature

1. Fister, W.: Fluidenergiemaschinen I & II, Springer-Verlag
2. Bohl, W.: Strömungsmaschinen I & II, Vogel-Verlag
3. Güllich, J.F.: Kreiselpumpen, Springer-Verlag
5. Carolus, T.: Ventilatoren, Teubner-Verlag
6. Kreiselpumpenlexikon. KSB Aktiengesellschaft
7. Zierep, J., Bühler, K.: Grundzüge der Strömungslehre, Teubner-Verlag
3.165 Course: Hydrogen as Energy Carrier [T-CHEMBIO-112317]

Responsible: Prof. Dr. Helmut Ehrenberg
Organisation: KIT Department of Chemistry and Biosciences
Part of: M-MACH-106252 - Courses of the KIT Department of Chemistry and Biosciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Test Code</th>
<th>Subject</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7100039</td>
<td>Hydrogen as Energy Carrier</td>
<td>Ehrenberg</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, about 25 minutes
3.166 Course: Hydrogen in Materials – Exercises and Lab Course [T-MACH-112159]

Responsible: Dr. rer. nat. Stefan Wagner
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
</table>
| WT 22/23 | 2173584 | Hydrogen in Materials – Exercises and Lab Course | 2 SWS | Practice//assert
| ST 2023 | 2173584 | Hydrogen in Materials – Exercises and Lab Course | 2 SWS | Practice//assert

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-112159</td>
<td>Hydrogen in Materials – Exercises and Lab Course</td>
<td>Wagner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-112159</td>
<td>Hydrogen in Materials – Exercises and Lab Course</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Competence Certificate

Regular participation and participating in lab course, protocol included.

Prerequisites

None

Below you will find excerpts from events related to this course:

Hydrogen in Materials – Exercises and Lab Course

2173584, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Content

In this exercise with lab course the contents of the lecture “Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement” are deepened. The students know the differences in thermodynamics and kinetics of the hydrogen interaction with storage materials and construction materials. The students can describe the hydrogen interaction with microstructural defects in materials, and they know the resulting effects on the materials’ mechanical integrity. Based on this, the students can express the requirements of the respective materials classes and transfer them to engineering applications.

Utilizing proper experimental setups, the students can measure hydrogen induced stresses in materials as well as the hydrogen's diffusivity and its chemical potential. From the measurement data, the students can construct metal-hydrogen phase diagrams, and they can qualitatively assess the defect density in the metal.

Hydrogen in Materials – Exercises and Lab Course

2173584, SS 2023, 2 SWS, Language: English, [Open in study portal](#)

Content

In this exercise with lab course the contents of the lecture “Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement” are deepened. The students know the differences in thermodynamics and kinetics of the hydrogen interaction with storage materials and construction materials. The students can describe the hydrogen interaction with microstructural defects in materials, and they know the resulting effects on the materials’ mechanical integrity. Based on this, the students can express the requirements of the respective materials classes and transfer them to engineering applications.

Utilizing proper experimental setups, the students can measure hydrogen induced stresses in materials as well as the hydrogen's diffusivity and its chemical potential. From the measurement data, the students can construct metal-hydrogen phase diagrams, and they can qualitatively assess the defect density in the metal.

Responsible: Prof. Dr. Astrid Pundt

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2173588</td>
<td>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Pundt, Wagner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2173588</td>
<td>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Pundt, Wagner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Description</th>
<th>Grade to a third</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-110923</td>
<td>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</td>
<td></td>
<td>Pundt</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-110923</td>
<td>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</td>
<td></td>
<td>Pundt</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

T-MACH-108853 - Wasserstoff in Materialien has not been started
T-MACH-110957 - Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung has not been started

Annotation

in English

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site</td>
<td>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Pundt</td>
</tr>
</tbody>
</table>
Content
This lecture teaches physical and chemical basics of hydrogen adsorption and absorption of different materials. It trains the understanding of the specific lattice positions that hydrogen occupies within solids, and its impact on material properties. A thermodynamical approach yields Sievert's law, allowing the students to describe the different solubilities of hydrogen (and other gases) in solid materials. Further thermodynamic data can be obtained using van't Hoff plots of phase transformation pressures. The impact of ternary alloy components, as described by semi-empirical models, will be recognized. The specific mobility of hydrogen in materials will be understood, which divides into classical diffusion and quantum mechanical tunneling processes. The students can describe the interaction of hydrogen with defects in crystal lattices, which is of special interest for properties of nano-scale materials or for the hydrogen embrittlement of steels. Basic embrittlement models can be explained by the students. Actual hydrogen storage systems can be summarized.

Learning objectives:
- Hydrogen as energy storage – the hydrogen cycle and safety issues
- Methods for hydrogen charging of materials and hydrogen detection
- Hydrogen adsorption at and absorption in different solids, Sievert’s law
-Interstitial lattice sites and lattice expansion
- Hydrides, van’t Hoff plots, phase transitions, M-H binary phase diagrams
- Ternary alloy effects
- Hydrogen mobility in materials: interstitial diffusion and quantum mechanical tunneling
- Interaction of hydrogen with defects
- Hydrogen embrittlement of steels, different embrittlement models
- Hydrogen in nano-scale systems and new storage materials

Literature
Literaturhinweise und Unterlagen in der Vorlesung

Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement
2173588, SS 2023, 2 SWS, Language: English, Open in study portal

Content
This lecture teaches physical and chemical basics of hydrogen adsorption and absorption of different materials. It trains the understanding of the specific lattice positions that hydrogen occupies within solids, and its impact on material properties. A thermodynamical approach yields Sievert’s law, allowing the students to describe the different solubilities of hydrogen (and other gases) in solid materials. Further thermodynamic data can be obtained using van’t Hoff plots of phase transformation pressures. The impact of ternary alloy components, as described by semi-empirical models, will be recognized. The specific mobility of hydrogen in materials will be understood, which divides into classical diffusion and quantum mechanical tunneling processes. The students can describe the interaction of hydrogen with defects in crystal lattices, which is of special interest for properties of nano-scale materials or for the hydrogen embrittlement of steels. Basic embrittlement models can be explained by the students. Actual hydrogen storage systems can be summarized.

Learning objectives:
- Hydrogen as energy storage – the hydrogen cycle and safety issues
- Methods for hydrogen charging of materials and hydrogen detection
- Hydrogen adsorption at and absorption in different solids, Sievert’s law
- Interstitial lattice sites and lattice expansion
- Hydrides, van’t Hoff plots, phase transitions, M-H binary phase diagrams
- Ternary alloy effects
- Hydrogen mobility in materials: interstitial diffusion and quantum mechanical tunneling
- Interaction of hydrogen with defects
- Hydrogen embrittlement of steels, different embrittlement models
- Hydrogen in nano-scale systems and new storage materials

Literature
Literaturhinweise und Unterlagen in der Vorlesung
Course: Hydrogen Technologies [T-MACH-105416]

Responsible: Olaf Jedicke
Dr. Thomas Jordan

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2170495</td>
<td>Hydrogen Technologies</td>
<td>2</td>
<td>Lecture</td>
<td>grade to a third</td>
<td>Jordan, Jedicke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105416</td>
<td>Hydrogen Technologies</td>
<td>2</td>
<td>Lecture</td>
<td>Jordan, Jedicke</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

oral exam, Duration: approximately 30 minutes

Auxiliary: no tools or reference materials may be used during the exam

Prerequisites

none

Recommendation

Fundamentals Thermodynamics

Below you will find excerpts from events related to this course:

Hydrogen Technologies

2170495, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

On-Site

Content

The course content is the cross-cutting issue of hydrogen as energy carrier. After successful participation the students may reflect on the fundamental technological basis of an energy system using predominantly hydrogen as an energy carrier or energy storage. Based on this knowledge they may objectify the principle idea of an hydrogen economy.

The students know the fundamental physical and chemical properties of hydrogen and may apply their knowledge on thermodynamics to compare efficiencies of different solutions with hydrogen. They can list, compare and evaluate established and future solutions for production, storage and distribution of hydrogen. They can explain advantages and disadvantages of using hydrogen in conventional combustion processes versus using hydrogen in different fuel cells. In particular the can describe the specific safety aspects related to hydrogen, compare them with other energy vectors and evaluate different measures for risk mitigation.

- Basic concepts
- Production
- Transport and storage
- Application
- Safety aspects

Literature

Ullmann's Encyclopedia of Industrial Chemistry
3.169 Course: Industrial Aerodynamics [T-MACH-105375]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Stefan Kröber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Industrial aerodynamics</td>
<td>2 SWS</td>
<td>/ §</td>
<td>Kröber, Frohnapfel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Industrial Aerodynamics</td>
<td>2 SWS</td>
<td></td>
<td>Kröber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Industrial Aerodynamics</td>
<td>2 SWS</td>
<td></td>
<td>Breitling</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam - 30 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Industrial aerodynamics

2153425, WS 22/23, 2 SWS, Language: German, Open in study portal

Blended (On-Site/Online)

Content

This compact lecture deals with flows and aeroacoustics with significance in vehicle development. A special focus is set on the optimization of external vehicle aerodynamics and the presentation of modern industrial wind tunnel technology. The second major thematic block includes both, aeroacoustic basics principles and practical examples of aeroacoustics, especially in the field of automotive technology. These fields are explained in their phenomenology, the corresponding theories are discussed and the tools for measurement and simulation are introduced and demonstrated. This lecture focusses on industry relevant methods for analyses and descriptions of forces, aeroacoustic sound fields, flow structures and turbulence. In addition, an overview of numerical methods for industrial applications is given. The integration and interconnection of the methods in the development processes are discussed exemplary.

An excursion to the Mercedes-Benz AG wind tunnel and the research and development centers is planned.

- Introduction
- Aerodynamics of bluff bodies
- Industrial flow measurement techniques and modern wind tunnel technology
- Overview of flow simulation in automotive industry
- Vehicle aerodynamics
- Passenger comfort of roadsters and cabriolets
- Soiling of road vehicles
- Aeroacoustics: basic principles and practical examples of aeroacoustics, especially in the field of automotive technology including aeroacoustic measurement techniques and numerical methods

Students can describe the different properties of aerodynamics and aeroacoustics of vehicles flows. They are qualified to analyze external flows around the vehicles and aeroacoustic sound fields of vehicles.

Organizational issues

Blockvorlesung - Anmeldung erfolgt über ILIAS, max. Teilnehmerzahl ist 20 Studierende.

Literature

Vorlesungsskript
3.170 Course: Industrial Circuitry [T-ETIT-100716]

Responsible: Dr.-Ing. Andreas Liske

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2306327</td>
<td>Industrial Circuitry</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Liske</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7306327</td>
<td>Industrial Circuitry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Liske</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7306327</td>
<td>Industrial Circuitry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Liske</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
3.171 Course: Information Processing in Sensor Networks [T-INFO-101466]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: M-MACH-104883 - Courses of the KIT Department of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Exam Id</th>
<th>Course Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7500030</td>
<td>Information Processing in Sensor Networks</td>
<td>Pfaff</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500011</td>
<td>Information Processing in Sensor Networks</td>
<td>Hanebeck, Pfaff</td>
</tr>
</tbody>
</table>
Course: Information Systems and Supply Chain Management [T-MACH-102128]

Responsible: Dr.-Ing. Christoph Kilger
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lectures</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>KItger</td>
<td>Lecture / 🗣️</td>
<td>Each summer term</td>
<td>3</td>
<td>Kilger</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76</td>
<td>KItger</td>
<td>Information Systems and Supply Chain Management</td>
<td>Each summer term</td>
<td>3</td>
<td>Kilger</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered.

Prerequisites
none

Below you will find excerpts from events related to this course:

Information Systems in Logistics and Supply Chain Management
2118094, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Organizational issues
Die Veranstaltung findet als Blockveranstaltung vom 21.-23.06.2023 statt.
Prüfungstermine werden nur am 06.07.2023 und am 07.07.2023 vergeben.
Informationen zum Kursinhalt entnehmen Sie bitte dem ILIAS-Kurs

Literature
Course: Innovative Nuclear Systems [T-MACH-105404]

Responsible: Prof. Dr.-Ing. Xu Cheng
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events
| ST 2023 | 2130973 | Innovative Nuclear Systems | 2 SWS | Cheng |

Exams
| ST 2023 | 76-T-MACH-105404 | Innovative Nuclear Systems | Cheng |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, 20 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Innovative Nuclear Systems
2130973, SS 2023, 2 SWS, Language: German, Open in study portal

Blended (On-Site/Online)

Content
This lecture is addressed to students of mechanical engineering, chemical engineering and physics. Goal of the lecture is the explanation of state-of-the-art development of nuclear systems. Nuclear systems, that are from todays point of view promising will be presented and explained. The main characteristics of such systems and the associated challenges are also part of the lecture.

1. state of the art and development tendencies in nuclear systems
2. advanced concepts in light water cooled systems
3. new developments in fast reactors
4. development tendencies in gas-cooled plants
5. transmutation systems for waste management
6. fusionsystems

Organizational issues
Mo (31.07.2023), 09:00 bis 17:00
Di (01.08.2023), 09:00 bis 17:00
Mi (02.08..2023), 09:00 bis 17:00
Course: Innovative Project [T-MACH-109185]

Responsible: apl. Prof. Dr. Andreas Class
Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Students have to deliver pitch-talk supported by slides to convince a committee about their results. A fictive project proposal of 10 to 15 pages.

Prerequisites
None

Recommendation
Participants need to bring their own laptop with Skype installed.

Recommended English proficiency equivalent to:

- **IELTS Academic test**
 An overall band score of at least 6.5 (with no section lower than 5.5)
- **University of Cambridge**
 Certificate in Advanced English, CAE (grades A – C)
 Certificate of Proficiency in English, CPE (grades A – C)
- **TOEFL Internet-based test, IBT**
 A total score of at least 92, with a minimum score of 22 from the writing section

Annotation
The subject of the project is provided by an industry partner or the innovation department from KIT or INP Grenoble. Representatives of industry partners will be addressees for the pitch-talk.
3.175 Course: Integrated Information Systems for Engineers [T-MACH-102083]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

Events	Type	Title	Credits	Grading scale	Recurrence	Credits
WT 22/23	Lecture / Practice (VÜ)	Integrated Information Systems for engineers	3	Grade to a third	Each summer term	4
ST 2023	Lecture / Practice (VÜ)	Integrated Information Systems for engineers	3	Grade to a third	Each summer term	4

Exams

Events	Type	Title	Credits	Recurrence	Credits
WT 22/23	Lecture / Practice (VÜ)	Integrated Information Systems for Engineers			
ST 2023	Lecture / Practice (VÜ)	Integrated Information Systems for Engineers			

Competence Certificate
Oral examination 20 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

Integrated Information Systems for engineers
2121001, WS 22/23, 3 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ) On-Site

Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature
Vorlesungsfolien / lecture slides

Integrated Information Systems for engineers
2121001, SS 2023, 3 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ) On-Site
Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature

Vorlesungsfolien / lecture slides
3.176 Course: Integrated Production Planning in the Age of Industry 4.0 [T-MACH-108849]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Events</th>
<th>Lecture / Practice (VÜ)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>6 SWS</td>
<td>Lecture / Practice (Lanza)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Events</th>
<th>Lecture / Practice (Lanza)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>Lanza</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (40 min)

Prerequisites

"T-MACH-109054 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" as well as "T-MACH-102106 Integrierte Produktionsplanung" must not be commenced.

Below you will find excerpts from events related to this course:

Integrated Production Planning in the Age of Industry 4.0

<table>
<thead>
<tr>
<th>Code</th>
<th>Events</th>
<th>Lecture / Practice (VÜ)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150660</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>6 SWS</td>
<td>Lecture / Practice (On-Site)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>On-Site</td>
</tr>
</tbody>
</table>
Content
Integrated Production Planning in the age of Industry 4.0 will be taught in the context of this engineering science lecture. In addition to a comprehensive introduction to Industry 4.0, the following topics will be addressed at the beginning of the lecture:

- Basics, history and temporal development of production
- Integrated production planning and integrated digital engineering
- Principles of integrated production systems and further development with Industry 4.0

Building on this, the phases of integrated production planning are taught in accordance with VDI Guideline 5200, whereby special features of parts production and assembly are dealt with in the context of case studies:

- Factory planning system
- Definition of objectives
- Data collection and analysis
- Concept planning (structural development, structural dimensioning and rough layout)
- Detailed planning (PPS, process simulation as a validation tool, planning of conveyor technology and storage systems for linking production and IT systems in the I4.0 factory)
- Preparation and monitoring of implementation
- Start-up and series support

The lecture contents are complemented by numerous current practical examples with a strong Industry 4.0 reference. Aspects of sustainability are anchored in all units and thus basic knowledge of sustainable production planning is taught. Within the exercises the lecture contents are deepened and applied to specific problems and tasks.

Learning Outcomes:
The students ...

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.
- know the basic features of sustainable production planning and can apply underlying knowledge.

Workload:
MACH:
- regular attendance: 63 hours
- self-study: 177 hours

WING:
- regular attendance: 63 hours
- self-study: 207 hours

Organizational issues
Vorlesungstermine dienstags 14.00 Uhr und donnerstags 14.00 Uhr, Übungstermine donnerstags 15.45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.177 Course: Integrative Strategies in Production and Development of High Performance Cars [T-MACH-105188]

Responsible: Karl-Hubert Schlichtenmayer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2150601</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>2</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2150601</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>2</td>
<td>Lecture / On-Site</td>
<td>Schlichtenmayer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Title</th>
<th>Grade</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>Schlichtenmayer</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>Schlichtenmayer</td>
<td>Schlichtenmayer</td>
</tr>
</tbody>
</table>

Legend:
 יהודי, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Written Exam (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

![Integrative Strategies in Production and Development of High Performance Cars](2150601, WS 22/23, 2 SWS, Language: German, Open in study portal)

Lecture (V)
Blended (On-Site/Online)
Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:

- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Learning Outcomes:
The students ...

- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Die LV wird einmalig im WS 2022/23 als Ersatz für die Absage im SS 2022 angeboten.
Im SS 2023 findet die LV wieder regulär statt.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:

- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Learning Outcomes:
The students ...

- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.178 Course: Intellectual Property Rights and Strategies in Industrial Companies [T-MACH-105442]

Responsible:
Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dipl.-Ing. Frank Zacharias

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Block</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2147161</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>2</td>
<td>Block / 🗣️</td>
<td></td>
<td>Zacharias</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2147160</td>
<td>Patents and Patentstrategies in innovative companies</td>
<td>2</td>
<td>/ 🗣️</td>
<td></td>
<td>Zacharias</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Block</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td></td>
<td></td>
<td></td>
<td>Zacharias, Albers</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td></td>
<td></td>
<td></td>
<td>Zacharias, Albers</td>
</tr>
</tbody>
</table>

Legend:

- 🗣️: On-Site
- 📱: Blended (On-Site/Online)
- Online
- Cancelled

Competence Certificate

oral exam (ca. 20 min)

Prerequisites

none

Recommendation

None

Below you will find excerpts from events related to this course:
Content

Attendance at lectures (5 L): 24h
Personal preparation and follow-up of lecture and exercise: 5h
Preparation exam: 31h

The students understand and are able to describe the basics of intellectual property, particularly with regard to the filing and obtaining of property rights. They can name the criteria of project-integrated intellectual property management and strategic patenting in innovative companies. Students are also able to describe the key regulations of the law regarding employee invention and to illustrate the challenges of intellectual properties with reference to examples.

The lecture will describe the requirements to be fulfilled and how protection is obtained for patents, design rights and trademarks, with a particular focus on Germany, Europe and the EU. Active, project-integrated intellectual property management and the use of strategic patenting by technologically oriented companies will also be discussed. Furthermore, the significance of innovations and intellectual property for both business and industry will be demonstrated using practical examples, before going on to consider the international challenges posed by intellectual property and current trends in the sector. Within the context of licensing and infringement, insight will be provided as to the relevance of communication, professional negotiations and dispute resolution procedures, such as mediation for example. The final item on the agenda will cover those aspects of corporate law that are relevant to intellectual property.

Lecture overview:

1. Introduction to intellectual property
2. The profession of the patent attorney
3. Filing and obtaining intellectual property rights
4. Patent literature as a source of knowledge and information
5. The law regarding employee inventions
6. Active, project-integrated intellectual property management
7. Strategic patenting
8. The significance of intellectual property
9. International challenges and trends
10. Professional negotiations and dispute resolution procedures
11. Aspects of corporate law

Organizational issues

Weitere Informationen siehe IPEK-Homepage.
https://www.ipek.kit.edu/2976_2858.php
Content
Attendance at lectures (5 L): 24h
Personal preparation and follow-up of lecture and exercise: 5h
Preparation exam: 31h

The students understand and are able to describe the basics of intellectual property, particularly with regard to the filing and obtaining of property rights. They can name the criteria of project-integrated intellectual property management and strategic patenting in innovative companies. Students are also able to describe the key regulations of the law regarding employee invention and to illustrate the challenges of intellectual properties with reference to examples.

The lecture will describe the requirements to be fulfilled and how protection is obtained for patents, design rights and trademarks, with a particular focus on Germany, Europe and the EU. Active, project-integrated intellectual property management and the use of strategic patenting by technologically oriented companies will also be discussed. Furthermore, the significance of innovations and intellectual property for both business and industry will be demonstrated using practical examples, before going on to consider the international challenges posed by intellectual property and current trends in the sector. Within the context of licensing and infringement, insight will be provided as to the relevance of communication, professional negotiations and dispute resolution procedures, such as mediation for example. The final item on the agenda will cover those aspects of corporate law that are relevant to intellectual property.

Lecture overview:
1. Introduction to intellectual property
2. The profession of the patent attorney
3. Filing and obtaining intellectual property rights
4. Patent literature as a source of knowledge and information
5. The law regarding employee inventions
6. Active, project-integrated intellectual property management
7. Strategic patenting
8. The significance of intellectual property
9. International challenges and trends
10. Professional negotiations and dispute resolution procedures
11. Aspects of corporate law
3.179 Course: Introduction into Mechatronics [T-MACH-100535]

Responsible: Moritz Böhland
apl. Prof. Dr. Markus Reischl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Introduction into Mechatronics</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Lecture / Online</td>
<td></td>
<td>Reischl</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Introduction into Mechatronics</td>
<td>Grade to a third</td>
<td>Reischl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam (Duration: 2h)

Prerequisites

none

Below you will find excerpts from events related to this course:

Introduction into Mechatronics
2105011, WS 22/23, 3 SWS, Language: German, Open in study portal

Content

- Introduction
- Structure of mechatronic systems
- Mathematical treatment of mechatronic systems
- Sensors and actuators
- Measurements: acquisition and interpretation
- Modelling of mechatronic systems
- Control and feedback control systems
- Information processing

Learning objectives:

The student has knowledge about the specific challenge of interdisciplinary collaboration within the framework of mechatronics. He is able to explain the origin, necessity and methodic implementation of interdisciplinary collaboration, to name the main difficulties as well as the special features within the development of mechatronic products from the point of view of development methodic.

The student has fundamental knowledge of modeling mechanical, hydraulically and electrically part systems and about suitable optimization methods.

The student knows the difference in use of the term "system" in mechatronic and mechanical use.

Literature

Course: Introduction to Bionics [T-MACH-111807]

Responsible: apl. Prof. Dr. Hendrik Hölscher

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2142151</th>
<th>Introduction to Biomimetics</th>
<th>2 SWS</th>
<th>Lecture / Hölscher, Greiner</th>
</tr>
</thead>
</table>

Competence Certificate

written or oral exam

Prerequisites

none

Annotation

Brick T-MACH-102172 may not be started

Below you will find excerpts from events related to this course:

Introduction to Biomimetics

2142151, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content

Bionics focuses on the design of technical products following the example of nature. For this purpose we have to learn from nature and to understand its basic design rules. Therefore, the lecture focuses on the analysis of the fascinating effects used by many plants and animals. Possible implementations into technical products are discussed in the end.

The students should be able analyze, judge, plan and develop biomimetic strategies and products.

Basic knowledge in physics and chemistry

The successfull attendance of the lecture is controlled by a written examination.

Organizational issues

Die Vorlesung findet in Abhängigkeit von der aktuellen Situation in Präsenz statt. Im ILIAS werden Materialien (Videos, Originalliteratur, Übungen) zur Verlieferung zur Verfügung gestellt. Zusätzlich können zu den jeweiligen Vorlesungsterminen Aufgaben, Übungen und Fragen besprochen werden.

Diese Vorlesung ersetzt "Bionik für Ingenieure und Naturwissenschaftler" (nur der Titel hat sich geändert).

Für die schriftliche Klausur werden zwei Termine angeboten werden (voraussichtlich in der ersten Woche nach Vorlesungsende im Sommersemester und 1-2 Wochen vor Vorlesungsbeginn im Wintersemester).

Literature

Folien und Literatur werden in ILIAS zur Verfügung gestellt.
3.181 Course: Introduction to Ceramics [T-MACH-100287]

Responsible: Prof. Dr. Michael Hoffmann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>1212575</td>
<td>Introduction to Ceramics</td>
<td>3</td>
<td>Lecture</td>
<td>German</td>
<td>Hoffmann</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100287</td>
<td>Introduction to Ceramics</td>
<td></td>
<td></td>
<td></td>
<td>Hoffmann, Schell, Wagner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100287</td>
<td>Introduction to Ceramics</td>
<td></td>
<td></td>
<td></td>
<td>Hoffmann, Schell, Wagner</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (30 min) taking place at a specific date. The re-examination is offered at a specific date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Introduction to Ceramics

2125757, WS 22/23, 3 SWS, Language: German, Open in study portal

Literature

- Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
- S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier
3.182 Course: Introduction to Engineering Mechanics I: Statics [T-MACH-108808]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grades</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2162238 Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Written examination</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023 2162239 Introduction to Engineering Mechanics I: Statics and Strength of Materials (Tutorial)</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 5016642 BUT - Einführung in die Technische Mechanik I: Statik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grades</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 76-T-MACH-108808 Introduction to Engineering Mechanics I: Statics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎫 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of a written examination taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.
Permitted utilities: none

Prerequisites
None

Below you will find excerpts from events related to this course:

Introduction to Engineering Mechanics I: Statics and Strength of Materials

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grades</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162238, SS 2023, 2 SWS, Language: German</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content
Statics: force · moment · general equilibrium conditions · center of mass · inner force in structure · plane frameworks · theory of adhesion

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>2 SWS</td>
</tr>
<tr>
<td>ST 2023</td>
<td>1</td>
<td>Practice / 🧩 Introduction to Engineering Mechanics I: Statics and Strength of Materials (Tutorial)</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Introduction to Engineering Mechanics I: Statics (75min)</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials (120min)</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written examination (120 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

For students of economics the assessment consists of a written examination (Statics - 75 min.)

Permitted utilities: non-programmable calculator

Prerequisites

None

Below you will find excerpts from events related to this course:

Introduction to Engineering Mechanics I: Statics and Strength of Materials

2162238, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

On-Site

Content

Statics: force · moment · general equilibrium conditions · center of mass · inner force in structure · plane frameworks · theory of adhesion
3.184 Course: Introduction to Industrial Production Economics [T-MACH-105388]

Responsible: Simone Dürrschnabel

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (approx. 30 min)
The exam is offered in German only!

Prerequisites
none
Course: Introduction to Microsystem Technology I [T-MACH-105182]

Responsible: Dr. Vlad Badilita
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2141861</td>
<td>Introduction to Microsystem Technology I</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Description</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td>Korvink, Badilita</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

written examination (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology I

2141861, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Literature

Mikrosystemtechnik für Ingenieure, W. Menz und J. Mohr, VCH Verlagsgesellschaft, Weinheim 2005

M. Madou

Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
3.186 Course: Introduction to Microsystem Technology II [T-MACH-105183]

Responsible: Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2142874</td>
<td>Introduction to Microsystem Technology II</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td></td>
<td></td>
<td>Korvink, Badilita</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td></td>
<td></td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

written examination (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology II

2142874, SS 2023, 2 SWS, Language: English, [Open in study portal](https://example.com)

Content

- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patternning with lasers
- Assembly and packaging
- Microsystems

Organizational issues

Topic: Grundlagen der Mikrosystemtechnik II (MST II) SS 21
Time: Thursdays 14:00 - 15:30
10.91 Redtenbacher-Hörsaal

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
3.187 Course: Introduction to Multi-Body Dynamics [T-MACH-105209]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture / 🧩</td>
<td>3 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>76-T-MACH-105209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Introduction to Multibody Dynamics</td>
<td>76-T-MACH-105209</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination, 180 min.

Prerequisites

none

Recommendation

Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

Introduction to Multibody Dynamics

2162235, SS 2023, 3 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d'Alembert, principle of virtual power, Lagrange's equations, Kane's equations, structure of the equations of motion

Literature

Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
Kane, T.: Dynamics of rigid bodies.
Course: Introduction to nanotechnology [T-MACH-111814]

Responsible: apl. Prof. Dr. Hendrik Hölscher
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
- written exam 90 min

Prerequisites
- none

Annotation
- Brick T-MACH-111814 may not be started

Below you will find excerpts from events related to this course:

Introduction to Nanotechnology
- **2142152, SS 2023, 2 SWS, Language: German**

Content
Nanotechnology deals with the fabrication and analysis of nanostructures. The topics of the lecture include:

- the most common measurement principles of nanotechnology especially scanning probe methods
- the analysis of physical and chemical properties of surfaces
- interatomic forces and their influence on nanostructures
- methods of micro- and nanofabrication and lithography
- basic models of contact mechanics and nanotribology
- important functional characteristics of nanodevices

Basic knowledge in mathematics and physics is assumed.

The successful attendance of the lecture is controlled by a 30 minutes oral exam.

Organizational issues
Es werden im ILIAS Materialien (Videos, Originalliteratur, Übungen) zum Vertiefung zur Verfügung gestellt. Zusätzlich können zu den jeweiligen Vorlesungsterminen Aufgaben, Übungen und Fragen besprochen werden.

Diese Vorlesung ersetzt "Nanotechnologie für Ingenieure und Naturwissenschaftler" (nur der Titel hat sich geändert).

Für die mündlichen Prüfungen werden zwei Termine angeboten werden (voraussichtlich in der ersten Woche nach Vorlesungsende im Sommersemester und eine Woche vor Vorlesungsbeginn im Wintersemester).

Literature
Alle Folien und Originalliteratur werden auf ILIAS zur Verfügung gestellt.
3 COURSES

Course: Introduction to Neutron Cross Section Theory and Nuclear Data Generation [T-MACH-105466]

3.189 Course: Introduction to Neutron Cross Section Theory and Nuclear Data Generation [T-MACH-105466]

Responsible: apl. Prof. Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2190490</td>
<td>Introduction to Neutron Cross Section Theory and Nuclear Data Generation</td>
<td>2</td>
<td>Lecture / On-Site</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105466</td>
<td>Introduction to Neutron Cross Section Theory and Nuclear Data Generation</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105466</td>
<td>Introduction to Neutron Cross Section Theory and Nuclear Data Generation</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗿 Cancelled

Competence Certificate
oral exam of about 30 minutes

Prerequisites
none

Annotation
none

Below you will find excerpts from events related to this course:

Introduction to Neutron Cross Section Theory and Nuclear Data Generation
2190490, SS 2023, 2 SWS, Language: German/English, Open in study portal

Content
Cross section characterization
Summary of basic cross section theory
Resonance cross section
Doppler broadening
Scattering kernels
Basic of slowing down theory
Unit cell based XS data generation
Cross sections Data libraries
Data Measurements
The students:

- Understand the special importance of cross sections in various domains of natural science (Reactor physics, Material research, Solar radiation etc.)
- Are familiar with the theoretical methods and experimental effort to generate cross sections data.

Regular attendance: 26 h
self study: 94 h
oral exam about 30 min.
Literature
Handbuch von Nuklearen Reaktoren Vol I. Y. Ronen CRC press 1986 (in English)
P. Tippler, R. Llewellyn Modern Physics 2008 (in English)
3.190 Course: Introduction to Nonlinear Vibrations [T-MACH-105439]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2162247</td>
<td>Introduction to Nonlinear Vibrations</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2162248</td>
<td>Introduction into the nonlinear vibrations (Tutorial)</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Fidlin, Fischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Description</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105439</td>
<td>Introduction to Nonlinear Vibrations</td>
<td>2</td>
<td>Fidlin</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105439</td>
<td>Introduction to Nonlinear Vibrations</td>
<td>2</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⛩ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, 30 min.

Prerequisites
none

Recommendation
Vibration theory, Mathematical Methods of Vibration Theory, Dynamic Stability

Below you will find excerpts from events related to this course:

Introduction to Nonlinear Vibrations
2162247, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)
On-Site

Content

- dynamic systems
- basic ideas of asymptotic methods
- perturbation methods: Linstedt-Poincare, averaging, multiple scales
- limit cycles
- nonlinear resonance
- basics of the bifurcation analysis, bifurcation diagrams
- types of bifurcations
- discontinuous systems
- dynamic chaos
Literature

Introduction into the nonlinear vibrations (Tutorial)
2162248, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
Exercises related to the lecture
3.191 Course: Introduction to Nuclear Energy [T-MACH-105525]

Responsible: Prof. Dr.-Ing. Xu Cheng

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189903</td>
<td>Introduction to Nuclear Energy</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Cheng</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Subject</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105525</td>
<td>Introduction to Nuclear Energy</td>
<td>Cheng</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⬇️ On-Site, 🗑 Cancelled

Competence Certificate
oral exam, 30 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Nuclear Energy

2189903, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)
Blended (On-Site/Online)

Content

This lecture is dedicated to students of mechanical engineering and other engineering Bachelor or Master degree courses. Goal of the lecture is the fundamental knowledge of nuclear energy and nuclear reactors. After the lecture the students understand the principle of the usage of nuclear energy, the structure and operation of nuclear power plants and nuclear safety measures. Furthermore, the students are capable of giving technical assessment of the usage of nuclear energy with respect to its safety and sustainability.
3.192 Course: Introduction to Operations Research I and II [T-WIWI-102758]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management
Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2530044</td>
<td>2+2 SWS</td>
<td>Lecture / On-Site</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2550040</td>
<td>2 SWS</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Rebennack</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 7900145</td>
<td></td>
<td></td>
<td>Stein</td>
</tr>
<tr>
<td>ST 2023 7900038</td>
<td></td>
<td></td>
<td>Stein</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses.

The overall grade of the module is the grade of the written examination.

Prerequisites

None

Recommendation

Mathematics I und II. Programming knowledge for computing exercises.

It is strongly recommended to attend the course *Introduction to Operations Research I* [2550040] before attending the course *Introduction to Operations Research II* [2530043].

Below you will find excerpts from events related to this course:

Introduction to Operations Research II

2550043, WS 22/23, 2+2 SWS, Language: German, Open in study portal

Content

Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.

Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.

Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dynamical and stochastic inventory models, queuing theory.

Learning objectives:

The student

- names and describes basic notions of integer and combinatorial optimization, nonlinear programming, and dynamic programming,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.
Introduction to Operations Research I

2550040, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

Examples for typical OR problems.

Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, game theory.

Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal and minimal cost flows in networks.

Learning objectives:

The student

- names and describes basic notions of linear programming as well as graphs and networks,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Literature

Literature

3 COURSES
Course: Introduction to the Finite Element Method [T-MACH-105320]

3.193 Course: Introduction to the Finite Element Method [T-MACH-105320]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2162282 | Introduction to the Finite Element Method | 2 SWS | Lecture / 🗣️ | Langhoff, Böhlke |

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
written exam (90 min)
prerequisites: passing the corresponding "Tutorial to Introduction to the Finite element method" (T-MACH-110330)

Prerequisites
Passing the "Tutorial to Introduction to the Finite element method" (T-MACH-110330) is a prerequisite for taking part in the exam.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110330 - Tutorial Introduction to the Finite Element Method must have been passed.

Annotation
Knowledge of the contents of the courses "Continuum Mechanics of Solids and Fluids" and "Mathematical Methods of Continuum Mechanics" as well as the corresponding tutorials are expected

Due to capacity reasons it is possible that not all students of this course can be admitted to the computer tutorials. Students of the bachelor's degree program in mechanical engineering who have chosen the Major Field Continuum Mechanics (SP-Nr 13) will be admitted to the computer tutorials in any case.

If additional places are available in the computer tutorials for this course, these will be allocated according to the BSc average grade.

Below you will find excerpts from events related to this course:

Introduction to the Finite Element Method
2162282, SS 2023, 2 SWS, Language: German, Open in study portal

Content

- introduction and motivation, elements of tensor calculus
- Discrete FEM: systems of bars and springs
- Formulations of boundary value problems (1D)
- Approximations in FEM
- FEM for scalar and vector-valued field problems
- Solution methods for linear systems of equations

Literature

- Fish, J., Belytschko, T.: A First Course in Finite Elements, Wiley 2007
3.194 Course: Introduction to Theory of Materials [T-MACH-105321]

Responsible: apl. Prof. Marc Kamlah
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2182732</td>
<td>Introduction to Theory of Materials</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Kamlah</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105321</td>
<td>Introduction to Theory of Materials</td>
<td>Lecture (V)</td>
<td>Kamlah</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105321</td>
<td>Introduction to Theory of Materials</td>
<td>On-Site</td>
<td>Kamlah</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ☐ Cancelled

Competence Certificate

oral exam

Below you will find excerpts from events related to this course:

Introduction to Theory of Materials
2182732, SS 2023, 2 SWS, Language: German, Open in study portal

Content

Following a brief introduction into continuum mechanics at small deformations, the classification into elastic, viscoelastic, plastic and viscoplastic constitutive models of solids is discussed. Then, one after the other, the four groups of elastic, viscoelastic, plastic and viscoplastic constitutive models are motivated and mathematically formulated. Their properties are demonstrated by means of elementary analytical solutions and examples.

The student can judge for a problem to be computed, which constitutive model should be selected depending on choice of material and loading. For computation tools such as commercial finite element codes, the students can understand the documentation with respect to the implemented constitutive models, and they can make their choice based on their knowledge. The students have basic knowledge for the development of constitutive laws.

Qualification: Engineering Mechanics; Advanced Mathematics

regular attendance: 22,5 hours
self-study: 97,5 hours
oral exam ca. 30 minutes

Literature

[2] Skript
3.195 Course: IoT Platform for Engineering [T-MACH-106743]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>IoT platform for engineering</td>
<td>3 SWS</td>
<td>Project (P / 🗣)</td>
<td>Ovtcharova, Maier</td>
</tr>
<tr>
<td>ST 2023</td>
<td>IoT platform for engineering</td>
<td>3 SWS</td>
<td>Project (P / 🗣)</td>
<td>Ovtcharova, Maier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>IoT platform for engineering</td>
<td>3 SWS</td>
<td>Project (P / 🗣)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate

Assessment of another type (graded), Group teaching project on Industry 4.0 consisting of: Conception, implementation, accompanying documentation and final presentation.

