# Table Of Contents

1. About this handbook .................................................. 8
  1.1. Notes and rules .................................................. 8
  1.1.1. Begin and completion of a module ................. 8
  1.1.2. Module versions .......................................... 8
  1.1.3. General and partial examinations ...................... 8
  1.1.4. Types of exams ........................................... 8
  1.1.5. Repeating exams ........................................ 8
  1.1.6. Additional accomplishments .......................... 9
  1.1.7. Further information ..................................... 9

2. Study and Examination Regulations .................................. 10

3. Curriculum .................................................................. 27

4. Amendment Statute ...................................................... 34

5. Field of study structure ................................................ 37
  5.1. Orientation Exam ............................................... 37
  5.2. Bachelor's Thesis .............................................. 37
  5.3. Fundamentals of Engineering ................................ 37
  5.4. Specialization in Mechanical Engineering ............ 38
  5.5. Interdisciplinary Qualifications ............................. 38

6. Modules .................................................................... 39
  6.1. Advanced Mathematics - M-MATH-102859 ............ 39
  6.2. Bachelor's Thesis - M-MACH-104494 ..................... 41
  6.3. Compulsory Elective Module [BSc-Modul WPF] - M-MACH-102746 42
  6.4. Computer Science [BSc-Modul 09, Inf] - M-MACH-102563 44
  6.5. Electrical Engineering - M-ETIT-104801 .................. 45
  6.7. Fluid Mechanics [BSc-Modul 12, SL] - M-MACH-102565 .............................................. 48
  6.8. Key Competences [BSc-Modul 07, SQL] - M-MACH-102576 .............................................. 49
  6.9. Machines and Processes [mach13BSc-Modul 13, MuP] - M-MACH-102566 .............................................. 51
  6.10. Major Field: Combustion Engine Techniques [SP 57] - M-MACH-102645 .............................................. 52
  6.15. Major Field: Information Management [SP 17] - M-MACH-102583 .............................................. 60
  6.16. Major Field: Information Technology - M-MACH-102817 .............................................. 62
  6.17. Major Field: Materials Science and Engineering [SP 26] - M-MACH-102819 .............................................. 64
  6.19. Major Field: Modeling and Simulation in Dynamics [SP 61] - M-MACH-104430 .............................................. 68
  6.20. Major Field: Powetrain Systems [SP 02] - M-MACH-102812 .............................................. 69
  6.22. Major Field: Rail System Technology [SP 50] - M-MACH-102638 .............................................. 72
  6.25. Major Field: Vibration Theory - M-MACH-104442 .............................................. 77
  6.26. Manufacturing Processes - M-MACH-102549 .............................................. 78
  6.27. Materials Science [BSc-Modul 04, WK] - M-MACH-102562 .............................................. 79
  6.29. Mechanical Design [BSc-Modul 06, MKL] - M-MACH-102573 .............................................. 83
  6.30. Orientation Exam - M-MACH-104624 .............................................. 86
  6.31. Physics - M-PHYS-104030 .............................................. 87
  6.32. Sustainable Production Economics [BSc-Modul 22 MWT] - M-MACH-105902 .............................................. 88
  6.33. Technical Thermodynamics [BSc-Modul 05, TTD] - M-MACH-102574 .............................................. 89

7. Courses .................................................................. 91
  7.1. Advanced Mathematics I - T-MATH-100275 .............................................. 91
  7.2. Advanced Mathematics II - T-MATH-100276 .............................................. 92
  7.3. Advanced Mathematics III - T-MATH-100277 .............................................. 93
  7.5. Airport Logistics - T-MACH-105175 .............................................. 95
  7.6. Alternative Powetrain for Automobiles - T-MACH-105655 .............................................. 96
7.7. Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines - T-MACH-105173 ......................................................... 97
7.9. Atomistic Simulations and Molecular Dynamics - T-MACH-105308 .............................................................. 99
7.10. Automated Manufacturing Systems - T-MACH-108844 ...................................................................................... 101
7.11. Automotive Engineering I - T-MACH-100092 ...................................................................................... 103
7.12. Automotive Engineering II - T-MACH-102117 ..................................................................................... 105
7.13. Automotive Vision - T-MACH-105218 .......................................................................................... 107
7.15. Basics in Measurement and Control Systems - T-MACH-104745 ................................................................. 109
7.16. Basics of Manufacturing Technology - T-MACH-105219 ................................................................. 112
7.17. Basics of Technical Logistics I - T-MACH-109919 ........................................................................... 114
7.18. Basics of Technical Logistics II - T-MACH-109920 ........................................................................ 116
7.22. BUS-Controls - T-MACH-102150 .......................................................................................... 120
7.23. BUS-Controls - Advance - T-MACH-108889 ..................................................................................... 122
7.24. CAD-NX Training Course - T-MACH-102187 ..................................................................................... 123
7.25. CAE-Workshop - T-MACH-105212 .......................................................................................... 125
7.26. CATIA CAD Training Course - T-MACH-102185 ..................................................................................... 127
7.27. CO2-Neutral Combustion Engines and their Fuels I - T-MACH-111550 ................................................. 129
7.28. CO2-Neutral Combustion Engines and their Fuels II - T-MACH-111560 ................................................. 130
7.29. Cognitive Automobiles - Laboratory - T-MACH-105378 ........................................................................ 131
7.30. Combustion Engines I - T-MACH-102194 .......................................................................................... 133
7.31. Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies - T-MACH-105535 .......................................................................................... 134
7.32. Computational Dynamics - T-MACH-105349 ..................................................................................... 136
7.33. Computational Intelligence - T-MACH-105314 ..................................................................................... 137
7.34. Computational Vehicle Dynamics - T-MACH-105350 ..................................................................................... 138
7.35. Computer Science for Engineers - T-MACH-105205 ..................................................................................... 140
7.36. Computer Science for Engineers, Prerequisite - T-MACH-105206 ......................................................... 142
7.38. Continuum Mechanics of Solids and Fluids - T-MACH-110377 ..................................................................................... 146
7.39. Control Technology - T-MACH-105185 ..................................................................................... 147
7.40. Data Analytics for Engineers - T-MACH-105694 ..................................................................................... 149
7.41. Data-Driven Algorithms in Vehicle Technology - T-MACH-112126 ..................................................................................... 150
7.42. Design and Development of Mobile Machines - T-MACH-105311 ..................................................................................... 151
7.43. Design and Development of Mobile Machines - Advance - T-MACH-108887 ..................................................................................... 153
7.44. Design and Optimization of Conventional and Electrified Automotive Transmissions - T-MACH-110958 ..................................................................................... 154
7.45. Design of a Jet Engine Combustion Chamber - T-CIWVT-105780 ..................................................................................... 156
7.46. Design with Plastics - T-MACH-105330 ..................................................................................... 157
7.47. Designing with numerical methods in product development - T-MACH-108719 ..................................................................................... 159
7.48. Development Methods of Technical Systems - T-MACH-111283 ..................................................................................... 160
7.49. Development of hybrid drivetrains - T-MACH-110817 ..................................................................................... 161
7.50. Development of Oil-Hydraulic Powertrain Systems - T-MACH-105441 ..................................................................................... 162
7.51. Digital Control - T-MACH-105317 .......................................................................................... 163
7.52. Drive Train of Mobile Machines - T-MACH-105307 ..................................................................................... 164
7.53. Dynamic Systems of Technical Logistics - T-MACH-112113 ..................................................................................... 166
7.54. Dynamic Systems of Technical Logistics - Project - T-MACH-112114 ..................................................................................... 167
7.55. Dynamics of Electro-Mechanical Systems - T-MACH-111260 ..................................................................................... 168
7.56. Dynamics of the Automotive Drive Train - T-MACH-105226 ..................................................................................... 169
7.57. Electric Rail Vehicles - T-MACH-102121 ..................................................................................... 170
7.58. Electrical Engineering and Electronics - T-ETIT-109820 ..................................................................................... 171
7.59. Energy Efficient Intralogistic Systems - T-MACH-105151 ..................................................................................... 172
7.61. Engine Laboratory - T-MACH-105337 ..................................................................................... 174
7.62. Engine Measurement Techniques - T-MACH-105169 ..................................................................................... 175
7.64. Engineering Mechanics II - T-MACH-100283 ..................................................................................... 177
7.66. Exercises in Technical Thermodynamics and Heat Transfer I - T-MACH-105204 ..................................................................................... 181
7.67. Exercises in Technical Thermodynamics and Heat Transfer II - T-MACH-105288 ..................................................................................... 182

Table Of Contents
### Table Of Contents

7.68. Exercises - Tribology - T-MACH-109303 .......................................................... 183
7.69. Exercises for Materials Characterization - T-MACH-107685 .......................... 185
7.70. Experimental Dynamics - T-MACH-105514 ....................................................... 186
7.71. Failure Analysis - T-MACH-105724 ................................................................. 187
7.72. Failure of Structural Materials: Deformation and Fracture - T-MACH-102140 188
7.73. Failure of Structural Materials: Fatigue and Creep - T-MACH-102139 ............... 190
7.74. Fatigue of Materials - T-MACH-112106 ............................................................ 192
7.75. Flows and Heat Transfer in Energy Technology - T-MACH-105403 ................. 193
7.76. Fluid Mechanics 1 & 2 - T-MACH-105207 ....................................................... 194
7.77. Fluid Power Systems - T-MACH-102093 ......................................................... 197
7.78. Foundry Technology - T-MACH-105157 .......................................................... 198
7.79. Fuels and Lubricants for Engine Powertrains - T-MACH-111623 ...................... 200
7.80. Fundamentals for Design of Motor-Vehicle Bodies I - T-MACH-102116 ............ 201
7.82. Fundamentals in the Development of Commercial Vehicles - T-MACH-111389 203
7.83. Fundamentals of Automobile Development I - T-MACH-105162 ....................... 205
7.84. Fundamentals of Automobile Development II - T-MACH-105163 ..................... 207
7.85. Fundamentals of Catalytic Exhaust Gas Aftertreatment - T-MACH-105044 ....... 209
7.86. Fundamentals of Combustion Engine Technology - T-MACH-105652 .............. 210
7.87. Fundamentals of Combustion I - T-MACH-105213 ........................................... 211
7.88. Fundamentals of Combustion II - T-MACH-105325 ......................................... 213
7.89. Fundamentals of Energy Technology - T-MACH-105220 ............................... 215
7.90. Gasdynamics - T-MACH-105533 ................................................................. 217
7.91. Gear Cutting Technology - T-MACH-102148 .................................................. 219
7.92. Großdiesel- und -gasmotoren für Schiffsantriebe - T-MACH-110816 ................. 221
7.93. Handling Characteristics of Motor Vehicles I - T-MACH-105152 .................... 222
7.94. Handling Characteristics of Motor Vehicles II - T-MACH-105153 ..................... 223
7.95. Heat and Mass Transfer - T-MACH-105292 ..................................................... 224
7.96. Human Factors Engineering I - T-MACH-105518 ............................................. 226
7.97. Human Factors Engineering II - T-MACH-105519 ............................................ 228
7.98. Human-Machine-Interaction - T/INFO-101266 .............................................. 230
7.100. Hybrid and Electric Vehicles - T-ETIT-100784 ............................................ 232
7.101. Hydraulic Fluid Machinery - T-MACH-105326 ............................................. 233
7.102. Hydrogen and reFuels - Energy Conversion in Combustion Engines - T-MACH-111585 .................................................. 235
7.103. I4.0 Systems Platform - T-MACH-106457 ...................................................... 236
7.104. Ignition Systems - T-MACH-105985 ............................................................ 238
7.105. Industrial Aerodynamics - T-MACH-105375 ................................................ 239
7.106. Information Engineering - T-MACH-102209 ................................................. 240
7.108. Information Systems and Supply Chain Management - T-MACH-102128 ....... 242
7.109. Integrated Information Systems for Engineers - T-MACH-102083 ................... 243
7.110. Integrated Production Planning in the Age of Industry 4.0 - T-MACH-108849 245
7.111. Integrative Strategies in Production and Development of High Performance Cars - T-MACH-105188 .......................... 247
7.112. Intellectual Property Rights and Strategies in Industrial Companies - T-MACH-105442 .................................................. 250
7.113. Introduction into Mechatronics - T-MACH-100535 ........................................ 253
7.114. Introduction to Ceramics - T-MACH-100287 .................................................. 254
7.115. Introduction to Computational Fluid Dynamics - T-MACH-110362 ................. 255
7.117. Introduction to Multi-Body Dynamics - T-MACH-105209 ............................... 257
7.118. Introduction to Nonlinear Vibrations - T-MACH-105439 ............................... 258
7.119. Introduction to Nuclear Energy - T-MACH-105525 ......................................... 260
7.120. Introduction to Numerical Fluid Dynamics - T-MACH-105515 ....................... 261
7.121. Introduction to the Finite Element Method - T-MACH-105320 ....................... 262
7.122. IT-Fundamentals of Logistics - T-MACH-105187 ........................................... 264
7.123. Lab Computer-Aided Methods for Measurement and Control - T-MACH-105341 .................................................. 265
7.124. Laboratory Exercise in Energy Technology - T-MACH-105331 ................. 266
7.125. Laboratory Laser Materials Processing - T-MACH-102154 ............................ 269
7.126. Laboratory Mechatronics - T-MACH-105370 ................................................. 272
7.127. Laboratory Production Metrology - T-MACH-108878 .................................... 274
7.128. Laser in Automotive Engineering - T-MACH-105164 .................................... 276
7.129. Leadership and Conflict Management - T-MACH-105440 ........................... 278

Bachelor's Program Mechanical Engineering , Date: 20/09/2022
Module Handbook, valid from Winter Term 2022/23
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Module Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership and Management Development</td>
<td>T-MACH-105231</td>
<td>279</td>
</tr>
<tr>
<td>Lightweight Constructions with Fiber-Reinforced-Polymers – Theory and Practice</td>
<td>T-MACH-110954</td>
<td>280</td>
</tr>
<tr>
<td>Lightweight Engineering Design</td>
<td>T-MACH-105221</td>
<td>282</td>
</tr>
<tr>
<td>Machine Dynamics</td>
<td>T-MACH-105210</td>
<td>284</td>
</tr>
<tr>
<td>Machine Dynamics II</td>
<td>T-MACH-105224</td>
<td>286</td>
</tr>
<tr>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>T-MACH-110962</td>
<td>287</td>
</tr>
<tr>
<td>Machine Vision</td>
<td>T-MACH-105223</td>
<td>289</td>
</tr>
<tr>
<td>Machines and Processes</td>
<td>T-MACH-105208</td>
<td>290</td>
</tr>
<tr>
<td>Machines and Processes, Prerequisite</td>
<td>T-MACH-105232</td>
<td>292</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>T-MACH-102105</td>
<td>294</td>
</tr>
<tr>
<td>Material Flow in Logistic Systems</td>
<td>T-MACH-102151</td>
<td>296</td>
</tr>
<tr>
<td>Materials Characterization</td>
<td>T-MACH-107684</td>
<td>298</td>
</tr>
<tr>
<td>Materials of Lightweight Construction</td>
<td>T-MACH-105211</td>
<td>299</td>
</tr>
<tr>
<td>Materials Recycling and Sustainability</td>
<td>T-MACH-110937</td>
<td>301</td>
</tr>
<tr>
<td>Materials Science and Engineering III</td>
<td>T-MACH-105301</td>
<td>302</td>
</tr>
<tr>
<td>Materials Science I &amp; II</td>
<td>T-MACH-105145</td>
<td>303</td>
</tr>
<tr>
<td>Materials Science Lab Course</td>
<td>T-MACH-105146</td>
<td>310</td>
</tr>
<tr>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>T-MACH-110375</td>
<td>312</td>
</tr>
<tr>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>T-MACH-110836</td>
<td>313</td>
</tr>
<tr>
<td>Mathematical Methods in Dynamics</td>
<td>T-MACH-105293</td>
<td>314</td>
</tr>
<tr>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>T-MACH-105295</td>
<td>316</td>
</tr>
<tr>
<td>Mathematical Methods of Vibration Theory</td>
<td>T-MACH-105294</td>
<td>318</td>
</tr>
<tr>
<td>Measurement II</td>
<td>T-MACH-105335</td>
<td>319</td>
</tr>
<tr>
<td>Mechanical Design I and II</td>
<td>T-MACH-105286</td>
<td>321</td>
</tr>
<tr>
<td>Mechanical Design I, Prerequisites</td>
<td>T-MACH-105282</td>
<td>324</td>
</tr>
<tr>
<td>Mechanical Design II, Prerequisites</td>
<td>T-MACH-105283</td>
<td>327</td>
</tr>
<tr>
<td>Mechanical Design III and IV</td>
<td>T-MACH-104810</td>
<td>327</td>
</tr>
<tr>
<td>Mechanical Design III, Tutorial</td>
<td>T-MACH-110955</td>
<td>329</td>
</tr>
<tr>
<td>Mechanical Design IV, Tutorial</td>
<td>T-MACH-110956</td>
<td>331</td>
</tr>
<tr>
<td>Mechanics and Strength of Polymers</td>
<td>T-MACH-105333</td>
<td>332</td>
</tr>
<tr>
<td>Mechanics in Microtechnology</td>
<td>T-MACH-105334</td>
<td>333</td>
</tr>
<tr>
<td>Metallurgical Lab Class</td>
<td>T-MACH-105447</td>
<td>334</td>
</tr>
<tr>
<td>Microenergy Technologies</td>
<td>T-MACH-105557</td>
<td>337</td>
</tr>
<tr>
<td>Modelling and Simulation</td>
<td>T-MACH-100300</td>
<td>338</td>
</tr>
<tr>
<td>Modelling of Microstructures</td>
<td>T-MACH-105303</td>
<td>341</td>
</tr>
<tr>
<td>Modern Control Concepts I</td>
<td>T-MACH-105539</td>
<td>343</td>
</tr>
<tr>
<td>Novel Actuators and Sensors</td>
<td>T-MACH-102152</td>
<td>345</td>
</tr>
<tr>
<td>Numerical Fluid Mechanics</td>
<td>T-MACH-105538</td>
<td>346</td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>T-ETIT-101939</td>
<td>347</td>
</tr>
<tr>
<td>Physical and Chemical Principles of Nuclear Energy in View of Reactor Accidents and Back-End of Nuclear Fuel Cycle</td>
<td>T-MACH-105357</td>
<td>348</td>
</tr>
<tr>
<td>Physical Basics of Laser Technology</td>
<td>T-MACH-102102</td>
<td>350</td>
</tr>
<tr>
<td>Physics for Engineers</td>
<td>T-MACH-100530</td>
<td>352</td>
</tr>
<tr>
<td>PLM-CAD Workshop</td>
<td>T-MACH-102153</td>
<td>354</td>
</tr>
<tr>
<td>Polymer Engineering I</td>
<td>T-MACH-102137</td>
<td>355</td>
</tr>
<tr>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>T-MACH-105233</td>
<td>356</td>
</tr>
<tr>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>T-MACH-105216</td>
<td>357</td>
</tr>
<tr>
<td>Practical Training in Measurement of Vibrations</td>
<td>T-MACH-105373</td>
<td>358</td>
</tr>
<tr>
<td>Presentation</td>
<td>T-MACH-109189</td>
<td>359</td>
</tr>
<tr>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td>T-MACH-102111</td>
<td>360</td>
</tr>
<tr>
<td>Product- and Production-Concepts for Modern Automobiles</td>
<td>T-MACH-110318</td>
<td>361</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>T-MACH-105147</td>
<td>363</td>
</tr>
<tr>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>T-MACH-102155</td>
<td>365</td>
</tr>
<tr>
<td>Production Technology for E-Mobility</td>
<td>T-MACH-110984</td>
<td>366</td>
</tr>
<tr>
<td>Programming in CAE-Applications</td>
<td>T-MACH-111431</td>
<td>367</td>
</tr>
<tr>
<td>Project Internship Additive Manufacturing: Development and Production of an Additive Component</td>
<td>T-MACH-110960</td>
<td>369</td>
</tr>
<tr>
<td>Project Management in Global Product Engineering Structures</td>
<td>T-MACH-105347</td>
<td>371</td>
</tr>
<tr>
<td>Project Workshop: Automotive Engineering</td>
<td>T-MACH-102156</td>
<td>372</td>
</tr>
<tr>
<td>Python Algorithm for Vehicle Technology</td>
<td>T-MACH-110796</td>
<td>374</td>
</tr>
<tr>
<td>Quality Management</td>
<td>T-MACH-102107</td>
<td>376</td>
</tr>
<tr>
<td>Rail System Technology</td>
<td>T-MACH-106424</td>
<td>378</td>
</tr>
<tr>
<td>Rail Vehicle Technology</td>
<td>T-MACH-105353</td>
<td>380</td>
</tr>
</tbody>
</table>
Table Of Contents

7.191. Railways in the Transportation Market - T-MACH-105540 .................................................. 382
7.192. Reliability Engineering I - T-MACH-107447 ................................................................. 384
7.194. Safety Engineering - T-MACH-105171 ................................. 386
7.195. Scientific Computing for Engineers - T-MACH-100532 .................................................. 387
7.196. Selected Problems of Applied Reactor Physics and Exercises - T-MACH-105462 ........... 389
7.197. Self-Booking-BS-C-HOC-SPZ-ZAK-Graded - T-MACH-111685 ................................. 390
7.198. Self-Booking-BS-C-HOC-SPZ-ZAK-Non-Graded - T-MACH-111684 ..................... 391
7.199. Seminar for Rail System Technology - T-MACH-108692 .................................................. 392
7.200. Signals and Systems - T-ETIT-109313 ................................................................. 394
7.201. Simulation of Coupled Systems - T-MACH-105172 ...................................................... 395
7.203. Solar Thermal Energy Systems - T-MACH-106493 ...................................................... 398
7.204. Steering of a Global Operating Company - The Robert BOSCH GmbH as an Example - T-MACH-110961 ................................................................. 400
7.205. Strategic Product Development - Identification of Potentials of Innovative Products - T-MACH-105696 ................................................................. 402
7.206. Strategic Product Development - Identification of Potentials of Innovative Products - Case Study - T-MACH-110396 ................................................................. 403
7.207. Structural Analysis of Composite Laminates - T-MACH-105970 ............................... 404
7.208. Sustainable Product Engineering - T-MACH-105358 ...................................................... 406
7.209. Sustainable Production Economics - T-MACH-111859 .................................................. 407
7.211. System Integration in Micro- and Nanotechnology - T-MACH-105555 ................. 410
7.212. System Integration in Micro- and Nanotechnology 2 - T-MACH-110272 .................. 411
7.213. Systematic Materials Selection - T-MACH-100531 ...................................................... 412
7.214. Technical Acoustics - T-MACH-111382 ................................................................. 414
7.215. Technical Design in Product Development - T-MACH-105361 ..................................... 415
7.216. Technical Thermodynamics and Heat Transfer I - T-MACH-104747 ....................... 417
7.217. Technical Thermodynamics and Heat Transfer II - T-MACH-105287 ......................... 419
7.218. Technology of Steel Components - T-MACH-105362 .................................................. 421
7.219. Theoretical Description of Mechatronic Systems - T-MACH-105521 ......................... 423
7.221. Thermal Solar Energy - T-MACH-105225 ................................................................. 425
7.222. Thermal Turbomachines I - T-MACH-105363 ............................................................. 427
7.223. Thermal Turbomachines II - T-MACH-105364 ............................................................. 430
7.224. Tires and Wheel Development for Passenger Cars - T-MACH-102207 ....................... 433
7.225. Tribology - T-MACH-105531 ................................................................. 434
7.226. Turbo Charging of Internal Combustion Engines - T-MACH-111591 ....................... 436
7.227. Turbo Jet Engines - T-MACH-105366 ................................................................. 437
7.228. Tutorial Advanced Mathematics I - T-MATH-100525 ................................................. 439
7.229. Tutorial Advanced Mathematics II - T-MATH-100526 ................................................. 440
7.230. Tutorial Advanced Mathematics III - T-MATH-100527 .................................................. 441
7.231. Tutorial Continuum Mechanics of Solids and Fluids - T-MACH-110333 ..................... 442
7.235. Tutorial Engineering Mechanics IV - T-MACH-105203 .................................................. 446
7.236. Tutorial Introduction to Computational Fluid Dynamics - T-MACH-111033 .................. 447
7.237. Tutorial Introduction to the Finite Element Method - T-MACH-110330 ....................... 448
7.239. Vehicle Comfort and Acoustics I - T-MACH-105154 .................................................. 450
7.240. Vehicle Comfort and Acoustics II - T-MACH-105155 .................................................. 452
7.241. Vehicle Ergonomics - T-MACH-108374 ................................................................. 455
7.243. Vibration Theory - T-MACH-105290 ................................................................. 458
7.244. Virtual Engineering (Specific Topics) - T-MACH-105381 ............................................. 460
7.245. Virtual Reality Practical Course - T-MACH-102149 ..................................................... 461
7.246. Warehousing and Distribution Systems - T-MACH-105174 ......................................... 462
7.247. Wave and Quantum Physics - T-PHYS-108322 ......................................................... 463
7.248. Wave Propagation - T-MACH-105443 ................................................................. 464
7.249. Welding Technology - T-MACH-105170 ................................................................. 465
7.250. Windpower - T-MACH-105234 ................................................................. 467
7.251. Working Methods in Mechanical Engineering - T-MACH-105296 ......................... 468

Bachelor's Program Mechanical Engineering , Date: 20/09/2022
Module Handbook, valid from Winter Term 2022/23
1 About this handbook

1.1 Notes and rules

The program exists of several subjects (e.g. Fundamentals of Engineering). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.1.1 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.1.2 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student's "binding declaration" on the choice of the module in the sense of 5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive.

1.1.3 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

1.1.4 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.

1.1.5 Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim.
1.1.6 Additional accomplishments
Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam.

1.1.7 Further information
More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).
Amtliche Bekanntmachung

2015
Ausgegeben Karlsruhe, den 06. August 2015
Nr. 62

Inhalt

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau Seite 381
Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau

vom 04. August 2015


Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 04. August 2015 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
   § 1 Geltungsbereich
   § 2 Ziele des Studiums, Akademischer Grad
   § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
   § 4 Modulprüfungen, Studien- und Prüfungsleistungen
   § 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
   § 6 Durchführung von Erfolgskontrollen
      § 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
      § 6 b Computergestützte Erfolgskontrollen
   § 7 Bewertung von Studien- und Prüfungsleistungen
   § 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
   § 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
   § 10 Abmeldung; Versäumnis, Rücktritt
   § 11 Täuschung, Ordnungsverstoß
   § 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
   § 13 Studierende mit Behinderung oder chronischer Erkrankung
   § 14 Modul Bachelorarbeit
   § 15 Zusatzleistungen
      § 15 a Mastervorzug
   § 16 Überfachliche Qualifikationen
   § 17 Prüfungsausschüsse
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung
§ 20 Umfang und Art der Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich

Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Maschinenbau am KIT.

§ 2 Ziel des Studiums, Akademischer Grad

(1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.

(2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Maschinenbau verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Der Studiengang nimmt teil am Programm „Studienmodelle individueller Geschwindigkeit“. Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg).

(2) Die Regelstudienzeit beträgt sechs Semester. Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 2 Satz 3 bis 5.

Eine qualifizierte Teilnahme liegt vor, wenn die Studierende Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtworkload 10 Semesterwochenstunden) belegt hat. Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.


§ 4 Modulprüfungen, Studien- und Prüfungsleistungen


Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.

(2) Prüfungsleistungen sind:
   1. schriftliche Prüfungen,
   2. mündliche Prüfungen oder
   3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr. 1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.


(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
   1. in den Bachelorstudiengang Maschinenbau am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
   2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
   3. nachweist, dass er in dem Bachelorstudiengang Maschinenbau den Prüfungsanspruch nicht verloren hat.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.
(5) Die Zulassung ist abzulehnen, wenn die in Absatz 3 und 4 genannten Voraussetzungen nicht erfüllt sind.

§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 5 zu berücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.


(6) Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/m Prüfenden in Gegenwart einer oder eines Beisitzenden als Gruppen- oder Einzelpprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studierenden.

Die wesentlichen Gegenstände und Ergebnisse der mündlichen Prüfung sind in einem Protokoll festzuhalten. Das Ergebnis der Prüfung ist den Studierenden im Anschluss an die mündliche Prüfung bekannt zu geben.

Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüflings als Zuhörerinnen und Zuhörer bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermin festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet.

Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde." Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können.

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische und fachliche Betreuung zu gewährleisten. Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen
(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>sehr gut (very good)</td>
</tr>
<tr>
<td>1,7</td>
<td>gut (good)</td>
</tr>
<tr>
<td>2,7</td>
<td>befriedigend (satisfactory)</td>
</tr>
<tr>
<td>3,7</td>
<td>ausreichend (sufficient)</td>
</tr>
<tr>
<td>5,0</td>
<td>nicht ausreichend (failed)</td>
</tr>
</tbody>
</table>

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0; 1,3</td>
<td>sehr gut</td>
</tr>
<tr>
<td>1,7; 2,0; 2,3</td>
<td>gut</td>
</tr>
<tr>
<td>2,7; 3,0; 3,3</td>
<td>befriedigend</td>
</tr>
<tr>
<td>3,7; 4,0</td>
<td>ausreichend</td>
</tr>
<tr>
<td>5,0</td>
<td>nicht ausreichend</td>
</tr>
</tbody>
</table>

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.
(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.


(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Gültigkeit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5</td>
<td>sehr gut</td>
</tr>
<tr>
<td>von 1,6 bis 2,5</td>
<td>gut</td>
</tr>
<tr>
<td>von 2,6 bis 3,5</td>
<td>befriedigend</td>
</tr>
<tr>
<td>von 3,6 bis 4,0</td>
<td>ausreichend</td>
</tr>
</tbody>
</table>

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

(1) Die Teilmodulprüfungen Höhere Mathematik I, Technische Mechanik I, Technische Mechanik II in den Modulen Höhere Mathematik und Technische Mechanik sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

(2) Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Abs. 2 vorliegt. Ohne ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine Fristüberschreitung von

1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von einem Semester nachweist oder

2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von zwei Semestern nachweist.

Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Abs. 2 auszustellende Bescheinigung, die beim Studierendenservice des KIT einzureichen ist. Im Falle von Nr. 1 kann der Vorsitzende des Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Ablegen der Orientierungsprüfung erforderlich ist, insbesondere weil die Module, die Bestandteil der Orientierungsprüfung sind, nur einmal jährlich angeboten werden.

(3) Ist die Bachelorprüfung bis zum Ende des Prüfungszeitraums des neunten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch...

(4) Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist oder eine Wiederholungsprüfung nach § 9 Abs. 6 nicht rechtzeitig erbracht wurde, es sei denn die Fristüberschreitung ist nicht selbst zu vertreten.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Wiederholung von Prüfungsleistungen hat spätestens bis zum Ende des Prüfungszeitraumes des übernächsten Semesters zu erfolgen.

(7) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(8) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(9) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.


(10) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

§ 10 Abmeldung; Versäumnis, Rücktritt

(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.


(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.


§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten


(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweils gültigen Gesetzes (Bundeselternzeitgesetz - BEEG) auf Antrag zu berücksichtigen. Der/die Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, dem Prüfungsausschuss, unter Beifügung der erforderlichen Nachweise schriftlich mitteilen, in welchem Zeitraum die Elternzeit in Anspruch genommen werden soll. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die bei einer Arbeitnehmerin bzw. einem Arbeitnehmer den Anspruch auf Elternzeit auslösen würden, und teilt

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung


(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 20 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/des Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.


Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.


Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.“ Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5,0) bewertet.


§ 15 Zusatzleistungen


Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.
§ 15 a Mastervorzug

§ 16 Überfachliche Qualifikationen
Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschüsse


(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/der Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/der Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungs berechtigte Person hinzuzuziehen.


§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehr/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät angehören und denen die Prüfungsbeugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbeugnis über tragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegen stand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern die KIT-Fakultät eine Prüfungsbeugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nach weisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem mathematisch-naturwissenschaftlichen oder ingenieurwissenschaftlichen Studiengang oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompeten zen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung bzw. Prü fungsleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Studiengang Maschinenbau immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der An trag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschul-
rektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems erworbene Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.


II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung
(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14).
(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:
1. Ingenieurwissenschaftliche Grundlagen: Modul(e) im Umfang von 143 LP,
2. Vertiefung im Maschinenbau: Modul(e) im Umfang von 16 LP,
3. Überfachliche Qualifikationen im Umfang von 6 LP gemäß § 16.
Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.

§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen mindestens mit „ausreichend“ bewertet wurden.
(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit.
Dabei wird die Note des Moduls Bachelorarbeit mit dem doppelten Gewicht gegenüber den Noten der übrigen Fächer berücksichtigt.
(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.


III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen
Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 24 Aberkennung des Bachelorgrades
(1) Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.


(6) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.
§ 25 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften
(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2016 in Kraft.


Karlsruhe, den 04. August 2015

Professor Dr.-Ing. Holger Hanselka
(Präsident)
Inhaltsverzeichnis

0 Abkürzungsverzeichnis .....................................................................................................................2
1 Studienpläne, Module und Prüfungen ..............................................................................................3
  1.1 Prüfungsmodalitäten ................................................................................................................3
  1.2 Module des Bachelorstudiums ...............................................................................................3
  1.3 Studienplan ..........................................................................................................................5
  1.4 Bachelorarbeit .......................................................................................................................5
2 Schwerpunkte ...................................................................................................................................6
3 Änderungshistorie (ab 20.07.2016) ............................................................................................7
### Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester:</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>SS</td>
</tr>
<tr>
<td>Schwerpunkte:</td>
<td>K, KP</td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>EM</td>
</tr>
<tr>
<td></td>
<td>E(P), E/P</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Ü</td>
</tr>
<tr>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td>Teilleistung:</td>
<td>LP</td>
</tr>
<tr>
<td></td>
<td>Pr</td>
</tr>
<tr>
<td></td>
<td>Pr (h)</td>
</tr>
<tr>
<td></td>
<td>mPr</td>
</tr>
<tr>
<td></td>
<td>sPr</td>
</tr>
<tr>
<td></td>
<td>PraA</td>
</tr>
<tr>
<td></td>
<td>Üschein</td>
</tr>
<tr>
<td></td>
<td>Pschein</td>
</tr>
<tr>
<td></td>
<td>Schein</td>
</tr>
<tr>
<td></td>
<td>TL</td>
</tr>
<tr>
<td></td>
<td>Gew</td>
</tr>
<tr>
<td>Sonstiges:</td>
<td>SPO</td>
</tr>
<tr>
<td></td>
<td>w</td>
</tr>
<tr>
<td></td>
<td>p</td>
</tr>
</tbody>
</table>

---

1 Studienpläne, Module und Prüfungen

Die Angabe der Leistungspunkte (LP) erfolgt gemäß dem „European Credit Transfer and Accumulation System“ (ECTS) und basiert auf dem von den Studierenden zu absolvierenden Arbeitsspeisum.

1.1 Prüfungsmodalitäten


1.2 Module des Bachelorstudiums


<table>
<thead>
<tr>
<th>Fach</th>
<th>Modul</th>
<th>LP/ Modul</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Koordinator</th>
<th>Pr</th>
<th>Gew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>Höhere Mathematik</td>
<td>21</td>
<td>Höhere Mathematik I</td>
<td>7</td>
<td>Kirsch</td>
<td>Üschein</td>
<td>sPr</td>
</tr>
<tr>
<td></td>
<td>Höhere Mathematik II</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Höhere Mathematik III</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik</td>
<td>23</td>
<td>Technische Mechanik I</td>
<td>7</td>
<td>Böhlke</td>
<td>Üschein</td>
<td>sPr</td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik II</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik III &amp; IV</td>
<td>10</td>
<td></td>
<td></td>
<td>Seemann</td>
<td>Üschein</td>
<td>sPr</td>
</tr>
<tr>
<td>Werkstoffkunde</td>
<td>Werkstoffkunde I &amp; II</td>
<td>14</td>
<td></td>
<td>11</td>
<td>Heilmaier</td>
<td>mPr</td>
<td>ca. 0,5</td>
</tr>
<tr>
<td></td>
<td>Werkstoffkunde-Praktikum</td>
<td>3</td>
<td></td>
<td></td>
<td>Pschein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Thermodynamik</td>
<td>Technische Thermo-dynamik und Wärmeübertragung I</td>
<td>15</td>
<td></td>
<td>8</td>
<td>Maas</td>
<td>Üschein</td>
<td>sPr</td>
</tr>
<tr>
<td></td>
<td>Technische Thermodynamik und Wärmeübertragung II</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strömungslehre</td>
<td>Strömungslehre I &amp; II</td>
<td>8</td>
<td></td>
<td>8</td>
<td>Frohnapfel</td>
<td>sPr</td>
<td>3</td>
</tr>
<tr>
<td>Physik</td>
<td>Wellen- und Quantenphysik</td>
<td>5</td>
<td></td>
<td>5</td>
<td>Plawa</td>
<td>sPr</td>
<td>2</td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>Elektrotechnik und Elektronik</td>
<td>8</td>
<td></td>
<td>8</td>
<td>Becker</td>
<td>sPr</td>
<td>3</td>
</tr>
<tr>
<td>Mess- und Regelungstechnik</td>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>7</td>
<td></td>
<td>7</td>
<td>Stiller</td>
<td>sPr</td>
<td>2,5</td>
</tr>
<tr>
<td>Fach</td>
<td>Modul</td>
<td>Teilleistung</td>
<td>LP</td>
<td>Koordinator</td>
<td>Art der Erfolgskontrolle</td>
<td>Pr (h)</td>
<td>Gew</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>----</td>
<td>-------------</td>
<td>--------------------------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Informatik</td>
<td>6</td>
<td>Informatik im Maschinenbau</td>
<td>6</td>
<td>Ovtcharova</td>
<td>sPr</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre</td>
<td>20</td>
<td>Maschinenkonstruktionslehre I &amp; II</td>
<td>7</td>
<td>Albers</td>
<td>sPr</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maschinenkonstruktionslehre III &amp; IV</td>
<td>13</td>
<td></td>
<td>sPr</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Maschinen und Prozesse</td>
<td>7</td>
<td>Maschinen und Prozesse</td>
<td>7</td>
<td>Kubach</td>
<td>sPr</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Fertigungsprozesse</td>
<td>4</td>
<td>Grundlagen der Fertigungstechnik</td>
<td>4</td>
<td>Schulze</td>
<td>sPr</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Nachhaltige Produktionswirtschaft</td>
<td>5</td>
<td>Nachhaltige Produktionswirtschaft</td>
<td>5</td>
<td>Lanza</td>
<td>sPr</td>
<td>1,5</td>
<td>5</td>
</tr>
<tr>
<td>Schwerpunkt</td>
<td>12</td>
<td>Kern- und Ergänzungsbereich, wählbare TL siehe Modulhandbuch</td>
<td>12</td>
<td></td>
<td>mPr</td>
<td>ca. 0,7</td>
<td>12</td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td>4</td>
<td>wählbare TL siehe Modulhandbuch</td>
<td>4</td>
<td>Heilmaier</td>
<td>mPr</td>
<td>ca. 0,4</td>
<td>4</td>
</tr>
<tr>
<td>Schlüsselqualifikationen</td>
<td>6</td>
<td>Arbeitstechniken im Maschinenbau</td>
<td>4</td>
<td>Deml</td>
<td>Schein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wählbare TL von HoC, ZAK bzw. siehe Modulhandbuch</td>
<td>2</td>
<td>N.N.</td>
<td>Schein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>15</td>
<td>Bachelorarbeit</td>
<td>12</td>
<td></td>
<td>PraA</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Präsentation</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


Seite 4 von 7
### 1.3 Studienplan

#### Lehrveranstaltungen 1. bis 4. Semester

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhere Mathematik I-III</td>
<td>4 2</td>
<td>4 2</td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Fertigungstechnik</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellen- und Quantenphysik</td>
<td></td>
<td>2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Mechanik I-IV</td>
<td>3 2</td>
<td>3 2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
<tr>
<td>Werkstoffkunde I, II</td>
<td>4 1</td>
<td>2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werkstoffkunde-Praktikum¹</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung I, II</td>
<td></td>
<td>4 2</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre I-IV</td>
<td>2 1</td>
<td>2 2</td>
<td>2 2 1</td>
<td>2 2 1</td>
</tr>
<tr>
<td>Informatik im Maschinenbau</td>
<td></td>
<td>2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik</td>
<td></td>
<td></td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>Strömungslehre I</td>
<td></td>
<td></td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Arbeitstechniken Maschinenbau</td>
<td></td>
<td></td>
<td>1 1</td>
<td></td>
</tr>
</tbody>
</table>

#### Lehrveranstaltungen 5. bis 6. Semester

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Strömungslehre II</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Maschinen und Prozesse</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Nachhaltige Produktionswirtschaft</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Schlüsselqualifikationen</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td>(2)</td>
<td>2</td>
</tr>
<tr>
<td>Schwerpunkt (6 SWS, variabel)</td>
<td>3 ()</td>
<td>3 ()</td>
</tr>
</tbody>
</table>

### 1.4 Bachelorarbeit

Das Modul Bachelorarbeit besteht aus einer schriftlichen Ausarbeitung (Bachelorarbeit, 12 LP) sowie einer mündlichen Präsentation (3 LP). Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen. Die Präsentation soll ca. 20 Minuten dauern und wird anschließend mit dem anwesenden Fachpublikum diskutiert.

Die Durchführung und Benotung der Bachelorarbeit ist in § 14 der SPO für den Bachelorstudiengang Maschinenbau sowie im Modulhandbuch unter „Modul Bachelorarbeit“ geregelt.

---

¹ Das Werkstoffkunde-Praktikum findet in der vorlesungsfreien Zeit zwischen SS und WS statt und beansprucht eine Woche.
2 Schwerpunkte

Folgende Schwerpunkte sind derzeit vom Fakultätsrat genehmigt (siehe Angaben im Modulhandbuch):

<table>
<thead>
<tr>
<th>Schwerpunkt</th>
<th>Verantwortlicher</th>
<th>SP-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antriebssysteme</td>
<td>Albers</td>
<td>2</td>
</tr>
<tr>
<td>Bahnsystemtechnik</td>
<td>Gratzfeld</td>
<td>50</td>
</tr>
<tr>
<td>Entwicklung und Konstruktion</td>
<td>Albers</td>
<td>10</td>
</tr>
<tr>
<td>Kontinuumsmechanik</td>
<td>Böhlke</td>
<td>13</td>
</tr>
<tr>
<td>Grundlagen der Energietechnik</td>
<td>Bauer</td>
<td>15</td>
</tr>
<tr>
<td>Informationsmanagement</td>
<td>Ovtcharova</td>
<td>17</td>
</tr>
<tr>
<td>Informationstechnik</td>
<td>Stiller</td>
<td>18</td>
</tr>
<tr>
<td>Kraftfahrzeugtechnik</td>
<td>Gauterin</td>
<td>12</td>
</tr>
<tr>
<td>Kraft- und Arbeitsmaschinen</td>
<td>Th. Koch</td>
<td>24</td>
</tr>
<tr>
<td>Materialwissenschaft und Werkstofftechnik</td>
<td>Heilmann</td>
<td>26</td>
</tr>
<tr>
<td>Mechatronik</td>
<td>Hagenmeyer</td>
<td>31</td>
</tr>
<tr>
<td>Modellbildung und Simulation in der Dynamik</td>
<td>Seemann</td>
<td>61</td>
</tr>
<tr>
<td>Produktionssysteme</td>
<td>Schulze</td>
<td>38</td>
</tr>
<tr>
<td>Schwingungslehre</td>
<td>Fidlin</td>
<td>60</td>
</tr>
<tr>
<td>Technische Logistik</td>
<td>Furmans</td>
<td>44</td>
</tr>
<tr>
<td>Technik des Verbrennungsmotors</td>
<td>Th. Koch</td>
<td>57</td>
</tr>
</tbody>
</table>

Für den Schwerpunkt werden Teilleistungen im Umfang von 12 LP gewählt, davon werden mindestens 8 LP im Kernbereich (K) erworben. „KP“ bedeutet, dass die Teilleistung im Kernbereich Pflicht ist, sofern sie nicht bereits belegt wurde. Die übrigen 4 LP können aus dem Ergänzungsbereich kommen. Dabei dürfen im Rahmen von Praktika höchstens 4 LP erworben werden, die auch als unbenotete Moduleistung erbracht werden können.


Ein Absolvieren des Schwerpunktmoduls mit mehr als 12 LP ist nur im Fall, dass die Addition innerhalb des Schwerpunktmoduls nicht auf 12 LP aufgeht, erlaubt. Nicht zulässig ist es jedoch, noch weitere Teilleistungen anzumelden, wenn bereits 12 LP erreicht oder überschritten wurden.

Für die Prüfungsleistungen in den Schwerpunkten gelten folgende Regeln:
Die Prüfungen werden grundsätzlich mündlich abgenommen, bei unvertretbar hohem Prüfungsaufwand kann eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Es wird empfohlen, die Kernbereichsprüfung im Block abzulegen. Bei mündlichen Prüfungen in den Schwerpunkt soll die Prüfungsdauer fünf Minuten pro Leistungspunkt betragen. Erstreckt sich eine mündliche Prüfung über mehr als 12 LP, soll die Prüfungsdauer 60 Minuten betragen.


Die Beschreibung der Schwerpunkte hinsichtlich der jeweils darin enthaltenen Teilleistungen und den damit verbundenen Lehrveranstaltungen ist im aktuellen Modulhandbuch des Bachelorstudiengangs festgelegt.
### Änderungshistorie (ab 20.07.2016)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Änderungsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.07.2016</td>
<td>Sprachliche Anpassung an das Eckpunktepapier des KIT, Überarbeitung der Prüfungsmodalitäten</td>
</tr>
<tr>
<td>17.08.2016</td>
<td>Redaktionelle Änderungen, u.a. im Modul Physik</td>
</tr>
<tr>
<td>28.06.2017</td>
<td>Redaktionelle Änderungen, u.a. in den Modulen Technische Thermodynamik und Strömungslehre</td>
</tr>
<tr>
<td>13.07.2016</td>
<td>Anpassung der Schwerpunkte sowie redaktionelle Änderungen</td>
</tr>
<tr>
<td>30.08.2019</td>
<td>Redaktionelle Änderungen, u.a. in Punkt 1</td>
</tr>
<tr>
<td>15.02.2020</td>
<td>Redaktionelle Änderungen, u.a. in Punkt 1.2</td>
</tr>
<tr>
<td>30.03.2020</td>
<td>Namensänderung von SP 13</td>
</tr>
<tr>
<td>01.07.2020</td>
<td>SP 52 gelöscht</td>
</tr>
<tr>
<td>01.12.2021</td>
<td>BPW durch Nachhaltige Produktionswirtschaft ersetzt</td>
</tr>
</tbody>
</table>
Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelor-studiengang Maschinenbau Seite 26
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau

vom 21. Februar 2019


Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 21. Februar 2019 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 9 Absatz 11 werden folgende Sätze 3 und 4 angefügt:

„Die Präsentation nach § 14 Absatz 1 a ist eine Studienleistung und kann bei einer Bewertung mit „nicht bestanden (not passed)” (im Gegensatz zu anderen Studienleistungen) nur einmal wiederholt werden. Die Präsentation ist endgültig nicht bestanden, wenn sie zweimal mit „nicht bestanden” (not passed) bewertet wurde."

2. § 12 Absatz 1 wird wie folgt geändert:

a) Satz 1 wird wie folgt gefasst:

„Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung.”

b) Satz 2 wird aufgehoben.

c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

3. § 14 wird wie folgt geändert:


b) In Absatz 2 Satz 1 werden nach den Wörtern „Hochschullehrer/innen“ das Wort ”und“ durch ein Komma ersetzt und nach der Angabe „§ 14 Abs. 3 Ziff. 1 KITG“ die Wörter „und habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau“ eingefügt.

c) In Absatz 7 Satz 1 werden nach den Wörtern „Hochschullehrer/innen“ das Wort “oder“ durch ein Komma ersetzt und nach der Angabe „§ 14 Abs. 3 Ziff. 1 KITG“ die Wörter „oder einem habilitierten Mitglied der KIT-Fakultät für Maschinenbau“ eingefügt.
4. § 17 wird wie folgt geändert:
   a) In Absatz 1 Satz 3 wird das Wort „stammt“ durch die Wörter „stammen soll“ ersetzt.
   b) In Absatz 7 Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.

5. § 18 Absatz 3 wird wie folgt geändert:
   Nach dem Wort „sofern“ werden die Wörter „die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und“ gestrichen.

6. § 26 Absatz 5 wird aufgehoben und folgender neuer Absatz 5 eingefügt:

   „(5) Für Studierende, die

   1. ihr Studium im Bachelorstudiengang Maschinenbau vor dem Wintersemester 2018/2019 aufgenommen haben oder

   2. ihr Studium im Bachelorstudiengang Maschinenbau ab dem Wintersemester 2018/2019 in einem höheren Fachsemester aufgenommen haben bzw. aufnehmen sofern das Fachsemester über dem Jahrgang der Studienanfänger zum Wintersemester 2018/2019 liegt,

   finden § 9 Abs. 11 und § 14 Abs. 1 a in der Fassung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau vom 04. August 2015 (Amtliche Bekanntmachung des KIT Nr. 62 vom 06. August 2015) weiterhin Anwendung.

   Studierende nach Satz 1 Ziffer 1 und Ziffer 2, können das Modul Bachelorarbeit auf Grundlage der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Maschinenbau in der Fassung vom 04. August 2015 (Amtliche Bekanntmachung des KIT Nr. 62 vom 06. August 2015) letztmalig bis zum 31. März 2023 ablegen“

Artikel 2 – Inkrafttreten

Diese Änderungssatzung tritt zum 01. April 2019 in Kraft.

Karlsruhe, den 21. Februar 2019

gez. Prof. Dr.-Ing. Holger Hanselka
(Präsident)
# 5 Field of study structure

**Mandatory**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Orientation Exam</strong>&lt;br&gt;This field will not influence the calculated grade of its parent.</td>
<td></td>
</tr>
<tr>
<td>Bachelor's Thesis</td>
<td>15 CR</td>
</tr>
<tr>
<td>Fundamentals of Engineering</td>
<td>143 CR</td>
</tr>
<tr>
<td>Specialization in Mechanical Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Interdisciplinary Qualifications</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

## 5.1 Orientation Exam

**Mandatory**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104624</td>
<td>Orientation Exam</td>
</tr>
</tbody>
</table>

## 5.2 Bachelor's Thesis

**Mandatory**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104494</td>
<td>Bachelor's Thesis</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

## 5.3 Fundamentals of Engineering

**Mandatory**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-102859</td>
<td>Advanced Mathematics</td>
<td>21 CR</td>
</tr>
<tr>
<td>M-MACH-102572</td>
<td>Engineering Mechanics</td>
<td>23 CR</td>
</tr>
<tr>
<td>M-MACH-102562</td>
<td>Materials Science</td>
<td>14 CR</td>
</tr>
<tr>
<td>M-MACH-102574</td>
<td>Technical Thermodynamics</td>
<td>15 CR</td>
</tr>
<tr>
<td>M-MACH-102565</td>
<td>Fluid Mechanics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104030</td>
<td>Physics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-104801</td>
<td>Electrical Engineering&lt;br&gt;First usage possible from 3/8/2019.</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102564</td>
<td>Measurement and Control Systems</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-MACH-102563</td>
<td>Computer Science</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102573</td>
<td>Mechanical Design</td>
<td>20 CR</td>
</tr>
<tr>
<td>M-MACH-102566</td>
<td>Machines and Processes</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-MACH-102549</td>
<td>Manufacturing Processes</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105902</td>
<td>Sustainable Production Economics&lt;br&gt;First usage possible from 10/1/2022.</td>
<td>5 CR</td>
</tr>
</tbody>
</table>
### 5.4 Specialization in Mechanical Engineering

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102746</td>
<td>Compulsory Elective Module</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102812</td>
<td>Major Field: Powertrain Systems</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102638</td>
<td>Major Field: Rail System Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102815</td>
<td>Major Field: Engineering Design</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102582</td>
<td>Major Field: Continuum Mechanics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102816</td>
<td>Major Field: Fundamentals of Energy Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102583</td>
<td>Major Field: Information Management</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102817</td>
<td>Major Field: Information Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102818</td>
<td>Major Field: Vehicle Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102838</td>
<td>Major Field: Energy Converting Engines</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102819</td>
<td>Major Field: Materials Science and Engineering</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102820</td>
<td>Major Field: Mechatronics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-104430</td>
<td>Major Field: Modeling and Simulation in Dynamics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102589</td>
<td>Major Field: Production Systems</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-104442</td>
<td>Major Field: Vibration Theory</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102645</td>
<td>Major Field: Combustion Engine Techniques</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-MACH-102821</td>
<td>Major Field: Technical Logistics</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

### 5.5 Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102576</td>
<td>Key Competences</td>
<td>6 CR</td>
</tr>
</tbody>
</table>
6 Modules

6.1 Module: Advanced Mathematics [M-MATH-102859]

**Responsible:** Prof. Dr. Roland Griesmaier

**Organisation:** KIT Department of Mathematics

**Part of:** Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Grade to a tenth</td>
<td>3 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100525</td>
<td>Tutorial Advanced Mathematics I</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100526</td>
<td>Tutorial Advanced Mathematics II</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100527</td>
<td>Tutorial Advanced Mathematics III</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100275</td>
<td>Advanced Mathematics I</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100276</td>
<td>Advanced Mathematics II</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100277</td>
<td>Advanced Mathematics III</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Learning assessment is carried by three written examinations of length 120 minutes each and by three sets of homework assignments (pre-requisites). A "pass" result on a pre-requisites in Advanced Mathematics I, II and III, respectively, is a requirement for registration for the corresponding written examination.

**Prerequisites**

None.

**Competence Goal**

The students know the fundamentals of one-dimensional calculus. They can reliably use limits, functions, power series and integrals. They understand central concepts such as continuity, differentiability or integrability and they know important statements about these concepts. The students can follow the arguments leading to these statements as presented in the lectures and are able to independently prove simple assertions based on these statements.

The students know about the fundamentals of linear algebra. They are able to use vectors, linear maps and matrices without problems. They have basic knowledge about Fourier series. The students also can theoretically and practically deal with initial value problems of ordinary differential equations. They can make use of classical solution techniques for linear differential equations.

The students know about differential calculus for vector-valued functions of several variables and about techniques of vector calculus such as the definition and application of differential operators, the computation of domain, line and surface integrals and important integral theorems. They have basic knowledge about partial differential equations and know basic facts from stochastics.

**Content**

Workload

In class: 270 hours

- lectures, tutorials and examinations

Independent study: 360 hours

- independent review of course material
- work on homework assignments
- preparation for written exams

Learning type

Lecture, problem classes, tutorials
6.2 Module: Bachelor's Thesis [M-MACH-104494]

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** Bachelor's Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109188</td>
<td>Bachelor's Thesis</td>
<td>12 CR</td>
<td>Heilmaier</td>
<td></td>
</tr>
<tr>
<td>T-MACH-109189</td>
<td>Presentation</td>
<td>3 CR</td>
<td>Heilmaier</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

The module Bachelor Thesis consists of a written bachelor thesis and an oral presentation of a scientific subject chosen by the student himself/herself or given by the supervisor. The bachelor thesis is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods. The work load of the bachelor thesis corresponds to 12 ECTS. The maximal processing time of the bachelor thesis takes three months.

The date of issue of the subject has to be fixed by the supervisor and the student and to be put on record at the examination board. The subject of the bachelor thesis may be only returned once and only within the first month of processing time. On a reasoned request of the student, the examination board can extend the processing time by up to one month. If the bachelor thesis is not completed in time, this examination is "failed" (5.0), unless the student is not responsible.

The bachelor thesis is to be evaluated by not less than a professor or a senior scientist according to § 14 Abs. 3 Ziff. 1 KITGor habilitated members of the KIT Faculty of Mechanical Engineering and another examiner. Generally, one of the two examiners is the person who has assigned the thesis. If the examiners do not agree, the bachelor thesis is graded by the examination board within this assessment; another expert can be appointed too. The bachelor thesis has to be graded within a period of six weeks after the submission.

The colloquium presentation must be held within 6 weeks after the submission of the bachelor thesis. The presentation should last around 20 minutes, corresponds to 3 ECTS, and is followed by a scientific discussion with the present expert audience.

**Prerequisites**

The requirement for admission to the bachelor thesis module are 120 ECTS. As to exceptions, the examination board decides on a request of the student (see § 14 (1) SPO).

**Modeled Conditions**

The following conditions have to be fulfilled:

1. You need to have earned at least 120 credits in the following fields:
   - Fundamentals of Engineering
   - Interdisciplinary Qualifications
   - Specialization in Mechanical Engineering

**Competence Goal**

The student is able to work independently on a defined, subject-relevant theme based on scientific criteria within a given period of time. The student is able to do research, to analyze information, to abstract as well as collect and recognize basic principles and regularities on the basis of less structured information. He/she overviews a question, is able to choose scientific methods and techniques, and use them to solve the question or to identify other potentials. In general, this will be carried out in consideration of social and/or ethical aspects.

The student can interpret, evaluate, and if needed plot the results obtained. He/she is able to clearly structure a scientific work and (a) to communicate it in written form using technical terminology as well as (b) to present it in oral form and discuss it with experts.

**Content**

The student shall be allowed to make suggestions for the topic of his/her bachelor thesis. The topic is set by the supervisor of the thesis in accordance with § 14 (3) SPO.

**Workload**

The workload for the preparation and presentation of the bachelor thesis is about 450 hours.
### 6.3 Module: Compulsory Elective Module (BSc-Modul WPF) [M-MACH-102746]

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** Specialization in Mechanical Engineering (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

#### Compulsory Elective Module (Election: 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105381</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105320</td>
<td>Introduction to the Finite Element Method</td>
<td>3</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Introduction into Mechatronics</td>
<td>6</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction to Multi-Body Dynamics</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-110362</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>3</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-110377</td>
<td>Continuum Mechanics of Solids and Fluids</td>
<td>3</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>6</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-110375</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>6</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Vibration Theory</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
</tbody>
</table>

#### Compulsory Elective Module (Tutorial) (Election: )

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110330</td>
<td>Tutorial Introduction to the Finite Element Method</td>
<td>1</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-111033</td>
<td>Tutorial Introduction to Computational Fluid Dynamics</td>
<td>1</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-110333</td>
<td>Tutorial Continuum Mechanics of Solids and Fluids</td>
<td>1</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-110376</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>2</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
</tr>
</tbody>
</table>

**Prerequisites:** None

**Prerequisites Certificate:**
oral/written exam

Bachelor's Program Mechanical Engineering, Date: 20/09/2022  
Module Handbook, valid from Winter Term 2022/23
**Competence Goal**
The students have deepened their knowledge in selected areas of mechanical engineering. Due to the broad variety of eligible courses, they have supplemented / sharpened their own competence profile in mechanical engineering individually and precisely.

The specific learning outcomes are defined by the respective coordinator of the course.

**Content**
See brick courses.

**Annotation**
Compulsory elective subjects have to be chosen from the corresponding catalogues as displayed in the bachelor’s program with an amount of 4 credit points (see Studienplan or Module Handbook)

**Workload**
The work load is about 120 hours, corresponding to 4 credit points. The work load varies from lecture to lecture, for example a lecture consisting of 4 credit points includes 28 h of presence during the lecture and 92 h preparation and rework time at home, 120 hours in total.

**Learning type**
Lectures, Tutorials
**6.4 Module: Computer Science (BSc-Modul 09, Inf) [M-MACH-102563]**

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105205</td>
<td>Computer Science for Engineers</td>
<td>6 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105206</td>
<td>Computer Science for Engineers, Prerequisite</td>
<td>0 CR</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This item will not influence the grade calculation of this parent.

**Competence Certificate**  
Written examination "Computer Science for Engineers", 100%, 180 minutes; Examination prerequisite: passed lap course.

**Prerequisites**  
None

**Competence Goal**  
Students can identify and explain fundamental terms, problems and concepts of computer science. They can apply the basic methods of the OO modeling with UML and implement the object-oriented programming (OOP) with the programming language JAVA.

**Content**  
Basics: Information representation- and processing, terms and definitions: alphabet, data, signals, information, numeral systems, propositional logic and Boolean algebra, computer architectures, programming paradigms.  
Object Orientation: Definition and important characteristics of object orientation, Object-oriented modeling with UML.  
Data Structures: Definition, properties and application of graphs, trees, linked lists, queues and stacks.  
Algorithms: Characteristics of algorithms, complexity analysis, design methods, important examples.  
Database management systems: Relational data model, relational algebra, declarative language SQL. Basics and concepts of JAVA. Introduction to programming using JAVA.

**Module grade calculation**  
Examination result "Computer Science for Engineers" 100%

**Annotation**  
For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.  
For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

**Workload**  
Attendance time: 63 hours  
Self-study: 117 hours

**Learning type**  
Lecture and Lab Course
# 6.5 Module: Electrical Engineering [M-ETIT-104801]

**Responsible:** Prof. Dr. Martin Doppelbauer  
**Organisation:** KIT Department of Electrical Engineering and Information Technology  
**Part of:** Fundamentals of Engineering (Usage from 3/8/2019)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109820</td>
<td>Electrical Engineering and Electronics</td>
<td>8</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
6.6 Module: Engineering Mechanics (BSc-Modul 03, TM) [M-MACH-102572]

**Mandatory**

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>4 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Credits**
- T-MACH-105201: Engineering Mechanics III & IV, 10 CR, Seemann
- T-MACH-100528: Tutorial Engineering Mechanics I, 0 CR, Böhlke, Langhoff
- T-MACH-100284: Tutorial Engineering Mechanics II, 0 CR, Böhlke, Langhoff
- T-MACH-105202: Tutorial Engineering Mechanics III, 0 CR, Seemann
- T-MACH-105203: Tutorial Engineering Mechanics IV, 0 CR, Seemann

**Competence Certificate**
prerequisites EM I, II (see T-MACH-100528 "Engineering Mechanics I (Tutorial)" as well as T-MACH-100284 "Engineering Mechanics II (Tutorial)"), they consist of solving problems of the work sheets in four categories: written mandatory homework, written homework, computational homework, colloquia.

prerequisites EM III, IV
- "Engineering Mechanics I", written exam, 90 minutes; graded;
- "Engineering Mechanics II", written exam, 90 minutes; graded;
- "Engineering Mechanics III/IV", written exam, 180 Minutes; graded;

The final grade of this module is computed as ECTS-based weighted sum of the included exams.

**Prerequisites**
None

**Competence Goal**
After having finished the lectures EM I and EM II the students can

- assess stress and strain distributions for the basic load cases within the framework of elasticity and thermoelectricity
- compute and evaluate 3D stress and strain states
- apply the principle of virtual displacements
- apply energy methods and evaluate approximate solutions
- evaluate the stability of equilibrium positions
- solve worksheet problems to topics of the lecture using the computer algebra system MAPLE

In EM III and EM IV the students learn to analyse the motion of points and systems. Based on the axioms of Newton and Euler they know how to derive equations of motion. Besides the synthetic methods they get familiar with analytical methods which are based on energy expressions and can be applied efficiently and formalised. These methods are introduced in the scope of systems of mechanical engineering so that students can determine and analyse motions and the forces which are generated by these motions.
Content
This Module consists of the courses "Engineering Mechanics I (lecture)" up to "Engineering Mechanics IV (lecture)" as well as "Engineering Mechanics I (Tutorial)" up to "Engineering Mechanics IV (Tutorial)"
Contents of "Engineering Mechanics I": basics of vector calculus; force systems; statics of rigid bodies; internal forces and moments in bars and beams; friction; centre of gravity, centre of mass; work, energy, principle of virtual work; statics of inextensible ropes; elastostatics of tension-compression-bars
Contents of "Engineering Mechanics II": bending; shear; torsion; stress and strain state in 3D; Hooke's law in 3D; elasticity theons in 3D; energy methods in elastostatics; approximation methods; stability
Contents of "Engineering Mechanics III":
Kinetics of a particle:
Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems
Systems of particles:
Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.
Plain motion of rigid bodies:
Contents of "Engineering Mechanics IV":
Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption

Annotation
For the Bachelor's program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.
For the Bachelor's program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
lectures and exercises: 204h
homework and preparation of examination: 486h

Learning type
Lectures, Tutorials, Lab course groups, attestation of solved work sheets, colloquiu, consultation hours (optional)
6.7 Module: Fluid Mechanics (BSc-Modul 12, SL) [M-MACH-102565]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering
Part of: Fundamentals of Engineering

Credits 8
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 2 terms
Language German/English
Level 3
Version 1

Mandatory
T-MACH-105207 Fluid Mechanics 1&2 8 CR Frohnapfel

Competence Certificate
Common examination of "Fluid Mechanics I" and "Fluid Mechanics II"; written exam, 3 hours (graded)

Prerequisites
none

Competence Goal
After having completed this module the student is capable of deriving the mathematical equations that describe the motion of fluids and can determine flow quantities for generic problems. He/she can name characteristic properties of fluids and distinguish different flow states. The student is capable of determining fluid quantities in fundamental applications. This includes the calculation of

- static and dynamic forces acting from the fluid onto the solid
- two-dimensional viscous flows
- one-dimensional incompressible and compressible flows without losses
- lossy flows through pipes

Content
properties of fluids, surface tension, hydro- and aerostatics, kinematics, stream tube theory (compressible and incompressible), losses in pipeline systems, dimensional analysis, dimensionless numbers
tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Module grade calculation
result of exam

Annotation
For the Bachelor's program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.
For the Bachelor's program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
regular attendance: 64 hours self-study: 176 hours

Learning type
Lectures + tutorials

Literature
Zirep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg
Kuhlmann, H.: Strömungsmechanik, Pearson Studium
Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag
**Module: Key Competences (BSc-Modul 07, SQL) [M-MACH-102576]**

**Responsible:** Prof. Dr.-Ing. Barbara Deml  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Interdisciplinary Qualifications

### Credits: 6  
**Grading scale:** pass/fail  
**Recurrence:** Each term  
**Duration:** 1 term  
**Language:** German/English  
**Level:** 3  
**Version:** 3

**Election notes**  
Interdisciplinary qualifications (IQ) completed at the House-of-Competence (HoC), at the Zentrum für Angewandte Kulturwissenschaften (ZAK) or at the Sprachenzentrum (SpZ) can be assigned in self-service.

First, select a partial accomplishment named “self-assignment” in your study schedule and second, assign an IQ-achievement via the tab “IQ achievements”.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Key Competences (Election: at least 2 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105296</td>
<td>Working Methods in Mechanical Engineering</td>
</tr>
<tr>
<td>T-MACH-110961</td>
<td>Steering of a Global Operating Company - The Robert BOSCH GmbH as an Example</td>
</tr>
<tr>
<td>T-MACH-111684</td>
<td>Self-Booking-BSc-HOC-SPZ-ZAK-Non-Graded</td>
</tr>
<tr>
<td>T-MACH-111685</td>
<td>Self-Booking-BSc-HOC-SPZ-ZAK-Graded</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Success is monitored within the framework of academic achievements.  
Amount, type and scope of the success control can vary according to the individually choice.

**Prerequisites**

none

**Competence Goal**

After completing the module Key Competences students can

- determine and coordinate work steps, projects and goals, proceed systematically and purposefully, set priorities as well as assess the feasibility of a task,
- apply the principles for ensuring good scientific practice
- apply methods for the planning of a specific task under given framework conditions in a goal- and resource-oriented way,
- describe methods for scientific research and selection of technical information according to pre-established quality criteria and apply them to given problems,
- discuss empirical methods and apply them to selected examples,
- present technical information in a clear, readable, and convincingly argued manner in various forms of presentation (e.g. poster, exposé, abstract) in writing and appropriately visualize it graphically (e.g. engineering drawings, flowcharts),
- present and stand up for technical content in a convincing and appealing way,
- work as a team in a task-oriented manner, handle any conflicts on their own and take responsibility for themselves and others,
- communicate as a team in an objective, goal-oriented and interpersonal manner, represent their own interests, reflect and take into account the interests of others in their own words, and successfully organize the course of the conversation.

**Content**

The module Key Competences consists “Working Methods in Mechanical Engineering” and a freely selectable courses offered by the KIT-House of Competence (HoC), the KIT Language Centre (SPZ), the Centre for Cultural and General Studies (ZAK), and the brick courses contained in the elective block of key qualifications with a work load corresponding to a total of 2 ECTS.

Upon request, the examination board may approve further courses as freely selectable subjects in the module "Key Competences".

**Module grade calculation**

non graded
Workload
The work load is about 180 hours, corresponding to 6 credit points in the Bachelor of Science program.

Learning type
The teaching and learning methods depend on the respectively chosen courses. The courses can be lectures, seminars, tutorials, or lab courses.
6.9 Module: Machines and Processes (mach13BSc-Modul 13, MuP) [M-MACH-102566]

**Responsible:** Dr.-Ing. Heiko Kubach  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105208</td>
<td>Machines and Processes</td>
<td>7 CR</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
<tr>
<td>T-MACH-105232</td>
<td>Machines and Processes, Prerequisite</td>
<td>0 CR</td>
<td>Bauer, Kubach, Maas, Pritz</td>
</tr>
</tbody>
</table>

**Competence Certificate**

written exam (2 h)

**Prerequisites**

None.

**Competence Goal**

The students can name and describe basic energy conversion processes and energy converting machines. They can explain the application of these energy conversion processes in various machines. They can analyze and evaluate the processes and machines in terms of functionality and efficiency and they are able to solve basic technical problems in terms of operating the machines.

**Content**

- Internal combustion engines
- Hydraulic fluid machinery
- Thermal turbo machines
- Thermodynamics

**Module grade calculation**

Grade out of written exam (100%)

**Annotation**

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

**Workload**

regular attendance: 48 h  
self-study: 162 h

**Learning type**

Lecture+Tutorial  
Lab Course
Module: Major Field: Combustion Engine Techniques (SP 57) [M-MACH-102645]

**Responsible:** Prof. Dr. Thomas Koch  
**Organisation:** KIT Department of Mechanical Engineering

### Part of:
Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

#### Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
<th>Coaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>5</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
<td></td>
</tr>
</tbody>
</table>

#### Combustion Engine Techniques (K) (Election: at least 3 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-111623</td>
<td>Fuels and Lubricants for Engine Powertrains</td>
<td>4</td>
<td>Kehrwald, Kubach</td>
</tr>
<tr>
<td>T-MACH-110817</td>
<td>Development of hybrid drivetrains</td>
<td>4</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>4</td>
<td>Bernhardt</td>
</tr>
</tbody>
</table>

#### Combustion Engine Techniques (E) (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>4</td>
<td>Gohl</td>
</tr>
<tr>
<td>T-MACH-105649</td>
<td>Boosting of Combustion Engines</td>
<td>4</td>
<td>Kech, Kubach</td>
</tr>
<tr>
<td>T-MACH-110816</td>
<td>Großdiesel- und -gasmotoren für Schiffsantriebe</td>
<td>4</td>
<td>Kubach</td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>4</td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-105337</td>
<td>Engine Laboratory</td>
<td>4</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-MACH-111578</td>
<td>Sustainable Vehicle Drivetrains</td>
<td>4</td>
<td>Koch, Toedter</td>
</tr>
<tr>
<td>T-MACH-111591</td>
<td>Turbo Charging of Internal Combustion Engines</td>
<td>4</td>
<td>Kech, Kubach</td>
</tr>
<tr>
<td>T-MACH-105985</td>
<td>Ignition Systems</td>
<td>4</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

**Competence Certificate**
oral exam, written exam, lab course reports (see description of bricks)

**Prerequisites**
None

**Competence Goal**
After completion of this „Schwerpunkt“ students are able to

- Describe and explain the working principal of different engine types
- Name the challenges in engine development
- Describe the correlations between engine operation, application parameters and emissions

**Content**
The focus of this “Schwerpunkt” are the basic design and the working principle of internal combustion engines. Different types of engines such as gasoline engine, diesel engine and gas engine are subject. The fundamental thermodynamic aspects as well as the mechanical aspects are discussed. The influence of application parameters and the correlation of engine concepts, fuels and emissions are addressed.

**Workload**
The work load is 360 hours, corresponding to 12 credit points.

**Learning type**
Lectures, Exercises, Lab Courses
6.11 Module: Major Field: Continuum Mechanics (SP 13) [M-MACH-102582]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110377</td>
<td>Continuum Mechanics of Solids and Fluids</td>
<td>3 CR</td>
<td>Böhlke, Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-110836</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>4 CR</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Continuum Mechanics (E) (Election: )

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110362</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>3 CR</td>
<td>Frohnapfel, Stroh</td>
</tr>
<tr>
<td>T-MACH-105320</td>
<td>Introduction to the Finite Element Method</td>
<td>3 CR</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Continuum Mechanics (Ü) (Election: )

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110330</td>
<td>Tutorial Introduction to the Finite Element Method</td>
<td>1 CR</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-111033</td>
<td>Tutorial Introduction to Computational Fluid Dynamics</td>
<td>1 CR</td>
<td>Frohnapfel, Stroh</td>
</tr>
<tr>
<td>T-MACH-110333</td>
<td>Tutorial Continuum Mechanics of Solids and Fluids</td>
<td>1 CR</td>
<td>Böhlke, Frohnapfel</td>
</tr>
</tbody>
</table>

Competence Certificate

see different bricks

Prerequisites

none

Competence Goal

After having finished this major field the students can

- list important concepts and models of continuum mechanics both for solids and fluids including field equations and boundary conditions
- apply these models in given problems
- apply methods of tensor algebra and tensor analysis in given problems of continuum mechanics
- classify the basic numerical tools and apply them in given problems of continuum mechanics

Content

The comprehensive topic of the major field are the basics of continuum mechanics that the students acquire within the compulsory parts (8 credit points). Moreover, there is a supplementary area covering the corresponding numerical methods which the students can choose according to their interests.

Workload

The work load is about 360 hours in the Bachelor of Science program, whereof the presence time is 125 h.

Learning type

lectures, tutorials, computer tutorial, consultation hours

Literature

see different bricks
### 6.12 Module: Major Field: Energy Converting Engines [M-MACH-102838]

**Responsible:** Prof. Dr. Thomas Koch  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

#### Energy Converting Engines (K) (Elective: at least 8 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-111550</td>
<td>CO2-Neutral Combustion Engines and their Fuels I</td>
<td>4</td>
<td>CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-105326</td>
<td>Hydraulic Fluid Machinery</td>
<td>8</td>
<td>CR</td>
<td>Pritz</td>
</tr>
<tr>
<td>T-MACH-105363</td>
<td>Thermal Turbomachines I</td>
<td>6</td>
<td>CR</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

#### Energy Converting Engines (E) (Elective: at most 5 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CWVT-105780</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>6</td>
<td>CR</td>
<td>Zarzalis</td>
</tr>
<tr>
<td>T-MACH-111623</td>
<td>Fuels and Lubricants for Engine Powertrains</td>
<td>4</td>
<td>CR</td>
<td>Kehrwald, Kubach</td>
</tr>
<tr>
<td>T-MACH-111560</td>
<td>CO2-Neutral Combustion Engines and their Fuels II</td>
<td>5</td>
<td>CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-105515</td>
<td>Introduction to Numerical Fluid Dynamics</td>
<td>4</td>
<td>CR</td>
<td>Pritz</td>
</tr>
<tr>
<td>T-MACH-110817</td>
<td>Development of hybrid drivetrains</td>
<td>4</td>
<td>CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>4</td>
<td>CR</td>
<td>Geimer</td>
</tr>
<tr>
<td>T-MACH-105533</td>
<td>Gasdynamics</td>
<td>4</td>
<td>CR</td>
<td>Gatti, Kriegseis</td>
</tr>
<tr>
<td>T-MACH-110816</td>
<td>Großdiesel- und -gasmotoren für Schiffsantriebe</td>
<td>4</td>
<td>CR</td>
<td>Kubach</td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>4</td>
<td>CR</td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>4</td>
<td>CR</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105325</td>
<td>Fundamentals of Combustion II</td>
<td>4</td>
<td>CR</td>
<td>Bykov, Maas</td>
</tr>
<tr>
<td>T-MACH-105337</td>
<td>Engine Laboratory</td>
<td>4</td>
<td>CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-MACH-111578</td>
<td>Sustainable Vehicle Drivetrains</td>
<td>4</td>
<td>CR</td>
<td>Koch, Toedter</td>
</tr>
<tr>
<td>T-MACH-105338</td>
<td>Numerical Fluid Mechanics</td>
<td>4</td>
<td>CR</td>
<td>Gatti, Magagnato</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>4</td>
<td>CR</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-107447</td>
<td>Reliability Engineering 1</td>
<td>3</td>
<td>CR</td>
<td>Konnov</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>5</td>
<td>CR</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
</tr>
<tr>
<td>T-MACH-105364</td>
<td>Thermal Turbomachines II</td>
<td>6</td>
<td>CR</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-105366</td>
<td>Turbo Jet Engines</td>
<td>4</td>
<td>CR</td>
<td>Bauer</td>
</tr>
<tr>
<td>T-MACH-105234</td>
<td>Windpower</td>
<td>4</td>
<td>CR</td>
<td>Lewald</td>
</tr>
<tr>
<td>T-MACH-111591</td>
<td>Turbo Charging of Internal Combustion Engines</td>
<td>4</td>
<td>CR</td>
<td>Kech, Kubach</td>
</tr>
<tr>
<td>T-MACH-111585</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td>4</td>
<td>CR</td>
<td>Kubach</td>
</tr>
<tr>
<td>T-MACH-105985</td>
<td>Ignition Systems</td>
<td>4</td>
<td>CR</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

**Compeence Certificate**  
Refer to different brick descriptions of SP24

**Prerequisites**  
None
**Competence Goal**
The students acquire broad and well-founded knowledge of the scientific theories, principles and methods of engines and work machines in the mandatory part of this major field. The aim is to design, apply and evaluate these machines.

Building on this, the students deepen selected fields of application in the election block, so that they are then able to independently analyze and evaluate problems from this field of application and to develop solutions based on this. After completing the specialization, students can in particular

- name the function and use of engines and working machines,
- describe the state of the art and the resulting fields of application of the engines and work machines and apply them using the example,
- Name the basic theories, methods and properties for the various fields of application of the engines and work machines and use and evaluate them.

**Content**
Energy-converting machines are a core topic in mechanical engineering. This major field deals with the design and functioning of various energy-converting machines. Essentially, this involves hydraulic flow machines, thermal turbo machinery and internal combustion engines. In the election block, additional basics, sub-points and detailed questions of the above machines are treated. The spectrum ranges from basic numerical simulation of the processes to application-oriented project planning and system development.

**Workload**
The work load is 360 hours, corresponding to 12 credit points.

**Recommendation**
Recommended compulsory optional subject: Heat and mass transfer

**Learning type**
Lectures and Exercises
## 6.13 Module: Major Field: Engineering Design (SP 10) [M-MACH-102815]

**Responsible:** Prof. Dr.-Ing. Albert Albers  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

### Engineering Design (K) (Election: at least 8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105233</td>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>4 CR</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

### Engineering Design (E) (Election: )

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105155</td>
<td>Applied Tribology in Industrial Product Development</td>
<td>4 CR</td>
<td>Albers, Lorentz, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105311</td>
<td>Design and Development of Mobile Machines</td>
<td>4 CR</td>
<td>Geimer, Siebert</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-108719</td>
<td>Designing with numerical methods in product development</td>
<td>4 CR</td>
<td>Schnack</td>
</tr>
<tr>
<td>T-MACH-108374</td>
<td>Vehicle Ergonomics</td>
<td>4 CR</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>8 CR</td>
<td>Schulze</td>
</tr>
<tr>
<td>T-MACH-100092</td>
<td>Automotive Engineering I</td>
<td>8 CR</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>2 CR</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>2 CR</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-111389</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
<td>4 CR</td>
<td>Weber</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>2 CR</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>2 CR</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>4 CR</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105330</td>
<td>Design with Plastics</td>
<td>4 CR</td>
<td>Liedel</td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ploch</td>
</tr>
<tr>
<td>T-MACH-105440</td>
<td>Leadership and Conflict Management</td>
<td>4 CR</td>
<td>Hatzl</td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Production Technology for E-Mobility</td>
<td>4 CR</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>4 CR</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>4 CR</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Quality Management</td>
<td>4 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-105171</td>
<td>Safety Engineering</td>
<td>4 CR</td>
<td>Kany</td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products</td>
<td>3 CR</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products - Case Study</td>
<td>1 CR</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-111382</td>
<td>Technical Acoustics</td>
<td>4 CR</td>
<td>Pantle, Walter</td>
</tr>
<tr>
<td>T-MACH-105361</td>
<td>Technical Design in Product Development</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Schmid</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Gear Cutting Technology</td>
<td>4 CR</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

### Engineering Design (P) (Election: at most 4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102107</td>
<td>Gear Cutting Technology</td>
<td>4 CR</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>
### Prerequisites
None

### Competence Goal
The students are able to transfer their knowledge and abilities in product engineering to mechanical systems in research and industrial practice.

### Content
see courses of the SP10

### Workload
The workload is about 360 hours, corresponding to 12 credit points.

### Learning type
- lectures
- auditorium exercises
- workshops

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105370</td>
<td>Laboratory Mechatronics</td>
<td>4 CR</td>
<td>Hagenmeyer, Seemann, Stiller</td>
</tr>
<tr>
<td></td>
<td>This item will not influence the grade calculation of this parent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111431</td>
<td>Programming in CAE-Applications</td>
<td>4 CR</td>
<td>Kärger</td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Project Internship Additive Manufacturing: Development and Production of an Additive Component</td>
<td>4 CR</td>
<td>Zanger</td>
</tr>
<tr>
<td>T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>0 CR</td>
<td>Geimer, Siebert</td>
</tr>
<tr>
<td></td>
<td>This item will not influence the grade calculation of this parent.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 6.14 Module: Major Field: Fundamentals of Energy Technology [M-MACH-102816]

**Responsible:** Prof. Dr.-Ing. Hans-Jörg Bauer  
**Organisation:** KIT Department of Mechanical Engineering  
Institute of Thermal Turbomachinery  
**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

#### Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>8 CR</td>
<td>Badea, Cheng</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105525</td>
<td>Introduction to Nuclear Energy</td>
<td>4 CR</td>
<td>Cheng</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105325</td>
<td>Fundamentals of Combustion II</td>
<td>4 CR</td>
<td>Bykov, Maas</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105326</td>
<td>Hydraulic Fluid Machinery</td>
<td>8 CR</td>
<td>Pritz</td>
<td></td>
</tr>
</tbody>
</table>

#### Fundamentals of Energy Technology (K) (Election: )

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105422</td>
<td>Selected Problems of Applied Reactor Physics and Exercises</td>
<td>4 CR</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems</td>
<td>4 CR</td>
<td>Kramer, Schöning</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105533</td>
<td>Gasdynamics</td>
<td>4 CR</td>
<td>Gatti, Kriegseis</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4 CR</td>
<td>Kohl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105338</td>
<td>Numerical Fluid Mechanics</td>
<td>4 CR</td>
<td>Gatti, Magagnato</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101939</td>
<td>Photovoltaics</td>
<td>6 CR</td>
<td>Powalla</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Production Technology for E-Mobility</td>
<td>4 CR</td>
<td>Fleischer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>4 CR</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105403</td>
<td>Flows and Heat Transfer in Energy Technology</td>
<td>4 CR</td>
<td>Cheng</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111382</td>
<td>Technical Acoustics</td>
<td>4 CR</td>
<td>Pantle, Walter</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>5 CR</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105225</td>
<td>Thermal Solar Energy</td>
<td>4 CR</td>
<td>Stieglitz</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105234</td>
<td>Windpower</td>
<td>4 CR</td>
<td>Lewald</td>
<td></td>
</tr>
</tbody>
</table>

#### Fundamentals of Energy Technology (E) (Election: )

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
</table>

#### Fundamentals of Energy Technology (P) (Election: at most 4 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105331</td>
<td>Laboratory Exercise in Energy Technology</td>
<td>4 CR</td>
<td>Bauer, Maas, Wirbser</td>
<td></td>
</tr>
<tr>
<td>T-MACH-106707</td>
<td>Workshop on Computer-based Flow Measurement Techniques</td>
<td>4 CR</td>
<td>Bauer</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Oral exam

**Prerequisites**

None

**Competence Goal**

After completion of SP 15 students are able:

- to describe the elements of an energy system and their complex interactions,
- to list different conventional energy sources and assess their static range,
- to name the fluctuating supply of renewable energies such as wind, solar radiation, ocean currents and tides etc. and describe its effects on the energy system,
- to assess the effects of external and internal economic, ecological and technical boundary conditions of energy systems and to derive approaches for an optimal mix of different energy technologies,
- to explain the operational principle of well-established power plants as well as of power plants based on renewable energies.
Content
Fundamentals of energy technology offers sound knowledge on the subject of energy conversion, storage and transport as well as the necessary thermodynamic principles. The topics covered include conventional, fossil-fired power plants, combined heat and power generation, nuclear energy, renewable energy sources such as solar energy, wind power and hydropower, as well as energy storage and grid integration. The election block offers opportunities for in-depth study of the listed energy conversion types as well as practical modules in which the fundamentals can be applied in practice. Furthermore, there is the possibility to extend the knowledge of the fundamentals and to get an insight into numerical methods of flow simulation. Progress and challenges of energy system transformation and the latest findings from energy research are also discussed.

Workload
360 hours

Learning type
Lectures, Tutorials
6.15 Module: Major Field: Information Management (SP 17) [M-MACH-102583]

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Information Management (K) (Election: at least 8 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106457</td>
<td>i4.0 Systems Platform</td>
<td>4 CR</td>
<td>Maier, Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

**Information Management (E) (Election: )**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106744</td>
<td>Agile Product Innovation Management - Value-driven Planning of New Products</td>
<td>4 CR</td>
<td>Kläger</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-111283</td>
<td>Development Methods of Technical Systems</td>
<td>4 CR</td>
<td>Maier, Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102209</td>
<td>Information Engineering</td>
<td>3 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>3 CR</td>
<td>Kilger</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>4 CR</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>4 CR</td>
<td>Mbang</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>4 CR</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

**Information Management (P) (Election: at most 4 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102185</td>
<td>CATIA CAD Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102187</td>
<td>CAD-NX Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Examination of other kind and oral and/or written examination: duration 2 hours.

**Prerequisites**

None

**Competence Goal**

The students should:

- understand the relevance of information management in product development in consideration of increasing product and process complexity.
- have basic knowledge in handling information, which is generated by product development activities along the lifecycle.

**Content**

Generation and management of information

Architecture and functionality of information systems

CAX-systems, Industry 4.0

**Workload**

360 hours
Learning type
Lectures, Tutorials
### 6.16 Module: Major Field: Information Technology [M-MACH-102817]

**Responsible:** Prof. Dr.-Ing. Christoph Stiller  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Specialization in Mechanical Engineering (Major Field)

**Credits:** 12  
**Grading scale:** Grade to a tenth  
**Recurrence:** Each term  
**Duration:** 2 terms  
**Language:** German/English  
**Level:** 3  
**Version:** 3

**Election notes**
In the core area of Major Field at least 8 ECTS have to be chosen.

<table>
<thead>
<tr>
<th>Information Technology (K) (Election: at least 8 credits)</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105314 Computational Intelligence</td>
<td>4 CR</td>
<td>Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105694 Data Analytics for Engineers</td>
<td>5 CR</td>
<td>Meisenbacher, Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105317 Digital Control</td>
<td>4 CR</td>
<td>Knoop</td>
</tr>
<tr>
<td>T-MACH-105223 Machine Vision</td>
<td>8 CR</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105335 Measurement II</td>
<td>4 CR</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information Technology (E) (Election: at most 6 credits)</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102150 BUS-Controls</td>
<td>4 CR</td>
<td>Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-108889 BUS-Controls - Advance</td>
<td>0 CR</td>
<td>Geimer</td>
</tr>
<tr>
<td>T-MACH-105218 Automotive Vision</td>
<td>6 CR</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-102128 Information Systems and Supply Chain Management</td>
<td>3 CR</td>
<td>Kilger</td>
</tr>
<tr>
<td>T/INFO-101466 Information Processing in Sensor Networks</td>
<td>6 CR</td>
<td>Hanebeck</td>
</tr>
<tr>
<td>T-MACH-105187 IT-Fundamentals of Logistics</td>
<td>4 CR</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105169 Engine Measurement Techniques</td>
<td>4 CR</td>
<td>Bernhardt</td>
</tr>
<tr>
<td>T-MACH-107447 Reliability Engineering 1</td>
<td>3 CR</td>
<td>Konnov</td>
</tr>
<tr>
<td>T-MACH-105185 Control Technology</td>
<td>4 CR</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-105367 Behaviour Generation for Vehicles</td>
<td>6 CR</td>
<td>Naumann, Werling</td>
</tr>
<tr>
<td>T-MACH-105370 Laboratory Mechatronics</td>
<td>4 CR</td>
<td>Hagenmeyer, Seemann, Stiller</td>
</tr>
<tr>
<td>T-MACH-105341 Lab Computer-Aided Methods for Measurement and Control</td>
<td>4 CR</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

**Competence Certificate**
Oral exams: duration approx 5 min. per credit point.  
However, amount, type and scope of the success control can vary according to the individually choice.

**Prerequisites**
none

**Competence Goal**
Students are able to

- explain fundamentals of information technology for given problems in mechanical engineering an mechatronics.  
- explain major methods for acquisition, processing and exploitation of information in technical systems.  
- outline and to explain alternative methods to determine and to represent measurement uncertainties and their propagation in technical systems.  
- explain information filters and fusion methods and understand their application to given problems.

**Content**

- Techniques of information and data processing in mechanical engineering  
- Techniques of sensor data processing  
- Concepts of control theory  
- Electronic devices for data processing
Workload
The work load is about 360 hours, corresponding to 12 credit points.

Learning type
lecture, practical training, exercise, prakticat training in laboratory
6.17 Module: Major Field: Materials Science and Engineering (SP 26) [M-MACH-102819]

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

**Election notes**

In the core area of Major Field at least 8 ECTS have to be chosen.

### Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105301</td>
<td>Materials Science and Engineering III</td>
<td>8 CR</td>
<td>Heilmaier</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105308</td>
<td>Atomistic Simulations and Molecular Dynamics</td>
<td>4 CR</td>
<td>Gumbsch, Schneider, Weygand</td>
<td></td>
</tr>
<tr>
<td>T-MACH-1012141</td>
<td>Constitution and Properties of Wearresistant Materials</td>
<td>4 CR</td>
<td>Ulrich</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105157</td>
<td>Foundry Technology</td>
<td>4 CR</td>
<td>Wilhelm</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102111</td>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td>4 CR</td>
<td>Schell</td>
<td></td>
</tr>
<tr>
<td>T-MACH-100287</td>
<td>Introduction to Ceramics</td>
<td>6 CR</td>
<td>Hoffmann</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105330</td>
<td>Design with Plastics</td>
<td>4 CR</td>
<td>Liedel</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Laser in Automotive Engineering</td>
<td>4 CR</td>
<td>Schneider</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105333</td>
<td>Mechanics and Strength of Polymers</td>
<td>4 CR</td>
<td>von Bernstorff</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>5 CR</td>
<td>August, Nestler</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102137</td>
<td>Polymer Engineering I</td>
<td>4 CR</td>
<td>Liebig</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Project Internship Additive Manufacturing: Development and Production of an Additive Component</td>
<td>4 CR</td>
<td>Zanger</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105724</td>
<td>Failure Analysis</td>
<td>4 CR</td>
<td>Greiner, Schneider</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105170</td>
<td>Welding Technology</td>
<td>4 CR</td>
<td>Farajian</td>
<td></td>
</tr>
<tr>
<td>T-MACH-112106</td>
<td>Fatigue of Materials</td>
<td>4 CR</td>
<td>Guth</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105970</td>
<td>Structural Analysis of Composite Laminates</td>
<td>4 CR</td>
<td>Kärger</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105362</td>
<td>Technology of Steel Components</td>
<td>4 CR</td>
<td>Schulze</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102139</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>4 CR</td>
<td>Gruber, Gumbsch</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>4 CR</td>
<td>Gumbsch, Weygand</td>
<td></td>
</tr>
<tr>
<td>T-MACH-107684</td>
<td>Materials Characterization</td>
<td>4 CR</td>
<td>Gibmeier, Schneider</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111258</td>
<td>Introduction to High Temperature Materials</td>
<td>4 CR</td>
<td>Gorr</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105211</td>
<td>Materials of Lightweight Construction</td>
<td>4 CR</td>
<td>Elsner, Liebig</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110937</td>
<td>Materials Recycling and Sustainability</td>
<td>4 CR</td>
<td>Elsner, Liebig</td>
<td></td>
</tr>
</tbody>
</table>

### Materials Science and Engineering (P) (Election: at most 4 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105651</td>
<td>Biomechanics: Design in Nature and Inspired by Nature</td>
<td>4 CR</td>
<td>Mattheck</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105447</td>
<td>Metallographic Lab Class</td>
<td>4 CR</td>
<td>Heilmaier, Mühl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102154</td>
<td>Laboratory Laser Materials Processing</td>
<td>4 CR</td>
<td>Schneider</td>
<td></td>
</tr>
</tbody>
</table>

### Materials Science and Engineering (Ü) (Election: )

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-107685</td>
<td>Exercises for Materials Characterization</td>
<td>2 CR</td>
<td>Gibmeier, Schneider</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Oral exams: duration approx. 5 min. per credit point.

However, amount, type and scope of the success control can vary according to the individual choice.
Prerequisites
None

Competence Goal
As part of a major field a specific subdomain of mechanical engineering is made accessible in breadth and depth. Students gain comprehensive knowledge in the core subjects and detailed knowledge in the supplementary subjects of the selected subdomain. They are able to generate new (scientific) solutions within this subdomain.

The specific learning outcomes are defined by the respective coordinator of the major field.

Content
The comprehensive topic of the major field are the thermodynamical and kinetic basics of materials science that the students acquire within the compulsory parts (8 credit points). Moreover, there is a supplementary area of materials science and engineering which offers different subjects according to the students' interests.

Annotation
The module Materials Science and Engineering consists of 12 credit points in the bachelor’s program. Within the compulsory parts, at least 8 credits are to be chosen. Within the supplementary area, the students can select from a broad variation of courses. For the bachelor’s program, a reduced catalogue exists (see Studienplan).

Workload
The work load is about 360 hours in the Bachelor of Science program, whereof the presence time is 66 h.

Learning type
Within the compulsory parts of the major field Materials Science and Engineering the students choose from a small number of lectures and tutorials (obligatory).

Within the supplementary area students can choose not only lectures and tutorials but also lab courses and seminars.
### 6.18 Module: Major Field: Mechatronics (SP 31) [M-MACH-102820]

**Responsible:** Prof. Dr. Veit Hagenmeyer  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

**Mechatronics (K) (Election: at least 8 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4 CR</td>
<td>Mikut, Reischl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105694</td>
<td>Data Analytics for Engineers</td>
<td>5 CR</td>
<td>Meisenbacher, Mikut, Reischl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Introduction into Mechatronics</td>
<td>6 CR</td>
<td>Böhländer, Reischl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction to Multi-Body Dynamics</td>
<td>5 CR</td>
<td>Seemann</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
<td>6 CR</td>
<td>Lauer, Stiller</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105539</td>
<td>Modern Control Concepts I</td>
<td>4 CR</td>
<td>Groell, Matthes</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td>6 CR</td>
<td>Naumann, Werling</td>
<td></td>
</tr>
</tbody>
</table>

**Mechatronics (E) (Election: at most 1 item)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Controls</td>
<td>4 CR</td>
<td>Becker, Geimer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digital Control</td>
<td>4 CR</td>
<td>Knoop</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimental Dynamics</td>
<td>5 CR</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100764</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
<td>Doppelbauer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>4 CR</td>
<td>Thomas</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>4 CR</td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6 CR</td>
<td>Seemann</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105334</td>
<td>Mechanics in Microtechnology</td>
<td>4 CR</td>
<td>Greiner, Gruber</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105370</td>
<td>Laboratory Mechatronics</td>
<td>4 CR</td>
<td>Hagenmeyer, Seemann, Stiller</td>
<td></td>
</tr>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
<td>6 CR</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105335</td>
<td>Measurement II</td>
<td>4 CR</td>
<td>Stiller</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4 CR</td>
<td>Kohl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
<td>Kohl, Sommer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Zacharias</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Laboratory Production Metrology</td>
<td>4 CR</td>
<td>Lanza</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>4 CR</td>
<td>Albers, Gutzmer, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>T-INFO-108014</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
<td>Asfour</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105373</td>
<td>Practical Training in Measurement of Vibrations</td>
<td>4 CR</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109313</td>
<td>Signals and Systems</td>
<td>6 CR</td>
<td>Heizmann</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105372</td>
<td>Theory of Stability</td>
<td>6 CR</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Ziegahn</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105521</td>
<td>Theoretical Description of Mechatronic Systems</td>
<td>4 CR</td>
<td>Seemann</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105555</td>
<td>System Integration in Micro- and Nanotechnology</td>
<td>4 CR</td>
<td>Gengenbach</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110272</td>
<td>System Integration in Micro- and Nanotechnology 2</td>
<td>4 CR</td>
<td>Gengenbach</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Vibration Theory</td>
<td>5 CR</td>
<td>Fidlin, Seemann</td>
<td></td>
</tr>
</tbody>
</table>
### Competence Certificate
Written exam and oral exam.

### Prerequisites
none

### Competence Goal
Students of the topic mechatronics know the future-oriented procedures. They are able to individually and creatively solve interdisciplinary questions and learn to effectively combine tools from the individual disciplines.

### Content
The topic mechatronics offers a broad, multidisciplinary body of knowledge. The graduates are qualified to solve essential mechatronic questions. In particular the following disciplines are covered by the major mechatronics:

- § Mechanics and fluidics
- § Electronics
- § Information processing
- § Automation.

### Workload
The work load is about 360 hours, corresponding to 12 credit points.

### Learning type
The contents of this major field are taught in form of lectures, exercises and practical experiences.

---

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-108889</td>
<td>BUS-Controls - Advance</td>
<td>0 CR</td>
<td>Geimer</td>
</tr>
<tr>
<td>T-INFO-106257</td>
<td>Human-Machine-Interaction Pass</td>
<td>0 CR</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

*This item will not influence the grade calculation of this parent.*
6.19 Module: Major Field: Modeling and Simulation in Dynamics (SP 61) [M-MACH-104430]

**Responsible:** Prof. Dr.-Ing. Alexander Fidlin

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

**Modeling and Simulation in Dynamics (K) (Election: at least 8 credits)**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Professor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>5 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction to Multi-Body Dynamics</td>
<td>5 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>6 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Vibration Theory</td>
<td>5 CR</td>
<td>Fidlin, Seemann</td>
</tr>
</tbody>
</table>

**Modeling and Simulation in Dynamics (E) (Election: at most 5 credits)**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Professor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105308</td>
<td>Atomicistic Simulations and Molecular Dynamics</td>
<td>4 CR</td>
<td>Gumbsch, Schneider, Weygand</td>
</tr>
<tr>
<td>T-MACH-111260</td>
<td>Dynamics of Electro-Mechanical Systems</td>
<td>5 CR</td>
<td>Altö, Fidlin</td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimental Dynamics</td>
<td>5 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>4 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105349</td>
<td>Computational Dynamics</td>
<td>4 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105350</td>
<td>Computational Vehicle Dynamics</td>
<td>4 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105172</td>
<td>Simulation of Coupled Systems</td>
<td>4 CR</td>
<td>Geimer</td>
</tr>
<tr>
<td>T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>0 CR</td>
<td>Geimer, Xiang</td>
</tr>
</tbody>
</table>

**Competence Certificate**
oral examination

**Prerequisites**
None

**Competence Goal**
The module provides modeling competences and continues thus the compulsory courses in dynamics. To this end analytical methods for the modeling and examination of dynamical systems are presented. The simulation of the systems enables the students to do simulation studies in typical applications in dynamical systems of mechanical engineering to be able to evaluate and interpret the results.

**Content**
This module deals with procedures, methods and applications for mechanical dynamical systems. Subjects are different methods to describe kinematics of multibody systems and to derive the equations of motion for such systems. Solutions of the equations of motion are obtained analytically by mathematical methods or approximately by numerical integration. Applications range from industrial systems like machines and cars down to atomistic simulation.