Below you will find excerpts from events related to this course:

V IoT platform for engineering
2123352, WS 22/23, 3 SWS, Language: German, Open in study portal
Project (PRO)
On-Site

Content

Industry 4.0, IT systems for fabrication and assembly, process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Students can

- map and analyze processes in the context of Industry 4.0 with special methods of process modelling
- collaboratively grasp practical I4.0 issues using existing hardware and software and work out solutions for a continuous improvement process in a team
- prototypically implement the self-developed solution proposal with the given IT systems and the existing hardware equipment and finally present the results

Literature

Keine / None

V IoT platform for engineering
2123352, SS 2023, 3 SWS, Language: German, Open in study portal
Project (PRO)
On-Site

Content

Industry 4.0, IT systems for fabrication and assembly, process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Students can

- map and analyze processes in the context of Industry 4.0 with special methods of process modelling
- collaboratively grasp practical I4.0 issues using existing hardware and software and work out solutions for a continuous improvement process in a team
- prototypically implement the self-developed solution proposal with the given IT systems and the existing hardware equipment and finally present the results

Literature

Keine / None
3.196 Course: Lab Computer-Aided Methods for Measurement and Control [T-MACH-105341]

Responsible: Marvin Klemp
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Practical course /</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2137306</td>
<td>Lab Computer-aided methods for measurement and control</td>
<td>Stiller, Immel</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Practical course /</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105341</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
</tr>
</tbody>
</table>

Prerequisites

none

Below you will find excerpts from events related to this course:

V Lab Computer-aided methods for measurement and control

2137306, WS 22/23, 3 SWS, Language: German, Open in study portal

Practical course (P)

On-Site

Content

Lerninhalt (EN):

1. Digital technology
2. Digital storage oscilloscope and digital spectrum analyzer
3. Supersonic computer tomography
4. Lighting and image acquisition
5. Digital image processing
6. Image interpretation
7. Control synthesis and simulation
8. Robot: Sensors
9. Robot: Actuating elements and path planning

The lab comprises 9 experiments.

Voraussetzungen: Recommendations:

Basic studies and preliminary examination; basic lectures in automatic control

Arbeitsaufwand (EN): 120 hours

Lernziele (EN):

Powerful and cheap computation resources have led to major changes in the domain of measurement and control. Engineers in various fields are nowadays confronted with the application of computer-aided methods. This lab tries to give an insight into the modern domain of measurement and control by means of practically oriented and flexible experiments. Based on experiments on measurement instrumentation and digital signal processing, elementary knowledge in the domain of visual inspection and image processing will be taught. Thereby, commonly used software like MATLAB/Simulink will be used in both simulation and realization of control loops. The lab closes with selected applications, like control of a robot or supersonic computer tomography.

Nachweis (EN):

Colloquia

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🗻 On-Site, 🚫 Cancelled
Literature

Übungsanleitungen sind auf der Institutshomepage erhältlich.

Instructions to the experiments are available on the institute's website
3.197 Course: Laboratory Exercise in Energy Technology [T-MACH-105331]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Prof. Dr. Ulrich Maas
Dr.-Ing. Heinrich Wirbser

Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Practical course / On-Site</td>
<td>Bauer, Maas, Bykov</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Practical course / On-Site</td>
<td>Bauer, Maas, Bykov, Schießl</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Practical course / On-Site</td>
<td>Bauer, Maas, Wirbser, Bykov</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online
🧩 Blended (On-Site/Online)
🗣 On-Site
🗙 Cancelled

Competence Certificate

1 report, approx. 12 pages
Discussion of the documented results with the assistants

Prerequisites

none

Below you will find excerpts from events related to this course:

Laboratory Exercise in Energy Technology

2171487, WS 22/23, 3 SWS, Language: German/English, Open in study portal

Practical course (P)

On-Site
Content
Online registration within the first two weeks of the lecture period at: http://www.its.kit.edu

- Micro gas turbine
- Several test rigs for the investigation of heat transfer at thermally high loaded components
- Optimization of components of the internal air and oil system
- Characterization of spray nozzles
- Investigation of pollutant and noise emission as well as reliability and material deterioration
- Exhaust gas treatment
 - Exhaust gas turbocharger
 - Cooling Tower
 - Heat pump
 - Plant oil stove
 - Heat capacity
 - Wood combustion

regular attendance: 42h
self-study: 78h

Attending this course enables the students to:

- accomplish experimental and design related as well as theoretical tasks in a scientific background
- perform a correct evaluation of the obtained results
- adequately document and present their results in a scientific framework

1 report, approx. 12 pages
Discussion of the documented results with the assistants

Duration: 30 minutes

no tools or reference materials may be used
Content
Online registration within the first two weeks of the lecture period at: http://www.its.kit.edu

- Micro gas turbine
- Several test rigs for the investigation of heat transfer at thermally high loaded components
- Optimization of components of the internal air and oil system
- Characterization of spray nozzles
- Investigation of pollutant and noise emission as well as reliability and material deterioration
- Exhaust gas treatment
- Exhaust gas turbocharger
- Cooling Tower
- Heat pump
- Plant oil stove
- Heat capacity
- Wood combustion

Regular attendance: 42h
Self-study: 78h

Attending this course enables the students to:

- accomplish experimental and design related as well as theoretical tasks in a scientific background
- perform a correct evaluation of the obtained results
- adequately document and present their results in a scientific framework

1 report, approx. 12 pages

Discussion of the documented results with the assistants

Duration: 30 minutes

No tools or reference materials may be used

Organizational issues
Information zum Lehrlabor finden Sie auf der Instituts-homepage
3.198 Course: Laboratory Laser Materials Processing [T-MACH-102154]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2183640</td>
<td>Laboratory "Laser Materials Processing"</td>
<td>3 SWS</td>
<td>Practical course / Online</td>
<td>2183640</td>
<td>Laboratory "Laser Materials Processing"</td>
<td>3 SWS</td>
<td>Practical course / Online</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102154</td>
<td>Laboratory Laser Materials Processing</td>
<td></td>
<td>Schneider, Pfleging</td>
<td>76-T-MACH-102154</td>
<td>Laboratory Laser Materials Processing</td>
<td></td>
<td>Schneider</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competition Certificate
The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Prerequisites
None

Recommendation
Basic knowledge of physics, chemistry and material science is assumed.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Laboratory "Laser Materials Processing"</th>
<th>Practical course (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2183640, WS 22/23, 3 SWS, Language: German, Open in study portal</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>
Content
The laboratory compromises 8 half-day experiments, which address the following laser processing topics of metals, ceramics and polymers:

- safety aspects
- surface hardening and remelting
- melt and reactive cutting
- surface modification by dispersing or alloying
- welding
- surface texturing
- metrology

There are used CO2-, excimer-, Nd:YAG- and high power diode-laser sources within the laboratory.

The student

- can describe the influence of laser, material and process parameters and can choose suitable parameters for the most important methods of laser-based processing in automotive engineering.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

The attendance to one of the courses Physical Basics of Laser Technology (2181612) or Laser Application in Automotive Engineering (2182642) is strongly recommended.

regular attendance: 34 hours
self-study: 86 hours

The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Organizational issues
Maximal 12 Teilnehmer/innen!
Aktuell sind nur noch wenige Plätze zu vergeben! Registrierung möglich per Email an johannes.schneider@kit.edu
Praktikum findet in Kleingruppen semesterbegleitend (dienstags bzw. mittwochs, ganztägig) bzw. als Blockpraktikum auf dem Campus Nord am IAM-AWP (Geb. 681) und auf dem Campus Süd am IAM-CMS (Geb. 30.48) statt!

Termine werden mit den Teilnehmern/innen direkt abgestimmt.

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
Content
The laboratory compromises 8 half-day experiments, which address the following laser processing topics of metals, ceramics and polymers:

- safety aspects
- surface hardening and remelting
- melt and reactive cutting
- surface modification by dispersing or alloying
- welding
- surface texturing
- metrology

There are used CO2-, excimer-, Nd:YAG- and high power diode-laser sources within the laboratory.

The student can describe the influence of laser, material and process parameters and can choose suitable parameters for the most important methods of laser-based processing in automotive engineering.

- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

The attendance to one of the courses Physical Basics of Laser Technology (2181612) or Laser Application in Automotive Engineering (2182642) is strongly recommended.

regular attendance: 34 hours
self-study: 86 hours

The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Organizational issues
Die Praktikumsplätze für das Sommersemester 2023 sind bereits ausgebucht!
Anmeldung per Email an johannes.schneider@kit.edu
Das Praktikum findet semesterbegleitend in Kleingruppen am IAM-ZM (CS) bzw. IAM-AWP (CN) statt!
Die Termine werden zu Beginn des Semesters bekannt gegeben.

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
Course: Laboratory Mechatronics [T-MACH-105370]

Responsible: Prof. Dr. Veit Hagenmeyer
Prof. Dr.-Ing. Wolfgang Seemann
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Completed coursework

Credits
4

Grading scale
Pass/fail

Recurrence
Each winter term

Version
4

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Laboratory mechatronics</td>
<td>3 SWS</td>
<td>Practical course / 🗣</td>
<td>Fidlin, Hagenmeyer, Bühland, Stiller, Chen, Orth, Immel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Laboratory Mechatronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The laboratory course is offered exclusively as ungraded coursework. The assessment consists of a group colloquium at the beginning of the individual specialization phases (Part 1). In addition, a robot control system for a pick-and-place task must be successfully implemented in the group phase (Part 2).

Prerequisites
None

Below you will find excerpts from events related to this course:

Laboratory mechatronics
2105014, WS 22/23, 3 SWS, Language: German, Open in study portal

Content

Part I
Control, programming and simulation of robots
CAN-Bus communication
Image processing / machine vision
Dynamic simulation of robots in ADAMS

Part II
Solution of a complex problem in team work

Learning objectives:
The student is able to ...

- use his knowledge about mechatronics and microsystems technology to solve a practical problem. The laboratory course comprises simulation, bus communication, measurement instrumentation, control engineering and programming.
- integrate the different subsystems from a manipulator to a working compound system in teamwork.

Nachweis (EN): certificate of successful attendance

Voraussetzung (EN): none

Arbeitsaufwand (EN):

regular attendance: 33.5 h
self-study: 88.5 h
Organizational issues
Das Praktikum ist anmeldepflichtig.
Die Anmeldungsmodalitäten-/fristen werden auf https://www.iai.kit.edu/Pruefungen.php bekannt gegeben.
Siehe Internet / Aushang Raum 033 EG, im Gebäude 40.32.

Literature
Materialien zum Mechatronik-Praktikum
Manuals for the laboratory course on Mechatronics
Course: Laser in Automotive Engineering [T-MACH-105164]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture / On-Site</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2182642</td>
<td>Laser Material Processing</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105164</td>
<td>Laser in Automotive Engineering</td>
<td>Schneider</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105164</td>
<td>Laser in Automotive Engineering / Laser Material Processing</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Competence Certificate

oral examination (30 min)

no tools or reference materials

Prerequisites

It is not possible to combine this brick with brick Laser Material Processing [T-MACH-112763], brick Physical Basics of Laser Technology [T-MACH-109084] and brick Physical Basics of Laser Technology [T-MACH-102102]

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102102 - Physical Basics of Laser Technology must not have been started.
2. The course T-MACH-112763 - Laser Material Processing must not have been started.

Recommendation

preliminary knowledge in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Lecture (V) On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Laser Material Processing 2182642, SS 2023, 2 SWS, Language: English, Open in study portal</td>
</tr>
</tbody>
</table>
Content
Based on a short description of the physical basics of laser technology the lecture reviews the most important high power lasers and their various applications in automotive engineering. Furthermore the application of laser light in metrology and safety aspects will be addressed.

- physical basics of laser technology
- laser beam sources (Nd:YAG-, CO2-, high power diode-laser)
- beam properties, guiding and shaping
- basics of materials processing with lasers
- laser applications in material processing
- safety aspects

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of Nd:YAG-, CO2- and high power diode-laser sources.
- can describe the most important methods of laser-based processing in automotive engineering and illustrate the influence of laser, material and process parameters.
- can analyse manufacturing problems and is able to choose a suitable laser source and process parameters.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

It is not possible, to combine this lecture with the lecture Physical basics of laser technology [2181612].

regular attendance: 22,5 hours
self-study: 97,5 hours
oral examination (ca. 30 min)

no tools or reference materials

Organizational issues
Die Vorlesung ersetzt die bisherige Vorlesung "Lasereinsatz im Automobilbau" und wird jetzt auf Englisch angeboten!

The lecture replaces the previous lecture "Laser Application in Automotive Engineering" and is now offered in English!

Literature
P. Poprawe: Tailored Light 1, 2018, Springer
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.201 Course: Laser Material Processing [T-MACH-112763]

Responsible: Dr.-Ing. Johannes Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2182642</th>
<th>Laser Material Processing</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Schneider</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>76-T-MACH-112763</th>
<th>Laser Material Processing</th>
<th>Schneider</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral examination (30 min)

no tools or reference materials

Prerequisites

It is not possible, to combine this brick with Laser in Automotive Engineering [T-MACH-105164], brick Physical Basics of Laser Technology [T-MACH-109084] and brick Physical Basics of Laser Technology [T-MACH-102102].

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102102 - Physical Basics of Laser Technology must not have been started.
2. The course T-MACH-105164 - Laser in Automotive Engineering must not have been started.

Recommendation

preliminary knowledge in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

Laser Material Processing

2182642, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site
Content
Based on a short description of the physical basics of laser technology the lecture reviews the most important high power lasers and their various applications in automotive engineering. Furthermore the application of laser light in metrology and safety aspects will be addressed.

- physical basics of laser technology
- laser beam sources (Nd:YAG-, CO2-, high power diode-laser)
- beam properties, guiding and shaping
- basics of materials processing with lasers
- laser applications in material processing
- safety aspects

The student can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of Nd:YAG-, CO2- and high power diode-laser sources.
- can describe the most important methods of laser-based processing in automotive engineering and illustrate the influence of laser, material and process parameters.
- can analyse manufacturing problems and is able to choose a suitable laser source and process parameters.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.
It is not possible, to combine this lecture with the lecture Physical basics of laser technology [2181612].

regular attendance: 22.5 hours
self-study: 97.5 hours
oral examination (ca. 30 min)

no tools or reference materials

Organizational issues
Die Vorlesung ersetzt die bisherige Vorlesung "Lasereinsatz im Automobilbau" und wird jetzt auf Englisch angeboten!
The lecture replaces the previous lecture "Laser Application in Automotive Engineering" and is now offered in English!

Literature
P. Poprawe: Tailored Light 1, 2018, Springer
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.202 Course: Leadership and Conflict Management [T-MACH-105440]

Responsible: Hans Hatzl
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2110017 | Leadership and Conflict Management (in German) | 2 SWS | Lecture / 🗣 | Hans Hatzl |

Exams

| ST 2023 | 76-T-MACH-105440 | Leadership and Conflict Management | Deml, Hatzl |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

oral exam (approx. 30 min)

Prerequisites

It is not possible to combine this brick with brick Leadership and Conflict Management [T-MACH-111070].

Annotation

This lecture will also be offered once in winter term 20/21.

Below you will find excerpts from events related to this course:

Leadership and Conflict Management (in German)

2110017, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site

Content

In this compact event, management and leadership techniques are taught which are among the key qualifications for management tasks. Furthermore, you will be prepared for management and leadership tasks.

The course consists of the following course contents:

1. Introduction to the topic
 - Goal setting and goal achievement
 - Management techniques in planning
 - Communication and information
 - Decision Theory
 - Leadership and cooperation
 - Self Management
 - Conflict management and strategy
 - Case studies

It passes:

- Obligatory attendance

Recommendations:

- Knowledge of work and economic science is advantageous

Literature

Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.203 Course: Leadership and Management Development [T-MACH-105231]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Andreas Ploch

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Content</th>
<th>Type</th>
<th>Grade</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2145184</td>
<td>Leadership and Product Development</td>
<td>2 SWS</td>
<td>Lecture / Ploch</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Content</th>
<th>Type</th>
<th>Grade</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>Ploch, Albers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam (approx. 20 min)

Prerequisites

It is not possible to combine this brick with brick Leadership and Management Development [T-MACH-112585].

Below you will find excerpts from events related to this course:

Leadership and Product Development

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Content</th>
<th>Type</th>
<th>Grade</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145184, WS 22/23, 2 SWS, Language: German</td>
<td>Open in study portal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔢 On-Site, ❌ Cancelled

Content

Overview of leadership theories and their application
Selected management instruments and their use in organizations
Communication and leadership
change management
Management development and MD programmes
Assessment centres and management audits
Teamwork, team development and team roles
Coaching as an instrument of modern leadership
Intercultural competence and cross-cultural leadership
Management and ethics, corporate governance
Practical exercises and examples to deepen selected contents

Organizational issues

Vorlesungsanmeldung und Informationen zur Veranstaltung werden im ILIAS Kurs zur Verfügung gestellt.
Weitere Information siehe IPEK-Homepage

Literature

Vorlesungsumdruck
3.204 Course: Liberalised Power Markets [T-WIWI-107043]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Title</th>
<th>SWS</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / 🗣️</td>
<td>Liberalised Power Markets</td>
<td>2 SWS</td>
<td>Fichtner, Kraft</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture / 🗣️</td>
<td>Liberalised Power Markets</td>
<td>2 SWS</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / 🗣️</td>
<td>Liberalised Power Markets</td>
<td>Fichtner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture / 🗣️</td>
<td>Liberalised Power Markets</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Liberalised Power Markets

<table>
<thead>
<tr>
<th>Type</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (V)</td>
<td>Liberalised Power Markets</td>
<td>Fichtner, Kraft</td>
</tr>
</tbody>
</table>

2581998, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)
Content
1. Power markets in the past, now and in future
2. Designing liberalised power markets
 2.1. Unbundling Dimensions of liberalised power markets
 2.2. Central dispatch versus markets without central dispatch
 2.3. The short-term market model
 2.4. The long-term market model
 2.5. Market flaws and market failure
 2.6. Regulation in liberalised markets
3. The power (sub)markets
 3.1 Day-ahead market
 3.2 Intraday market
 3.3 (Long-term) Forwards and futures markets
 3.4 Emission rights market
 3.5 Market for ancillary services
 3.6 The “market” for renewable energies
 3.7 Future market segments
4. Grid operation and congestion management
 4.1. Grid operation
 4.2. Congestion management
5. Market power
 5.1. Defining market power
 5.2. Indicators of market power
 5.3. Reducing market power
6. Future market structures in the electricity value chain
 1. Power markets in the past, now and in future
 2. Designing liberalised power markets
 2.2. Unbundling Dimensions of liberalised power markets
 2.3. Central dispatch versus markets without central dispatch
 2.4. The short-term market model
 2.5. The long-term market model
 2.6. Market flaws and market failure
 2.7. Regulation in liberalised markets
3. The power (sub)markets
 3.1 Day-ahead market
 3.2 Intraday market
 3.3 (Long-term) Forwards and futures markets
 3.4 Emission rights market
 3.5 Market for ancillary services
 3.6 The “market” for renewable energies
 3.7 Future market segments
4. Grid operation and congestion management
 4.1. Grid operation
 4.2. Congestion management
5. Market power
 5.1. Defining market power
 5.2. Indicators of market power
 5.3. Reducing market power
6. Future market structures in the electricity value chain

Literature
Weiterführende Literatur:
3.205 Course: Lighting Engineering [T-ETIT-100772]

Responsible: Prof. Dr. Cornelius Neumann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Module</th>
<th>Type</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2313739</td>
<td>Lighting Engineering</td>
<td>Lecture</td>
<td>2</td>
<td>Neumann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2313741</td>
<td>Lighting Engineering (Tutorial to 2313739)</td>
<td>Practice</td>
<td>1</td>
<td>Neumann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Module</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7313739</td>
<td>Lighting Engineering</td>
<td>Neumann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7313739</td>
<td>Lighting Engineering</td>
<td>Neumann</td>
</tr>
</tbody>
</table>

Legend:
- [🖥](#) Online
- [🧩](#) Blended (On-Site/Online)
- [🗣](#) On-Site
- [🗙](#) Cancelled

Prerequisites

none
3.206 Course: Lightweight Engineering Design [T-MACH-105221]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Albers, Düser, Ott</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2146190</td>
<td>Lightweight Engineering Design</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Albers, Burkardt</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (90 min)

Prerequisites

None

Below you will find excerpts from events related to this course:

Lightweight Engineering Design

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Albers, Düser, Ott</th>
</tr>
</thead>
<tbody>
<tr>
<td>2146190</td>
<td>SS 2023, Lightweight Engineering Design</td>
<td></td>
</tr>
</tbody>
</table>

Content

General aspects of lightweight design, lightweight strategies, construction methods, design principles, lightweight construction, stiffening techniques, lightweight materials, virtual product engineering, bionics, joining techniques, validation, recycling

Additionally, guest speakers from industry will present lightweight design from an practical point of view.

The students are able to ...

- evaluate the potential of central lightweight strategies and their application in design processes.
- apply different stiffing methods qualitatively and to evaluate their effectiveness.
- evaluate the potential of computer-aided engineering as well as the related limits and influences on manufacturing.
- reflect the basics of lightweight construction from a system view in the context of the product engineering process.
Organizational issues
Vorlesungsfolien können über die eLearning-Plattform ILIAS bezogen werden.
Die Prüfungsart wird gemäß der Prüfungsordnung zu Vorlesungsbeginn angekündigt:

- Schriftliche Prüfung: 90 min Prüfungsdauer
- Mündliche Prüfung: 20 min Prüfungsdauer
- Erlaubte Hilfsmittel: keine

Medien: Beamer
Arbeitsbelastung:

- Präsenzzeit: 21 h
- Selbststudium: 99 h

Lecture slides are available via eLearning-Platform ILIAS.
The type of examination (written or oral) will be announced at the beginning of the lecture:

- written examination: 90 min duration
- oral examination: 20 min duration
- auxiliary means: None

Media: Beamer
Workload:

- regular attendance: 21 h
- self-study: 99 h

Literature
Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
3.207 Course: Liquid Transportation Fuels [T-CIWVT-111095]

Responsible: Prof. Dr. Reinhard Rauch
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-MACH-105100 - Courses of the KIT Department of Chemical and Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22314</td>
<td>Liquid Transportation Fuels</td>
<td>Lecture / 🗣</td>
<td>Rauch</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22315</td>
<td>Übung zu 22314 Liquid Transportation Fuels</td>
<td>Practice / 🗣</td>
<td>Rauch</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7230010</td>
<td>Liquid Transportation Fuels</td>
<td></td>
<td>Rauch</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7230020</td>
<td>Liquid Transportation Fuels</td>
<td></td>
<td>Rauch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, x Cancelled

Competence Certificate
Learning Control is an oral examination with a duration of about 20 minutes.

Prerequisites
None
3 COURSES

3.208 Course: Localization of Mobile Agents [T-INFO-101377]

Responsible:	Prof. Dr.-Ing. Uwe Hanebeck
Organisation:	KIT Department of Informatics
Part of:	M-MACH-104883 - Courses of the KIT Department of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 24613 | Localization of Mobile Agents | 3 SWS | Lecture / 🗣 | Zea Cobo, Ernst |

Exams

| WT 22/23 | 7500020 | Localization of Mobile Agents | Zea Cobo |
| ST 2023 | 7500004 | Localization of Mobile Agents | Zea Cobo, Noack |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Localization of Mobile Agents

24613, SS 2023, 3 SWS, Language: German, [Open in study portal](#)

Content

This module provides a systematic introduction into the topic of localization methods. In order to facilitate understanding, the module is divided into four main topics. Dead reckoning treats the instantaneous determination of a vehicle's position based on dynamic parameters like velocity or steering angle. Localization with the help of measurements of known landmarks is part of static localization. In addition to the closed-form solutions for particular measurements (distances and angles), the least squares method for fusion arbitrary measurements is also introduced. Dynamic localization treats the combination of dead reckoning and static localization. The central part of the lecture is the derivation of the Kalman filter, which has been successfully applied in several practical applications. Finally, simultaneous localization and mapping (SLAM) is introduced, which allows localization in case of (partly) unknown landmark positions.

Organizational issues

Prüfungsterminvorschläge und das Verfahren dazu sind auf der Webseite der Vorlesung zu finden.

Literature

Grundlegende Kenntnisse der linearen Algebra und Stochastik sind hilfreich.
3.209 Course: Logistics and Supply Chain Management [T-MACH-110771]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Examination of another type
Credits: 9
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 4

Events

| ST 2023 | 2118078 | Logistics and Supply Chain Management | 4 SWS | Lecture / 🗣 | Furmans, Alicke |

Exams

| ST 2023 | 76-T-MACH-110771 | Logistics and Supply Chain Management | Furmans |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The success control takes place in the form of an examination performance of a different kind. This is composed as follows:

- 50% assessment of a written examination (60 min) during the semester break
- 50% assessment of an oral examination (20 min) during the semester break

To pass the examination, both examination performances must be passed.

Prerequisites
None

Annotation
The brick cannot be taken if one of the bricks "T-MACH-102089 – Logistics - Organisation, Design and Control of Logistic Systems" and "T-MACH-105181 – Supply Chain Management" has been taken.

Below you will find excerpts from events related to this course:

Logistics and Supply Chain Management
2118078, SS 2023, 4 SWS, Language: English, Open in study portal

Content
In the lecture "Logistics and Supply Chain Management", comprehensive and well-founded fundamentals of crucial issues in logistics and supply chain management are presented. Furthermore, the interaction of different design elements of supply chains is emphasized. For this purpose, both qualitative and quantitative models are presented and applied. Additionally, methods for mapping and evaluating logistics systems and supply chains are described. The contents of the lecture are deepened in exercises and case studies and comprehension is partially reviewed in case studies. The contents will be illustrated, among other things, on the basis of supply chains in the automotive industry.

Among others, the following topics are covered:

- Inventory Management
- Forecasting
- Bullwhip Effect
- Supply Chain Segmentation and Collaboration
- Key Performance Indicators
- Supply Chain Risk Management
- Production Logistics
- Location Planning
- Route Planning

It is intended to provide an interactive format in which students can also contribute (and work alone or in groups). Since logistics and supply chain management (also in times during and after Corona) requires working in an international environment and therefore many terms are derived from English, the lecture will be held in English.
3.210 Course: Logistics and Supply Chain Management [T-WIWI-102870]

Responsible: Prof. Dr. Frank Schultmann
Organisation: KIT Department of Economics and Management
Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2581996</td>
<td>Logistics and Supply Chain Management</td>
<td>2 SWS</td>
<td>Lecture / 🗣 Schultmann, Kaiser</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7981996</td>
<td>Logistics and Supply Chain Management</td>
<td>Schultmann</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7981996</td>
<td>Logistics and Supply Chain Management</td>
<td>Schultmann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Below you will find excerpts from events related to this course:

V Logistics and Supply Chain Management
2581996, SS 2023, 2 SWS, Language: English, Open in study portal

Content

Students are introduced to the methods and tools of logistics and supply chain management. They students learn the key terms and components of supply chains together with key economic trade-offs. In detail, students gain knowledge of decisions in supply chain management, such as facility location, supply chain planning, inventory management, pricing and supply chain cooperation. In this manner, students will gain knowledge in analyzing, designing and steering of decisions in the domain of logistics and supply chain management.

- Introduction: Basic terms and concepts
- Facility location and network optimization
- Supply chain planning I: flexibility
- Supply chain planning II: forecasting
- Inventory management & pricing
- Supply chain coordination I: the Bullwhip-effect
- Supply chain coordination II: double marginalization
- Supply chain risk management

Literature

Wird in der Veranstaltung bekannt gegeben.
3.211 Course: Machine Dynamics [T-MACH-105210]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161224</td>
<td>Machine Dynamics</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2161224</td>
<td>Machine Dynamics</td>
<td>2 SWS</td>
<td>Lecture / On-Si</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2161225</td>
<td>Machine Dynamics (Tutorial)</td>
<td>1 SWS</td>
<td>Practice / On-Si</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105210</td>
<td>Machine Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105210</td>
<td>Machine Dynamics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105210</td>
<td>Machine Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105210</td>
<td>Machine Dynamics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

None

Competence Certificate

Written exam, 180 min.

Below you will find excerpts from events related to this course:

Machine Dynamics

2161224, WS 22/23, 2 SWS, Language: English, Open in study portal

Content

1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Literature

Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953

Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979

Dresig, Vulfson: Dynamik der Mechanismen, 1989

Machine Dynamics

2161224, SS 2023, 2 SWS, Language: German/English, Open in study portal

Content

1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing
Literature
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989

Course: Machine Dynamics [T-MACH-105210]

Machine Dynamics (Tutorial)
2161225, SS 2023, 1 SWS, Language: English, Open in study portal

Practice (Ü)
On-Site

Content
Exercises related to the lecture
3.212 Course: Machine Dynamics II [T-MACH-105224]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2162220</td>
<td>Machine Dynamics II</td>
<td>Lecture / Online</td>
<td>2 SWS</td>
<td></td>
<td>Proppe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2162220</td>
<td>Machine Dynamics II</td>
<td>Lecture / Online</td>
<td>2 SWS</td>
<td></td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>Proppe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, 30 min.

Prerequisites
none

Recommendation
Machine Dynamics

Below you will find excerpts from events related to this course:

Machine Dynamics II

2162220, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Content
hydrodynamic bearings
- rotating shafts in hydrodynamic bearings
- belt drives
- vibration of turbine blades

Literature

Machine Dynamics II

2162220, SS 2023, 2 SWS, Language: German/English, [Open in study portal](#)

Content
Students are able to develop and analyze detailed models in machine dynamics that encompass continuum models, fluid structure interaction, and stability analyses.
hydrodynamic bearings
- rotating shafts in hydrodynamic bearings
- belt drives
- vibration of turbine blades

Literature
3.213 Course: Machine Tools and High-Precision Manufacturing Systems [T-MACH-110962]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Type/Lecture</th>
<th>Module Title</th>
<th>SWS</th>
<th>Lecture/Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2149910</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>6</td>
<td>Lecture/Practice</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Type/Lecture</th>
<th>Module Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-110962</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>Fleischer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-110962</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✙ Cancelled

Competence Certificate

Oral exam (40 minutes)

Prerequisites

- T-MACH-102158 - Machine Tools and Industrial Handling must not be commenced.
- T-MACH-109055 - Machine Tools and Industrial Handling must not be commenced.
- T-MACH-110963 - Machine Tools and High-Precision Manufacturing Systems must not be commenced.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Type/Lecture</th>
<th>Module Title</th>
<th>SWS</th>
<th>Lecture/Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149910, WS 22/23</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>6</td>
<td>Lecture/Practice</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>
Content
The lecture gives an overview of the construction, use and application of machine tools and high-precision manufacturing systems. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools and high-precision manufacturing systems is conveyed. First, the main components of the systems are systematically explained and their design principles as well as the integral system design are discussed. Subsequently, the use and application of machine tools and high-precision manufacturing systems will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0 and artificial intelligence. Guest lectures from industry round off the lecture with insights into practice.

The individual topics are:
- Structural components of dynamic manufacturing Systems
- Feed axes: High-precision positioning
- Spindles of cutting machine Tools
- Peripheral Equipment
- Machine control unit
- Metrological Evaluation
- Maintenance strategies and condition Monitoring
- Process Monitoring
- Development process for machine tools and high-precision manufacturing Systems
- Machine examples

Learning Outcomes:
The students …
- are able to assess the use and application of machine tools and high-precision manufacturing systems and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of machine tools and high-precision manufacturing systems (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of machine tools and high-precision manufacturing systems.
- are capable of selecting and evaluating machine tools and high-precision manufacturing systems according to technical and economic criteria.

Workload:
MACH:
- regular attendance: 63 hours
- self-study: 177 hours

WING/TVWL:
- regular attendance: 63 hours
- self-study: 207 hours

Organizational issues
Start: 24.10.2022
Lectures on Mondays and Wednesdays, tutorial on Thursdays.
The tutorial dates will announced in the first lecture.

Literature
Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.214 Course: Machine Vision [T-MACH-105223]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2137308</td>
<td>Machine Vision</td>
<td>4</td>
<td>Lecture / Practice (L)</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Lauer, Klemp</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105223</td>
<td>Machine Vision</td>
<td>4</td>
<td></td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Stiller, Lauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105223</td>
<td>Machine Vision</td>
<td>4</td>
<td></td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Stiller, Lauer</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ❌ Cancelled

Competence Certificate

Type of Examination: written exam
Duration of Examination: 60 minutes

Prerequisites

None

Below you will find excerpts from events related to this course:

Machine Vision

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Language: English</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2137308</td>
<td>Machine Vision</td>
<td>4</td>
<td>English</td>
<td>Lecture / Practice (VU)</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Stiller, Lauer</td>
</tr>
</tbody>
</table>

Content

Lernziele (EN):

Machin vision (or computer vision) describes all kind of techniques that can be used to extract information from camera images in an automated way. Considerable improvements of machine vision techniques throughout recent years, e.g. by the advent of deep learning, have caused growing interest in these techniques and enabled applications in various domains, e.g. robotics, autonomous driving, gaming, production control, visual inspection, medicine, surveillance systems, and augmented reality.

The participants should gain an overview over the basic techniques in machine vision and obtain hands-on experience.

Nachweis: written exam, 60 min.
Arbeitsaufwand: 240 hours
Voraussetzungen: none

Literature

Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3.215 Course: Machines and Processes [T-MACH-105208]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Heiko Kubach
Prof. Dr. Ulrich Maas
Dr. Balazs Pritz

Organisation: KIT Department of Mechanical Engineering

Institute of Thermal Turbomachinery
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2185000</td>
<td>Machines and Processes</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
<tr>
<td>ST 2023</td>
<td>3134140</td>
<td>Machines and Processes</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Bauer, Maas, Kubach, Pritz, Bykov</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105208</td>
<td>Machines and Processes</td>
<td>4</td>
<td></td>
<td>Kubach, Maas, Bauer, Pritz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105208e</td>
<td>Machines and Processes</td>
<td>4</td>
<td></td>
<td>Kubach, Maas, Bauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105208</td>
<td>Machines and Processes</td>
<td>4</td>
<td></td>
<td>Kubach, Bauer, Maas, Pritz, Bykov</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105208e</td>
<td>Machines and Processes</td>
<td>4</td>
<td></td>
<td>Kubach, Bauer, Maas, Pritz, Bykov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

written exam (duration: 120 min)

Prerequisites

Taking part at the exam is possible only when lab course has been successfully completed

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105232 - Machines and Processes, Prerequisite must have been passed.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Language</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2185000</td>
<td>Machines and Processes</td>
<td>4</td>
<td>German</td>
<td>Lecture / Practice (VÜ) On-Site</td>
</tr>
</tbody>
</table>

KIT Department of Mechanical Engineering - Non-degree Studies (Domestic Degree at Another Higher Education Institution)
Module Handbook as of 14/02/2023
Content
basics of thermodynamics
thermal fluid machines
 • steam turbines
 • gas turbines
 • combined-cycle plants
 • turbines and compressors
 • aircraft engines
hydraulic fluid machines
 • oerating performance
 • characterization
 • control
 • cavitation
 • wind turbines, propellers
internal combustion engines
 • characteristic parameters
 • engine parts
 • kinematics
 • engine processes
 • emissions
3.216 Course: Machines and Processes, Prerequisite [T-MACH-105232]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Heiko Kubach
Prof. Dr. Ulrich Maas
Dr. Balazs Pritz

Organisation: KIT Department of Mechanical Engineering

Institute of Thermal Turbomachinery

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>Course Type</th>
<th>On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2187000</td>
<td>Machines and Processes</td>
<td>1</td>
<td>Practical course / 🗣</td>
<td>Bauer, Kubach, Pritz, Schmidt, Bykov</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2187000</td>
<td>Machines and Processes (Lab Course)</td>
<td>1</td>
<td>Practical course / 🗣</td>
<td>Bauer, Kubach, Maas, Pritz, Bykov</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105232</td>
<td>Machines and Processes, Prerequisite</td>
<td></td>
<td>Kubach, Maas, Bauer, Pritz</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105232</td>
<td>Machines and Processes, Prerequisite</td>
<td></td>
<td>Kubach, Bauer, Maas, Pritz, Bykov</td>
</tr>
</tbody>
</table>

Competence Certificate

Successful completed training course

Prerequisites

none

Below you will find excerpts from events related to this course:

Machines and Processes
2187000, WS 22/23, 1 SWS, Open in study portal
Practical course (P)
On-Site

Content
Lab Course Experiment

Machines and Processes (Lab Course)
2187000, SS 2023, 1 SWS, Language: German, Open in study portal
Practical course (P)
On-Site
Content
successful lab course and written exam (2 h)
Taking part at the exam is possible only when lab course has been successfully completed
Lab course and lecture take place in summer and winter semester.
In the SS the lecture is held in English. The lab course is always bilingual.

Media:
slides to download
Documentation of the labcourse
basics of thermodynamics
thermal fluid machines
 • steam turbines
 • gas turbines
 • combined-cycle plants
 • turbines and compressors
 • aircraft engines
hydraulic fluid machines
 • operating performance
 • characterization
 • control
 • cavitation
 • wind turbines, propellers
internal combustion engines
 • characteristic parameters
 • engine parts
 • kinematics
 • engine processes
 • emissions
regular attendance: 48 h, self-study: 160 h
The students can name and describe basic energy conversion processes and energy converting machines. They can explain the application of these energy conversion processes in various machines. They can analyze and evaluate the processes and machines in terms of functionality and efficiency and they are able to solve basic technical problems in terms of operating the machines.
3.217 Course: Magnet Technology of Fusion Reactors [T-MACH-105434]

Responsible: Dr. Walter Fietz
Dr. Klaus-Peter Weiss

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2190496 | Magnet Technology of Fusion Reactors | 2 SWS | Lecture / 🗣 | Weiss, Wolf |

Exams

| WT 22/23 | 76-T-MACH-105434 | Magnet Technology of Fusion Reactors | Weiss |
| ST 2023 | 76-T-MACH-105434 | Magnet Technology of Fusion Reactors | Fietz, Weiss |

Competence Certificate

Oral examination of about 30 minutes

Prerequisites

none

Annotation

none

Below you will find excerpts from events related to this course:

Magnet Technology of Fusion Reactors

2190496, SS 2023, 2 SWS, Language: German/English, Open in study portal

Lecture (V)
On-Site
In Greifswald/Germany the fusion experiment Wendelstein 7-X is now in operation to demonstrate the performance of Stellerator-type fusion machines. In south of France the fusion reactor ITER is under construction which will demonstrate the production of energy by fusion. In both machines the plasma inclusion will be ensured by magnets and to produce high magnetic fields in an efficient way, these magnets have to be superconducting. Design, construction and operation of such magnets is a technologic challenge because low temperature (4.5 K) and high currents (typ. 68 kA) are necessary.