**Workload**
360 h

**Learning type**
Lectures, tutorials
### 6.20 Module: Major Field: Powertrain Systems (SP 02) [M-MACH-102812]

**Responsible:** Prof. Dr.-Ing. Albert Albers  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

**Election notes**
In the core area of each Major Field at least 8 ECTS have to be chosen.

#### Powertrain Systems (K) (Election: at least 8 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105307</td>
<td>Drive Train of Mobile Machines</td>
<td>4</td>
<td>Geimer, Wydra</td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>4</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>4</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>5</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

#### Powertrain Systems (E) (Election: )

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105215</td>
<td>Applied Tribology in Industrial Product Development</td>
<td>4</td>
<td>Albers, Lorentz, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110958</td>
<td>Design and Optimization of Conventional and Electrified Automotive Transmissions</td>
<td>4</td>
<td>Albers, Faust</td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Controls</td>
<td>4</td>
<td>Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction to Multi-Body Dynamics</td>
<td>5</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems</td>
<td>4</td>
<td>Kramer, Schönung</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>4</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4</td>
<td>Albers, Matthiesen, Ploch</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>4</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>4</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Production Technology for E-Mobility</td>
<td>4</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>4</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Project Management in Global Product Engineering Structures</td>
<td>4</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Control Technology</td>
<td>4</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products</td>
<td>3</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products - Case Study</td>
<td>1</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-105531</td>
<td>Tribology</td>
<td>8</td>
<td>Dienwiebel, Scherge</td>
</tr>
<tr>
<td>T-MACH-102194</td>
<td>Combustion Engines I</td>
<td>4</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>4</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Gear Cutting Technology</td>
<td>4</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

#### Powertrain Systems (Ü) (Election: )

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109303</td>
<td>Exercices - Tribology</td>
<td>0</td>
<td>Dienwiebel</td>
</tr>
</tbody>
</table>

This item will not influence the grade calculation of this parent.
Prerequisites
none

Competence Goal
The students know and understand the technical and physical basics and systematic connections of drive systems. The lecture deals vehicle drive systems as well as drive systems for stationary and mobile work machines.
They are able to choose, describe and use complex dimensioning- and design methods for drive systems under consideration of the interactions of the system.

Content
See courses of the SP02

Workload
The work load is about 360 hours, corresponding to 12 credit points.

Learning type
lectures
auditorium exercises
workshops
6.21 Module: Major Field: Production Systems (SP 38) [M-MACH-102589]

**Responsible:** Prof. Dr.-Ing. Volker Schulze  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

**Production Systems (K) (Election: at least 8 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105518</td>
<td>Human Factors Engineering I</td>
<td>4 CR</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td>4 CR</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>8 CR</td>
<td>Schulze</td>
</tr>
<tr>
<td>T-MACH-108849</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>8 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
<td>9 CR</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

**Production Systems (E) (Election: )**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Quality Management</td>
<td>4 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

**Production Systems (P) (Election: at most 4 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108878</td>
<td>Laboratory Production Metrology</td>
<td>4 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Project Internship Additive Manufacturing: Development and Production of an Additive Component</td>
<td>4 CR</td>
<td>Zanger</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Oral exams: duration approx. 5 min per credit point  
Written exams: duration approx. 20 - 25 min per credit point  
Amount, type and scope of the success control can vary according to the individually choice.

**Prerequisites**

None

**Competence Goal**

The students...

- are able to choose methods of production science target-oriented in familiar situations and are able to justify their selection.  
- are able to describe and compare production processes exemplarily.  
- are able to transfer known solutions to given problems in the field of production science under consideration of scientific theories, principles and methods.  
- are able to solve tasks in the field of production science team oriented and proceed responsible and adequate to the situation.  
- are able to integrate results of others at the solution of given problems.  
- have the ability to present their own results in written form and are able to interpret them.  
- are able to identify, dissect and develop further systems and processes and apply given sets of criteria under consideration of technical, economic and social conditions.

**Content**

Within this module the students will get to know and learn about production science. Manifold lectures and excursions as part of several lectures provide specific insights into the field of production science.

**Workload**

The work load is about 360 hours, corresponding to 12 credit points.

**Learning type**

Lectures, seminars, workshops, excursions
6.22 Module: Major Field: Rail System Technology (SP 50) [M-MACH-102638]

**Mandatory**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106424</td>
<td>Rail System Technology</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105540</td>
<td>Railways in the Transportation Market</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102121</td>
<td>Electric Rail Vehicles</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105237</td>
<td>Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
<td>6 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105350</td>
<td>Computational Vehicle Dynamics</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-108692</td>
<td>Seminar for Rail System Technology</td>
<td>3 CR</td>
<td></td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Oral exams: duration approx. 5 minutes per credit point.

However, amount, type and scope of the success control can vary according the individual choice.

**Prerequisites**

None

**Competence Goal**

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- Based on operating requirements and legal framework they derive the requirements concerning a capable infrastructure and suitable concepts of rail vehicles.
- They recognize the impact of alignment, understand the important function of the wheel-rail-contact and estimate the impact of driving dynamics on the operating program.
- They evaluate the impact of operating concepts on safety and capacity of a rail system.
- They know the infrastructure to provide power supply to rail vehicles with different drive systems.
- The students learn the role of rail vehicles and understand their classification. They understand the basic structure and know the functions of the main systems. They understand the overall tasks of vehicle system technology.
- They learn functions and requirements of car bodies and judge advantages and disadvantages of design principles. They know the functions of the car body's interfaces.
- They know about the basics of running dynamics and bogies.
- The students learn about advantages and disadvantages of different types of traction drives and judge, which one fits best for each application.
- They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
- They know the basic setup of train control management system and understand the most important functions.
- They specify and define suitable vehicle concepts based on requirements for modern rail vehicles.
- Supplementary lectures present further major aspects of a rail system.
Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations
8. Vehicle system technology: structure and main systems of rail vehicles
9. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
10. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
11. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
12. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
13. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends
15. Further contents in supplementary lectures

Annotation
A bibliography is available for download (Ilias-platform).

Workload

- Total effort at 12 ECTS (B.Sc.): about 360 hours
- Regular attendance: 63 hours
- Self-study: 63 hours
- Exam and preparation: 234 hours

Learning type
Lectures in the core part.
Lectures and seminars are offered in the supplementary part.
6.23 Module: Major Field: Technical Logistics (SP 44) [M-MACH-102821]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechanical Engineering (Major Field)

Columns: Credits, Grading scale, Recurrence, Duration, Language, Level, Version

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

**Election notes**

In the core area of each Major Field at least 8 ECTS have to be chosen.

**Technical Logistics (K) (Election: at least 8 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112113</td>
<td>Dynamic Systems of Technical Logistics</td>
<td>6 CR</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>4 CR</td>
<td>Mittwollen, Oellerich</td>
</tr>
<tr>
<td>T-MACH-109920</td>
<td>Basics of Technical Logistics II</td>
<td>6 CR</td>
<td>Hochstein</td>
</tr>
</tbody>
</table>

**Technical Logistics (E) (Election: )**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112114</td>
<td>Dynamic Systems of Technical Logistics - Project</td>
<td>4 CR</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>T-MACH-105174</td>
<td>Warehousing and Distribution Systems</td>
<td>3 CR</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems</td>
<td>4 CR</td>
<td>Kramer, Schönung</td>
</tr>
<tr>
<td>T-MACH-105175</td>
<td>Airport Logistics</td>
<td>3 CR</td>
<td>Richter</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>4 CR</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105171</td>
<td>Safety Engineering</td>
<td>4 CR</td>
<td>Kany</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Quality Management</td>
<td>4 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>8 CR</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105378</td>
<td>Cognitive Automobiles - Laboratory</td>
<td>6 CR</td>
<td>Kitt, Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td>6 CR</td>
<td>Naumann, Werling</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Written and oral exams, see brick courses

**Prerequisites**

None

**Competence Goal**

Students are able to:

- Describe main functional elements of technical logistics,
- Determine the main parameters necessary for functionality,
- Combines those functional elements to solve material handling tasks appropriate, and
- Evaluate resulting material handling installations.

**Content**

The emphasis module Technical Logistics provides in-depth basics on the main topics of technical logistics. The module focuses on technical characteristics of material handling technology. To gain a deeper understanding, the course is accompanied by exercises.

**Workload**

The work load is about 360 hours, corresponding to 12 credit points.

**Learning type**

Lectures and practices; self-study
### 6.24 Module: Major Field: Vehicle Technology (SP 12) [M-MACH-102818]

**Responsible:** Prof. Dr. Frank Gauterin  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100092</td>
<td>Automotive Engineering I</td>
<td>8</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105655</td>
<td>Alternative Powertrain for Automobiles</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110958</td>
<td>Design and Optimization of Conventional and Electrified Automotive Transmissions</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automated Manufacturing Systems</td>
<td>8</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111550</td>
<td>CO2-Neutral Combustion Engines and their Fuels I</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111560</td>
<td>CO2-Neutral Combustion Engines and their Fuels II</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110817</td>
<td>Development of hybrid drivetrains</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105153</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108374</td>
<td>Vehicle Ergonomics</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Automotive Vision</td>
<td>6</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Automotive Engineering II</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>2</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>2</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111389</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>2</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>2</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105375</td>
<td>Industrial Aerodynamics</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Laser in Automotive Engineering</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110954</td>
<td>Lightweight Constructions with Fiber-Reinforced-Polymers – Theory and Practice</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111578</td>
<td>Sustainable Vehicle Drivetrains</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Title</td>
<td>Credits</td>
<td>Lecturers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>4 CR</td>
<td>Albers, Matthiesen, Kienzle, Steegmüller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>6 CR</td>
<td>Frey, Gauterin, Gießler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 CR</td>
<td>Bernhardt, Kubach, Matthesen, Ziegahn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td>6 CR</td>
<td>Naumann, Werling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Gear Cutting Technology</td>
<td>4 CR</td>
<td>Klaiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111585</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td>4 CR</td>
<td>Kubach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112126</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
<td>4 CR</td>
<td>Scheubner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
Valid for all degree programmes, for which no value is indicated in the following.

The assessment is carried out as partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. Amount, type and scope of the success control can vary according to the individually choice. Oral exams: duration approx. 5 min. per credit point. Within the scope of lab courses maximum 4 credits may be acquired.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

**Prerequisites**
None

**Competence Goal**
The student
- knows the most important components of a vehicle,
- knows and understands the functioning and the interaction of the individual components,
- knows the basics of dimensioning the components,
- knows and understands the procedures in automobile development,
- knows and understands the technical specifications at the development procedures,
- is aware of notable boundaries like legislation,
- is ready to analyze and judge vehicle concepts and to participate competently in the development of vehicles.

**Content**
In the module Automotive Technology the basics are taught, which are important for the development, the design, the production and the operation of vehicles. Particularly the primary important aggregates like engine, gear, drive train, chasis and auxiliary equipment are explained, but also all technical equipment, which make the operation safer and easier. Additionally the interior equipment is examined, which shall provide a preferably comfortable, optimum ambience to the user.

In the module Automotive Technology the focus is on passenger cars and commercial vehicles, which are designed for road applications.

**Workload**
The work load is about 360 hours, corresponding to 12 credit points.

**Learning type**
The teaching and learning procedures (lecture, lab course, workshop) are described for each course of the module separately.
6.25 Module: Major Field: Vibration Theory [M-MACH-104442]

**Responsible:** Prof. Dr.-Ing. Alexander Fidlin  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Specialization in Mechanical Engineering (Major Field)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Gradation scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**Vibration Theory (K) (Election: at least 8 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105439</td>
<td>Introduction to Nonlinear Vibrations</td>
<td>7 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105372</td>
<td>Theory of Stability</td>
<td>6 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Vibration Theory</td>
<td>5 CR</td>
<td>Fidlin, Seemann</td>
</tr>
</tbody>
</table>

**Vibration Theory (E) (Election: at most 4 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>5 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-111260</td>
<td>Dynamics of Electro-Mechanical Systems</td>
<td>5 CR</td>
<td>Altoé, Fidlin</td>
</tr>
<tr>
<td>T-MACH-105514</td>
<td>Experimental Dynamics</td>
<td>5 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>4 CR</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>4 CR</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105224</td>
<td>Machine Dynamics II</td>
<td>4 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105349</td>
<td>Computational Dynamics</td>
<td>4 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105373</td>
<td>Practical Training in Measurement of Vibrations</td>
<td>4 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-105443</td>
<td>Wave Propagation</td>
<td>4 CR</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

**Competence Certificate**

oral examination

**Prerequisites**

None

**Content**

The students know different methods which may be applied for the analysis of investigation of vibration problems. They are able to treat one or multiple degree of freedom systems as well as vibrating continua. The goal is to establish a chain from physical modeling via mathematical solution to an interpretation of the results. Based on the courses which are chosen the knowledge has emphasis on theoretical investigations, approximation methods or experimental methods and applications in automotive engineering.
6.26 Module: Manufacturing Processes [M-MACH-102549]

**Responsible:** Prof. Dr.-Ing. Volker Schulze  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Module</th>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105219</td>
<td>Basics of Manufacturing Technology</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam (duration: 60 min)

**Prerequisites**
none

**Competence Goal**
The students …

- are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
- have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
- are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
- have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
- are enabled to perform a selection of suitable manufacturing processes for given components.
- are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

**Content**
The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects.

The following topics will be covered:

- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment

**Workload**
regular attendance: 21 hours  
self-study: 99 hours

**Learning type**
Lecture
Module: Materials Science (BSc-Modul 04, WK) [M-MACH-102562]

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105145</td>
<td>Materials Science I &amp; II</td>
<td>11 CR</td>
<td>Gibmeier, Heilmaier, Pundt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105146</td>
<td>Materials Science Lab Course</td>
<td>3 CR</td>
<td>Gibmeier, Heilmaier, Pundt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

not graded: participation in 10 lab experiments, introductory colloquia must be passed and 1 short presentation must be presented. The lab course must be finished successfully prior to the registration for the oral exam;

graded: oral exam covering the whole module, about 25 minutes.

**Prerequisites**

none

**Competence Goal**

Within this Module the students should

- gain knowledge of basics about structural and functional materials
- be able to draw relationships between atomic structure, microstructure and properties
- be able to apply appropriate methods to determine mechanical and other relevant properties as well as to characterize the microstructure of materials
- be able to assess material properties and corresponding applications

**Content**

WK I

Structure of atoms and atomic bonding
Crystalline solids
Defects in crystalline solids
Amorphous and partially crystalline solids
Constitution of alloys and materials
Diffusion and phase transformation in the solid state
Microscopic characterization method
Characterization with X-Rays and neutrons
Non-destructive Testing
Mechanical Testing

WK II

Iron based alloys
Non-iron based alloys
Ceramics
Glases
Polymers
Composite Materials

**Annotation**

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.
Workload
The workload of the module is about 420 hours.
The workload for the lab course Materials Science is 90 h in total and consists of the presence during the 10 experiments (one week half-time, 4 hours per day) as well as preparation and rework time at home.
The workload for the lecture Materials Science I & II is 165 h per semester and consists of the presence during the lectures (WS: 4 SWS, SS: 2SWS) and the exercises (1 SWS per WS and 1 SWS per SS) as well as preparation and rework time at home.

Learning type
The module "Materials Science" consists of the lectures "Materials Science I and II" with additional tutorials for small groups and a one week materials science laboratory course.
6.28 Module: Measurement and Control Systems (BSc-Modul 11, MRT) [M-MACH-102564]

**Responsible:** Prof. Dr.-Ing. Christoph Stiller  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Type of Examination: written exam  
Duration of Examination: 150 minutes

**Prerequisites**

none

**Competence Goal**

- Students are able to name, describe and explain control principles applied to physical quantities.
- They are able to name, analyze and assess system theoretic characteristics of dynamical systems.
- Students are able to represent real systems in a system theoretic model and to assess the suitability of a given model.
- Students are able to apply methods for controller design and to analyze their properties.
- Students are able to select appropriate principles of metrology and to model, analyze and assess measurement setups.
- Students are able to quantify and assess measurement uncertainties.

**Content**

1. Dynamic systems  
2. Properties of important systems and modeling  
3. Transfer characteristics and stability  
4. Controller design  
5. Fundamentals of measurement  
6. Estimation  
7. Sensors  
8. Introduction to digital measurement

**Module grade calculation**

result of exam

**Annotation**

For the Bachelor's program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor's program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

**Workload**

84 hours presence time, 126 hours selfstudies

**Recommendation**

Fundamentals in physics and electrical engineering, ordinary linear differential equations, Laplace transform

**Learning type**

Lecture  
Tutorials
Literature

Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

- Measurement and Control Systems:

R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

- Regelungstechnische Bücher:

J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
O. Föllinger: Regelungstechnik, Hüthig-Verlag
W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

- Messtechnische Bücher:

E. Schrüfer:Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992
W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Measurement and Control Systems
Module: Mechanical Design (BSc-Modul 06, MKL) [M-MACH-102573]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>4 terms</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105286</td>
<td>Mechanical Design I and II</td>
<td>5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-104810</td>
<td>Mechanical Design III and IV</td>
<td>11 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105282</td>
<td>Mechanical Design I, Prerequisites</td>
<td>1 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105283</td>
<td>Mechanical Design II, Prerequisites</td>
<td>1 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110955</td>
<td>Mechanical Design III, Tutorial</td>
<td>1 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110956</td>
<td>Mechanical Design IV, Tutorial</td>
<td>1 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Mechanical Design I and II:
- Preliminary examination: Successful participation in workshops in the field of mechanical Design I, as well as successful processing of output power in mechanical design II
- Written examination in the field of mechanical engineering I and II: duration 90 min plus reading time

Mechanical Design III and IV:
- Preliminary examination: Successful participation in workshops in the field of mechanical Design III & IV
  - Examination in the field of mechanical Design III & IV consisting of written part with duration 60 min plus reading time and constructive part with duration 180 min plus reading time

Prerequisites
None

Competence Goal
In mechanical design, students acquire skills in analysis and synthesis using examples (= leading examples). The examples include individual machine elements such as bearings or springs as well as more complex systems such as gears or clutches. After completing the machine design course, the students can apply the learned contents to further technical systems - even those not known from the lecture - by transferring the exemplary learned operating principles and basic functions to other contexts. This enables students to independently analyze unknown technical systems and to synthesize systems suitable for given problems.
Content
MKL I:
- Introduction to product development
- Springs
- Tools for visualization (technical drawing)
- Technical systems
- Bearings and guides

MKL II:
- Basics of the design
- Basics of screw connections
- Basics Seals

MKL III:
- Component connections
- Tolerances and clearance
- Transmission

MKL IV:
- Clutches
- Fluid Technology
- Dimensioning
- Electrical machines

Annotation
For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.
Workload
MKL 1:

Presence: 33.5 h
Attendance in lectures: 15 \( \times \) 1.5 h = 22.5 h
Presence in exercises: 8 \( \times \) 1.5 h = 12 h

Self-study: 56.5 h
Personal preparation and wrap-up of lecture and exercises including the processing of the test certificates and preparation for the exam: 56.5 h

Total: 90 h = 3 LP

MKL 2:

Presence: 33 h
Attendance in lectures: 15 \( \times \) 1.5 h = 22.5 h
Presence in exercises: 7 \( \times \) 1.5 h = 10.5 h

Self-study: 87 h
Personal preparation and wrap-up of lectures and exercises, including the processing of the test certificates and preparation for the exam: 87 h

Total: 120 h = 4 LP

MKL 3:

Presence: 45 h
Attendance lectures (15 L): 22.5 h
Presence exercises (7 exercises): 10.5 h
Attendance milestones project work (3x 4h): 12 h

Self-study: 135 h
Project work in a team: 90 h
Personal preparation and follow-up of lecture and exercise: 45 h

Total: 180 h = 6 LP

MKL 4:

Presence: 40.5 h
Attendance lectures (13 L): 19.5 h
Presence exercises (6 exercises): 9 h
Attendance milestones project work (3x 4h): 12 h

Self-study: 169.5 h
Project work in a team: 105 h
Personal preparation and follow-up of lecture and exercise, incl. preparation for the exam: 64.5 h

Total: 210 h = 7 LP

Learning type
Lecture
Tutorial
Project work during the semester
6.30 Module: Orientation Exam [M-MACH-104624]

**Organisation:** University

**Part of:** Orientation Exam

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100275</td>
<td>Advanced Mathematics I</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td>7 CR</td>
<td>Böhike, Langhoff</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Engineering Mechanics II</td>
<td>6 CR</td>
<td>Böhike, Langhoff</td>
</tr>
</tbody>
</table>

**Modelled deadline**

This module must be passed until the end of the 3. term.

**Annotation**

For students who are or were enrolled in a degree program in the summer semester 2020, winter semester 2020/2021, summer semester 2021, or winter semester 2021/2022, the deadline for taking the orientation exam has been extended by one semester in each case (section 32 (5 a), sentence 1 LHG).

This means that the deadline has been extended for:
- students enrolled in one of the above semesters in the same program by one semester;
- students enrolled in two of the above semesters in the same program by two semesters;
- students enrolled in three or more of the above semesters in the same program by a maximum of three semesters.
6.31 Module: Physics [M-PHYS-104030]

Responsible:  
apl. Prof. Dr. Gernot Goll  
apl. Prof. Dr. Bernd Pilawa

Organisation:  
KIT Department of Physics

Part of:  
Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-108322  
Wave and Quantum Physics  
5 CR  
Goll, Pilawa

Competence Certificate

The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites

None

Competence Goal

The students

- are familiar with the properties of waves and can discuss those
- can reflect on the principles of relativity
- comprehend the coherence of the particle and wave description of light and matter
- can explain the limits of wave physics
- are able the apply the Schrödinger-equation to basic problems in quantum mechanics
- can explain the basic properties of atoms, especially for the hydrogen atom
- can discuss fundamental aspects of the electronic properties of solids

Content

- Properties of waves
- Acoustic and electromagnetic waves
- Interference and diffraction
- Relativity
- Wave-particle dualism
- Basic properties of atoms
- Basic electronic properties of solids

Annotation

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload

150 hours, consisting of attendance times (45), follow-up of the lecture including exam preparation and preparation of exercises (105)

Learning type

Lecture and Tutorial
Module: Sustainable Production Economics (BSc-Modul 22 MWT) [M-MACH-105902]

**Mandatory**

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Written Exam (90 minutes)

**Prerequisites**

none

**Competence Goal**

After successful completion of the course, the students are able …

- to discuss, alone and in a team, the terms, contexts and models by which manufacturing companies are described;
- to discuss typical problems of manufacturing companies, especially against the background of current and future challenges of ecological, social and economic sustainability;
- to apply the most important methods for efficient and sustainable management in industrial enterprises, in particular in the sense of the circular economy, in a problem-related manner;
- to select and justify decision-making alternatives by applying the methods learned;
- to critically question the methods learned and to independently acquire methods that go beyond this.

**Content**

The module conveys an overall understanding of operational production management with special consideration of aspects of sustainability as well as an application-oriented understanding of the fundamental issues and methods in industrial companies. Through exercises as well as a business game synchronous to the lecture, the taught contents are deepened through application, so that the participants can apply them directly in their later professional environment.

**Annotation**

It is a joint module of the Institute of Materials Handling and Logistics (IFL) and the Institute of Production Science (WBK).

For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

**Workload**

Regular attendance: 42 hours
Self-study: 108 hours

**Learning type**

1. Lectures (Obligatory)
2. Tutorials (Obligatory)
Module: Technical Thermodynamics (BSc-Modul 05, TTD) [M-MACH-102574]

**Responsible:** Prof. Dr. Ulrich Maas

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Gradation scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mandatory**

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104747</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
<td>Maas</td>
<td>Each winter term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>7 CR</td>
<td>Maas</td>
<td>Each winter term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105204</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer I</td>
<td>0 CR</td>
<td>Maas</td>
<td>Each winter term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105288</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer II</td>
<td>0 CR</td>
<td>Maas</td>
<td>Each winter term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Prerequisite: attestation each semester by homework assignments

Thermodynamics I: Written exam, graded, approx. 3 hours

Thermodynamics II: Written exam, graded, approx. 3 hours

**Prerequisites**

None

**Competence Goal**

The students acquire the competency to master the fundamentals of thermodynamics and the ability to apply the knowledge to problem-solving in various branches of mechanical engineering and especially in the Energy Technology sector.

An integral part of the model is that students can define the fundamental laws of thermodynamics and their application. The students are competent in describing and comparing the main processes in energy conversion that are important in mechanical engineering. Using tools also applied in industry, they are capable of analyzing and rating the efficiency of processes. The students are capable of discussing the thermodynamic correlation of ideal gas mixtures, real gases and of humid air as well as explaining the properties on a molecular basis and analyzing them with the help of the laws of thermodynamics. Furthermore, the students are capable of explaining chemical reactions in the context of thermodynamics as well as defining and applying the heat transfer mechanisms.

**Content**

**Thermodynamics I:**

- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

**Thermodynamics II:**

- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

**Module grade calculation**

weight according to CP
Annotation
For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.
For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
lectures and exercises: 150h
homework and preparation of examination: 300h

Learning type
Lecture
Exercise course
Tutorial
7 Courses

7.1 Course: Advanced Mathematics I [T-MATH-100275]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MACH-104624 - Orientation Exam
M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>0131000</td>
<td>Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4</td>
<td>Lecture</td>
<td>Arens</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>0131200</td>
<td>Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4</td>
<td>Lecture</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6700025</td>
<td>Advanced Mathematics I</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>6700007</td>
<td>Advanced Mathematics I</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A "pass" result on the pre-requisite in AM I is a requirement for registration for the examination in AM I.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100525 - Tutorial Advanced Mathematics I must have been passed.
### 7.2 Course: Advanced Mathematics II [T-MATH-100276]

**Responsible:**
- PD Dr. Tilo Arens
- Prof. Dr. Roland Griesmaier
- PD Dr. Frank Hettlich

**Organisation:**
- KIT Department of Mathematics

**Part of:**
- M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

#### Events

| ST 2022  | 0180800 | Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik | 4 SWS | Lecture | Arens |
| ST 2022  | 0181000 | Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT | 4 SWS | Lecture | Arens |

#### Exams

| ST 2022 | 6700001 | Advanced Mathematics II | Arens, Griesmaier, Hettlich |
| WT 22/23 | 6700008 | Advanced Mathematics II | Arens, Griesmaier, Hettlich |

**Competence Certificate**
Learning assessment is carried out by written examination of 120 minutes length.

**Prerequisites**
A "pass" result on the pre-requisite in AM II is a requirement for registration for the examination in AM II.

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The course T-MATH-100526 - Tutorial Advanced Mathematics II must have been passed.
### 7.3 Course: Advanced Mathematics III [T-MATH-100277]

**Responsible:**
- PD Dr. Tilo Arens
- Prof. Dr. Roland Griesmaier
- PD Dr. Frank Hettlich

**Organisation:**
- KIT Department of Mathematics

**Part of:**
- M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>0131400</td>
<td>Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau</td>
<td>4</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6700002</td>
<td>Advanced Mathematics III</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>6700009</td>
<td>Advanced Mathematics III</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Learning assessment is carried out by written examination of 120 minutes length.

**Prerequisites**

A "pass" result on the pre-requisite in AM III is a requirement for registration for the examination in AM III.

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MATH-100527 - Tutorial Advanced Mathematics III must have been passed.
7.4 Course: Agile Product Innovation Management - Value-driven Planning of New Products [T-MACH-106744]

Responsible: Hon.-Prof. Dr. Roland Kläger
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination, 20 min.

Prerequisites
None
7.5 Course: Airport Logistics [T-MACH-105175]

Responsible: Dr.-Ing. André Richter
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Name</th>
<th>Hours</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2117056</td>
<td>Airport logistics</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⚪ Cancelled

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Airport logistics

2117056, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site

Content

Media
Presentations

Learning content

- Introduction
- Airport installations
- Luggage transport
- Passenger transport
- Security on the airport
- Legal bases of the air traffic
- Freight on the airport

Learning goals

The students are able to:

- Describe material handling and informations technology activities on airports,
- Evaluate processes and systems on airports as the law stands, and
- Choose appropriate processes and material handling systems for airports.

Recommendations

None

Workload

Regular attendance: 21 hours
Self-study: 99 hours

Note

Limited number of participants: allocation of places in sequence of registration (first come first served). Registration via "ILIAS" mandatory.
Personal presence during lectures mandatory.

Organizational issues

Termine: siehe ILIAS.

Literature

### 7.6 Course: Alternative Powertrain for Automobiles [T-MACH-105655]

**Responsible:** Prof. Dipl.-Ing. Karl Ernst Noreikat  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2133132</th>
<th>Sustainable Vehicle Drivetrains</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Toedter</th>
</tr>
</thead>
</table>

**Exams**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-105655</th>
<th>Sustainable Vehicle Drivetrains (Alternative Powertrain for Automobiles)</th>
<th>Toedter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105655</td>
<td>Sustainable Vehicle Drivetrains</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗣 On-Site, ⌠ Cancelled

#### Competence Certificate

written exam

**Below you will find excerpts from events related to this course:**

### Sustainable Vehicle Drivetrains

2133132, WS 22/23, 2 SWS, Open in study portal

**Lecture (V)**  
**On-Site**

#### Content

- Sustainability
- Environmental balance
- Legislation
- Alternative fuels
- BEV
- Fuel cell
- Hybrid drives
### 7.7 Course: Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines [T-MACH-105173]

**Responsible:** Dr.-Ing. Marcus Gohl  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102645 - Major Field: Combustion Engine Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Events

| Events | 2134150 | Gas, lubricating oil and operating media analysis in drive train development | 2 SWS | Lecture / 🗣️ | Gohl |

#### Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>76--T-Mach-105173</th>
<th>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</th>
<th>Gohl</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>Koch</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

**Competence Certificate**  
Letter of attendance or oral exam (25 minutes, no auxillary means)

**Prerequisites**  
none

Below you will find excerpts from events related to this course:

#### Gas, lubricating oil and operating media analysis in drive train development

2134150, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

**Literature**  
Die Vorlesungsunterlagen werden vor jeder Veranstaltung an die Studenten verteilt.
7.8 Course: Applied Tribology in Industrial Product Development [T-MACH-105215]

Responsible: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Benoit Lorentz
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102815 - Major Field: Engineering Design

Type                  Credits | Grading scale       | Recurrence          | Version
Oral examination      4        | Grade to a third    | Each winter term    | 2

Competence Certificate
oral exam (20 min)

Prerequisites
None
7.9 Course: Atomistic Simulations and Molecular Dynamics [T-MACH-105308]

**Responsible:** Prof. Dr. Peter Gumbsch  
Dr.-Ing. Johannes Schneider  
Dr. Daniel Weygand

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering  
M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2181740 | Atomistic simulations and molecular dynamics | 3 SWS | Lecture / Practice ( / )  | Weygand, Gumbsch |

**Exams**

| ST 2022  | 76T-MACH-105308 | Atomistic Simulations and Molecular Dynamics |  |  | Weygand, Gumbsch |
| ST 2022  | 76-T-MACH-105308-W | Atomistic Simulations and Molecular Dynamics |  |  | Weygand, Gumbsch |
| WT 22/23 | 76T-MACH-105308 | Atomistic Simulations and Molecular Dynamics |  |  | Weygand, Gumbsch |

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

oral exam ca. 30 minutes

**Prerequisites**

none

**Recommendation**

preliminary knowledge in mathematics, physics and materials science

**Below you will find excerpts from events related to this course:**

<table>
<thead>
<tr>
<th>Atomistic simulations and molecular dynamics</th>
<th>Lecture / Practice (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181740, SS 2022, 3 SWS, Language: English</td>
<td>On-Site</td>
</tr>
</tbody>
</table>
**Content**
The lecture introduces the foundation of particle based simulation methods focusing on molecular dynamics:

1. Introduction
2. Physics of Materials
3. MD Basics, Atom-Billard
   - particle, position, energy, forces, pair potentials
   - initial and boundary conditions
   - time integration
4. Algorithms
5. Statics, dynamics, thermodynamics
6. MD output
7. interaction between particles
   - pair potential -- many body potentials
   - principles of quantum mechanics
   - tight binding methods
   - dissipative particle dynamics
8. Application of particle based methods

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

- describe the physical foundation of particle based simulation method (e.g. molecular dynamics)
- apply particle based simulation methods to problems in materials science

preliminary knowledge in mathematics, physics and materials science recommended

regular attendance: 22.5 hours
exercise: 22.5 hours
self-study: 75 hours
oral exam ca. 30 minutes

**Organizational issues**
Die Vorlesung wird auf Englisch angeboten!

**Literature**

7.10 Course: Automated Manufacturing Systems [T-MACH-108844]

**Responsible:** Prof. Dr.-Ing. Jürgen Fleischer  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102589 - Major Field: Production Systems  
- M-MACH-102818 - Major Field: Vehicle Technology  
- M-MACH-102820 - Major Field: Mechatronics  
- M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2150904 | Automated Manufacturing Systems | 6 SWS | Lecture / Practice ( / 🧩) | Fleischer |

**Exams**

| ST 2022 | 76-T-MACH-108844 | Automated Manufacturing Systems | Fleischer |

**Legend:**  
- 🖥 Online  
- 🧩 Blended (On-Site/Online)  
- 🗣 On-Site  
- ❌ Cancelled

**Competence Certificate**

oral exam (40 minutes)

**Prerequisites**

"T-MACH-102162 - Automatisierte Produktionsanlagen" must not be commenced.

Below you will find excerpts from events related to this course:

**Automated Manufacturing Systems**

2150904, SS 2022, 6 SWS, Language: German, Open in study portal
Content
The lecture provides an overview of the structure and functioning of automated manufacturing systems. In the introduction chapter the basic elements for the realization of automated manufacturing systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- Quality assurance in automated manufacturing
- automatic machines, cells, centers and systems for manufacturing and assembly
- structures of multi-machine systems
- planning of automated manufacturing systems

An interdisciplinary view of these subareas enables Industry 4.0 solutions.

In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components (chassis and drive technology). The analysis of automated manufacturing systems for manufacturing of defined components is also included.

In the field of vehicle power train both, the automated manufacturing process for the production of the conventional internal-combustion engine and the automated manufacturing process for the production of the prospective electric power train (electric motor and battery) are considered. In the field of car body, the focus is on the analysis of the process chain for the automated manufacturing of conventional sheet metal body parts, as well as for automated manufacturing of body components made out of fiber-reinforced plastics.

Within tutorials, the contents from the lecture are advanced and applied to specific problems and tasks.

Learning Outcomes:
The students …

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: “Handling Technology”, “Industrial Robotics”, “Sensory” and “Controls”.
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues
Start: 21.04.2022
Vorlesungstermine dienstags 8:00 Uhr und donnerstags 8:00 Uhr, Übungstermine donnerstags 09:45 Uhr.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
### 7.11 Course: Automotive Engineering I [T-MACH-100092]

**Responsible:**  
Prof. Dr. Frank Gauterin  
Dr.-Ing. Hans-Joachim Unrau

**Organisation:**  
KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Room, Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113805</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Gauterin, Unrau</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2113809</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Gauterin, Gießler</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Room, Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-100092</td>
<td>Automotive Engineering</td>
<td></td>
<td>Lecture</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100092</td>
<td>Automotive Engineering</td>
<td></td>
<td>Lecture</td>
<td>Unrau, Gauterin</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⚰ Cancelled

**Competence Certificate**

Written examination

Duration: 120 minutes

Auxiliary means: none

**Prerequisites**

The brick "T-MACH-102203 - Automotive Engineering I" is not started or finished. The bricks "T-MACH-100092 - Grundlagen der Fahrzeugtechnik I" and "T-MACH-102203 - Automotive Engineering I" can not be combined.

**Below you will find excerpts from events related to this course:**

**Automotive Engineering I**

2113805, WS 22/23, 4 SWS, Language: German, Open in study portal

**Content**

1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performance, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

**Learning Objectives:**

The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

**Organizational issues**

Kann nicht mit der Veranstaltung [2113809] kombiniert werden.

Can not be combined with lecture [2113809].
Lecture (V)
Automotive Engineering I
2113809, WS 22/23, 4 SWS, Language: English, Open in study portal

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, viscous clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardan joints, differentials

Learning Objectives:
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

Organizational issues
Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literature
7.12 Course: Automotive Engineering II [T-MACH-102117]

**Responsible:** Prof. Dr. Frank Gauterin  
Dr.-Ing. Hans-Joachim Unrau

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2114835 Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Unrau</td>
<td></td>
</tr>
<tr>
<td>ST 2022 2114855 Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gießler</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-102117 Automotive Engineering II</td>
<td>2 SWS</td>
<td>Unrau, Gauterin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-102117 Automotive Engineering II</td>
<td>2 SWS</td>
<td>Unrau, Gauterin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76T-MACH-102117-2 Automotive Engineering II</td>
<td>2 SWS</td>
<td>Gauterin, Unrau</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

Written Examination

Duration: 90 minutes

Auxiliary means: none

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

**Automotive Engineering II**

2114835, SS 2022, 2 SWS, Language: German, Open in study portal

**Content**

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices  
2. Steering elements: Manual steering, servo steering, steer by wire  
3. Brakes: Disc brake, drum brake, comparison of designs

**Learning Objectives:**

The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

**Organizational issues**

Kann nicht mit der Veranstaltung [2114855] kombiniert werden.  
Can not be combined with lecture [2114855]
Literature


Automotive Engineering II
2114855, SS 2022, 2 SWS, Language: English, Open in study portal

Content
1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of the designs

Learning Objectives:
The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Literature
Elective literature:
7.13 Course: Automotive Vision [T-MACH-105218]

**Responsible:** Dr. Martin Lauer  
Prof. Dr.-Ing. Christoph Stiller

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102638 - Major Field: Rail System Technology  
M-MACH-102817 - Major Field: Information Technology  
M-MACH-102818 - Major Field: Vehicle Technology  
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2138340</td>
<td>3 SWS</td>
<td>Automotive Vision</td>
<td>Lecture / Online</td>
<td>Lauer, Fehler</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105218</td>
<td></td>
<td>Automotive Vision</td>
<td>Stiller, Lauer</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
Type of Examination: written exam  
Duration of Examination: 60 minutes

**Prerequisites**  
none

Below you will find excerpts from events related to this course:

**Automotive Vision**  
2138340, SS 2022, 3 SWS, Language: English, [Open in study portal]

**Content**

**Lernziele (EN):**
Machine perception and interpretation of the environment for the basis for the generation of intelligent behaviour. Especially visual perception opens the door to novel automotive applications. First driver assistance systems can already improve safety, comfort and efficiency in vehicles. Yet, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on ‘seeing vehicles’. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

**Lehrinhalt (EN):**
1. Driver assistance systems  
2. Binocular vision  
3. Feature point methods  
4. Optical flow/tracking in images  
5. Tracking and state estimation  
6. Self-localization and mapping  
7. Lane recognition  
8. Behavior recognition

Nachweis: Written examination 60 minutes  
Arbeitsaufwand (EN): 120 hours

**Literature**
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
Competence Certificate
The bachelor thesis is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

The work load of the bachelor thesis corresponds to 12 ECTS. The maximal processing time of the bachelor thesis takes three months. The date of issue of the subject has to be fixed by the supervisor and the student and to be put on record at the examination board. The subject of the bachelor thesis may be only returned once and only within the first month of processing time.

On a reasoned request of the student, the examination board can extend the processing time by up to one month. If the bachelor thesis is not completed in time, this examination is “failed” (5,0), unless the student is not responsible.

The bachelor thesis is to be evaluated by not less than a professor or a senior scientist according to § 14 Abs. 3 Ziff. 1 KITG and another examiner. Generally, one of the two examiners is the person who has assigned the thesis. If the examiners do not agree, the bachelor thesis is graded by the examination board within this assessment; another expert can be appointed too. The bachelor thesis has to be graded within a period of six weeks after the submission.

Prerequisites
The requirement for admission to the bachelor thesis module are 120 ECTS. As to exceptions, the examination board decides on a request of the student (see § 14 (1) SPO).

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 120 credits in the following fields:
   - Fundamentals of Engineering
   - Interdisciplinary Qualifications
   - Specialization in Mechanical Engineering

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- Submission deadline: 3 months
- Maximum extension period: 1 months
- Correction period: 6 weeks

Annotation
The workload for the preparation of the bachelor thesis is about 360 hours.
7 COURSES

Course: Basics in Measurement and Control Systems [T-MACH-104745]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102564 - Measurement and Control Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2137301</td>
<td>Measurement and Control Systems</td>
<td>3</td>
<td>Lecture / 🗣</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Stiller</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2137302</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1</td>
<td>Practice / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Stiller, Fischer, Müßigmann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3137020</td>
<td>Measurement and Control Systems</td>
<td>3</td>
<td>Lecture / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Stiller</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3137021</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1</td>
<td>Practice / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Stiller, Fischer, Müßigmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-104745</td>
<td>Basis of Measurement and Control Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

written exam
2.5 hours

Prerequisites

none

Below you will find excerpts from events related to this course:

Measurement and Control Systems

2137301, WS 22/23, 3 SWS, Language: German, Open in study portal
Content
Lehrinhalt (EN):
1 Dynamic systems
2 Properties of important systems and modeling
3 Transfer characteristics and stability
4 Controller design
5 Fundamentals of measurement
6 Estimation
7 Sensors
8 Introduction to digital measurement

Lernziele (EN):
Measurement and control of physical entities is a vital requirement in most technical applications. Such entities may comprise e.g. pressure, temperature, flow, rotational speed, power, voltage and electrical current, etc.. From a general perspective, the objective of measurement is to obtain information about the state of a system while control aims to influence the state of a system in a desired manner. This lecture provides an introduction to this field and general systems theory. The control part of the lecture presents classical linear control theory. The measurement part discusses electrical measurement of non-electrical entities.

Voraussetzungen (EN)
Fundamentals in physics and electrical engineering; ordinary linear differential equations; Laplace transform

Nachweis (EN)
written exam; duration 2.5 h; paper reference materials only (no calculator)

Arbeitsaufwand (EN):
210 hours

Literature
Buch zur Vorlesung:
C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

- Measurement and Control Systems:
  R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

- Regelungstechnische Bücher:
  J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
  R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
  O. Föllinger: Regelungstechnik, Hüthig-Verlag
  W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

- Messtechnische Bücher:
  E. Schrüfer: Elektrische Messtechnik, Hanser-Verlag, München, 5. Aufl., 1992
  W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
  Kronmüller, H.: Prinzipien der Prozeßmesstechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Measurement and Control Systems
3137020, WS 22/23, 3 SWS, Language: English, Open in study portal
Content
Lehrinhalt (EN):
1 Dynamic systems
2 Properties of important systems and modeling
3 Transfer characteristics and stability
4 Controller design
5 Fundamentals of measurement
6 Estimation
7 Sensors
8 Introduction to digital measurement

Lernziele (EN):
Measurement and control of physical entities is a vital requirement in most technical applications. Such entities may comprise e.g. pressure, temperature, flow, rotational speed, power, voltage and electrical current, etc.. From a general perspective, the objective of measurement is to obtain information about the state of a system while control aims to influence the state of a system in a desired manner. This lecture provides an introduction to this field and general systems theory. The control part of the lecture presents classical linear control theory. The measurement part discusses electrical measurement of non-electrical entities.

Nachweis (EN): written exam; duration 2.5 h; paper reference materials only (no calculator)
Arbeitsaufwand (EN): 180 hours

Literature

• Measurement and Control Systems:
  R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

• Regelungstechnische Bücher:
  J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
  R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
  O. Föllinger: Regelungstechnik, Hüthig-Verlag
  W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

• Messtechnische Bücher:
  E. Schrüfer: Elektrische Messtechnik, Hanser-Verlag, München, 5. Aufl., 1992
  W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
  Kronmüller, H.: Prinzipien der Prozeßmesstechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
7.16 Course: Basics of Manufacturing Technology [T-MACH-105219]

**Responsible:** Prof. Dr.-Ing. Volker Schulze

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102549 - Manufacturing Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2149658 | Basics of Manufacturing Technology | 2 SWS | Lecture / Practice ( / ) | Schulze |

| Exams    | 76-T-MACH-105219 | Basics of Manufacturing Technology | Schulze |

**Competence Certificate**

written exam (duration: 60 min)

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Basics of Manufacturing Technology**

2149658, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) Blended (On-Site/Online)
Content
The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects. Regard is paid to classic manufacturing processes as well as new developments like additive manufacturing processes.

The following topics will be covered:

- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment

Learning Outcomes:
The students ...

- are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
- have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
- are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
- have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
- are enabled to perform a selection of suitable manufacturing processes for given components.
- are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Start: 26.10.2022

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
7.17 Course: Basics of Technical Logistics I [T-MACH-109919]

**Responsible:** Dr.-Ing. Martin Mittwollen  
Dr.-Ing. Jan Oellerich  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102746 - Compulsory Elective Module  
M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Exams**

- **ST 2022**  
  - 76-T-MACH-109919 Basics of Technical Logistics I  
  - Mittwollen
- **WT 22/23**  
  - 76-T-MACH-109919 Basics of Technical Logistics I  
  - Mittwollen

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), ⚡ On-Site, ⌚ Cancelled

**Competence Certificate**
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

**Prerequisites**

None

**Recommendation**

Knowledge of the basics of technical mechanics preconditioned.

**Below you will find excerpts from events related to this course:**

<table>
<thead>
<tr>
<th>Basics of Technical Logistics I</th>
<th>Lecture / Practice (VÜ)</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117095, WS 22/23, 3 SWS, Language: German</td>
<td>Blended (On-Site/Online)</td>
<td></td>
</tr>
</tbody>
</table>

**Content**

- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

**Students are able to:**

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines
- Model real machines applying knowledge from lessons and calculate their dimensions.
Organizational issues
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder mündlichen Prüfung (nach §4 (2), 1 bzw. 2SPO).
The assessment consists of a written or oral exam according to Section 4 (2), 1 or 2 of the examination regulation.
Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.
Basics knowledge of technical mechanics is preconditioned.
Ergänzungsblätter, Präsentationen, Tafel.
Supplementary sheets, presentations, blackboard.
Präsenz: 48Std
presence: 48h
Nacharbeit: 132Std
rework: 132h

Literature
Empfehlungen in der Vorlesung / Recommendations during lessons
7 COURSES

Course: Basics of Technical Logistics II [T-MACH-109920]

7.18 Course: Basics of Technical Logistics II [T-MACH-109920]

Responsible: Dr.-Ing. Maximilian Hochstein
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2117098</td>
<td>Basics of Technical Logistics II</td>
<td>3</td>
<td>Oellerich</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-109920</td>
<td>Basics of Technical Logistics II</td>
<td></td>
<td>Oellerich, Hochstein, Mittwollen</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-109920-mPr</td>
<td>Basics of Technical Logistics II</td>
<td></td>
<td>Mittwollen, Oellerich, Hochstein</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-109920</td>
<td>Basics of Technical Logistics II</td>
<td></td>
<td>Hochstein, Mittwollen, Oellerich</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ⬠ Cancelled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge of the basics of technical mechanics and out of "Basic of Technical Logistics I" (T-MACH-109919) preconditioned.
7.19 Course: Behaviour Generation for Vehicles [T-MACH-105367]

- **Responsible:** Maximilian Naumann, Moritz Werling
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-102817 - Major Field: Information Technology
  - M-MACH-102818 - Major Field: Vehicle Technology
  - M-MACH-102820 - Major Field: Mechatronics
  - M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2138336</td>
<td>Behaviour Generation for Vehicles</td>
<td>3 SWS</td>
<td>Werling, Naumann</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Description</th>
<th>Grade</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td></td>
<td>Stiller</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105367</td>
<td>Behaviour Generation for Vehicles</td>
<td></td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online,🧩 Blended (On-Site/Online),🗣 On-Site,🗙 Cancelled

**Competence Certificate**

written examination

60 min.

Simple calculators are allowed, programmable or graphical ones are prohibited.

**Prerequisites**

none

_Below you will find excerpts from events related to this course:_

### Behaviour Generation for Vehicles

**2138336, WS 22/23, 3 SWS, Language: German, Open in study portal**

**Lecture (V)**

**Blended (On-Site/Online)**

**Content**

**Lernziele (EN):**

Modern vehicle control systems like ABS or ESP transform the intention of the driver into a corresponding behaviour of the vehicle. This is achieved by compensating disturbances like a varying traction for example. Within the recent years, vehicles have been increasingly equipped with sensors that gather information about the environment (Radar, Lidar and Video for example). This enables the vehicles to generate an 'intelligent' behaviour and transform this behaviour into control signals for actors. Several so called 'driver assistance systems' have already achieved remarkable improvements as far as comfort, safety and efficiency are concerned. But nevertheless, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator ('the driver'). The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Information technology, control theory and kinematic aspects are treated to provide a broad overview over vehicle guidance. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

_Nachweis:_ written exam

_Arbeitsaufwand:_ 180 hours

**Literature**

Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
7.20 Course: Biomechanics: Design in Nature and Inspired by Nature [T-MACH-105651]

**Responsible:** Prof. Dr. Claus Mattheck

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td></td>
<td></td>
<td></td>
<td>Each summer term</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2181708</td>
<td>Biomechanics: Design in Nature and Inspired by Nature</td>
<td>3 SWS</td>
<td>/ 🗣</td>
<td>Mattheck</td>
</tr>
</tbody>
</table>

| Exams             |                      |         |               |                          |         |
| ST 2022           | 76-T-MACH-105651     | Biomechanics: design in nature and inspired by nature | 3 SWS | / 🗣 | Mattheck |

**Competence Certificate**
Colloquium, ungraded.

**Prerequisites**
The number of participants is limited. Prior registration through ILIAS is necessary. In case of too many registrations, a selection (in accordance with SPO) will take place.

Before the registration in SP 26 (ME) or SP 01 (MSMT) the participation at the seminar must be confirmed.

Below you will find excerpts from events related to this course:

**Biomechanics: Design in Nature and Inspired by Nature**
2181708, SS 2022, 3 SWS, Language: German, Open in study portal

**On-Site**

**Content**

- mechanics and growth laws of trees
- failure criteria and safety factors
- computer simulation of adaptive growth
- notches and damage case studies
- optimization inspired by nature
- structural shape optimization without computers
- universal shapes of nature
- fibre reinforces materials
- failure of trees, hillsides, dikes, walls and pipes

The students know and understand mechanical optimization schemes which are realized in nature. The students can analyze the derived thinking tools and can apply them for simple technical cases.

regular attendance: 30 hours
self-study: 90 hours
7.21 Course: Boosting of Combustion Engines [T-MACH-105649]

**Responsible:** Dr.-Ing. Johannes Kech
Dr.-Ing. Heiko Kubach

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102645 - Major Field: Combustion Engine Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2134153 | Boosting of Combustion Engines | 2 SWS | / | Kech |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗝 On-Site, ✗ Cancelled

**Competence Certificate**
oral exam, 20 min

**Prerequisites**
none
### 7.22 Course: BUS-Controls [T-MACH-102150]

**Responsible:** Simon Becker  
Prof. Dr.-Ing. Marcus Geimer  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102817 - Major Field: Information Technology  
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

### Competence Certificate

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

### Prerequisites

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108889 must have been passed.

### Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-108889 - BUS-Controls - Advance must have been passed.

### Recommendation

Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

The number of participants is limited. A registration in mandatory, the details will be announced on the webpages of the *Institute of Vehicle System Technology / Institute of Mobile Machines*. In case of too many applications, attendance will be granted based on pre-qualification.

### Annotation

The students will get an overview of the theoretic and practical functioning of different bus systems.

After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system. Hereunto the students program in the practical orientated lessons IFM-controllers using the programming environment CoDeSys.

### Content:

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

### Literature:


Below you will find excerpts from events related to this course:

**Control of Mobile Machines**  
2114080, SS 2022, 2 SWS, Language: German, [Open in study portal](#)  
Lecture (V) Blended (On-Site/Online)
Content

- Basics of sensors, controls and control architectures in mobile machines
- Basics and functionalities of data communication in mobile machines (CAN-Bus, PROFIBUS, Ethernet, ...)
- Legal aspects and requirements (SIL-level, ...)
- Requirements for sensors for use in mobile machines
- Introduction to machine learning methods and their application for the control of mobile machines
- Overview of current research and developments in the field of agricultural robotics
- Implementation of a specific task within the exercise lessons
- The results of the semester task will be summarized in a short report as a prerequisite for the exam.

Learning objectives

The students learn the theoretical basics of data communication as well as the architecture of control systems in mobile machines. Furthermore, they will be able to identify influences and general conditions during usage and derive practical and legal requirements for sensors and control systems. The students will learn methods of machine learning for control tasks in mobile machines as well as their architecture and the handling of training data. After participating in the exercise, they will be able to implement, train and validate a control system for a specific task.

Recommendations

Basic knowledge of electrical engineering and computer science is recommended. Initial programming knowledge, preferably in Python, is required. The number of participants is limited as hardware will be provided for the exercise. Prior registration is required, details will be announced on the web pages of the Institute of Vehicle Systems Engineering / Department of Mobile Machinery. In case of high registration numbers exceeding the capacities, a selection among all interested persons will take place according to qualification.

regular attendance: 21 hours
total self-study: 92 hours

Literature

AN-Bus-Technik einfach, anschaulich und praxisnah dargestellt; Poing: Franzis Verlag, 2002.
7.23 Course: BUS-Controls - Advance [T-MACH-108889]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102817 - Major Field: Information Technology
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Creation of control program

Prerequisites
none
7.24 Course: CAD-NX Training Course [T-MACH-102187]

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>CAD-NX training course</td>
<td>2 SWS</td>
<td>Practical course / Online</td>
<td>Ovtcharova, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>CAD-NX training course</td>
<td>2 SWS</td>
<td>Practical course / Online</td>
<td>Ovtcharova, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>CAD-NX Training Course</td>
<td>2 SWS</td>
<td>pass/fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Practical verification as academic achievement by working on a design task on the CAD computer, duration: 60 min.

**Prerequisites**

None

**Recommendation**

Dealing with technical drawings is required.

**Annotation**

For the practical course compulsory attendance exists.

**Below you will find excerpts from events related to this course:**

**CAD-NX training course**

2123357, SS 2022, 2 SWS, Language: German/English, Open in study portal

**Practical course (P)**

Blended (On-Site/Online)

**Content**

- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Students are able to:

- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

**Organizational issues**

Das Praktikum wird zum einen vorlesungsbegleitend sowie zum anderen als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit angeboten. Weitere Informationen siehe ILIAS.

**Literature**

Praktikumsskript
CAD-NX training course
2123357, WS 22/23, 2 SWS, Language: German, Open in study portal

Practical course (P)
Blended (On-Site/Online)

Content

- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Students are able to:

- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

Organizational issues

Das Praktikum kann entweder vorlesungsbegleitend oder als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit absolviert werden. Weitere Informationen siehe ILIAS.

Literature

Praktikumsskript
### 7.25 Course: CAE-Workshop [T-MACH-105212]

**Responsible:** Prof. Dr.-Ing. Albert Albers  
Prof. Dr.-Ing. Sven Matthiesen  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102583 - Major Field: Information Management  
M-MACH-102746 - Compulsory Elective Module  
M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2147175</td>
<td>CAE-Workshop</td>
<td>3 SWS</td>
<td>Block / 🗣</td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2147175</td>
<td>CAE-Workshop</td>
<td>3 SWS</td>
<td>Block / 🗣</td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105212</td>
<td>CAE-Workshop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**  
Written test (with practical part on the computer), duration 60 min.

**Prerequisites**  
None

**Annotation**  
For a successful participation in the examination a continuous attendance at the workshop days is necessary. Limited number of participants. Selection is made according to a selection procedure.

---

**Below you will find excerpts from events related to this course:**

### CAE-Workshop

2147175, SS 2022, 3 SWS, Language: German, [Open in study portal]

**Block (B)**  
**On-Site**

**Content**

**Content:**

- Introduction to the finite element analysis (FEA)  
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver  
- Introduction to topology and shape optimization  
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:

- name the purposes and limits of numerical simulation and optimization of the virtual product development.  
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).  
- evaluate and to question the results of a simulation.  
- identify and improve the mistakes of a simulation or optimization.

**Exam:** 1h Regularly written  
Regular attendance: 31.5 h  
Self-study: 88.5 h

**Organizational issues**  
Wir empfehlen den Workshop ab dem 5. Semester.  
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.  
Anwesenheitspflicht
Literature
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilia.

CAE-Workshop
2147175, WS 22/23, 3 SWS, Language: German, Open in study portal

Content
Content:
- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:
- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Exam: 1h Regularly written
Regular attendance: 31.5 h
Self-study: 88.5 h

Organizational issues
Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht

Literature
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilia.
### 7.26 Course: CATIA CAD Training Course [T-MACH-102185]

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

#### Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2123358</th>
<th>CATIA CAD training course</th>
<th>2 SWS</th>
<th>Practical course /  🔄</th>
<th>Ovtcharova, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2123358</td>
<td>CATIA CAD training course</td>
<td>2 SWS</td>
<td>Practical course /  🔄</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

#### Exams

| ST 2022 | 76-T-MACH-102185 | CATIA CAD Training Course | Ovtcharova |

Legend: Online, 🔄 Blended (On-Site/Online), 🗿 On-Site, ❌ Cancelled

**Competence Certificate**  
Practical examination on CAD computer, duration: 60 min.

**Prerequisites**  
None

**Recommendation**  
Dealing with technical drawings is required.

**Annotation**  
For the practical course attendance is compulsory.

#### Below you will find excerpts from events related to this course:

### CATIA CAD training course

2123358, SS 2022, 2 SWS, Language: German/English, [Open in study portal](#)

**Practical course (P)**  
Blended (On-Site/Online)

#### Content

- Basics of CATIA such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

#### Students are able to:

- create their own 3D geometric models in the CAD system CATIA and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of CATIA to automate the creation of geometry and thus to ensure the reusability of the models.

#### Organizational issues

Das Praktikum wird einerseits vorlesungsbegleitend sowie andererseits als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit angeboten. Weitere Informationen siehe ILIAS.

**Literature**  
Praktikumskript
Content

- Basics of CATIA such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

Students are able to:

- create their own 3D geometric models in the CAD system CATIA and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of CATIA to automate the creation of geometry and thus to ensure the reusability of the models.

Organizational issues
Das Praktikum kann vorlesungsbegleitend absolviert werden oder als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit. Weitere Informationen siehe ILIAS.

Literature
Praktikumskript
7.27 Course: CO2-Neutral Combustion Engines and their Fuels I [T-MACH-111550]

**Responsible:** Prof. Dr. Thomas Koch  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102818 - Major Field: Vehicle Technology  
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2133113 | CO2-neutral combustion engines and their fuels I | 4 SWS | Lecture / Practice ( / ) | Koch |

**Exams**

| WT 22/23 | 76-T-MACH-102194 | CO2-neutral combustion engines and their fuels I | Kubach, Koch |

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

oral examination, Duration: 25 min., no auxiliary means

**Prerequisites**

none

*Below you will find excerpts from events related to this course:*

**CO2-neutral combustion engines and their fuels I**

2133113, WS 22/23, 4 SWS, Language: German, [Open in study portal](#)

<table>
<thead>
<tr>
<th>Lecture / Practice (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site</td>
</tr>
</tbody>
</table>

**Content**

Introduction, Presentation of IFKM  
Working Principle  
Characteristic Parameters  
Engine Parts  
Drive Train  
Fuels  
Gasoline Engines  
Diesel Engines  
Hydrogen Engines  
Exhaust Gas Emissions

**Organizational issues**

Übungstermine Donnerstags nach Bekanntgabe in der Vorlesung
7.28 Course: CO2-Neutral Combustion Engines and their Fuels II [T-MACH-111560]

**Responsible:** Prof. Dr. Thomas Koch

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2134151 | CO2-neutral combustion engines and their fuels II | 3 SWS | Lecture / Practice ( / ) Koch |

**Exams**

| ST 2022 | 76-T-MACH-104609 | Combustion Engines, Hydrogen Engines and CO2 neutral Fuels II | Koch, Kubach |
| WT 22/23 | 76-T-MACH-104609 | Combustion Engines, Hydrogen Engines and CO2 neutral Fuels II | Kubach, Koch |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

oral examination, duration: 25 minutes, no auxiliary means

**Prerequisites**

none

**Recommendation**

Fundamentals of Combustion Engines II helpful

*Below you will find excerpts from events related to this course:*

| CO2-neutral combustion engines and their fuels II | Lecture / Practice (VÜ) |
| 2134151, SS 2022, 3 SWS, Language: German, [Open in study portal](#) | On-Site |
7.29 Course: Cognitive Automobiles - Laboratory [T-MACH-105378]

**Responsible:** Bernd Kitt  
Dr. Martin Lauer  
Prof. Dr.-Ing. Christoph Stiller  

**Organisation:** KIT Department of Mechanical Engineering  

**Part of:** M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>Cognitive Automobiles - Laboratory</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>Cognitive Automobiles - Laboratory</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**

oral exam  
30 minutes

**Prerequisites**

none

**Annotation**

The number of participants is limited. A registration is mandatory, the details are announced on the webpages of the institute of measurement and control systems (mrt). In case of too many interested students a subset will be selected (see website).

**Below you will find excerpts from events related to this course:**

**Content**

**Lehrinhalt (EN):**
1. Lane recognition  
2. Object detection  
3. Vehicle lateral control  
4. Vehicle longitudinal control  
5. Collision avoidance

**Lernziele (EN):**

The laboratory accompanies the lectures "Automotive Vision" and "Behaviour Generation for Vehicles". It will provide the opportunity of turning theoretical skills taught in the lecture to practice. The laboratory is divided into four groups with a maximum number of five students in each group. During the lessons you will be supervised by scientific staff. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on "seeing vehicles". Each group is given the task to extract lane markings from video images and generate a suitable trajectory which the vehicle should follow. Apart from technical aspects in a highly innovative field of automotive technology, participants have the opportunity of gathering important qualifications as i.e. implementation skills, acquisition and comprehension of suitable literature, project and team work.

**Nachweis:** Colloquia, final race  

**Arbeitsaufwand:** 120 hours
Literature
Dokumentation zur SW und HW werden als pdf bereitgestellt.
**Course: Combustion Engines I [T-MACH-102194]**

**Responsible:** Prof. Dr. Thomas Koch  
Dr.-Ing. Heiko Kubach

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Time</th>
<th>Code</th>
<th>Title</th>
<th>Type / Prac. (l / k)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2133113</td>
<td>CO2-neutral combustion engines and their fuels I</td>
<td>Lecture / Practice (l / k)</td>
<td>Koch</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Time</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-102194</td>
<td>CO2-neutral combustion engines and their fuels I</td>
<td>Koch, Kubach</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102194</td>
<td>CO2-neutral combustion engines and their fuels I</td>
<td>Kubach, Koch</td>
<td></td>
</tr>
</tbody>
</table>

**Legend:**  
🖥 Online,  
🧩 Blended (On-Site/Online),  
🗣 On-Site,  
🗙 Cancelled

**Competence Certificate**  
oral examination, Duration: 25 min., no auxiliary means

**Prerequisites**  
none

**Below you will find excerpts from events related to this course:**

**Content**

Introduction, Presentation of IFKM  
Working Principle  
Characteristic Parameters  
Engine Parts  
Drive Train  
Fuels  
Gasoline Engines  
Diesel Engines  
Hydrogen Engines  
Exhaust Gas Emissions

**Organizational issues**

Übungstermine Donnerstags nach Bekanntgabe in der Vorlesung
### Course: Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies [T-MACH-105535]

**Responsible:** Prof. Dr.-Ing. Frank Henning  
**Organisation:** KIT Department of Mechanical Engineering  

**Part of:**  
- M-MACH-102638 - Major Field: Rail System Technology  
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>Henning</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

**Legend:**  
- 🖥 Online  
- 🧩 Blended (On-Site/Online)  
- On-Site  
- ❌ Cancelled

**Competence Certificate**

written exam 90 minutes

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

*Composite Manufacturing – Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies*

2114053, SS 2022, 2 SWS, Language: German, Open in study portal
Content
Physical connections of fiber reinforcement

Use and examples
- Automotive construction
- Transport
- Energy and construction
- Sport and recreation

Resins
- Thermoplastics
- Duromeres

Mechanisms of reinforcements
- Glas fibers
- Carbon fibers
- Aramid fibers
- Natural fibers

Semi-finished products - textiles

Process technologies - prepregs

Recycling of composites

Aim of this lecture:
Students know different polymer resin materials and fiber materials and can deduce their character and use.
They understand the reinforcing effect of fibers in a matrix surrounding as well as the tasks of the single components in a
compound. They know about the influence of the length of fibers, their mechanical characters and performance in a polymer
matrix compound.

Student know the important industrial production processes for continuous and discontinuous reinforced polymer matrix
compounds.

Organizational issues
Die Vorlesung wird online stattfinden. Wenn die Corona-Verordnung und die
Infektionslage es zulässt evtl. auch in Präsenz. Dies entscheidet sich zu Beginn des
Semesters.
The lecture will be online. If the Corona regulations and the infection situation
permit, possibly also in attendance. This will be decided at the beginning of the
semester.

Literature
Literatur Leichtbau II
[1-7]
[1] M. Flemming and S. Roth, Faserverbundbauweisen : Eigenschaften; mechanische, konstruktive, thermische, elektrische,
7.32 Course: Computational Dynamics [T-MACH-105349]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
- M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2162246</th>
<th>Computational Dynamics</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Proppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2162246</td>
<td>Computational Dynamics</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 76-T-MACH-105349 | Computational Dynamics | Prope |

Legend: 🖥 Online, Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Competence Certificate
oral exam, 30 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Computational Dynamics
2162246, SS 2022, 2 SWS, Language: German, Open in study portal

Content
1. Fundamentals of elasto-kinetics (Equations of motion, principle of Hamilton and principle of Hellinger-Reissner)
2. Differential equations for the vibration of structure elements (bars, plates)
3. Numerical solutions of the equations of motion
4. Numerical algorithms
5. Stability analyses

Organizational issues
Fr., 15:45-17:15, Geb. 10.91, Grashof-Hörsaal

Literature
1. Ein Vorlesungsskript wird bereitgestellt!

Computational Dynamics
2162246, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
1. Fundamentals of elasto-kinetics (Equations of motion, principle of Hamilton and principle of Hellinger-Reissner)
2. Differential equations for the vibration of structure elements (bars, plates)
3. Numerical solutions of the equations of motion
4. Numerical algorithms
5. Stability analyses

Literature
1. Ein Vorlesungsskript wird bereitgestellt!
7 COURSES

Course: Computational Intelligence [T-MACH-105314]

7.33 Course: Computational Intelligence [T-MACH-105314]

Responsibile: apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102817 - Major Field: Information Technology
M-MACH-102820 - Major Field: Mechatronics

Type: Written examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2105016</th>
<th>Computational Intelligence</th>
<th>2 SWS</th>
<th>Lecture / 📥</th>
<th>Mikut, Reischl</th>
</tr>
</thead>
</table>

Exams

| ST 2022 | 76-T-MACH-105314 | Computational Intelligence | Mikut |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written exam (Duration: 1h)

Prerequisites

none

Below you will find excerpts from events related to this course:

Computational Intelligence

2105016, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Content:

- Terms and definitions Computational Intelligence, application fields and examples
- Fuzzy logic: fuzzy sets; fuzzification and membership functions; inference: T-norms and -conorms, operators, aggregation, activation, accumulation; defuzzification methods, structures for fuzzy control
- Artificial Neural Nets: biology of neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
- Evolutionary Algorithms: Basic algorithm, Genetic Algorithms and Evolution Strategies, Evolutionary Algorithm GLEAM, integration of local search strategies, memetic algorithms, application examples
- Deep learning

Learning objectives:

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Literature

Kroll, A.: Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet)
## 7.34 Course: Computational Vehicle Dynamics [T-MACH-105350]

**Responsible:** Prof. Dr.-Ing. Carsten Proppe  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102638 - Major Field: Rail System Technology  
M-MACH-102818 - Major Field: Vehicle Technology  
M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Computational Vehicle Dynamics</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Computational Vehicle Dynamics</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76</td>
<td>Computational Vehicle Dynamics</td>
<td>30 min.</td>
<td>Oral exam</td>
</tr>
</tbody>
</table>

### Competence Certificate

oral exam, 30 min.

### Prerequisites

none

Below you will find excerpts from events related to this course:

### Computational Vehicle Dynamics

**2162256, SS 2022, 2 SWS, Language: German, Open in study portal**  
**Lecture (V) Online**

**Content**

This course serves as an introduction into the computational modelling and simulation of technical system road/vehicle. A method based perspective is taken which allows for a unified treatment of various kinds of vehicles. The vehicle model is obtained by dividing the system into functional subsystems and defining interfaces between these subsystems.

In the first part of the course, vehicle models will be developed based on models of the suspensions, the road, and the contact forces between road and vehicle. The focus of the second part of the course is on computational methods for linear and non-linear models of vehicle systems. The third part of the course discusses design criteria for stability, safety and ride comfort. Multibody dynamics simulations will be carried out using Matlab/ Simulink.

1. Introduction  
2. Models of load bearing systems  
3. Contact forces between wheels and roadway  
4. Simulation of roadways  
5. Vehicle models  
6. Methods of calculation  
7. Performance indicators

### Literature

Content
This course serves as an introduction into the computational modelling and simulation of technical system road/vehicle. A method based perspective is taken which allows for a unified treatment of various kinds of vehicles. The vehicle model is obtained by dividing the system into functional subsystems and defining interfaces between these subsystems.

In the first part of the course, vehicle models will be developed based on models of the suspensions, the road, and the contact forces between road and vehicle. The focus of the second part of the course is on computational methods for linear and non-linear models of vehicle systems. The third part of the course discusses design criteria for stability, safety and ride comfort. Multibody dynamics simulations will be carried out using Matlab/Simulink.

1. Introduction
2. Models of load bearing systems
3. Contact forces between wheels and roadway
4. Simulation of roadways
5. Vehicle models
6. Methods of calculation
7. Performance indicators

Literature
7.35 Course: Computer Science for Engineers [T-MACH-105205]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102563 - Computer Science

Type: Written examination
Credits: 6
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Lecture / Practice (L/</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2121390</td>
<td>Computer Science for Engineers</td>
<td>4</td>
<td>$\rightarrow$</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>ST 2022</td>
<td>3121034</td>
<td>Computer Science for Engineers</td>
<td>4</td>
<td>$\rightarrow$</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105205</td>
<td>Computer Science for Engineers</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105205</td>
<td>Computer Science for Engineers - German</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written exam [180 min]

Prerequisites
Computer Science for Engineers, passed

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105206 - Computer Science for Engineers, Prerequisite must have been passed.

Below you will find excerpts from events related to this course:

Computer Science for Engineers
2121390, SS 2022, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
Blended (On-Site/Online)

Content
Basics: Information representation- and processing, terms and definitions: alphabet, data, signals, information, numeral systems, propositional logic and Boolean algebra, computer architectures, programming paradigms.

Object Orientation: Definition and important characteristics of object orientation, Object-oriented modeling with UML.

Data Structures: Definition, properties and application of graphs, trees, linked lists, queues and stacks.

Algorithms: Characteristics of algorithms, complexity analysis, design methods, important examples.

Database management systems: Relational data model, relational algebra, declarative language SQL.

Literature
„Grundkurs Programmieren in Java“ Carl Hanser Verlag GmbH & CO. KG; Auflage 6, ISBN 10: 3446426639
Computer Science for Engineers
3121034, SS 2022, 4 SWS, Language: English, Open in study portal

Content
Basics: Information representation- and processing, terms and definitions: alphabet, data, signals, information, numeral systems, propositional logic and Boolean algebra, computer architectures, programming paradigms.
Object Orientation: Definition and important characteristics of object orientation, Object-oriented modeling with UML.
Data Structures: Definition, properties and application of graphs, trees, linked lists, queues and stacks.
Algorithms: Characteristics of algorithms, complexity analysis, design methods, important examples.
Database management systems: Relational data model, relational algebra, declarative language SQL.

Literature
7.36 Course: Computer Science for Engineers, Prerequisite [T-MACH-105206]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102563 - Computer Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
</tr>
<tr>
<td>ST 2022</td>
<td>3</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Programming assignments, that are to be implemented at the computer, are given every two weeks. The students are supervised by tutors while they work on the assignments. Therefore online tests must be solved by the students to assess the understanding of the tasks and the lecture material. All assignments have to be handed in, before they can take part in the exam.

Prerequisites

none

Below you will find excerpts from events related to this course:

**Computer Lab for Computer Science in Mechanical Engineering**

2121392, SS 2022, 2 SWS, Language: German, Open in study portal

**Computer Science for Engineers Lab Course**

3121036, SS 2022, 2 SWS, Language: English, Open in study portal

Content

JAVA programming assignments, that are to be implemented at the computer, are given every two weeks. The students are supervised by tutors while they work on the assignments. Therefore online tests must be solved by the students to assess the understanding of the tasks and the lecture material. All assignments have to be handed in, before they can take part in the exam.

Organizational issues

Wenn Poolräume nutzbar, dann Poolräume

Literature

Übungsblätter / exercise sheets
Literature
Exercise sheets / Übungsblätter
**7.37 Course: Constitution and Properties of Wearresistant Materials [T-MACH-102141]**

**Responsible:** apl. Prof. Dr. Sven Ulrich  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Content</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2194643</td>
<td>Constitution and Properties of Wear resistant materials</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

**Exams**

| ST 2022 | 76-T-MACH-102141 | Constitution and Properties of Wearresistant Materials | Ulrich |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

oral examination (about 30 min)

no tools or reference materials

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Constitution and Properties of Wear resistant materials**

2194643, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)

**Content**

The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Teaching Content:

introduction

materials and wear

unalloyed and alloyed tool steels

high speed steels

stellite and hard alloys

hard materials

hard metals

ceramic tool materials

superhard materials

new developments

regular attendance: 22 hours

self-study: 98 hours

Basic understanding of the constitution of wear-resistant materials, of the relations between constitution, properties and performance, of principles of increasing of hardness and toughness of materials as well as of the characteristics of the various groups of wear-resistant materials.

Recommendations: none
Organizational issues
Aufgrund der aktuellen Situation findet die Blockveranstaltung online in folgendem Zeitraum statt:
11.04.-13.04.2022: jeweils von 8:00-16:00 Uhr;
Ort: online per MS-Teams
Anmeldung verbindlich bis zum 08.04.2022 unter sven.ulrich@kit.edu.
Nach der Anmeldung wird Ihnen der Link zur Vorlesung per E-Mail am 08.04.2022 mitgeteilt.

Literature
Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995

Kopien der Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
7.38 Course: Continuum Mechanics of Solids and Fluids [T-MACH-110377]

Responsibility:  
Prof. Dr.-Ing. Thomas Böhlke  
Prof. Dr.-Ing. Bettina Frohnapfel

Organisation:  
KIT Department of Mechanical Engineering

Part of:  
M-MACH-102582 - Major Field: Continuum Mechanics  
M-MACH-102746 - Compulsory Elective Module

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Continuum mechanics of solids and fluids</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Böhlke, Frohnapfel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (90 min). Additives as announced

Prerequisites

passing the corresponding "Tutorial Continuum Mechanics of Solids and Fluids" (T-MACH-110333)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110333 - Tutorial Continuum Mechanics of Solids and Fluids must have been passed.

Annotation

Due to capacity reasons it is possible that not all students of this course can be admitted to the computer tutorials. Students of the bachelor's degree program in mechanical engineering who have chosen the Major Field Continuum Mechanics (SP-Nr 13) and students of the bachelor's degree program in material science and material technology will be admitted to the computer tutorials in any case. If additional places are available in the computer tutorials for this course, these will be allocated according to the BSc average grade.

Below you will find excerpts from events related to this course:

Continuum mechanics of solids and fluids

2161252, WS 22/23, 2 SWS, Language: German, Open in study portal  
Lecture (V)  
Blended (On-Site/Online)

Content

- introduction into tensor calculus
- kinematics
- balance laws of mechanics and thermodynamics
- material theory of solids and fluids
- field equations for solids and fluids
- thermomechanical couplings
- dimensional analysis

Literature

Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
7.39 Course: Control Technology [T-MACH-105185]

**Responsible:** Hon.-Prof. Dr. Christoph Gönnheimer

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2150683</th>
<th>Control Technology</th>
<th>2 SWS</th>
<th>Lecture / 🧩</th>
<th>Gönnheimer</th>
</tr>
</thead>
</table>

**Exams**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-105185</th>
<th>Control Technology</th>
<th>Gönnheimer</th>
</tr>
</thead>
</table>

**Legend:**
- 🖥 Online,
- 🧩 Blended (On-Site/Online),
- 🗣 On-Site,
- 🗑Cancelled

**Competence Certificate**

Written Exam (60 min)

**Prerequisites**

none

*Below you will find excerpts from events related to this course:

**Control Technology**

2150683, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content
The lecture control technology gives an integral overview of available control components within the field of industrial production systems.

The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states.

The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems.

The lecture is very practice-oriented and illustrated with numerous examples from different branches.

The following topics will be covered:

- Signal processing
- Control peripherals
- Programmable logic controls
- Numerical controls
- Controls for industrial robots
- Distributed control systems
- Field bus
- Trends in the area of control technology

Learning Outcomes:
The students …

- are able to name the electrical controls which occur in the industrial environment and explain their function.
- can explain fundamental methods of signal processing. This involves in particular several coding methods, error protection methods and analog to digital conversion.
- are able to choose and to dimension control components, including sensors and actors, for an industrial application, particularly in the field of plant engineering and machine tools. Thereby, they can consider both, technical and economical issues.
- can describe the approach for projecting and writing software programs for a programmable logic control named Simatic S7 from Siemens. Thereby they can name several programming languages of the IEC 1131.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu).
Course: Data Analytics for Engineers [T-MACH-105694]

**Responsible:** Stefan Meisenbacher
apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102817 - Major Field: Information Technology
M-MACH-102820 - Major Field: Mechatronics

**Type**  Written examination  **Credits**  5  **Grading scale**  Grade to a third  **Recurrence**  Each summer term  **Version**  2

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Lecture</td>
<td>3 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Written exam</td>
<td>1h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Written exam (Duration: 1h)

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

**Data Analytics for Engineers**

2106014, SS 2022, 3 SWS, Language: German, Open in study portal

**Lecture / Practice (VÜ)**
Blended (On-Site/Online)

**Content**

- Introduction and motivation
- Terms and definitions (types of multidimensional features - time series and images, problem classes)
- Scenario: Problem formulation, feature extraction, evaluation, selection and transformation, distance measures, Bayes classifiers, Support-Vector-Machines, decision trees, clustering, regression, validation
- Biweekly computer exercises (Software practice with SciXMiner): Data import, benchmark datasets, control of hand prostheses, energy prediction
- 2 hours per week lectures, 1 hour per week computer training

**Learning objectives:**

The students are able to apply the methods of data analysis efficiently. They know the basic mathematical data mining foundations for the analysis of single features and time series using classifiers, clustering and regression approaches. They are able to use various relevant methods as Bayes classifiers, Support Vector Machines, decision trees, fuzzy rulebases and they can adapt application scenarios (with data preprocessing and validation techniques) to real-world applications.

**Literature**

Vorlesungsunterlagen (ILIAS)
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe.
2008 (PDF frei im Internet)


Course: Data-Driven Algorithms in Vehicle Technology [T-MACH-112126]

**7.41 Course: Data-Driven Algorithms in Vehicle Technology [T-MACH-112126]**

**Responsible:** Dr. Stefan Scheubner  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113840</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Scheubner</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7600001</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
<td>Scheubner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Written Examination  
Duration: 90 minutes

Below you will find excerpts from events related to this course:

**Data-Driven Algorithms in Vehicle Technology**

2113840, WS 22/23, 2 SWS, Language: English, Open in study portal

**Lecture (V)**

Blended (On-Site/Online)

**Content**

Course Syllabus: Data-Driven Algorithms in Vehicle Technology  
Motivation for the Course: Nowadays, engineers often develop technical systems using a combination of hard- and software. This is true especially for modern passenger vehicle development. In a digitalized world, such developments are built on knowledge gained from relevant data sources, e.g. the vehicle sensors. Therefore, engineers in automobile technology need qualifications from data science to successfully create new functionalities in the cars. To prevent remaining purely theoretical, the algorithms in this course are explained using a real-world problem of “EV Routing”. Students have the opportunity to test methods in Python with frequent exercises presented.

Goal of the Course: Students have a basic understanding of data-driven algorithms such as Markov Models, Machine Learning or Monte-Carlo Methods. The approach for building data-driven models in automobile technology are known to students and they are able to test algorithms in the programming language “Python”. Furthermore, students have learnt how to analyse the algorithm performance.

Content:

1. Introduction to function development as well as the prerequisites for the course (e.g. Fundamentals for running Python code)
2. Fundamentals for EV Routing and relevant data sources
3. Parameter estimation and state classification algorithms to determine the current situation of the vehicle
4. Learning methods for driver behaviour
5. Forecast algorithms to predict future energy consumption of an electric vehicle

**Organizational issues**

Campus Ost, Geb. 70.04, Raum 219. genaue Termine entnehmen Sie bitte unserer Homepage. Studierende müssen einen eigenen Laptop mitbringen.
7.42 Course: Design and Development of Mobile Machines [T-MACH-105311]

**Responsible:** Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113079</td>
<td>Design and Development of Mobile Machines</td>
<td>2 SWS</td>
<td>Lecture / Geimer</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105311</td>
<td>Design and Development of Mobile Machines</td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-105311</td>
<td>Design and Development of Mobile Machines</td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** Online, Blended (On-Site/Online), On-Site, Cancelled

**Compentence Certificate**

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

A registration is mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

The course will be replenished by interesting lectures of professionals from leading hydraulic companies.

**Prerequisites**

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108887 must have been passed.

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-108887 - Design and Development of Mobile Machines - Advance must have been passed.

**Recommendation**

Knowledge in Fluid Power Systems (LV 2114093)

**Annotation**

After completion of the lecture, students can:

- design working and travel drive train hydraulics of mobile machines and can derive characteristic key factors.
- choose and apply suitable state of the art designing methods successfully
- analyse a mobile machines and break its structure down from a complex system to subsystems with reduced complexity
- identify and describe interactions and links between subsystems of a mobile machine
- present and document solutions of a technical problem according to R&D standards

The number of participants is limited.

**Content:**

The working scenario of a mobile machine depends strongly on the machine itself. Highly specialised machines, e.g. pavers are also as common as universal machines with a wide range of applications, e.g. hydraulic excavators. In general, all mobile machines are required to do their intended work in an optimal way and satisfy various criteria at the same time. This makes designing mobile machines to a great and interesting challenge. Nevertheless, usually key factors can be derived for every mobile machine, which affect all other machine parameters. During this lecture, those key factors and designing mobile machines accordingly will be addressed. To do so, an exemplary mobile machine will be discussed and designed in the lecture as a semester project.

**Literature:**

See german recommendations

Below you will find excerpts from events related to this course:
Content
Wheel loaders and excavators are highly specialized mobile machines. Their function is to detach, pick up and deposit materials near by. Significant size for dimensioning of the machines is the content of their standard shovel. In this lecture the main steps in dimensioning a wheel loader or excavator are beeing thought. This includes among others:

- Defining the size and dimensions,
- the dimensioning of the electric drive train,
- the dimensioning of the primary energy supply,
- Determining the kinematics of the equipment,
- the dimension of the working hydraulics and
- Calculations of strength

The entire design process of these machines is strongly influenced by the use of standards and guidelines (ISO/DIN-EN). Even this aspect is dealt with.

The lecture is based on the knowledge from the fields of mechanics, strength of materials, machine elements, propulsion and fluid technique. The lecture requires active participation and continued collaboration.

Recommendations:
Knowledge in Fluid Technology (SoSe, LV 21093)

- regular attendance: 21 hours
- self-study: 99 hours

Literature
Keine.
T 7.43 Course: Design and Development of Mobile Machines - Advance [T-MACH-108887]

**Responsible:** Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>Geimer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Preparation of semester report

**Prerequisites**

none
Course: Design and Optimization of Conventional and Electrified Automotive Transmissions [T-MACH-110958]

**Responsible:** Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Hartmut Faust

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102818 - Major Field: Vehicle Technology

**Type**
Oral examination

**Credits**
4

**Grading scale**
Grade to a third

**Recurrence**
Each summer term

**Version**
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2146208</td>
<td>Design and Optimization of Conventional and Electrified Automotive Transmissions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture / Faust</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105536</td>
<td>Design and Optimization of Conventional and Electrified Automotive Transmissions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Faust, Albers</td>
</tr>
</tbody>
</table>

**Competence Certificate**
oral exam (20 min)

**Prerequisites**
none

Below you will find excerpts from events related to this course:

**Design and Optimization of Conventional and Electrified Automotive Transmissions**
2146208, SS 2022, 2 SWS, Language: German, Open in study portal

**Lecture (V)**
On-Site

### Content

- Transmission types: Manual (MT) & automated manual transmissions (AMT), planetary torque converter machines (AT), double clutch (DCT), continuously variable (CVT) and geared neutral transmissions (IVT), hybrid transmissions (serial, parallel, multimode, Powersplit hybrid), E-axes
- Torsional vibration damper: damped clutch disc, dual mass flywheel, centrifugal pendulum (FKP), lock-up damper for torque converter
- Starting elements: dry single clutch, dry and wet double clutch, hydrodynamic torque converter, special shapes, e-motor
- Power transmission: countershaft transmission, planetary gear set, CVT variator, chain, synchronization, shift and claw clutches, reversing, differentials and locking systems, coaxial and axially parallel E-axis drives
- Transmission control: shift systems for MT, actuators for clutches and gear shifting, hydraulic control, electronic control, software application, comfort and sportiness
- Special designs: drive trains of commercial vehicles, hydrostat with power split, torque vectoring
- E-mobility: Classification into 5 stages of electrification, 4 hybrid configurations, 7 parallel hybrid architectures, hybridized transmissions (P2, P2.5, P3, P4), dedicated hybrid transmissions (DHT; serial / parallel / multimode, powersplit, new ones Concepts), gearbox for electric vehicles (E-axle gearbox, coaxial and axially parallel)
Organizational issues

Lernziele
Die Studenten erwerben das Wissen aus aktuellen Getriebe-, Hybrid- und reinen Elektroantriebs-Entwicklungen über …

- die Funktionsweise und Auslegung von konventionellen und elektrifizierten Fahrzeuggetrieben und deren Komponenten;
- Konstruktions- und Funktionsprinzipien der wichtigsten Komponenten von Handschalt-, Doppelkupplungs-, stufenlosen und Planetenautomat-Getrieben;
- komfortrelevante Zusammenhänge und Abhilfemaßnahmen;
- die Hybridisierung und Elektrifizierung der Triebstränge auf Basis bekannter Getriebetypen und mit speziellen sogenannten Dedicated Hybrid Transmissions (DHT) sowie Bewertung der Konzepte auf Systemebene.
7.45 Course: Design of a Jet Engine Combustion Chamber [T-CIWVT-105780]

**Responsible:** Prof. Dr.-Ing. Nikolaos Zarzalis

**Organisation:** KIT Department of Chemical and Process Engineering

**Part of:** M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22527 Design of a Jet Engine Combustion Chamber</td>
<td>2 SWS</td>
<td>/ 🗣️</td>
<td>Harth</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤔 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

**Competence Certificate**

The examination is an oral examination on lecture 22527 with a duration of 20 minutes.

**Prerequisites**

None
### 7.46 Course: Design with Plastics [T-MACH-105330]

**Responsible:** Dipl.-Ing. Markus Liedel  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2174571</th>
<th>Design with Plastics</th>
<th>2 SWS</th>
<th>Block / Blended (On-Site/Online)</th>
<th>Liedel</th>
</tr>
</thead>
</table>

**Exams**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-105330</th>
<th>Design with Plastics</th>
<th>Liedel</th>
</tr>
</thead>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗹 On-Site, ✗ Cancelled

**Competence Certificate**  
Oral exam, about 20 minutes

**Prerequisites**

none

**Recommendation**  
Poly I

Below you will find excerpts from events related to this course:

**Design with Plastics**  
2174571, SS 2022, 2 SWS, Language: German, Open in study portal  
Block (B) Blended (On-Site/Online)
Content
Structure and properties of plastics materials,
Processing of plastics,
Behavior of plastics under environmental impacts,
Classic strength dimensioning,
Geometric dimensioning,
Plastic appropriate design,
Failure examples,
Joining of plastic parts,
Supporting simulation tools,
Structural foams,
Plastics Technology trends.

Learning objectives:
Students will be able to

- distinguish polymer compounds from other construction materials regarding chemical differences, thermal behavior and solid conditions.
- discuss main plastics processes regarding advantages and disadvantages of materials selection and part geometry design and to make appropriate selections.
- analyze complex application requirements concerning material impacts on strength and to use the classic dimensioning method specific to the application to evaluate the lifetime part strength limit.
- evaluate part tolerances and geometry by appropriate methods considering molding shrinkage, production tolerances, post shrinkage, heat expansion, swelling, elastic and creep deformation.
- design plastic specific joining geometries like snap fits, screw bosses, weld seams and film hinges.
- detect classic molding failures and understand potential causes as well as to reduce the probability of molding failures by defining an optimized design.
- understand benefits and limits of selected simulation tools in the plastic technology discipline (strength, deformation, filling, warpage).
- assess polymer classes and plastic part designs with respect to suitable recycling concepts and ecological consequences.

Requirements:
none,

Recommendation: Polymerengineering I

Workload:
The workload for the lecture Design with Plastics is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).

Organizational Issues
Anmeldung unter Markus.Liedel@de.bosch.com

Literature
Materialien werden in der Vorlesung ausgegeben.
Literaturhinweise werden in der Vorlesung gegeben.
7.47 Course: Designing with numerical methods in product development [T-MACH-108719]

Responsible: Prof. Dr. Eckart Schnack
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Designing with numerical methods in product development</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-108719</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate
Oral examination (duration: 20 min)

Prerequisites
None

Annotation
The lecture notes are made available via ILIAS.

Below you will find excerpts from events related to this course:

Content

Organizational issues
Beginn ab 11.11.2021

Literature
Vorlesungsskript
7.48 Course: Development Methods of Technical Systems [T-MACH-111283]

Responsible: Dipl.-Ing. Thomas Maier
              Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2222/23 2121002 Development methods of technical systems</td>
<td>4 SWS</td>
<td>Project (P / 🗣)</td>
<td>Ovtcharova, Maier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2222/23 2121002 Development methods of technical systems</td>
<td>4 SWS</td>
<td>Project (P / 🗣)</td>
<td>Ovtcharova, Maier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-111283 Development Methods of Technical Systems</td>
<td></td>
<td></td>
<td>Ovtcharova</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Graded examination of other type weighted 50% project documentation and 50% colloquium.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Development methods of technical systems
2121002, SS 2022, 4 SWS, Language: German/English, Open in study portal

Content
Requirements, SysML, Modelica, FEM high performance computing, process modeling, VR/AR
Students can exemplarily:

- Collect requirements for large technical systems (e.g.: Helmholtz large-scale device KATRIN).
- Describe physical systems across domains with the modeling language Modelica and simulate the systems behavior.
- Generate simple FE meshes for simulations of structural mechanics.
- Perform general FEM analyses on mainframe computers and prepare and explain simulation results.
- As a team present the learned skills and document them continuously.

Development methods of technical systems
2121002, WS 22/23, 4 SWS, Language: German/English, Open in study portal

Content
Requirements, SysML, Modelica, FEM high performance computing, process modeling, VR/AR
Students can exemplarily:

- Collect requirements for large technical systems (e.g.: Helmholtz large-scale device KATRIN).
- Describe physical systems across domains with the modeling language Modelica and simulate the systems behavior.
- Generate simple FE meshes for simulations of structural mechanics.
- Perform general FEM analyses on mainframe computers and prepare and explain simulation results.
- As a team present the learned skills and document them continuously.
Course: Development of hybrid drivetrains [T-MACH-110817]

Responsible: Prof. Dr. Thomas Koch
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102645 - Major Field: Combustion Engine Techniques
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-102838 - Major Field: Energy Converting Engines

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2134155</td>
<td>Development of Hybrid Powertrains</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-110817</td>
<td>Development of hybrid drivetrains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 1 hour

Prerequisites
None

Below you will find excerpts from events related to this course:

**Development of Hybrid Powertrains**

2134155, SS 2022, 2 SWS, Language: German, [Open in study portal]

**Content**

1. Introduction and Goal
2. Alternative Powertrains
3. Fundamentals of Hybrid Powertrains
4. Fundamentals of Electric Components of Hybrid Powertrains
5. Interactions in Hybrid Powertrain Development
6. Overall System Optimization
**Course: Development of Oil-Hydraulic Powertrain Systems [T-MACH-105441]**

**Responsible:** Dr.-Ing. Isabelle Ays  
Dr.-Ing. Gerhard Geerling

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102818 - Major Field: Vehicle Technology  
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113072</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>2 SWS</td>
<td>Block /</td>
<td>Geerling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105441</td>
<td>Development of Oil-Hydraulic Powertrain Systems</td>
<td>2 SWS</td>
<td>Block (B)</td>
<td>Geimer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗼 On-Site, ✗ Cancelled

**Competence Certificate**
oral exam (20 min)

**Prerequisites**
none

**Below you will find excerpts from events related to this course:**

**Development of Oil-Hydraulic Powertrain Systems**

2113072, WS 22/23, 2 SWS, Language: German, [Open in study portal]

**Block (B) Blended (On-Site/Online)**

**Content**
The block course offered by the Chair of Mobile Machines (Mobima) conveys the basics of planning and development of mobile and industrial hydrostatic systems. The lecturer works for a market leading company producing fluid power drives and controls and gives a deep view into the process of planning and development using real life examples. The contents of the course are:

- marketing, project planning
- hydrostatic circuits
- heat balance, hydraulic accumulators
- filtration, noise lowering
- development exercises + laboratory tutorial

**Knowledge in the fluidics**

- regular attendance: 19 hours
- self-study: 90 hours

**Organizational issues**
siehe Homepage
### Course: Digital Control [T-MACH-105317]

**Responsible:** Dr.-Ing. Michael Knoop  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102817 - Major Field: Information Technology  
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2137309</td>
<td>Digital Control</td>
<td>2 SWS</td>
<td>Lecture / 🗽️</td>
<td>Knoop, Hauser</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105317</td>
<td>Digital Control</td>
<td>2 SWS</td>
<td>Lecture / 🗽️</td>
<td>Stiller</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

written exam  
60 min.

**Prerequisites**

none

---

**Below you will find excerpts from events related to this course:**

#### Content

**Lehrinhalt (EN):**

1. Introduction into digital control:  
   Motivation for digital implementation of controllers  
   Structure of digital feedback control loops  
   Sample and hold units
2. State space analysis and design:  
   Discretisation of continuous-time systems  
   Discrete-time state space equations  
   Stability - definition and criteria  
   State feedback design by eigenvalue assignment  
   PI state feedback controller  
   Luenberger observer, separation theorem  
   Systems with dead-time  
   Deadbeat design
3. Analysis and design based on z-transform:  
   z-transform - definition and theorems  
   Control loop description in the z domain  
   Stability criteria  
   Root locus  
   Controller design  
   Transfer of continuous-time controllers into discrete-time controllers

**Voraussetzungen (EN):**

Basic studies and preliminary examination; basic lectures in automatic control

**Lernziele (EN):**

The lecture introduces key methods for the analysis and design of digital feedback control systems. Starting point is the discretisation of linear, continuous-time models. State space based and z-transform based controller design techniques are presented for discrete-time, single-input single-output systems. Furthermore, plants with dead-time and deadbeat design are covered.

Nachweis: written examination; duration: 60 minutes; no tools or reference materials may be used during the exam.

**Arbeitsaufwand:** 120 hours

**Literature**

- Föllinger, O.: Lineare Abtastsysteme. 4. Auflage, R. Oldenbourg Verlag, München Wien 1990
7.52 Course: Drive Train of Mobile Machines [T-MACH-105307]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Marco Wydra

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2113077</td>
<td>Drive Train of Mobile Machines</td>
<td>2 SWS</td>
<td>Lecture / 🎤</td>
<td>Geimer</td>
</tr>
<tr>
<td>Practice</td>
<td>2113078</td>
<td>Übung zu 'Antriebsstrang mobiler Arbeitsmaschinen'</td>
<td>1 SWS</td>
<td>Practice / 🎤</td>
<td>Geimer, Herr</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105307</td>
<td>Drive Train of Mobile Machines</td>
<td>Geimer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105307</td>
<td>Drive Train of Mobile Machines</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legend: 🏛 Online, 🧩 Blended (On-Site/Online), 🎤 On-Site, ❌ Cancelled

Competence Certificate
The final assessment will be an oral examination (20 min) taking place during the recess period. The examination will be offered in every semester and can be repeated at any regular examination date.

Prerequisites
none

Recommendation
- General principles of mechanicals engineering
- Basic knowledge of hydraulics
- Interest in mobile machinery

Annotation
At the end of the lecture, participants can explain the structure and function of all discussed drive trains of mobile machines. They can analyze complex gearbox schematics and synthesize simple transmission functions using rough calculations.

Content:
In this course the different drive trains of mobile machinery will be discussed. The focus of this course is:

- mechanical gears
- torque converter
- hydrostatic drives
- power split drives
- electrical drives
- hybrid drives
- axles
- terra mechanics

Media: projector presentation
Literature: Download of lecture slides from ILIAS. Further literature recommendations during lectures.

Below you will find excerpts from events related to this course:

Drive Train of Mobile Machines
2113077, WS 22/23, 2 SWS, Language: German, Open in study portal
Content
In this course will be discussed the different drive train of mobile machinerys. The fokus of this course is:
- improve knowledge of fundamentals
- mechanical gears
- torque converter
- hydrostatic drives
- continuous variable transmission
- electrical drives
- hybrid drives
- axles
- terra mechanic

Recommendations:
- general basics of mechanical engineering
- basic knowledge in hydraulics
- interest in mobile machines
- regular attendance: 21 hours
- self-study: 89 hours

Literature
Skriptum zur Vorlesung downloadbar über ILIAS
### 7.53 Course: Dynamic Systems of Technical Logistics [T-MACH-112113]

**Responsible:** Dr.-Ing. Martin Mittwollen  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>Event Code</th>
<th>Time</th>
<th>Type</th>
<th>Credits</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2148605</td>
<td></td>
<td>Lecture / Practice (VÜ)</td>
<td>4 SWS</td>
<td>Dynamic Systems of Technical Logistics</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>Event Code</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-112113</td>
<td></td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

**Competence Certificate**

The assessment consists of an oral exam (approx. 20min) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

**Prerequisites**

none

**Recommendation**

Knowledge out of **Basics of Technical Logistics -I** (LV 2117095) preconditioned.  
Knowledge out of **Basics of Technical Logistics-II** (LV 2117098) recommended.

Below you will find excerpts from events related to this course:

### Content

Conveyor technology = motion = dynamics  
Insight into the structure, mode of operation, dynamics and safety of materials handling equipment along the process chain of technical logistics from raw material extraction through processing, distribution, storage and order picking to shipping.  
Bulk material mining, transport, handling, storage  
Stability and tipping safety when turning, slewing, driving cranes  
Overhead cranes - structure, dynamics, safety  
Conveyors in material handling systems (belt, chain, AGV, EMS, ...)

### Organizational Issues

DSTL und DSTL-P sind zeitlich so gegliedert, dass zunächst unter Hinzunahme des Donnerstags-Zeitslots für das Projekt ausschließlich der Vorlesungszeit bis ca. Ende Juni gehalten wird. Der anschließende Zeitraum ist ausschließlich für die (optionale) Projektarbeit vorgesehen.

 Bachelor's Program Mechanical Engineering , Date: 20/09/2022  
Module Handbook, valid from Winter Term 2022/23
7.54 Course: Dynamic Systems of Technical Logistics - Project [T-MACH-112114]

**Responsible:** Dr.-Ing. Martin Mittwollen

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2148606</td>
<td>Dynamic Systems of Technical Logistics - Project</td>
<td>2</td>
<td>Project (P / 🧩)</td>
<td>4</td>
<td>Grade to a third</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-112114</td>
<td>Dynamic Systems of Technical Logistics - Project</td>
<td>4</td>
<td>Project (P)</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔷 On-Site, ❌ Cancelled

**Competence Certificate**

Presentation of performed project and defense (30min) according to §4 (2), No. 3 of the examination regulation

**Prerequisites**

T-MACH-112113 (Dynamic Systems of Technical Logistics) must have been started.

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-112113 - Dynamic Systems of Technical Logistics must have been started.

**Below you will find excerpts from events related to this course:**

**Dynamic Systems of Technical Logistics - Project**

2148606, SS 2022, 2 SWS, Language: German, Open in study portal

**Project (PRO)**

Blended (On-Site/Online)

**Content**

Conveyor technology = motion = dynamics

Course content:

The knowledge acquired in the lecture DSTL will be extended and deepened together with the previous knowledge from GTL I/II in the context of an independent project work based on an application case from the current research and project work at IFL. Analyses, research, design work, calculations and simulations are used.