The lecture will show basic principles for design and construction of such magnets and includes:

- Introduction with examples to nuclear fusion and to magnetic plasma confinement
- Basics of low temperature and high temperature properties and cryotechnique
- Material testing and critical material properties at low temperatures
- Principles of magnet design, construction and safe magnet operation
- Present status and magnet examples from fusion projects ITER, W7-X and JT-60SA
- Application of high temperature superconductors on fusion and power engineering

The goal of the lecture is to impart the fundamentals of construction of superconducting magnets. Magnet technology is inherently of multidisciplinary character e.g. material properties at low temperature, high voltage and high current technique. The use of superconductors is mandatory to reach highest magnetic fields with comparable small losses. Examples of magnets from power application, basic research and fusion reactor construction are discussed.

Lecture Content:

- Basics of nuclear fusion and design aspects of fusion magnets
- Superconductors - basics and stability
- Low temperature cryogenic aspects
- Low temperature and high temperature superconductors
- Cryogenic material testing and properties of fusion materials at low temperatures
- Quench and high voltage aspects for magnets
- Status and magnets of fusion machines ITER, W7-X, JT-60SA & future DEMO
- Impact of high temperature superconductors on fusion and power engineering

Educational objective: The students know:

- Magnetic plasma confinement principles in connection with fusion machine
- Examples and basic properties of different superconductors
- Basics of formation of superconducting cables and magnet construction
- Generation of low temperature, cryostat construction
- Basics of magnet design and magnet safety
- Material testing and material properties at low temperatures
- High-temperature superconductor use in magnet construction and power application

Recommendations:

Knowledge in energy technology, power plants, material testing is welcomed

- Time of attendance: 2 SWS, Other: excursion, etc. 5 hours
- Self-study: preparation and postprocessing LV (course): 1 hour / week
- Preparation for the examination: 80 hours per semester

Oral examination of about 30 minutes
3.218 Course: Magnetohydrodynamics [T-MACH-105426]

Responsible: apl. Prof. Dr. Leo Bühler
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events
WT 22/23 2153429 Magnetohydrodynamics 2 SWS Lecture / 🗣 Bühler

Exams
WT 22/23 76-T-MACH-105426 Magnetohydrodynamics Bühler
ST 2023 76-T-MACH-105426 Magnetohydrodynamics Bühler

Competence Certificate
oral
Duration: 30 minutes
No auxiliary means

Prerequisites
The partial performance number T-MACH-108845 "Magnetohydrodynamics" (Nat/Inf/Eit) must not be startet or completed.
The partial services T-MACH-108845 "Magnetohydrodynamics" (Nat/Inf/Eit) and T-MACH-105426 "Magnetohydrodynamics" are mutually exclusive.

Recommendation
Fluid Mechanics (T-MACH-105207)
Mathematical Methods in Fluid Mechanics (T-MACH-105295)

Below you will find excerpts from events related to this course:

Magnetohydrodynamics
2153429, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

- Introduction
- Basics of electro and fluid dynamics
- Exact solutions, Hartmann flow, pump, generator, channel flows
- Inductionless approximation
- Developing flows, change of cross-section, variable magnetic fields
- Alfvén waves
- Stability, transition to turbulence
- Liquid dynamos

Educational objective: The students can describe the fundamentals of magnetohydrodynamics. They are qualified to explain the interrelations of electro and fluid dynamics so as to analyze magnetohydrodynamic flows in engineering applications or for phenomena in geo and astrophysics.

Literature
R. Moreau, 1990, Magnetohydrodynamics, Kluwer Academic Publisher
3.219 Course: Management Accounting 1 [T-WIWI-102800]

Responsible: Prof. Dr. Marcus Wouters
Organisation: KIT Department of Economics and Management
Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Management Accounting 1</td>
<td>Lecture / Online</td>
<td>Wouters</td>
</tr>
<tr>
<td>2579900</td>
<td>2 SWS</td>
<td>Online</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Tutorial Management Accounting 1 (Bachelor)</td>
<td>Practice / On-Site</td>
<td>Dickemann</td>
</tr>
<tr>
<td>2579901</td>
<td>2 SWS</td>
<td>On-Site</td>
<td>Dickemann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Tutorial Management Accounting 1 (Master)</td>
<td>Practice / On-Site</td>
<td>Dickemann</td>
</tr>
<tr>
<td>2579902</td>
<td>2 SWS</td>
<td>On-Site</td>
<td>Dickemann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Management Accounting 1 (Bachelor)</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>79-2579900-B</td>
<td>2 SWS</td>
<td>Online</td>
<td>Wouters</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>79-2579900-M</td>
<td>2 SWS</td>
<td>Online</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Management Accounting 1 (Bachelor)</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>79-2579900-B</td>
<td>2 SWS</td>
<td>Online</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>79-2579900-M</td>
<td>2 SWS</td>
<td>Online</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a written exam (120 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Recommendation

We recommend that you take part in our exercise for the lecture.

Annotation

The exercise is offered separately for Bachelor's students as well as for students in the Master's transfer and Master's program.

Note for exam registration:

- Bachelor students: 79-2579900-B Management Accounting 1 (Bachelor)
- Students in the Master's transfer and Master's program: 79-2579900-M Management Accounting 1 (Master's transfer and Master)

Below you will find excerpts from events related to this course:

Management Accounting 1

2579900, SS 2023, 2 SWS, Language: English, [Open in study portal](#)
Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:
- Students have an understanding of theory and applications of management accounting topics.
- They can use financial information for various purposes in organizations.

Examination:
- The assessment consists of a written exam (120 minutes) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:
- The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
- In addition, several papers that will be available on ILIAS.

Tutorial Management Accounting 1 (Bachelor)
2579901, SS 2023, 2 SWS, Language: English, Open in study portal

Tutorial Management Accounting 1 (Master)
2579902, SS 2023, 2 SWS, Language: English, Open in study portal
3.220 Course: Management and Strategy [T-WIWI-102629]

Responsible: Prof. Dr. Hagen Lindstädt
Organisation: KIT Department of Economics and Management
Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2577900</th>
<th>Management and Strategy</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Lindstädt</th>
</tr>
</thead>
</table>

Exams

| WT 22/23 | 7900199 | Management and Strategy | Lindstädt |
| ST 2023 | 7900067 | Management and Strategy | Lindstädt |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Management and Strategy
2577900, SS 2023, 2 SWS, Language: German, Open in study portal
Lecture (V) On-Site
Content
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration. Thereby a focus is on imparting knowledge about how price developments in oligopolistic markets can be understood, modeled and forecasted based on game theory.

Content in brief:
- Corporate management principles
- Strategic management principles
- Strategic analysis
- Competitive strategy: modelling and selection on a divisional level
- Strategic interaction and strategic commitment
- Corporate strategy: modelling and evaluation on a corporate level
- Strategy implementation

Learning Objectives:
After passing this course students are able to
- prepare strategic decisions along the ideal-typical strategy process in practice ("strategic analysis").
- assess strategic options.
- explain the portfolio management (Parental advantage and best owner of business entities).

Recommendations:
None.

Workload:
The total workload for this course is approximately 105.0 hours. For further information see German version.

Assessment:
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as an open-book examination (examination performance of a different kind according to SPO § 4 para. 2, item 3), or as a 60-minute written examination (written examination according to SPO § 4 para. 2, item 1).

It is expected that the exam will take place at the beginning of the semester's lecture-free period. The examination is offered every semester and can be repeated at any regular examination date.

Literature

Die relevanten Auszüge und zusätzliche Quellen werden in der Veranstaltung bekannt gegeben.
3.221 Course: Manufacturing Technology [T-MACH-102105]

Responsible: Prof. Dr.-Ing. Volker Schulze
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Delivery</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2149657</td>
<td>Manufacturing Technology</td>
<td>6</td>
<td>Lecture / Practice (/ 🧩)</td>
<td>Schulze</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>Schulze</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate
Written Exam (180 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Manufacturing Technology
2149657, WS 22/23, 6 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ)
Blended (On-Site/Online)
Content
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:
- Quality control
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming, plastics engineering)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment
- Process chains in manufacturing

This lecture provides an excursion to an industry company.

Learning Outcomes:
The students ...
- are capable to specify the different manufacturing processes and to explain their functions.
- are able to classify the manufacturing processes by their general structure and functionality according to the specific main groups.
- have the ability to perform a process selection based on their specific characteristics.
- are enabled to identify correlations between different processes and to select a process regarding possible applications.
- are qualified to evaluate different processes regarding specific applications based on technical and economic aspects.
- are experienced to classify manufacturing processes in a process chain and to evaluate their specific influence on surface integrity of workpieces regarding the entire process chain.

Workload:
regular attendance: 63 hours
self-study: 177 hours

Organizational issues
Start: 24.10.2022

Vorlesungstermine montags und dienstags, Übungstermine mittwochs.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
3.222 Course: Material Flow in Logistic Systems [T-MACH-102151]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2117051</td>
<td>Material flow in logistic systems</td>
<td>15</td>
<td>Others</td>
<td>Furmans, Fleischmann, Köhler</td>
</tr>
<tr>
<td>Exams</td>
<td>76-T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
<td></td>
<td></td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Legend: Online, 📱 Blended (On-Site/Online), 🔗 On-Site, ✗ Cancelled

Competence Certificate

The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.

Prerequisites

none

Recommendation

Recommended elective subject: Probability Theory and Statistics

Annotation

Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material flow in logistic systems</td>
<td>2117051, WS 22/23, 15 SWS</td>
<td></td>
<td>German</td>
<td></td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>
Content

Learning Content:

- Elements of material flow systems (conveyor elements, fork, join elements)
- Models of material flow networks using graph theory and matrices
- Queuing theory, calculation of waiting time, utilization
- Warehousing and order-picking
- Shuttle systems
- Sorting systems
- Simulation
- Calculation of availability and reliability
- Value stream analysis

After successful completion of the course, you are able (alone and in a team) to:

- Accurately describe a material handling system in a conversation with an expert.
- Model and parameterize the system load and the typical design elements of a material handling system.
- Design a material handling system for a task.
- Assess the performance of a material handling system in terms of the requirements.
- Change the main lever for influencing the performance.
- Expand the boundaries of today’s methods and system components conceptually if necessary.

Literature:
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 7. Auflage 2019

Description:
This course is separated into 5 topic blocks which are structured in the following parts:

- self-study phase
- exercise
- plenary
- case study (group work)
- colloquium
- review of case study

The groups for the case study will be formed at the beginning of the course (first week). The results of the group work during the lecture period are presented and evaluated in writing. During the colloquiums, the result of the case study is presented and the understanding of the group work and the models dealt with in the course are tested in an oral defense. The participation in the colloquiums is compulsory and will be controlled. For the written submission and the presentation the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

We strongly recommend to attend the introductory session on 26th of October 2022. In this session, the teaching concept of “Materialfluss in Logistiksysteme” is explained and outstanding issues are clarified.

The course registration including the group allocation with ILIAS is mandatory. The registration will be open for several days after the introductory session (registration duration: 26.10.2022 14:00 Uhr - 01.11.2022 14:00 Uhr)

Workload:

- Regular attendance: 35 h
- Self-study: 135 h
- Group work: 100 h

Competence Certificate:
The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result and the presentation of the case studies as group work,
 - 20% assessment of the oral examination during the colloquiums as individual performance.
3.223 Course: Materials Characterization [T-MACH-107684]

Responsible: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Each summer term</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>T-MACH-107684</td>
<td>Materials Characterization</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>ST 2023</td>
<td>T-MACH-107684</td>
<td>Materials Characterization</td>
<td>Gibmeier</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

Successful participation in Übungen zu Werkstoffanalytik is the condition for the admittance to the oral exam in Werkstoffanalytik.

- T-MACH-110945 – Exercises for Materials Characterization has not been started.
- T-MACH-110946 – Materials Characterization has not been started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-107685 - Exercises for Materials Characterization must have been passed.

Below you will find excerpts from events related to this course:

Materials Characterization

2174586, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

The following methods will be introduced within this lecture:

- microscopic methods: optical microscopy, electron microscopy (SEM/TEM), atomic force microscopy
- material and microstructure analyses by means of X-ray, neutron and electron beams
- analysis methods at SEM/TEM (e.g. EELS)
- spectroscopic methods (e.g. EDS / WDS)

Learning objectives:

The students have fundamental knowledge about methods of material analysis. They have a basic understanding to transfer this fundamental knowledge on problems in engineering science. Furthermore, the students have the ability to describe technical material by its microscopic and submicroscopic structure.

Literature

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
3.224 Course: Materials Modelling: Dislocation Based Plasticity [T-MACH-105369]

Responsible: Dr. Daniel Weygand
Organisation: KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2182740</th>
<th>Materials modelling: dislocation based plasticity</th>
<th>2 SWS</th>
<th>Lecture / 🗣️</th>
<th>Weygand</th>
</tr>
</thead>
</table>

Exams

| WT 22/23 | 76-T-MACH-105369 | Materials Modelling: Dislocation Based Plasticity | Weygand |
| ST 2023 | 76-T-MACH-105369 | Materials Modelling: Dislocation Based Plasticity | Weygand |

Competence Certificate

oral exam ca. 30 minutes

Prerequisites

none

Recommendation

preliminary knowledge in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

Materials modelling: dislocation based plasticity

2182740, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site

Content

1. Introduction
2. elastic fields of dislocations
3. slip, crystallography
4. equations of motion of dislocations
4a) fcc
4b) bcc
5. interaction between dislocations
6. molecular dynamics
7. discrete dislocation dynamics
8. continuum description of dislocations

The student

- has the basic understanding of the physical basics to describe dislocations and their interaction with point, line and area defects.
- can apply modelling approaches for dislocation based plasticity.
- can explain discrete methods for modelling of microstructural evolution processes.

preliminary knowledge in mathematics, physics and materials science recommended

regular attendance: 22.5 hours
self-study: 97.5 hours
oral exam ca. 30 minutes
Literature

3.225 Course: Materials of Lightweight Construction [T-MACH-105211]

Responsible: Dr.-Ing. Wilfried Liebig
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>2023</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2174574</td>
<td>Lecture</td>
<td>Materials of Lightweight Construction</td>
<td>2</td>
<td>Lecture</td>
<td>Liebig</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>2023</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105211</td>
<td>Materials of Lightweight Construction</td>
<td>Liebig</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105211</td>
<td>Materials of Lightweight Construction</td>
<td>Liebig</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, about 25 minutes

Prerequisites
none

Recommendation
Materials Science I/II

Below you will find excerpts from events related to this course:

Materials of Lightweight Construction

- Code: 2174574, SS 2023, 2 SWS, Language: German, Open in study portal
Course: Materials of Lightweight Construction [T-MACH-105211]

Content
Introduction
Constructive, production-orientied and material aspects of lightweight construction
Aluminium-based alloys
Aluminium wrought alloys
Aluminium cast alloys
Magnesium-based alloys
Magnesium wrought alloys
Magnesium cast alloys
Titanium-based alloys
Titanium wrought alloys
Titanium cast alloys
High-strength steels
High-strength structural steels,
Heat-treatable steels, press-hardening and hardenable steels
Composites - mainly PMC
Matrices
Reinforcements
Basic mechanical principles of composites
Hybrid composites
Special materials for lightweight design
Beryllium alloys
Metallic Glasses
Applications

Learning objectives:
The students are capable to name different lightweight materials and can describe their composition, properties and fields of application. They can describe the hardening mechanisms of lightweight materials and can transfer this knowledge to applied problems.
The students can apply basic mechanical models of composites and can depict differences in the mechanical properties depending on composition and structure. The students can describe the basic principle of hybrid material concepts and can judge their advantages in comparison to bulk materials. The students can name special materials for lightweight design and depict differences to conventional materials. The students have the ability to present applications for different lightweight materials and can balance reasons for their use.

Requirements:
Werkstoffkunde I/II (recommended)

Workload:
The workload for the lecture “Materials for Lightweight Construction” is 120 h per semester and consists of the presence during the lectures (24 h), preparation and rework time at home (48 h) and preparation time for the oral exam (48 h).

Examination:
Oral examination, Duration approx. 25 min

Literature
Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung
Course: Materials Physics and Metals [T-MACH-100285]

Responsible: Prof. Dr.-Ing. Martin Heilmair
Prof. Dr. Astrid Pundt

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>13</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Course</th>
<th>Schedule</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3 SWS</td>
<td>Materials Physics</td>
<td>Lecture</td>
<td>Gruber</td>
</tr>
<tr>
<td>Lecture</td>
<td>4 SWS</td>
<td>Metals</td>
<td>Lecture</td>
<td>Pundt, Kauffmann</td>
</tr>
<tr>
<td>Practice</td>
<td>1 SWS</td>
<td>Exercises in Metals</td>
<td>Practice</td>
<td>Pundt, Wagner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Course</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td></td>
<td>Materials Physics and Metals</td>
<td>Gruber, Pundt</td>
</tr>
<tr>
<td>Oral exam</td>
<td></td>
<td>Materials Physics and Metals</td>
<td>Gruber, Pundt</td>
</tr>
<tr>
<td>Practice</td>
<td></td>
<td>Materials Physics and Metals</td>
<td>Pundt, Gruber</td>
</tr>
</tbody>
</table>

Prerequisites

none

Competence Certificate

Oral exam, about 45 minutes

Requirements

Materials physics

Workload

Regular attendance: 42 h
Self-study: 138 h

Organizational issues

Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literature

- G. Gottstein, Physikalische Grundlagen der Materialkunde, Springer 2007
- E. Hombogen, H. Wartlimont, Metalle (Struktur und Eigenschaften von Metallen und Legierungen), Springer-Verlag, Berlin 2001
- J. Freudenberger: http://www.ifw-dresden.de/institutes/imw/lectures/lectures/pwe
Exercises in Metals
2174599, SS 2023, 1 SWS, Language: German, Open in study portal

Practice (Ü)
On-Site

Content
Properties of pure elements; thermodynamic foundations of single-component and of binary systems, as well as multiphase systems; nucleation and growth; diffusion processes in crystalline materials; phase diagrams; effects of alloying; nonequilibrium microstructures; heat treatment technology

Learning objectives:
The Students have hands-on experience in the application of thermodynamic foundations of phase transformations, the kinetics of phase transformations in the solid state, the mechanisms of microstructure formation and microstructure-property relationships. They can assess the effects of heat treatments and of alloying on the microstructure and the mechaniola and physical properties of metallic materials. This competence is in particular practiced for iron- and aluminum-based alloys.

Requirements:
Lecture and Tutorials on Materials Physics as well as the lecture on Metals

Workload:
Regular attendance: 14 h
Self-study: 16 h

Organizational issues
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literature
http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
3.227 Course: Materials Processing Technology [T-MACH-100295]

Responsible: Dr. Joachim Binder
Dr.-Ing. Wilfried Liebig

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam (lecture + lab course), approx. 25 min, lab course "Materials Processing" has to be finished successfully.

Prerequisites

Lab course "Materials Processing" has to be passed successfully in advance.

Annotation

Lecture: lecture notes, slides + beamer, blackboard
lab course: experimental equipment, paper, pencil, lab course notes, calculator

Below you will find excerpts from events related to this course:

Materials Processing Technology

2173540, WS 22/23, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) Blended (On-Site/Online)
Content

Introduction

Polymers:
Raw materials, materials laws and models, rheology, moulding, forming, joining

Ceramics:
raw materials, powder synthesis, additives, moulding and forming of glass, moulding, abrasive techniques, changing properties, final processing

 Metals:
raw materials, materials processing, moulding, forming, cutting, joining

Semiconductors:
raw materials, moulding, changing properties

Summary

objectives:
The students are able to name the different materials processing techniques and can describe their basic principles and allocate them to the different classes of materials processing methods.
They can choose specific processing techniques based on given problems and consider constraints derived from their basic knowledge in materials science.
The students are able to carry out simple experiments with lab scale equipment. They can correlate the processing parameters with resulting material properties by analyzing the materials using adequate testing methods which have to be chosen, evaluated and documented suitable to the problems given.

requirements:
none, Recommendations: Module "Basics in Materials Science" should be passed

workload:
The workload for the lecture “materials processing technology” is 180 h per semester and consists of the presence during the lectures (36 h) including tutorials, presence during the lab course (12 h), preparation and rework time at home (72 h) and preparation time for the oral exam (60 h).

Literature
Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung
Presentation slides and additional lecture notes are handed out during the lecture, additional literature recommendations given
3.228 Course: Materials Science and Engineering III [T-MACH-105301]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2173553</td>
<td>Materials Science and Engineering III</td>
<td>4 SWS</td>
<td>Lecture / 📚 Heilmaier, Guth</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2173554</td>
<td>Exercises in Materials Science and Engineering III</td>
<td>1 SWS</td>
<td>Practice / 📚 Heilmaier, Kauffmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 76-T-MACH-105301</td>
<td>Materials Science III</td>
<td>Heilmaier, Guth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 76-T-MACH-105301</td>
<td>Materials Science III</td>
<td>Heilmaier, Guth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, about 35 minutes

Prerequisites
T-MACH-110818 - Plasticity of Metals and Intermetallics has not been started

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110818 - Plasticity of Metals and Intermetallics must not have been started.

Below you will find excerpts from events related to this course:

Materials Science and Engineering III
2173553, WS 22/23, 4 SWS, Language: German, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content
Properties of pure iron; thermodynamic foundations of single-component and of binary systems; nucleation and growth; diffusion processes in crystalline iron; the phase diagram Fe-Fe3C; effects of alloying on Fe-C-alloys; nonequilibrium microstructures; multicomponent iron-based alloys; heat treatment technology; hardenability and hardenability tests.

Learning objectives:
The students are familiar with the thermodynamic foundations of phase transformations, the kinetics of phase transformations in the solid states (nucleation and growth phenomena), the mechanisms of microstructure formation and microstructure-property relationships and can apply them to metallic materials. They can assess the effects of heat treatments and of alloying on the microstructure and the properties of iron-based materials (steels in particular). The can select steels for structural applications in mechanical engineering and subject them to appropriate heat treatments.

Requirements:
Basic knowledge in materials science and engineering (Werkstoffkunde I/II)

Workload:
regular attendance: 53 hours
self-study: 187 hours

Organizational issues
Die erste Vorlesung findet am 27.10.2022 um 14.00 Uhr im Redtenbacher-Hörsaal statt.
Literature
Vorlesungsskript; Übungsaufgaben; Bhadeshia, H.K.D.H. & Honeycombe, R.W.K.
Steels – Microstructure and Properties
3.229 Course: Mathematical Methods in Continuum Mechanics [T-MACH-110375]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code</th>
<th>Title</th>
<th>SWs</th>
<th>Type/Online</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161254</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>2 SWS</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Böhlke</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code</th>
<th>Title</th>
<th>SWs</th>
<th>Type/Online</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-110375</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>2 SWS</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Böhlke</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

written exam (90 min). Additives as announced.

Prerequisites

Passing the Tutorial to Mathematical Methods of Continuum Mechanics (T-MACH-110376)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110376 - Tutorial Mathematical Methods in Continuum Mechanics must have been passed.

Below you will find excerpts from events related to this course:

Mathematical Methods in Continuum Mechanics

2161254, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content

Tensor algebra

- vectors; basis transformation; dyadic product; tensors of 2nd order
- properties of 2nd order tensors: symmetry, anti-symmetry, orthogonality etc.
- eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order
- tensor algebra in curvilinear coordinate systems
- tensor analysis in curvilinear coordinate systems
- Differentiation of tensor functions

Application of tensor calculus in strength of materials

- kinematics of infinitesimal and finite deformations
- transport theorem, balance equations, stress tensor
- constitutive equations for solids and fluids
- Formulation of initial-boundary-value problems

Literature

Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
T 3.230 Course: Mathematical Methods in Dynamics [T-MACH-105293]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161206</td>
<td>Mathematical Methods in Dynamics</td>
<td>Lecture / Online</td>
<td>2 SWS</td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2161207</td>
<td>Übungen zu Mathematische Methoden der Dynamik</td>
<td>Practice / Online</td>
<td>1 SWS</td>
<td>Proppe, Bitner</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2161206</td>
<td>Mathematical Methods in Dynamics</td>
<td>Lecture / Online</td>
<td>2 SWS</td>
<td>Proppe</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>Proppe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76_T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>Proppe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written examination, 180 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Mathematical Methods in Dynamics
2161206, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content

Dynamics of continua:
Concept of continuum, geometry of continua, kinematics and kinetics of continua

Dynamics of rigid bodies:
Kinematics and kinetics of rigid bodies

Variational principles:
Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
Methods of weighted residuals, method of Ritz

Applications
Literature
Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994
P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000
M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

Übungen zu Mathematische Methoden der Dynamik
2161207, WS 22/23, 1 SWS, Language: German, Open in study portal

Content
Exercises related to the lecture

Mathematical Methods in Dynamics
2161206, SS 2023, 2 SWS, Language: German, Open in study portal

Content
The students know precisely the mathematical methods of dynamics. They are able to use the basic mathematical methods for modelling the dynamical behaviour of elastic and rigid bodies. The students also have a basic understanding of the description of kinematics and kinetics of bodies. They also master the alternative formulations based on weak formulations and variational methods and the approximate solution methods for numerical calculations of the moving behaviour of elastic bodies.

Dynamics of continua:
- Concept of continuum, geometry of continua, kinematics and kinetics of continua

Variational principles:
- Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
- Methods of weighted residuals, method of Ritz

Literature
Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994
P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000
M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993
3.231 Course: Mathematical Methods in Fluid Mechanics [T-MACH-105295]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Lecture Code</th>
<th>Title</th>
<th>Lecture Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2154432</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Lecture / Practice</td>
<td>Frohnapfel, Gatti</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2154540</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Lecture / Practice</td>
<td>Gatti, Frohnapfel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Lecture Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105295 (engl.)</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Frohnapfel, Gatti</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Frohnapfel, Gatti</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105295 (engl.)</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Gatti, Frohnapfel</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, ☭ Blended (On-Site/Online), ⚡ On-Site, ✗ Cancelled

Competence Certificate

written examination - 3 hours

Prerequisites

none

Recommendation

Basic Knowledge about Fluid Mechanics

Below you will find excerpts from events related to this course:

Mathematical Methods in Fluid Mechanics

2154432, SS 2023, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Blended (On-Site/Online)

Content

The students can simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical methods in fluid mechanics effectively in order to solve the resulting governing equations analytically, if possible, or to enable simpler numerical solution of the problem. The students can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Creeping flows (Stokes flow)
- Lubrication theory
- Potential flow theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
Mathematical Methods in Fluid Mechanics

V 2154540, SS 2023, 4 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ)
Blended (On-Site/Online)

Content
The students can simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical methods in fluid mechanics effectively in order to solve the resulting governing equations analytically, if possible, or to enable simpler numerical solution of the problem. The students can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Creeping flows (Stokes flow)
- Lubrication theory
- Potential flow theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows

Literature
3.232 Course: Mathematical Methods in Micromechanics [T-MACH-110378]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2162280 | Mathematical Methods in Micromechanics | 2 SWS | Lecture / 🗣️ | Böhlke |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ☑️ Cancelled

Competence Certificate
written exam (180 min). Additives as announced.

prerequisite to registration to the exam: Passing the tutorial to Mathematical Methods in Micromechanics (T-MACH-110379)

Prerequisites
Passing the tutorial to Mathematical Methods in Micromechanics (T-MACH-110379)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110379 - Tutorial Mathematical Methods in Micromechanics must have been passed.

Below you will find excerpts from events related to this course:

Mathematical Methods in Micromechanics
2162280, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content
Fundamentals of linear isotropic and anisotropic thermoelasticity theory,
Description of microstructures,
Micro-macro relations of linear thermoelasticity theory,
Approximations and bounds for the effective thermoelastic material behavior,
Microstructure Sensitive Design of materials,
Selected problems in the context of homogenization of nonlinear material properties

Organizational issues
Nähere Informationen zu Zeit und Ort der Vorlesung im SS 2023: siehe ITM-KM Homepage

Literature

- Vorlesungsskript
- Klingbeil, E.: Variationsrechnung, BI Wissenschaftsverlag, 1977
3.233 Course: Mathematical Methods of Vibration Theory [T-MACH-105294]

- **Responsible:** Prof. Dr.-Ing. Wolfgang Seemann
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>6</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>6</td>
</tr>
</tbody>
</table>

Competence Certificate

written examination, 180 min.

Prerequisites

none

Recommendation

Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

Mathematical methods of vibration theory

- **2162241, SS 2023, 2 SWS, Language: German, Open in study portal**

Lecture (V) On-Site

- **Content**

 Linear, time-invariant, ordinary single differential equations: homogeneous solution; harmonic, periodic and non-periodic excitations; Duhamel's integral; Fourier and Laplace transform; introduction into the theory of distributions; Systems of ordinary differential equations: matrix notation, eigenvalue theory, fundamental matrix, forced vibrations via modal expansion and transition matrix; Introduction into the dynamic stability theory; Partial differential equations: solution in product form, eigenvalue theory, modal expansion using Ritz series; Variational methods, Hamilton's principle, boundary value problems representing vibrating continua; Perturbation methods

- **Literature**

 Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik

Mathematical methods of vibration theory (Tutorial)

- **2162242, SS 2023, 2 SWS, Language: German, Open in study portal**

Practice (Ü) Blended (On-Site/Online)

- **Content**

 Seven tutorials with examples of the contents of the course

- **Literature**

 Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
3.234 Course: Mathematical Models and Methods for Production Systems [T-MACH-105189]

Responsible: Dr.-Ing. Marion Baumann
Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2117059</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105189-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
none

Below you will find excerpts from events related to this course:

Mathematical models and methods for Production Systems
2117059, WS 22/23, 4 SWS, Language: English, Open in study portal

Lecture (V)
On-Site

Content
Media:
black board, lecture notes, presentations

Learning Content:
- single server systems: M/M/1, M/G/1: priority rules, model of failures
- networks: open and closed approximations, exact solutions and approximations
- application to flexible manufacturing systems, AGV (automated guided vehicles) - systems
- modeling of control approaches like constant work in process (ConWIP) or kanban
- discrete-time modeling of queuing systems

Learning Goals:
Students are able to:
- Describe queueing systems with analytical solvable stochastic models,
- Derive approaches for modeling and controlling material flow and production systems based on models of queueing theory,
- Use simulation and exact methods.

Recommendations:
- Basic knowledge of statistic
- Recommended compulsory optional subject: Stochastics
- Recommended lecture: Materials flow in logistic systems (also parallel)

Workload:
regular attendance: 42 hours
self-study: 198 hours
Literature
Course: Mathematical Models and Methods in Combustion Theory [T-MACH-105419]

Responsible: Dr. Viatcheslav Bykov
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Lecture (L)</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2165525</td>
<td>Lecture / 🗣 Bykov</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, approx. 20 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Mathematical models and methods in combustion theory

2165525, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

The lecture shall introduce the basics of the mathematical modeling and the analysis of reacting flow systems. The fundamental models of combustion processes are outlined together with asymptotical methods, which deliver reasonable approximate solutions for numerous combustion processes. Many examples of simplified models for the description of auto-ignition, explosions, flame quenching and detonations will be presented and discussed. The main analytical methods will be illustrated using these simple examples.

Organizational issues

Termine und Raum: siehe Aushang und Internetseite des Instituts.

Literature

Combustion Theory, F A Williams, (2nd Edition), 1985, Benjamin Cummins,

3.236 Course: Measurement II [T-MACH-105335]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lectures / Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>Measurement II</td>
<td>Lecture / On-Site</td>
<td>Stiller, Bieder</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Lectures / Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Measurement II</td>
<td>Stiller</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>Measurement II</td>
<td>Stiller</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate

written exam
60 min.
2 DIN A4 Self-created formular sheets allowed

Prerequisites

none

Below you will find excerpts from events related to this course:

V Measurement II
2138326, SS 2023, 2 SWS, Language: German, Open in study portal
Lecture (V) On-Site

Content

Lerninhalt (EN)
1. Amplifiers
2. Digital technology
3. Stochastic modeling for measurement applications
4. Estimation
5. Kalman Filter
6. Environmental perception

Lernziele (EN):
The capabilities of modern sensor technology pave the way for novel applications in engineering. Especially digital measurement techniques may be used even in very complex environments and thus have strong impact on technological progress. Stochastic models of measurement processes form the basis for meaningful information processing and provide a valuable tool for engineering. This interdisciplinary lecture addresses students in mechanical engineering and related subjects. The lecture gives an overview of digital technology and stochastics. These areas form the basics of estimation methods that can be embedded elegantly in the theory of state observers. Applications in signal processing for modern environmental perception (video, Lidar, Radar) illustrate the discussed subjects.

Nachweis:
Written exam
60 minutes
Individual sheet of formulas

Arbeitsaufwand:
120 hours
Literature
Skript und Foliensatz zur Veranstaltung werden als kostenlose pdf-Dateien bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
Idealerweise haben Sie zuvor ‘Grundlagen der Mess- und Regelungstechnik’ gehört oder verfügen aus einer Vorlesung anderer Fakultäten über grundlegende Kenntnisse der Mess- und Regelungstechnik und der Systemtheorie.
3.237 Course: Measurement Instrumentation Lab [T-MACH-105300]

Responsible: Marvin Klemp
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2138328</td>
<td>Measurement Instrumentation Lab</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105300</td>
<td>Measurement Instrumentation Lab</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2138328</td>
<td>Measurement Instrumentation Lab</td>
</tr>
</tbody>
</table>

Practical course / On-Site
Stiller, Immel
Stiller

Exams

Competence Certificate
Non graded colloquia

Prerequisites
none

Below you will find excerpts from events related to this course:

Measurement Instrumentation Lab
2138328, SS 2023, 2 SWS, Language: German/English, Open in study portal

Practical course (P) On-Site

Content
Please consider the bulletin on our website!

A Signal recording
- measurement of temperature
- measurement of lengths

B Signal pre-processing
- bridge circuits and principles of measurement
- analog/digital transducers

C Signal processing
- measuring stochastic signals

D Complete systems
- system identification
- inverse pendulum
- mobile robot platform

Recommendations:
Basic studies and preliminary examination; basic lectures in automatic control
Arbeitsaufwand: 90 hours

Lernziele (EN):
The laboratory complements the course "Introduction to Measurement and Control". While the course is organized into principles and subsystems, the laboratory presents complete measurement systems and methods for the most relevant industrial measurands.
Literature
Anleitungen auf der Homepage des Instituts erhältlich.
Instructions to the experiments are available on the institute's website
Course: Mechanics and Strength of Polymers [T-MACH-105333]

Responsible: Hon.-Prof. Dr. Bernd-Steffen von Bernstorff
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
- Oral examination
- Credits: 4
- Grading scale: Grade to a third
- Recurrence: Each winter term
- Version: 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / von Bernstorff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Exam Code</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105333</td>
<td>2 SWS</td>
<td>Lecture / von Bernstorff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Oral exam, about 25 minutes

Prerequisites
none

Recommendation
Basic knowledge in materials science (e.g. lecture materials science I and II)

Below you will find excerpts from events related to this course:

Mechanics and Strengths of Polymers
2173580, WS 22/23, 2 SWS, Language: German, Open in study portal
Lecture (V)
On-Site

Content
Molecular structure and morphology of polymers, temperature- and time dependency of mechanical behavior, viscoelasticity, time/temperature- superposition principle, yielding, crazing and fracture of polymers, failure criterions, impact and dynamic loading, corresponding principle, tough/brittle-transition, introduction to the principles of fiber reinforcement and multiple cracking in composites

learning objectives:
The students are prepared to

- repeat the calculus on strength and design of engineering parts exposed to complex loadings,
- estimate the influence of time and temperature on the strength of polymeric materials,
- relate the strength of materials to their molecular structure, morphology and processing parameters and
- derive failure mechanisms for homogenous polymers and composite materials therefrom.

requirements:
basic knowledge in materials science (e.g. lecture materials science I and II)

workload:
The workload for the lecture Mechanics and Strengths of Polymers is 120 h per semester and consists of the presence during the lecture (28 h) as well as preparation and rework time at home (92 h).

Organizational issues
berndvonbernstorff@t-online.de

Literature
Literaturliste, spezielle Unterlagen und ein Teilmanuskript werden in der Vorlesung ausgegeben
Course: Mechanics in Microtechnology [T-MACH-105334]

Responsible: Prof. Dr. Christian Greiner
Dr. Patric Gruber
Organisation: KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>WT 22/23</td>
<td>2181710</td>
<td>2</td>
<td>Lecture</td>
<td>Gruber, Greiner</td>
</tr>
<tr>
<td>Exams</td>
<td>WT 22/23</td>
<td>76-T-MACH-105334</td>
<td></td>
<td></td>
<td>Gruber, Greiner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105334</td>
<td></td>
<td></td>
<td></td>
<td>Gruber, Greiner</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination, ca. 30 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Mechanics in Microtechnology

2181710, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content

1. Introduction: Application and Processing of Microsystems
2. Scaling Effects
3. Fundamentals: Stress and Strain, (anisotropic) Hooke's Law
4. Fundamentals: Mechanics of Beams and Membranes
5. Thin Film Mechanics: Origin and Role of Mechanical Stresses
6. Characterization of Mechanical Properties of Thin Films and Small Structures: Measurement of Stresses and Mechanical Parameters such as Young's Modulus and Yield Strength; Thin Film Adhesion and Stiction
7. Transduction: Piezo-resistivity, Piezo-electric Effect, Electrostatics,...
8. Aktuation: Inverse Piezo-electric Effect, Shape Memory, Electromagnetic Actuation,...

The students know and understand size and scaling effects in micro- and nanosystems. They understand the impact of mechanical phenomena in small dimensions. Based on this they can judge how they determine material processing as well as working principles and design of microsensors and microactuators.

regular attendance: 22.5 hours
self-study: 97.5 hours
oral exam ca. 30 minutes

Literature

2. L.B. Freund and S. Suresh: "Thin Film Materials"
T 3.240 Course: Mechano-Informatics and Robotics [T-INFO-101294]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-MACH-104883 - Courses of the KIT Department of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events
- WT 22/23 2400077 Mechano-Informatics and Robotics 2 SWS Lecture / On-Site Asfour

Exams
- WT 22/23 7500176 Mechano-Informatics and Robotics
- ST 2023 7500217 Nachprüfung: Mechano-Informatics and Robotics Asfour

Below you will find excerpts from events related to this course:

Mechano-Informatics and Robotics 2400077, WS 22/23, 2 SWS, Language: German/English, Open in study portal

Content
The lecture addresses various engineering and algorithmic aspects and topics in robotics which are illustrated and explained based on examples originating from current research conducted in the field of humanoid robotics. First, this lecture gives an introduction into the mathematical fundamentals which are needed to describe a robotic system as well as the basic algorithms commonly applied in motion planning. Subsequently, models and methods are introduced with which dynamical systems can be formalized and which can be used to encode and represent robot actions. To do so, we will discuss linear time-invariant systems in state.