**Organizational issues**

DSTL und DSTL-P sind zeitlich so gegliedert, dass zunächst unter Hinzunahme des Donnerstags-Zeitslots für das Projekt ausschließlich der Vorlesungsteil bis ca. Ende Juni gehalten wird. Der anschließende Zeitraum ist ausschließlich für die (optionale) Projektarbeit vorgesehen.
7.55 Course: Dynamics of Electro-Mechanical Systems [T-MACH-111260]

Responsible: Philipp Altoé
Prof. Dr.-Ing. Alexander Fidlin

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
M-MACH-104442 - Major Field: Vibration Theory

Type: Written examination
Credits: 5
Grading scale: Grade to a third
Expansion: 1 terms
Version: 2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2162210</td>
<td>Dynamics of electro-mechanical systems</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Fidlin, Römer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2162211</td>
<td>Dynamics of electro-mechanical systems (Tutorial)</td>
<td>2</td>
<td>Practice / Online</td>
<td>Altoé, Fidlin, Römer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-111260</td>
<td>Dynamics of Electro-Mechanical Systems</td>
<td>2</td>
<td>Written exam</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Competence Certificate
Written exam, 180 minutes

Prerequisites
None

Below you will find excerpts from events related to this course:

Dynamics of electro-mechanical systems
2162210, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

The lecture conveys two kinds of describing electro-mechanical systems. The first one (described shortly) is based on state and flow variables, the second one (which is in the focus of the course) is based on an energetic description and the Lagrange-Maxwell-Formalism. These methods are then applied in order to analyse the most important electro-mechanical systems. These include:

- Dynamics of electro-mechanical converter and vibration exciters taking into account the load in resonance operation
- Dynamics of electrical machines taking into account the rotordynamic effects (imbalance, loss of stability, passage through resonance)
- Dynamics of piezo-electrical converters in sensor and actor operation
Course: Dynamics of the Automotive Drive Train [T-MACH-105226]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
- M-MACH-104442 - Major Field: Vibration Theory

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2163111</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>Lecture</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2163112</td>
<td>Übungen zu Dynamik des Kfz-Antriebsstrangs</td>
<td>Practice</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>Oral examination</td>
<td>30</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination, 30 min.

Prerequisites
none

Recommendation
Powertrain Systems Technology A: Automotive SystemsMachine DynamicsVibration Theory

Below you will find excerpts from events related to this course:

Dynamics of the Automotive Drive Train
2163111, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
- Main components of the vehicle powertrain and their modelling
- Typical driving situations
- Problem oriented models for particular driving situations
- System analysis and optimization with respect to dynamic behavior

Literature
- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Übungen zu Dynamik des Kfz-Antriebsstrangs
2163112, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
Exercises related to the lecture
### 7.57 Course: Electric Rail Vehicles [T-MACH-102121]

**Responsible:** Prof. Dr.-Ing. Marcus Geimer  
Prof. Dr.-Ing. Peter Gratzfeld  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102638 - Major Field: Rail System Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 222</td>
<td>2114346</td>
<td>Electric Rail Vehicles</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
</tr>
<tr>
<td>ST 222</td>
<td>76-T-MACH-102121</td>
<td>Electrical Railway Traction Systems</td>
<td></td>
<td>Tesar, Gratzfeld</td>
</tr>
<tr>
<td>ST 222</td>
<td>76-T-MACH-102122</td>
<td>Electric Rail Vehicles</td>
<td></td>
<td>Otto, Tesar, Gratzfeld</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102121</td>
<td>Electric Rail Vehicles</td>
<td></td>
<td>Tesar, Otto, Reimann, Gratzfeld</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102122</td>
<td>Electric Rail Vehicles</td>
<td></td>
<td>Otto, Tesar, Gratzfeld, Reimann</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

Oral examination  
Duration: ca. 20 minutes  
No tools or reference materials may be used during the exam.

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Electric Rail Vehicles**  
2114346, SS 2022, 2 SWS, Language: German, Open in study portal

**Lecture (V)**  
On-Site

**Content**

1. Introduction: history of electric traction in railways, economic impact  
2. Wheel-rail-contact: carrying of vehicle mass, adhesion, current return  
3. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles  
4. Electric drives: purpose of electric drive and basic configurations, traction motors, converters, drives for vehicles at dc and ac lines and without contact wire, multi-system, dual power and hybrid vehicles, conventional drives for existing vehicles  
5. Train control management system: definitions, bus systems, components, network architectures, examples, future trends  
6. Vehicle concepts: modern vehicle concepts for mass transit and electric main line  
7. Traction power supply: power supply of railway vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire

**Literature**

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.  
A bibliography is available for download (Ilias-platform).
7 COURSES

Course: Electrical Engineering and Electronics [T-ETIT-109820]

7.58 Course: Electrical Engineering and Electronics [T-ETIT-109820]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104801 - Electrical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Exam Description</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4</td>
<td>Lecture / 🧩</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>2306339</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Practice / 🧩</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>Hähnlein, Digel, Bremer</td>
</tr>
<tr>
<td>2306340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4</td>
<td>Lecture / 🧩</td>
<td>Electrical Engineering and Electronics for Mechanical Engineers</td>
<td>Becker</td>
</tr>
<tr>
<td>7306351</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Annotation
Exam will be held in german language
**Course: Energy Efficient Intralogistic Systems [T-MACH-105151]**

**Responsible:** Dr.-Ing. Meike Kramer  
Dr. Frank Schönung

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102816 - Major Field: Fundamentals of Energy Technology  
M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2117500</td>
<td>Energy efficient intralogistic systems</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Kramer, Schönung</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Oral, 30 min. examination dates after the end of each lesson period.

**Prerequisites**

none

**Recommendation**

The content of course “Basics of Technical Logistics I” (T-MACH-109919) should be known.

**Annotation**

Visit the IFL homepage of the course for the course dates and/or possible limitations of course participation.

---

Below you will find excerpts from events related to this course:

**Content**

The content of course “Basics of Technical Logistics” should be known.

**Organizational issues**

Blockveranstaltung 2021/2022. Die Veranstaltung wird im Januar als Online Veranstaltung (Link wird im ILIAS Kurs bereitgestellt) stattfinden. Termine

- 12.01.2022: 16:00 - 18:00 Uhr  
- 14.01.2022: 16:00 - 18:00 Uhr  
- 17.01.2022: 16:00 - 19:00 Uhr  
- 18.01.2022: 16:00 - 19:00 Uhr  
- 21.01.2022: 16:00 - 19:00 Uhr  
- 24.01.2022: 16:00 - 19:00 Uhr  
- 26.01.2022: 16:00 - 19:00 Uhr  
- 28.01.2022: 16:00 - 18:00 Uhr  
- 31.01.2022: 16:00 - 18:00 Uhr (als Fragestunde)

**Literature**

Keine.
7.60 Course: Energy Systems I: Renewable Energy [T-MACH-105408]

Responsible: apl. Prof. Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>2129901 Energy Systems I - Renewable Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>3</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105408 Energy Systems I: Renewable Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, approx. 1/2 hour

Prerequisites
none

Below you will find excerpts from events related to this course:

Energy Systems I - Renewable Energy
2129901, WS 22/23, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
The course deals with fundamental aspects of renewable energies.

1. The first part deals with the basic concepts of absorbing solar beams, in an efficient manner accounting for the minimization of heat losses. In this context, selective topics on thermodynamics as well as fluid dynamics are introduced. In the second part few applications are discussed and optimizations techniques of solar collectors construction and their heat transfer are presented.
2. The use of solar energy as a source for heat generation is followed by the idea of electricity generation. Introductive aspects of Photovoltaic technologies are illuminated.
3. The last part presents additional regenerative energy sources such as wind and geothermal energy.

The student knows the principles of the feasibility of energy gain by means of renewable energies, in particular the solar energy.

regular attendance: 34 hours
self-study: 146 hours

Oral examination – as an elective course 30 minutes, in combination with Energiesysteme-II or other courses within the energy courses, as a major course 1 hour

Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.
### 7.61 Course: Engine Laboratory [T-MACH-105337]

**Responsible:** Dr.-Ing. Uwe Wagner  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:**  
- M-MACH-102645 - Major Field: Combustion Engine Techniques  
- M-MACH-102838 - Major Field: Energy Converting Engines  

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2134001</td>
<td>Engine Laboratory</td>
<td>2 SWS</td>
<td>Practical course / 🗣 Wagner</td>
</tr>
</tbody>
</table>

**Exams**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105337</td>
<td>Engine Laboratory</td>
<td></td>
<td>Koch</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 💼 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

- written documentation of every experiment, certificate of successful attendance, no grading

**Prerequisites**

- none

---

**Below you will find excerpts from events related to this course:**

#### Engine Laboratory

- 2134001, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

**Practical course (P)**  
**On-Site**

**Organizational issues**

- voraussichtlich 1. vorlesungsfreie Woche im SS 2021. Wird auf der Homepage und in den Vorlesungen bekannt gegeben

**Literature**

- Versuchsbeschreibungen
7.62 Course: Engine Measurement Techniques [T-MACH-105169]

**Responsibe:** Dr.-Ing. Sören Bernhardt  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102645 - Major Field: Combustion Engine Techniques  
M-MACH-102817 - Major Field: Information Technology  
M-MACH-102818 - Major Field: Vehicle Technology

**Type**  
Oral examination

**Credits**  
4

**Grading scale**  
Grade to a third

**Recurrence**  
Each summer term

**Version**  
1

---

### Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2134137</td>
<td>Engine measurement techniques</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td></td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td></td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

### Competence Certificate

oral examination, Duration: 0.5 hours, no auxiliary means

### Prerequisites

none

### Recommendation

T-MACH-102194 Combustion Engines I

---

**Below you will find excerpts from events related to this course:**

### Literature

1. Grohe, H.: Messen an Verbrennungsmotoren  
2. Bosch: Handbuch Kraftfahrzeugtechnik  
3. Veröffentlichungen von Firmen aus der Meßtechnik  
4. Hoffmann, Handbuch der Meßtechnik  
5. Klingenberg, Automobil-Meßtechnik, Band C
7.63 Course: Engineering Mechanics I [T-MACH-100282]

**Responsible:** Prof. Dr.-Ing. Thomas Böhlke  
Dr.-Ing. Tom-Alexander Langhoff

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102572 - Engineering Mechanics  
M-MACH-104624 - Orientation Exam

**Type:** Written examination  
**Credits:** 7  
**Grading scale:** Grade to a third  
**Recurrence:** Each winter term  
**Version:** 2

### Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161245</td>
<td>Engineering Mechanics I</td>
<td>3</td>
<td>Lecture / 📝</td>
<td>Böhlke</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3161010</td>
<td>Engineering Mechanics I (Lecture)</td>
<td>3</td>
<td>Lecture / 📝</td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

### Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td></td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-100282-englisch</td>
<td>Engineering Mechanics I</td>
<td></td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td></td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100282-englisch</td>
<td>Engineering Mechanics I</td>
<td></td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 📝 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**
written exam, 90 min, graded

**Prerequisites**
successful participation in "Engineering Mechanics I (Tutorial)" (see T-MACH-100528)

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The course T-MACH-100528 - Tutorial Engineering Mechanics I must have been passed.

**Below you will find excerpts from events related to this course:**

#### Engineering Mechanics I
2161245, WS 22/23, 3 SWS, Language: German, Open in study portal

**Lecture (V)**  
Blended (On-Site/Online)

**Content**
- Basics of vector calculus  
- Force systems  
- Statics of rigid bodies  
- Internal forces and moments in bars and beams  
- Friction  
- Centre of gravity, centre of mass  
- Work, energy, principle of virtual work  
- Statics of inextensible ropes  
- Elastostatics of tension-compression bars

**Literature**
- Vorlesungsskript  
- Hibbeler, R.C: Technische Mechanik 1 - Statik. Prentice Hall. Pearson Studium 2005  
7.64 Course: Engineering Mechanics II [T-MACH-100283]

**Responsible:** Prof. Dr.-Ing. Thomas Böhlke  
Dr.-Ing. Tom-Alexander Langhoff

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102572 - Engineering Mechanics  
M-MACH-104624 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2162250 Engineering Mechanics II</td>
<td>3 SWS</td>
<td>Böhlke, Langhoff</td>
<td></td>
</tr>
<tr>
<td>ST 2022 3162010 Engineering Mechanics II (Lecture)</td>
<td>3 SWS</td>
<td>Langhoff</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-100283 Engineering Mechanics II</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 76-T-MACH-100283-englisch Engineering Mechanics II</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-100283 Engineering Mechanics II</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-100283-englisch Engineering Mechanics II</td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

written exam, 90 min, graded

**Prerequisites**

successful participation in "Engineering Mechanics II (Tutorial)" (see T-MACH-100284)

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-100284 - Tutorial Engineering Mechanics II must have been passed.

**Below you will find excerpts from events related to this course:**

**Engineering Mechanics II**

2162250, SS 2022, 3 SWS, Language: German, Open in study portal

**Content**

- bending  
- shear  
- torsion  
- stress and strain state in 3D  
- Hooke's law in 3D  
- elasticity theorems in 3D  
- energy methods in elastostatics  
- approximation methods  
- stability of elastic bars

**Literature**

Vorlesungsskript  
## Engineering Mechanics II (Lecture)

**3162010, SS 2022, 3 SWS, Language: English, [Open in study portal](#)**

<table>
<thead>
<tr>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

**Content**

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theorems in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars
7.65 Course: Engineering Mechanics III & IV [T-MACH-105201]

**Responsible:** Prof. Dr.-Ing. Wolfgang Seemann  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>10</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2162231 Engineering Mechanics IV</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Proppe</td>
</tr>
<tr>
<td>ST 2022 3162012 Engineering Mechanics 4</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Proppe</td>
</tr>
<tr>
<td>WT 22/23 2161203 Engineering Mechanics III</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WT 22/23 3161012 Engineering Mechanics III (Lecture)</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Römer</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105201 Engineering Mechanics III &amp; IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-105201 Engineering Mechanics III &amp; IV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**  
Written Exam (3 h), graded

**Prerequisites**  
Successful accomplishment of the exercise sheets in Engineering Mechanics III (T-MACH-105202) and of the exercise sheets in Engineering Mechanics IV (T-MACH-105203).

**Modeled Conditions**  
The following conditions have to be fulfilled:

1. The course T-MACH-105202 - Tutorial Engineering Mechanics III must have been passed.
2. The course T-MACH-105203 - Tutorial Engineering Mechanics IV must have been passed.

Below you will find excerpts from events related to this course:

**Engineering Mechanics IV**  
2162231, SS 2022, 2 SWS, Language: German, Open in study portal  
Lecture (V)  
Blended (On-Site/Online)

**Content**  
Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption

**Literature**  
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006  
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968  
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin, 1971  
Klotter: Technische Schwingungslehre, 1. Bd. Teil A, Heidelberg

**Engineering Mechanics 4**  
3162012, SS 2022, 2 SWS, Language: English, Open in study portal  
Lecture (V)  
Blended (On-Site/Online)
Content
The students know some possibilities to describe the position and orientation of a rigid body for an arbitrary 3d motion. They realize that the rotational velocity is a vector which may change both magnitude and orientation. They can apply the principle of linear momentum and the principle of moment of momentum to a spatial motion of a rigid body and notice that this is much more complicated compared to a plain motion. The students can calculate the coordinates of the inertia tensor. They see that many effects which may be seen with gyroscopes can be explained by the principle of moment of momentum. For systems with many particles or bodies but only few degrees of freedom the students know that the application of analytical methods like the principle of D'Alembert in Lagrangian form or the Lagrange equations may be advantageous. They can apply these principles to simple problems. For vibration problems the students can interpret the most important expressions like eigenfrequency, resonance or eigenvalue problem. Forced vibration of systems with the degree of freedom can be investigated by the students.

**Engineering Mechanics III**

2161203, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Lecture (V)**

On-Site

**Content**


Kinetics of a particle:
Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems

Systems of particles:
Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.

Plain motion of rigid bodies:

**Literature**

Hibbeler: Technische Mechanik 3, Dynamik, München, 2006

Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983

Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975

Göldner, Holzweissig: Leitfaden der Technischen Mechanik.

Hagedorn: Technische Mechanik III.

**Engineering Mechanics III (Lecture)**

3161012, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

**Lecture (V)**

On-Site

**Content**


Kinetics of a particle: Newton's axiom, principle of d'Alembert, work of force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems

Systems of particles: principle of center of mass, principle of moment of momentum, impacts between particles, systems with variable mass, applications

Course: Exercises in Technical Thermodynamics and Heat Transfer I [T-MACH-105204]

**Responsible:** Prof. Dr. Ulrich Maas

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102574 - Technical Thermodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type/On-Site</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2165502</td>
<td>Exercise course Technical Thermodynamics and Heat Transfer I</td>
<td>2</td>
<td>Practice / On-Site</td>
<td>Maas</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3165015</td>
<td>Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>2</td>
<td>Tutorial / On-Site</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76T-MACH-105204</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer I</td>
<td>Maas</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105204</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer I</td>
<td>Maas, Schießl</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, ⚡ Blended (On-Site/Online), ⚤ On-Site, ✗ Cancelled

**Competence Certificate**

Homework is mandatory.
### Course: Excercises in Technical Thermodynamics and Heat Transfer II [T-MACH-105288]

**Responsible:** Prof. Dr. Ulrich Maas  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102574 - Technical Thermodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
</tr>
<tr>
<td>ST 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

### Competence Certificate
Homeowrk is mandatory.

### Prerequisites
none

Below you will find excerpts from events related to this course:

#### Technical Thermodynamics and Heat Transfer II (Tutorial)
2166556, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

<table>
<thead>
<tr>
<th>Practice (Ü)</th>
<th>Blended (On-Site/Online)</th>
</tr>
</thead>
</table>

### Content
Calculation of thermodynamical problems

### Literature
Vorlesungsskriptum
### 7.68 Course: Exercices - Tribology [T-MACH-109303]

**Responsible:** Prof. Dr. Martin Dienwiebel  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102812 - Major Field: Powertrain Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>2181114</th>
<th>Tribology</th>
<th>5 SWS</th>
<th>Lecture / Practice ( /</th>
<th>Dienwiebel, Scherge</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

**Competence Certificate**

successful solving of all exercises

**Prerequisites**

none

*Below you will find excerpts from events related to this course:*
Content

- Chapter 1: Friction
  adhesion, geometrical and real area of contact, Friction experiments, friction powder, tribological stressing, environmental influences, tribological age, contact models, Simulation of contacts, roughness.
- Chapter 2: Wear
  plastic deformation at the asperity level, dissipation modes, mechanical mixing, Dynamics of the third body, running-in, running-in dynamics, shear stress.
- Chapter 3: Lubrication
  base oils, Stribeck plot, lubrication regimes (HD, EHD, mixed lubrication), additives, oil characterization, solid lubrication.
- Chapter 4: Measurement Techniques
  friction measurement, tribometer, dissipated frictional power, conventional wear measurement, continuous wear measurement(RNT)
- Chapter 5: Roughness
  profilometry, surface roughness parameters, evaluation length and filters, bearing ratio curve, measurement error
- Chapter 6: Accompanying Analysis
  multi-scale topography measurement, chemical surface analysis, structural analysis, mechanical analysis

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

- describe the fundamental friction and wear mechanisms, which occur in tribologically stressed systems
- evaluate the friction and wear behavior of tribological systems
- explain the effects of lubricants and their most important additives
- identify suitable approaches to optimize tribological systems
- explain the most important experimental methods for the measurement of friction and wear, and is able to use them for the characterisation of tribo pairs
- choose suitable methods for the evaluation of roughness and topography from the nm-scale to the mm-scale and is able to interpret the determined values in respect to their effect on the tribological behavior
- describe the most important surface-analytical methods and their physical principles for the characterization of tribologically stressed sliding surfaces

preliminary knowledge in mathematics, mechanics and materials science recommended

regular attendance: 45 hours
self-study: 195 hours
oral examination (ca. 40 min)
no tools or reference materials
admission to the exam only with successful completion of the exercises

Literature

7.69 Course: Exercises for Materials Characterization [T-MACH-107685]

**Responsible:** Dr.-Ing. Jens Gibmeier  
Prof. Dr. Reinhard Schneider

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

**Events**

|     |     |                      |          |                    |
|-----|-----|----------------------|----------|
| ST 2022 | 2174586 | Materials Characterization | 2 SWS  |

**Exams**

|     |     |                      |          |                    |
|-----|-----|----------------------|----------|
| ST 2022 | 76-T-MACH-107685 | Exercises for Materials Characterization | Gibmeier|

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

**Competence Certificate**

Regular attendance

**Prerequisites**

T-MACH-110945 – Exercises for Materials Characterization has not been started

Below you will find excerpts from events related to this course:

**Content**

The following methods will be introduced within this lecture:

- microscopic methods: optical microscopy, electron microscopy (SEM/TEM), atomic force microscopy
- material and microstructure analyses by means of X-ray, neutron and electron beams
- analysis methods at SEM/TEM (e.g. EELS)
- spectroscopic methods (e.g. EDS / WDS)

**Learning objectives:**

The students have fundamental knowledge about methods of material analysis. They have a basic understanding to transfer this fundamental knowledge on problems in engineering science. Furthermore, the students have the ability to describe technical material by its microscopic and submicroscopic structure.

**Organizational issues**


The event will be held in accordance with the Corona rules currently in force at KIT. Status of 11.04.2022, the event will be held in presence. In any case, we still ask you to wear a nose and mouth covering. In the summer semester, the event will be held in German. The course (first lecture) will start on 26.04.2022.

**Literature**

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).  
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
7.0 Course: Experimental Dynamics [T-MACH-105514]

**Responsible:** Prof. Dr.-Ing. Alexander Fidlin  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102820 - Major Field: Mechatronics  
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics  
- M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2162225</th>
<th>Experimental Dynamics</th>
<th>3 SWS</th>
<th>Lecture / Online</th>
<th>Fidlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2162228</td>
<td>Übungen zu Experimentelle Dynamik</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Fidlin, Genda</td>
</tr>
</tbody>
</table>

**Exams**

| ST 2022 | 76-T-MACH-105514 | Experimental Dynamics | Fidlin |

Legend: 🌐 Online, 📚 Blended (On-Site/Online), ⬛ On-Site, ⌚ Cancelled

**Competence Certificate**

oral exam, 30 min.

**Prerequisites**

Can not be combined with Practical Training in Measurement of Vibrations (T-MACH-105373).

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-105373 - Practical Training in Measurement of Vibrations must not have been started.

**Below you will find excerpts from events related to this course:**

**Experimental Dynamics**  
2162225, SS 2022, 3 SWS, Language: German, Open in study portal

**Content**

1. Introduction  
2. Measurement principles  
3. Sensors as coupled multi-physical systems  
4. Digital signal processing, measurements in frequency domain  
5. Forced non-linear vibrations  
6. Stability problems (Mathieu oscillator, friction induces vibrations)  
7. Elementary rotor dynamics  
8. Modal analysis
7.71 Course: Failure Analysis [T-MACH-105724]

**Responsible:** Prof. Dr. Christian Greiner  
Dr.-Ing. Johannes Schneider

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105724</td>
<td>Failure Analysis</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

**Competence Certificate**

oral examination, ca. 30 min

**Prerequisites**

none

**Recommendation**

basic knowledge in materials science (e.g. lecture materials science I and II)

**Below you will find excerpts from events related to this course:**

**V Failure Analysis**  
2182572, WS 22/23, 2 SWS, Open in study portal

**Lecture (V)**  
On-Site

**Content**

Aim, procedure and content of examining failure

Examination methods

Types of failure:

- Failure due to mechanical loads
- Failure due to corrosion in electrolytes
- Failure due to thermal loads
- Failure due to tribological loads

Damage systematics

The students are able to discuss damage evaluation and to perform damage investigations. They know the common necessary investigation methods and can regard failures considering load and material resistance. Furthermore they can describe and discuss the most important types of failure and damage appearance.

basic knowledge in materials science (e.g. lecture materials science I and II) recommended

regular attendance: 21 hours
self-study: 99 hours
oral exam, duration: ca. 30 minutes
no notes

**Literature**

# Course: Failure of Structural Materials: Deformation and Fracture [T-MACH-102140]

**Responsible:** Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
<th>Language</th>
<th>Location</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / Practice (VÜ)</td>
<td>2181711</td>
<td>Failure of structural materials: deformation and fracture</td>
<td>German</td>
<td>On-Site</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>Exams</td>
<td>ST 2022</td>
<td>76-T-MACH-102140 Failure of Structural Materials: Deformation and Fracture</td>
<td>German</td>
<td>On-Site</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>Events</td>
<td>WT 22/23</td>
<td>76-T-MACH-102140 Failure of Structural Materials: Deformation and Fracture</td>
<td>German</td>
<td>On-Site</td>
<td>Weygand, Gumbsch, Kraft</td>
</tr>
</tbody>
</table>

**Competence Certificate**
oral exam ca. 30 minutes
no tools or reference materials

**Prerequisites**
one

**Recommendation**
preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:

**Failure of structural materials: deformation and fracture**

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
<th>Language</th>
<th>Location</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / Practice (VÜ)</td>
<td>2181711</td>
<td>Failure of structural materials: deformation and fracture</td>
<td>German</td>
<td>On-Site</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Bachelor's Program Mechanical Engineering, Date: 20/09/2022
Module Handbook, valid from Winter Term 2022/23
Content

1. Introduction
2. linear elasticity
3. classification of stresses
4. Failure due to plasticity
   - tensile test
   - dislocations
   - hardening mechanisms
   - guidelines for dimensioning
5. composite materials
6. fracture mechanics
   - hypotheses for failure
   - linear elastic fracture mechanics
   - crack resistance
   - experimental measurement of fracture toughness
   - defect measurement
   - crack propagation
   - application of fracture mechanics
   - atomistics of fracture

The student

- has the basic understanding of mechanical processes to explain the relationship between externally applied load and materials strength.
- can explain the foundation of linear elastic fracture mechanics and is able to determine if this concept can be applied to a failure by fracture.
- can describe the main empirical materials models for deformation and fracture and can apply them.
- has the physical understanding to describe and explain phenomena of failure.

preliminary knowlegde in mathematics, mechanics and materials science recommended

regular attendance: 22.5 hours
self-study: 97.5 hours

The assessment consists of an oral examination (ca. 30 min) according to Section 4(2), 2 of the examination regulation.

Organizational issues

Übungstermine werden in der Vorlesung bekannt gegeben!
nach aktuellem Stand Präsenz

Literature

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
### Course: Failure of Structural Materials: Fatigue and Creep [T-MACH-102139]

**Responsible:** Dr. Patric Gruber  
Prof. Dr. Peter Gumbsch

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2181715</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gruber, Gumbsch</td>
</tr>
<tr>
<td>Exams</td>
<td>ST 2022</td>
<td>76-T-MACH-102139 Failure of Structural Materials: Fatigue and Creep</td>
<td></td>
<td>Gruber, Gumbsch</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

oral exam ca. 30 minutes  
no tools or reference materials

**Prerequisites**

none

**Recommendation**

preliminary knowledge in mathematics, mechanics and materials science

---

**Below you will find excerpts from events related to this course:**

**Failure of Structural Materials: Fatigue and Creep**

2181715, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Content
1 Fatigue
1.1 Introduction
1.2 Lifetime
1.3 Fatigue Mechanisms
1.4 Material Selection
1.5 Notches and Shape Optimization
1.6 Case Studies: ICE-Accidents

2 Creep
2.1 Introduction
2.2 High Temperature Plasticity
2.3 Phänomenological Description of Creep
2.4 Creep Mechanisms
2.5 Alloying Effects

The student

- has the basic understanding of mechanical processes to explain the relationships between externally applied load and materials strength.
- can describe the main empirical materials models for fatigue and creep and can apply them.
- has the physical understanding to describe and explain phenomena of failure.
- can use statistical approaches for reliability predictions.
- can use its acquired skills, to select and develop materials for specific applications.

preliminary knowledge in mathematics, mechanics and materials science recommended

regular attendance: 22.5 hours
self-study: 97.5 hours

The assessment consists of an oral examination (ca. 30 min) according to Section 4(2), 2 of the examination regulation.

Literature

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
- Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); Standardwerk über Ermüdung, alle Materialklassen, umfangreich, für Einsteiger und Fortgeschrittene
### Course: Fatigue of Materials [T-MACH-112106]

**Responsible:** Dr.-Ing. Stefan Guth  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue of Materials</td>
<td>2173586</td>
<td>2 SWS</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Guth</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Oral exam, about 20 minutes

**Prerequisites**

none

**Recommendation**

Basic knowledge in Materials Science will be helpful.

**Below you will find excerpts from events related to this course:**

### Fatigue of Materials

2173586, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Lecture (V) Blended (On-Site/Online)**

**Content**

Introduction: some interesting cases of damage  
Cyclic Stress Strain Behaviour  
Crack Initiation  
Crack Propagation  
Lifetime Behaviour under Cyclic Loading  
Fatigue of Notched Components  
Influence of Residual Stresses  
Structural Durability

**Learning objectives:**

The students are able to recognise the deformation and the failure behaviour of metallic materials under cyclic loading and to assign it to the basic microstructural processes. They know the sequence and the development of fatigue damages and can evaluate the initiation and the growth of fatigue cracks.

The students can assess the cyclic strength behaviour of metallic materials and components both qualitatively and quantitatively and know the procedures for the assessment of single-stage, multistage and stochastic cyclical loadings. Furthermore, they can take into account the influence of residual stresses.

**Requirements:**

none, basic knowledge in Material Science will be helpful

**Workload:**

regular attendance: 21 hours  
self-study: 99 hours

**Literature**

Ein Manuskript, das auch aktuelle Literaturhinweise enthält, wird in der Vorlesung verteilt.
7.75 Course: Flows and Heat Transfer in Energy Technology [T-MACH-105403]

**Responsible:** Prof. Dr.-Ing. Xu Cheng  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2189911</td>
<td>Tutorial 'Flows and Heat Transfer in Energy Technology'</td>
<td>1 SWS</td>
<td>Practice / Online Cheng, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

**Competence Certificate**

oral exam, 20 min

**Prerequisites**

none
### 7.76 Course: Fluid Mechanics 1&2 [T-MACH-105207]

- **Responsible:** Prof. Dr.-Ing. Bettina Frohnapfel
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-102565 - Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Grade to a third</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2154512</td>
<td>3 SWS</td>
<td>Lecture / Practice ( / )</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 3154510</td>
<td>3 SWS</td>
<td>Lecture / Practice ( / )</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2153512</td>
<td>3 SWS</td>
<td>Lecture / Practice ( / )</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 3153511</td>
<td>3 SWS</td>
<td>Lecture / Practice ( / )</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Grade to a third</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105207</td>
<td>3 SWS</td>
<td>Fluid Mechanics (1+2)</td>
<td>Frohnapfel, Kriegseis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 76-T-MACH-105207 engl.</td>
<td>3 SWS</td>
<td>Fluid Mechanics 1&amp;2</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-105207</td>
<td>3 SWS</td>
<td>Fluid Mechanics (1+2)</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-105207 engl.</td>
<td>3 SWS</td>
<td>Fluid Mechanics 1&amp;2</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** Online, Blended (On-Site/Online), On-Site, Cancelled

**Competence Certificate**

written exam 3 hours

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

**Fluid Mechanics I**

2154512, SS 2022, 3 SWS, Language: German, [Open in study portal](#)

**Lecture / Practice (VÜ)**

Blended (On-Site/Online)

**Content**

Introduction to the fundamentals of fluid mechanics for students of mechanical engineering and related fields, physics and mathematics. The lecture is complemented by a tutorial.

- Introduction
- Flows in Nature and Technology
- Fundamentals of Fluid Mechanics
- Properties of Fluids and Characteristic Fluid Regimes
- Fundamental Equations of Fluid Mechanics (Conservation of Mass, Momentum and Energy)
  - Continuity equation
  - Navier-Stokes equations (Euler Equations)
  - Energy equation
- Hydro- und Aerostatics
- Flows without dissipation (lossless)
- Technical Flows with Losses
- Introduction to Similarity Analysis
- Two-Dimensional Viscous Flows
- Integral Form of the Governing Equations
- Introduction to Gas Dynamics
Fluid Mechanics II
3154510, SS 2022, 3 SWS, Language: English, Open in study portal

Content
Introduction to the fundamentals of fluid mechanics for students of mechanical engineering and related fields, physics and mathematics. The lecture is complemented by a tutorial.

- Introduction
- Flows in Nature and Technology
- Fundamentals of Fluid Mechanics
- Properties of Fluids and Characteristic Fluid Regimes
  - Fundamental Equations of Fluid Mechanics (Conservation of Mass, Momentum and Energy)
    - Continuity equation
    - Navier-Stokes equations (Euler Equations)
    - Energy equation
- Hydro- and Aerostatics
- Flows without dissipation (lossless)
- Technical Flows with Losses
- Introduction to Similarity Analysis
- Two-Dimensional Viscous Flows
- Integral Form of the Governing Equations
- Introduction to Gas Dynamics

Fluid Mechanics I
3153511, WS 22/23, 3 SWS, Language: English, Open in study portal

Content
The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Fluid Mechanics II
2153512, WS 22/23, 3 SWS, Language: German, Open in study portal

References
Content
The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Literature
7.77 Course: Fluid Power Systems [T-MACH-102093]

**Responsible:** Prof. Dr.-Ing. Marcus Geimer  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102746 - Compulsory Elective Module  
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>Hours</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2114093</td>
<td>Fluid Technology</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
<td>Geimer</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td></td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td></td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
The assessment consists of a written exam (90 minutes) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

**Prerequisites**
none

**Below you will find excerpts from events related to this course:**

**Fluid Technology**

2114093, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)  
On-Site

**Content**
In the range of hydrostatics the following topics will be introduced:

- Hydraulic fluids  
- Pumps and motors  
- Valves  
- Accessories  
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:

- Compressors  
- Motors  
- Valves  
- Pneumatic circuits.

- regular attendance: 21 hours  
- self-study: 92 hours

**Literature**
Skriptum zur Vorlesung *Fluidtechnik*  
Institut für Fahrzeugsystemtechnik  
downloadbar
7.78 Course: Foundry Technology [T-MACH-105157]

**Responsible:** Dr.-Ing. Christian Wilhelm

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2174575 | Foundry Technology | 2 SWS | Lecture / 🧩 | Wilhelm |

**Exams**

| ST 2022 | 76-T-MACH-105157 | Foundry Technology | Wilhelm |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

oral exam; about 25 minutes

**Prerequisites**

M-MACH-102562 - Materials Science must be passed.

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The module M-MACH-102562 - Materials Science must have been passed.

Below you will find excerpts from events related to this course:

**Foundry Technology**

2174575, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content
Moulding and casting processes
Solidifying of melts
Castability
Fe-Alloys
Non-Fe-Alloys
Moulding and additive materials
Core production
Sand reclamation
Design in casting technology
Casting simulation
Foundry Processes

learning objectives:
The students know the specific moulding and casting techniques and are able to describe them in detail. The students know the application of moulding and casting techniques concerning castings and metals, their advantages and disadvantages in comparison, their application limits and are able to describe these in detail.
The students know the applied metals and are able to describe advantages and disadvantages as well as the specific range of use.
The students are able, to describe detailed mould and core materials, technologies, their application focus and mould-affected casting defects.
The students know the basics of casting process of any casting parts concerning the above mentioned criteria and are able to describe detailed.

requirements:
Required: Material Science and Engineering I and II

workload:
The workload for the lecture Foundry Technology is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).

Organizational issues
29.4.
13.5. und 20.5.
3.6. und 24.6.
8.7., 15.7., 22.7. und 29.7

Literature
Literaturhinweise werden in der Vorlesung gegeben
Reference to literature, documentation and partial lecture notes given in lecture
7.79 Course: Fuels and Lubricants for Engine Powertrains [T-MACH-111623]

**Responsible:** Hon.-Prof. Dr. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102645 - Major Field: Combustion Engine Techniques
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2133108 | Fuels and Lubricants for Combustion Engines | 2 SWS | Lecture / 🗣 | Kehrwald |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**
oral examination, Duration: ca. 25 min., no auxiliary means

**Prerequisites**
none

Below you will find excerpts from events related to this course:

**Fuels and Lubricants for Combustion Engines**
2133108, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Content**
electric drives and fuel cell drives with the associated operating materials will also be presented

- Introduction, basics, primary energy and energy chains
- Illustrative chemistry of hydrocarbons
- Fossil fuels, exploration, processing, standards
- Operating materials not fossil, renewable, alternative
- Fuels, lubricants, coolants, AdBlue
- Laboratory analysis, testing, test benches and measurement technology
- Excursion to test fields for motorized drives from 0.5 to 3,500 kW

**Literature**
Skript
7.80 Course: Fundamentals for Design of Motor-Vehicle Bodies I [T-MACH-102116]

**Responsible:** Dipl.-Ing. Horst Dietmar Bardehle  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2113814</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies I</td>
<td>1 SWS</td>
<td>Lecture / 🗣</td>
<td>Bardehle</td>
<td></td>
</tr>
<tr>
<td>ST 2022 76-T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>Bardehle, Unrau</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

Oral group examination

**Duration:** 30 minutes

**Auxiliary means:** none

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

**Fundamentals for Design of Motor-Vehicles Bodies I**

2113814, WS 22/23, 1 SWS, Language: German, Open in study portal

<table>
<thead>
<tr>
<th>Content</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. History and design</td>
<td>On-Site</td>
</tr>
<tr>
<td>2. Aerodynamics</td>
<td></td>
</tr>
<tr>
<td>3. Design methods (CAD/CAM, FEM)</td>
<td></td>
</tr>
<tr>
<td>4. Manufacturing methods of body parts</td>
<td></td>
</tr>
<tr>
<td>5. Fastening technology</td>
<td></td>
</tr>
<tr>
<td>6. Body in white / body production, body surface</td>
<td></td>
</tr>
</tbody>
</table>

**Learning Objectives:**

The students have an overview of the fundamental possibilities for design and manufacture of motor-vehicle bodies. They know the complete process, from the first idea, through the concept to the dimensioned drawings (e.g. with FE-methods). They have knowledge about the fundamentals and their correlations, to be able to analyze and to judge relating components as well as to develop them accordingly.

**Organizational issues**

CO, Geb. 70.04, Raum 219.  
Termine und nähere Informationen: siehe Institutshomepage  
Dates and further information will be published on the homepage of the institute

**Literature**

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden  
2. Automobil Revue, Bern (Schweiz)  
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
### Course: Fundamentals for Design of Motor-Vehicle Bodies II [T-MACH-102119]

**Responsible:** Dipl.-Ing. Horst Dietmar Bardehle  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:**  
- M-MACH-102815 - Major Field: Engineering Design  
- M-MACH-102818 - Major Field: Vehicle Technology

**Type:** Oral examination  
**Credits:** 2  
**Grading scale:** Grade to a third  
**Recurrence:** Each summer term  
**Version:** 1

#### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Lecture</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Lecture</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Lecture</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>76-T-MACH-102119</td>
<td>Lecture</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Legend:**  
- Online  
- Blended (On-Site/Online)  
- On-Site  
- Cancelled

#### Competence Certificate

**Oral group examination**

**Duration:** 30 minutes  
**Auxiliary means:** none

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Fundamentals for Design of Motor-Vehicle Bodies II**  
2114840, SS 2022, 1 SWS, Language: German, **Open in study portal**

**Lecture (V)**  
**On-Site**

#### Content

1. Body properties/testing procedures  
2. External body-parts  
3. Interior trim  
4. Compartment air conditioning  
5. Electric and electronic features  
6. Crash tests  
7. Project management aspects, future prospects

**Learning Objectives:**

The students know that, often the design of seemingly simple detail components can result in the solution of complex problems. They have knowledge in testing procedures of body properties. They have an overview of body parts such as bumpers, window lift mechanism and seats. They understand, as well as, parallel to the normal electrical system, about the electronic side of a motor vehicle. Based on this they are ready to analyze and to judge the relation of these single components. They are also able to contribute competently to complex development tasks by imparted knowledge in project management.

#### Organizational issues

Voraussichtliche Termine, nähere Informationen und evtl. Änderungen:  
sehen Institutshomepage. Präsenzveranstaltung unter Vorbehalt der Pandemie-Entwicklung

Scheduled dates, further Information and possible changes of date:  
see homepage of the institute.

**Literature**

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden  
2. Automobil Revue, Bern (Schweiz)  
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
### Course: Fundamentals in the Development of Commercial Vehicles [T-MACH-111389]

**Responsible:** Dr. Christof Weber  
**Organisation:** KIT Department of Mechanical Engineering  

**Part of:**  
- M-MACH-102815 - Major Field: Engineering Design  
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2114844</th>
<th>Fundamentals in the Development of Commercial Vehicles II</th>
<th>1 SWS</th>
<th>Lecture / 🖥</th>
<th>Weber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>1 SWS</td>
<td>Lecture / 📚</td>
<td>Weber</td>
</tr>
</tbody>
</table>

**Exams**

| ST 2022 | 76T-MACH-111389 | Fundamentals in the Development of Commercial Vehicles | Weber |

**Competence Certificate**

- Oral group examination
- Duration: appr. 30 minutes  
- Auxiliary means: none

**Prerequisites**

- none

**Annotation**

- Fundamentals in the Development of Commercial Vehicles I, WT  
- Fundamentals in the Development of Commercial Vehicles II, ST

**Below you will find excerpts from events related to this course:**

#### Fundamentals in the Development of Commercial Vehicles II

**2114844, SS 2022, 1 SWS, Language: German, Open in study portal**

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>Online</th>
</tr>
</thead>
</table>

**Content**

1. Gear boxes of commercial vehicles  
2. Intermediate elements of the drive train  
3. Axle systems  
4. Front axles and driving dynamics  
5. Chassis and axle suspension  
6. Braking System  
7. Systems  
8. Excursion

**Learning Objectives:**

The students know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered frontaxle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application.
Organizational issues
Vorlesung findet nochmals als digitale Veranstaltung über ILIAS statt. Genaue Termine, nähere Informationen und eventuelle Terminänderungen:

siehe Institutshomepage.

Literature
1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803

Content
1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodysHELL work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Learning Objectives:
The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

The students are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.

Organizational issues
CO, Geb. 70.04, Raum 219. Termine und Nähere Informationen: siehe Institutshomepage

Dates and further information will be published on the homepage of the institute.

Literature
7.83 Course: Fundamentals of Automobile Development I [T-MACH-105162]

**Responsible:** Prof.Dipl.-Ing. Rolf Frech

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113810</td>
<td>Fundamentals of Automobile</td>
<td>1 SWS</td>
<td>Lecture / 📚</td>
<td>Frech</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Development I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2113851</td>
<td>Principles of Whole Vehicle</td>
<td>1 SWS</td>
<td>Lecture / 📚</td>
<td>Frech</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td></td>
<td>Frech, Unrau</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td></td>
<td>Frech, Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

Written examination

Duration: 90 minutes

Auxiliary means: none

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

**Fundamentals of Automobile Development I**

<table>
<thead>
<tr>
<th>Code</th>
<th>Term</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113810</td>
<td>WS 22/23</td>
<td>German</td>
<td></td>
</tr>
</tbody>
</table>

**Content**

1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

**Learning Objectives:**

The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

**Organizational issues**

Campus Ost, geb. 70.04., Raum 219

Termine und nähere Informationen finden Sie auf der Institutshomepage.

Kann nicht mit Lehrveranstaltung 2113851 kombiniert werden.

Date and further information will be published on the homepage of the institute.

Cannot be combined with lecture 2113851.
Principles of Whole Vehicle Engineering I
2113851, WS 22/23, 1 SWS, Language: English, Open in study portal

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aerodynamical dimensioning and design of an automobile I
5. Aerodynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues
CO, Geb.70.04, Raum 219. Termine und nähere Informationen finden Sie auf der Institutshomepage.
Dats and further information will be published on the homepage of the institute.
Kann nicht mit Lehrveranstaltung 2113810 kombiniert werden
Cannot be combined with lecture 2113810.

Literature
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons
### 7.84 Course: Fundamentals of Automobile Development II [T-MACH-105163]

**Responsible:** Prof. Dipl.-Ing. Rolf Frech  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:**  
- M-MACH-102815 - Major Field: Engineering Design  
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

#### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2114842</td>
<td>1 SWS</td>
<td>Fundamentals of Automobile Development II</td>
<td>Frech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2114860</td>
<td>1 SWS</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>Frech</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>Frech, Unrau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 76-T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>Frech, Unrau</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Written examination  
**Duration:** 90 minutes  
**Auxiliary means:** None

**Prerequisites**

None

---

Below you will find excerpts from events related to this course:

#### Content

1. Application-oriented material and production technology I  
2. Application-oriented material and production technology II  
3. Overall vehicle acoustics in the automobile development  
4. Drive train acoustics in the automobile development  
5. Testing of the complete vehicle  
6. Properties of the complete automobile

**Learning Objectives:**

The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

**Organizational issues**

Vorlesung findet als Blockvorlesung am Campus Ost, Geb. 70.04, Raum 219 statt. Termine werden über die Homepage bekannt gegeben.  
Kann nicht mit der Veranstaltung [2114860] kombiniert werden.

**Cannot be combined with lecture [2114860].**

**Literature**

Skript zur Vorlesung ist über ILIAS verfügbar.
Principles of Whole Vehicle Engineering II
2114860, SS 2022, 1 SWS, Language: English, Open in study portal

On-Site

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues
Kann nicht mit der Veranstaltung [2114842] kombiniert werden.
Cannot be combined with lecture [2114842].
Veranstaltung findet am Campus Ost, Geb. 70.04, Raum 219 statt. Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.

Literature
Das Skript zur Vorlesung ist über ILIAS verfügbar.
7.85 Course: Fundamentals of Catalytic Exhaust Gas Aftertreatment [T-MACH-105044]

**Responsible:**
- Prof. Dr. Olaf Deutschmann
- Prof. Dr. Jan-Dierk Grunwaldt
- Dr.-Ing. Heiko Kubach
- Hon.-Prof. Dr. Egbert Lox

**Organisation:**
KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102645 - Major Field: Combustion Engine Techniques
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-102838 - Major Field: Energy Converting Engines

**Type**
Oral examination

**Credits**
4

**Grading scale**
Grade to a third

**Recurrence**
Each summer term

**Version**
1

**Events**

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Credits</th>
<th>Description</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Lox, Grunwaldt, Deutschmann</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Credits</th>
<th>Description</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>76-T-MACH-105044</td>
<td>Lecture / 🗣</td>
<td>Lox</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>76-T-MACH-105044</td>
<td>Lecture / 🗣</td>
<td>Lox</td>
</tr>
</tbody>
</table>

**Legend:**
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- ✗ Cancelled

**Competence Certificate**
oral examination, Duration: 25 min., no auxiliary means

**Prerequisites**
none

*Below you will find excerpts from events related to this course:*

**Fundamentals of catalytic exhaust gas aftertreatment**

**Lecture (V)**
2134138, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

**Organizational issues**
Blockvorlesung, Termin und Ort werden auf der Homepage des IFKM und ITCP bekannt gegeben.

**Literature**
Skript, erhältlich in der Vorlesung

### 7.86 Course: Fundamentals of Combustion Engine Technology [T-MACH-105652]

**Responsible:** Dr.-Ing. Sören Bernhardt  
Dr.-Ing. Heiko Kubach  
Jürgen Pfeil  
Dr.-Ing. Olaf Toedter  
Dr.-Ing. Uwe Wagner

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102645 - Major Field: Combustion Engine Techniques  
- M-MACH-102746 - Compulsory Elective Module  
- M-MACH-102816 - Major Field: Fundamentals of Energy Technology  
- M-MACH-102818 - Major Field: Vehicle Technology  
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2133123</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Kubach, Wagner, Toedter, Pfeil, Bernhardt, Velji</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td></td>
<td>Kubach</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105652(SP)</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td></td>
<td>Kubach</td>
<td></td>
</tr>
</tbody>
</table>

**Legend:**  
- 🖥 Online  
- Blended (On-Site/Online)  
- 🗣️ On-Site  
- ❌ Cancelled

**Competence Certificate**

oral exam, 30 min

**Prerequisites**

none

---

Below you will find excerpts from events related to this course:

**Fundamentals of Combustion Engine Technology**

2133123, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Lecture (V)**

**On-Site**

**Content**

Fundamentals of engine processes  
Components of combustion engines  
Mixture formation systems  
Gas exchange systems  
Injection systems  
Exhaust Gas Aftertreatment Systems  
Cooling systems  
Ignition Systems
Course: Fundamentals of Combustion I [T-MACH-105213]

7.87

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module
M-MACH-102838 - Major Field: Energy Converting Engines

Type
Written examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2165515</td>
<td>Fundamentals of Combustion I</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Maas</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2165517</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>1 SWS</td>
<td>Practice /</td>
<td>Bykov</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3165016</td>
<td>Fundamentals of Combustion I</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Maas</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3165017</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>1 SWS</td>
<td>Practice /</td>
<td>Bykov</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>Written exam</td>
<td>Maas</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105464</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>Written exam</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written exam, approx. 3 hours

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of Combustion I

2165515, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content

- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames
- Ignition processes
- NOx formation
- Formation of hydrocarbons and soot

Literature

Vorlesungsskript,

Fundamentals of Combustion I (Tutorial)

2165517, WS 22/23, 1 SWS, Language: German, Open in study portal

Practice (Ü)
On-Site

Literature

- Vorlesungsskript
Fundamentals of Combustion I
3165016, WS 22/23, 2 SWS, Language: English, Open in study portal

Content
- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames
- Ignition processes
- NOx formation
- Formation of hydrocarbons and soot

Literature
Vorlesungsskript,
7 COURSES

Course: Fundamentals of Combustion II [T-MACH-105325]

Responsible: Dr. Viatcheslav Bykov
Prof. Dr. Ulrich Maas

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102816 - Major Field: Fundamentals of Energy Technology
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td></td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2166538</td>
<td></td>
<td></td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of combustion II</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>ST 2022 2166539</td>
<td></td>
<td></td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>Übung zu Grundlagen der technischen Verbrennung II</td>
<td>1 SWS</td>
<td>Practice / 📚</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>ST 2022 3166550</td>
<td></td>
<td></td>
<td>Maas, Bykov, Straßacker</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Combustion II</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
<td>Maas</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105325</td>
<td></td>
<td></td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Combustion II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Online, 📚 Blended (On-Site/Online), 📚 On-Site, x Cancelled

Competence Certificate

Oral exam, approx. 20 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of combustion II

2166538, SS 2022, 2 SWS, Language: German, Open in study portal

Content

- Three dimensional Navier-Stokes equations for reacting flows
- Turbulent reactive flows
- Turbulent non-premixed flames
- Turbulent premixed flames
- Combustion of liquid and solid fuels
- Engine knock
- Thermodynamics of combustion processes
- Transport phenomena
- Effects of Combustion Processes on the Atmosphere

Literature

Vorlesungsskript;


Übung zu Grundlagen der technischen Verbrennung II

2166539, SS 2022, 1 SWS, Language: German, Open in study portal

Content

Calculation and Simulation of combustion processes
Literature
Skript Grundlagen der technischen Verbrennung (I+II) von Prof. Dr. rer. nat. habil. U. Maas

Fundamentals of Combustion II
3166550, SS 2022, 2 SWS, Language: English, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content
- Three dimensional Navier-Stokes equations for reacting flows
- Turbulent reactive flows
- Turbulent non-premixed flames
- Turbulent premixed flames
- Combustion of liquid and solid fuels
- Engine knock
- Thermodynamics of combustion processes
- Transport phenomena
- Effects of Combustion Processes on the Atmosphere

Organizational issues
Time and location will be announced on the website and at the institute showcase.

Literature
Vorlesungsskript;
7.89 Course: Fundamentals of Energy Technology [T-MACH-105220]

**Responsible:** Dr. Aurelian Florin Badea  
Prof. Dr.-Ing. Xu Cheng

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Module</th>
<th>Type</th>
<th>Grade</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture</td>
<td>Cheng, Badea</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture</td>
<td>Badea</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Module</th>
<th>Type</th>
<th>Grade</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Fundamentals of Energy Technology</td>
<td>Cheng, Badea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>Fundamentals of Energy Technology</td>
<td>Badea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Fundamentals of Energy Technology</td>
<td>Badea, Cheng</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:**  
🖥 Online, 🧩 Blended (On-Site/Online), 👤 On-Site, ✗ Canceled

**Competence Certificate**

Written examination, 90 min

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

**Fundamentals of Energy Technology**  
2130927, SS 2022, 3 SWS, Language: German, [Open in study portal]

**Lecture (V)**

**Blended (On-Site/Online)**

**Content**

The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy demand and energy situation
- Energy types and energy mix
- Basics. Thermodynamics relevant to the energy sector
- Conventional fossil-fired power plants
- Combined Cycle Power Plants
- Cogeneration
- Nuclear energy
- Regenerative energies: hydropower, wind energy, solar energy, other energy systems
- Energy storage
- Transport of energy
- Power generation and environment. Future of the energy industry
Content
The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy forms
- Thermodynamics relevant to energy industry
- Energy sources: fossil fuels, nuclear energy, renewable sources
- Energy industry in Germany, Europe and worldwide
- Power generation and environment
- Evaluation of energy conversion processes
- Thermal/electrical power plants and processes
- Transport of energy / energy carriers
- Energy storage
- Systems utilizing renewable energy sources
- Basics of economic efficiency and calculus / Optimisation
- Future of the energy industry
7.90 Course: Gasdynamics [T-MACH-105533]

**Responsible:** Dr.-Ing. Davide Gatti  
Dr. Jochen Kriegseis

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology  
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2154200</td>
<td>Gasdynamics</td>
<td>Lecture / Blended</td>
<td>2 SWS</td>
<td>Gatti, Kriegseis</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105533</td>
<td>Gasdynamics</td>
<td>Lecture (V)</td>
<td>Magagnato</td>
</tr>
</tbody>
</table>

**Competence Certificate**

oral exam - 30 minutes

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Gasdynamics**

2154200, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

**Content**

The student can describe the governing equations of Gas Dynamics and the associated basics in Thermodynamics. He will know different flow phenomena of applied Gas Dynamics. He can calculate compressible flows analytically. He is familiar with the Rankine-Hugoniot curve. They can derive the continuity-, the momentum- and the energy equations in differential form. With the help of the stationary flow filament theory they can calculate the normal shock wave and the associated increase of the entropy along past the shock wave. They are able to calculate the stagnation values of the Gas Dynamical variables and to determine their critical values. The students can apply the flow filament theory for variable cross-sectional areas and can distinguish between the different flow fields inside the Laval nozzle that forms with different boundary conditions. He can calculate the values behind an oblique shock wave and can distinguish between detached and attached shock waves. The student can calculate the Prandtl-Meyer expansion wave.

This lecture covers the following topics:

- Introduction to gas dynamics
- Numerical and experimental examples
- Governing equations of gas dynamics
- The transport equations in differential and integral form
- Stationary flow filament theory with and without normal shock waves
- Discussion of the energy equation: Stagnation and critical values
- Flow filament theory at variable cross-sectional area. Flow inside a Laval nozzle
- Oblique shock waves, detached shock waves
- Prandtl-Meyer expansion wave
- Viscous flows (Fanno flow)

**Organizational issues**

Diese Veranstaltung wird im SS angeboten.

These Lecture is offered in SS.
Literature
Zierep, J.: Theoretische Gasdynamik, Braun Verlag, Karlsruhe. 1991
### 7.91 Course: Gear Cutting Technology [T-MACH-102148]

**Responsible:** Dr.-Ing. Markus Klaiber  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:**  
- M-MACH-102812 - Major Field: Powertrain Systems  
- M-MACH-102815 - Major Field: Engineering Design  
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Weekly SWS</th>
<th>Type/Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2149655</td>
<td>Gear Technology</td>
<td>2 SWS</td>
<td>Lecture/🧩</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

#### Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type/Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-102148</td>
<td>Gear Cutting Technology</td>
<td>Blended (On-Site/Online)</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ❌ Cancelled

#### Competence Certificate

**Oral Exam** (20 min)

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

#### Gear Technology

2149655, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)  
**Lecture (V)**  
**Blended (On-Site/Online)**

#### Content

Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

#### Learning Outcomes:

The students …

- can describe the basic terms of gearings and are able to explain the imparted basics of the gearwheel and gearing theory.
- are able to specify the different manufacturing processes and machine technologies for producing gearings. Furthermore they are able to explain the functional principles and the dis-/advantages of these manufacturing processes.
- can apply the basics of the gearing theory and manufacturing processes on new problems.
- are able to read and interpret measuring records for gearings. are able to make an appropriate selection of a process based on a given application
- can describe the entire process chain for the production of toothed components and their respective influence on the resulting workpiece properties.

#### Workload:

- regular attendance: 21 hours  
- self-study: 99 hours

#### Organizational issues

Start: 27.10.2022
Literature

Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
### Course: Großdiesel- und -gasmotoren für Schiffsantriebe [T-MACH-110816]

**Responsible:** Dr.-Ing. Heiko Kubach  
**Organisation:**  
**Part of:** M-MACH-102645 - Major Field: Combustion Engine Techniques  
M-MACH-102838 - Major Field: Energy Converting Engines  

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2134154</th>
<th>Large Diesel and Gas Engines for Ship Propulsions</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Weisser</th>
</tr>
</thead>
</table>

#### Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-110816</th>
<th>Großdiesel- und -gasmotoren für Schiffsantriebe</th>
<th>Weisser</th>
</tr>
</thead>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**
oral exam, 20 minutes

**Prerequisites**
None

Below you will find excerpts from events related to this course:

#### Large Diesel and Gas Engines for Ship Propulsions

**V**  
2134154, SS 2022, 2 SWS, Language: German, [Open in study portal](#)  
**Lecture (V)**  
**On-Site**

**Content**

- Introduction and History  
- Types of Ships and Propulsion Systems  
- Thermodynamics  
- Boosting  
- Design  
- Fuels  
- Lubricants  
- Injection of liquid Fuels  
- Combustion Processes for liquid Fuels  
- Injection of Gaseous Fuels  
- Combustion Processes for Gaseous Fuels  
- Emissions  
- Integration of Engines in Ships  
- Large Engines in other Applications
7.93 Course: Handling Characteristics of Motor Vehicles I [T-MACH-105152]

**Responsible:** Dr.-Ing. Hans-Joachim Unrau

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102818 - Major Field: Vehicle Technology

---

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2113807</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td></td>
<td>Unrau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>76-T-MACH-105152</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td></td>
<td>Unrau</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🏭 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

**Competence Certificate**
Verbally

Duration: 30 up to 40 minutes

Auxiliary means: none

**Prerequisites**
none

**Below you will find excerpts from events related to this course:**

**Handling Characteristics of Motor Vehicles I**
2113807, WS 22/23, 2 SWS, Language: German, Open in study portal

**Content**
1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D’Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

**Learning Objectives:**
The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

**Literature**


## 7.94 Course: Handling Characteristics of Motor Vehicles II [T-MACH-105153]

### Responsible:
Dr.-Ing. Hans-Joachim Unrau

### Organisation:
KIT Department of Mechanical Engineering

### Part of:
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

### Events

| ST 2022 | 2114838 | Handling Characteristics of Motor Vehicles II | 2 SWS | Lecture / 🗣️ | Unrau |

### Exams

| ST 2022 | 76-T-MACH-105153 | Handling Characteristics of Motor Vehicles II | Unrau |

### Competence Certificate

**Oral Examination**

- **Duration:** 30 up to 40 minutes
- **Auxiliary means:** none

### Prerequisites

none

### Below you will find excerpts from events related to this course:

#### Handling Characteristics of Motor Vehicles II

2114838, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>On-Site</th>
</tr>
</thead>
</table>

### Content

1. **Vehicle handling:** Bases, steady state cornering, steering input step, single sine, double track switching, slalom, cross-wind behavior, uneven roadway

2. **stability behavior:** Basics, stability conditions for single vehicles and for vehicles with trailer

**Learning Objectives:**

The students have an overview of common test methods, with which the handling of vehicles is gauged. They are able to interpret results of different stationary and transient testing methods. Apart from the methods, with which e.g. the driveability in curves or the transient behavior from vehicles can be registered, also the influences from cross-wind and from uneven roadways on the handling characteristics are well known. They are familiar with the stability behavior from single vehicles and from vehicles with trailer. Consequently they are ready to judge the driving behaviour of vehicles and to change it by specific vehicle modifications.

### Literature

### Course: Heat and Mass Transfer [T-MACH-105292]

**Responsible:** Prof. Dr. Ulrich Maas  
Dr.-Ing. Chunkan Yu  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3122512</td>
<td>Heat and Mass Transfer</td>
<td>2 SWS</td>
<td></td>
<td>Lecture / 🧩</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2165512</td>
<td>Heat and mass transfer</td>
<td>2 SWS</td>
<td></td>
<td>Lecture / 🗣️</td>
<td>Maas</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td>Maas</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Written exam, approx. 3 h

**Prerequisites**

none

---

Below you will find excerpts from events related to this course:

#### Heat and Mass Transfer

**3122512, SS 2022, 2 SWS, Language: English, Open in study portal**

**Lecture (V)**  
Blended (On-Site/Online)

**Content**

- Steady and unsteady heat transfer in homogenous materials; Plates, pipe sections and spherical shells  
- Molecular diffusion in gases; analogies between heat conduction and mass diffusion  
- Convective, forced heat transfer in pipes/channels and around plates and profiles.  
- Convective mass transfer, heat-/mass transfer analogy  
- Multi phase convective heat transfer (condensation, evaporation)  
- Radiative heat transfer

**Organizational issues**

Bitte beachten Sie den Aushang.

**Literature**

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"  

---

#### Heat and mass transfer

**2165512, WS 22/23, 2 SWS, Language: German, Open in study portal**

**Lecture (V)**  
On-Site

**Content**

- Steady and unsteady heat transfer in homogenous materials; Plates, pipe sections and spherical shells  
- Molecular diffusion in gases; analogies between heat conduction and mass diffusion  
- Convective, forced heat transfer in pipes/channels and around plates and profiles.  
- Convective mass transfer, heat-/mass transfer analogy  
- Multi phase convective heat transfer (condensation, evaporation)  
- Radiative heat transfer
Literature

- Maas; Vorlesungsskript "Wärme- und Stoffübertragung"
Course: Human Factors Engineering I [T-MACH-105518]

Responsible: Prof. Dr.-Ing. Barbara Deml
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Description</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Human Factors Engineering I: Ergonomics</td>
<td>Deml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Description</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Human Factors Engineering I</td>
<td>Deml</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Human Factors Engineering I</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
written exam, 60 minutes
The exams are only offered in German!

Prerequisites
none

Below you will find excerpts from events related to this course:

Human Factors Engineering I: Ergonomics
2109035, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content
The course "Human Factors Engineering I: Ergonomics" takes place in the first half of the semester, until 2022/12/22, on Wednesday and Thursday.

In the second half of the semester, beginning with 2022/12/28, the course "Human Factors Engineering II: Work Organisation" takes place on Wednesday and Thursday.

Content of teaching:

1. Principles of human work
2. Behavioural-science data acquisition
3. workplace design
4. work environment design
5. work management
6. labour law and advocacy groups

Learning target:
The students acquire a basic knowledge in the field of ergonomics:

- They are able to consider cognitive, physiological, anthropometric, and safety technical aspects in order to design workplaces ergonomically.
- Just as well they know physical and psycho-physical fundamentals (e. g. noise, lighting, climate) in the field of work-environmental design.
- Furthermore the students are able to evaluate workplaces by knowing and being able to apply essential methods of time studies and payment systems.
- Finally, they get a first, overall insight into the German labour law as well as into the organisation of advocacy groups beyond companies.

Further on the participants get to know basic methods of behavioral-science data acquisition (e. g. eye-tracking, ECG, dual-task-paradigm).
Organizational issues
In der zweiten Hälfte des Semesters, ab dem 28.12.2022 findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.
- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literature
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
7.97 Course: Human Factors Engineering II [T-MACH-105519]

Responsible: Prof. Dr.-Ing. Barbara Deml
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102589 - Major Field: Production Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2109036</td>
<td>Human Factors Engineering II: Work Organisation</td>
<td>2</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Title</th>
<th>Deml</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105519</td>
<td>Human Factors Engineering II</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, x Cancelled

Competence Certificate
written exam, 60 minutes
The exams are only offered in German!

Prerequisites
none

Below you will find excerpts from events related to this course:

V Human Factors Engineering II: Work Organisation
2109036, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content
The course "Human Factors Engineering I: Ergonomics" takes place in the first half of the semester, until 2022/12/22, on Wednesday and Thursday.

In the second half of the semester, beginning with 2022/12/28, the course "Human Factors Engineering II: Work Organisation" takes place on Wednesday and Thursday.

Content of teaching:

1. Fundamentals of work organization
2. Empirical research methods
3. Individual level
   - personnel selection
   - personnel development
   - personnel assessment
   - work satisfaction/motivation
4. Group level
   - interaction and communication
   - management of employees
   - team work
5. Organizational level
   - structural organization
   - process organization
   - production organization

Learning target:
The students gain a first insight into empirical research methods (e. g. experimental design, statistical data evaluation). Particularly, they acquire a basic knowledge in the field of work organisation:

- **Organizational level.** Within this module the students gain also a fundamental knowledge in the field of structural, process, and production organization.
- **Group level.** Besides, they get to know basic aspects of industrial teamwork and they know relevant theories in the field of interaction and communication, the management of employees as well as work satisfaction and motivation.
- **Individual level.** Finally, the students get to know also methods in the field of personnel selection, development, and assessment.

Organizational issues

In der zweiten Hälfte des Semesters, ab dem 28.12.2022 findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.

- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

**Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.**

Literature
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
7.98 Course: Human-Machine-Interaction [T-INFO-101266]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>24659 Human-Computer-Interaction</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500048 Human-Machine-Interaction</td>
<td></td>
<td></td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500076 Human-Machine-Interaction</td>
<td></td>
<td></td>
<td>Beigl</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💽 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-INFO-106257 - Human-Machine-Interaction Pass must have been passed.

**Responsible:** Prof. Dr.-Ing. Michael Beigl

**Organisation:** KIT Department of Informatics

**Part of:** M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2400095 | Human-Computer-Interaction | 1 SWS | Practice / 🖥 | Beigl, Pescara |
| ST 2022 | 24659   | Human-Computer-Interaction | 2 SWS | Lecture / 🖥  | Beigl          |

**Exams**

| ST 2022 | 7500121 | Human-Machine-Interaction |                | Beigl          |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
7.100 Course: Hybrid and Electric Vehicles [T-ETIT-100784]

**Responsible:** Prof. Dr. Martin Doppelbauer  
**Organisation:** KIT Department of Electrical Engineering and Information Technology  
**Part of:** M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102818 - Major Field: Vehicle Technology  
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / 📱</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>2</td>
<td>Lecture / 📱</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2306323</td>
<td>Tutorial for 2306323 Hybrid and Electric Vehicles</td>
<td>1</td>
<td>Practice / 📱</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>Doppelbauer</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7300006</td>
<td>Hybrid and Electric Vehicles</td>
<td>Doppelbauer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📱 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Prerequisites**

none
7.101 Course: Hydraulic Fluid Machinery [T-MACH-105326]

Responsible: Dr. Balazs Pritz
Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery
Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2157432</td>
<td>Hydraulic Fluid Machinery</td>
<td>4 SWS</td>
<td>Lecture / On-Site</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105326</td>
<td>Hydraulic Fluid Machinery</td>
<td>Pritz</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105326-Wdh</td>
<td>Hydraulic Fluid Machinery for second attempt</td>
<td>Pritz</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🇦 Online, 📐 Blended (On-Site/Online), 🕹 On-Site, ✗ Cancelled

Competence Certificate
oral exam, 40 min.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Hydraulic Fluid Machinery
2157432, SS 2022, 4 SWS, Language: German

Content

1. Introduction
2. Basic equations
3. System analysis
4. Elementary Theory (Euler's equation of Fluid Machinery)
5. Operation and Performance Characteristics
6. Similarities, Specific Values
7. Control technics
8. Wind Turbines, Propellers
9. Cavitation

Recommendations:
3154510 – Fluid Mechanics I
3153511 – Fluid Mechanics II

Students get to know the basics of hydraulic fluid machinery (pumps, fans, hydroturbines, windturbines, hydrodynamic transmissions) in general. Application of the knowledge in different fields of engineering.

The lecture introduces the basics of Hydraulic Fluid Machinery. The different types and shapes are presented. The basic equations for the preservation of mass, momentum and energy are discussed. Velocity schemes in typical cascades are shown, the Euler equation of fluid machinery and performance characteristics are deduced.

Similarities and dimensionless parameters are discussed. Fundamental aspects of operation and cavitation are shown.

Students are able to understand the working principle of Hydraulic Fluid Machinery as well as the interaction with typical systems, in which they are integrated.

regular attendance: 56 hours
self-study: 150 hours
preparation for exam: 40 hours

Oral or written examination (see announcement)
No tools or reference materials may be used during the exam.
Literature

1. Fister, W.: Fluidenergiemaschinen I & II, Springer-Verlag
2. Bohl, W.: Strömungsmaschinen I & II, Vogel-Verlag
3. Güllich, J.F.: Kreiselpumpen, Springer-Verlag
5. Carolus, T.: Ventilatoren, Teubner-Verlag
6. Kreiselpumpenlexikon, KSB Aktiengesellschaft
7. Zierep, J., Bühler, K.: Grundzüge der Strömungslehre, Teubner-Verlag
7.102 Course: Hydrogen and reFuels - Energy Conversion in Combustion Engines [T-MACH-111585]

Responsible: Dr.-Ing. Heiko Kubach
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Course</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2134155</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>Koch</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105564</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam, appr. 25 minutes, no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Hydrogen and reFuels - Energy Conversion in Combustion Engines
2134155, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
New types of CO2-neutral fuels such as gaseous hydrogen but also liquid synthetic fuels often place specific requirements on engine systems that differ significantly from operation with conventional fuels. These special aspects of engine energy conversion are dealt with in this lecture.

Introduction
Thermodynamics of combustion engines
Fundamentals
gas exchange
Flow field
Wall heat losses
Combustion in gasoline engines
Pressure Trace Analysis
Combustion in Diesel engines
Specific Topics of Hydrogen Combustion
Waste heat recovery
Course: I4.0 Systems Platform [T-MACH-106457]

**Responsible:** Dipl.-Ing. Thomas Maier
Prof. Dr.-Ing. Jivka Ovtcharova

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Exam Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 22</td>
<td>2123900</td>
<td>I4.0 Systems platform</td>
<td>4 SWS</td>
<td>Project (P / 📚)</td>
<td>Ovtcharova, Maier</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2123900</td>
<td>I4.0 Systems platform</td>
<td>4 SWS</td>
<td>Project (P / 📚)</td>
<td>Ovtcharova, Maier</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Exam Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 22</td>
<td>76-T-MACH-106457</td>
<td>I4.0 Systems platform</td>
<td>4 SWS</td>
<td>Project (P / 📚)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Alternative exam assessment (project work)

**Prerequisites**

None

**Annotation**

Limited number of participants.

Below you will find excerpts from events related to this course:

**I4.0 Systems platform**

2123900, SS 2022, 4 SWS, Language: German, Open in study portal

**Project (PRO)**

On-Site

**Content**

Industry 4.0, IT systems for fabrication (e.g.: CAx, PDM, CAM, ERP, MES), process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Students can:

- describe the fundamental concepts, challenges, and objectives of Industrie 4.0 and name the essential terms in context of information management
- explain the necessary information flow between the different IT systems. They get practically knowledge about using current IT systems in context of I4.0, from order to production.
- map and analyze processes in the context of Industry 4.0 with special methods of process modelling
- collaboratively grasp practical I4.0 issues using existing hardware and software and work out solutions for a continuous improvement process in a team
- prototypically implement the self-developed solution proposal with the given IT systems and the existing hardware equipment and finally present the results

**Literature**

Keine / None

**I4.0 Systems platform**

2123900, WS 22/23, 4 SWS, Language: German, Open in study portal

**Project (PRO)**

On-Site
Content
Industry 4.0, IT systems for fabrication (e.g.: CAx, PDM, CAM, ERP, MES), process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Students can

• describe the fundamental concepts, challenges, and objectives of Industrie 4.0 and name the essential terms in context of information management
• explain the necessary information flow between the different IT systems. They get practically knowledge about using current IT systems in context of I4.0, from order to production.
• map and analyze processes in the context of Industry 4.0 with special methods of process modelling
• collaboratively grasp practical I4.0 issues using existing hardware and software and work out solutions for a continuous improvement process in a team
• prototypically implement the self-developed solution proposal with the given IT systems and the existing hardware equipment and finally present the results

Literature
Keine / None
7.104 Course: Ignition Systems [T-MACH-105985]

Responsible: Dr.-Ing. Olaf Toedter
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102645 - Major Field: Combustion Engine Techniques
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2133125</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Toedter</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105985</td>
<td>Ignition systems</td>
<td>Toedter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105985</td>
<td>Ignition systems</td>
<td>Koch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, 20 min

Prerequisites
none

Below you will find excerpts from events related to this course:

V Ignition systems
2133125, WS 22/23, 2 SWS, Language: German, [Open in study portal]

Lecture (V)
On-Site

Content

- Ignition Process
- Spark Ignition
- Principle of Spark Ignition Systems
- Limits of Spark Ignition
- New Developments of Spark Ignition Systems
- New an Alternative Ignition Systems
### Course: Industrial Aerodynamics [T-MACH-105375]

**Responsible:** Prof. Dr.-Ing. Bettina Frohnapfel  
Dr.-Ing. Stefan Kröber

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2153425</td>
<td>2 SWS</td>
<td></td>
<td>Kröber, Frohnapfel</td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, § Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**
oral exam - 30 minutes

**Prerequisites**
none

Below you will find excerpts from events related to this course:

#### Content

This compact lecture deals with flows and aeroacoustics with significance in vehicle development. A special focus is set on the optimization of external vehicle aerodynamics and the presentation of modern industrial wind tunnel technology. The second major thematic block includes both, aeroacoustic basics principles and practical examples of aeroacoustics, especially in the field of automotive technology. These fields are explained in their phenomenology, the corresponding theories are discussed and the tools for measurement and simulation are introduced and demonstrated. This lecture focusses on industry relevant methods for analyses and descriptions of forces, aeroacoustic sound fields, flow structures and turbulence. In addition, an overview of numerical methods for industrial applications is given. The integration and interconnection of the methods in the development processes are discussed exemplary.

An excursion to the Mercedes-Benz AG wind tunnel and the research and development centers is planned.

- Introduction
- Aerodynamics of bluff bodies
- Industrial flow measurement techniques and modern wind tunnel technology
- Overview of flow simulation in automotive industry
- Vehicle aerodynamics
- Passenger comfort of roadsters and cabriolets
- Soiling of road vehicles
- Aeroacoustics: basic principles and practical examples of aeroacoustics, especially in the field of automotive technology including aeroacoustic measurement techniques and numerical methods

Students can describe the different properties of aerodynamics and aeroacoustics of vehicles flows. They are qualified to analyze external flows around the vehicles and aeroacoustic sound fields of vehicles.

#### Organizational issues

Blockvortrag - Anmeldung erfolgt über ILIAS, max. Teilnehmerzahl ist 20 Studierende.

**Literature**

Vorlesungsskript
7.106 Course: Information Engineering [T-MACH-102209]

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2122014 Information Engineering 2 SWS Seminar /🧩 Ovtcharova, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-102209 Information Engineering Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 👤 On-Site, ✗ Cancelled

**Competence Certificate**
Alternative exam assessment (written composition and speech)

**Prerequisites**
None

Below you will find excerpts from events related to this course:

**Information Engineering**
2122014, SS 2022, 2 SWS, Language: German/English, Open in study portal

**Content**
Seminar papers on current research topics of the Institute for Information Management in Engineering. The respective topics are presented at the beginning of each semester.

**Organizational issues**
Siehe ILIAS-Kurs

**Literature**
Themenspezifische Literatur
### 7.107 Course: Information Processing in Sensor Networks [T-INFO-101466]

**Responsible:** Prof. Dr.-Ing. Uwe Hanebeck  
**Organisation:** KIT Department of Informatics  
**Part of:** M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500011</td>
<td>Information Processing in Sensor Networks</td>
<td>Hanebeck, Pfaff</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500030</td>
<td>Information Processing in Sensor Networks</td>
<td>Pfaff</td>
</tr>
</tbody>
</table>
7.108 Course: Information Systems and Supply Chain Management [T-MACH-102128]

**Responsible:** Dr.-Ing. Christoph Kilger

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102583 - Major Field: Information Management
- M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2118094 | Information Systems in Logistics and Supply Chain Management | 2 SWS | Lecture / 📖 KILGER |

**Exams**

| ST 2022       | 76-T-MACH-102128 | Information Systems and Supply Chain Management | Kilger |

**Competence Certificate**

The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered.

**Prerequisites**
none

**Below you will find excerpts from events related to this course:**

**V Information Systems in Logistics and Supply Chain Management**
2118094, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

**Literature**
7.109 Course: Integrated Information Systems for Engineers [T-MACH-102083]

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102583 - Major Field: Information Management  
- M-MACH-102589 - Major Field: Production Systems  
- M-MACH-102746 - Compulsory Elective Module

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
Oral examination 20 min.

**Prerequisites**  
None

**Below you will find excerpts from events related to this course:**

**Integrated Information Systems for engineers**  
2121001, SS 2022, 3 SWS, Language: German, Open in study portal

**Content**

- Information systems, information management  
- CAD, CAP and CAM systems  
- PPS, ERP and PDM systems  
- Knowledge management and ontology  
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems  
- describe the structure of relational databases  
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation  
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools  
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

**Literature**

Vorlesungsfolien / lecture slides

**Integrated Information Systems for engineers**  
2121001, WS 22/23, 3 SWS, Language: German, Open in study portal
Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature

Vorlesungsfolien / lecture slides
7.110 Course: Integrated Production Planning in the Age of Industry 4.0 [T-MACH-108849]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102589 - Major Field: Production Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice ( / )</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2150660</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>6 SWS</td>
<td>Lecture / Practice ( / )</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice ( / )</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-108849</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>Lanza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 76-T-MACH-108849-Wdh</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>Lanza</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Oral Exam (40 min)

Prerequisites
"T-MACH-109054 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" as well as "T-MACH-102106 Integrierte Produktionsplanung" must not be commenced.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice ( / )</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>2150660, SS 2022, 6 SWS, Language: German</td>
<td>Open in study portal</td>
<td></td>
</tr>
</tbody>
</table>
Content
Integrated Production Planning in the age of Industry 4.0 will be taught in the context of this engineering science lecture. In addition to a comprehensive introduction to Industry 4.0, the following topics will be addressed at the beginning of the lecture:

- Basics, history and temporal development of production
- Integrated production planning and integrated digital engineering
- Principles of integrated production systems and further development with Industry 4.0

Building on this, the phases of integrated production planning are taught in accordance with VDI Guideline 5200, whereby special features of parts production and assembly are dealt with in the context of case studies:

- Factory planning system
- Definition of objectives
- Data collection and analysis
- Concept planning (structural development, structural dimensioning and rough layout)
- Detailed planning (PPS, process simulation as a validation tool, planning of conveyor technology and storage systems for linking production and IT systems in the I4.0 factory)
- Preparation and monitoring of implementation
- Start-up and series support

The lecture contents are complemented by numerous current practical examples with a strong Industry 4.0 reference. Aspects of sustainability are anchored in all units and thus basic knowledge of sustainable production planning is taught. Within the exercises the lecture contents are deepened and applied to specific problems and tasks.

Learning Outcomes:
The students …

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.
- know the basic features of sustainable production planning and can apply underlying knowledge.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours
WING:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues
Vorlesungstermine dienstags 14.00 Uhr und donnerstags 14.00 Uhr, Übungstermine donnerstags 15.45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilia (https://ilias.studium.kit.edu/).
**7.111 Course: Integrative Strategies in Production and Development of High Performance Cars [T-MACH-105188]**

**Responsible:** Karl-Hubert Schlichtenmayer  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2150601</td>
<td>2 SWS</td>
<td>Lecture / 🛢</td>
<td>Schlichtenmayer</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2150601</td>
<td>2 SWS</td>
<td>Lecture / 🛢</td>
<td>Schlichtenmayer</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105188</td>
<td>2 SWS</td>
<td>Lecture / 🛢</td>
<td>Schlichtenmayer</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**  
Written Exam (60 min)

**Prerequisites**

none

---

**Below you will find excerpts from events related to this course:**

**Integrative Strategies in Production and Development of High Performance Cars**  
2150601, SS 2022, 2 SWS, Language: German, Open in study portal

**Lecture (V)**  
Blended (On-Site/Online)
Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:

- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Learning Outcomes:
The students ...

- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:

- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Learning Outcomes:
The students ...

- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Die LV wird einmalig im WS 2022/23 als Ersatz für die Absage im SS 2022 angeboten.
Im SS 2023 findet die LV wieder regulär statt.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Course: Intellectual Property Rights and Strategies in Industrial Companies [T-MACH-105442]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dipl.-Ing. Frank Zacharias

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102583 - Major Field: Information Management
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-102820 - Major Field: Mechatronics

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each term
Version: 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2147160</td>
<td>Patents and Patentstrategies in innovative companies</td>
<td>2</td>
<td>Online</td>
<td>Zacharias</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2147161</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>2</td>
<td>Block</td>
<td>Zacharias</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105442</td>
<td>Intellectual Property Rights and Strategies in Industrial Companies</td>
<td>Zacharias, Albers</td>
</tr>
</tbody>
</table>

Legend: 📽 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗣️ Closed

Competence Certificate
oral exam (ca. 20 min)

Prerequisites
none

Recommendation
None

Below you will find excerpts from events related to this course:

Patents and Patentstrategies in innovative companies
2147160, SS 2022, 2 SWS, Language: German, Open in study portal
Content
Attendance at lectures (5 L): 24h
Personal preparation and follow-up of lecture and exercise: 5h
Preparation exam: 31h

The students understand and are able to describe the basics of intellectual property, particularly with regard to the filing and obtaining of property rights. They can name the criteria of project-integrated intellectual property management and strategic patenting in innovative companies. Students are also able to describe the key regulations of the law regarding employee invention and to illustrate the challenges of intellectual properties with reference to examples.

The lecture will describe the requirements to be fulfilled and how protection is obtained for patents, design rights and trademarks, with a particular focus on Germany, Europe and the EU. Active, project-integrated intellectual property management and the use of strategic patenting by technologically oriented companies will also be discussed. Furthermore, the significance of innovations and intellectual property for both business and industry will be demonstrated using practical examples, before going on to consider the international challenges posed by intellectual property and current trends in the sector. Within the context of licensing and infringement, insight will be provided as to the relevance of communication, professional negotiations and dispute resolution procedures, such as mediation for example. The final item on the agenda will cover those aspects of corporate law that are relevant to intellectual property.

Lecture overview:

1. Introduction to intellectual property
2. The profession of the patent attorney
3. Filing and obtaining intellectual property rights
4. Patent literature as a source of knowledge and information
5. The law regarding employee inventions
6. Active, project-integrated intellectual property management
7. Strategic patenting
8. The significance of intellectual property
9. International challenges and trends
10. Professional negotiations and dispute resolution procedures
11. Aspects of corporate law
Organizational issues
Weitere Informationen siehe IPEK-Homepage.
https://www.ipek.kit.edu/2976_2858.php
7.113 Course: Introduction into Mechatronics [T-MACH-100535]

**Responsible:** Moritz Böhland
apl. Prof. Dr. Markus Reischl

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2105011</td>
<td>Introduction into Mechatronics</td>
<td>3</td>
<td>Lecture / Online</td>
<td>Reischl, Böhland</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-100535</td>
<td>Introduction into Mechatronics</td>
<td>Reischl</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Oral exam (Duration: 2h)

**Prerequisites**

none

*Below you will find excerpts from events related to this course:*

**Introduction into Mechatronics**

<table>
<thead>
<tr>
<th>Code</th>
<th>WS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105011</td>
<td>22/23</td>
<td>German</td>
<td>[Open in study portal]</td>
</tr>
</tbody>
</table>

**Content**

- Introduction
- Structure of mechatronic systems
- Mathematical treatment of mechatronic systems
- Sensors and actuators
- Measurements: acquisition and interpretation
- Modelling of mechatronic systems
- Control and feedback control systems
- Information processing

**Learning objectives:**

The student has knowledge about the specific challenge of interdisciplinary collaboration within the framework of mechatronics. He is able to explain the origin, necessity and methodic implementation of interdisciplinary collaboration, to name the main difficulties as well as the special features within the development of mechatronic products from the point of view of development methodic.

The student has fundamental knowledge of modeling mechanical, hydraulically and electrically part systems and about suitable optimization methods.

The student knows the difference in use of the term "system" in mechatronic and mechanical use.

**Literature**

Course: Introduction to Ceramics [T-MACH-100287]

Responsible: Prof. Dr. Michael Hoffmann
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2125757</td>
<td>Introduction to Ceramics</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Hoffmann</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-100287</td>
<td>Introduction to Ceramics</td>
<td></td>
<td></td>
<td>Hoffmann, Schell, Wagner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment consists of an oral exam (30 min) taking place at a specific date.
The re-examination is offered at a specific date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Introduction to Ceramics
2125757, WS 22/23, 3 SWS, Language: German, Open in study portal

Literature

- Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
- S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier
7.115 Course: Introduction to Computational Fluid Dynamics [T-MACH-110362]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Alexander Stroh

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102582 - Major Field: Continuum Mechanics
M-MACH-102746 - Compulsory Elective Module

Type
Written examination

Credits
3

Grading scale
Grade to a third

Recurrence
Each summer term

Version
3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2154533</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
</tr>
<tr>
<td>Stroh, Frohnapfel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-110362</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>Stroh</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), ⚙ On-Site, ✗ Cancelled

Competence Certificate
written 90min

Prerequisites
Passing the "Tutorial Introduction to Computational Fluid Dynamics" (T-MACH-111033) is prerequisite for taking part in the exam.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-111033 - Tutorial Introduction to Computational Fluid Dynamics must have been passed.

Annotation
Knowledge of the contents of the courses "Continuum Mechanics of Solid and Fluids" and "Mathematical Methods of Continuum Mechanics" as well as the corresponding tutorials is expected.

Below you will find excerpts from events related to this course:

Content

- Introduction and Motivation, Fundamental Equations and Dimensionless Numbers
- Turbulence and Modelling (DNS, LES, RANS);
- Numerical Solution of the Navier Stokes Equations;
  Discretization and Solution Approaches (FDM, FVM), boundary and initial conditions, stability, mistakes in numerics and modelling
- Set-up of a numerical simulation: pre- and postprocessing, validation, result evaluation, discussion of results
- Introduction to open-source toolbox OpenFOAM:
  set-up of simulation, generation of numerical grid with different tools, data evaluation within OpenFOAM and with python;
- Introduction to a research oriented toolbox for turbulent flows (DNS based o Incompact3d): set-up of simulation,
  statistical evaluation and analysis with MATLAB und python;
- visualization of simulation results in ParaView

This course includes a lecture and a computer course.

Organizational issues
Die Kenntnis der Vorlesungsinhalte "Kontinuumsmechanik der Festkörper und Fluide" sowie "Mathematische Methoden der Kontinuumsmechanik" wird vorausgesetzt.

Literature
Wird in der Vorlesung bekannt gegeben.
7.116 Course: Introduction to High Temperature Materials [T-MACH-111258]

**Responsible:** Prof. Dr.-Ing. Bronislava Gorr

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2194724 | Introduction to High Temperature Materials | 2 SWS | Lecture / 🗣 | Gorr |

| Exams | ST 2022 | 76-T-MACH-111258 | Introduction to High Temperature Materials | Gorr |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

**Competence Certificate**
oral examination (ca. 30 Minuten)

**Prerequisites**
none

**Recommendation**
Knowledge from the basic materials science lecture

**Below you will find excerpts from events related to this course:**

**Introduction to High Temperature Materials**
2194724, SS 2022, 2 SWS, Language: German, Open in study portal

**Lecture (V)**
On-Site

**Content**
Oral examination (about 30 min)

**Teaching content:**

- Applications and requirements for high temperature materials
- High temperature corrosion (thermodynamics, oxidation kinetics, oxidation of alloys, protection of high temperature materials)
- Creep (creep curve, creep mechanisms, creep of solid-solution strengthened materials, creep of particle hardened alloys, life time prediction)
- Fatigue (fundamentals, life time prediction)
- Thermo-mechanical fatigue
- High-temperature materials (Ni-, Fe-, Co- Ti-based alloys, ODS materials)

**Qualification targets:**
The students acquire fundamental knowledge about high temperature corrosion, creep, high temperature fatigue and thermomechanical fatigue as well as resulting failure mechanisms.

**Recommendations:**
Basic course in materials science and engineering

**Organizational issues**
Anmeldung verbindlich bis zum 14.04.2022 unter bronislava.gorr@kit.edu

**Literature**

- J. Young, High temperature oxidation and corrosion of metals, Elsevier, 2008
- Skript in elektronischer Form verfügbar.
**7.117 Course: Introduction to Multi-Body Dynamics [T-MACH-105209]**

**Responsible:** Prof. Dr.-Ing. Wolfgang Seemann  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:**  
- M-MACH-102746 - Compulsory Elective Module  
- M-MACH-102812 - Major Field: Powertrain Systems  
- M-MACH-102820 - Major Field: Mechatronics  
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2162235</td>
<td>Introduction to Multibody Dynamics</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Römer</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 22</td>
<td>76-T-MACH-105209</td>
<td>Introduction to Multibody Dynamics</td>
<td>Lecture</td>
<td>Seemann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>Lecture</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🍭 On-Site, ✗ Cancelled

**Competence Certificate**

Written examination, 180 min.

**Prerequisites**

none

**Recommendation**

Engineering Mechanics III/IV

*Below you will find excerpts from events related to this course:*

**Introduction to Multibody Dynamics**

2162235, SS 2022, 3 SWS, Language: German, [Open in study portal](#)

**Lecture (V)**

Blended (On-Site/Online)

**Content**

The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d'Alembert, principle of virtual power, Lagrange's equations, Kane's equations, structure of the equations of motion

**Literature**

Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977  
de Ja'lon, J. G., Bayo, E.: Kinematik and Dynamic Simulation of Multibody Systems.  
Kane, T.: Dynamics of rigid bodies.
7.118 Course: Introduction to Nonlinear Vibrations [T-MACH-105439]

**Responsible:** Prof. Dr.-Ing. Alexander Fidlin  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Exam</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2162247</td>
<td>Introduction to Nonlinear Vibrations</td>
<td>2</td>
<td>Lecture/🗣</td>
<td>2</td>
<td></td>
<td>Fidlin</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2162248</td>
<td>Introduction into the nonlinear vibrations (Tutorial)</td>
<td>2</td>
<td>Practice/🗣</td>
<td>2</td>
<td></td>
<td>Fidlin, Fischer</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105439</td>
<td>Introduction to Nonlinear Vibrations</td>
<td>oral exam</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
oral exam, 30 min.

**Prerequisites**  
none

**Recommendation**  
Vibration theory, Mathematical Methods of Vibration Theory, Dynamic Stability

Below you will find excerpts from events related to this course:

**Introduction to Nonlinear Vibrations**

2162247, WS 22/23, 2 SWS, Language: German, Open in study portal

**Content**

- dynamic systems  
- basic ideas of asymptotic methods  
- perturbation methods: Linstedt-Poincare, averaging, multiple scales  
- limit cycles  
- nonlinear resonance  
- basics of the bifurcation analysis, bifurcation diagrams  
- types of bifurcations  
- discontinuous systems  
- dynamic chaos
Literature


Introduction into the nonlinear vibrations (Tutorial)
2162248, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
Exercises related to the lecture
7.119 Course: Introduction to Nuclear Energy [T-MACH-105525]

Responsible: Prof. Dr.-Ing. Xu Cheng
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2189903 | Introduction to Nuclear Energy | 2 SWS | Lecture / 🧩 | Cheng |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**
oral exam, 30 min

**Prerequisites**
none

Below you will find excerpts from events related to this course:

**Introduction to Nuclear Energy**
2189903, WS 22/23, 2 SWS, Language: German, Open in study portal

**Content**
This lecture is dedicated to students of mechanical engineering and other engineering Bachelor or Master degree courses. Goal of the lecture is the fundamental knowledge of nuclear energy and nuclear reactors. After the lecture the students understand the principle of the usage of nuclear energy, the structure and operation of nuclear power plants and nuclear safety measures. Furthermore, the students are capable of giving technical assessment of the usage of nuclear energy with respect to its safety and sustainability.
7.120 Course: Introduction to Numerical Fluid Dynamics [T-MACH-105515]

**Responsible:** Dr. Balazs Pritz  
**Organisation:** KIT Department of Mechanical Engineering  
Institute of Thermal Turbomachinery  
**Part of:** M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Introduction to numerical fluid dynamics</td>
<td>2 SWS</td>
<td>pass/fail</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Exams</td>
<td>[76-T-MACH-105515] Introduction to Numerical Fluid Dynamics</td>
<td>Pritz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** Online, Blended (On-Site/Online), On-Site, Cancelled

**Competence Certificate**  
Certificate of participation

**Prerequisites**  
one

Below you will find excerpts from events related to this course:

**Introduction to numerical fluid dynamics**  
2157444, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Practical course (P)**  
On-Site

**Content**

The lab gives an overview of the application of computational fluid dynamics (CFD). At the end of the course the students will be able to perform CFD calculations independently.

In the lab, the components of the cycle of computational fluid dynamics are worked through. In the first instance moderately complicated geometries will be generated and meshed. After the configuration and running the calculation, the results are presented and evaluated in a visualization software. While in the first part of the course these steps are worked out under guidance, calculation cycles are carried out independently in the second part. The test cases are discussed in detail and allow to strengthen the affinity to the fluid dynamics.

**Content:**

1. Brief introduction into Linux
2. Mesh generation with ICEMCFD
3. Data visualisation and interpretation with Tecplot
4. Handling of the flow solver SPARC
5. Self-designed calculation: flat plate
6. Introduction to unsteady calculations: flow around a circular cylinder

**Regular attendance:** 22.5 hours  
**Self-study:** 97.5 hours

Lecture notes/handouts are offered.

**Learning objectives:**

**Students**  
- know the three components of CFD: mesh generation, calculation and evaluation.  
- will be able to create simple geometries and generate mesh.  
- can set up and carry out simulations.  
- know the ways of evaluating the results and the possibilities of flow visualization.  
- know how to analyze flow situations.

**Literature**  
Praktikumsskript
Course: Introduction to the Finite Element Method [T-MACH-105320]

**Responsible:** Prof. Dr.-Ing. Thomas Böhlke  
Dr.-Ing. Tom-Alexander Langhoff  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102582 - Major Field: Continuum Mechanics  
M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Name</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Introduction to the Finite Element Method</td>
<td>2 SWS</td>
<td>Lecture / §</td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Name</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Introduction to the Finite Element Method</td>
<td>2 SWS</td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
written exam (90 min)

Prerequisites: passing the corresponding "Tutorial to Introduction to the Finite element method" (T-MACH-110330)

**Prerequisites**  
Passing the "Tutorial to Introduction to the Finite element method" (T-MACH-110330) is a prerequisite for taking part in the exam.

**Modeled Conditions**  
The following conditions have to be fulfilled:

1. The course T-MACH-110330 - Tutorial Introduction to the Finite Element Method must have been passed.

**Annotation**  
Knowledge of the contents of the courses "Continuum Mechanics of Solids and Fluids" and "Mathematical Methods of Continuum Mechanics" as well as the corresponding tutorials are expected.

Due to capacity reasons it is possible that not all students of this course can be admitted to the computer tutorials. Students of the bachelor's degree program in mechanical engineering who have chosen the Major Field Continuum Mechanics (SP-Nr 13) will be admitted to the computer tutorials in any case.

If additional places are available in the computer tutorials for this course, these will be allocated according to the BSc average grade.

Below you will find excerpts from events related to this course:

**Introduction to the Finite Element Method**  
2162282, SS 2022, 2 SWS, Language: German, Open in study portal

**Content**

- introduction and motivation, elements of tensor calculus
- Discrete FEM: systems of bars and springs
- Formulations of boundary value problems (1D)
- Approximations in FEM
- FEM for scalar and vector-valued field problems
- Solution methods for linear systems of equations
Literature

- Fish, J., Belytschko, T.: A First Course in Finite Elements, Wiley 2007
**T.122 Course: IT-Fundamentals of Logistics [T-MACH-105187]**

**Responsible:** Prof. Dr.-Ing. Frank Thomas  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102583 - Major Field: Information Management  
- M-MACH-102812 - Major Field: Powertrain Systems  
- M-MACH-102817 - Major Field: Information Technology  
- M-MACH-102820 - Major Field: Mechatronics  
- M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2118184 | IT-Fundamentals of Logistics: Opportunities for Digital Transformation | 2 SWS | Lecture / 📇 Thomas |

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
</table>

| ST 2022 | 76-T-MACH-105187 | IT-Fundamentals of Logistics | Furmans, Mittwollen, Thomas |

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🔔 On-Site, ❌ Cancelled

**Competence Certificate**

The success control takes place in form of a written examination during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered.

**Prerequisites**

none

**Annotation**

1) Detailed script can be downloaded online (www.tup.com), updated and enhanced annually.  
2) CD-ROM with chapters and exercises at the end of the semester available from the lecturer, also updated and enhanced annually.

**Below you will find excerpts from events related to this course:**

**IT-Fundamentals of Logistics: Opportunities for Digital Transformation**

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>Blended (On-Site/Online)</th>
</tr>
</thead>
</table>

2118184, SS 2022, 2 SWS, Language: German, [Open in study portal](#)
Course: Lab Computer-Aided Methods for Measurement and Control [T-MACH-105341]

**Responsible:** Prof. Dr.-Ing. Christoph Stiller  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

### Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWs</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2137306</td>
<td>Lab Computer-aided methods for measurement and control</td>
<td>3</td>
<td>Practical course</td>
<td>Stiller, Müßigmann</td>
</tr>
</tbody>
</table>

**Legend:** 🌐 Online, 🦜 Blended (On-Site/Online), 🗂️ On-Site, ⚹ Cancelled

### Competence Certificate

**Colloquia**

### Prerequisites

**none**

Below you will find excerpts from events related to this course:

**Lab Computer-aided methods for measurement and control**  
2137306, WS 22/23, 3 SWS, Language: German, [Open in study portal]

**Content**  
**Lerninhalt (EN):**

1. Digital technology  
2. Digital storage oscilloscope and digital spectrum analyzer  
3. Supersonic computer tomography  
4. Lighting and image acquisition  
5. Digital image processing  
6. Image interpretation  
7. Control synthesis and simulation  
8. Robot: Sensors  
9. Robot: Actuating elements and path planning

The lab comprises 9 experiments.

**Voraussetzungen: Recommendations:**

Basic studies and preliminary examination; basic lectures in automatic control

**Arbeitsaufwand (EN):** 120 hours

**Lernziele (EN):**

Powerful and cheap computation resources have led to major changes in the domain of measurement and control. Engineers in various fields are nowadays confronted with the application of computer-aided methods. This lab tries to give an insight into the modern domain of measurement and control by means of practically oriented and flexible experiments. Based on experiments on measurement instrumentation and digital signal processing, elementary knowledge in the domain of visual inspection and image processing will be taught. Thereby, commonly used software like MATLAB/Simulink will be used in both simulation and realization of control loops. The lab closes with selected applications, like control of a robot or supersonic computer tomography.