Learning Objectives:
Based on the example of robotics students understand the synergistic effects and interdisciplinarity of mechatronics and informatics, the embedded systems, the control, and the methods and the algorithms. They are acquainted with the basic terminology and the methods which are common in robotics, signal processing, action representation, machine learning and cognitive systems. They are capable of applying fundamental state-of-the-art methods and tools for the development and programming of robots. Based on examples originating from current research conducted in the fields of humanoid robotics, the students interactively learn how to identify and formalize problems and tasks and how to develop solutions in an analytical and goal-directed way.

Organizational issues
Zugehörige Veranstaltungen: Empfehlung - Basispraktikum Mobile Roboter
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand:
2h Präsenz
+ 2*2h = 4h Vor/Nachbereitung
+ 30h Prüfungsvorbereitung
120h
3.241 Course: Mechatronical Systems and Products [T-MACH-105574]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2303003</th>
<th>Exercise for 2303161 Mechatronical Systems and Products</th>
<th>1 SWS</th>
<th>Practice / 🗣</th>
<th>Matthiesen, Hohmann, N.N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2303161</td>
<td>Mechatronical Systems and Products</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Matthiesen, Hohmann</td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 | 76-T-MACH-105574 | Mechatronical Systems and Products | Matthiesen |
| ST 2023 | 76-T-MACH-105574 | Mechatronical Systems and Products | Matthiesen |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate

Written examination (duration: 60min)

Prerequisites

Successful participation in the workshop Mechatronical Systems and Products is mandatory for admission to the examination.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-108680 - Workshop Mechatronical Systems and Products must have been passed.

Annotation

All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey "Anmeldung und Gruppeneinteilung" in ILIAS before the start of the semester.
3.242 Course: Medical Imaging Techniques I [T-ETIT-101930]

Responsible: Prof. Dr. Maria Francesca Spadea
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2305261</td>
<td>Medical Imaging Techniques I</td>
<td>2</td>
<td>Lecture</td>
<td>Spadea, Nahm, Loewe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7305261</td>
<td>Medical Imaging Techniques I</td>
<td>Loewe</td>
</tr>
</tbody>
</table>

Competence Certificate
Success control is carried out in the form of a written test of 120 minutes.

Prerequisites
none
3.243 Course: Medical Imaging Techniques II [T-ETIT-101931]

Responsible: Prof. Dr. Maria Francesca Spadea
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2305262</td>
<td>Medical Imaging Techniques II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>ST 2023</td>
<td>Medical Imaging Techniques II</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7305262</td>
<td>Medical Imaging Techniques II</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>ST 2023</td>
<td>Medical Imaging Techniques II</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Success control is carried out in the form of a written test of 120 minutes.

Prerequisites
none

Recommendation
The contents of the M-ETIT-100384 module are required.
3.244 Course: Metal Forming [T-MACH-105177]

Responsible: Prof. Dr.-Ing. Thomas Herlan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2150681</td>
<td>Metal Forming</td>
<td>German, Open in study portal</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105177</td>
<td>Metal Forming</td>
<td>German, Open in study portal</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

V Metal Forming
2150681, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content
At the beginning of the lecture the basics of metal forming are briefly introduced. The focus of the lecture is on massive forming (forging, extrusion, rolling) and sheet forming (car body forming, deep drawing, stretch drawing). This includes the systematic treatment of the appropriate metal forming Machines and the corresponding tool technology. Aspects of tribology, as well as basics in material science and aspects of production planning are also discussed briefly. The plastic theory is presented to the extent necessary in order to present the numerical simulation method and the FEM computation of forming processes or tool design. The lecture will be completed by product samples from the forming technology.

The topics are as follows:

- Introduction and basics
- Hot forming
- Metal forming machines
- Tools
- Metallographic fundamentals
- Plastic theory
- Tribology
- Sheet forming
- Extrusion
- Numerical simulation

Learning Outcomes:
The students …

- are able to reflect the basics, forming processes, tools, Machines and equipment of metal forming in an integrated and systematic way.
- are capable to illustrate the differences between the forming processes, tools, machines and equipment with concrete examples and are qualified to analyze and assess them in terms of their suitability for the particular application.
- are also able to transfer and apply the acquired knowledge to other metal forming problems.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Vorlesungstermine freitags, wöchentlich.
Die konkreten Termine werden in der ersten Vorlesung bekannt gegeben und auf der Institutshomepage und ILIAS veröffentlicht.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.
The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
3.245 Course: Metallographic Lab Class [T-MACH-105447]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Dr.-Ing. Alexander Kauffmann

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Credit</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2175590</td>
<td>Metallographic Lab Class</td>
<td>3 SWS</td>
<td>Kauffmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105447</td>
<td>Metallographic Lab Class</td>
<td>Heilmaier, Kauffmann</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Colloquium for every experiment, about 60 minutes, protocol

Prerequisites
none

Below you will find excerpts from events related to this course:

Metallographic Lab Class

2175590, WS 22/23, 3 SWS, Language: German, Open in study portal

Practical course (P) Blended (On-Site/Online)

Content
The lab course deals with the practical application of metallographic procedures, e.g. starting from sample extraction to light optical (LOM) and scanning electron microscopy (SEM). The preparation of metallographic samples takes up to two lab days. LOM and SEM analyses are performed on another two days. All results are carefully registered by the students and discussed in a separate session. Finally, the students can independently apply their theoretical and practical knowledge by the preparation and analysis of industrial relevant metallic materials. The content of the lab course will be documented in the form of individual protocols by the students.

Before starting with the lab course, the students need to prepare the fundamentals that are tested in an online test. Lecture notes as starting point are provided.

Learning objectives:
The students can perform standard metallographic preparation routines as well as qualitative and quantitative microstructure analysis. The students are able to interpret microstructures and the correlations of microstructural constituent and processing and properties of metallic materials.

Prerequisites:
Materials Science and Engineering I and II or Materials Physics und Metals

Arbeitsaufwand:
on-site: 25 h
private studies: 95 h

Organizational issues

Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php
Literatur
Praktikumsskript
Weiterführende Informationen gibt es hier:

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606610

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
Course: Metals [T-MACH-105468]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 6
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023</td>
<td>1 SWS</td>
<td>Practice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Oral exam, about 20 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Metals
2174598, SS 2023, 4 SWS, Language: German, Open in study portal

Content
Properties of pure elements; thermodynamic foundations of single-component and of binary systems, as well as multiphase systems; nucleation and growth; diffusion processes in crystalline materials; phase diagrams; effects of alloying; nonequilibrium microstructures; heat treatment technology

learning objectives:
The students are familiar with the thermodynamic foundations of phase transformations, the kinetics of phase transformations in the solid state, the mechanisms of microstructure formation and microstructure-property relationships and can apply them to metallic materials. They can assess the effects of heat treatments and of alloying on the microstructure and the mechanical and physical properties of metallic materials. This competence is in particular deepened for iron- and aluminum-based alloys.

requirements:
Materials physics

workload:
Regular attendance: 42 h
Self-study: 138 h

Organizational issues
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literature
E. Hornbogen, H. Wartlimont, Metalle (Struktur und Eigenschaften von Metallen und Legierungen), Springer-Verlag, Berlin 2001
H.-J. Bargel, G. Schulze, Werkstoffkunde, Springer-Verlag Berlin 2005
J. Rössler, H. Harders, M. Bäker, Mechanisches Verhalten der Werkstoffe, Vieweg+Teubner Wiesbaden, 2008
J. Freudenberger: http://www.ifw-dresden.de/institutes/imw/lectures/lectures/pwe

Exercises in Metals
2174599, SS 2023, 1 SWS, Language: German, Open in study portal
Content
Properties of pure elements; thermodynamic foundations of single-component and of binary systems, as well as multiphase systems; nucleation and growth; diffusion processes in crystalline materials; phase diagrams; effects of alloying; nonequilibrium microstructures; heat treatment technology

Learning objectives:
The Students have hands-on experience in the application of thermodynamic foundations of phase transformations, the kinetics of phase transformations in the solid state, the mechanisms of microstructure formation and microstructure-property relationships. They can assess the effects of heat treatments and of alloying on the microstructure and the mechanicia and physical properties of metallic materials. This competence is in particular practiced for iron- and aluminum-based alloys.

Requirements:
Lecture and Tutorials on Materials Physics as well as the lecture on Metals

Workload:
Regular attendance: 14 h
Self-study: 16 h

Organizational issues
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literature

J. Rössler, H. Harders, M. Bäker: „Mechanisches Verhalten der Werkstoffe“, Springer Vieweg (2016) http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
3.247 Course: Methods and Processes of PGE - Product Generation Engineering [T-MACH-109192]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>4 SWS</td>
<td>Lecture / On-Site</td>
<td>Albers, Düser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105382</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers, Burkardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105382-en</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105382</td>
<td>Product Development - Methods of Product Development</td>
<td>Albers, Düser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105382-en</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers, Düser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written exam (processing time: 120 min + 10 min reading time)

Auxiliaries:

- Calculator
- German dictionary (books only)

Prerequisites

None

Annotation

This lecture is the basis for the main subject Integrated Product Development, which is offered as a specialisation.

Below you will find excerpts from events related to this course:

Methods and Processes of PGE - Product Generation Engineering

2146176, SS 2023, 4 SWS, Language: German, Open in study portal

Lecture (V)
On-Site
Content

Note:
This lecture is the basis for the main subject Integrated Product Development, which is offered as a specialisation.

Recommendations:
none

Workload:
regular attendance: 39 h
self-study: 141 h

Examination:
Written exam
Duration: 120 minutes (+10 minutes reading time)

Auxiliaries:
- Calculator
- German dictionary (books only)

Course content:
Basics of Product Development: Basic Terms, Classification of the Product
Development into the industrial environment, generation of costs / responsibility for costs
Concept Development: List of demands / Abstraction of the Problem Definition / Creativity Techniques / Evaluation and selection of solutions
Drafting : Prevailing basic rules of Design / Design Principles as a problem oriented accessory
Rationalization within the Product Development: Basics of Development
Management/ Simultaneous Engineering and Integrated Product Development/Development of Product Lines and Modular Construction Systems
Quality Assurance in early Development Phases : Methods of Quality Assurance in an overview/QFD/FMEA

Learning objectives:
The students are able to ...

- classify product development in companies and differentiate between different types of product development.
- name the relevant influencing factors of a market for product development.
- name, compare and use the central methods and process models of product development within moderate complex technical systems.
- explain problem solving techniques and associated development methods.
- explain product profiles and to differentiate and choose suitable creative techniques of solution/idea generation finding on this basis.
- use design guidelines to create simple technical systems and to explain these guidelines.
- name and compare quality assurance methods; to choose and use suitable methods for particular applications.
- explain the different methods of design of experiment.
- explain the costs in development process.

Literature
Vorlesungsunterlagen
Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997
Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag, 1993
T 3.248 Course: Methods of Signal Processing [T-ETIT-100694]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Event Type</th>
<th>Content</th>
<th>SW</th>
<th>Type</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2302113</td>
<td>Lecture / 🧩</td>
<td>Methods of Signal Processing</td>
<td>2 SWS</td>
<td>Heizmann</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2302115</td>
<td>Practice / 🗣</td>
<td>Methods of Signal Processing (Tutorial to 2302113)</td>
<td>1+1 SWS</td>
<td>Heizmann, Diaz Ocampo</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Event Type</th>
<th>Content</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7302113</td>
<td>Lecture / 🧩</td>
<td>Methods of Signal Processing</td>
<td>Heizmann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7302113</td>
<td>Lecture / 🧩</td>
<td>Methods of Signal Processing</td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
3 COURSES

Course: Micro Magnetic Resonance [T-MACH-105782]

3.249

Responsible:
Prof. Dr. Jan Gerrit Korvink
Dr. Neil MacKinnon

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

- Type: Completed coursework
- Credits: 4
- Grading scale: pass/fail
- Recurrence: Each winter term
- Version: 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2141501</td>
<td>Micro Magnetic Resonance</td>
<td>2</td>
<td>Seminar / 🧩</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>MacKinnon, Badilita, Jouda, Korvink</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105782</td>
<td>Micro Magnetic Resonance</td>
<td></td>
<td>Seminar (S)</td>
</tr>
</tbody>
</table>

Korvink, MacKinnon

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚤ On-Site, ✗ Cancelled

Competence Certificate

Own Presentation, participation at the course discussions, result is passed or failed.

Prerequisites

none

Below you will find excerpts from events related to this course:

Micro Magnetic Resonance

2141501, WS 22/23, 2 SWS, Language: English, Open in study portal

Seminar (S)

Blended (On-Site/Online)
3.250 Course: Microactuators [T-MACH-101910]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 60 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Microactuators

2142881, SS 2023, 2 SWS, Language: German, Open in study portal

Content

- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications

The lecture includes amongst others the following topics:

- Microelectromechanical systems: linear actuators, microrelais, micromotors
- Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
- Microrobotics: Microgrippers, polymer actuators (smart muscle)
- Information technology: Optical switches, mirror systems, read/write heads

Literature

- Folienskript "Mikroaktorik"
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
Microenergy Technologies [T-MACH-105557]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Lecture / Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2142897</td>
<td>Microenergy Technologies</td>
<td>2 SWS</td>
<td>Lecture / Kohl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Lecture / Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>Kohl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>Kohl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗪 On-Site, ✗ Cancelled

Competence Certificate

Oral examination (30 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

Microenergy Technologies
2142897, SS 2023, 2 SWS, Language: English, Open in study portal

Content

- Basic physical principles of energy conversion
- Layout and design optimization
- Technologies
- Selected devices
- Applications

The lecture includes amongst others the following topics:
- Micro energy harvesting of vibrations
- Thermal micro energy harvesting
- Microtechnical applications of energy harvesting
- Heat pumps in micro technology
- Micro cooling

Literature

- Folienskript "Micro Energy Technologies"
3.252 Course: Microsystem Simulation [T-MACH-108383]

Responsible: Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam

Prerequisites
none
3.253 Course: Mobile Machines [T-MACH-105168]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2114073</td>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 76T-MACH-105168</td>
<td>Lecture / On-Site</td>
<td>4 SWS</td>
<td>Geimer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 76-T-MACH-105168</td>
<td>Lecture / On-Site</td>
<td>4 SWS</td>
<td>Geimer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (45 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
none

Recommendation

Knowledge in Fluid Power Systems is required. It is recommended to attend the course *Fluid Power Systems* [2114093] beforehand.

Annotation

After completion of the course the students have knowledge of:

- a wide range of mobile machines
- operation modes and working cycles of important mobile machines
- selected subsystems and components

Content:

- Introduction of the required components and machines
- Basics of the structure of mobile machines
- Practical insight in the development techniques

Below you will find excerpts from events related to this course:

Mobile Machines

2114073, SS 2023, 4 SWS, Language: German, [Open in study portal](#)

Content

- Introduction of the required components and machines
- Basics of the structure of the whole system
- Practical insight in the development techniques

Knowledge in Fluid Power is required.

Recommendations:

It is recommended to attend the course *Fluid Power Systems* [2114093] beforehand.

- regular attendance: 42 hours
- self-study: 184 hours
3.254 Course: Modeling and Simulation [T-MACH-105297]

Responsible:
Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Marcus Geimer
Dr. Balazs Pritz
Prof. Dr.-Ing. Carsten Proppe

Organisation:
KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

Part of:
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2185227</td>
<td>Modelling and Simulation</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Proppe, Furmans, Geimer, Kärger</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2185228</td>
<td>Modeling and Simulation</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Proppe, Bykov, Pritz, Völker, Furmans, Bolender</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105297</td>
<td>Modeling and Simulation</td>
<td></td>
<td>Furmans, Geimer, Kärger, Proppe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105297</td>
<td>Modeling and Simulation</td>
<td></td>
<td>Geimer, Furmans, Proppe, Kärger</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧪 Blended (On-Site/Online), 🗓️ On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a 180 minutes written examination.

Prerequisites
none

Below you will find excerpts from events related to this course:

Modelling and Simulation
2185227, WS 22/23, 2 SWS, Language: German/English, Open in study portal

Lecture (V)
On-Site

Content
Introduction: Overview, concept formation, simulation studies, time/event-discrete models, event-oriented/process orientated/transaction-oriented view, typical model classes (operation/maintenance, storekeeping, loss-susceptible systems)

Time-continuous models with concentrated parameters, model characteristics and model analysis Numerical treatment of ordinary differential equations and differential-algebraic sets of equations coupled simulations with concentrated parameters

Time-continuous models with distributed parameters, description of systems by means of partial differential equations, model reduction, numerical solution procedures for partial differential equations

Organizational issues

Important note: in even winter semesters (e.g. WS2022/23) the course is held in English language, in odd winter semesters (e.g. WS2023/24) in German language. The exam is bilingual.

Literature
Keine.
3.255 Course: Modeling of Thermodynamical Processes [T-MACH-105396]

Responsible: Prof. Dr. Ulrich Maas
Dr.-Ing. Robert Schießl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 6
Grading scale: Grade to a third
Recurrence: Each term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT 22/23</td>
<td>3 SWS</td>
<td>Modeling of Thermodynamical Processes</td>
<td></td>
<td></td>
<td>Schießl</td>
</tr>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Modeling of Thermodynamical Processes</td>
<td></td>
<td></td>
<td>Maas, Schießl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT 22/23</td>
<td></td>
<td>Modeling of Thermodynamical Processes</td>
<td>Maas</td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td>Modeling of Thermodynamical Processes</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Oral exam, approx. 30 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Modeling of Thermodynamical Processes

2167523, WS 22/23, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
Principles of modelling: Representation of physical systems by equations
Numerical solution strategies for nonlinear equation systems
Constrained Optimization
Ordinary and partial differential equations
Application to various problems in thermodynamics (engine processes, determination of equilibrium states, unsteady processes in inhomogeneous systems)

Literature
Vorlesungsskript

Numerical Recipes C, FORTRAN; Cambridge University Press
R.W. Hamming; Numerical Methods for scientists and engineers; Dover Books On Engineering; 2nd edition; 1973
J. Kopitz, W. Polifke; Wärmeübertragung; Pearson Studium; 1. Auflage

Modeling of Thermodynamical Processes

2167523, SS 2023, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
Thermodynamic basics
Numerical solver strategies for algebraic equations
Optimization issues
Ordinary and partial differential equations
Application to various problems in thermodynamics (engine processes, determination of equilibrium states, unsteady processes in inhomogeneous systems)
Literature
Vorlesungsskript
Numerical Recipes C, FORTRAN; Cambridge University Press
R.W. Hamming; Numerical Methods for scientists and engineers; Dover Books On Engineering; 2nd edition; 1973
J. Kopitz, W. Polifke; Wärmeübertragung; Pearson Studium; 1. Auflage
3.256 Course: Modeling of Turbulent Flows - RANS and LES [T-BGU-110842]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6221911</td>
<td>Modelling of Turbulent Flows - RANS and LES</td>
<td>4</td>
<td>Lecture / Practice (/)</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8244110842</td>
<td>Modeling of Turbulent Flows - RANS and LES</td>
<td>Uhlmann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: ⏱ Online, 🕒 Blended (On-Site/Online), ⚽ On-Site, ☑ Canceled

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
3.257 Course: Modelling and Simulation [T-MACH-100300]

Responsible: Prof. Dr. Peter Gumbsch
Prof. Dr. Britta Nestler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2183703</td>
<td>Numerical methods and simulation techniques</td>
<td>3 SWS</td>
<td>Lecture / Practice (🖥)</td>
<td>Nestler, August, Prahs</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2183703</td>
<td>Modelling and Simulation</td>
<td>2+1 SWS</td>
<td>Lecture / Practice (🗣)</td>
<td>Nestler, August, Prahs</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>Lecture / Practice (🖥)</td>
<td>Nestler, August</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>Lecture / Practice (🗣)</td>
<td>Nestler</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Successful participation in the computer internship (ungraded) and written exam, 90 min (graded)

Prerequisites

none

Recommendation

preliminary knowlegde in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

V Numerical methods and simulation techniques

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2183703</td>
<td>Lecture / Practice (intval VU)</td>
<td>Nestler, August, Prahs</td>
</tr>
</tbody>
</table>

Open in study portal
Content
The course gives an introduction to modelling and simulation techniques.
The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises
The student can

• explain the basic algorithms and numerical methods which are beside other applications relevant for materials simulations.
• describe and apply numerical solution methods for partial differential equations and dynamical systems
• apply numerical methods to solve heat and mass diffusion problems which can also be used to model microstructure formation processes
• has experiences in how to implement and program the introduced numerical methods from an integrated computer lab.

preliminary knowledge in mathematics, physics and materials science recommended
regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours
We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.
written examination: 90 minutes

Organizational issues
Termine für Rechnerübungen werden in der Vorlesung bekannt gegeben!

Literature
Literature

Course: Modelling of Microstructures [T-MACH-105303]

3.258 Course: Modelling of Microstructures [T-MACH-105303]

Responsible: Dr. Anastasia August
Prof. Dr. Britta Nestler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Practice (VÜ)</td>
<td>3 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam 30 min

Prerequisites
none

Recommendation
materials science
fundamental mathematics

Below you will find excerpts from events related to this course:

Modelling of Microstructures
2183702, WS 22/23, 3 SWS, Language: German,

Content

- Brief Introduction in thermodynamics
- Gibbs free energy and phase diagrams
- Free energy functional
- Phasefield equation
- Driving forces
- Grand chemical potential functional and the evolution equations
- Numeric solution of the phasefield equation

The student can

- explain the thermodynamic and statistical foundations for liquid-solid and solid-solid phase transition processes and apply them to construct phase diagrams.
- explain the mechanisms of phase boundary motion induced under driving forces
- use the phase-field method for simulation of microstructure formation processes
- have experiences in computing and conduction simulations of microstructure formation from an integrated computer lab.

Knowledge in materials science and in fundamental mathematics recommended
regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours
oral exam ca. 30 min
Literature

4. Gaskell, D.R., Introduction to the thermodynamics of materials
3.259 Course: Modern Control Concepts I [T-MACH-105539]

Responsible: apl. Prof. Dr. Lutz Groell
apl. Prof. Dr. Jörg Matthes

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Written examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Event Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Modern Control Concepts I</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Tutorial on Modern Control Concepts I</td>
<td>Practice / Online</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Event Description</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Modern Control Concepts I</td>
<td>Matthes</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Modern Control Concepts I</td>
<td>Matthes</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (Duration: 1 h)

Prerequisites
one

Below you will find excerpts from events related to this course:

V
Modern Control Concepts I
2105024, SS 2023, 2 SWS, Language: German, Open in study portal
Lecture (V)
Blended (On-Site/Online)

V
Tutorial on Modern Control Concepts I
2106020, SS 2023, 2 SWS, Language: German, Open in study portal
Practice (Ü)
Online

Literature

Content

Learning Content:

1. Introduction (system classes, nomenclature)
2. Equilibria
3. Linearization (software based, Hartman-Grobman-Theorem)
4. Parameter identification of linear dynamic models (SISO+MIMO)
5. PID-controller (realization, design-hints, Anti-Windup-mechanisms)
6. Concept of 2DOF-Controllers (structure, reference signal design)
7. State space (geometric view)
8. Controller with state feedback and integrator expansion
 (LQ-design, Eigenvalue placement, decoupling design)
9. Observer (LQG-design, disturbance observer, reduced observer)

Recommendations:

Attendance of the following lectures is recommended:

- Grundlagen der Mess- und Regelungstechnik

Alternatively: Comparable courses of the faculty of electrical engineering
Literature

3.260 Course: Motor Vehicle Labor [T-MACH-105222]

Responsible: Dr.-Ing. Michael Frey
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105222</td>
<td>Grade to a third</td>
<td>each term</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105222</td>
<td>Grade to a third</td>
<td>each term</td>
</tr>
</tbody>
</table>

Competition Certificate
Colloquium before each experiment
After completion of the experiments: written examination
Duration: 90 minutes
Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Motor Vehicle Laboratory
2115808, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle
2. Investigation of a twin-tube and a single-tube shock absorber
3. Behavior of car tyres under longitudinal forces and lateral forces
4. Investigation of acoustic behaviour of vehicles
5. Rolling resistance, energy dissipation and high-speed strength of car tires
6. Investigation of the moment transient characteristic of a Visco clutch

Learning Objectives:
The students have deepened their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions. They are ready to analyze and to judge measurement results.
Organizational issues
Genauer Ort und Termine sowie weitere Infos siehe Institutshomepage.
Einteilung:
- Gruppe A: Mo 14:00-15:30
- Gruppe B: Mo 16:00-17:30
- Gruppe C: Di 09:00-10:30
- Gruppe D: Di 11:00-12:30
- Gruppe E: Di 14:00-15:30
- Gruppe F: Di 16:00-17:30

Literatur

Motor Vehicle Laboratory
2115808, SS 2023, 2 SWS, Language: German, Open in study portal

Content
1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle
2. Investigation of a twin-tube and a single-tube shock absorber
3. Behavior of car tyres under longitudinal forces and lateral forces
4. Behavior of car tires on wet road surface
5. Rolling resistance, energy dissipation and high-speed strength of car tires
6. Investigation of the moment transient characteristic of a Visco clutch

Learning Objectives:
The students have deepened their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions. They are ready to analyze and to judge measurement results.

Organizational issues
Genauer Ort und Termine sowie weitere Infos siehe Institutshomepage.
Einteilung in
- Gruppe A: Mo 14:00 - 15:30
- Gruppe B: Mo 16:00 - 17:30
- Gruppe C: Di 09:00 - 10:30
- Gruppe D: Di 11:00 - 12:30
- Gruppe E: Di 14:00 - 15:30
- Gruppe F: Di 16:00 - 17:30

Literatur
3.261 Course: Multi-Scale Plasticity [T-MACH-105516]

Responsible: Prof. Dr. Christian Greiner
PD Dr.-Ing. Katrin Schulz

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2181750</th>
<th>Multi-scale Plasticity</th>
<th>2 SWS</th>
<th>Lecture /</th>
<th>Greiner, Schulz</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>76-T-MACH-105516</th>
<th>Multi-Scale Plasticity</th>
<th>Schulz, Greiner</th>
</tr>
</thead>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, about 30 min

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, physics, mechanics and materials science

Annotation

- limited number of participants
- mandatory registration
- mandatory attendance

Below you will find excerpts from events related to this course:

Multi-scale Plasticity
2181750, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

This module will attempt to provide an overview to complex subjects in the field of material mechanics. For this purpose important scientific papers will be presented and discussed. This will be done by having students read and critique one paper each week in a short review. In addition, each week will include presentation from one of the participants which aim to advocate or criticise each piece of work using the short reviews. He will also be the discussion leader, while students discuss the content, ideas, evaluation and open research questions of the paper. Using a professional conference management system (HotCRP), the student assume the role of reviewers and gain insight into the work of researchers.

The student

- can explain the physical foundations of plasticity as well as results of latest research.
- can independently read and evaluate scientific research papers.
- can present specific, technical information in structured, precise, and readable manner.
- is able to argue for and/or against a particular approach or idea using the knowledge acquired within the lecture.

preliminary knowledge in mathematics, physics, mechanics and materials science recommended

regular attendance: 22,5 hours
self-study: 97,5 hours

Exam: presentation (40%), oral examination (30 min, 60%)

The maximum number of students is 14 per semester.
Organizational issues
Termine werden bekannt gegeben. Seminarräume des IAM-CMS (Geb. 10.91, Raum 227/3) Anmeldung per Email an katrin.schulz@kit.edu bis zum 07.10.2022
3.262 Course: Neutron Physics of Fusion Reactors [T-MACH-105435]

Responsible: Dr. Ulrich Fischer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189473</td>
<td>Neutron physics of fusion reactors</td>
<td>2</td>
<td>Lecture</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105435</td>
<td>Neutron Physics of Fusion Reactors</td>
<td>2</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ☢️ Cancelled

Competence Certificate

oral exam of about 30 minutes

Prerequisites

none

Annotation

none

Below you will find excerpts from events related to this course:

Neutron physics of fusion reactors
2189473, WS 22/23, 2 SWS, Language: German/English, [Open in study portal](#)

Lecture (V)
On-Site

Content

Nuclear interaction processes and energy release
Chain reaction and criticality
Neutron transport, Boltzmann equation
Diffusion approximation, Monte Carlo method
Neutronic reactor design

The aim of this lecture is to provide the neutron physics principles required for analysis of nuclear fission and fusion reactors. First of all, the basic nuclear interaction processes are presented which are important for the physical behaviour of the reactors. Next the neutron transport phenomenon in matter is described by means of the Boltzmann transport equation. Suitable mathematical solution methods are presented such as the diffusion approximation for nuclear fission reactors and the Monte Carlo method for fusion reactors. The knowledge acquired will eventually be used to solve neutron physics problems related to the design and optimization of the reactors.

oral exam, duration: approximately 30 minutes, no tools or reference materials may be used during the exam
regular attendance: 21 h
self-study: 42 h

Admission to Campus North is required, please register to attend the lecture at: il-sekretariat@inr.kit.edu

Organizational issues

Bitte vorherige Anmeldung über ILIAS

Literature

K. H. Beckurts, K. Wirtz, Neutron Physics, Springer Verlag, Berlin, Germany (1964)
3.263 Course: NMR Micro Probe Hardware Conception and Construction [T-MACH-108407]

Responsible: Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2142551</th>
<th>NMR micro probe hardware conception and construction</th>
<th>2 SWS</th>
<th>Practical course / 🧩</th>
<th>Korvink, Jouda</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>76-T-MACH-108407</th>
<th>NMR micro probe hardware conception and construction</th>
<th>Korvink</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚫ On-Site, ✗ Cancelled

Competence Certificate

Successful participation.

Prerequisites

none

Below you will find excerpts from events related to this course:

NMR micro probe hardware conception and construction

2142551, SS 2023, 2 SWS, Language: English, Open in study portal

Practical course (P)

Blended (On-Site/Online)

Content

In order to prepare attendees, the following chapters will be offered, spread over the week as lecture units, and accompanying the practical work:

- Theory of magnetic resonance imaging
- The MRI probe and the principle of reciprocity
- RF resonators
- Coaxial cables and cable traps
- Tuning and matching the MRI probe
- Effects of material susceptibility
- The mechanical support of the MRI probe
- Introduction to ParaVision, the MRI imaging software.

Organizational issues

Blockveranstaltung am CN, Bau 301, Raum 322, Anmeldung an Mazin.Jouda@kit.edu
Course: Nonlinear Continuum Mechanics [T-MACH-111026]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2162344 | Nonlinear Continuum Mechanics | 2 SWS | Lecture / Böhlke |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Competence Certificate
oral examination (approx. 25 min)

Prerequisites
Passing the "Tutorial Nonlinear Continuum Mechanics" (T-MACH-111027) is a prerequisite for taking part in the exam.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-111027 - Tutorial Nonlinear Continuum Mechanics must have been passed.

Below you will find excerpts from events related to this course:

Nonlinear Continuum Mechanics
2162344, SS 2023, 2 SWS, Language: German, Open in study portal

Content
- tensor calculus, kinematics, balance equations
- principles of material theory
- finite elasticity
- infinitesimal elasto(visco)plasticity
- exact solutions of infinitesimal plasticity
- finite elasto(visco)plasticity
- infinitesimal and finite crystal(visco)plasticity
- hardening and failure
- strain localization

Organizational issues
Nähere Informationen zum Format der Lehrveranstaltung: siehe Homepage des ITM-KM

Literature
- Vorlesungsskript
3.265 Course: Novel Actuators and Sensors [T-MACH-102152]

Responsible: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Module</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2141865</td>
<td>Novel actuators and sensors</td>
<td>2 SWS</td>
<td>Lecture / 🗣 Kohl, Sommer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Module</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td></td>
<td>Kohl, Sommer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 60 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Novel actuators and sensors

2141865, WS 22/23, 2 SWS, Language: German, Open in study portal

Literature

- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
3.266 Course: Nuclear Fusion Technology [T-MACH-110331]

Responsible: Dr. Aurelian Florin Badea

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Nuclear Fusion Technology</td>
<td>2 SWS</td>
<td>Lecture / Blended</td>
<td>Badea</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Nuclear Fusion Technology</td>
<td>2 SWS</td>
<td>Lecture / Blended</td>
<td>Badea</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

oral exam, approx. 20 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

V Nuclear Fusion Technology

2189920, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content

This lecture is dedicated to Master students of mechanical engineering and other engineering studies. Goal of the lecture is the understanding of the physics of fusion, the components of a fusion reactor and their functions. The technological requirements for using fusion technology for future commercial production of electricity and the related environmental impact are also addressed. The students are capable of giving technical assessment of the usage of the fusion energy with respect to its safety and sustainability. The students are qualified for further training in fusion energy field and for research-related professional activity.

- nuclear fission & fusion
- neutronics for fusion
- fuel cycles, cross sections
- gravitational, magnetic and inertial confinement
- fusion experimental devices
- energy balance for fusion systems; Lawson criterion and Q-factor
- materials for fusion reactors
- plasma physics, confinement
- plasma heating
- timeline of the fusion technology
- ITER, DEMO
- safety and waste management
3.267 Course: Nuclear Power and Reactor Technology [T-MACH-110332]

Responsible: Dr. Aurelian Florin Badea
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture/Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Lecture / Badea</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Lecture/Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Nuclear Power and Reactor Technology Badea</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, approx. 20 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event Title</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Power and Reactor Technology</td>
<td>Lecture (V)</td>
<td>3 SWS</td>
<td>English</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Lecture (V) Blended (On-Site/Online)

Content

This lecture is dedicated to Master students of mechanical engineering and other engineering studies. Goal of the lecture is the understanding of reactor technology and of the major physical processes in converting nuclear power into electrical energy. The students acquire comprehensive knowledge on the physics of nuclear fission reactors: neutron flux, cross sections, fission, breeding processes, chain reaction, critical size of a nuclear system, moderation, reactor dynamics, transport- and diffusion-equation for the neutron flux distribution, power density distributions in reactor, one-group, two-group and multi-group theories for the neutron spectrum. Students are able to analyze and understand the obtained results. The students are capable of understanding the advantages and disadvantages of different reactor technologies - LWR, heavy water reactors, nuclear power systems of generation IV - by using the delivered knowledge on reactor physics, thermal-hydraulics, reactor design, control, safety and requirements of the front-end and back-end of the fuel cycle. The students are qualified for further training in nuclear energy and safety field and for (also research-related) professional activity in the nuclear industry.

- nuclear fission & fusion,
- radioactive decay, neutron excess, fission, fast and thermal neutrons, fissile and fertile nuclei, enrichment, neutron flux, cross section, reaction rate, mean free path,
- chain reaction, critical size, moderation,
- reactor dynamics,
- transport- and diffusion-equation for the neutron flux distribution,
- power distributions in reactor,
- one-group and two-group theories,
- light-water reactors,
- reactor safety,
- design of nuclear reactors,
- breeding processes,
- nuclear power systems of generation IV
3.268 Course: Nuclear Power Plant Technology [T-MACH-105402]

Responsible: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2170460</th>
<th>Nuclear Power Plant Technology</th>
<th>2 SWS</th>
<th>Lecture / 🧩</th>
<th>Cheng, Schulenberg</th>
</tr>
</thead>
</table>

Exams

| ST 2023 | 76-T-MACH-105402 | Nuclear Power Plant Technology | Cheng, Schulenberg |

Legend: [Online], 🧩 [Blended (On-Site/Online)], 🗣 [On-Site], ✗ [Cancelled]

Competence Certificate

oral exam, Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Prerequisites

none

Below you will find excerpts from events related to this course:

Nuclear Power Plant Technology

2170460, SS 2023, 2 SWS, Language: English, Open in study portal
Lecture (V)
Blended (On-Site/Online)
Content
The training objective of the course is the qualification for a research-related professional activity in nuclear power plant engineering. The participants can describe the most important components of nuclear power plants and their function. You can design or modify nuclear power plants independently and creatively. They have acquired a broad knowledge of this power plant technology, including specific knowledge of core design, design of primary and secondary systems, and of nuclear safety technologies. Based on the acquired knowledge in thermodynamics and neutron physics, they can describe and analyze the specific behavior of the nuclear power plant components and assess risks. Participants of the lecture have a trained analytical thinking and judgment in the design of nuclear power plants.

Power plants with pressurized water reactors:
Design of the pressurized water reactor

- Fuel assemblies
- Control rods and drives
- Core instrumentation
- Reactor pressure vessel and its internals

Components of the primary system

- Primary coolant pumps
- Pressurizer
- Steam generator
- Water make-up system

Secondary system:

- Turbines
- Reheater
- Feedwater system
- Cooling systems

Containment

- Containment design
- Components of safety systems
- Components of residual heat removal systems

Control of a nuclear power plant with PWR

Power plants with boiling water reactors:
Design of the boiling water reactor

- Fuel assemblies
- Control elements and drives
- Reactor pressure vessel and its internals

Containment and components of safety systems
Control of a nuclear power plant with boiling water reactors

Literature
Vorlesungsmanuskript
3.269 Course: Numerical Fluid Mechanics [T-MACH-105338]

Responsibility: Dr.-Ing. Davide Gatti
Dr.-Ing. Franco Magagnato

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Practice /</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture / Practice /</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Practice /</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture / Practice /</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam - 30 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Numerical Fluid Mechanics

2153441, WS 22/23, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
Blended (On-Site/Online)

Content

The course covers the following topics:

1. basic equations of computational fluid dynamics
2. main discretization methods for fluid mechanics problems, with focus on finite differences and finite volumes
3. boundary and initial conditions
4. mesh generation and mesh treatment
5. solution algorithms for linear and nonlinear systems of equations
6. solution strategies for the incompressible Navier-Stokes equations
7. introduction to the solution of the compressible Navier-Stokes equations
8. examples of numerical simulation in practice

Literature

3.270 Course: Numerical Fluid Mechanics with PYTHON [T-MACH-110838]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>Practical course / Blended (On-Site/Online)</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecture</th>
<th>Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td></td>
<td>Each summer term</td>
<td>Gatti, Frohnapfel</td>
<td>Practical course / Blended (On-Site/Online)</td>
<td></td>
</tr>
<tr>
<td>2154405</td>
<td>Numerical Fluid Mechanics with Python</td>
<td></td>
<td></td>
<td>Gatti, Frohnapfel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecture</th>
<th>Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td></td>
<td>Each summer term</td>
<td>Frohnapfel, Gatti</td>
<td>Practical course (P)</td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-110838</td>
<td>Numerical Fluid Mechanics with Python</td>
<td></td>
<td></td>
<td>Frohnapfel, Gatti</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

ungraded homework

Prerequisites

none

Below you will find excerpts from events related to this course:

Numerical Fluid Mechanics with Python

2154405, SS 2023, 2 SWS, Language: German, Open in study portal

Content

Numerical Fluid Mechanics with Phyton

- Introduction to Numerics and Matlab
- Finite-Difference-Method
- Finite-Volume-Method
- boundary conditions and initial conditions
- explicit and implicit schemes
- pressure correction
- Solving the Navier-Stokes equation numerically for 2D flow problems

Organizational issues

Bitte bis zum 11.08.23 per E-Mail anmelden sekretariat@istm.kit.edu.