**Nachweis (EN):**

Colloquia

**Literature**

Übungsanleitungen sind auf der Institutshomepage erhältlich.  
Instructions to the experiments are available on the institute's website
7.124 Course: Laboratory Exercise in Energy Technology [T-MACH-105331]

**Responsible:** Prof. Dr.-Ing. Hans-Jörg Bauer  
Prof. Dr. Ulrich Maas  
Dr.-Ing. Heinrich Wirbser

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology

**Type:** Completed coursework  
**Credits:** 4  
**Grading scale:** pass/fail  
**Recurrence:** Each term  
**Version:** 1

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
</tr>
<tr>
<td>WT 22/23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
1 report, approx. 12 pages  
Discussion of the documented results with the assistants

**Prerequisites**  
none

*Below you will find excerpts from events related to this course:*

**Laboratory Exercise in Energy Technology**  
2171487, SS 2022, 3 SWS, Language: German/English, [Open in study portal](#)  
Practical course (P)  
On-Site
Content
Online registration within the first two weeks of the lecture period at: http://www.its.kit.edu

- Micro gas turbine
- Several test rigs for the investigation of heat transfer at thermally high loaded components
- Optimization of components of the internal air and oil system
- Characterization of spray nozzles
- Investigation of pollutant and noise emission as well as reliability and material deterioration
- Exhaust gas treatment
- Exhaust gas turbocharger
- Cooling Tower
- Heatpump
- Plant oil stove
- Heat capacity
- Wood combustion

regular attendance: 42h
self-study: 78h

Attending this course enables the students to:

- accomplish experimental and design related as well as theoretical tasks in a scientific background
- perform a correct evaluation of the obtained results
- adequately document and present their results in a scientific framework

1 report, approx. 12 pages
Discussion of the documented results with the assistants

Duration: 30 minutes

no tools or reference materials may be used

Organizational issues
Information zum Lehrlabor finden Sie auf der Instituts-homepage

Laboratory Exercise in Energy Technology
2171487, WS 22/23, 3 SWS, Language: German/English, Open in study portal
Content
Online registration within the first two weeks of the lecture period at: http://www.its.kit.edu

- Micro gas turbine
- Several test rigs for the investigation of heat transfer at thermally high loaded components
- Optimization of components of the internal air and oil system
- Characterization of spray nozzles
- Investigation of pollutant and noise emission as well as reliability and material deterioration
- Exhaust gas treatment
  - Exhaust gas turbocharger
  - Cooling Tower
  - Heatpump
  - Plant oil stove
  - Heat capacity
  - Wood combustion

Regular attendance: 42h
Self-study: 78h

Attending this course enables the students to:

- accomplish experimental and design related as well as theoretical tasks in a scientific background
- perform a correct evaluation of the obtained results
- adequately document and present their results in a scientific framework

1 report, approx. 12 pages

Discussion of the documented results with the assistants

Duration: 30 minutes

No tools or reference materials may be used
7.125 Course: Laboratory Laser Materials Processing [T-MACH-102154]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2183640</td>
<td>Laboratory &quot;Laser Materials Processing&quot;</td>
<td>3</td>
<td>Practical course / Online</td>
<td>Schneider, Pfleging</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2183640</td>
<td>Laboratory &quot;Laser Materials Processing&quot;</td>
<td>3</td>
<td>Practical course / Online</td>
<td>Schneider, Pfleging</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Course Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-102154</td>
<td>Laboratory Laser Materials Processing</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Prerequisites

None

Recommendation

Basic knowledge of physics, chemistry and material science is assumed.

Below you will find excerpts from events related to this course:

Laboratory "Laser Materials Processing"

2183640, SS 2022, 3 SWS, Language: German, Open in study portal

Practical course (P)

Blended (On-Site/Online)
Content
The laboratory compromises 8 half-day experiments, which address the following laser processing topics of metals, ceramics and polymers:

- safety aspects
- surface hardening and remelting
- melt and reactive cutting
- surface modification by dispersing or alloying
- welding
- surface texturing
- metrology

There are used CO2-, excimer-, Nd:YAG- and high power diode-laser sources within the laboratory.

The student

- can describe the influence of laser, material and process parameters and can choose suitable parameters for the most important methods of laser-based processing in automotive engineering.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

The attendance to one of the courses Physical Basics of Laser Technology (2181612) or Laser Application in Automotive Engineering (2182642) is strongly recommended.

regular attendance: 34 hours
self-study: 86 hours

The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Organizational issues
Die Praktikumsplätze für das Sommersemester 2022 sind bereits ausgebucht!
Anmeldung per Email an johannes.schneider@kit.edu
Das Praktikum findet semesterbegleitend in Kleingruppen am IAM-CMS (CS) bzw. IAM-AWP (CN) statt!
Die Termine werden zu Beginn des Semesters bekannt gegeben.

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer

V Laboratory "Laser Materials Processing"
2183640, WS 22/23, 3 SWS, Language: German, Open in study portal

Practical course (P)
Blended (On-Site/Online)
The laboratory compromises 8 half-day experiments, which address the following laser processing topics of metals, ceramics and polymers:

- safety aspects
- surface hardening and remelting
- melt and reactive cutting
- surface modification by dispersing or alloying
- welding
- surface texturing
- metrology

There are used CO2-, excimer-, Nd:YAG- and high power diode-laser sources within the laboratory.

The student:

- can describe the influence of laser, material and process parameters and can choose suitable parameters for the most important methods of laser-based processing in automotive engineering.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

The attendance to one of the courses Physical Basics of Laser Technology (2181612) or Laser Application in Automotive Engineering (2182642) is strongly recommended.

regular attendance: 34 hours
self-study: 86 hours

The assessment consists of a colloquium for every single experiment and an overall final colloquium incl. an oral presentation of 20 min.

Organizational issues

Maximal 12 Teilnehmer/innen!
Aktuell sind nur noch wenige Plätze zu vergeben! Registrierung möglich per Email an johannes.schneider@kit.edu
Praktikum findet in Kleingruppen semesterbegleitend (dienstags bzw. mittwochs, ganztägig) bzw. als Blockpraktikum auf dem Campus Nord am IAM-AWP (Geb. 681) und auf dem Campus Süd am IAM-CMS (Geb. 30.48) statt!
Termine werden mit den Teilnehmern/innen direkt abgestimmt.

Literature

R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
7 COURSES

Course: Laboratory Mechatronics [T-MACH-105370]

7.126 Course: Laboratory Mechatronics [T-MACH-105370]

**Responsible:** Prof. Dr. Veit Hagenmeyer
Prof. Dr.-Ing. Wolfgang Seemann
Prof. Dr.-Ing. Christoph Stiller

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102817 - Major Field: Information Technology
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2105014</td>
<td>Laboratory mechatronics</td>
<td>3</td>
<td>Practical course /</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

**Competence Certificate**
The laboratory course is offered exclusively as ungraded course work. The assessment consists of a group colloquium at the beginning of the individual specialization phases (Part 1). In addition, a robot control system for a pick-and-place task must be successfully implemented in the group phase (Part 2).

**Prerequisites**
None

Below you will find excerpts from events related to this course:

**Laboratory mechatronics**

2105014, WS 22/23, 3 SWS, Language: German, [Open in study portal]

**Practical course (P)**

**On-Site**

**Content**

**Part I**
- Control, programming and simulation of robots
- CAN-Bus communication
- Image processing / machine vision
- Dynamic simulation of robots in ADAMS

**Part II**
- Solution of a complex problem in team work

**Learning objectives:**
The student is able to ...

- use his knowledge about mechatronics and microsystems technology to solve a practical problem. The laboratory course comprises simulation, bus communication, measurement instrumentation, control engineering and programming.
- integrate the different subsystems from a manipulator to a working compound system in teamwork.

**Nachweis (EN):** certificate of successful attendance

**Voraussetzung (EN):** none

**Arbeitsaufwand (EN):**
- regular attendance: 33.5 h
- self-study: 88.5 h
**Organizational issues**
Das Praktikum ist anmeldepflichtig.
Die Anmeldungsmodalitäten-/fristen werden auf https://www.iai.kit.edu/Pruefungen.php bekannt gegeben. Siehe Internet / Aushang Raum 033 EG, im Gebäude 40.32.

**Literature**
- Materialien zum Mechatronik-Praktikum
- Manuals for the laboratory course on Mechatronics
**Course: Laboratory Production Metrology [T-MACH-108878]**

**Responsible:** Prof. Dr.-Ing. Gisela Lanza  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102589 - Major Field: Production Systems  
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Supervisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2150550</td>
<td>Laboratory Production Metrology</td>
<td>3 SWS</td>
<td>Practical course / On-Site</td>
<td>Lanza, Stamer</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Supervisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-108878</td>
<td>Laboratory Production Metrology</td>
<td></td>
<td></td>
<td>Lanza, Häfner</td>
</tr>
</tbody>
</table>

**Legend:**  
🖥 Online, 🧩 Blended (On-Site/Online), 🆗 On-Site, ✗ Cancelled

**Competence Certificate**

Alternative Test Achievement: Group presentation of 15 min at the beginning of each experiment and evaluation of the participation during the experiments and Oral Exam (15 min)

**Prerequisites**

none

**Annotation**

For organizational reasons the number of participants for the course is limited. Hence a selection process will take place. Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

**Below you will find excerpts from events related to this course:**
Content
During this course, students get to know measurement systems that are used in a production system. In the age of Industry 4.0, sensors are becoming more important. Therefore, the application of in-line measurement technology such as machine vision and non-destructive testing is focussed. Additionally, laboratory based measurement technologies such as computed tomography are addressed. The students learn the theoretical background as well as practical applications for industrial examples. The students use sensors by themselves during the course. Additionally, they are trained on how to integrate sensors in production processes and how to analyze measurement data with suitable software.

The following topics are addressed:

- Classification and examples for different measurement technologies in a production environment
- Machine vision with optical sensors
- Information fusion based on optical measurements
- Robot-based optical measurements
- Non-destructive testing by means of acoustic measurements
- Coordinate measurement technology
- Industrial computed tomography
- Measurement uncertainty evaluation
- Analysis of production data by means of data mining

Learning Outcomes:
The students …

- are able to name, describe and mark out different measurement technologies that are relevant in a production environment.
- are able to conduct measurements with the presented in-line and laboratory based measurement systems.
- are able to analyze measurement results and assess the measurement uncertainty of these.
- are able to deduce whether a work piece fulfills quality relevant specifications by analysing measurement results.
- are able to use the presented measurement technologies for a new task.

Workload:
regular attendance: 31,5 hours
self-study: 88,5 hours

Organizational issues
Die Lehrveranstaltung findet stets dienstags nachmittags statt.


The course always takes place on Tuesdays in the afternoon.

For organizational reasons the number of participants for the course is limited. Hence an selection process will take place. Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

Literature

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/). Additional reference to literature will be provided, as well.
**7.128 Course: Laser in Automotive Engineering [T-MACH-105164]**

**Responsible:** Dr.-Ing. Johannes Schneider  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102818 - Major Field: Vehicle Technology  
M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2182642</th>
<th>Laser in automotive engineering</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Schneider</th>
</tr>
</thead>
</table>

**Exams**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-105164</th>
<th>Laser in Automotive Engineering</th>
<th>Schneider</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

**Competence Certificate**

oral examination (30 min)

no tools or reference materials

**Prerequisites**

It is not possible, to combine this brick with brick Physical Basics of Laser Technology [T-MACH-109084] and brick Physical Basics of Laser Technology [T-MACH-102102]

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-102102 - Physical Basics of Laser Technology must not have been started.

**Recommendation**

preliminary knowlegde in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

**Laser in automotive engineering**

2182642, SS 2022, 2 SWS, Language: German, Open in study portal

**Lecture (V)**

On-Site
Content
Based on a short description of the physical basics of laser technology the lecture reviews the most important high power lasers and their various applications in automotive engineering. Furthermore the application of laser light in metrology and safety aspects will be addressed.

- physical basics of laser technology
- laser beam sources (Nd:YAG-, CO2-, high power diode-laser)
- beam properties, guiding and shaping
- basics of materials processing with lasers
- laser applications in automotive engineering
- economical aspects
- safety aspects

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of Nd:YAG-, CO2- and high power diode-laser sources.
- can describe the most important methods of laser-based processing in automotive engineering and illustrate the influence of laser, material and process parameters
- can analyse manufacturing problems and is able to choose a suitable laser source and process parameters.
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

It is not possible to combine this lecture with the lecture Physical basics of laser technology [2181612].

regular attendance: 22.5 hours
self-study: 97.5 hours
oral examination (ca. 30 min)

no tools or reference materials

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
7.129 Course: Leadership and Conflict Management [T-MACH-105440]

Responsible: Hans Hatzl
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 2110017 | Leadership and Conflict Management (in German) | 2 SWS | Lecture / 🗣 | Hatzl |

Exams

| ST 2022 | 76-T-MACH-105440 | Leadership and Conflict Management | Deml, Hatzl |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
oral exam (approx. 30 min)

Prerequisites
none

Annotation
This lecture will also be offered once in winter term 20/21.

Below you will find excerpts from events related to this course:

Content
In this compact event, management and leadership techniques are taught which are among the key qualifications for management tasks. Furthermore, you will be prepared for management and leadership tasks.

The course consists of the following course contents:

1. Introduction to the topic
   - Goal setting and goal achievement
   - Management techniques in planning
   - Communication and information
   - Decision Theory
   - Leadership and cooperation
   - Self Management
   - Conflict management and strategy
   - Case studies

It passes:

- Obligatory attendance

Recommendations:

- Knowledge of work and economic science is advantageous

Literature
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
Course: Leadership and Management Development [T-MACH-105231]

**Responsible:** Prof. Dr.-Ing. Albert Albers  
Prof. Dr.-Ing. Sven Matthiesen  
Andreas Ploch

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102815 - Major Field: Engineering Design

**Type**  
Oral examination

**Credits**  
4

**Grading scale**  
Grade to a third

**Recurrence**  
Each winter term

**Version**  
1

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>2145184</th>
<th>Leadership and Product Development</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Ploch</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ⚽ Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

**Competence Certificate**

oral exam (approx. 20 min)

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Leadership and Product Development**

2145184, WS 22/23, 2 SWS, Language: German, [Open in study portal]

**Lecture (V)**

**On-Site**

**Content**

Overview of leadership theories and their application  
Selected management instruments and their use in organizations  
Communication and leadership  
change management  
Management development and MD programmes  
Assessment centres and management audits  
Teamwork, team development and team roles  
Coaching as an instrument of modern leadership  
Intercultural competence and cross-cultural leadership  
Management and ethics, corporate governance  
Practical exercises and examples to deepen selected contents

**Organizational issues**

Vorlesungsanmeldung und Informationen zur Veranstaltung werden im ILIAS Kurs zur Verfügung gestellt. Weitere Information siehe IPEK-Homepage

**Literature**

Vorlesungsumdruck
7.131 Course: Lightweight Constructions with Fiber-Reinforced-Polymers – Theory and Practice [T-MACH-110954]

**Responsible:** Prof. Dr.-Ing. Luise Kärger  
Dr.-Ing. Wilfried Liebig

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Practice (VÜ)</td>
<td>4 SWS</td>
<td>Kärger, Liebig</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), ⬇ On-Site, ☢ Cancelled

**Competence Certificate**

oral exam (about 25 minutes)

**Prerequisites**

none

**Recommendation**

- Materials of Lightweight Construction
- Structural Analysis of Composite Laminates
- Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies

*Below you will find excerpts from events related to this course:*

**Lightweight constructions with fiber-reinforced-polymers – theory and practice**

2113110, WS 22/23, 4 SWS, Language: German, Open in study portal

**Lecture / Practice (VÜ) On-Site**
Content

The cooperative educational concept of the FAST-LBT and IAM-WK give students an understanding of theory and practice for lightweight constructing with fiber-reinforced-polymers. Students solve an engineering lightweight task in small groups (max. 4 p.), for example the construction of an optimal bending beam under certain space and weight conditions. Various Materials (fibers, resins, foams, etc.) as well as relevant material data are provided and can be used any arbitrary combination. In a first step, students develop a theoretical solution and verify it simulative. Therefore, an introductory basic lecture teaches the mechanics and simulations techniques of fiber-reinforced-polymers. In a second step the students manufacture specimens based on their theoretical solution at the IAM-WK. The specimens are then tested on bending machines. The students gain knowledge about fiber-reinforced-polymers (materials, manufacturing, manufacturing effects, restrictions, etc.) and structural analysis simulations (modelling, simplifications, assumptions, material models, etc.) as well as material characterization and testing. Building on the basic lecture the knowledge is gained autonomously by solving realistic practice relevant tasks. The main topics are:

- Basics of Lightweight strategies
- Basics of fiber-reinforced-polymers
- Basics of FEM-simulations with anisotropic material systems
- Simulative part analysis
- Manufacturing of fiber-reinforced-polymers
- Mechanical testing

Learning Objectives: Students will be able to name and explain lightweight design strategies. They are familiar with typical fiber and matrix materials and their function in fiber composite materials. They will be familiar with the operating principle of a sandwich composite with foam core and will be able to describe and justify typical deformation and stress curves. They can name characteristic mechanical parameters and manufacturing processes. For the numerical analysis of FRP components, the students know simple laminate theories, they can set up a finite element model in Abaqus, select suitable finite elements, evaluate the simulation results and derive conclusions for improving the load-bearing effect. Students know the main steps and boundary conditions for manual fabrication and mechanical testing of fiber composite sandwich structures and can apply them in practice.
7.132 Course: Lightweight Engineering Design [T-MACH-105221]

- **Responsible:** Prof. Dr.-Ing. Albert Albers
  Prof. Dr.-Ing. Norbert Burkardt
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:**
  - M-MACH-102815 - Major Field: Engineering Design
  - M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2146190</td>
<td>Lightweight Engineering Design</td>
<td>2</td>
<td>Lecture / On-Site</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
<td>2</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

**Competition Certificate**
Written examination (90 min)

**Prerequisites**
None

Below you will find excerpts from events related to this course:

**Lightweight Engineering Design**
2146190, SS 2022, 2 SWS, Language: German, Open in study portal
Lecture (V) On-Site

**Content**

General aspects of lightweight design, lightweight strategies, construction methods, design principles, lightweight construction, stiffening techniques, lightweight materials, virtual product engineering, bionics, joining techniques, validation, recycling.

Additionally, guest speakers from industry will present lightweight design from an practical point of view.

The students are able to ...

- evaluate the potential of central lightweight strategies and their application in design processes.
- apply different stiffening methods qualitatively and to evaluate their effectiveness.
- evaluate the potential of computer-aided engineering as well as the related limits and influences on manufacturing.
- reflect the basics of lightweight construction from a system view in the context of the product engineering process.
Organizational issues

Vorlesungsfolien können über die eLearning-Plattform ILIAS bezogen werden.

Die Prüfungssort wird gemäß der Prüfungsordnung zu Vorlesungsbeginn angekündigt:

- Schriftliche Prüfung: 90 min Prüfungsdauer
- Mündliche Prüfung: 20 min Prüfungsdauer
- Erlaubte Hilfsmittel: keine

Medien: Beamer

Arbeitsbelastung:

- Präsenzzeit: 21 h
- Selbststudium: 99 h

Lecture slides are available via eLearning-Platform ILIAS. The type of examination (written or oral) will be announced at the beginning of the lecture:

- written examination: 90 min duration
- oral examination: 20 min duration
- auxiliary means: None

Media: Beamer

Workload:

- regular attendance: 21 h
- self-study: 99 h

Literature

Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
7.133 Course: Machine Dynamics [T-MACH-105210]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102746 - Compulsory Elective Module
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102820 - Major Field: Mechatronics
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
- M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Language</th>
<th>Online/Blended/On-Site</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2161224</td>
<td>Machine Dynamics</td>
<td>2</td>
<td>German/English</td>
<td></td>
<td>Proppe</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2161225</td>
<td>Machine Dynamics (Tutorial)</td>
<td>1</td>
<td>English</td>
<td>Blended (On-Site/Online)</td>
<td>Proppe, Fischer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2161224</td>
<td>Machine Dynamics</td>
<td>2</td>
<td>German/English</td>
<td></td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Language</th>
<th>Online/Blended/On-Site</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>2</td>
<td>German/English</td>
<td></td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 180 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

**Machine Dynamics**

2161224, SS 2022, 2 SWS, Language: German/English, [Open in study portal]
Lecture (V) Online

Content
1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Literature
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989

**Machine Dynamics (Tutorial)**

2161225, SS 2022, 1 SWS, Language: English, [Open in study portal]
Practice (Ü) Blended (On-Site/Online)

Content
Exercises related to the lecture

**Machine Dynamics**

2161224, WS 22/23, 2 SWS, Language: English, [Open in study portal]
Lecture (V) Online
Content
1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Literature
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989
7.134 Course: Machine Dynamics II [T-MACH-105224]

Responsible: Prof. Dr.-Ing. Carsten Proppe  
Organisation: KIT Department of Mechanical Engineering

Part of:  
M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102820 - Major Field: Mechatronics  
M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics  
M-MACH-104442 - Major Field: Vibration Theory

### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Oral examination</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Oral examination</td>
</tr>
</tbody>
</table>

### Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Oral examination</td>
</tr>
</tbody>
</table>

Competence Certificate  
oral exam, 30 min.

Prerequisites  
none

Recommendation  
Machine Dynamics

Below you will find excerpts from events related to this course:

#### Machine Dynamics II 2162220, SS 2022, 2 SWS, Language: German/English, Open in study portal

**Content**

Students are able to develop and analyze detailed models in machine dynamics that encompass continuum models, fluid structure interaction, and stability analyses.

- hydrodynamic bearings
  - rotating shafts in hydrodynamic bearings
  - belt drives
  - vibration of turbine blades

**Literature**


---

#### Machine Dynamics II 2162220, WS 22/23, 2 SWS, Language: English, Open in study portal

**Content**

hydrodynamic bearings

- rotating shafts in hydrodynamic bearings
- belt drives
- vibration of turbine blades

**Literature**

7 COURSES

Course: Machine Tools and High-Precision Manufacturing Systems [T-MACH-110962]

7.135 Course: Machine Tools and High-Precision Manufacturing Systems [T-MACH-110962]

**Responsible:** Prof. Dr.-Ing. Jürgen Fleischer

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102589 - Major Field: Production Systems
M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2149910 | Machine Tools and High-Precision Manufacturing Systems | 6 SWS | Lecture / Practice ( / ) | Fleischer |

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th>Machine Tools and High-Precision Manufacturing Systems</th>
<th></th>
<th>Fleischer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td></td>
<td>76-T-MACH-110962</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Oral exam (40 minutes)

**Prerequisites**

- T-MACH-102158 - Machine Tools and Industrial Handling must not be commenced.
- T-MACH-109055 - Machine Tools and Industrial Handling must not be commenced.
- T-MACH-110963 - Machine Tools and High-Precision Manufacturing Systems must not be commenced.

**Below you will find excerpts from events related to this course:**

**Machine Tools and High-Precision Manufacturing Systems**

2149910, WS 22/23, 6 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)  
Blended (On-Site/Online)
Content
The lecture gives an overview of the construction, use and application of machine tools and high-precision manufacturing systems. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools and high-precision manufacturing systems is conveyed. First, the main components of the systems are systematically explained and their design principles as well as the integral system design are discussed. Subsequently, the use and application of machine tools and high-precision manufacturing systems will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0 and artificial intelligence. Guest lectures from industry round off the lecture with insights into practice.

The individual topics are:

- Structural components of dynamic manufacturing Systems
- Feed axes: High-precision positioning
- Spindles of cutting machine Tools
- Peripheral Equipment
- Machine control unit
- Metrological Evaluation
- Maintenance strategies and condition Monitoring
- Process Monitoring
- Development process for machine tools and high-precision manufacturing Systems
- Machine examples

Learning Outcomes:
The students …

- are able to assess the use and application of machine tools and high-precision manufacturing systems and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of machine tools and high-precision manufacturing systems (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of machine tools and high-precision manufacturing systems.
- are capable of selecting and evaluating machine tools and high-precision manufacturing systems according to technical and economic criteria.

Workload:

MACH:
regular attendance: 63 hours
self-study: 177 hours

WING/TVWL:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues
Start: 24.10.2022

Lectures on Mondays and Wednesdays, tutorial on Thursdays. The tutorial dates will announced in the first lecture.

Literature
Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
### Course: Machine Vision [T-MACH-105223]

**Responsible:** Dr. Martin Lauer  
Prof. Dr.-Ing. Christoph Stiller  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102817 - Major Field: Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Date</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>Lecture / Practice (V/U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2137308</td>
<td>Machine Vision</td>
<td>4 SWS</td>
<td></td>
<td>Lauer, Kinzig</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>Lecture / Practice (V/U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105223</td>
<td>Machine Vision</td>
<td>4 SWS</td>
<td></td>
<td>Stiller, Lauer</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

Type of Examination: written exam  
Duration of Examination: 60 minutes

**Prerequisites**

None

**Below you will find excerpts from events related to this course:**

**Content**

Lernziele (EN):

*Machine vision (or computer vision)* describes all kind of techniques that can be used to extract information from camera images in an automated way. Considerable improvements of machine vision techniques throughout recent years, e.g. by the advent of deep learning, have caused growing interest in these techniques and enabled applications in various domains, e.g. robotics, autonomous driving, gaming, production control, visual inspection, medicine, surveillance systems, and augmented reality.

The participants should gain an overview over the basic techniques in machine vision and obtain hands-on experience.

Nachweis: written exam, 60 min.  
Arbeitsaufwand: 240 hours  
Voraussetzungen: none

**Literature**

Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
7.137 Course: Machines and Processes [T-MACH-105208]

**Responsible:** Prof. Dr.-Ing. Hans-Jörg Bauer  
Dr.-Ing. Heiko Kubach  
Prof. Dr. Ulrich Maas  
Dr. Balazs Pritz

**Organisation:** KIT Department of Mechanical Engineering

Institute of Thermal Turbomachinery

**Part of:** M-MACH-102566 - Machines and Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Machines and Processes</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Bauer, Maas, Kubach, Pritz</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Machines and Processes</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Bauer, Kubach, Maas, Pritz</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Machines and Processes</td>
<td>76-T-MACH-105208</td>
<td>Kubach, Bauer, Maas, Pritz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>Machines and Processes</td>
<td>76-T-MACH-105208e</td>
<td>Kubach, Bauer, Maas, Pritz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Machines and Processes</td>
<td>76-T-MACH-105208</td>
<td>Kubach, Maas, Bauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

written exam (duration: 120 min)

**Prerequisites**

Taking part at the exam is possible only when lab course has been successfully completed

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-105232 - Machines and Processes, Prerequisite must have been passed.

Below you will find excerpts from events related to this course:

**Machines and Processes**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2185000, WS 22/23, 4 SWS, Language: German</td>
<td>Lecture / Practice (VÜ)</td>
<td>On-Site</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Bachelor's Program Mechanical Engineering , Date: 20/09/2022  
Module Handbook, valid from Winter Term 2022/23
Content
basics of thermodynamics
thermal fluid machines
  • steam turbines
  • gas turbines
  • combined-cycle plants
  • turbines and compressors
  • aircraft engines
hydraulic fluid machines
  • operating performance
  • characterization
  • control
  • cavitation
  • wind turbines, propellers
internal combustion engines
  • characteristic parameters
  • engine parts
  • kinematics
  • engine processes
  • emissions
7.138 Course: Machines and Processes, Prerequisite [T-MACH-105232]

**Responsible:** Prof. Dr.-Ing. Hans-Jörg Bauer  
Dr.-Ing. Heiko Kubach  
Prof. Dr. Ulrich Maas  
Dr. Balazs Pritz  

**Organisation:** KIT Department of Mechanical Engineering  

**Institute of Thermal Turbomachinery**

**Part of:** M-MACH-102566 - Machines and Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 22</td>
<td>2187000</td>
<td>Machines and Processes (Lab Course)</td>
<td>1</td>
<td>Practical course / 🗣️</td>
<td>Bauer, Kubach, Maas,</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2187000</td>
<td>Machines and Processes</td>
<td>1</td>
<td>Practical course / 🗣️</td>
<td>Bauer, Kubach, Pritz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schmidt, Bykov</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 22</td>
<td>76-T-MACH-105232</td>
<td>Machines and Processes, Prerequisite</td>
<td></td>
<td>Kubach, Bauer, Maas, Pritz</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

**Competence Certificate**

successful completed training course

**Prerequisites**

none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2187000</td>
<td>Machines and Processes (Lab Course)</td>
<td>Practical course (P) On-Site</td>
<td>Bauer, Kubach, Maas, Schmidt, Bykov</td>
</tr>
</tbody>
</table>

Practical course (P) On-Site
Content
successful lab course and written exam (2 h)
Taking part at the exam is possible only when lab course has been successfully completed
Lab course and lecture take place in summer and winter semester.
In the SS the lecture is held in English. The lab course is always bilingual.

Media:
slides to download
Documentation of the labcourse
basics of thermodynamics
thermal fluid machines
  • steam turbines
  • gas turbines
  • combined-cycle plants
  • turbines and compressors
  • aircraft engines
hydraulic fluid machines
  • operating performance
  • characterization
  • control
  • cavitation
  • wind turbines, propellers
internal combustion engines
  • characteristic parameters
  • engine parts
  • kinematics
  • engine processes
  • emissions

regular attendance: 48 h, self-study: 160 h
The students can name and describe basic energy conversion processes and energy converting machines. They can explain the application of these energy conversion processes in various machines. They can analyze and evaluate the processes and machines in terms of functionality and efficiency and they are able to solve basic technical problems in terms of operating the machines.

Machines and Processes
2187000, WS 22/23, 1 SWS, Open in study portal

Content
Lab Course Experiment
### 7.139 Course: Manufacturing Technology [T-MACH-102105]

- **Responsible:** Prof. Dr.-Ing. Volker Schulze
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:**
  - M-MACH-102589 - Major Field: Production Systems
  - M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

#### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grade</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2149657</td>
<td>Manufacturing Technology</td>
<td>6 SWS</td>
<td>Lecture / Practice</td>
<td>Schulze</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td></td>
<td>Schulze</td>
<td></td>
</tr>
</tbody>
</table>

### Competence Certificate
- Written Exam (180 min)

### Prerequisites
- none

#### Below you will find excerpts from events related to this course:

- **Manufacturing Technology**
  - Code: 2149657, WS 22/23, 6 SWS, Language: German, [Open in study portal](#)
  - Lecture / Practice (VÜ)
  - Blended (On-Site/Online)
Content
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:

- Quality control
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming, plastics engineering)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment
- Process chains in manufacturing

This lecture provides an excursion to an industry company.

Learning Outcomes:
The students ...

- are capable to specify the different manufacturing processes and to explain their functions.
- are able to classify the manufacturing processes by their general structure and functionality according to the specific main groups.
- have the ability to perform a process selection based on their specific characteristics.
- are enabled to identify correlations between different processes and to select a process regarding possible applications.
- are qualified to evaluate different processes regarding specific applications based on technical and economic aspects.
- are experienced to classify manufacturing processes in a process chain and to evaluate their specific influence on surface integrity of workpieces regarding the entire process chain.

Workload:
regular attendance: 63 hours
self-study: 177 hours

Organizational issues
Start: 24.10.2022

Vorlesungstermine montags und dienstags, Übungstermine mittwochs. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
7.140 Course: Material Flow in Logistic Systems [T-MACH-102151]

**Responsible:** Prof. Dr.-Ing. Kai Furmans

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102589 - Major Field: Production Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2117051</td>
<td>Material flow in logistic systems</td>
<td>15 SWS</td>
<td>Others (sons / 🗣 Furmans, Fleischmann, Köhler</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
<td></td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

**Competence Certificate**

The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
  - 40% assessment of the result of the case studies as group work,
  - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.

**Prerequisites**

none

**Recommendation**

Recommended elective subject: Probability Theory and Statistics

**Annotation**

Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Below you will find excerpts from events related to this course:

**Material flow in logistic systems**

2117051, WS 22/23, 15 SWS, Language: German, Open in study portal

**Others (sonst.)**

On-Site
Content

**Learning Content:**

- Elements of material flow systems (conveyor elements, fork, join elements)
- Models of material flow networks using graph theory and matrices
- Queueing theory, calculation of waiting time, utilization
- Warehousing and order-picking
- Shuttle systems
- Sorting systems
- Simulation
- Calculation of availability and reliability
- Value stream analysis

After successful completion of the course, you are able (alone and in a team) to:

- Accurately describe a material handling system in a conversation with an expert.
- Model and parameterize the system load and the typical design elements of a material handling system.
- Design a material handling system for a task.
- Assess the performance of a material handling system in terms of the requirements.
- Change the main lever for influencing the performance.
- Expand the boundaries of today's methods and system components conceptually if necessary.

**Literature:**
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 7. Auflage 2019

**Description:**
This course is separated into 5 topic blocks which are structured in the following parts:

- self-study phase
- exercise
- plenary
- case study (group work)
- colloquium
- review of case study

The groups for the case study will be formed at the beginning of the course (first week). The results of the group work during the lecture period are presented and evaluated in writing. During the colloquiums, the result of the case study is presented and the understanding of the group work and the models dealt with in the course are tested in an oral defense. The participation in the colloquiums is compulsory and will be controlled. For the written submission and the presentation the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

**We strongly recommend to attend the introductory session on 26th of October 2022. In this session, the teaching concept of “Materialfluss in Logistiksysteme” is explained and outstanding issues are clarified.**

The course registration including the group allocation with ILIAS is mandatory. The registration will be open for several days after the introductory session (registration duration: 26.10.2022 14:00 Uhr - 01.11.2022 14:00 Uhr)

**Workload:**

- Regular attendance: 35 h
- Self-study: 135 h
- Group work: 100 h

**Competence Certificate:**
The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
  - 40% assessment of the result and the presentation of the case studies as group work,
  - 20% assessment of the oral examination during the colloquiums as individual performance.
7.141 Course: Materials Characterization [T-MACH-107684]

Responsible: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 4

Events

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Time</th>
<th>Subject</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2174586</td>
<td>Materials Characterization</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
<td>Schneider, Gibmeier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Time</th>
<th>Subject</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-107684</td>
<td>Materials Characterization</td>
<td></td>
<td></td>
<td>Gibmeier</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), ⬆ On-Site, ✗ Cancelled

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

Successful participation in Übungen zu Werkstoffanalytik is the condition for the admittance to the oral exam in Werkstoffanalytik.

T-MACH-110945 – Exercises for Materials Characterization has not been started.

T-MACH-110946 – Materials Characterization has not been started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-107685 - Exercises for Materials Characterization must have been passed.

Below you will find excerpts from events related to this course:

Materials Characterization
2174586, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

The following methods will be introduced within this lecture:

- microscopic methods: optical microscopy, electron microscopy (SEM/TEM), atomic force microscopy
- material and microstructure analyses by means of X-ray, neutron and electron beams
- analysis methods at SEM/TEM (e.g. EELS)
- spectroscopic methods (e.g. EDS / WDS)

Learning objectives:

The students have fundamental knowledge about methods of material analysis. They have a basic understanding to transfer this fundamental knowledge on problems in engineering science. Furthermore, the students have the ability to describe technical material by its microscopic and submicroscopic structure.

Organizational issues


The event will be held in accordance with the Corona rules currently in force at KIT. Status of 11.04.2022, the event will be held in presence. In any case, we still ask you to wear a nose and mouth covering. In the summer semester, the event will be held in German. The course (first lecture) will start on 26.04.2022.

Literature

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
7 COURSES

Course: Materials of Lightweight Construction [T-MACH-105211]

**7.142 Course: Materials of Lightweight Construction [T-MACH-105211]**

**Responsible:** Prof. Dr.-Ing. Peter Elsner
Dr.-Ing. Wilfried Liebig

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2174574 | Materials of Lightweight Construction | 2 SWS | Lecture / 🧩 | Liebig |

**Exams**

| ST 2022 | 76-T-MACH-105211 | Materials of Lightweight Construction | Liebig |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚑ On-Site, ✗ Cancelled

**Competence Certificate**

Oral exam, about 25 minutes

**Prerequisites**

none

**Recommendation**

Materials Science I/II

**Below you will find excerpts from events related to this course:**

<table>
<thead>
<tr>
<th>Materials of Lightweight Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2174574, SS 2022, 2 SWS, Language: German, Open in study portal</td>
</tr>
<tr>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Bachelor's Program Mechanical Engineering , Date: 20/09/2022
Module Handbook, valid from Winter Term 2022/23
Content
Introduction
Constructive, production-orientied and material aspects of lightweight construction
Aluminium-based alloys
Aluminium wrought alloys
Aluminium cast alloys
Magnesium-based alloys
Magnesium wrought alloys
Magnesium cast alloys
Titanium-based alloys
Titanium wrought alloys
Titanium cast alloys
High-strength steels
High-strength structural steels,
Heat-treatable steels, press-hardening and hardenable steels
Composites - mainly PMC
Matrices
Reinforcements
Basic mechanical principles of composites
Hybrid composites
Special materials for lightweight design
Beryllium alloys
Metallic Glasses
Applications
learning objectives:
The students are capable to name different lightweight materials and can describe their composition, properties and fields of application. They can describe the hardening mechanisms of lightweight materials and can transfer this knowledge to applied problems.

The students can apply basic mechanical models of composites and can depict differences in the mechanical properties depending on composition and structure. The students can describe the basic principle of hybrid material concepts and can judge their advantages in comparison to bulk materials. The students can name special materials for lightweight design and depict differences to conventional materials. The students have the ability to present applications for different lightweight materials and can balance reasons for their use.

requirements:
Werkstoffkunde I/II (recommended)
workload:
The workload for the lecture “Materials for Lightweight Construction” is 120 h per semester and consists of the presence during the lectures (24 h), preparation and rework time at home (48 h) and preparation time for the oral exam (48 h).

Examination:
Oral examination, Duration approx. 25 min

Literature
Litaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung
### Course: Materials Recycling and Sustainability [T-MACH-110937]

**Responsible:** Prof. Dr.-Ing. Peter Elsner  
Dr.-Ing. Wilfried Liebig

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2173520</td>
<td>Materials Recycling and Sustainability</td>
<td>Lecture / Blended</td>
<td>2 SWS</td>
<td>Liebig</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-110937</td>
<td>Materials Recycling and Sustainability</td>
<td>Lecture (V)</td>
<td>Liebig</td>
<td>Blended (On-Site/Online)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

oral exam (about 25 min.)

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Materials Recycling and Sustainability**

2173520, SS 2022, 2 SWS, Language: German, Open in study portal

**Lecture (V)**

Blended (On-Site/Online)

**Content**

The lecture series is organised in two main topics: On the one hand, fundamentals of sustainability are explained and it is shown how to tread more sustainable paths in materials science and mechanical engineering. On the other hand, separation and recycling processes for all common classes of materials are presented and discussed. It is shown how recycling fosters a holistic and sustainable perspective on material processing and use.

1. legal bases and historical background
2. climate change, ecology and material flows
3. sustainability in general
4. product responsibility, recyclable design and planned obsolescence
5. general and legal bases of recycling
6. material separation, sorting and processing
7. recycling of metals
8. recycling of polymers and composites
9. recycling of everyday materials
10. alternative materials and alternative design concepts
11. materials for renewable energy sources

**Organizational issues**

Die LV wird ab SS 2022 jeweils im SS stattfinden.

**Literature**

Skript wird in der Vorlesung ausgegeben
Course: Materials Science and Engineering III [T-MACH-105301]

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2173553</td>
<td>Materials Science and Engineering III</td>
<td>4</td>
<td>Lecture</td>
<td>Heilmaier, Guth</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2173554</td>
<td>Exercises in Materials Science and Engineering III</td>
<td>1</td>
<td>Practice</td>
<td>Heilmaier, Kauffmann</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105301</td>
<td>Materials Science III</td>
<td>1</td>
<td>Practice</td>
<td>Heilmaier, Guth</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
Oral exam, about 35 minutes

**Prerequisites**

T-MACH-110818 - Plasticity of Metals and Intermetallics has not been started

**Below you will find excerpts from events related to this course:**

**Materials Science and Engineering III**

<table>
<thead>
<tr>
<th>Code</th>
<th>WS 22/23</th>
<th>Language</th>
<th>Open in study portal</th>
<th>Blended (On-Site/Online)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2173553</td>
<td>4 SWS</td>
<td>German</td>
<td>Open in study portal</td>
<td></td>
</tr>
</tbody>
</table>

**Content**

Properties of pure iron; thermodynamic foundations of single-component and of binary systems; nucleation and growth; diffusion processes in crystalline iron; the phase diagram Fe-Fe3C; effects of alloying on Fe-C-alloys; nonequilibrium microstructures; multicomponent iron-based alloys; heat treatment technology; hardenability and hardenability tests.

**Learning objectives:**

The students are familiar with the thermodynamic foundations of phase transformations, the kinetics of phase transformations in the solid states (nucleation and growth phenomena), the mechanisms of microstructure formation and microstructure-property relationships and can apply them to metallic materials. They can assess the effects of heat treatments and of alloying on the microstructure and the properties of iron-based materials (steels in particular). The can select steels for structural applications in mechanical engineering and subject them to appropriate heat treatments.

**Requirements:**

Basic knowledge in materials science and engineering (Werkstoffkunde I/II)

**Workload:**

Regular attendance: 53 hours  
Self-study: 187 hours

**Literature**

Vorlesungsskript; Übungsaufgaben; Bhadeshia, H.K.D.H. & Honeycombe, R.W.K.  
Steels – Microstructure and Properties  
### 7.145 Course: Materials Science I & II [T-MACH-105145]

**Responsible:** Dr.-Ing. Jens Gibmeier  
Prof. Dr.-Ing. Martin Heilmaier  
Prof. Dr. Astrid Pundt

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102562 - Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>11</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2174560 | Materials Science and Engineering II for mach, phys | 3 SWS | Lecture / 🍃 | Heilmaier, Pundt |
| ST 2022 | 2174563 | Exercises in Materials Science and Engineering II for mach, phys | 1 SWS | Practice / 🍃 | Heilmaier, Kauffmann |
| ST 2022 | 3174015 | Materials Science and Engineering II (Lecture) | 3 SWS | Lecture / 🍃 | Gibmeier |
| ST 2022 | 3174026 | Materials Science and Engineering II (Tutorials) | 1 SWS | Practice / 🍃 | Gibmeier, Mitarbeiter |
| WT 22/23 | 2173550 | Materials Science and Engineering I for mach, phys | 4 SWS | Lecture / 🍃 | Pundt, Kauffmann |
| WT 22/23 | 2173552 | Exercises in Materials Science and Engineering I for mach, phys | 1 SWS | Practice / 🍃 | Pundt, Kauffmann |
| WT 22/23 | 3173008 | Materials Science and Engineering I (Lecture) | 4 SWS | Lecture / 🍃 | Gibmeier |
| WT 22/23 | 3173009 | Materials Science and Engineering I (Tutorial) | 1 SWS | Practice / 🍃 | Gibmeier |

**Exams**

| ST 2022 | 76-T-MACH-105145 | Materials Science I, II | Heilmaier, Pundt |
| ST 2022 | 76-T-MACH-105145-2 | Materials Science I, II | Heilmaier, Pundt |
| ST 2022 | 76-T-MACH-105145-English | Materials Science I & II (Exam in English) | Heilmaier, Gibmeier |
| ST 2022 | 76-T-MACH-105145-Re-English | Materials Science I & II (Re-exam in English) | Gibmeier, Heilmaier |
| ST 2022 | 76-T-MACH-105145-W | Materials Science I & II | Heilmaier, Pundt |

**Legend:** 🍃 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

**Competence Certificate**  
oral exam, about 25 minutes

**Prerequisites**  
Lab course must be finished successfully prior to the registration for the oral exam.

**Modeled Conditions**  
The following conditions have to be fulfilled:

1. The course T-MACH-105146 - Materials Science Lab Course must have been passed.
Contents

Topics:

- Ferrous materials
- Non-ferrous metals and alloys
- Engineering ceramics
- Glasses
- Polymers
- Composites

Learning Objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name representative materials for different material classes and can describe the differences.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to assess materials on base of the data obtained by these methods.

Requirements:

Materials Science and Engineering I

Workload:

regular attendance: 42 hours
self-study: 108 hours

Examination:

Combined with 'Materials Science and Engineering I'; oral; about 30 minutes

The successful participation in the lab course is obligatory for the admission to the examination.

Organizational issues

Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literature

Vorlesungsskript, Vorlesungsvideos, Übungsblätter, Übungsvideos

Weiterführende Informationen gibt es hier:

https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC117341509

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei im KIT-Netz erhältlich)

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei im KIT-Netz erhältlich)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften (frei zugänglich)
Content

Learning Objectives:
The students can apply the knowledge gained through the lecture as well as self-studies and transfer this knowledge to problems given. They can carry out calculations independently dealing with different subjects of materials science. Therefore, they are able to decide which formulas allow the calculation based on the question given. They are able to discuss aspects of materials science both quantitatively and qualitatively and can present these results orally.

Requirements:
Lecture on Materials Science and Engineering II

Organizational issues
Weitere Informationen finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literature
Vorlesungsskript, Vorlesungsvideos, Übungslätter, Übungsvideos
Weiterführende Informationen gibt es hier:
https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC117341509

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

http://www.ifw-dresden.de/institutes/imi/lectures/pwe

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
Content

Ferrous materials
Non-ferrous metals and alloys
Engineering ceramics
Glasses
Polymers
Composites

learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.
The students can name representative materials for different material classes and can describe the differences.
The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.
The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.
The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.
The students know about standard materials characterization methods and are able to asses materials on base of the data obtained by these methods.

requirements:
Materials Science and Engineering I

workload:
regular attendance: 42 hours
self-study: 108 hours

examination:
Combined with 'Materials Science and Engineering I'; oral; about 30 minutes
The successful participation in the lab course is obligatory for the admission to the examination.

Organizational issues
The event will be held in accordance with the Corona rules currently in force at KIT. In any case, we still ask you to wear a nose and mouth covering.

The course (first lecture) will start on 26.04.2022.

Literature
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering II (Tutorials)
3174026, SS 2022, 1 SWS, Language: English, Open in study portal

Practice (Ü)
Blended (On-Site/Online)

V

Content
Exemplary calculations

learning objectives:
The students can apply the knowledge gained through the lecture as well as self-studies and transfer this knowledge to problems given.
They can carry out calculations independantly dealing with different subjects of materials science. Therefore, they are able to decide which formulas allow the calculation based on the question given.
They are able to discuss aspects of materials science both quantitatively and qualitatively and can present these results oraly.

requirements:
Lecture Materials Science and Engineering II

workload:
Literature
see lecture notes

Materials Science and Engineering I for mach, phys
2173550, WS 22/23, 4 SWS, Language: German, Open in study portal
Lecture (V)  
Blended (On-Site/Online)

Content
Atomic structure and atomic bonds
Structures of crystalline solids
Defects in crystalline solids
Structure of amorphous and semi-crystalline solids
Alloys
Transport and transformation phenomena in the solid state
Microscopy methods
Characterization by means of X-rays, Neutrons and Electrons
Nondestructive testing of materials
Mechanical testing of materials

learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.
The students can describe the typical property profiles and can name applications for the most important engineering materials.
The students are able to describe standard materials characterization methods and can explain the evaluation of these methods. They can judge materials on base of the data obtained by these methods.

requirements:
None, Recommendations: None.

workload:
regular attendance: 53 hours
self-study: 157 hours

Literature
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Exercises in Materials Science and Engineering I for mach, phys
2173552, WS 22/23, 1 SWS, Language: German, Open in study portal
Practice (Ü)  
Blended (On-Site/Online)
Content

Examplary calculations

Learning objectives:
The students can apply the knowledge gained through the lecture as well as self-studies and transfer this knowledge to problems given.

They can carry out calculations independently dealing with different subjects of materials science. Therefore, they are able to decide which formulas allow the calculation based on the question given.

They are able to discuss aspects of materials science both quantitatively and qualitatively and can present these results orally.

Requirements:

Lecture Materials Science and Engineering I

Workload:

Regular attendance: 21 hrs, self-studies: 21 hrs.

Literature

Institut für Werkstoffkunde I: Vorlesungsskript

Materials Science and Engineering I (Lecture)

3173008, WS 22/23, 4 SWS, Language: English, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

Ferrous materials

Non-ferrous metals and alloys

Engineering ceramics

Glasses

Polymers

Composites

Learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name representative materials for different material classes and can describe the differences.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to assess materials on base of the data obtained by these methods.

Requirements:

Materials Science and Engineering I

Workload:

Regular attendance: 42 hours

Self-study: 108 hours

Examination:

Combined with 'Materials Science and Engineering I'; oral; about 30 minutes

The successful participation in the lab course is obligatory for the admission to the examination.

Organizational issues

-
Literature
Vorlesungsskript; Übungsaufgabenblätter;
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering I (Tutorial)
3173009, WS 22/23, 1 SWS, Language: English, Open in study portal

Content
Exemplary calculations
learning objectives:
The students can apply the knowledge gained through the lecture as well as self-studies and transfer this knowledge to problems given. They can carry out calculations independently dealing with different subjects of materials science. Therefore, they are able to decide which formulas allow the calculation based on the question given. They are able to discuss aspects of materials science both quantitatively and qualitatively and can present these results orally.
requirements:
Lecture Materials Science and Engineering II
workload:

Organizational issues
information please see entries under ‘lecture’
02.95 ID SR Raum 101

Literature
see lecture notes
7.146 Course: Materials Science Lab Course [T-MACH-105146]

**Responsible:**
Dr.-Ing. Jens Gibmeier  
Prof. Dr.-Ing. Martin Heilmaier  
Prof. Dr. Astrid Pundt

**Organisation:**
KIT Department of Mechanical Engineering

**Part of:**
M-MACH-102562 - Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>On-Site</th>
<th>Online</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2174597</td>
<td>Experimental Lab Course in Material Science</td>
<td>3</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 3174016</td>
<td>Materials Science and Engineering Lab Course</td>
<td>3</td>
<td>German</td>
<td></td>
<td></td>
<td>Heilmaier, Pundt</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>On-Site</th>
<th>Online</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105146</td>
<td>Materials Science, Lab Course</td>
<td></td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Prerequisites:**
none

**Annotation:**
The workload for the lab course Materials Science is 90 h in total and consists of the presence during the 10 experiments (one week half-time, 4 hours per day) as well as preparation and rework time at home.

**Below you will find excerpts from events related to this course:**

**Experimental Lab Course in Material Science**
2174597, SS 2022, 3 SWS, Language: German, Open in study portal

**Practical course (P)**
Blended (On-Site/Online)

**Content**
Performing and evaluating of laboratory experiments in the following topics:
- Mechanical testing of materials
- Nonmetallic materials
- Microstructure and properties
- Cyclic loading / fatigue
- Influence of manufacturing technique on materials

**Learning objectives:**
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name standard materials characterization methods and can describe the execution of the tests as well as the evaluation of the results. The students are able to assess materials on base of the data obtained by these methods.

The students are capable to select appropriate experiments to clarify problems regarding the materials behaviour. They can describe the experimental procedures and can carry out experiments. They can derive material properties from data gained in experiments. They can interpret these properties regarding microstructure-property-relations.

**Requirements:**
Materials Science and Engineering I & II

**Workload:**
regular attendance: 22 hours
self-study: 68 hours
Organizational issues
Blockveranstaltung. Infos durch Aushang am IAM-WK und in der VL WK II. Anmeldung erforderlich.