Literature

3.271 Course: Numerical Mathematics for Students of Computer Science [T-MATH-102242]

Responsible: Prof. Dr. Andreas Rieder
Dr. Daniel Weiss
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics
Part of: M-MACH-104885 - Courses of the KIT Department of Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>0187400</td>
<td>Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen</td>
<td>2</td>
<td>Lecture</td>
<td>Wieners</td>
</tr>
<tr>
<td>ST 2023</td>
<td>0187500</td>
<td>Übungen zu 0187400</td>
<td>1</td>
<td>Practice</td>
<td>Wieners</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6700011</td>
<td>Numerical Mathematics for Students of Computer Science</td>
<td>Weiss</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7700013</td>
<td>Numerical Mathematics for Students of Computer Science</td>
<td>Wieners</td>
</tr>
</tbody>
</table>

Prerequisites

None
3.272 Course: Numerical Simulation of Multi-Phase Flows [T-MACH-105420]

Responsible: Dr. Martin Wörner
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Exam Code</th>
<th>Exam Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2130934</td>
<td>Numerical Modeling of Multiphase Flows</td>
<td>2 SWS</td>
<td>Lecture / 🔴</td>
<td>Wörner</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>WT 22/23</td>
<td>76-T-MACH-105420</td>
<td>Numerical Simulation of Multi-Phase Flows</td>
<td>76-T-MACH-105420</td>
<td>Frohnapfel</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105420</td>
<td>Numerical Simulation of Multi-Phase Flows</td>
<td>76-T-MACH-105420</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competition Certificate

oral exam 30 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

V Numerical Modeling of Multiphase Flows
2130934, SS 2023, 2 SWS, Language: German, Open in study portal

Content

1. Introduction in the subject of multi-phase flows (terms and definitions, examples)
2. Physical fundamentals (dimensionless numbers, phenomenology of single bubbles, conditions at fluid interfaces, forces on a suspended particle)
3. Mathematical fundamentals (governing equations, averaging, closure problem)
4. Numerical fundamentals (discretization in space and time, truncation error and numerical diffusion)
5. Models for interpenetrating continua (homogeneous model, algebraic slip model, standard two-fluid model and its extensions)
6. Euler-Lagrange model (particle equation of motion, particle response time, one-/two-/four-way coupling)
7. Interface resolving methods (volume-of-fluid, level-set and front-capturing method)

Organizational issues

Mündliche Prüfung, Dauer: 30 Minuten, Hilfsmittel: keine
Oral examination (in German or English language), Duration: 30 minutes, Auxiliary means: none

Literature

Ein englischsprachiges Kurzskriptum kann unter https://publikationen.bibliothek.kit.edu/270056199 heruntergeladen werden.
Die Powerpoint-Folien werden nach jeder Vorlesung im ILIAS-System zum Herunterladen bereitgestellt.
Eine Liste mit Buchempfehlungen wird in der ersten Vorlesungsstunde ausgegeben.
Course: Numerical Simulation of Turbulent Flows [T-MACH-105397]

Responsibility: Dr. Günther Grötzbach
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Grötzbach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105397</td>
<td>Numerical Simulation of Turbulent Flows</td>
<td>Grötzbach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105397</td>
<td>Numerical Simulation of Turbulent Flows</td>
<td>Grötzbach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🗣 Online, 🎧 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral

Duration: 30 minutes

no auxiliary means

Prerequisites
none

Recommendation
Basics in fluid mechanics

Below you will find excerpts from events related to this course:

Numerical Simulation of Turbulent Flows
2153449, WS 22/23, 3 SWS, Language: German, Open in study portal

Content
The students are qualified to describe the fundamentals of direct numerical simulation (DNS) and large eddy simulation (LES) of turbulent flows. They understand the principle differences between these simulation methods and the respective properties of the conventional turbulence modelling approaches basing on Reynolds Averaged Navier-Stokes equations (RANS). They can describe subgrid scale models, peculiarities of wall and inlet/outlet modelling, suitable numerical solution schemes and evaluation methods. They have obtained the knowledge and understanding required to identify the best modelling approach (among the available methods) for the problem at hand, thus being able to solve given thermal and fluid dynamical problems appropriately.

The lecture series will introduce in following subjects of the turbulence simulation method:

• Appearance of turbulence and deduction of requirements and limits of the simulation method.
• Conservation equations for flows with heat transfer, filtering them in time or space.
• Some subgrid scale models for small scale turbulence and their physical justification.
• Peculiarities in applying boundary and initial conditions.
• Suitable numerical schemes for integration in space and time.
• Statistical and graphical methods to analyse the simulation results.
• Application examples for turbulence simulations in research and engineering

Organizational issues
Dauer der Vorlesung 3 h von 14:00 - 15:30 h und von 15:45 - 16:30 h./Duration of the lecture 3 h from 14:00 - 15:30 h and from 15:45 - 16:30 h
Literature
G. Grötzbach, Script in English
3.274 Course: Organ Support Systems [T-MACH-105228]

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Graduation</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2106008</td>
<td>Organ support systems</td>
<td>Lecture / On-Site</td>
<td>2 SWS</td>
<td></td>
<td>Pylatiuk</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105228</td>
<td>Organ Support Systems</td>
<td>Lecture / On-Site</td>
<td></td>
<td></td>
<td>Pylatiuk</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105228</td>
<td>Organ Support Systems</td>
<td>Lecture / On-Site</td>
<td></td>
<td></td>
<td>Pylatiuk</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (Duration: 45min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Organ support systems

2106008, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) On-Site

Content

Content:

- Introduction: Definitions and classification of organ support and replacement.
- Special topics: acoustic and visual prostheses, exoskeletons, neuroprostheses, tissue-engineering, hemodialysis, heart-lung machine, artificial hearts, biomaterials.

Learning objectives:

Students have fundamental knowledge about functionality of organ support systems and its components. An analysis of historical developments can be done and limitations of current systems can be found. The limits and possibilities of transplantations can be elaborated.

Organizational issues

Die Vorlesung findet in Präsenz statt.

Literature

- E. Wintermantel, Suk-Woo Ha: Medizintechnik. Springer Verlag.

Responsible: Patric Werner
Organisation: KIT Department of Informatics
Part of: M-MACH-104883 - Courses of the KIT Department of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>24656</th>
<th>Lecture / Werner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patent Law</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7500109</th>
<th>Patent Law</th>
<th>Dreier, Matz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⛓ Blended (On-Site/Online), 🗯 On-Site, ❌ Cancelled
3.276 Course: Photovoltaics [T-ETIT-101939]

Responsible: Prof. Dr.-Ing. Michael Powalla
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2313737 Photovoltaics</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Powalla, Lemmer</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2313738 Tutorial 2313737 Photovoltaik</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Powalla, Lemmer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 7313737 Photovoltaics</td>
<td></td>
<td>Powalla, Lemmer</td>
<td></td>
</tr>
<tr>
<td>ST 2023 7313737 Photovoltaics</td>
<td></td>
<td>Powalla, Lemmer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

"M-ETIT-100524 - Solar Energy" must not have started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-ETIT-100774 - Solar Energy must not have been started.

Responsible:
apl. Prof. Dr. Ron Dagan

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.277</td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189906</td>
<td>Physical and chemical principles of nuclear energy in view of reactor accidents and back-end of nuclear fuel cycle</td>
<td>2</td>
<td>Lecture / 📈</td>
<td>Dagan, Metz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ⚪ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, approx. 30 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Physical and chemical principles of nuclear energy in view of reactor accidents and back-end of nuclear fuel cycle

2189906, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site
Content

- Relevant physical terms of nuclear physics
- Decay heat removal - Borst-Wheeler equation
- The accidents in TMI - Three Mile Island, and Fukushima
- Fission, chain reaction and reactor control systems
- Basics of nuclear cross sections
- Principles of reactor dynamics
- Reactor poisoning
- The Idaho and Chernobyl accidents
- Principles of the nuclear fuel cycle
- Reprocessing of irradiated fuel elements and vitrification of fission product solutions
- Interim storage of nuclear residues in surface facilities
- Multi barrier concepts for final disposal in deep geological formations
- The situation in the repositories Asse II, Konrad and Morsleben

The students

- understand the physical explanations of the known nuclear accidents
- can perform simplified calculations to demonstrate the accidents outcome.
- Define safety relevant properties of low/intermediate/high level waste products
- Are able to evaluate principles and implications of reprocessing, storage and disposal options for nuclear waste.

Regular attendance: 14 h
self study 46 h
oral exam about 20 min.

Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
AEA öffentliche Dokumentation zu den nuklearen Ereignissen
K. Wirtz: Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton: Nuclear reactor Analysis, J. Wiley $ Sons , Inc. 1975 (in Englisch)
Course: Physical Basics of Laser Technology [T-MACH-102102]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 4

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type/Lecture</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2181612</td>
<td>Physical basics of laser technology</td>
<td>3</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td>Schneider</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗽 On-Site, 🗿 Cancelled

Competence Certificate
oral examination (30 min)

no tools or reference materials

Prerequisites
It is not possible, to combine this brick with brick Laser Material Processing [T-MACH-112763], brick Laser Application in Automotive Engineering [T-MACH-105164] and brick Physical Basics of Laser Technology [T-MACH-109084]

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105164 - Laser in Automotive Engineering must not have been started.
2. The course T-MACH-112763 - Laser Material Processing must not have been started.

Recommendation
Basic knowledge of physics, chemistry and material science

Below you will find excerpts from events related to this course:

Physical basics of laser technology
2181612, WS 22/23, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
On-Site
Content
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focuses on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
- safety aspects

The lecture is complemented by a tutorial.

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- can describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- can illustrate the possible applications of laser sources in measurement and medicine technology
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

regular attendance: 33.5 hours
self-study: 116.5 hours

The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

It is allowed to select only one of the lectures "Laser in automotive engineering" (2182642) or "Physical basics of laser technology" (2181612) during the Bachelor and Master studies.

Organizational issues
Termine für die Übung werden in der Vorlesung bekannt gegeben!

Literature
T. Graf: Laser - Grundlagen der Laserstrahlerzeugung 2015, Springer Vieweg
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.279 Course: Physical Measurement Technology [T-MACH-111022]

Responsible: Dr. Dominique Buchenau
Prof. Dr. Robert Stieglitz

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189490</td>
<td>Physical Measurement Technology</td>
<td>2</td>
<td>🖥️</td>
<td>Stieglitz, Buchenau</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76T-MACH-111022</td>
<td>Physical Measurement Technology</td>
<td></td>
<td>Buchenau, Stieglitz</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Oral exam of about 25 minutes

Prerequisites

none

Annotation

none

Below you will find excerpts from events related to this course:

Physical Measurement Technology

2189490, WS 22/23, 2 SWS, Language: German/English, Open in study portal

Lecture (V) Online
Content

Qualification targets:

Acquisition of knowledge:

- fundamentals of electrical measurement technology
- conversion principles of physical quantities into electrical signals
- conversion and processing of non-electrical quantities
- characteristics and transmission properties of sensors
- basics of analog and digital data acquisition & processing
- fundamentals of optical measurement methods

Skills:

- handling with electrical measuring instruments
- application and handling of simple measurement circuits
- measurement data acquisition and processing, representation of functional dependencies
- analysis of measuring tasks, selection of measuring methods and instruments
- assessment of measurement errors, reduction of systematic errors

Expertise:

- problem analysis and development of suitable solutions
- planning and design of measuring systems
- planning and installation of automated measurement equipment
- assessment of the quality of measurement procedures and results

Structure of Content:

- general introduction
- evaluation of measurement data
- important concepts of measurement techniques
- sensor concepts according to physical effects
- special concepts of physical measurement technology
- D/A and A/D conversion of electrical signals
- digital and analog modulation techniques

Usability:

Suitable for Bachelor program with the following specialisations:

- mechanical engineering
- physical engineering science
- production engineering / Transportation
- information technology in mechanical engineering

The acquired know-how is relevant for all engineering disciplines, especially in the following areas: precision engineering, mechatronics, medical technology, measurement and automation technology etc.

Work input:

Total extent approx. 120 h / thereof 30 h in classroom lecture and exercise

Examination:

The lecture will be concluded by an oral exam of about 25 minutes.

Organizational issues

Anmeldung erforderlich unter il-sekretariat@inr.kit.edu

Literature

- Hecht, E., Optik, Oldenbourg-Verlag, 2005, ISBN 3-486-27359-0
3.280 Course: Plasticity of Metals and Intermetallics [T-MACH-110818]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Dr.-Ing. Alexander Kauffmann

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>8 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8 SWS</td>
<td>Each summer term</td>
</tr>
<tr>
<td>ST 2023</td>
<td>8 SWS</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Prerequisites

T-MACH-110268 – Plastizität von metallischen und intermetallischen Werkstoffen has not been started
T-MACH-105301 - Werkstoffkunde III has not been started

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105301 - Materials Science and Engineering III must not have been started.

Competence Certificate

oral exam (about 25 minutes)

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❓ Cancelled

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Plasticity of Metals and Intermetallics</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2173648, SS 2023, 4 SWS, Language: English</td>
<td>On-Site</td>
</tr>
</tbody>
</table>
Content

Learning Objectives
Students are familiar with macroscopic, mesoscopic and microscopic mechanisms of plastic deformation in metals, alloys and intermetallics including the qualitative and quantitative descriptions. Furthermore, students can apply their knowledge in order to deduce and explain mechanism-property relationships in this kind of materials and their use in materials manufacturing.

Content

Chapter overview

Ch. 0: General Information
Ch. 1: Relevance of Plasticity in Industry and Research
Ch. 2: Macroscopic Features of Plastic Deformation
Ch. 3: Fundamentals and Interrelations to other Lectures
 • Fundamental Concepts of Elasticity
 • Macroscopic Strength and Strengthening/Hardening
 • Fundamentals of Crystallography
 • Fundamentals of Defects in Crystalline Solids
Ch. 4: Dislocations
 • Fundamental Concept
 • Observation of Dislocations
 • Properties of Dislocations
 • Dislocations in fcc Metals
 • Dislocations in bcc Metals
 • Dislocations in hcp Metals and Complex Intermetallics
Ch. 5: Single Crystal Plasticity
 • General Stages of Plastic Deformation and Fundamentals of the Stress-Strain curve (fcc Metals)
 • Influence of Temperature, Orientation, Strain Rate, etc. (fcc Metals)
 • Further Examples (Extension of the Results to bcc, hcp and Intermetallic Materials)
 • Deformation Twinning
Ch. 6: Plasticity of Polycrystalline Materials
 • Transition from Single Crystals to Polycrystals
 • Strength of Polycrystals
 ◦ Solute Atoms
 ◦ Dislocations (incl. Dislocation Patterning)
 ◦ Grain Boundaries (incl. Homogenization of Critical Stress)
 ◦ Precipitates and Dispersoids
Ch. 7: Other Mechanisms of Plastic Deformation

Work Load

lectures: 56 h
private studies: 187 h

Organizational issues
Details about the lecture are distributed via: https://www.iam.kit.edu/wk/english/studies.php

Literature
Powerpoint slides will be distributed via the ILIAS system.
Detailed information are available for different sub topics of the lecture:

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC070938105

D. Hull, D. J. Bacon: „Introduction to Dislocations“, Elsevier (2011)
http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC383083990 (free vie KIT license)

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften (public domain)
3.281 Course: Polymer Engineering I [T-MACH-102137]

Responsible: Dr.-Ing. Wilfried Liebig
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

WT 22/23 2173590 Polymer Engineering I 2 SWS Lecture / Online Liebig

Exams

WT 22/23 76-T-MACH-102137 Polymer Engineering I Liebig
ST 2023 76-T-MACH-102137 Polymer Engineering I Liebig
ST 2023 76-T-MACH-102137-W Polymer Engineering I Liebig

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚡ On-Site, ✗ Cancelled

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

V Polymer Engineering I
2173590, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content

1. Economical aspects of polymers
2. Introduction of mechanical, chemical and electrical properties
3. Processing of polymers (introduction)
4. Material science of polymers
5. Synthesis

learning objectives:

The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material "polymer" meeting its requirements in an economical and ecological way.

The students

- are able to describe and classify polymers based on the fundamental synthesis processing techniques
- can find practical applications for state-of-the-art polymers and manufacturing technologies
- are able to apply the processing techniques, the application of polymers and polymer composites regarding to the basic principles of material science
- can describe the special mechanical, chemical and electrical properties of polymers and correlate these properties to the chemical bindings.
- can define application areas and the limitation in the use of polymers

requirements:

none

workload:

regular attendance: 21 hours
self-study: 99 hours
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
3.282 Course: Polymer Engineering II [T-MACH-102138]

Responsible: Dr.-Ing. Wilfried Liebig

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Exam</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2174596</td>
<td>Polymer Engineering II</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
</tr>
<tr>
<td>Exams</td>
<td>76-T-MACH-102138</td>
<td>Polymerengineering II</td>
<td>Liebig</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102138</td>
<td>Polymerengineering II</td>
<td>Liebig</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

none

Recommendation

Knowledge in Polymerengineering I

Below you will find excerpts from events related to this course:

Content

1. Processing of polymers
2. Properties of polymer components
 - Based on practical examples and components
 - 2.1 Selection of material
 - 2.2 Component design
 - 2.3 Tool engineering
 - 2.4 Production technology
 - 2.5 Surface engineering
 - 2.6 Sustainability, recycling

Learning objectives:

The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, that the students gather knowledge and technical skills to use the material "polymer" meeting its requirements in an economical and ecological way.

The students

- can describe and classify different processing techniques
- and can exemplify mould design principles based on technical parts
- know about practical applications and processing of polymer parts
- are able to design polymer parts according to given restrictions
- can choose appropriate polymers based on the technical requirements
- can decide how to use polymers regarding the production, economical and ecological requirements

Requirements:

Polymerengineering I

Workload:

The workload for the lecture Polymerengineering II is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).
Literature
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
Recommended literature and selected official lecture notes are provided in the lecture.
3.283 Course: Polymers in MEMS A: Chemistry, Synthesis and Applications [T-MACH-102192]

Responsible: Dr.-Ing. Bastian Rapp
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2141853</td>
<td>Polymers in MEMS A: Chemistry, Synthesis and Applications</td>
<td>2 SWS</td>
<td>/ 🧩</td>
<td></td>
<td>Worgull</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102192</td>
<td>Polymers in MEMS A: Chemistry, Synthesis and Applications</td>
<td></td>
<td></td>
<td></td>
<td>Rapp, Worgull</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Oral examination

Prerequisites
none

Below you will find excerpts from events related to this course:

Polymers in MEMS A: Chemistry, Synthesis and Applications
2141853, WS 22/23, 2 SWS, Language: German, Open in study portal

Organizational issues
Findet als Blockveranstaltung am Semesterende statt.
3.284 Course: Polymers in MEMS B: Physics, Microstructuring and Applications [T-MACH-102191]

Responsible: Dr.-Ing. Matthias Worgull

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2141854 | Polymers in MEMS B: Physics, Microstructuring and Applications | 2 SWS | Lecture / Online | Worgull |

Exams

| WT 22/23 | 76-T-MACH-102191 | Polymers in MEMS B: Physics, Microstructuring and Applications | Worgull |
| ST 2023 | 76-T-MACH-102191 | Polymers in MEMS B: Physics, Microstructuring and Applications | Worgull |

Competence Certificate

Oral examination

Prerequisites

none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>V</th>
<th>Polymers in MEMS B: Physics, Microstructuring and Applications</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2141854, WS 22/23, 2 SWS, Language: German, Open in study portal</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>
3.285 Course: Polymers in MEMS C: Biopolymers and Bioplastics [T-MACH-102200]

Responsible: Dr.-Ing. Bastian Rapp
Dr.-Ing. Matthias Worgull

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2142855</td>
<td>Polymers in MEMS C - Biopolymers and Bioplastics</td>
<td>2</td>
<td>/ 🧩</td>
<td>Worgull</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102200</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics</td>
<td>2</td>
<td></td>
<td>Worgull, Rapp</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102200</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics</td>
<td>2</td>
<td></td>
<td>Worgull, Rapp</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral examination

Prerequisites

none

Below you will find excerpts from events related to this course:
Content

Polymers are ubiquitous in everyday life: from packaging materials all the way to specialty products in medicine and medical engineering. Today it is difficult to find a product which does not (at least in parts) consist of polymeric materials. The question of how these materials can be improved with respect to their disposal and consumption of (natural) resources during manufacturing is often raised. Today polymers must be fully recycled in Germany and many other countries due to the fact that they do not (or only very slowly) decompose in nature. Furthermore significant reductions of crude oil consumption during synthesis are of increasing importance in order to improve the sustainability of this class of materials. With respect to disposal polymers which do not have to be disposed by combustion but rather allow natural decomposition (composting) are of increasing interest. Polymers from renewable sources are also of interest for modern microelectromechanical systems (MEMS) especially if the systems designed are intended as single-use products.

This lecture will introduce the most important classes of these so-called biopolymers and bioplastics. It will also discuss and highlight polymers which are created from naturally created analogues (e.g. via fermentation) to petrochemical polymer precursors and describe their technical processing. Numerous examples from MEMS as well as everyday life will be given.

Some of the topics covered are:

- What are biopolyurethanes and how can you produce them from castor oil?
- What are "natural glues" and how are they different from chemical glues?
- How do you make tires from natural rubbers?
- What are the two most important polymers for life on earth?
- How can you make polymers from potatoes?
- Can wood be formed by injection molding?
- How do you make buttons from milk?
- Can you play music on biopolymers?
- Where and how do you use polymers for tissue engineering?
- How can you built LEGO with DNA?

The lecture will be given in German language unless non-German speaking students attend. In this case, the lecture will be given in English (with some German translations of technical vocabulary). The lecture slides are in English language and will be handed out for taking notes. Additional literature is not required.

For further details, please contact the lecturer, PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Preregistration is not necessary.

Organizational issues

Für weitere Rückfragen, wenden Sie sich bitte an PD Dr.-Ing- Matthias Worgull (matthias.worgull@kit.edu). Eine Voranmeldung ist nicht notwendig.

Literature

Zusätzliche vorlesungsbegleitende Literatur ist nicht notwendig.
3.286 Course: Powertrain Systems Technology B: Stationary Machinery [T-MACH-105216]

Responsible: Prof. Dr.-Ing. Albert Albers
 Prof. Dr.-Ing. Sven Matthiesen
 Sascha Ott

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2145150</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>2</td>
<td>Lecture / On-Site</td>
<td>Albers, Düser, Ott</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td></td>
<td>Albers, Ott</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td></td>
<td>Albers, Ott</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
written examination: 60 min duration

Prerequisites
None

Below you will find excerpts from events related to this course:

Powertrain Systems Technology B: Stationary Machinery
2145150, WS 22/23, 2 SWS, Language: German, [Open in study portal]

Content
Students acquire the basic skills needed to develop future energy-efficient and safe drive system solutions for use in industrial environments. The course considers holistic development methods and evaluations of drive systems. The focal points can be divided into the following chapters:

- Powertrain System
- Operator System
- Environment System
- System Components
- Development Process

Recommendations:
- Powertrain Systems Technology A: Automotive Systems

Literature
VDI-2241: “Schaltare fremdbetätigte Reibkupplungen und -bremsen”, VDI Verlag GmbH, Düsseldorf
3.287 Course: Practical Course Combustion Technology [T-CIWVT-108873]

Responsible: Dr.-Ing. Stefan Raphael Harth
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-MACH-105100 - Courses of the KIT Department of Chemical and Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 22531</td>
<td>3 SWS</td>
<td>Laboratory Work in Combustion Technology</td>
<td>Each summer term</td>
<td>Harth</td>
</tr>
<tr>
<td>ST 2023 22542</td>
<td>3 SWS</td>
<td>Verbrennungstechnisches Praktikum</td>
<td>Each summer term</td>
<td>Trimis, Harth</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 7231401</td>
<td>Practical Course Combustion Technology</td>
<td>Each summer term</td>
<td>Harth</td>
<td></td>
</tr>
<tr>
<td>ST 2023 7231401</td>
<td>Practical Course Combustion Technology</td>
<td>Each summer term</td>
<td>Harth</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
3.288 Course: Practical Course Technical Ceramics [T-MACH-105178]

Responsible: apl. Prof. Dr. Günter Schell
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2125751</th>
<th>Practical Course Technical Ceramics</th>
<th>2 SWS</th>
<th>Practical course / Schell</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>76-T-MACH-105178</th>
<th>Practical Course Technical Ceramics</th>
<th>Schell</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Colloquium and laboratory report for the respective experiments.

Prerequisites
none

<details>
<summary>Below you will find excerpts from events related to this course:</summary>

Practical Course Technical Ceramics
2125751, WS 22/23, 2 SWS, Language: German, Open in study portal

Organizational issues
Elektronisch über das ILIAS-Portal

Literature

Richerson, D. R.: Modern Ceramic Engineering, CRC Taylor & Francis, 2006
</details>
Course: Practical Training in Basics of Microsystem Technology [T-MACH-102164]

Responsible: Dr. Arndt Last
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Examination of another type
Credits: 4
Grading scale: Grade to a third
Recurrence: Each term
Version: 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2143875</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>Practical course / On-Site</td>
<td>2 SWS</td>
<td></td>
<td>Last</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2143877</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>Practical course / On-Site</td>
<td>2 SWS</td>
<td></td>
<td>Last</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2143875</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>Practical course / On-Site</td>
<td>2 SWS</td>
<td></td>
<td>Last</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2143877</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>Practical course / On-Site</td>
<td>2 SWS</td>
<td></td>
<td>Last</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102164</td>
<td>Practical Training in Basics of Microsystem Technology</td>
<td>Practical course (P)</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102164</td>
<td>Practical Training in Basics of Microsystem Technology</td>
<td>Practical course (P)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology - Practical Course
2143875, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Practical course (P) On-Site

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

Introduction to Microsystem Technology - Practical Course
2143877, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Practical course (P) On-Site

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

Introduction to Microsystem Technology - Practical Course
2143875, SS 2023, 2 SWS, Language: German, [Open in study portal](#)
Practical course (P) On-Site

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'
Content
In the practical training includes ten experiments:

1. Röntgenoptik
2. UVL + REM
3. Mischerbauteil
4. Rasterkraftmikroskopie
5. 3D-Printing
6. Lichtstreuung an Chrommasken
7. Abformung
8. SAW-Biosensorik
9. Nano3D-Drucker - Materialtransfer dünnster Schichten
10. Elektrospinning

Each student takes part in only four experiments. The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Organizational issues
Das Praktikum findet in den Laboren des IMT am CN statt. Treffpunkt: Bau 301, vor dem Eingang.

Teilnahmeanfragen an arndt.last@kit.edu

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997

Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

Content
In the practical training includes nine experiments:

1. X-ray optics
2. UVL + REM
3. Micromixer
4. Atomic force microscopy
5. 3D-Printing
6. Light diffraction at Chromium masks
7. Moulding
8. SAW-bio-sensors
9. Nano3D-printer - material transfer of thin foils
10. Electro spinning

Each student takes part in only four experiments. The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Organizational issues
Das Praktikum findet in den Laboren des IMT am KIT-CN statt. Treffpunkt: Eingang Bau 301.

Teilnahmeanfragen an Dr. A. Last, arndt.last@kit.edu

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997

Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'
3.290 Course: Practical Training in Measurement of Vibrations [T-MACH-105373]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2162208 | Schwingungstechnisches Praktikum | Practical course / Online | Genda, Fidlin |

| ST 2023 | 76-T-MACH-105373 | Practical Training in Measurement of Vibrations | Fidlin |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate
Colloquium to each session, 10 out of 10 colloquiums must be passed

Prerequisites
Can not be combined with Experimental Dynamics (T-MACH-105514).

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105514 - Experimental Dynamics must not have been started.

Recommendation
Vibration Theory, Mathematical Methods of Vibration Theory, Dynamic Stability, Nonlinear Vibrations

Responsible: apl. Prof. Dr. Günter Schell

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type	**Credits**	**Grading scale**	**Recurrence**	**Version**
Oral examination | 4 | Grade to a third | Each winter term | 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2193010</td>
<td>Basic principles of powder metallurgical and ceramic processing</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Schell</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102111</td>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td>Lecture (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102111</td>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td>Lecture (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of an oral exam (20-30 min) taking place at the agreed date. The re-examination is offered upon agreement.

Prerequisites
none

Below you will find excerpts from events related to this course:

Basic principles of powder metallurgical and ceramic processing
2193010, WS 22/23, 2 SWS, Language: German, Open in study portal

Literature
- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
3.292 Course: Principles of Medicine for Engineers [T-MACH-105235]

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type/Lecture</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2105992</td>
<td>Principles of Medicine for Engineers</td>
<td>2</td>
<td>Lecture /🗣</td>
<td>Pylatiuk</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type/Lecture</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105235</td>
<td>Principles of Medicine for Engineers</td>
<td>Lecture /🗣</td>
<td>Pylatiuk</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105235</td>
<td>Principles of Medicine for Engineers</td>
<td>Lecture /🗣</td>
<td>Pylatiuk</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (Duration: 45min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Principles of Medicine for Engineers

2105992, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content

- **Introduction**: Definitions of "health" and "disease". History of medicine and paradigm shift towards evidence based medicine and personalized medicine.
- **Special topics**: nervous system, saltatory conduction, musculoskeletal system, cardio-circulatory system, narcosis, pain, respiratory system, sensory organs, gynaecology, digestive organs, surgery, nephrology, orthopaedics, immune system, genetics.

Learning objectives:

Students have fundamental knowledge about functionality and anatomy of organs within different medical disciplines. The students further know about technical methods in diagnosis and therapy, common diseases, their relevance and costs. Finally the students are able to communicate with medical doctors in a way, in which they prevent misunderstandings and achieve a more realistic idea of each others expectations.

Literature

- Adolf Faller, Michael Schünke: Der Körper des Menschen. Thieme Verlag.
3.293 Course: Probability Theory and Statistics [T-MATH-109620]

Responsible: Prof. Dr. Nicole Bäuerle
Dr. rer. nat. Bruno Ebner
Prof. Dr. Vicky Fasen-Hartmann
Prof. Dr. Daniel Hug
PD Dr. Bernhard Klar
Prof. Dr. Günter Last
Prof. Dr. Mathias Trabs
PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics
Part of: M-MACH-104885 - Courses of the KIT Department of Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Description</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 00007</td>
<td>Probability Theory and Statistics</td>
<td>Trabs, Winter</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (90 min.)

Prerequisites

None
Course: Process Simulation in Forming Operations [T-MACH-105348]

Responsible: Dr.-Ing. Dirk Helm
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2161501</td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Process Simulation in Forming Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, 20 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Process Simulation in Forming Operations
2161501, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
Blended (On-Site/Online)

Content
Based on basics of continuum mechanics, material theory and numerics the lecture gives an introduction into the simulation of forming operations for metals

- plasticity for metallic materials: dislocations, twinning, phase transformations, anisotropy, hardening
- classification of forming operations and discussion of selected topics
- basics of tensor algebra and tensor analysis
- continuum mechanics: kinematics, finite deformations, balance laws, thermodynamics
- material theory: basics, modelling concepts, plasticity and visco plasticity, yield functions (von Mises, Hill, ...), kinematic and isotropic hardening, damage
- thermomechanical coupling
- modelling of contact
- finite element method: explicit and implicite formulations, types of elements, numerical integration of material models
- process simulation of selected problems of sheet metal forming

Organizational issues
Siehe Aushang am Institut bzw. Informationen auf der website
3.295 Course: Product and Innovation Management [T-WIWI-109864]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>ID</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2571154</td>
<td>Product and Innovation Management</td>
<td>2 SWS</td>
<td>Lecture / 🗓️</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>ID</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900024</td>
<td>Product and Innovation Management</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, Blended (On-Site/Online), 🗓️ On-Site, ☑️ Cancelled

Competence Certificate

The assessment of success takes place through a written exam with additional aids in the sense of an open book exam. Further details will be announced during the lecture.

Prerequisites

None

Annotation

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:

Product and Innovation Management

2571154, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V)

On-Site

Content

This course addresses topics around the management of new as well as existing products. After the foundations of product management, especially the product choice behavior of customers, students get to know in detail different steps of the innovation process. Another section regards the management of the existing product portfolio.

Students

- know the most important terms of the product and innovation concept
- understand the models of product choice behavior (e.g., the Markov model, the Luce model)
- are familiar with the basics of network theory (e.g., the Triadic Closure concept)
- know the central strategic concepts of innovation management (especially the market driving approach, pioneer and successor, Miles/Snow typology, blockbuster strategy)
- master the most important methods and sources of idea generation (e.g. open innovation, lead user method, crowdsourcing, creativity techniques, voice of the customer, innovation games, conjoint analysis, quality function deployment, online toolkits)
- are capable of defining and evaluating new product concepts and know the associated instruments like focus groups, product testing, speculative sales, test market simulation Assessor, electronic micro test market
- have advanced knowledge about market introduction (e.g. adoption and diffusion models Bass, Fourt/Woodlock, Mansfield)
- understand important connections of the innovation process (cluster formation, innovation culture, teams, stage-gate process)

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam.

Total effort for 3 credit points: approx. 90 hours

Presence time: 30 hours

Preparation and wrap-up of LV: 45.0 hours

Exam and exam preparation: 15.0 hours

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Literature

3.296 Course: Product- and Production-Concepts for Modern Automobiles [T-MACH-110318]

Responsible: Dr. Stefan Kienzle
Dr. Dieter Steegmüller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td>Steegmüller, Kienzle</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td>Steegmüller, Kienzle</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (20 min)

Prerequisites

T-MACH-105166 - Materials and Processes for Body Lightweight Construction in the Automotive Industry must not have been started.

Below you will find excerpts from events related to this course:

Product- and Production-Concepts for modern Automobiles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td>Steegmüller, Kienzle</td>
<td></td>
</tr>
</tbody>
</table>
Content
The lecture illuminates the practical challenges of modern automotive engineering. As former leaders of the automotive industry, the lecturers refer to current aspects of automotive product development and production.

The aim is to provide students with an overview of technological trends in the automotive industry. In this context, the course also focuses on changes in requirements due to new vehicle concepts, which may be caused by increased demands for individualisation, digitisation and sustainability. The challenges that arise in this context will be examined from both a production technology and product development perspective and will be illustrated with practical examples thanks to the many years of industrial experience of both lecturers.

The topics covered are:

- General conditions for vehicle and body development
- Integration of new drive technologies
- Functional requirements (crash safety etc.), also for electric vehicles
- Development Process at the Interface Product & Production, CAE/Simulation
- Energy storage and supply infrastructure
- Aluminium and lightweight steel construction
- FRP and hybrid parts
- Battery, fuel cell and electric motor production
- Joining technology in modern car bodies
- Modern factories and production processes, Industry 4.0.

Learning Outcomes:
The students …

- are able to name the presented general conditions of vehicle development and are able to discuss their influences on the final product using practical examples.
- are able to name the various lightweight approaches and identify possible areas of application.
- are able to identify the different production processes for manufacturing lightweight structures and explain their functions.
- are able to perform a process selection based on the methods and their characteristics.

Workload:
regular attendance: 25 hours
self-study: 95 hours

Organizational issues
Termine werden über Ilias bekannt gegeben.
Bei der Vorlesung handelt es sich um eine Blockveranstaltung. Eine Anmeldung über Ilias ist erforderlich.
The lecture is a block course. An application in Ilias is mandatory.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.297 Course: Product Development - Dimensioning of Components [T-MACH-105383]

Responsible: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Responsible</th>
</tr>
</thead>
</table>
| ST 2023 | Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze |
| ST 2023 | Schulze
Schulze |

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Schulze</td>
</tr>
</tbody>
</table>
| ST 2023 | Schulze
Schulze |

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗳 On-Site, ☑️ Cancelled

Competence Certificate

written exam (2 hours)

Prerequisites

none

Below you will find excerpts from events related to this course:

Product Development - Component Dimensioning
2150511, SS 2023, 3 / 1 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Blended (On-Site/Online)

Content

The aim of the lecture is to present the topics of the dimensioning and the material science in their connection and to learn how to deal with corresponding methods and the combination thereof.

For the prospective engineer the most important educational objective is to understand the interaction of these topics while the interplay of the individual material stresses in the component are clarified.

The topics in detail are:

- Structural dimensioning: basic stresses, superimposed stresses, notch influence, fatigue limit, fatigue strength, assessment of cracked components, operational strength, residual stresses, high temperature stress and corrosion
- Material selection: Basics, material indices, material selection diagrams, Ashby procedure, multiple boundary conditions, target conflicts, shape and efficiency.
- Learning target: The students...
 - are capable to design and dimension components according to their load.
 - can include mechanical material properties from the mechanical material test in the dimensioning process.
 - can identify superimposed total loads and critical loads on simple components and to compute them.
 - acquire the skill to select materials based on the application area of the components and respective loads.

Examination: written exam (2 hours)

Organizational issues

Freitags generell nach Vereinbarung

Literature

Vorlesungsskript
3.298 Course: Product Lifecycle Management [T-MACH-105147]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ID</th>
<th>Credits</th>
<th>Module</th>
<th>Type</th>
<th>Lecture /线下</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2121350</td>
<td>2 SWS</td>
<td>Product Lifecycle Management</td>
<td>Lecture /线下</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105147</td>
<td>2 SWS</td>
<td>Product Lifecycle Management</td>
<td></td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105147</td>
<td>2 SWS</td>
<td>Product Lifecycle Management</td>
<td></td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination 90 min.

Prerequisites

None

Below you will find excerpts from events related to this course:

Product Lifecycle Management

2121350, WS 22/23, 2 SWS, Language: German, [Open in study portal]

Lecture (V)

On-Site

Content

The course includes:

- Basics for product data management and data exchange
- IT system solutions for Product Lifecycle Management (PLM)
- Economic viability analysis and implementation problems
- Illustrative scenario for PLM using the example of the institute's own I4.0Lab

After successful attendance of the course, students can:

- identify the challenges of data management and exchange and describe solution concepts for these challenges.
- clarify the management concept PLM and its goals and highlight the economic benefits.
- explain the processes required to support the product life cycle and describe the most important business software systems (PDM, ERP, ...) and their functions.

Literature

Vorlesungsfolien.

3.299 Course: Product, Process and Resource Integration in the Automotive Industry [T-MACH-102155]

Responsible: Prof. Dr.-Ing. Sama Mbang
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2023</th>
<th>2123364</th>
<th>Product, Process and Resource Integration in the Automotive Industry</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Mbang</th>
</tr>
</thead>
</table>

| Exams | ST 2023 | 76-T-MACH-102155 | Product, Process and Resource Integration in the Automotive Industry | Mbang |

Competence Certificate
Oral examination 20 min.

Prerequisites
None

Annotation
Limited number of participants.

Below you will find excerpts from events related to this course:

Product, Process and Resource Integration in the Automotive Industry
Lecture / Practice (VÜ)
2123364, SS 2023, 2 SWS, Language: German, Open in study portal

On-Site

Content
- Overview of product development in the automotive sector (process- and work cycle, IT-Systems)
- Integrated product models in the automotive industry (product, process and resource)
- New CAx modeling methods (intelligent feature technology, templates & functional modeling)
- Automation and knowledge-based mechanism for product design and production planning
- Product development in accordance with defined process and requirement (3D-master principle, tolerance models)
- Concurrent Engineering, shared working
- Enhanced concepts: the digital and virtual factory (application of virtual technologies and methods in the product development)

Organizational issues
Blockveranstaltung

Literature
Vorlesungsfolien
3.300 Course: Production Planning and Control [T-MACH-105470]

Responsible: Dr.-Ing. Andreas Rinn
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Written examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2110032</th>
<th>Production Planning and Control</th>
<th>2 SWS</th>
<th>On-Site</th>
<th>Rinn</th>
</tr>
</thead>
</table>

Exams

| WT 22/23 | 76-T-MACH-105470 | Production Planning and Control | | Demand, On-Site, Rinn |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate

written exam 60 minutes (if the number of participants is low, the examination is oral, 20 minutes)

Prerequisites

Timely pre-registration in ILIAS, since participation is limited.

Below you will find excerpts from events related to this course:

Production Planning and Control

2110032, WS 22/23, 2 SWS, Language: German, Open in study portal
On-Site

Content

1. Goals and recommendations for production planning and control
2. Strategies for work control
3. Case study: Manufacturing of bicycles
4. FASI-Plus: Simulation of a bicycle factory for the production planning and control
5. Simulation of the order processing
6. Decision making about order control and procurement of purchased parts
7. Evaluation of the simulation protocols
8. Realisation of production planning and control

Requirements:

- Compact course
- Limited number of participants; seats are assigned according to the date of registration
- Registration via ILIAS is required
- Compulsory attendance during the whole lecture

Recommendations:

- Knowledge in Production Management/Industrial Engineering is required
- Knowledge of Work Science and Economics is helpful
- Knowledge of Informatics is not required, but helpful

Learning targets:

- Lerninhalte zum Thema "Produktionsmanagement" vertiefen
- Kenntnisse über die Produktionsplanung und -steuerung erweitern
- Grundlegende Techniken der Modellierung und Simulation von Produktionssystemen verstehen
Organizational issues
- Anwesenheitspflicht in Einführungsveranstaltung und Blockvorlesung.
- Teilnehmerzahl ist beschränkt.
- Für eine verbindliche Kursteilnahme ist die Prüfungsanmeldung bis 10 Tage vor Veranstaltungsbeginn im ifab-Sekretariat nachzuweisen.
- die Prüfung ist schriftlich, außer es sind zuwenig Teilnehmer, dann mündlich
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP)
- Prüfung am 19.11.2022

Literature
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.301 Course: Production Techniques Laboratory [T-MACH-105346]

Responsible: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Jürgen Fleischer
Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Type
Completed coursework

Credits
4

Grading scale
pass/fail

Recurrence
Each summer term

Version
3

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Production Techniques Laboratory</td>
<td>4 SWS</td>
<td>pass/fail</td>
<td>Deml, Fleischer, Furmans, Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>76-T-MACH-105346</td>
<td>Production Techniques Laboratory</td>
<td>4 SWS</td>
<td>Deml, Furmans, Ovtcharova, Schulze</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ❌ Cancelled

Competence Certificate
Advanced Internship: Participate in practical exercise courses and complete the colloquia successfully.

Elective Subject: Participate in practical exercise courses and complete the colloquia successfully and presentation of a specific topic.

Prerequisites
The course is limited in capacity, therefore the allocation of places is based on § 5 (4) in the Study and Examination Regulations. This results in the following selection criteria:

The selection is based on

- on the study progress (here the study progress in credit points and not the study progress in semesters is taken as a basis),
- on the waiting period in the case of equal progress in studies
- by lot if the waiting period is the same.

The procedure is explained in more detail on ILIAS.

Successful participation requires active and continuous participation in the course.

Below you will find excerpts from events related to this course:
Content
The production technique laboratory (PTL) is a collaboration of the institutes wbk, IFL, IMI and ifab.

1. Computer Aided Product Development (IMI)
2. Computer communication in factory (IMI)
3. Production of parts with CNC turning machines (wbk)
4. Controlling of production systems using PLCs (wbk)
5. Automated assembly systems (wbk)
6. Optical identification in production and logistics (IFL)
7. RFID identification systems (IFL)
8. Storage and order-picking systems (IFL)
9. Production Management (ifab)
10. Time study (ifab)
11. Accomplishment of workplace design (ifab)

Recommendations:
Participation in the following lectures:

- Informationssystems in logistics and supply chain management
- Material flow in logistic systems
- Manufacturing technology
- Human Factors Engineering

Learning Objects:
The students acquire in the lab profound knowledge about the scientific theories, principles and methods of Production Engineering. Afterwards they are able to evaluate and design complex production systems according to problems of manufacturing and process technologies, materials handling, handling techniques, information engineering as well as production organisation and management.

After completion this lab, the students are able

- to analyse and solve planning and layout problems of the discussed fields,
- to evaluate and configure the quality and efficiency of production, processes and products,
- to plan, control and evaluate the production of a production enterprise,
- to configure and evaluate the IT architecture of a production enterprise,
- to design and evaluate appropriate techniques for conveying, handling and picking within a production system,
- to design and evaluate the part production and the assembly by considering the work processes and the work places.

Organizational issues
Anwesenheitspflicht, Teilnehmerzahl begrenzt. Anmeldung über ILIAS

Arbeitsaufwand von 120 h (=4 LP).

Nachweis: bestanden / nicht bestanden
Regelmäßige Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxisseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.302 Course: Productivity Management in Production Systems [T-MACH-105523]

Responsible: Prof. Dr.-Ing. Sascha Stowasser
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2110046</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 76-T-MACH-105523</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (approx. 30 min)
The exam is offered in German only!

Prerequisites
none

Below you will find excerpts from events related to this course:

Productivity Management in Production Systems
2110046, SS 2023, 2 SWS, Language: German, Open in study portal

Content

1. Definition and terminology of process design and industrial engineering
2. Tasks of industrial engineering
3. Actual approaches of organisation of production (Holistic production systems, Guided group work et al.)
4. Methods and principles of industrial engineering and production systems
5. Case studies and exercises for process design
6. Industry 4.0

Requirements:

- Compact course (one week full-time)
- Limited number of participants; seats are assigned according the date of registration
- Registration via ILIAS is required
- Compulsory attendance during the whole lecture

Recommendations:

- Knowledge of work science is helpful

Learning objective:

- Ability to design work operations and processes effectively and efficiently
- Instruction in methods of time study (MTM, Data acquisition etc.)
- Instruction in methods and principles of process design
- The Students are able to apply methods for the design of workplaces, work operations and processes.
- The Students are able to apply actual approaches of process and production organisation.

Literature
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
Course: Project Management in Global Product Engineering Structures [T-MACH-105347]

3.303 Course: Project Management in Global Product Engineering Structures [T-MACH-105347]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Peter Gutzmer
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (20 min)

Aids: None

Prerequisites
none

Responsible: Dr.-Ing. Peter Oberle

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6222905</td>
<td>Water Distribution Systems</td>
<td>Lecture / Practice (/ Oberle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8244108485</td>
<td>Project Report Water Distribution Systems</td>
<td>Oberle</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate

project report, appr. 15 pages, and presentation, appr. 15 min.

Prerequisites

none

Recommendation

none

Annotation

none
3.305 Course: Project work [T-MACH-110106]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104840 - Project

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>20</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The Project work consists of a written report of a scientific subject chosen by the student himself/herself or given by the supervisor. The Project work is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

Prerequisites
none

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 6 months
- **Maximum extension period**: 1 months
- **Correction period**: 6 weeks

Below you will find excerpts from events related to this course:

Project Workshop: Automotive Engineering

2115817, WS 22/23, 3 SWS, Language: German, Open in study portal

Content

During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Learning Objectives:

During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.
Organizational issues
Begrenzte Teilnehmerzahl mit Auswahlverfahren, in deutscher Sprache. Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Termin und Raum: siehe Institutshomepage.
Limited number of participants with selection procedure, in German language. Please send the application at the end of the previous semester.
Date and room: see homepage of institute.

Literature

Skripte werden beim Start-up Meeting ausgegeben.
The scripts will be supplied in the start-up meeting.

Project Workshop: Automotive Engineering
2115817, SS 2023, 3 SWS, Language: German, Open in study portal

Content
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Learning Objectives:
The students are familiar with typical industrial development processes and working style. They are able to apply knowledge gained at the university to a practical task. They are able to analyze and to judge complex relations. They are ready to work self-dependently, to apply different development methods and to work on approaches to solve a problem, to develop practice-oriented products or processes.

Organizational issues
Begrenzte Teilnehmerzahl mit Auswahlverfahren, die Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Raum und Termine: s. Aushang bzw. Homepage

Literature

Skripte werden beim Start-up Meeting ausgegeben.
3.307 Course: Python Algorithm for Vehicle Technology [T-MACH-110796]

Responsible: Stephan Rhode

Organisation:

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Rhode</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Exam Name</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>1</td>
<td>Python Algorithm for Vehicle Technology</td>
<td>Rhode</td>
</tr>
<tr>
<td>ST 2023</td>
<td>1</td>
<td>Python Algorithm for Vehicle Technology</td>
<td>Rhode</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Examination

Duration: 90 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Python Algorithms for Automotive Engineering

2114862, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

Teaching content:

- Introduction to Python and useful tools and libraries for creating algorithms, graphical representation, optimization, symbolic arithmetic and machine learning
 - Anaconda, Pycharm, Jupyter
 - NumPy, Matplotlib, SymPy, Scikit-Learn
- Methods and tools for creating software
 - Version management GitHub, git
 - Testing software pytest, PyLint
 - Documentation Sphinx
 - Continuous Integration (CI) Travis CI
 - Workflows in Open Source and Inner Source, Kanban, Scrum
- Practical programming projects to:
 - Road sign recognition
 - Vehicle state estimation
 - Calibration of vehicle models by mathematical optimization
 - Data-based modelling of the powertrain of an electric vehicle

Objectives:

The students have an overview of the programming language Python and important Python libraries to solve automotive engineering problems with computer programs. The students know current tools around Python to create algorithms, to apply them and to interpret and visualize their results. Furthermore, the students know basics in the creation of software to be used in later programming projects in order to develop high-quality software solutions in teamwork. Through practical programming projects (road sign recognition, vehicle state estimation, calibration, data-based modelling), the students can perform future complex tasks from the area of driver assistance systems.

Organizational issues

Die 1. Vorlesung findet in Präsenz am Campus Ost, Geb. 70.04, Raum 219 statt.
Literature

3.308 Course: Quality Management [T-MACH-102107]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>Quality Management</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Lanza</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>76-T-MACH-102107</th>
<th>Quality Management</th>
<th>Lanza</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102107</td>
<td>Quality Management</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ⬇️ Cancelled

Competence Certificate

Written Exam (60 min)

Prerequisites

It is not possible to combine this brick with brick Quality Management [T-MACH-112586].

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Quality Management</th>
<th>2149667, WS 22/23, 2 SWS, Language: German, Open in study portal</th>
<th>Lecture (V)</th>
<th>Blended (On-Site/Online)</th>
</tr>
</thead>
</table>
Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

- The term "Quality"
- Total Quality Management (TQM) and Six Sigma
- Universal methods and tools
- QM during early product stages – product definition
- QM during product development and in procurement
- QM in production – manufacturing metrology
- QM in production – statistical methods
- QM in service
- Quality management systems
- Legal aspects of QM

Learning Outcomes:
The students ...

- are capable to comment on the content covered by the lecture.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Start: 24.10.2022
Vorlesungstermine montags 09:45 Uhr
Übung erfolgt während der Vorlesung

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt:

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.309 Course: Rail System Technology [T-MACH-106424]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Heckele, Gratzfeld</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Cichon</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-106424</td>
<td>Rail System Technology</td>
<td>Heckele, Reimann, Gratzfeld</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-106425</td>
<td>Rail System Technology</td>
<td>Heckele, Reimann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-106424</td>
<td>Rail System Technology</td>
<td>Cichon, Heckele, Reimann</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination

Duration: ca. 20 minutes

No tools or reference materials may be used during the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

Rail System Technology
2115919, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).

Rail System Technology
2115919, SS 2023, 2 SWS, Language: German, [Open in study portal](#)
Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Course: Rail Vehicle Technology [T-MACH-105353]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture /</td>
<td></td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>License</td>
<td></td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture /</td>
<td></td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>License</td>
<td></td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination
Duration: ca. 20 minutes
No tools or reference materials may be used during the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

Rail Vehicle Technology
2115996, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
On-Site

Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).

Rail Vehicle Technology
2115996, SS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
On-Site
Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
3.311 Course: Railways in the Transportation Market [T-MACH-105540]

Responsible: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2114914</td>
<td>2 SWS</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 76-T-MACH-105540</td>
<td>2 SWS</td>
<td>none</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination
Duration: ca. 20 minutes
No tools or reference materials may be used during the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

Railways in the Transportation Market

2114914, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Block (B) On-Site

Content

The lecture gives an overview about perspective, challenges and chances of rail systems in the national and European market. Following items will be discussed:

- Introduction and basics
- Rail reform in Germany
- Overview of Deutsche Bahn
- Regulation of railways
- Financing and development of rail infrastructure
- Group strategy “Strong Rail” and their building blocks: (climate, environment, digitalization, “Strong Rail” in Baden-Württemberg)
- Trends in the transportation market
- Field of actions in transport policy
- Intra- and intermodal competition
- Summary

Learning Objectives:

- To capture the entrepreneurial perspective on transport companies
- To appraise the intra- and intermodal competition
- To understand the regulative determinant
- To reflect trends in transportation market
- To comprehend strategic challenges, chances and fields of actions of transport companies
- To apply intermodal perspective
- To take important key figures of railways and transportation market
- To realize the relevance of sustainability and digitalization
Organizational issues

Literature
keine
3.312 Course: Reactor Safety I: Fundamentals [T-MACH-105405]

Responsible: Dr. Victor Hugo Sanchez-Espinoza
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2189465</td>
<td>Reactor Safety I: Fundamentals</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Sanchez-Espinoza, Zhang</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105405</td>
<td>Reactor Safety I: Fundamentals</td>
<td></td>
<td></td>
<td>Sanchez-Espinoza</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105405</td>
<td>Reactor Safety I: Fundamentals</td>
<td></td>
<td></td>
<td>Sanchez-Espinoza</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate
oral exam about 30 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

V Reactor Safety I: Fundamentals
2189465, SS 2023, 2 SWS, Language: German/English, Open in study portal
Lecture (V) Blended (On-Site/Online)
Content
This lecture will be given in English, if required in German
The lecture discusses the fundamental principles and concepts of reactor safety including the methodologies for safety assessment and major accidents.

In the lecture, the fundamental principles and concepts of reactor safety are discussed. They facilitate the assessment of the safety status of nuclear power plants and the interpretation of incidents or accidents as such as Chernobyl or Fukushima. Starting with the explanations of the technical safety features of reactor systems, the safety concepts of different reactor types are discussed. The initiation and progression of incidents/accidents as well as the methods for the safety evaluation are also treated in the lecture. Discussing the Fukushima accident, the radiological risk from nuclear power plants together with the counter measures to stop severe accident and to limit the consequences will be explained. Finally, new development to increase the safety or reactors of Generation III and IV will be presented.

Lecture Content:
- National and international nuclear regulations
- Fundamental principles of reactor safety
- Implementation of safety principles in nuclear power plants of generation 2
- Methods for safety analysis and safety assessment
- Key physical phenomena during severe accidents determining radiological impact
- How to analyse reactor accidents with numerical simulation tools
- Discussion severe accidents e.g. the Fukushima accident

Lernziele

Lecture Content:
- National and international nuclear regulations
- Fundamental principles of reactor safety
- Implementation of safety principles in nuclear power plants of generation 2
- Safety analysis and methods for safety assessment
- Nuclear events and accidents and its evaluation methods
- Discussion severe accidents

Knowledge in energy technology, nuclear power plants, reactor physics, thermal hydraulic of nuclear reactors is welcomed.

regular attendance: 30 h
self-study: 60 h

Zielgruppe: Students of Mechanical Engineering,
oral examination, duration approximately 30 minutes

Organizational issues
Mündliche Prüfung (Oral examination)
Anmeldung im ILIAS (Registration through ILIAS)

Literature
- A. Ziegler, Lehrbuch der Reaktortechnik Band 1 und 2, Springer Verlag, 1986
- D. Smidt, Reaktorsicherheitstechnik. Springer-Verlag Berlin Heidelberg New York. 1979
- D. Smidt, Reaktortechnik, Band 2, Verlag G. Braun, Karlsruhe, 1976
3.313 Course: Reduction Methods for the Modeling and the Simulation of Combustion Processes [T-MACH-105421]

Responsible: Dr. Viatcheslav Bykov

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2166543 | Reduction methods for the modeling and the simulation of combustion processes | 2 SWS | Lecture / 🗣 | Bykov |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Oral exam, approx. 20 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Reduction methods for the modeling and the simulation of combustion processes

2166543, SS 2023, 2 SWS, Language: German/English, Open in study portal

Content

The course will introduce the principles of model reduction of chemical kinetic models of combustion processes. The basic mathematical concepts and methods of analysis of chemical reaction mechanisms will be outlined in the context of model reduction. The detailed implementation scheme of model reduction will be introduced. The course will cover simplified and idealized models of combustion (e.g. auto-ignition, explosion, deflagration etc.), which will be analyzed and reduced. The main analytical methods and numerical tools will be presented, evaluated and illustrated by using these simple examples.

Organizational issues

Termin: Mi, 14:00-15:30. Für Änderungen siehe Aushang im ITT-Schaukasten und auf der Internetseite des Instituts.

Literature

3.314 Course: Reliability Engineering 1 [T-MACH-107447]

Responsible: Dr.-Ing. Alexei Konnov

Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam

Prerequisites
none
3.315 Course: Renewable Energy-Resources, Technologies and Economics [T-WIWI-100806]

Responsible: PD Dr. Patrick Jochem
Organisation: KIT Department of Economics and Management
Part of: M-MACH-104884 - Courses of the KIT Department of Economics and Management

Type
Written examination
Credits
4
Grading scale
Grade to a third
Recurrence
Each winter term
Version
6

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>6</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>6</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>6</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>6</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes, in English, answers are possible in German or English) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None.

Below you will find excerpts from events related to this course:

Renewable Energy – Resources, Technologies and Economics

2581012, WS 22/23, 2 SWS, Language: English, Open in study portal

Content

1. General introduction: Motivation, Global situation
2. Basics of renewable energies: Energy balance of the earth, potential definition
3. Hydro
4. Wind
5. Solar
6. Biomass
7. Geothermal
8. Other renewable energies
9. Promotion of renewable energies
10. Interactions in systemic context
11. Excursion to the “Energieberg” in Mühlburg

Learning Goals:
The student

- understands the motivation and the global context of renewable energy resources.
- gains detailed knowledge about the different renewable resources and technologies as well as their potentials.
- understands the systemic context and interactions resulting from the increased share of renewable power generation.
- understands the important economic aspects of renewable energies, including electricity generation costs, political promotion and marketing of renewable electricity.
- is able to characterize and where required calculate these technologies.

Organizational issues

Blockveranstaltung, freitags 14:00-17:00 Uhr, 28.10., 11.11., 25.11., 09.12., 13.01., 27.01., 10.02.
Literature
Weiterführende Literatur:

Course: Robotics I - Introduction to Robotics [T-INFO-108014]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-MACH-104883 - Courses of the KIT Department of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Weeklyutz (SWS)</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2424152</td>
<td>Robotics I - Introduction to Robotics</td>
<td>3/1 SWS</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7500106</td>
<td>Robotics I - Introduction to Robotics</td>
<td>Asfour</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500218</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☢️ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites

none.

Recommendation

none.
3.317 Course: Robotics II - Humanoid Robotics [T-INFO-105723]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-MACH-104883 - Courses of the KIT Department of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Type</th>
<th>Lectures</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400074</td>
<td>Robotics II: Humanoid Robotics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Asfour</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Type</th>
<th>Lectures</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7500211</td>
<td>Robotics II: Humanoid Robotics</td>
<td>Asfour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500086</td>
<td>Robotics II: Humanoid Robotics</td>
<td>Asfour</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Recommendation
Attending the lectures Robotics I – Introduction to Robotics and Mechano-Informatics and Robotics is recommended.

Below you will find excerpts from events related to this course:

Robots: Humanoid Robotics

Content
The lecture presents current work in the field of humanoid robotics that deals with the implementation of complex sensorimotor and cognitive abilities. In the individual topics different methods and algorithms, their advantages and disadvantages, as well as the current state of research are discussed.

The topics addressed are: Applications and real world examples of humanoid robots; biomechanical models of the human body, biologically inspired and data-driven methods of grasping, imitation learning and programming by demonstration; semantic representations of sensorimotor experience as well as cognitive software architectures of humanoid robots.

Learning Objectives:
The students have an overview of current research topics in autonomous learning robot systems using the example of humanoid robotics. They are able to classify and evaluate current developments in the field of cognitive humanoid robotics.

The students know the essential problems of humanoid robotics and are able to develop solutions on the basis of existing research.

Organizational issues
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand: 90 h

Empfehlungen: Der Besuch der Vorlesungen Robotik I – Einführung in die Robotik und Mechano-Informatik in der Robotik wird empfohlen

Zielgruppe: Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Literature
Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema, werden auf der VL-Website bereitgestellt.
3.318 Course: Robotics III - Sensors and Perception in Robotics [T-INFO-109931]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-MACH-104883 - Courses of the KIT Department of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
</tr>
<tr>
<td>ST 2023</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⏰ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites
none.

Recommendation

Attending the lecture Robotics I – Introduction to Robotics is recommended.

Below you will find excerpts from events related to this course:

Robotics III - Sensors and Perception in Robotics

2400067, SS 2023, 2 SWS, Language: German/English, Open in study portal

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

- In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).
- The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.

Learning Objectives:

Students know the main sensor principles used in robotics and understand the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and environmental modeling.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Empfehlungen: Der Besuch der Vorlesung **Robotik I – Einführung in die Robotik** wird empfohlen

Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Literature

Eine Foliensammlung wird im Laufe der Vorlesung angeboten.

Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.
Course: Safety Engineering [T-MACH-105171]

Responsibility: Hans-Peter Kany

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination

Credits: 4

Grading scale: Grade to a third

Recurrence: Each winter term

Version: 2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Content

Media

Presentations

Learning content

The course provides basic knowledge of safety engineering. In particular the basics of health at the working place, job safety in Germany, national and European safety rules and the basics of safe machine design are covered. The implementation of these aspects will be illustrated by examples of material handling and storage technology. This course focuses on: basics of safety at work, safety regulations, basic safety principles of machine design, protection devices, system security with risk analysis, electronics in safety engineering, safety engineering for storage and material handling technique, electrical dangers and ergonomics. So, mainly, the technical measures of risk reduction in specific technical circumstances are covered.

Learning goals

The students are able to:

- Name and describe relevant safety concepts of safety engineering,
- Discuss basics of health at work and labour protection in Germany,
- Evaluate the basics for the safe methods of design of machinery with the national and European safety regulations and
- Realize these objectives by using examples in the field of storage and material handling systems.

Recommendations

None

Workload

Regular attendance: 21 hours
Self-study: 99 hours

Organizational issues

Termine: siehe ILIAS.

Literature

Defren/Wickert: Sicherheit für den Maschinen- und Anlagenbau, Druckerei und Verlag: H. von Ameln, Ratingen
3.320 Course: Scaling in Fluid Dynamics [T-MACH-105400]

Responsible: apl. Prof. Dr. Leo Bühler
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / Köln</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4</td>
<td>Grade to a third</td>
</tr>
</tbody>
</table>

Type
Oral examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Competence Certificate
Oral exam
Duration: 20-30 minutes
No auxiliary means

Prerequisites
none

Recommendation
Fluid Mechanics (T-MACH-105207)

Below you will find excerpts from events related to this course:

Scaling in fluid dynamics
2154044, SS 2023, 2 SWS, Language: German, Open in study portal

Content
- Introduction
- Similarity rules (examples)
- Dimensional analysis (Pi-theorem)
- Scaling in differential equations
- Scaling in boundary layers
- Self-similar solutions
- Scaling in turbulent shear layers
- Rotating flows
- Magnetohydrodynamic flows

Educational objective: The student can extract non-dimensional number from the characteristic properties of flows. From the insights on scaling laws, the students are qualified to identify the influencing quantities from generic experiments and transfer these to real applications. The students can simplify the governing equations of fluid mechanic appropriately and can interpret the achieved results as a basis for efficient solution strategies.

Literature
G. I. Barenblatt, 1979, Similarity, Self-Similarity, and Intermediate Asymptotics, Plenum Publishing Corporation (Consultants Bureau)
J. Zierep, 1982, Ähnlichkeitsgesetze und Modellregeln der Strömungsmechanik, Braun
J. H. Spurk, 1992, Dimensionsanalyse in der Strömungslehre, Springer
3.321 Course: Selected Chapters of the Combustion Fundamentals [T-MACH-105428]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2167541</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2167541</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧱 Blended (On-Site/Online), 🗺 On-Site, ❌ Cancelled

Competence Certificate
Oral exam, approx. 20 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Selected chapters of the combustion fundamentals
2167541, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content
Depending on the lecture: Fundamentals of chemical kinetics, of statistical modeling of turbulent flames or of droplet and spray combustion.

Organizational issues
Nach Vereinbarung, siehe Aushang.

Literature
Vorlesungsunterlagen

Selected chapters of the combustion fundamentals
2167541, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content
Depending on the lecture: Fundamentals of chemical kinetics, of statistical modeling of turbulent flames or of droplet and spray combustion.

Organizational issues
Blockveranstaltung. Termine siehe Schaukasten und Internetseite des Instituts.

Literature
Vorlesungsunterlagen
3.322 Course: Selected Problems of Applied Reactor Physics and Exercises [T-MACH-105462]

Responsible: apl. Prof. Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2190411 | Selected topics on Reactor Physics, Reactor accidents and nuclear Waste Disposal with practical Exercises at the SUR Reactor | 2 SWS | Lecture / 🗣 | Dagan, Metz |

Exams

| WT 22/23 | 76-T-MACH-105462 | Selected Problems of Applied Reactor Physics and Exercises | Dagan, Metz |
| ST 2023 | 76-T-MACH-105462 | Selected Problems of Applied Reactor Physics and Exercises | Dagan |

Legend: 🖥 Online, ⚽ Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate
oral exam, approx. 1/2 hour

Prerequisites
none

Below you will find excerpts from events related to this course:

Selected topics on Reactor Physics, Reactor accidents and nuclear Waste Disposal with practical Exercises at the SUR Reactor

Lecture (V) On-Site

2190411, SS 2023, 2 SWS, Language: German/English, Open in study portal

Content

- Nuclear energy and forces
- Radioactive decay
- Nuclear processes
- Fission and the importance of delayed neutrons
- Basics of nuclear cross sections
- Principles of chain reaction
- Static theory of mono energetic reactors
- Introduction to reactor kinetic
- Student laboratory

The students

- have solid understanding of the basic reactor physics
- are able to estimate processes of growth and decay of radionuclides; out of it, they can perform dose calculation and introduce their biological hazards
- can calculate the relationship of basic parameters which are needed for a stable reactor operation
- understand important dynamical processes of nuclear reactors.

Regular attendance: 26 h
self study 94 h
oral exam about 30 min.
Literature
K. Wirtz Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton, Nuclear reactor Analysis, J. Wiley & Sons, Inc. 1975 (in English)
3.323 Course: Self-Booking-MSc-HOC-SPZ-ZAK-Graded [T-MACH-111687]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106255 - Key Competences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Completed coursework

Prerequisites
None

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation
Interdisciplinary qualifications (IQ) completed at the House-of-Competence (HoC), at the Zentrum für Angewandte Kulturwissenschaften (ZAK) or at the Sprachenzentrum (SpZ) can be assigned in self-service.

First, select a partial accomplishment named "self-assignment" in your study schedule and second, assign an IQ-achievement via the tab "IQ achievements".
3.324 Course: Self-Booking-MSc-HOC-SPZ-ZAK-Non-Graded [T-MACH-111686]

Responsible: Prof. Dr.-Ing. Martin Heilmair
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106255 - Key Competences

Competence Certificate
Completed coursework

Prerequisites
None

Self service assignment of supplementary stdues
This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Annotation
Interdisciplinary qualifications (IQ) completed at the House-of-Competence (HoC), at the Zentrum für Angewandte Kulturwissenschaften (ZAK) or at the Sprachenzentrum (SpZ) can be assigned in self-service.

First, select a partial accomplishment named "self-assignment" in your study schedule and second, assign an IQ-achievement via the tab "IQ achievements".
3.325 Course: Seminar in Materials Science [T-MACH-100290]

Responsible: Dr. Patric Gruber
Dr. rer. nat. Stefan Wagner

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2178450</td>
<td>Seminar in Materials Science</td>
<td>2</td>
<td>Seminar / 🗣</td>
<td>Gruber, Wagner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100290</td>
<td>Seminar in Materials Science</td>
<td>Gruber, Wagner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

- Attendance on all seminars
- Preparation of an oral talk (meeting with mentor)
- Presentation of oral talk

Prerequisites

- Materials Physics, Metals, basics in Ceramics

Below you will find excerpts from events related to this course:

Seminar in Materials Science

<table>
<thead>
<tr>
<th>Code</th>
<th>SS 2023</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2178450</td>
<td>2 SWS</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Content

Topics in materials science within the framework of the lectures Materials Physics, Metals and Introduction to Ceramics. The students are able to work target- and resources-oriented on a scientific case in the field of material science under specified conditions. They are able to research and select scientific and technical informations according to set criteria. The students are able to prepare and present the scientific case in a clear and convincing manner in an oral presentation.

Literature

- Themenspezifisch

Responsible: Prof. Dr. Bryce Sydney Richards
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2313761 Seminar Novel Concepts for Solar Energy Harvesting</td>
<td>2 SWS</td>
<td>Seminar / 🗣️</td>
<td>Paetzold</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7313761 Seminar Novel Concepts for Solar Energy Harvesting</td>
<td></td>
<td></td>
<td>Paetzold</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

The examination consists of a written journal article and an oral presentation of the student's work, both given in English. The overall impression is rated.

Prerequisites

none
3.327 Course: Sensors [T-ETIT-101911]

Responsible: Dr. Wolfgang Meneskou
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2023</th>
<th>2304231</th>
<th>Sensors</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Meneskou</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2023</th>
<th>7304231</th>
<th>Sensors</th>
<th>Meneskou</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>WT 22/23</th>
<th>7304231</th>
<th>Sensors</th>
<th>Meneskou</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
3.328 Course: Signals and Systems [T-ETIT-109313]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2302109</td>
<td>Signals and Systems</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Heizmann</td>
</tr>
<tr>
<td>WT 22/23 2302111</td>
<td>Signals and Systems (Tutorial to 2302109)</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Heizmann, Leven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 7302109</td>
<td>Signals and Systems</td>
<td></td>
<td></td>
<td>Heizmann</td>
</tr>
<tr>
<td>ST 2023 7302109</td>
<td>Signals and Systems</td>
<td></td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Prerequisites

none
3.329 Course: Simulation of Coupled Systems [T-MACH-105172]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2114095</th>
<th>Simulation of Coupled Systems</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Geimer, Breitfuß</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>76T-MACH-105172</th>
<th>Simulation of Coupled Systems</th>
<th>Geimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76T-MACH-105172</td>
<td>Simulation of Coupled Systems</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at very ordinary examination date.

A registration in mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

Prerequisites

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108888 must have been passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-108888 - Simulation of Coupled Systems - Advance must have been passed.

Recommendation

- Knowledge of ProE (ideally in actual version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

Annotation

After completion of course, students are able to:

- build a coupled simulation
- parametrize models
- perform simulations
- conduct troubleshooting
- check results for plausibility

The number of participants is limited.

Content:

- Basics of multi-body and hydraulics simulation programs
- Possibilities of coupled simulations
- Modelling and Simulation of Mobile Machines using a wheel loader
- Documentation of the result in a short report

Literature:

Software guide books (PDFs)

Information about wheel-type loader specifications
Below you will find excerpts from events related to this course:

Simulation of Coupled Systems
2114095, SS 2023, 2 SWS, Language: German. [Open in study portal](#)

Lecture (V) On-Site

Content
- Knowledge of the basics of multi-body and hydraulic simulation programs
- Possibilities of coupled simulations
- Development of a simulation model by using the example of a wheel loader
- Documentation of the result in a short report

It is recommended to have:
- Knowledge of ProE (ideally in current version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics
- regular attendance: 21 hours
- total self-study: 92 hours

Literature

Weiterführende Literatur:
- Diverse Handbücher zu den Softwaretools in PDF-Form
- Informationen zum verwendeten Radlader
3.330 Course: Simulation of Coupled Systems - Advance [T-MACH-108888]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Yusheng Xiang

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>Geimer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

Preparation of semester report

Prerequisites

none
3.331 Course: Simulator Exercises Combined Cycle Power Plants [T-MACH-105445]

Responsibility: Hon.-Prof. Dr. Thomas Schulenberg
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Type</td>
<td>Oral examination</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam (ca. 15 min)

Prerequisites

none

Recommendation

Participation at LV-No. 2170490 "Combined Cycle Power Plants" (T-MACH-105444) is recommended.

Below you will find excerpts from events related to this course:

Content

The training objective of the course is the qualification for a research-related professional activity in power plant engineering. On the basis of the learned fundamentals in thermodynamics, in instrumentation and control engineering, as well as on the basis of the acquired knowledge of design of combined cycle plants, the participants can operate a real combined cycle power plant. This application creates a deeper understanding of the dynamic processes of the power plant, the specific importance of the plant components and the limits of the load capacity of the components. Participants can optimize normal operation and analyze incidents. They can work self-organized and reflexive. They have communicative and organizational skills in teamwork, even under major technical challenges.

Start-up of the power plant from scratch; load changes and shut down; dynamic response of the power plant in case of malfunctions and of sudden load changes; manual operation of selected components.

Organizational issues

Termine zum Simulatorpraktikum werden in der Vorlesung und per ILIAS am Semesterbeginn mit den Studenten vereinbart.

Appointments for the simulator internship are arranged with the students in the lecture and via ILIAS at the beginning of the semester.

Literature

Vorlesungsskript und weitere Unterlagen der Vorlesung Gas- und Dampfkraftwerke. Slides and other documents of the lecture Combined Cycle Power Plants.
3.332 Course: Smoothed Particle Hydrodynamics (SPH) in Computational Fluid Dynamics [T-MACH-111396]

Responsible: Dr.-Ing. Rainer Koch

Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2169452</td>
<td>Smoothed Particle Hydrodynamics (SPH) in computational fluid dynamics</td>
<td>3 SWS</td>
<td>Practical course</td>
<td>Koch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2169452</td>
<td>Smoothed Particle Hydrodynamics (SPH) in computational fluid dynamics</td>
<td>3 SWS</td>
<td>Practical course</td>
<td>Koch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Successfull solution of tasks

Prerequisites
none

Recommendation
Prior knowledge of computational fluid dynamics, SPH method and LINUX.
3.333 Course: Solar Energy [T-ETIT-100774]

Responsible: Prof. Dr. Bryce Sydney Richards
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type/On-Site</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2313745</td>
<td>Solar Energy</td>
<td>3</td>
<td>Lecture/On-Site</td>
<td>Richards, Paetzold</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2313750</td>
<td>Tutorial 2313745 Solar Energy</td>
<td>1</td>
<td>Practice/On-Site</td>
<td>Richards, Paetzold</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7313745</td>
<td>Solar Energy</td>
<td>Richards</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7313745</td>
<td>Solar Energy</td>
<td>Richards, Paetzold</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

Students not allowed to take either of the following modules in addition to this one: „Solarenergie“ (M-ETIT-100476) and „Photovoltaik“ (M-ETIT-100513).

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-ETIT-101939 - Photovoltaics must not have been started.
3.334 Course: Solar Thermal Energy Systems [T-MACH-106493]

Responsible: apl. Prof. Dr. Ron Dagan

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189400</td>
<td>Solar Thermal Energy Systems</td>
<td>2 SWS</td>
<td>Lecture /🗣</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>Dagan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>Dagan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam of about 30 minutes

Prerequisites

none

Recommendation

Literature

Below you will find excerpts from events related to this course:

V Solar Thermal Energy Systems

2189400, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site
Content
The course deals with fundamental aspects of solar energy
1. Introduction to solar energy – global energy panorama
2. Solar energy resource-
 Structure of the sun, Black body radiation, solar constant, solar spectral distribution
 Sun-Earth geometrical relationship
3. Passive and active solar thermal applications.
4. Solar thermal systems- solar collector-types, concentrating collectors, solar towers,
 Heat losses, efficiency
5. Selected topics on thermodynamics and heat transfer which are relevant for solar systems.
6. Introduction to Solar induced systems: Wind, Heat pumps, Biomass, Photovoltaic
7. Energy storage

The course deals with fundamental aspects of solar energy. Starting from a global energy panorama the course deals with the sun as a thermal energy source. In this context, basic issues such as the sun's structure, blackbody radiation and solar–earth geometrical relationship are discussed. In the next part, the lectures cover passive and active thermal applications and review various solar collector types including concentrating collectors and solar towers and the concept of solar tracking. Further, the collector design parameters determination is elaborated, leading to improved efficiency. This topic is augmented by a review of the main laws of thermodynamics and relevant heat transfer mechanisms.

The course ends with an overview on energy storage concepts which enhance practically the benefits of solar thermal energy systems.

The students get familiar with the global energy demand and the role of renewable energies learn about improved designs for using efficiently the potential of solar energy gain basic understanding of the main thermal hydraulic phenomena which support the work on future innovative applications will be able to evaluate quantitatively various aspects of the thermal solar systems.

Total 120 h, hereof 30 h contact hours and 90 h homework and self-studies
oral exam about 30 min.

Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
- "Fundamentals of classical Thermodynamics", G. Van Wylen & R. E. Sonntag. Published by Wiley & Sons
3.335 Course: Solid State Reactions and Kinetics of Phase [T-MACH-107667]

- **Responsible:** Dr. Peter Franke, Prof. Dr. Hans Jürgen Seifert
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

### Type	Credits	Grading scale	Recurrence	Version
Oral examination | 4 | Grade to a third | Each winter term | 4

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>credits</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2193003</td>
<td>Solid State Reactions and Kinetics of Phase Transformations</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Franke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>credits</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-107667</td>
<td>Solid State Reactions and Kinetics of Phase Transformations</td>
<td></td>
<td></td>
<td>Seifert, Franke</td>
</tr>
</tbody>
</table>

Competence Certificate

- Oral examination (about 30 min)

Prerequisites

The successful participation in Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion is the condition for the admittance to the oral exam in Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion.

T-MACH-110926 – Exercises for Solid State Reactions and Kinetics of Phase Transformations has not been started.

T-MACH-110927 – Solid State Reactions and Kinetics of Phase has not been started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-107632 - Exercises for Solid State Reactions and Kinetics of Phase Transformations must have been passed.

Recommendation

- Basic course in materials science and engineering
- Basic course in mathematics
- Physical chemistry

Below you will find excerpts from events related to this course:

- **Solid State Reactions and Kinetics of Phase Transformations**
 - 2193003, WS 22/23, 2 SWS, Language: German, [Open in study portal]
 - Lecture (V)
 - On-Site
Content
Oral examination (about 30 min)
Teaching Content:
1. Crystal Defects and Mechanisms of Diffusion
2. Microscopic Description of Diffusion
3. Phenomenological Treatment
4. Diffusion Coefficients
5. Diffusion Problems; Analytical Solutions
6. Diffusion with Phase Transformation
7. Kinetics of Microstructural Transformations
8. Diffusion at Surfaces, Grain Boundaries and Dislocations

Recommendations:
knowledge of the course "Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria" (Seifert); Basic course in materials science and Engineering; Basic course in mathematics; physical chemistry

regular attendance: 22 hours
self-study: 98 hours

The students acquire knowledge about:
- diffusion mechanisms
- Fick's laws
- basic solutions of the diffusion equation
- evaluation of diffusion experiments
- interdiffusion processes
- the thermodynamic factor
- parabolic growth of layers
- formation of pearlite
- microstructural transformations according to the models of Avrami and Johnson-Mehl
- TTT diagrams

Literature
3.336 Course: Steuerung mobiler Arbeitsmaschinen [T-MACH-111821]

Responsible: Simon Becker
Prof. Dr.-Ing. Marcus Geimer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-111821</td>
<td>Control of mobile machines</td>
<td>Becker, Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

A prerequisite for participation in the examination is the preparation of a semester report. The preexamination with the code T-MACH-111820 must be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102150 - BUS-Controls must not have been started.
2. The course T-MACH-111820 - Steuerung mobiler Arbeitsmaschinen-Vorleistung must have been passed.
3.37 Course: Steuerung mobiler Arbeitsmaschinen-Vorleistung [T-MACH-111820]

Responsible: Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 76-T-MACH-111820 | Control of mobile machines - Advance | Becker, Geimer |

Competence Certificate
Preparation of a report on the completion of the semester task

Prerequisites
none
3 COURSES Course: Strategic Product Development - Identification of Potentials of Innovative Products [T-MACH-105696]

3.338 Course: Strategic Product Development - Identification of Potentials of Innovative Products [T-MACH-105696]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Prof. Dr.-Ing. Andreas Siebe

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2146198</td>
<td>Strategic product development - identification of potentials of innovative products</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Siebe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105696</td>
<td>Strategic product development - identification of potentials of innovative products</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Siebe, Albers</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate
Oral exam in small groups (30 minutes)

Prerequisites
The precondition of this partial work is the successful processing of a case study (T-MACH-110396): Documentation and presentation of the overall results (15 minutes)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110396 - Strategic Product Development - Identification of Potentials of Innovative Products - Case Study must have been passed.

Below you will find excerpts from events related to this course:

Strategic product development - identification of potentials of innovative products

2146198, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content
Introduction into future management, Development of scenarios, scenario-based strategy development, trend management, strategic early detection, innovation- and technology management, scenarios in product development, from profiles of requirements to new products, examples out of industrial praxis.

Organizational issues
Anmeldung erforderlich; Termine/ Ort und weitere Informationen siehe IPEK-Homepage
Course: Strategic Product Development - Identification of Potentials of Innovative Products - Case Study [T-MACH-110396]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Prof. Dr.-Ing. Andreas Siebe

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 76-T-MACH-110396 | Strategic Product Development - Identification of Potentials of Innovative Products - Case Study | Siebe |

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 👥 On-Site, ✗ Cancelled

Competence Certificate

Successful processing of a case study (T-MACH-110396): documentation and presentation of the overall results (15 minutes)

Below you will find excerpts from events related to this course:

Content

Introduction into future management, Development of scenarios, scenariobased strategy development, trendmanagement, strategic early detection, innovation- and technologymanagement, scenarios in product development, from profiles of requirements to new products, examples out of industrial praxis.

Organizational issues

Anmeldung erforderlich; Termine/ Ort und weitere Informationen siehe IPEK-Homepage
Course: Structural Analysis of Composite Laminates [T-MACH-105970]

Responsible: Prof. Dr.-Ing. Luise Kärger
Organisation: KIT Department of Mechanical Engineering
Lightweight Design
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113106</td>
<td>Structural Analysis of Composite Laminates</td>
<td>2</td>
<td>Lecture / Practice</td>
<td>Kärger</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH 105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td></td>
<td></td>
<td>Kärger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td></td>
<td></td>
<td>Kärger</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- ❁ Blended (On-Site/Online)
- 🗣 On-Site
- ☓ Cancelled

Competence Certificate

oral exam, 20 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Structural Analysis of Composite Laminates

<table>
<thead>
<tr>
<th>2113106, WS 22/23</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>On-Site</th>
</tr>
</thead>
</table>

Content

To reduce fuel consumption and CO2 emissions, lightweight materials such as fiber-reinforced plasics (FRP) are increasingly being used in vehicle construction. The course is dedicated to the calculation of the material and structural behavior of FRP components with the following contents:

- Micromechanics and Homogenization of fibre-matrix-composite
- macromechanical behavior of individual layer
- Behaviour of multilayer laminate
- FE formulations
- Failure criteria
- damage analysis
- Dimensioning of FRP parts

Aim of this lecture: The students understand the mechanical correlation between fibre-matrix-configuration and macroscopic material behavior. They can formulate the stress-strain / force-strain relation of an individual layer and of a multilayer laminate by approaches of first and higher order. The students know and can interpret and apply failure criteria and approaches to model damage progression. They know simple dimension strategies to design FRP components.
Literature
3.341 Course: Structural Ceramics [T-MACH-102179]

Responsible: Prof. Dr. Michael Hoffmann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102179</td>
<td>Structural Ceramics</td>
<td>Hoffmann, Wagner, Schell</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination, 20 min

Prerequisites

none
3.342 Course: Structural Materials [T-MACH-100293]

Responsible: Dr.-Ing. Stefan Guth

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>教师</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2174580</td>
<td>Structural Materials</td>
<td>4 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Guth</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Structural Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100293</td>
<td>Structural Materials</td>
<td></td>
<td></td>
<td>Guth</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-100293</td>
<td>Structural Materials</td>
<td></td>
<td></td>
<td>Guth</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>V</th>
<th>Structural Materials</th>
<th>2174580, SS 2023, 4 SWS, Language: German, Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lecture / Practice (VÜ) On-Site</td>
<td></td>
</tr>
</tbody>
</table>

Content

The lectures will be held online. Further information will be available on ILIAS.

Lectures and tutorialy on the topics:

- basic loading types and superimposed loadings
- high-temperature loading
- influence of notches
- uniaxial, multiaxial and superimposed cyclic loading
- notch fatigue
- structural durability
- impact of residual stresses
- basic principles of materials selection
- dimensioning of components

Learning Objectives:

The students are able to select materials for mechanical design and to dimension structural components according to the state of the art. They are familiar with the most important engineering materials. They can assess these materials on base of their characteristic properties and and they can match property profiles and requirement profiles. The dimensioning includes complex situations, such as multiaxial loading, notched components, static and dynamic loading, components with residual stresses and loading at high homologous temperatures.

Requirements:

none

Workload:

Presence: 42h
Self study: 138h
3.343 Course: Superconductors for Energy Applications [T-ETIT-110788]

Responsible: apl. Prof. Dr. Francesco Grilli
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2312704</td>
<td>Superconductors for Energy Applications</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Grilli</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2312705</td>
<td>Übungen zu 2312704 Superconductors for Energy Applications</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Grilli</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7300015</td>
<td>Superconductors for Energy Applications</td>
<td>Grilli</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7312682</td>
<td>Superconductors for Energy Applications</td>
<td>Grilli</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
oral exam approx. 30 minutes.

Prerequisites
A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.

"T-ETIT-106970 - Superconducting Materials for Energy Applications" must not be taken.
3.344 Course: Superhard Thin Film Materials [T-MACH-102103]

Responsibility: Prof. Sven Ulrich
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credit</th>
<th>Course</th>
<th>SW</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2177618</td>
<td>Superhard Thin Film Materials</td>
<td>2</td>
<td>SWS Lecture / On-Site</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credit</th>
<th>Course</th>
<th>SW</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102103</td>
<td>Superhard Thin Film Materials</td>
<td></td>
<td></td>
<td>Ulrich</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102103</td>
<td>Superhard Thin Film Materials</td>
<td></td>
<td></td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Competition Certificate

oral examination (ca. 30 Minuten)

Prerequisites

none

Below you will find excerpts from events related to this course:

V Superhard Thin Film Materials

2177618, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

On-Site

Content

oral examination (about 30 min), no tools or reference materials

Teaching Content:

Introduction

Basics

Plasma diagnostics

Particle flux analysis

Sputtering and ion implantation

Computer simulations

Properties of materials, thin film deposition technology, thin film analysis and modelling of superhard materials

Amorphous hydrogenated carbon

Diamond like carbon

Diamond

Cubic Boronitride

Materials of the system metall-boron-carbon-nitrogen-silicon

regular attendance: 22 hours

self-study: 98 hours

Superhard materials are solids with a hardness higher than 4000 HV 0.05. The main topics of this lecture are modelling, deposition, characterization and application of superhard thin film materials.

Recommendations: none
Organizational issues
Falls die Vorlesung online stattfinden muss, bitte um Anmeldung unter sven.ulrich@kit.edu bis zum 24.10.22. Den entsprechenden MS Teams Link erhalten Sie dann per E-Mail am 26.10.22.

Literature
G. Kienel (Herausgeber): Vakuumbeschichtung 1 - 5, VDI Verlag, Düsseldorf, 1994

Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
Course: Sustainable Product Engineering [T-MACH-105358]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Karl-Friedrich Ziegahn

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Sustainable Product Engineering</td>
<td>written exam (60 min)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>written exam (60 min)</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Content

understanding of sustainability objectives and their role in product development, the interaction between technical products and their environment, the holistic approach and the equality of economic, social and environmental aspects and environmental aspects

skills for life-cycle product design using the example of complex automotive components such as airbag systems and other current products

understanding of product environmental stresses with relevancy to praxis at the example of technology-intensive components, robustness and durability of products as the basis for a sustainable product development, development of skills for the application of environmental simulation during the process of development of technical products

delivery of key skills such as team skills / project / self / presentation based on realistic projects

The goal of the lecture is to convey the main elements of sustainable product development in the economic, social and ecological context.

The students are able to ...

• identify und describe the sustainability objectives and their role in product development, the interaction between technical products and their environment, the holistic approach and the equality of economic, social and environmental aspects and environmental aspects.

• discuss the skills for life-cycle product design using the example of complex automotive components such as airbag systems and other current products.

• understand the product environmental stresses with relevancy to praxis at the example of technology-intensive components, robustness and durability of products as the basis for a sustainable product development, development of skills for the application of environmental simulation during the process of development of technical products.

• develop skills such as team skills / project / self / presentation based on realistic projects.
3.346 Course: System Dynamics and Control Engineering [T-ETIT-101921]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Type: Written examination
Credits: 6
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 2

Responsibilities

Type
- **Written examination**
- **Lecture**
- **Tutorial**
- **Practice**

Credits
- 2 SWS
- 1 SWS

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 2

Events

WT 22/23	2303155	Systemdynamik und Regelungstechnik	2 SWS	Lecture / 🎨	Hohmann
WT 22/23	2303156	Tutorien zu 2303155 Systemdynamik und Regelungstechnik	Tutorial (/ 🎨)	Hohmann	
WT 22/23	2303157	Übungen zu 2303155 Systemdynamik und Regelungstechnik	1 SWS	Practice / 🎨	Schneider

Exams

| WT 22/23 | 7303155 | System Dynamics and Control Engineering | Hohmann
| ST 2023 | 7303155 | System Dynamics and Control Engineering | Hohmann

Legend: 🖥 Online, 📈 Blended (On-Site/Online), 🌦️ On-Site, ⌛️ Cancelled

Prerequisites

none
3.347 Course: System Integration in Micro- and Nanotechnology [T-MACH-105555]

Responsible: apl. Prof. Dr. Ulrich Gengenbach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Module</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>216033</td>
<td>System Integration in Micro- and Nanotechnology</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Module</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105555</td>
<td>System Integration in Micro- and Nanotechnology</td>
<td>Gengenbach</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105555</td>
<td>System Integration in Micro- and Nanotechnology</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam (Duration: 30 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

System Integration in Micro- and Nanotechnology I

Lecture (V) 216033, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content

Content:

- Introduction to system integration (fundamentals)
- Brief introduction to MEMS processes
- Flexures
- Surfaces and plasma processes for surface treatment
- Adhesive bonding in engineering
- Mounting techniques in electronics
- Molded Interconnect devices (MID)
- Functional Printing
- Low temperature cofired ceramics in system integration
- 3D-Integration in semiconductor technology

Learning objectives:

The students acquire basic knowledge of challenges and system integration technologies from mechanical engineering, precision engineering and electronics.

Literature

- J. Franke, Räumliche elektronische Baugruppen (3D-MID), Carl Hanser-Verlag München, 2013
3.348 Course: System Integration in Micro- and Nanotechnology 2 [T-MACH-110272]

Responsible: apl. Prof. Dr. Ulrich Gengenbach
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>System Integration in Micro- and Nanotechnology 2</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Gengenbach</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>System Integration in Micro- and Nanotechnology 2</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Gengenbach</td>
<td></td>
</tr>
</tbody>
</table>

Competition Certificate
Oral exam, approx. 15 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

System Integration in Micro- and Nanotechnology 2

2105040, WS 22/23, 2 SWS, Language: German, Open in study portal
Lecture (V) On-Site

Content
Introduction to system integration (novel processes and applications)
Assembly of hybrid microsystems
Packaging processes
Applications:
- Micro process engineering
- Lab-on-chip systems
- Microoptical systems
- Silicon Photonics

Novel integration processes:
- Direct Laser Writing
- Self Assembly

Learning objectives
The students acquire knowledge of novel system integration technologies and their application in microoptic and microfluidic systems.

Literature
N.-T. Nguyen, Fundamentals and Applications of Microfluidics, Artech House
G. T. Reed, Silicon Photonics: An Introduction, Wiley
Course: Systematic Materials Selection [T-MACH-100531]

Responsible: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2174576</th>
<th>Systematic Materials Selection</th>
<th>3 SWS</th>
<th>Lecture / 🗣</th>
<th>Dietrich</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2174577</td>
<td>Exercises in Systematic Materials Selection</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 | 76-T-MACH-100531 | Systematic Materials Selection | Dietrich |
| ST 2023 | 76-T-MACH-100531 | Systematic Materials Selection | Dietrich |

Competence Certificate

The assessment is carried out as a written exam of 2 h.

Prerequisites

none

Recommendation

Basic knowledge in materials science, mechanics and mechanical design due to the lecture Materials Science I/II.

Below you will find excerpts from events related to this course:

Systematic Materials Selection

2174576, SS 2023, 3 SWS, Language: German, [Open in study portal](#)
Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered:

- Information and introduction
- Necessary basics of materials
- Selected methods / approaches of the material selection
- Examples for material indices and materials property charts
- Trade-off and shape factors
- Sandwich materials and composite materials
- High temperature alloys
- Regard of process influences
- Material selection for production lines
- Incorrect material selection and the resulting consequences
- Abstract and possibility to ask questions

Learning objectives:
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

Requirements:
Wiling SPO 2007 (B.Sc.)
The course Material Science I [21760] has to be completed beforehand.
Wiling (M.Sc.)
The course Material Science I [21760] has to be completed beforehand.

Workload:
The workload for the lecture is 120 h per semester and consists of the presence during the lecture (30 h) as well as preparation and rework time at home (30 h) and preparation time for the oral exam (60 h).

Literature
Vorlesungsskriptum; Übungblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7

Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
3.350 Course: Systems Engineering for Automotive Electronics [T-ETIT-100677]

Responsible: Hon.-Prof. Dr. Jürgen Bortolazzi
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2311642 | Systems Engineering for Automotive Electronics | 2 SWS | Lecture / 🖥 | Bortolazzi |
| ST 2023 | 2311644 | Tutorial for 2311642 Systems Engineering for Automotive Electronics | 1 SWS | Practice / 🖥 | Kraus |

Exams

| ST 2023 | 7311642 | Systems Engineering for Automotive Electronics | Bortolazzi |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗫 On-Site, ✗ Cancelled

Prerequisites

none
3.351 Course: Technical Design in Product Development [T-MACH-105361]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Markus Schmid

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Weeks</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2146179</td>
<td>Technical Design in Product Development</td>
<td>2</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written exam (60 min)
Only dictionary is allowed

Below you will find excerpts from events related to this course:

Technical Design in Product Development
2146179, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
Cancelled

Content

Introduction
Relevant parameters on product value in Technical Design
Design in Methodical Development and Engineering and for a differentiated validation of products
Design in the concept stage of Product Development
Design in the draft and elaboration stage of Product Development

Best Practice
After listening the module "technical design" the students should have knowledge about the basics of technical oriented design as an integral part of the methodical product development

The students have knowledge about ...

- the interface between engineer and designer,
- all relevant human-product requirements as f. exp. demographic/ geographic and psychographic features, relevant perceptions, typical content recognition as well as ergonomic bases,
- the approaches concerning the design of a product, product program or product system with focus on structure, form-, color- and graphic design within the phases of the design process.
- the design of functions and supporting structures as well as the important interface between human and machine.
- relevant parameters of a good corporate design.

Organizational issues
Die Veranstaltung findet 2023 nicht statt.
Literature
Markus Schmid, Thomas Maier
Technisches Interface Design
Anforderungen, Bewertung, Gestaltung.
2017

Hartmut Seeger
Design technischer Produkte, Produktprogramme und -systeme
Industrial Design Engineering.
2 ., bearb. und erweiterte Auflage.
ISBN: 3540236538
September 2005 - gebunden - 396 Seiten

Responsible: Dr. Ferdinand Schmidt
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2157200</td>
<td>Technical energy systems for buildings 1: Processes & components</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Schmidt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
</table>

Competence Certificate
oral exam, approx. 30 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Technical energy systems for buildings 1: Processes & components

2157200, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

Introduction to heating and cooling technologies for buildings, solar energy utilization in buildings (solar radiation, solar thermal energy, photovoltaics) and to energy storage in buildings (thermal and electric storage technologies). Topics covered:

- Burners, condensing and non-condensing boilers
- Cogeneration units for use in buildings
- Heat transformation: Fundamentals, vapor compression, absorption, adsorption
- Solar energy: Radiation, solar thermal collectors, photovoltaics
- Energy storage in buildings: thermal and electric storage

Learning objectives:

Students know relevant technical components of energy supply systems in buildings (heating and cooling, dehumidification). They know the energy conversion processes associated with these components and can estimate their energy efficiencies as well as the most important factors influencing efficiency.

Students are familiar with the underlying physics (mostly thermodynamics) of the relevant processes. They can derive relevant figures of merit from these principles. They know the degree of technological development for the various processes and components and are aware of current research and development objectives in this field.

Oral exam: about 25 min.

No tools

Responsible: Dr. Ferdinand Schmidt
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>LECTURE</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2158201</td>
<td>Technical energy systems for buildings 2: System concepts</td>
<td>Lecture</td>
<td>Schmidt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105560</td>
<td>Technical Energy Systems for Buildings 2: System Concept</td>
<td>Schmidt</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105560</td>
<td>Technical Energy Systems for Buildings 2: System Concept</td>
<td>Schmidt</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, approx. 30 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Technical energy systems for buildings 2: System concepts
2158201, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
Introduction of relevant figures of merit for technical energy systems in buildings. Description of different system concepts for energy supply of buildings (heating, cooling, dehumidification) and evaluation according to figures of merit. Systems covered include

- Heat pumps and heat pump systems including combination with solar thermal energy
- cogeneration and trigeneration system (heating, cooling, power)
- Solar thermal systems: Domestic hot water, heating support, cooling and dehumidification
- District heating systems including solar thermal heat
- Photovoltaics and heat pump systems including thermal and battery storage
- Grid-reactive building technology: Smart-Metering, Smart Home, Smart Grid

Learning outcomes:
Students are able to develop system concepts for technical energy systems in buildings and to rationally design such systems. They know the relevant figures of merit for an energy-related as well as an economical or combined evaluation of systems, and know how to employ these figures of merit in sizing systems and components. Students are able to employ plausibility checks and to give rough estimates on building energy concepts and they know which technologies can be combined for highly efficient system combinations.

Workload: 30 hours course attendance, 90 hours self-study

Oral exam aprr. 25 minutes
3.354 Course: Technical Thermodynamics and Heat Transfer I [T-MACH-104747]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>2165501</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4 SWS</td>
<td>Lecture / 🗣️</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3165014</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4 SWS</td>
<td>Lecture / 🗣️</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-104747</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-104747-english</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-104747</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-104747-englisch</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisite: attestation each semester by homework assignments
Written exam, approx. 3 hours

Prerequisites

Successful participation in the tutorial (T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer I

2165501, WS 22/23, 4 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content

- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Organizational issues

Die Vorlesung findet bis Ende November online statt.
Technical Thermodynamics and Heat Transfer I
3165014, WS 22/23, 4 SWS, Language: English, Open in study portal

Content
- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Literature
Vorlesungsskriptum
3.355 Course: Technical Thermodynamics and Heat Transfer II [T-MACH-105287]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture / 🗣</td>
<td>4 SWS</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture / 🗣</td>
<td>4 SWS</td>
<td>Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / 🗣</td>
<td>4 SWS</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / 🗣</td>
<td>4 SWS</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105287-english</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture / 🗣</td>
<td>4 SWS</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture / 🗣</td>
<td>4 SWS</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105287-englisch</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate

Prerequisite: attestation each semester by homework assignments

Written exam, approx. 3 hours

Prerequisites

Successful participation in the tutorial (T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (V)</td>
<td>On-Site</td>
<td>7</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
<tr>
<td>2166526, SS 2023, 4 SWS, Language: German, Open in study portal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

Literature

Vorlesungsskriptum

Content

- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

Literature

Vorlesungsskriptum

3.356 Course: Technology of Steel Components [T-MACH-105362]

Responsible: Prof. Dr.-Ing. Volker Schulze
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2174579</th>
<th>Technology of steel components</th>
<th>2 SWS</th>
<th>Lecture / 🌐</th>
<th>Schulze</th>
</tr>
</thead>
</table>

Exams

| WT 22/23 | 76-T-MACH-105362 | Technology of Steel Components | Schulze |
| ST 2023 | 76-T-MACH-105362 | Technology of Steel Components | Schulze |

Legend: 🖥 Online, 🌐 Blended (On-Site/Online), 🗓 On-Site, ❌ Cancelled

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Technology of steel components

2174579, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

Meaning, Development and characterization of component states
Description of the influence of component state on mechanical properties
Stability of component states
Steel manufacturing
Component states due to forming
Component states due to heat treatments
Component states due to surface hardening
Component states due to machining
Component states due to mechanical surface treatments
Component states due to joining
Summarizing evaluation

learning objectives:

The students have the background to evaluate the influence of manufacture processes on the compound state of metallic compounds. The students can assess the influence and the stability of compound state under mechanical load. The students are capable to describe the individual aspects of interaction of the compound state of steel components due to forming, heat treatment, mechanical surface treatment and joining processes.

requirements:

Materials Science and Engineering I & II

workload:

regular attendance: 21 hours
self-study: 99 hours
Literature
Skript wird in der Vorlesung ausgegeben

VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984

V. Schulze: Modern Mechanical Surface Treatments, Wiley, Weinheim, 2005
3.357 Course: Ten Lectures on Turbulence [T-MACH-105456]

Responsible: Dr. Ivan Otic

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Otic</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

course exam, 20 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Ten lectures on turbulence

2189904, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

Contents:

The course is aimed of giving the fundamentals of turbulence theory, modelling and simulation. Governing equations and statistical description of turbulence are introduced. Reynolds equations, Kolmogorov's theory and scales of turbulent ows are discussed. Homogeneous and isotropic turbulence. Turbulent free-shear ows and wall-bounded turbulent ows are discussed.

Turbulence modelling approaches and simulation methods are introduced.

1 Introduction
2 Turbulent transport of momentum and heat
3 Statistical description of turbulence
4 Scales of turbulent flows
5 Homogeneous turbulent shear flows
6 Free turbulent shear flows
7 Wall-Bounded turbulent flows
8 Turbulence Modelling
9 Reynolds Averaged Navier-Stokes (RANS) Simulation Approach
10 Large Eddy Simulation (LES) Approach

Objectives:

At the completion of this course, students
- are able to understand fundamentals of statistical fluid mechanics, turbulence theory and turbulence modelling
- are able to derive RANS and LES transport equations
- get working knowledge of modelling techniques that can be used for solving engineering heat and mass transfer problems.

Literature

Reference texts:
- Lecture Notes
- Presentation slides

Recommended Books:
3.358 Course: Theory of Probability [T-ETIT-101952]

Responsible: Dr.-Ing. Holger Jäkel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-MACH-104882 - Courses of the KIT Department of Electrical Engineering and Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Type</th>
<th>Lectures / 🕵️</th>
<th>Practice / 🕵️</th>
<th>Duration</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Theory of Probability</td>
<td>Lecture / 🕵️</td>
<td>Jäkel</td>
<td>2 SWS</td>
<td>Lecture / 🕵️</td>
<td>Jäkel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>1 SWS</td>
<td>Tutorial for 2310505 Theory of Probability</td>
<td>Practice / 🕵️</td>
<td>Jäkel</td>
<td>1 SWS</td>
<td>Practice / 🕵️</td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7310505</td>
<td>Theory of Probability</td>
<td>Jäkel</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7310505</td>
<td>Theory of Probability</td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Prerequisites

Contents of higher mathematics are necessary (e.g. M-MATH-101731 und M-MATH-101732).
3.359 Course: Theory of Stability [T-MACH-105372]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Oral examination
Credits: 6
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2163113</td>
<td>Theory of Stability</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2163114</td>
<td>Übungen zu Stabilitätstheorie</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Fidlin, Yüzbasioglu</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>Theory of Stability</td>
<td>2 SWS</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-105372</td>
<td>Theory of Stability</td>
<td>Fidlin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 76-T-MACH-105372</td>
<td>Theory of Stability</td>
<td>Fidlin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, 30 min.

Prerequisites
none

Recommendation
Vibration theory, Mathematical Methods of Vibration Theory

Below you will find excerpts from events related to this course:

Theory of Stability
2163113, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content

- Basic concepts of stability
- Lyapunov's functions
- Direct lyapunov's methods
- Stability of equilibria positions
- Attraction area of a stable solution
- Stability according to the first order approximation
- Systems with parametric excitation
- Stability criteria in the control theory

Literature

Below you will find excerpts from events related to this course:

Thermal Solar Energy
2169472, WS 22/23, 2 SWS, Language: German, [Open in study portal](https://studyportal.de)

Lecture (V) On-Site

Content

In detail:

1. Introduction to energy requirements and evaluation of the potential use of solar thermal energy.
2. Primary energy source SUN: sun, solar constant, radiation (direct, diffuse scattering, absorption, impact angle, radiation balance).
5. Momentum and heat transport: basic equations of single and multiphase transport, calculation methods, stability limits. optional
6. Low temperature solar thermal systems: collector types, methods for system simulation, planning and dimensioning of systems, system design and stagnation scenarios.
7. High temperature solar thermal systems: solar towers and solar-farm concept, loss mechanisms, chimney power plants and energy production processes.

The lecture elaborates the basics of the solar technology and the definition of the major wordings and its physical content such as radiation, thermal use, insulation etc.. Further the design of solar collectors for different purposes is discussed and analyzed. The functional principle of solar plants is elaborated before at the end the ways for solar cooling is discussed.

The aim of the course is to provide the basic physical principles and the derivation of key parameters for the individual solar thermal use. This involves in addition to the selective absorber, mirrors, glasses, and storage technology. In addition, a utilization of solar thermal energy means an interlink of the collector with a thermal-hydraulic circuit and a storage. The goal is to capture the regularities of linking to derive efficiency correlations as a function of their use and evaluate the performance of the entire system.

Recommendations / previous knowledge

Basics in heat and mass transfer, material science and fluid mechanics, desirable are reliable knowledge in physics in optics and thermodynamics.

Oral exam of about 25 minutes, no tools or reference materials may be used during the exam.
Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
Bereitstellung des Studienmaterials in gedruckter und elektronischer Form.
3.361 Course: Thermal Turbomachines I [T-MACH-105363]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2169453</th>
<th>Thermal Turbomachines I</th>
<th>3 SWS</th>
<th>Lecture / 🗣</th>
<th>Bauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2169454</td>
<td>Tutorial - Thermal Turbo Machines I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Bauer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2169553</td>
<td>Thermal Turbomachines I (in English)</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>76-T-MACH-105363</th>
<th>Thermal Turbomachines I</th>
<th>Bauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105363-Wdh</td>
<td>Thermal Turbomachines I (for repeaters)</td>
<td>Bauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105363</td>
<td>Thermal Turbomachines I</td>
<td>Bauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76T-Mach-105363-Wdh</td>
<td>Thermal Turbomachines I (for repeater)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, duration 30 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

 Thermal Turbomachines I
2169453, WS 22/23, 3 SWS, Language: German, Open in study portal
Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to describe and analyse not only the individual components but also entire assemblies. The students can assess and evaluate the effects of physical, economical and ecological boundary conditions.

regular attendance: 31.50 h
self-study: 64.40 h

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines II'.

Examination:
oral
Duration: approximately 30 min

no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines II'.
The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to describe and analyse not only the individual components but also entire assemblies. The students can assess and evaluate the effects of physical, economical and ecological boundary conditions.

regular attendance: 31,50 h
self-study: 64,40 h

Exam:
oral
Duration: approximately 30 min
no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Course: Thermal Turbomachines II [T-MACH-105364]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type/Genealogy</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2170476</td>
<td>Thermal Turbomachines II</td>
<td>3</td>
<td>Lecture / 🗣</td>
<td>Bauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2170477</td>
<td>Tutorial - Thermal Turbomachines II (Übung - Thermische Turboschinen II)</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Bauer, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2170553</td>
<td>Thermal Turbomachines II (in English)</td>
<td>3</td>
<td>Lecture / 🗣</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105364</td>
<td>Thermal Turbomachines II</td>
<td>Bauer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105364-Wdh</td>
<td>Thermal Turbomachines II (for repeaters)</td>
<td>Bauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105364</td>
<td>Thermal Turbomachines II</td>
<td>Bauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76T-Mach-105364-Wdh</td>
<td>Thermal Turbomachines II (for repeaters)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, duration: 30 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Thermal Turbomachines II

2170476, SS 2023, 3 SWS, Language: German, [Open in study portal](#)
Content
General overview, trends in design and development

Comparison turbine - compressor

Integrating resume of losses

Principal equations and correlations in turbine and compressor design, stage performance

Off-design performance of multi-stage turbomachines

Control system considerations for steam and gas turbines

Components of turbomachines

Critical components

Materials for turbine blades

Cooling methods for turbine blades (steam and air cooling methods)

Short overview of power plant operation

Combustion chamber and environmental issues

Based on the fundamental skills learned in 'Thermal Turbomachines I' the students have the ability to design turbines and compressors and to analyse the operational behavior of these machines.

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines I'.

regular attendance: 31,50 h
self-study: 64,40 h

Exam:
oral (can only be taken in combination with 'Thermal Turbomachines I')
Duration: 30 min (--> 1 hour including Thermal Turbomachines I)

Auxiliary: no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993

Thermal Turbomachines II (in English)
2170553, SS 2023, 3 SWS, Language: English, Open in study portal
Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines II'.
regular attendance: 31,50 h
self-study: 64,40 h
The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to describe and analyse not only the individual components but also entire assemblies. The students can assess and evaluate the effects of physical, economical and ecological boundary conditions.
Exam:
oral
Duration: approximately 30 min
no tools or reference materials may be used during the exam.

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
3.363 Course: Thermal-Fluid-Dynamics [T-MACH-106372]

Responsible: Dr. Sebastian Ruck
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189423</td>
<td>Thermal-Fluid-Dynamics</td>
<td>2 SWS</td>
<td>Lecture / Ruck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-106372</td>
<td>Thermal-Fluid-Dynamics</td>
<td>Ruck</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-106372</td>
<td>Thermal-Fluid-Dynamics</td>
<td>Ruck</td>
<td></td>
</tr>
</tbody>
</table>

Legends: 🖥 Online, Blended (On-Site/Online), ☐ On-Site, ✗ Cancelled

Competence Certificate
oral exam of about 30 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Thermal-Fluid-Dynamics
2189423, WS 22/23, 2 SWS, Language: German, [Open in study portal]

Lecture (V) On-Site

Content

- Fundamentals of flows and heat transfer
- Dimensionless parameters of thermal fluid dynamics
- Velocity and temperature laws in boundary layers
- Convective heat transfer of external and internal flows
- Heat transfer analogies (Prandtl-, von Kármán, Martinelli,...)
- Strategies and methods for investigation of thermal-hydraulics in R&D

The lecture provides an overview of momentum and energy transport as occurring in power engineering components and heat exchangers. On the basis of the conservation equations and the fundamentals of thermal-hydraulics, dimensionless parameters for forced and free convection are evolved. Flows close to walls play a crucial role for the convective heat transfer and for heat exchanger components. Thus, with scaling rules the laminar and turbulent thermal boundary layer equations are introduced. In the following, velocity and temperature laws of the wall as a basis for analogies and models of computational tools are discussed and the influence of roughness and surface design are shown. Concepts of state-of-the-art turbulence modelling and their applicability for different conditions or different heat transfer fluids (e.g. liquid metals, gas, oil) are described. Analogies and correlations for internal and external forced convection are developed by means of approximation concepts. Design options to enhance the efficiency and effectiveness of heat exchangers are discussed.

The objectives of the lecture are the fundamentals of thermal-hydraulics for describing and modelling convective fluid flow as occurring in power engineering components. A major objective is the description of the convective heat transfer for external and internal flows. A key issue is the transfer of analytic models and empirical results into “state of the art” computational tools and their validation by advanced experimental methods. Within the scope of the course, the students learn (a) to develop differential equation for thermal-hydraulic problems and to describe the thermal flow field by means of dimensionless parameters, (b) to transfer a real problem to an experiment or computational model, (c) to develop analogies and correlations for heat transfer processes of forced convection, (d) to select adequate computational methods/models, (e) to evaluate and select experiments including measurement techniques with adequate instrumentation for thermal-hydraulic problems and (f) to know design option for an efficient and effective heat exchange.

Attendance time: 21 h
Preparation/follow-up time of lectures, exam preparation: 90 h
Oral exam of about 30 min.
Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
3.364 Course: Thesis (BSc) [T-MACH-110107]

Responsible: Prof. Dr.-Ing. Martin Heilmaier
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104840 - Project

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>15</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The Thesis work consists of a written Thesis work and an presentation of a scientific subject chosen by the student himself/herself or given by the supervisor. The Thesis work is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

Prerequisites
none

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline:** 3 months
- **Maximum extension period:** 1 months
- **Correction period:** 6 weeks
Competence Certificate

The Thesis (MSc) work consists of a written Thesis work and an presentation of a scientific subject chosen by the student himself/herself or given by the supervisor. The Thesis work is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

Prerequisites
none

Final Thesis

This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 6 months
- **Maximum extension period**: 1 months
- **Correction period**: 6 weeks
3.366 Course: Thin Film and Small-scale Mechanical Behavior [T-MACH-105554]

Responsible: Dr. Patric Gruber
Prof. Dr. Christoph Kirchlechner
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Credits</th>
<th>Type</th>
<th>Schedule</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2178123</td>
<td>Thin film and small-scale mechanical behavior</td>
<td>2 SWS</td>
<td>2</td>
<td>Lecture</td>
<td>Kirchlechner, Gruber, Weygand</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Credits</th>
<th>Type</th>
<th>Schedule</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105554</td>
<td>Thin Film and Small-scale Mechanical Behavior</td>
<td>2 SWS</td>
<td>2</td>
<td>Lecture</td>
<td>Kirchlechner, Gruber, Weygand</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105554</td>
<td>Thin Film and Small-scale Mechanical Behavior</td>
<td>2 SWS</td>
<td>2</td>
<td>Lecture</td>
<td>Kirchlechner, Gruber, Weygand</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam 30 minutes

Prerequisites

none

Recommendation

preliminary knowledge in materials science, physics and mathematics

Below you will find excerpts from events related to this course:

Thin film and small-scale mechanical behavior

2178123, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Content

1. Introduction: Application and properties of micro- and nanosystems; Overview on size effects
2. Fundamentals: Dislocation plasticity (definition of a dislocation; dislocation density, mobility, dislocation sources, statistical aspects incl. SSDs and GNDs).
4. Interface plasticity: Compatibility, slip transfer mechanisms, expected size effects.
5. Modelling of mechanisms causing size effects in crystals and at grain boundaries, e.g. dislocation dynamics.
7. Nanocrystalline materials: Synthesis, outstanding mechanical properties

The students know and understand size and scaling effects in micro- and nanosystems based on the fundamental microstructure mechanisms at play. They can describe the mechanical behavior of nano- and microstructured materials and analyze and explain the origin for the differences compared to classical material behavior. They are able to explain suitable processing routes, experimental characterization techniques and adequate modelling schemes for nano- and microstructured materials.

regular attendance: 22,5 hours
self-study: 97,5 hours
oral exam ca. 30 minutes

Literature

2. L.B. Freund and S. Suresh: „Thin Film Materials“
3.367 Course: Tires and Wheel Development for Passenger Cars [T-MACH-102207]

Responsibility: Hon.-Prof. Dr. Günter Leister
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>2114845</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Leister</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture</td>
<td>76-T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Leister</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>76-T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Leister</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

V Tires and Wheel Development for Passenger Cars

2114845, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

1. The role of the tires and wheels in a vehicle
2. Geometrie of Wheel and tire, Package, load capacity and endurance, Book of requirement
3. Mobility strategy, Minispare, runflat systems and repair kit.
4. Project management: Costs, weight, planning, documentation
5. Tire testing and tire properties
6. Wheel technology including Design and manufacturing methods, Wheeltesting
7. Tire pressure: Indirect and direct measuring systems
8. Tire testing subjective and objective

Learning Objectives:
The students are informed about the interactions of tires, wheels and chassis. They have an overview of the processes regarding the tire and wheel development. They have knowledge of the physical relationships.

Organizational issues

Voraussichtliche Termine, nähere Informationen und eventuelle Terminänderungen:
siehe Institutshomepage.

Literature

Manuskript zur Vorlesung

Manuscript to the lecture
3.368 Course: Tractors [T-MACH-105423]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Hon.-Prof. Dr. Martin Kremmer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2113080</td>
<td>Tractors</td>
<td>2 SWS</td>
<td>/ 🧩</td>
<td>Kremmer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 76-T-MACH-105423</td>
<td>Tractors</td>
<td></td>
<td></td>
<td>Geimer</td>
</tr>
<tr>
<td>ST 2023 76T-MACH-00002</td>
<td>Tractors</td>
<td></td>
<td></td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☠ Cancelled

Competence Certificate
The assessment consists of a written exam taking place in the recess period (90 min).

Prerequisites
none

Recommendation
Basic knowledge in mechanical engineering.
Annotation

Learning Outcomes

After completion of the course the Students know:

- important problems in agritechnological developments
- Customer requirements and their implementation in tractors
- Tractor technology in width and depth

Content

Tractors are one of the most underestimated vehicles in regard to performance and technics. Almost none vehicle is as multifunctional and fulfilled with high-tech as a tractor. Automatic guidance, special chassis suspension or special concepts of power trains are one of the topics where tractors are in leading position in technologies.

During the lecture an overview about the design and construction and application area is given. A close look will be taken on the historical background, legal requirements, ways of development, agricultural organizations and the process of development itself.

In detail the following topics will be dealt with:

- agricultural organization / legal requirements
- history of tractors
- tractor engineering
- tractor mechanics
- chassis suspension
- combustion engine
- transmission
- interfaces
- hydraulics
- wheels and tyres
- cabin
- electrics and electronics

Literature

- K. T. Renius: Traktoren - Technik und ihre Anwendung; DLG Verlag (Frankfurt), 1985
- E. Schilling: Landmaschinen - Lehr- und Handbuch für den Landmaschinenbau; Schilling-Verlag (Köln), 1960

Below you will find excerpts from events related to this course:
Content
Tractors are one of the most underestimated vehicles in regard to performance and technics. Almost none vehicle is as multifunctional and fulfilled with high-tec as a tractor. Automatic guidance, special chassis suspension or special concepts of power trains are one of the topics where tractors are in leading position in technologies.

During the lecture an overview about the design and construction and application area is given. A close look will be taken on the historical background, legal requirements, ways of development, agricultural organizations and the process of development itself.

In detail the following topics will be dealt with:

- agricultural organization / legal requirements
- history of tractors
- tractor engineering
- tractor mechanics
- chassis suspension
- combustion engine
- transmission
- interfaces
- hydraulics
- wheels and tyres
- cabin
- electrics and electronics

Basic knowledge in mechanical engineering
- regular attendance: 21 hours
- self-study: 92 hours

Organizational issues
Ort/Zeit siehe Institutshomepage

Literature
- K.T. Renius: Traktoren - Technik und ihre Anwendung; DLG Verlag (Frankfurt), 1985
- E. Schilling: Landmaschinen - Lehr- und Handbuch für den Landmaschinenbau; Schilling-Verlag (Köln), 1960
3.369 Course: Tribology [T-MACH-105531]

Responsible: Prof. Dr. Martin Dienwiebel
Prof. Dr.-Ing. Matthias Scherge

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Tribology</td>
<td>5 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Dienwiebel, Scherge</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105531</td>
<td>Tribology</td>
<td>Dienwiebel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105531</td>
<td>Tribology</td>
<td>Dienwiebel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral examination (ca. 40 min)
no tools or reference materials

Prerequisites

admission to the exam only with successful completion of the exercises [T-MACH-109303]

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-109303 - Exercises - Tribology must have been passed.

Recommendation

preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:

Tribology
2181114, WS 22/23, 5 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

On-Site
Content

- Chapter 1: Friction
 adhesion, geometrical and real area of contact, Friction experiments, friction powder, tribological stressing, environmental influences, tribological age, contact models, Simulation of contacts, roughness.
- Chapter 2: Wear
 plastic deformation at the asperity level, dissipation modes, mechanical mixing, Dynamics of the third body, running-in, running- in dynamics, shear stress.
- Chapter 3: Lubrication
 base oils, Striebeck plot, lubrication regimes (HD, EHD, mixed lubrication), additives, oil characterization, solid lubrication.
- Chapter 4: Measurement Techniques
 friction measurement, tribometer, dissipated frictional power, conventional wear measurement, continuous wear measurement(RNT)
- Chapter 5: Roughness
 profilometry, surface roughness parameters, evaluation length and filters, bearing ratio curve, measurement error
- Chapter 6: Accompanying Analysis
 multi-scale topography measurement, chemical surface analysis, structural analysis, mechanical analysis

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

- describe the fundamental friction and wear mechanisms, which occur in tribologically stressed systems
- evaluate the friction and wear behavior of tribological systems
- explain the effects of lubricants and their most important additives
- identify suitable approaches to optimize tribological systems
- explain the most important experimental methods for the measurement of friction and wear, and is able to use them for the characterisation of tribo pairs
- choose suitable methods for the evaluation of roughness and topography from the nm-scale to the mm-scale and is able to interpret the determined values in respect to their effect on the tribological behavior
- describe the most important surface-analytical methods and their physical principles for the characterization of tribologically stressed sliding surfaces

preliminary knowledge in mathematics, mechanics and materials science recommended
regular attendance: 45 hours
self-study: 195 hours
oral examination (ca. 40 min)
no tools or reference materials
admission to the exam only with successful completion of the exercises

Literature

3.370 Course: Turbine and Compressor Design [T-MACH-105365]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2169462</td>
<td>Turbine and compressor Design</td>
<td>Lecture / On-Site</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105365</td>
<td>Turbine and Compressor Design</td>
<td>Bauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105365</td>
<td>Turbine and Compressor Design</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, duration: 20 min.

Prerequisites
Exams Thermal Turbomachinery I & II successfully passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105363 - Thermal Turbomachines I must have been passed.
2. The course T-MACH-105364 - Thermal Turbomachines II must have been passed.

Below you will find excerpts from events related to this course:

Turbine and compressor Design
2169462, WS 22/23, 2 SWS, Language: German, Open in study portal
Content
The lecture is intended to expand the knowledge from Thermal Turbomachines I+II.
Thermal Turbomaschines, general overview
Design of a turbomachine: Criteria and development
Radial machines
Transonic compressors
Combustion chambers
Multi-spool installations
The students have the ability to:
- describe special types of components, such as e.g. radial machines and transonic compressors
- explain and evaluate the operation of components and machines
- interpret and apply the physical principles
- design individual components in a practical approach

regular attendance: 21 h
self-study: 42 h
Exam:
oral
Duration: approximately 30 minutes
no tools or reference materials may be used during the exam

Literature

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161253</td>
<td>Tutorial Continuum mechanics of solids and fluids</td>
<td>1 SWS</td>
<td>Practice / Blended (On-Site/Online)</td>
<td></td>
<td>Dyck, Karl, Böhlke</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>WT 22/23</td>
<td>76-T-MACH-110333 Tutorial Continuum Mechanics of solids and fluids</td>
<td></td>
<td></td>
<td></td>
<td>Böhlke, Frohnapfel</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Successfully passing the Tutorial is a prerequisite for taking part in the exam "Continuum Mechanics of Solids and Fluids" (T-MACH-110377).

For students of Mechanical Engineering (BSc) that have chosen the Major Field "Continuum Mechanics" and for students of Material Science and Material Technology (BSc) the prerequisites consist of successfully solving the written homework sheets as well as the computational homework sheets during the associated computer tutorials.

For students of Mechanical Engineering that have chosen a different Major Field of students from different fields of study the prerequisites consist of successfully solving only the written homework sheets.

Prerequisites

None

Annotation

Due to capacity reasons it is possible that not all students of this course can be admitted to the computer tutorials. Students of the bachelor's degree program in mechanical engineering who have chosen the Major Field Continuum Mechanics (SP-Nr 13) and students of the bachelor's degree program in material science and material technology will be admitted to the computer tutorials in any case.

If additional places are available in the computer tutorials for this course, these will be allocated according to the BSc average grade.

Below you will find excerpts from events related to this course:

Tutorial Continuum mechanics of solids and fluids

2161253, WS 22/23, 1 SWS, Language: German, [Open in study portal]

Practice (Ü)

Blended (On-Site/Online)

Content

Please refer to the lecture "Continuum mechanics of solids and fluids".

Literature

Siehe Vorlesung " Kontinuumsmechanik der Festkörper und Fluide ".

Please refer to the lecture "Continuum mechanics of solids and fluids".
Course: Tutorial Engineering Mechanics III [T-MACH-105202]

- **Responsible:** Prof. Dr.-Ing. Wolfgang Seemann
- **Organisation:** KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Hours</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161204</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Fidlin, Altoé</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3161013</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Römer, Altoé</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Hours</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105202</td>
<td>Tutorial Engineering Mechanics III</td>
<td>2 SWS</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Competence Certificate

Attestations, successful accomplishment of exercise sheets

Prerequisites

None

Below you will find excerpts from events related to this course:

Engineering Mechanics III (Tutorial)

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Hours</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161204</td>
<td>On-Site</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Fidlin, Altoé</td>
</tr>
</tbody>
</table>

Content

In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the tutorial exercises are presented and instructions for those exercises are given which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.

Literature

- Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
- Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
- Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
- Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
- Hagedorn: Technische Mechanik III.
3.373 Course: Tutorial Introduction to the Finite Element Method [T-MACH-110330]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>Pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Tutorial Introduction to the Finite Element Method</td>
<td>1 SWS</td>
<td>Each summer term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2162257</td>
<td>Practice / 🗣</td>
<td>Lauff, Langhoff, Böhlke, Klein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Tutorial Introduction to the Finite Element Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-110330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Successful participation in this course allows for registration to the Exam "Introduction to the Finite Element Method" (see 76-T-MACH-105320)

For students of Mechanical Engineering (BSc) that have chosen the Major Field "Continuum Mechanics" the prerequisites consist of successfully solving the written homework sheets as well as the computational homework sheets during the associated computer tutorials.

For students of Mechanical Engineering that have chosen a different Major Field and for students from different fields of study the prerequisites consist of successfully solving only the written homework sheets.

Annotation

Knowledge of the contents of the courses "Continuum Mechanics of Solids and Fluids" and "Mathematical Methods of Continuum Mechanics" as well as the corresponding tutorials are expected.

Due to capacity reasons it is possible that not all students of this course can be admitted to the computer tutorials. Students of the bachelor's degree program in mechanical engineering who have chosen the Major Field Continuum Mechanics (SP-Nr 13) will be admitted to the computer tutorials in any case.

If additional places are available in the computer tutorials for this course, these will be allocated according to the BSc average grade.

Below you will find excerpts from events related to this course:

Tutorial Introduction to the Finite Element Method

2162257, SS 2023, 1 SWS, Language: German, Open in study portal

Content

See lecture "Introduction to the Finite Element Method"

Literature

siehe Vorlesung "Einführung in die Finite-Elemente-Methode"
Course: Tutorial Mathematical Methods in Continuum Mechanics [T-MACH-110376]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Practice</th>
<th>Tutor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161255</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>2</td>
<td>Practice</td>
<td>Gajek, Lauff, Böhlke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Tutor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-110376</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Competence Certificate

Successfully solving the homework sheets. Details are announced in the first lecture.

Prerequisites

None

Below you will find excerpts from events related to this course:

Content

See "Mathematical Methods in Continuum Mechanics"

Literature

Siehe "Mathematische Methoden der Kontinuumsmechanik"
3.375 Course: Tutorial Mathematical Methods in Micromechanics [T-MACH-110379]

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Exams
ST 2023 76-T-MACH-110379 Tutorial Mathematical Methods in Micromechanics Böhlke

Competence Certificate
Successfully solving the homework sheets. Details are given in the first lecture.
3.376 Course: Tutorial Nonlinear Continuum Mechanics [T-MACH-111027]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Written homework problems

Successful participation in this course allows for registration to the Exam "Nonlinear Continuum Mechanics" (see 76-T-MACH-111026)

Prerequisites
none
3.377 Course: Two-Phase Flow and Heat Transfer [T-MACH-105406]

Responsible: Hon.-Prof. Dr. Thomas Schulenberg
Dr. Martin Wörner

Organisation: KIT Department of Chemical and Process Engineering
KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Competence Certificate
oral exam, duration: approximately 30 minutes
no tools or reference materials may be used during the exam

Prerequisites
none
3.378 Course: Vacuum and Tritium Technology in Nuclear Fusion [T-MACH-108784]

Responsible: Dr. Christian Day
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2190499 | Vacuum and Tritium Technology in Nuclear Fusion | 2 SWS | Day, Größle |

Exams

| ST 2023 | 76-T-MACH-108784 | Vacuum and Tritium Technology in Nuclear Fusion | Day, Bornschein |

Legend: 🖥️ Online, ⚪️ Blended (On-Site/Online), ⚫️ On-Site, ❌ Cancelled

Competence Certificate

oral examination, approx. 20 Minutes, any time in the year

Prerequisites

none

Recommendation

Knowledge in ‘Fusion Technology A’

Below you will find excerpts from events related to this course:

Content

Introduction
Tritium Handling
Tritium Plant Technologies
Tritium and Breeding
Fundamentals of Vacuum Science and Technology
Fusion Vacuum systems
Matter Injection into the Plasma Chamber
Fuel Cycle of ITER and DEMO

The students have acquired the necessary understanding in order to design and size facilities for tritium operation. They understand the process steps in the tritium plant of a fusion reactor for tritium removal and tritium recovery from tritiated exhaust gas. Furthermore, the students have understood the fundamentals of vacuum physics and are able to design and choose vacuum pumps properly.

recommended is Knowledge in "Fusion Technology A"

oral exam of about 20 min

Organizational issues

Anmeldung bis 20. April via E-Mail an: christian.day@kit.edu
Raum wird bekanntgegeben.
3.379 Course: Vehicle Comfort and Acoustics I [T-MACH-105154]

Responsible: Prof. Dr. Frank Gauterin

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113806</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Gauterin</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2114856</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Gauterin</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Name</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I</td>
<td></td>
<td>Gauterin</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I</td>
<td></td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Examination

Duration: approx. 30 to 40 minutes

Auxiliary means: none

Prerequisites

Can not be combined with lecture T-MACH-102206

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102206 - Vehicle Ride Comfort & Acoustics I must not have been started.

Below you will find excerpts from events related to this course:

Vehicle Comfort and Acoustics I

2113806, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

1. Perception of noise and vibrations
2. Fundamentals of acoustics and vibrations
3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations
4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:

The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chasis regarding driving comfort and acoustic under consideration of goal conflicts.
Organizational issues
Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIlias/

Kann nicht mit der Veranstaltung [2114856] kombiniert werden.
Can not be combined with lecture [2114856]

Literature
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

Vehicle Ride Comfort & Acoustics I
2114856, SS 2023, 2 SWS, Language: English, Open in study portal

Content
1. Perception of noise and vibrations
2. Fundamentals of acoustics and vibrations
3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations
4. The relevance of tire and chasis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:
The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chasis regarding driving comfort and acoustic under consideration of goal conflicts.

Organizational issues
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]

Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.

Classroom attendance depends on the development of the pandemic situation.

Literature
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
3.380 Course: Vehicle Comfort and Acoustics II [T-MACH-105155]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type / Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2114825</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Gauterin</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type / Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>2</td>
<td></td>
<td>Gauterin</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>2</td>
<td></td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral Examination

Duration: approx. 30 to 40 minutes

Auxiliary means: none

Prerequisites

Can not be combined with lecture T-MACH-102205

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102205 - Vehicle Ride Comfort & Acoustics II must not have been started.

Below you will find excerpts from events related to this course:

Vehicle Comfort and Acoustics II

2114825, SS 2023, 2 SWS, Language: German, [Open in study portal](#)
Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Learning Objectives:
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Organizational issues
Kann nicht mit der Veranstaltung [2114857] kombiniert werden.
Can not be combined with lecture [2114857]
Je nach Pandemie Lage wird evtl. kurzfristig auf "Online Veranstaltung" geändert.

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

Vehicle Ride Comfort & Acoustics II
2114857, SS 2023, Language: English, Open in study portal

Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Learning Objectives:
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.
Organizational issues
Genaue Termine entnehmen Sie bitte der Institushomepage.
Kann nicht mit der Veranstaltung [2114825] kombiniert werden.
Scheduled dates:
see homepage of the institute.
Can not be combined with lecture [2114825].
Classroom attendance depends on the development of the pandemic situation

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.

Responsible: Prof. Dr.-Ing. Frank Henning

Organisation: KIT Department of Mechanical Engineering

Lightweight Design

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture 🧩</td>
<td>2 SWS</td>
<td>Henning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exam

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture 🧩</td>
<td>2 SWS</td>
<td>Henning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture 🧩</td>
<td>2 SWS</td>
<td>Henning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam; Duration approx. 90 min

Prerequisites
none

Recommendation
none

Below you will find excerpts from events related to this course:

Vehicle Lightweight design – Strategies, Concepts, Materials
2113102, WS 22/23, 2 SWS, Language: German, Open in study portal

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗽 On-Site, ⏹️ Cancelled

Content

Strategies in lightweight design
Shape optimization, light weight materials, multi-materials and concepts for lightweight design

Construction methods
Differential, integral, sandwich, modular, bionic

Body construction
Shell, space frame, monocoque

Metallic materials
Steel, aluminium, magnesium, titan

Aim of this lecture:
Students learn that lightweight design is a process of realizing a demanded function by using the smallest possible mass. They understand lightweight construction as a complex optimization problem with multiple boundary conditions, involving competences from methods, materials and production.

Students learn the established lightweight strategies and ways of construction. They know the metallic materials used in lightweight construction and understand the relation between material and vehicle body.
Literature
3.382 Course: Vehicle Ride Comfort & Acoustics I [T-MACH-102206]

Responsible: Prof. Dr. Frank Gauterin

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2114856</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Gauterin</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102206</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td></td>
<td>Lecture</td>
<td>Gauterin</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102206</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td></td>
<td>Lecture</td>
<td>Gauterin</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Oral examination

Prerequisites

Can not be combined with lecture Fahrzeugkomfort und -akustik I T-MACH-105154

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105154 - Vehicle Comfort and Acoustics I must not have been started.

Below you will find excerpts from events related to this course:

Vehicle Ride Comfort & Acoustics I

2114856, SS 2023, 2 SWS, Language: English, Open in study portal

Content

1. Perception of noise and vibrations

3. Fundamentals of acoustics and vibrations

3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations

4. The relevance of tire and chasis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:

The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chasis regarding driving comfort and acoustic under consideration of goal conflicts.
Organizational issues
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]
Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.
Classroom attendance depends on the development of the pandemic situation.

Literature
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
3.383 Course: Vehicle Ride Comfort & Acoustics II [T-MACH-102205]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Hours</th>
<th>Grade</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2114857</td>
<td>2 SWS</td>
<td>Lecture/On-Site</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Hours</th>
<th>Grade</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102205</td>
<td>2 SWS</td>
<td>Lecture/On-Site</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination

Prerequisites

Can not be combined with lecture Fahrzeugkomfort und -akustik II T-MACH-105155

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105155 - Vehicle Comfort and Acoustics II must not have been started.

Below you will find excerpts from events related to this course:

Vehicle Ride Comfort & Acoustics II

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Hours</th>
<th>Grade</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>2114857</td>
<td>2 SWS</td>
<td>Lecture/On-Site</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Content

1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Learning Objectives:

The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.
Organizational issues
Genaue Termine entnehmen Sie bitte der Institutshomepage.
Kann nicht mit der Veranstaltung [2114825] kombiniert werden.
Scheduled dates:
see homepage of the institute.
Can not be combined with lecture [2114825].
Classroom attendance depends on the development of the pandemic situation

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
3.384 Course: Vibration Theory [T-MACH-105290]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Vibration Theory</td>
<td>Römer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Übungen zu Technische Schwingungslehre</td>
<td>Römer, Keller</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Fidlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Vibration Theory</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 180 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Vibration Theory

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Type</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161212</td>
<td>Lecture</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Content

Concept of vibration, superposition of vibration with equal and with different frequencies, complex frequency response.

Vibration of systems with one dof: Free undamped and damped vibration, forced vibration for harmonic, periodic and arbitrary excitation. Excitation of undamped vibration in resonance.

Vibration of systems with distributed parameters: Partial differential equations as equations of motion, wave propagation, d'Alembert's solution, Ansatz for separation of time and space, eigenvalue problem, infinite number of eigenvalues and eigenfunctions.

Introduction to rotor dynamics: Laval rotor in rigid and elastic bearings, inner damping, Laval rotor in anisotropic bearings, synchronous and asynchronous whirl, rotors with asymmetric shaft.

Literature

Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Übungen zu Technische Schwingungslehre

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Type</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161213</td>
<td>Practice</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Content

Exercises related to the lecture
3.385 Course: Virtual Engineering (Specific Topics) [T-MACH-105381]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type
Oral examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>2 SWS</td>
<td>Lecture / Ovtcharova, Maier</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>76-T-MACH-105381</td>
<td>Ovtcharova</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>76-T-MACH-105381</td>
<td>Ovtcharova</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, approx. 20 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Virtual Engineering (Specific Topics)
3122031, SS 2023, 2 SWS, Language: English, Open in study portal

Content
Students can

- explain the basics of virtual engineering and name exemplary modeling tools and assign them to the corresponding methods and processes
- Formulate validation questions in the product development process and name obvious solution methods
- explain the basics of systems engineering and establish the connection to the product development process
- explain individual methods of the digital factory and present the functions of the digital factory in the context of the product creation process
- explain the theoretical and technical basics of Virtual Reality technology and show the connection to Virtual Engineering

Literature

Lecture slides / Vorlesungsfolien
3.386 Course: Virtual Engineering I [T-MACH-102123]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Virtual Engineering I</td>
<td>2 SWS</td>
<td>Lecture / Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Exercises Virtual Engineering I</td>
<td>2 SWS</td>
<td>Practice / Ovtcharova, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Virtual Engineering I</td>
<td>76-T-MACH-00002</td>
<td>Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Virtual Engineering I</td>
<td>76-T-MACH-102123</td>
<td>Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Virtual Engineering I</td>
<td>76-T-MACH-102123</td>
<td>Ovtcharova</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Written examination 90 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

Virtual Engineering I
2121352, WS 22/23, 2 SWS, Language: English, Open in study portal

Content
The course includes:
- Conception of the product (system approaches, requirements, definitions, structure)
- Generation of domain-specific product data (CAD, ECAD, software, ...) and AI methods
- Validation of product properties and production processes through simulation
- Digital twin for optimization of products and processes using AI methods

After successful attendance of the course, students can:
- Conceptualize complex systems with the methods of virtual engineering and continue the product development in different domains
- Model the digital product with regard to planning, design, manufacturing, assembly and maintenance.
- Use validation systems to validate product and production in an exemplary manner.
- Describe AI methods along the product creation process.

Literature
Vorlesungsfolien / Lecture slides

Exercises Virtual Engineering I
2121353, WS 22/23, 2 SWS, Language: English, Open in study portal

Content
The theoretical concepts and contents of the lecture will be trained within practical relevance by basic functionalities of VE System solutions.
Organizational issues
Practice dates will probably be offered on different afternoons (14:00 - 17:15) in two-week intervals at the IMI in Kriegsstrasse 77 / Übungstermine werden voraussichtlich an unterschiedlichen Nachmittagen (14:00 - 17:15) in zweiwöchigem Rhythmus am IMI in der Kriegsstrasse 77 angeboten.

Literature
Exercise script / Übungsskript
3.387 Course: Virtual Engineering II [T-MACH-102124]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type	Credits	Grading scale	Recurrence	Version
Written examination | 4 | Grade to a third | Each summer term | 3

Events
<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2122378</td>
<td>Lecture / Practice (VÜ)</td>
<td>Virtual Engineering II</td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102124</td>
<td>Lecture / Practice (VÜ)</td>
<td>Virtual Engineering II</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102124</td>
<td>Lecture / Practice (VÜ)</td>
<td>Virtual Engineering II</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination 90 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

Virtual Engineering II
<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2122378</td>
<td>SS 2023</td>
<td>Lecture / Practice (VÜ)</td>
<td>Virtual Engineering II</td>
</tr>
</tbody>
</table>

Content
The course includes:
- Fundamentals (Computer Graphics, VR, AR, MR)
- Hardware and Software Solutions
- Virtual Twin, Validation and application

After successful attendance of the course, students can:
- describe Virtual Reality concepts, as well as explaining and comparing the underlying technologies
- discuss the modeling and computer-internal picture of a VR scene and explain the operation of the pipeline to visualize the scene
- designate different systems to interact with a VR scene and assess the pros and cons of manipulation and tracking devices
- differentiate between static, dynamic and functional Virtual Twins
- describe applications and validation studies with Virtual Twins in the area of building and production

Organizational issues
Zusätzliche Übungszeiten (1 SWS) werden zu Vorlesungsbegin bekannt gegeben / Additional practice times (1 SWS) will be announced at the beginning of the lecture.

Literature
Vorlesungsfolien / Lecture slides
3.388 Course: Virtual Reality Practical Course [T-MACH-102149]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2123375</td>
<td>Virtual Reality Practical Course</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>Ovtcharova, Häfner</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td></td>
<td>Grade to a third</td>
<td>Each term</td>
<td>Ovtcharova, Häfner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td></td>
<td>Grade to a third</td>
<td>Each term</td>
<td>Ovtcharova, Häfner</td>
</tr>
</tbody>
</table>

Competence Certificate

Assessment of another type (graded)

Prerequisites

None

Annotation

Number of participants is limited

Below you will find excerpts from events related to this course:

Virtual Reality Practical Course

2123375, WS 22/23, 3 SWS, Language: German/English, [Open in study portal](#)

Content

- Introduction in Virtual Reality (hardware, software, applications)
- Exercises in the task specific software systems
- Autonomous project work in the area of Virtual Reality in small groups

Organizational issues

Siehe Homepage zur Lehrveranstaltung

Literature

Keine / None
3.389 Course: Warehousing and Distribution Systems [T-MACH-105174]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

Type: Written examination
Credits: 3
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2118097</td>
<td>Warehousing and distribution systems</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105174</td>
<td>Warehousing and Distribution Systems</td>
<td>Lecture / 🗣️</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, 🗑️ Cancelled

Competence Certificate

The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered.

Prerequisites

none

Below you will find excerpts from events related to this course:

V Warehousing and distribution systems
2118097, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Organizational issues

Die Vorlesung wird in diesem Semester als Blockveranstaltung angeboten. Die Veranstaltungstermine sind:

- Mo., 24. April
- Di., 25. April
- Mi., 26. April

Die Vorlesung startet jeweils um 08:00 Uhr und findet im Selmaryr-HS (Geb. 50.38) statt.

Literature

ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluß in Logistiksystemen. 5. Auflage, Berlin: Springer-Verlag

ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag

Warehouse Science

Gudehus, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

Frazelle, Edward (2002)
World-class warehousing and material handling. McGraw-Hill

Martin, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

Wisser, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag

Eine ausführliche Übersicht wissenschaftlicher Paper findet sich bei:

Roodbergen, Kees Jan (2007)
Warehouse Literature
3.390 Course: Water Distribution Systems [T-BGU-108486]

Responsible: Dr.-Ing. Peter Oberle
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-MACH-105405 - Courses of the KIT Department of Civil Engineering, Geo and Environmental Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Registration No.</th>
<th>Module</th>
<th>Weekly Load</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6222905</td>
<td>Water Distribution Systems</td>
<td>4 SWS</td>
<td>Oberle</td>
</tr>
<tr>
<td>ST 2023</td>
<td>8244108486</td>
<td>Water Distribution Systems</td>
<td>Oberle</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Registration No.</th>
<th>Module</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8244108486</td>
<td>Water Distribution Systems</td>
<td>Oberle</td>
</tr>
</tbody>
</table>

Prerequisites
The accomplishment of 'Project Report Water Distribution Systems' (T-BGU-108485) has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-108485 - Project Report Water Distribution Systems must have been passed.

Recommendation
none

Annotation
none
3.391 Course: Wave Propagation [T-MACH-105443]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 30 min.
3.392 Course: Welding Technology [T-MACH-105170]

Responsible: Dr. Majid Farajian
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2173571</td>
<td>Welding Technology</td>
<td>2 SWS</td>
<td>Block / 🗣 Farajian</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105170</td>
<td>Welding Technology</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤖 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate
Oral exam, about 20 minutes

Prerequisites
none

Recommendation
Basics of material science (iron- and non-iron alloys), materials, processes and production, design.
All the relevant books of the German Welding Institute (DVS: Deutscher Verband für Schweißen und verwandte Verfahren) in the field of welding and joining is recommended.

Below you will find excerpts from events related to this course:

Welding Technology
2173571, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Content
definition, application and differentiation: welding, welding processes, alternative connecting technologies.
history of welding technology
sources of energy for welding processes
Survey: Fusion welding, pressure welding.
weld seam preparation/design
welding positions
weldability
gas welding, thermal cutting, manual metal-arc welding
submerged arc welding
gas-shielded metal-arc welding, friction stir welding, laser beam and electron beam welding, other fusion and pressure welding processes
static and cyclic behavior of welded joints,
fatigue life improvement techniques

learning objectives:
The students have knowledge and understanding of the most important welding processes and its industrial application.
They are able to recognize, understand and handle problems occurring during the application of different welding processes relating to design, material and production.
They know the classification and the importance of welding technology within the scope of connecting processes (advantages/disadvantages, alternatives).
The students will understand the influence of weld quality on the performance and behavior of welded joints under static and cyclic load.
How the fatigue life of welded joints could be increased, will be part of the course.

requirements:
basics of material science (iron- and non-iron alloys), of electrical engineering, of production processes.

workload:
The workload for the lecture Welding Technology is 120 h per semester and consists of the presence during the lecture (18 h) as well as preparation and rework time at home (102 h).

exam:
oral, ca. 20 minutes, no auxiliary material

Organizational issues
Blockveranstaltung im Januar und Februar. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich. Vorlesungstermine und Hörsaal werden den angemeldeten Teilnehmern Anfang des Jahres mitgeteilt.

Literature
Für ergänzende, vertiefende Studien gibt das
Handbuch der Schweißtechnik von J. Ruge, Springer Verlag Berlin, mit seinen vier Bänden
Band I: Werkstoffe
Band II: Verfahren und Fertigung
Band III: Konstruktive Gestaltung der Bauteile
Band IV: Berechnung der Verbindungen
einen umfassenden Überblick. Der Stoff der Vorlesung Schweißtechnik findet sich in den Bänden I und II. Einen kompakten Einblick in die Lichtbogenschweißverfahren bietet das Bändchen
Nies: Lichtbogenschweißtechnik, Bibliothek der Technik Band 57, Verlag moderne Industrie AG und Co., Landsberg / Lech
Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.
3.393 Course: Wildcard [T-MACH-112696]

<table>
<thead>
<tr>
<th>Organisation</th>
<th>KIT Department of Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of</td>
<td>M-MACH-106251 - Courses of the KIT Department of Architecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>15</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
3.394 Course: Wildcard [T-MACH-112701]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106253 - Courses of the KIT Department of Humanities and Social Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>15</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
3.395 Course: Wildcard [T-MACH-112697]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>KIT Department of Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-MACH-106251 - Courses of the KIT Department of Architecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>15</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
3.396 Course: Wildcard [T-MACH-112700]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>KIT Department of Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-MACH-106253 - Courses of the KIT Department of Humanities and Social Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>15</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
3.397 Course: Wildcard [T-MACH-112702]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>KIT Department of Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-MACH-106254 - Courses of the KIT Department of Physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>15</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
3.398 Course: Wildcard [T-MACH-112703]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106254 - Courses of the KIT Department of Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>15</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
3.399 Course: Wildcard [T-MACH-112698]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106252 - Courses of the KIT Department of Chemistry and Biosciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>15</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

3.400 Course: Wildcard [T-MACH-112699]

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106252 - Courses of the KIT Department of Chemistry and Biosciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>15</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Version: 1
3.401 Course: Windpower [T-MACH-105234]

Responsible: Norbert Lewald
Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Notes</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2157381</td>
<td>Windpower</td>
<td>2 SWS</td>
<td></td>
<td>Lewald, Pritz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Notes</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105234</td>
<td>Windpower</td>
<td></td>
<td>Lewald</td>
</tr>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-105234</td>
<td>Windpower</td>
<td></td>
<td>Lewald</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

written exam, 120 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Windpower
2157381, WS 22/23, 2 SWS, Language: German, Open in study portal
On-Site
3.402 Course: Working Methods in Materials Science and Technology [T-MACH-100288]

Responsible: Prof. Dr.-Ing. Martin Heilmayer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
3.403 Course: Workshop Mechatronical Systems and Products [T-MACH-108680]

Responsible:
Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Workshop Mechatronical Systems and Products</td>
<td>2 SWS</td>
<td>Practical course</td>
<td>Matthiesen, Hohmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Workshop Mechatronical Systems and Products</td>
<td></td>
<td></td>
<td>Hohmann, Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online,
🧩 Blended (On-Site/Online),
🗣 On-Site,
🗙 Cancelled

Competence Certificate

Alongside the workshop, deliverables will be requested at defined milestones. In these, the application of the knowledge that has been developed within the framework of the module will be examined. These deliverables consist of CAD designs, control software and reflection reports, for example, are defined in a workshop assignment at the beginning of the semester. The milestones are announced in a calendar at the beginning of the semester and are available to students through ILIAS. The demanded deliveries are uploaded to ILIAS.

Prerequisites

none

Annotation

All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey "Anmeldung und Gruppeneinteilung" in ILIAS before the start of the semester.

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery
Part of: M-MACH-106250 - Courses of the KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2171488</td>
<td>3 SWS</td>
<td>Practical course / Bauer, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 2171488</td>
<td>3 SWS</td>
<td>Practical course / Bauer, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Prerequisites
none

Below you will find excerpts from events related to this course:

Workshop on computer-based flow measurement techniques
2171488, WS 22/23, 3 SWS, Language: German, Open in study portal

Practical course (P)
Cancelled
Content
Registration during the lecture period via the website.

The laboratory course offers an introduction into the acquisition of basic test data in fluid mechanics applications as well as a basic hands-on training for the application of modern PC based data acquisition methods. The combination of lectures about measurement techniques, sensors, signal converters, I/O systems, bus systems, data acquisition, handling and control routines and tutorials for typical fluid mechanics applications allows the participant to get a comprehensive insight and a sound knowledge in this field. The graphical programming environment LabVIEW from National Instruments is used in this course as it is one of the standard software tools for data acquisition worldwide.

Basic design of measurements systems

- Logging devices and sensors
- Analog to digital conversion
- Program design and programming methods using LabView
- Data handling
- Bus systems
- Design of a computer aided data acquisition system for pressure, temperature and derived parameters
- frequency analysis

regular attendance: 52,5
self-study: 67,5

Lernziele:
Die Studenten können:

- die wesentlichen Grundlagen der rechnergestützen Messwerterfassung theoretisch beschreiben und praktisch anwenden
- nach jedem Lernabschnitt den vorgestellten Stoff anhand eines Beispiels am PC in die Praxis umsetzen

The students are able to:

- theoretically describe and explain the fundamentals of computer aided measurements and and adopt them practically
- apply the basics learned during the lecture to a practical problem in the form of a PC excercise

Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Organizational issues
Das Praktikum findet im WS 2022/23 nicht statt.

Literature
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011

Workshop on computer-based flow measurement techniques
2171488, SS 2023, 3 SWS, Language: German, Open in study portal

Practical course (P)
On-Site
Content
Registration during the lecture period via the website.

The laboratory course offers an introduction into the acquisition of basic test data in fluid mechanics applications as well as a basic hands-on training for the application of modern PC based data acquisition methods. The combination of lectures about measurement techniques, sensors, signal converters, I/O systems, bus systems, data acquisition, handling and control routines and tutorials for typical fluid mechanics applications allows the participant to get a comprehensive insight and a sound knowledge in this field. The graphical programming environment LabVIEW from National Instruments is used in this course as it is one of the standard software tools for data acquisition worldwide.

Basic design of measurements systems

- Logging devices and sensors
- Analog to digital conversion
- Program design and programming methods using LabView
- Data handling
- Bus systems
- Design of a computer aided data acquisition system for pressure, temperature and derived parameters
- Frequency analysis

regular attendance: 52.5
self-study: 67.5
The students are able to:

- theoretically describe and explain the fundamentals of computer aided measurements and and adopt them practically
- apply the basics learned during the lecture to a practical problem in the form of a PC exercise

Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Organizational issues
Der aktuelle Status wird auf der ITS-homepage bekannt gegeben.

Literature
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011