Literature
Praktikumsskriptum
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering Lab Course
3174016, SS 2022, 3 SWS, Language: English, Open in study portal

Practical course (P)
Blended (On-Site/Online)

Content
Performing and evaluating of laboratory experiments in the following topics:

Mechanical testing of materials
Nonmetallic materials
Microstructure and properties
Cyclic loading / fatigue
Influence of manufacturing technique on materials

learning objectives:
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name standard materials characterization methods and can describe the execution of the tests as well as the evaluation of the results. The students are able to asses materials on base of the data obtained by these methods.

The students are capable to select appropriate experiments to clarify problems regarding the materials behaviour. They can describe the experimental procedures and can carry out experiments. They can derive material properties from data gained in experiments. They can interpret these properties regarding microstructure-propety-relations.

requirements:
Materials Science and Engineering I & II

workload:
regular attendance: 22 hours
self-study: 68 hours

Organizational issues
Registration required. Note announcements (MSE lecture and IAM-WK bulletin board)

Literature
Praktikumsskriptum
Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
7.147 Course: Mathematical Methods in Continuum Mechanics [T-MACH-110375]

**Responsible:** Prof. Dr.-Ing. Thomas Böhlke

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161254</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-110375</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

**Competence Certificate**

written exam (90 min). Additives as announced.

**Prerequisites**

Passing the Tutorial to Mathematical Methods of Continuum Mechanics (T-MACH-110376)

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-110376 - Tutorial Mathematical Methods in Continuum Mechanics must have been passed.

**Below you will find excerpts from events related to this course:**

**V Mathematical Methods in Continuum Mechanics**

2161254, WS 22/23, 2 SWS, Language: German, [Open in study portal]

**Content**

Tensor algebra

- vectors; basis transformation; dyadic product; tensors of 2nd order
- properties of 2nd order tensors: symmetry, anti-symmetry, orthogonality etc.
- eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order
- tensor algebra in curvilinear coordinate systems
- tensor analysis in curvilinear coordinate systems
- Differentiation of tensor functions

Application of tensor calculus in strength of materials

- kinematics of infinitesimal and finite deformations
- transport theorem, balance equations, stress tensor
- constitutive equations for solids and fluids
- Formulation of initial-boundary-value problems

**Literature**

Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
### 7.148 Course: Mathematical Methods in Continuum Mechanics [T-MACH-110836]

**Responsible:** Prof. Dr.-Ing. Thomas Böhlke  

**Organisation:** Part of: M-MACH-102582 - Major Field: Continuum Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language: German</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161254</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>2 SWS</td>
<td>Lecture / Blended (On-Site/Online) Böhlke</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language: German</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-110836</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>Böhlke</td>
<td></td>
</tr>
</tbody>
</table>

**Competition Certificate**

written exam (90 min). Additives as announced.

There are no prerequisites within the Major Field 13 (Continuum Mechanics)

**Annotation**

This brick can only be chosen within Major Field 13 of Bachelor studies Mechanical Engineering. There are no prerequisites for the exam.

**Below you will find excerpts from events related to this course:**

**Mathematical Methods in Continuum Mechanics**

- Lecture (V)  
  - Blended (On-Site/Online)

**Content**

Tensor algebra

- vectors; basis transformation; dyadic product; tensors of 2nd order  
- properties of 2nd order tensors; symmetry, anti-symmetry, orthogonality etc.  
- eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order  
- tensor algebra in curvilinear coordinate systems  
- tensor analysis in curvilinear coordinate systems  
- Differentiation of tensor functions

Application of tensor calculus in strength of materials

- kinematics of infinitesimal and finite deformations  
- transport theorem, balance equations, stress tensor  
- constitutive equations for solids and fluids  
- Formulation of initial-boundary-value problems

**Literature**

Vorlesungsskript

Schade, H: Strömungslehre, de Gruyter 2013
7 COURSES

7.149 Course: Mathematical Methods in Dynamics [T-MACH-105293]

**Responsible:** Prof. Dr.-Ing. Carsten Proppe

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102746 - Compulsory Elective Module
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Mathematical Methods in Dynamics</td>
<td>Proppe</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Mathematical Methods in Dynamics</td>
<td>Proppe</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Übungen zu Mathematische Methoden der Dynamik</td>
<td>Proppe, Bitner</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

**Legend:**  Online,  Blended (On-Site/Online),  On-Site,  Cancelled

**Competence Certificate**

written examination, 180 min.

**Prerequisites**

none

_Below you will find excerpts from events related to this course:_

**V Mathematical Methods in Dynamics**

2161206, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

**Content**

The students know precisely the mathematical methods of dynamics. They are able to use the basic mathematical methods for modelling the dynamical behaviour of elastic and rigid bodies. The students also have a basic understanding of the description of kinematics and kinetics of bodies. They also master the alternative formulations based on weak formulations and variational methods and the approximate solution methods for numerical calculations of the moving behaviour of elastic bodies.

Dynamics of continua:
- Concept of continuum, geometry of continua, kinematics and kinetics of continua

Variational principles:
- Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
- Methods of weighted residuals, method of Ritz
### Literature

Vorlesungsskript (erhältlich im Internet)

- J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994
- M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

### Content

**Mathematical Methods in Dynamics**

2161206, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**On-Site**

**Lecture (V)**

Dynamics of continua:
- Concept of continuum, geometry of continua, kinematics and kinetics of continua

Dynamics of rigid bodies:
- Kinematics and kinetics of rigid bodies

Variational principles:
- Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
- Methods of weighted residuals, method of Ritz

Applications

### Literature

Vorlesungsskript (erhältlich im Internet)

- J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994
- M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

### Übungen zu Mathematische Methoden der Dynamik

2161207, WS 22/23, 1 SWS, Language: German, [Open in study portal](#)

**On-Site**

**Practice (Ü)**

Exercises related to the lecture
7.150 Course: Mathematical Methods in Fluid Mechanics [T-MACH-105295]

**Responsible:** Prof. Dr.-Ing. Bettina Frohnapfel  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module

**Type**  
Written examination

**Credits**  
6

**Grading scale**  
Grade to a third

**Recurrence**  
Each summer term

**Version**  
1

### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2154432</td>
<td>4 SWS</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Each summer term</td>
</tr>
<tr>
<td>ST 2022 2154433</td>
<td>1 SWS</td>
<td>Tutorial in Mathematical Methods of Fluid Mechanics</td>
<td>Each summer term</td>
</tr>
<tr>
<td>ST 2022 2154540</td>
<td>4 SWS</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

### Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Title</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Each summer term</td>
</tr>
<tr>
<td>ST 2022 76-T-MACH-105295 (engl.)</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

### Competence Certificate

written examination - 3 hours

### Prerequisites

none

### Recommendation

Basic Knowledge about Fluid Mechanics

### Below you will find excerpts from events related to this course:

#### Content

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Potential flow theory
- Creeping flows
- Lubrication theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.
Literature

Content
The exercises will practise the lecture topics:

- Curvilinear coordinates and tensor calculus
- Potential flow theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

Literature

Content
The students can simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Potential flow theory
- Creeping flows
- Lubrication theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

The students can simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.
7.151 Course: Mathematical Methods of Vibration Theory [T-MACH-105294]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module
M-MACH-102820 - Major Field: Mechatronics
M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Language: German</th>
<th>Practice</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2162241</td>
<td>Mathematical methods of vibration theory</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Open in study portal</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2162242</td>
<td>Mathematical methods of vibration theory (Tutorial)</td>
<td>2</td>
<td>Practice / 📚</td>
<td>Open in study portal</td>
<td>Fidlin, Schröders</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Language: German</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Open in study portal</td>
<td>Fidlin, Seemann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Open in study portal</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 📚 Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written examination, 180 min.

Prerequisites
none

Recommendation
Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

Mathematical methods of vibration theory

2162241, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content
Linear, time-invariant, ordinary single differential equations: homogeneous solution; harmonic, periodic and non-periodic excitations; Duhamel's integral; Fourier and Laplace transform; introduction into the theory of distributions; Systems of ordinary differential equations: matrix notation, eigenvalue theory, fundamental matrix, forced vibrations via modal expansion and transition matrix; Introduction into the dynamic stability theory; Partial differential equations: solution in product form, eigenvalue theory, modal expansion using Ritz series; Variational methods, Hamilton's principle, boundary value problems representing vibrating continua, Perturbation methods

Literature
Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik

Mathematical methods of vibration theory (Tutorial)

2162242, SS 2022, 2 SWS, Language: German, Open in study portal

Practice (Ü)
Blended (On-Site/Online)

Content
Seven tutorials with examples of the contents of the course

Literature
Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
7.152 Course: Measurement II [T-MACH-105335]

**Responsible:** Prof. Dr.-Ing. Christoph Stiller

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102817 - Major Field: Information Technology
- M-MACH-102820 - Major Field: Mechatronics

**Type**
- Written examination

**Credits**
- 4

**Grading scale**
- Grade to a third

**Recurrence**
- Each summer term

**Version**
- 1

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Measurement II</td>
<td>Yes</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Measurement II</td>
<td>Yes</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: ![Online](https://example.com), ![Blended (On-Site/Online)](https://example.com), ![On-Site](https://example.com), ![Cancelled](https://example.com)

**Competence Certificate**
- written exam
- 60 min.
- 2 DIN A4 Self-created formular sheets allowed

**Prerequisites**
- none

**Below you will find excerpts from events related to this course:**

**Measurement II**

| Measurement II | 2138326 | SS 2022, 2 SWS, Language: German, Open in study portal |

**Lecture (V)**
- On-Site

**Content**

Lerninhalt (EN)
1. Amplifiers
2. Digital technology
3. Stochastic modeling for measurement applications
4. Estimation
5. Kalman Filter
6. Environmental perception

Lernziele (EN):
The capabilities of modern sensor technology pave the way for novel applications in engineering. Especially digital measurement techniques may be used even in very complex environments and thus have strong impact on technological progress. Stochastic models of measurement processes form the basis for meaningful information processing and provide a valuable tool for engineering. This interdisciplinary lecture addresses students in mechanical engineering and related subjects. The lecture gives an overview of digital technology and stochastics. These areas form the basics of estimation methods that can be embedded elegantly in the theory of state observers. Applications in signal processing for modern environmental perception (video, Lidar, Radar) illustrate the discussed subjects.

**Nachweis:**
- Written exam
- 60 minutes
- Individual sheet of formulas

**Arbeitsaufwand:**
- 120 hours
Literature
Skript und Foliensatz zur Veranstaltung werden als kostenlose pdf-Dateien bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.

Inderweise haben Sie zuvor 'Grundlagen der Mess- und Regelungstechnik' gehört oder verfügen aus einer Vorlesung anderer Fakultäten über grundlegende Kenntnisse der Mess- und Regelungstechnik und der Systemtheorie.
### Course: Mechanical Design I and II [T-MACH-105286]

**Responsible:** Prof. Dr.-Ing. Sven Matthiesen  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102573 - Mechanical Design

#### Type
- Written examination

#### Credits
- 5

#### Grading scale
- Grade to a third

#### Recurrence
- Each winter term

#### Version
- 3

---

**Events**

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2146178 Mechanical Design II 2 SWS Lecture / On-Site</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>ST 2022 3146017 Mechanical Design II Lecture 2 SWS Lecture / On-Site</td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2145178 Mechanical Design I 2 SWS Lecture / On-Site</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 3145186 Mechanical Design I (Lecture) 2 SWS Lecture / On-Site</td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105286 Mechanical Design I &amp; II</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
<tr>
<td>ST 2022 76T-MACH-105286_EN Mechanical Design I &amp; II (English)</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

**Prerequisites**

Admission to the exam only with successful completion of the T-MACH-105282 - Mechanical Design I, prerequisites and T-MACH-105283 - Mechanical Design II, prerequisites.

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-105282 - Mechanical Design I, Prerequisites must have been passed.
2. The course T-MACH-105283 - Mechanical Design II, Prerequisites must have been passed.

**Legend:** Online, Blended (On-Site/Online), On-Site, Cancelled

**Competence Certificate**

written exam, graded, duration: 90 min

**Below you will find excerpts from events related to this course:**

### Mechanical Design II

2146178, SS 2022, 2 SWS, Language: German, Open in study portal

**Content**

**Lecture content:**

- Bearings
- Sealings
- Design
- Bolted Connections

**Prerequisites**

Concomitant to the lecture 2 online tests were carried out and the knowledge from the lecture will be tested. The knowledge from mechanical design I and II will further be controlled with a design and a CAD task.

Further information's will be announced at Ilias and at the beginning of the lecture mechanical design II.
Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Vorlesungsumdruck:

Über die ILIAS-Plattform des RZ werden alle relevanten Inhalte (Folien zu Vorlesung und Saalübung, sowie Übungsblätter) entsprechend den Vorlesungsblöcken gebündelt zur Verfügung gestellt.

Mechanical Design II Lecture
3146017, SS 2022, 2 SWS, Language: English, Open in study portal

Content
Bearings
Sealings
Design
Bolted Connections
Tutorials take place in concomitant to the lectures.

Prerequisites

Concomitant to the lecture 2 online tests were carried out and the knowledge from the lecture will be tested. The knowledge from mechanical design I and II will further be controlled with a design and a CAD task.

Further information's will be announced at Ilias and at the beginning of the lecture mechanical design II.

Organizational issues

Lecture takes place on Do, 15:45 - 17:15, 11.10 in Engelbert-Arnold-Hörsaal (EAS)

Mechanical Design I

2145178, WS 22/23, 2 SWS, Language: German, Open in study portal

Literature

Vorlesungsumdruck:

Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
Literatur

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
### 7.154 Course: Mechanical Design I, Prerequisites [T-MACH-105282]

**Responsible:** Prof. Dr.-Ing. Sven Matthiesen  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2145185</th>
<th>Tutorials Mechanical Design I</th>
<th>1 SWS</th>
<th>Practice / 🗣</th>
<th>Albers, Matthiesen, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3145187</td>
<td>Mechanical Design I (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

**Competence Certificate**  
Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation. Furthermore an online test is carried out.

**Prerequisites**  
none

Below you will find excerpts from events related to this course:

**Tutorials Mechanical Design I**  
2145185, WS 22/23, 1 SWS, Language: German, Open in study portal  

**Mechanical Design I (Tutorial)**  
3145187, WS 22/23, 2 SWS, Language: English, Open in study portal

**Literature**

**Konstruktionselemente des Maschinenbaus - 1 und 2**  
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;  

**Grundlagen von Maschinenelementen für Antriebsaufgaben;**  
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
7.155 Course: Mechanical Design II, Prerequisites [T-MACH-105283]

**Responsible:** Prof. Dr.-Ing. Sven Matthiesen

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorials</td>
<td>2146185</td>
<td>Mechanical Design II</td>
<td>2 SWS</td>
<td>Practice</td>
<td>On-Site</td>
<td></td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>Tutorials</td>
<td>3146018</td>
<td>Mechanical Design II Tutorials</td>
<td>2 SWS</td>
<td>Practice</td>
<td>On-Site</td>
<td></td>
<td>Albers, Mitarbeiter</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Albers, Matthiesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Design II</td>
<td>76-T-MACH-105283</td>
<td>Mechanical Design II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:**  
- Online,  
- Blended (On-Site/Online),  
- On-Site,  
- Cancelled

**Competence Certificate**

Successful completion of a design task is required to pass the prerequisite.

**Prerequisites**

None

Below you will find excerpts from events related to this course:

**Tutorials Mechanical Design II**

2146185, SS 2022, 2 SWS, Language: German, Open in study portal

**Content**

- Bearings
- Sealings
- Design
- Bolted connections

Tutorials: 10.5 h  
Prerequisites and preparation to exam: 55 h

**Literature**

- *Konstruktionselemente des Maschinenbaus* - 1 und 2  
  Grundlagen der Berechnung und Gestaltung von Maschinenelementen;  

- *Grundlagen von Maschinenelementen für Antriebsaufgaben*;  
  Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

**CAD:**

- Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

**Mechanical Design II Tutorials**

3146018, SS 2022, 2 SWS, Language: English, Open in study portal

**Content**

- Bearings
- Sealings
- Design
- Bolted Connections
Organizational issues
Tutorials take place on Fr, 11:30 - 13:00, in 30.35 Hochspannungstechnik-Hörsaal (HSI)

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
7.156 Course: Mechanical Design III and IV [T-MACH-104810]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>11</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 76-T-MACH-104810 | Mechanical Design III & IV | Albers, Matthiesen |
| ST 2022 | 76-T-MACH-104810_EN | Mechanical Design III & IV (english) | Albers, Matthiesen |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Written exam consisting of:

- written part duration 60 min and
- design part duration 180 min

Sum: 240 min

Prerequisites

Admission to the exam only with successful completion of the Mechanical Design III, Tutorial and Mechanical Design IV, Tutorial.

Modeled Conditions

You have to fulfill one of 2 conditions:

1. The course T-MACH-110955 - Mechanical Design III, Tutorial must have been passed.
2. The course T-MACH-110956 - Mechanical Design IV, Tutorial must have been passed.

Below you will find excerpts from events related to this course:

Mechanical Design III

2145151, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site
Literatur

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

V   Mechanical Design III (Lecture)
3145016, WS 22/23, 2 SWS, Language: English, Open in study portal

Literatur

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
### 7.157 Course: Mechanical Design III, Tutorial [T-MACH-110955]

**Responsible:** Prof. Dr.-Ing. Sven Matthiesen  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Code</th>
<th>Event Description</th>
<th>Credits</th>
<th>Type</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145153</td>
<td>Tutorials Mechanical Design III</td>
<td>2 SWS</td>
<td>Practice / On-Site</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>2145154</td>
<td>Mechanical Design III Workshop</td>
<td>1 SWS</td>
<td>Practical course / On-Site</td>
<td>Albers, Matthiesen, Albers Assistenten</td>
<td></td>
</tr>
<tr>
<td>3145017</td>
<td>Mechanical Design III (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / On-Site</td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
<tr>
<td>3145018</td>
<td>Mechanical Design III (Workshop)</td>
<td>1 SWS</td>
<td>/ On-Site</td>
<td>Albers, Burkardt</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single CAD-workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

**Prerequisites**
None

Below you will find excerpts from events related to this course:

#### Tutorials Mechanical Design III

- **Code:** 2145153, **WS 22/23**, 2 SWS, **Language:** German, **Open in study portal**

**Literature**

**Konstruktionselemente des Maschinenbaus - 1 und 2**  
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;  

**Grundlagen von Maschinenelementen für Antriebsaufgaben**;  
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

**CAD:**

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

#### Mechanical Design III Workshop

- **Code:** 2145154, **WS 22/23**, 1 SWS, **Open in study portal**

**Literature**

**Konstruktionselemente des Maschinenbaus - 1 und 2**  
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;  

**Grundlagen von Maschinenelementen für Antriebsaufgaben**;  
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

**CAD:**

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
**Course: Mechanical Design III, Tutorial [T-MACH-110955]**

### Mechanical Design III (Tutorial)

- **Code:** 3145017, **WS 22/23**, 2 SWS, Language: English, [Open in study portal](#)

**Practice (Ü) On-Site**

**Literature**

- *Konstruktionselemente des Maschinenbaus* - 1 und 2
  - Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

- *Grundlagen von Maschinenelementen für Antriebsaufgaben*;
  - Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

**CAD:**

- Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

### Mechanical Design III (Workshop)

- **Code:** 3145018, **WS 22/23**, 1 SWS, Language: English, [Open in study portal](#)

**On-Site**

**Organizational issues**

Termine siehe Lehrveranstaltung 2145154

**Literature**

- *Konstruktionselemente des Maschinenbaus* - 1 und 2
  - Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

- *Grundlagen von Maschinenelementen für Antriebsaufgaben*;
  - Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

**CAD:**

- Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Course: Mechanical Design IV, Tutorial [T-MACH-110956]

**Responsible:** Prof. Dr.-Ing. Sven Matthiesen

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102573 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2146184</td>
<td>Tutorials Mechanical Design IV</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2146187</td>
<td>Workshop 'Mechanical Design IV'</td>
<td>1 SWS</td>
<td>On-Site</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2022</td>
<td>3146021</td>
<td>Mechanical Design IV Tutorials</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
<td>Albers, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2022</td>
<td>3146022</td>
<td>Mechanical Design IV Workshop</td>
<td>1 SWS</td>
<td>On-Site</td>
<td>Albers, Mitarbeiter</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105285</td>
<td>Mechanical Design IV, tutorial</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ☠ Cancelled

**Competence Certificate**

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

**Prerequisites**

None

*Below you will find excerpts from events related to this course:*

**Mechanical Design IV Workshop**

3146022, SS 2022, 1 SWS, Language: English, Open in study portal

**Organizational issues**

Registration required, information on the IPEK website.

**Literature**

- Konstruktionslemente des Maschinenbaus - 1 und 2
  - Grundlagen der Berechnung und Gestaltung von Maschinenlementen;

- Grundlagen von Maschinenelementen für Antriebsaufgaben;
  - Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

**CAD:**

- Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
### 7.159 Course: Mechanics and Strength of Polymers [T-MACH-105333]

**Responsible:** Hon.-Prof. Dr. Bernd-Steffen von Bernstorff  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2173580 | Mechanics and Strengths of Polymers | 2 SWS | Lecture / 🗣 von Bernstorff |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**  
Oral exam, about 25 minutes

**Prerequisites**  
none

**Recommendation**  
Basic knowledge in materials science (e.g. lecture materials science I and II)

**Below you will find excerpts from events related to this course:**

**Content**  
Molecular structure and morphology of polymers, temperature- and time dependency of mechanical behavior, viscoelasticity, time/temperature- superposition principle, yielding, crazing and fracture of polymers, failure criterions, impact and dynamic loading, corresponding principle, tough/brittle-transition, introduction to the principles of fiber reinforcement and multiple cracking in composites

**learning objectives:**  
The students are prepared to

- repeat the calculus on strength and design of engineering parts exposed to complex loadings,  
- estimate the influence of time and temperature on the strength of polymeric materials,  
- relate the strength of materials to their molecular structure, morphology and processing parameters and  
- derive failure mechanisms for homogenuous polymers and composite materials therefrom.

**requirements:**  
Basic knowledge in materials science (e.g. lecture materials science I and II)

**workload:**  
The workload for the lecture Mechanics and Strengths of Polymers is 120 h per semester and consists of the presence during the lecture (28 h) as well as preparation and rework time at home (92 h).

**Organizational issues**  
berndvonbernstorff@t-online.de

**Literature**  
Literaturliste, spezielle Unterlagen und ein Teilmanuskript werden in der Vorlesung ausgegeben
7 COURSES

Course: Mechanics in Microtechnology [T-MACH-105334]

7.160 Course: Mechanics in Microtechnology [T-MACH-105334]

Responsible: Prof. Dr. Christian Greiner
Dr. Patric Gruber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102820 - Major Field: Mechatronics

Type
Oral examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

Events

WT 22/23
2181710
Mechanics in Microtechnology
2 SWS
Lecture / Gruber, Greiner

Exams

ST 2022
76-T-MACH-105334
Mechanics in Microtechnology
Gruber, Greiner

Competence Certificate
Oral examination, ca. 30 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Mechanics in Microtechnology
2181710, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
1. Introduction: Application and Processing of Microsystems
2. Scaling Effects
3. Fundamentals: Stress and Strain, (anisotropic) Hooke's Law
4. Fundamentals: Mechanics of Beams and Membranes
5. Thin Film Mechanics: Origin and Role of Mechanical Stresses
6. Characterization of Mechanical Properties of Thin Films and Small Structures: Measurement of Stresses and Mechnical Parameters such as Young's Modulus and Yield Strength; Thin Film Adhesion and Stiction
7. Transduction: Piezo-resistivity, Piezo-electric Effect, Elektrostatics,...
8. Aktuation: Inverse Piezo-electric Effect, Shape Memory, Elektromagnetic Actuation,...

The students know and understand size and scaling effects in micro- and nanosystems. They understand the impact of mechanical phenomena in small dimensions. Based on this they can judge how they determine material processing as well as working principles and design of microsensors and microactuators.

regular attendance: 22,5 hours
self-study: 97,5 hours
oral exam ca. 30 minutes

Literature
Foliens,
2. L.B. Freund and S. Suresh: "Thin Film Materials"
7 COURSES

Course: Metallographic Lab Class [T-MACH-105447]

T 7.161 Course: Metallographic Lab Class [T-MACH-105447]

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier
Dr.-Ing. Fabian Mühl

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2175590</td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Practical course /**

Prof. Heilmaier, Dr. Kauffmann

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2175590</td>
<td>Practical course /</td>
<td>3 SWS</td>
<td>pass/fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Practical course /**

Dr. Kauffmann

### Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105447</td>
<td>Metallographic Lab Class</td>
<td>4</td>
<td>pass/fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Prof. Heilmaier, Dr. Kauffmann**

### Competence Certificate

Colloquium for every experiment, about 60 minutes, protocol

### Prerequisites

M-MACH-102562 - Materials Science must be passed.

### Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-MACH-102562 - Materials Science must have been passed.

### Below you will find excerpts from events related to this course:

**Metallographic Lab Class**

2175590, SS 2022, 3 SWS, Language: German, Open in study portal

**Practical course (P)**

On-Site

**Content**

**Organizational issues**


Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php
Course: Metallographic Lab Class [T-MACH-105447]

**Content**

The lab course deals with the practical application of metallographic procedures, e.g. starting from sample extraction to light optical (LOM) and scanning electron microscopy (SEM). The preparation of metallographic samples takes up to two lab days. LOM and SEM analyses are performed on another two days. All results are carefully registered by the students and discussed in a separate session. Finally, the students can independently apply their theoretical and practical knowledge by the preparation and analysis of industrial relevant metallic materials. The content of the lab course will be documented in the form of individual protocols by the students.

Before starting with the lab course, the students need to prepare the fundamentals that are tested in an online test. Lecture notes as starting point are provided.

**Learning objectives:**

The students can perform standard metallographic preparation routines as well as qualitative and quantitative microstructure analysis. The students are able to interpret microstructures and the correlations of microstructural constituent and processing and properties of metallic materials.

**Prerequisites:**

Materials Science and Engineering I and II or Materials Physics und Metals

**Arbeitsaufwand:**

- **on-site:** 25 h
- **private studies:** 95 h

**Organizational issues**


Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

---

**Literature**

**Praktikumsskript**

Weiterführende Informationen gibt es hier:

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
Literatur
Praktikumsskript
Weiterführende Informationen gibt es hier:
http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)
https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften
http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810
http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656
http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X
http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)
http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)
http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)
http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
7.162 Course: Microenergy Technologies [T-MACH-105557]

**Responsible:** Prof. Dr. Manfred Kohl

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102816 - Major Field: Fundamentals of Energy Technology
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code/Desc</th>
<th>SWS</th>
<th>Language</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2142897</td>
<td>Microenergy Technologies</td>
<td>2 SWS</td>
<td>English</td>
<td>Lecture / Blended (On-Site/Online) Kohl</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code/Desc</th>
<th>SWS</th>
<th>Language</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>2 SWS</td>
<td>English</td>
<td>Lecture Blended (On-Site/Online) Kohl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

**Competence Certificate**

Oral examination (30 Min.)

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Microenergy Technologies**

2142897, SS 2022, 2 SWS, Language: English, Open in study portal

**Lecture (V) Blended (On-Site/Online)**

**Content**

- Basic physical principles of energy conversion
- Layout and design optimization
- Technologies
- Selected devices
- Applications

The lecture includes amongst others the following topics:

- Micro energy harvesting of vibrations
- Thermal micro energy harvesting
- Microtechnical applications of energy harvesting
- Heat pumps in micro technology
- Micro cooling

**Literature**

- Folienskript "Micro Energy Technologies"
### 7.163 Course: Modelling and Simulation [T-MACH-100300]

**Responsible:** Prof. Dr. Peter Gumbsch  
Prof. Dr. Britta Nestler  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2183703</td>
<td>Modelling and Simulation</td>
<td>2+1</td>
<td>Lecture / Practice ( L)</td>
<td>Nestler, August</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2183703</td>
<td>Numerical methods and simulation techniques</td>
<td>3</td>
<td>Lecture / Practice ( L)</td>
<td>Nestler, August</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>Lecture / Practice ( L)</td>
<td>Nestler</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>Lecture / Practice ( L)</td>
<td>Nestler, August</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Successful participation in the computer internship (ungraded) and written exam, 90 min (graded)

**Prerequisites**

none

**Recommendation**

preliminary knowledge in mathematics, physics and materials science

**Below you will find excerpts from events related to this course:**

**Modelling and Simulation**

2183703, SS 2022, 2+1 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)  
Online
Content

The course gives an introduction to modelling and simulation techniques. The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises

The student can

• explain the basic algorithms and numerical methods which are beside other applications relevant for materials simulations.
• describe and apply numerical solution methods for partial differential equations and dynamical systems
• apply numerical methods to solve heat and mass diffusion problems which can also be used to model microstructure formation processes
• has experiences in how to implement and program the introduced numerical methods from an integrated computer lab.

preliminary knowlegde in mathematics, physics and materials science recommended

regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours

We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.

written examination: 90 minutes

Organizational issues

Die Termine für die Übungen werden in der Vorlesung und im Ilias bekannt gegeben.

Literature


Numerical methods and simulation techniques

2183703, WS 22/23, 3 SWS, Language: German, Open in study portal

Content

The course gives an introduction to modelling and simulation techniques. The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises

The student can

• explain the basic algorithms and numerical methods which are beside other applications relevant for materials simulations.
• describe and apply numerical solution methods for partial differential equations and dynamical systems
• apply numerical methods to solve heat and mass diffusion problems which can also be used to model microstructure formation processes
• has experiences in how to implement and program the introduced numerical methods from an integrated computer lab.

preliminary knowlegde in mathematics, physics and materials science recommended

regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours

We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.

written examination: 90 minutes

Organizational issues

Termine für Rechnerübungen werden in der Vorlesung bekannt gegeben!
Literature

7.164 Course: Modelling of Microstructures [T-MACH-105303]

**Responsible:** Dr. Anastasia August  
Prof. Dr. Britta Nestler

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102746 - Compulsory Elective Module  
M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2183702</td>
<td>Modelling of Microstructures</td>
<td>3</td>
<td>Lecture / Practice</td>
<td>August, Nestler</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td></td>
<td></td>
<td>August, Nestler, Weygand</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td></td>
<td></td>
<td>August, Weygand, Nestler</td>
</tr>
</tbody>
</table>

**Legend:**  
ッチ Online,  
🧩 Blended (On-Site/Online),  
🗣 On-Site,  
🗙 Cancelled

**Competence Certificate**

oral exam 30 min

**Prerequisites**

none

**Recommendation**

materials science  
fundamental mathematics

---

Below you will find excerpts from events related to this course:

**Modelling of Microstructures**

2183702, WS 22/23, 3 SWS, Language: German, [Open in study portal](#)
Content

- Brief Introduction in thermodynamics
- Statistical interpretation of entropy
- Gibbs free energy and phase diagrams
- Free energy functional
- Phasefield equation
- Gibbs-Thomson-equation
- Driving forces
- Grand chemical potential functional and the evolution equations
- For compare: Free energy functional with driving forces

The student can

- explain the thermodynamic and statistical foundations for liquid-solid and solid-solid phase transition processes and apply them to construct phase diagrams.
- describe the specific characteristics of dendritic, eutectic and peritectic microstructures.
- explain the mechanisms of grain and phase boundary motion induced by external fields
- use the phase-field method for simulation of microstructure formation processes using modeling approaches and challenges of current research
- has experiences in computing and conduction simulations of microstructure formation from an integrated computer lab.

knowledge in materials science and in fundamental mathematics recommended

regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours

We regularly hand out exercise sheets. The individual solutions will be corrected.

oral exam ca. 30 min

Literature

4. Gaskell, D.R., Introduction to the thermodynamics of materials
5. Übungsblätter
7.165 Course: Modern Control Concepts I [T-MACH-105539]

Responsibility: apl. Prof. Dr. Lutz Groell
apl. Prof. Dr. Jörg Matthes

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 2105024 | Modern Control Concepts I | 2 SWS | Lecture / 🧩 | Matthes, Groell |
| ST 2022 | 2106020 | Tutorial on Modern Control Concepts I | 2 SWS | Practice / 🖥 | Matthes |

Exams

| ST 2022 | 76-T-MACH-105539 | Modern Control Concepts I | Matthes |

Competence Certificate

Written exam (Duration: 1 h)

Prerequisites

none

Below you will find excerpts from events related to this course:

V Modern Control Concepts I

2105024, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

Learning Content:

1. Introduction (system classes, nomenclature)
2. Equilibria
3. Linearization (software based, Hartman-Grobman-Theorem)
4. Parameter identification of linear dynamic models (SISO+MIMO)
5. PID-controller (realization, design-hints, Anti-Windup-mechanisms)
6. Concept of 2DOF-Controllers (structure, reference signal design)
7. State space (geometric view)
8. Controller with state feedback and integrator expansion
   (LQ-design, Eigenvalue placement, decoupling design)
9. Observer (LQG-design, disturbance observer, reduced observer)

Recommendations:

Attendance of the following lectures is recommended:

- Grundlagen der Mess- und Regelungstechnik

Alternatively: Comparable courses of the faculty of electrical engineering

Literature


V Tutorial on Modern Control Concepts I

2106020, SS 2022, 2 SWS, Language: German, Open in study portal

Practice (Ü)
Online

Bachelor's Program Mechanical Engineering, Date: 20/09/2022
Module Handbook, valid from Winter Term 2022/23
Literature

Course: Novel Actuators and Sensors [T-MACH-102152]

Responsible: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102812 - Major Field: Powertrain Systems
M-MACH-102820 - Major Field: Mechatronics

Type: Written examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 3

Events
- WT 22/23 2141865 Novel actuators and sensors 2 SWS Lecture / Blended Kohl, Sommer

Exams
- WT 22/23 76-T-MACH-102152 Novel Actuators and Sensors Kohl, Sommer

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written exam, 60 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Novel actuators and sensors
2141865, WS 22/23, 2 SWS, Language: German, Open in study portal

Literature
- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
**7.167 Course: Numerical Fluid Mechanics [T-MACH-105338]**

**Responsible:** Dr.-Ing. Davide Gatti  
Dr.-Ing. Franco Magagnato

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102816 - Major Field: Fundamentals of Energy Technology  
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2153441</td>
<td>Numerical Fluid Mechanics</td>
<td>4</td>
<td>Lecture / Practice (ODULE)</td>
<td>Gatti, Frede</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76T-Mach-105338</td>
<td>Numerical Fluid Mechanics</td>
<td>4</td>
<td></td>
<td>Gatti, Frohnapfel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76T-Mach-105338</td>
<td>Numerical Fluid Mechanics</td>
<td>4</td>
<td></td>
<td>Gatti, Frohnapfel</td>
</tr>
</tbody>
</table>

**Competence Certificate**

oral exam - 30 minutes

**Prerequisites**

none

*Below you will find excerpts from events related to this course:*

**Numerical Fluid Mechanics**

2153441, WS 22/23, 4 SWS, Language: German, Open in study portal  
Lecture / Practice (VÜ)  
Blended (On-Site/Online)

**Content**

The course covers the following topics:

1. basic equations of computational fluid dynamics  
2. main discretization methods for fluid mechanics problems, with focus on finite differences and finite volumes  
3. boundary and initial conditions  
4. mesh generation and mesh treatment  
6. solution algorithms for linear and nonlinear systems of equations  
7. solution strategies for the incompressible Navier-Stokes equations  
8. introduction to the solution of the compressible Navier-Stokes equations  
9. examples of numerical simulation in practice

**Literature**

# 7.168 Course: Photovoltaics [T-ETIT-101939]

**Responsible:** Prof. Dr.-Ing. Michael Powalla  
**Organisation:** KIT Department of Electrical Engineering and Information Technology  
**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 22</td>
<td>2313737</td>
<td>Photovoltaics</td>
<td>3 SWS</td>
<td>Powalla, Lemmer</td>
</tr>
<tr>
<td>ST 22</td>
<td>2313738</td>
<td>Tutorial 2313737 Photovoltaik</td>
<td>1 SWS</td>
<td>Practice / ⬤</td>
</tr>
</tbody>
</table>

**Exams**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 22</td>
<td>7313737</td>
<td>Photovoltaics</td>
<td>Powalla, Lemmer</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7313737</td>
<td>Photovoltaics</td>
<td>Powalla, Lemmer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⬤ On-Site, x Cancelled

**Prerequisites**

"M-ETIT-100524 - Solar Energy" must not have started.

**Responsible:** apl. Prof. Dr. Ron Dagan  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2189906 | Physical and chemical principles of nuclear energy in view of reactor accidents and back-end of nuclear fuel cycle | 1 SWS | Lecture / 🗣 | Dagan, Metz |

**Exams**


**Legend:** 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, x Cancelled

**Competence Certificate**  
oral exam, approx. 30 min.

**Prerequisites**  
one

Below you will find excerpts from events related to this course:

**Physical and chemical principles of nuclear energy in view of reactor accidents and back-end of nuclear fuel cycle**

2189906, WS 22/23, 1 SWS, Language: German, Open in study portal
Content

- Relevant physical terms of nuclear physics
- Decay heat removal- Borst-Wheeler equation
- The accidents in TMI- Three Mile Island, and Fukushima.
- Fission, chain reaction and reactor control systems
- Basics of nuclear cross sections
- Principles of reactor dynamics
- Reactor poisoning
- The Idaho and Chernobyl accidents
- Principles of the nuclear fuel cycle
- Reprocessing of irradiated fuel elements and vitrification of fission product solutions
- Interim storage of nuclear residues in surface facilities
- Multi barrier concepts for final disposal in deep geological formations
- The situation in the repositories Asse II, Konrad and Morsleben

The students

- understand the physical explanations of the known nuclear accidents
- can perform simplified calculations to demonstrate the accidents outcome.
- Define safety relevant properties of low/ intermediate / high level waste products
- Are able to evaluate principles and implications of reprocessing, storage and disposal options for nuclear waste.

Regular attendance: 14 h
self study 46 h
oral exam about 20 min.

Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
AEA öffentliche Dokumentation zu den nuklearen Ereignissen
K. Wirtz: Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton: Nuclear reactor Analysis, J. Wiley £ Sons, Inc. 1975 (in Englisch)
7.170 Course: Physical Basics of Laser Technology [T-MACH-102102]

**Responsible:** Dr.-Ing. Johannes Schneider  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2181612 | Physical basics of laser technology | 3 SWS | Lecture / Practice (VÜ) | Schneider |

**Exams**

| ST 2022 | 76-T-MACH-102102 | Physical Basics of Laser Technology | Schneider |

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ❌ Cancelled

**Competence Certificate**

oral examination (30 min)

- no tools or reference materials

**Prerequisites**

It is not possible to combine this brick with brick Laser Application in Automotive Engineering [T-MACH-105164] and brick Physical Basics of Laser Technology [T-MACH-109084]

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-105164 - Laser in Automotive Engineering must not have been started.

**Recommendation**

Basic knowledge of physics, chemistry and material science

**Below you will find excerpts from events related to this course:**

**Physical basics of laser technology**

2181612, WS 22/23, 3 SWS, Language: German, Open in study portal
Content
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focuses on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
- safety aspects

The lecture is complemented by a tutorial.

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- can describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- can illustrate the possible applications of laser sources in measurement and medicine technology
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

regular attendance: 33,5 hours
self-study: 116,5 hours

The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

It is allowed to select only one of the lectures "Laser in automotive engineering" (2182642) or "Physical basics of laser technology" (2181612) during the Bachelor and Master studies.

Organizational issues
Termine für die Übung werden in der Vorlesung bekannt gegeben!

Literature
T. Graf: Laser - Grundlagen der Laserstrahlerzeugung 2015, Springer Vieweg
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
7.171 Course: Physics for Engineers [T-MACH-100530]

**Responsible:**
- Prof. Dr. Martin Dienwiebel
- Prof. Dr. Peter Gumbsch
- apl. Prof. Dr. Alexander Nesterov-Müller
- Dr. Daniel Weygand

**Organisation:**
KIT Department of Mechanical Engineering

**Part of:**
M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2142890</td>
<td>4 SWS</td>
<td>Weygand, Dienwiebel, Gumbsch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Lecture / Practice</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-100530</td>
<td>Gumbsch, Weygand, Nesterov-Müller, Dienwiebel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam 90 min

**Prerequisites**
none

Below you will find excerpts from events related to this course:

**Physics for Engineers**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2142890, SS 2022, 4 SWS, Language: German</td>
<td>On-Site</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Content
1) Foundations of solid state physics
   - Wave particle dualism
   - Tunnelling
   - Schrödinger equation
   - H-atom

2) Electrical conductivity of solids
   - solid state: periodic potentials
   - Pauli Principle
   - band structure
   - metals, semiconductors and isolators
   - p-n junction / diode

3) Optics
   - quantum mechanical principles of the laser
   - linear optics
   - non-linear optics

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students and for testing progress in learning of the topics.

The student
   - has the basic understanding of the physical foundations to explain the relationship between the quantum mechanical principles and the optical as well as electrical properties of materials
   - can describe the fundamental experiments, which allow the illustration of these principles

regular attendance: 22,5 hours (lecture) and 22,5 hours (excerises)
self-study: 105 hours

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Organizational issues
Kontakt: daniel.weygand@kit.edu

Literature
- Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
- Harris, Moderne Physik, Pearson Verlag, 2013
### 7.172 Course: PLM-CAD Workshop [T-MACH-102153]

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102583 - Major Field: Information Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4</td>
<td>Project (P / 🗣)</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>2121357 PLM-CAD Workshop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4</td>
<td>Project (P / 🗣)</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>2121357 PLM-CAD Workshop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-102153 PLM-CAD Workshop</th>
<th>Ovtcharova</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project (PRO)</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
Alternative exam assessment (graded)

**Prerequisites**  
None

**Annotation**  
Number of participants is limited, compulsory attendance

Below you will find excerpts from events related to this course:

### PLM-CAD Workshop

**Project (PRO)**

**On-Site**

2121357, SS 2022, 4 SWS, Language: German, [Open in study portal](#)

**Content**

The aim of the workshop is to demonstrate the benefits of collaborative product development using PLM methods and to emphasize their added value compared to classical CAD development.

Students learn how to develop and produce a prototype with the help of modern PLM and CAx systems.

**Organizational issues**

Siehe Homepage zur Lehrveranstaltung

**Literature**

Workshop-Unterlagen / workshop materials

### PLM-CAD Workshop

**Project (PRO)**

**On-Site**

2121357, WS 22/23, 4 SWS, Language: German, [Open in study portal](#)

**Content**

The aim of the workshop is to demonstrate the benefits of collaborative product development using PLM methods and to emphasize their added value compared to classical CAD development.

Students learn how to develop and produce a prototype with the help of modern PLM and CAx systems.

**Literature**

Workshop-Unterlagen / workshop materials
Course: Polymer Engineering I [T-MACH-102137]

Responsible: Dr.-Ing. Wilfried Liebig
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102819 - Major Field: Materials Science and Engineering

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events
| WT 22/23 | 2173590 | Polymer Engineering I | 2 SWS | Lecture / 🧬 | Liebig |
| +---------+----------+-----------------------+------|----------|--------|

Exams
| ST 2022 | 76-T-MACH-102137 | Polymer Engineering I | Liebig |

Legend: 🖥 Online, 🧬 Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled

Competence Certificate
Oral exam, about 25 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Polymer Engineering I
2173590, WS 22/23, 2 SWS, Language: German, Open in study portal
Lecture (V) Blended (On-Site/Online)

Content
1. Economical aspects of polymers
2. Introduction of mechanical, chemical and electrical properties
3. Processing of polymers
   (Introduction)
4. Material science of polymers
5. Synthesis

Learning objectives:
The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material "polymer" meeting its requirements in an economical and ecological way.

The students
- are able to describe and classify polymers
- based on the fundamental synthesis processing techniques
- can find practical applications for state-of-the-art polymers and manufacturing technologies
- are able to apply the processing techniques, the application of polymers and polymer composites regarding to the basic principles of material science
- can describe the special mechanical, chemical and electrical properties of polymers and correlate these properties to the chemical bindings.
- can define application areas and the limitation in the use of polymers

Requirements:
none

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
7.174 Course: Powertrain Systems Technology A: Automotive Systems [T-MACH-105233]

**Responsible:**  
Prof. Dr.-Ing. Albert Albers  
Prof. Dr.-Ing. Sven Matthiesen  
Sascha Ott

**Organisation:**  
KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102818 - Major Field: Vehicle Technology

**Type:** Written examination  
**Credits:** 4  
**Grading scale:** Grade to a third  
**Recurrence:** Each summer term  
**Version:** 2

### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Each summer term</td>
<td>Written examination</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Each summer term</td>
<td>Written examination</td>
<td>2</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Each summer term</td>
<td>Written examination</td>
<td>2</td>
</tr>
</tbody>
</table>

**Legends:**  
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

**Competence Certificate**  
written examination: 60 min duration

**Prerequisites**  
None

**Below you will find excerpts from events related to this course:**

**Powertrain Systems Technology A: Automotive Systems**  
2146180, SS 2022, 2 SWS, Language: German, Open in study portal

### Content

**Content**

Students acquire the basic skills needed to develop future energy-efficient and at the same time comfortably drivable powertrains. This includes holistic development methods and evaluations of powertrain systems. The main topics can be divided into the following chapters:

- Powertrain System
- Driver System
- Environment System
- System Components
- Development Process

### Recommendations for additional courses:

- Power Train Systems Technology B: Stationary Machinery

### Literature

Kirchner, E.; "Leistungsübertragung in Fahrzeuggetrieben: Grundlagen der Auslegung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten", Springer Verlag Berlin Heidelberg 2007

Naunheimer, H.; "Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion", Springer Verlag Berlin Heidelberg 2007
7.175 Course: Powertrain Systems Technology B: Stationary Machinery [T-MACH-105216]

**Responsible:** Prof. Dr.-Ing. Albert Albers  
Prof. Dr.-Ing. Sven Matthiesen  
Sascha Ott

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Event Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2145150</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>Written examination</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Albers, Ott</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Event Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>Albers, Ott</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105216</td>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>Albers, Ott</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

written examination: 60 min duration

**Prerequisites**

None

Below you will find excerpts from events related to this course:

#### Powertrain Systems Technology B: Stationary Machinery

2145150, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Content**

Students acquire the basic skills needed to develop future energy-efficient and safe drive system solutions for use in industrial environments. The course considers holistic development methods and evaluations of drive systems. The focal points can be divided into the following chapters:

- Powertrain System
- Operator System
- Environment System
- System Components
- Development Process

**Recommendations:**

- Powertrain Systems Technology A: Automotive Systems

**Literature**

VDI-2241: "Schaltare fremdbetätigte Reibkupplungen und -bremsen", VDI Verlag GmbH, Düsseldorf

### 7.176 Course: Practical Training in Measurement of Vibrations [T-MACH-105373]

**Responsible:** Prof. Dr.-Ing. Alexander Fidlin  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102820 - Major Field: Mechatronics  
M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2162208 | Schwingungstechnisches Praktikum | Practical course / $\text{Genda, Fidlin}$ |

**Exams**

| ST 2022 | 76-T-MACH-105373 | Practical Training in Measurement of Vibrations | Fidlin |

**Legend:**  
- Online,  
- Blended (On-Site/Online),  
- On-Site,  
- Cancelled

**Competence Certificate**  
Colloquium to each session, 10 out of 10 colloquiums must be passed

**Prerequisites**  
Can not be combined with Experimental Dynamics (T-MACH-105514).

**Modeled Conditions**  
The following conditions have to be fulfilled:

1. The course T-MACH-105514 - Experimental Dynamics must not have been started.

**Recommendation**  
Vibration Theory, Mathematical Methods of Vibration Theory, Dynamic Stability, Nonlinear Vibrations
**7.177 Course: Presentation [T-MACH-109189]**

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-104494 - Bachelor's Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**
The colloquium presentation must be held within 6 weeks after the submission of the bachelor thesis. The presentation should last around 20 minutes followed by a scientific discussion with the present expert audience. The students should show that they are able to independently present and discuss the content of their bachelor thesis according to scientific criteria.

**Prerequisites**  
Bachelor Thesis has been started

**Modeled Conditions**  
The following conditions have to be fulfilled:

1. The course T-MACH-109188 - Bachelor's Thesis must have been started.

**Annotation**  
The workload for the presentation of the bachelor thesis is about 90 hours.
Course: Principles of Ceramic and Powder Metallurgy Processing [T-MACH-102111]

**Responsible:** Dr. Günter Schell  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

| Events | 2193010 | Basic principles of powder metallurgical and ceramic processing | 2 SWS | Lecture / Blended | Schell |

| Exams | 76-T-MACH-102111 | Principles of Ceramic and Powder Metallurgy Processing | Schell |

**Competence Certificate**  
The assessment consists of an oral exam (20-30 min) taking place at the agreed date. The re-examination is offered upon agreement.

**Prerequisites**  
none

**Below you will find excerpts from events related to this course:**

**Basic principles of powder metallurgical and ceramic processing**  
2193010, WS 22/23, 2 SWS, Language: German, Open in study portal  
Lecture (V) Blended (On-Site/Online)

**Literature**
- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005  
7.179 Course: Product- and Production-Concepts for Modern Automobiles [T-MACH-110318]

**Responsible:** Dr. Stefan Kienzle  
Dr. Dieter Steegmüller  

**Organisation:** KIT Department of Mechanical Engineering  

**Part of:** M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2149670</td>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td>2</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td>Steegmüller, Kienzle</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

Oral Exam (20 min)

**Prerequisites**

T-MACH-105166 - Materials and Processes for Body Lightweight Construction in the Automotive Industry must not have been started.

**Below you will find excerpts from events related to this course:**

**Product- and Production-Concepts for modern Automobiles**

2149670, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)  
Blended (On-Site/Online)
Content
The lecture illuminates the practical challenges of modern automotive engineering. As former leaders of the automotive industry, the lecturers refer to current aspects of automotive product development and production. The aim is to provide students with an overview of technological trends in the automotive industry. In this context, the course also focuses on changes in requirements due to new vehicle concepts, which may be caused by increased demands for individualisation, digitisation and sustainability. The challenges that arise in this context will be examined from both a production technology and product development perspective and will be illustrated with practical examples thanks to the many years of industrial experience of both lecturers.

The topics covered are:

- General conditions for vehicle and body development
- Integration of new drive technologies
- Functional requirements (crash safety etc.), also for electric vehicles
- Development Process at the Interface Product & Production, CAE/Simulation
- Energy storage and supply infrastructure
- Aluminium and lightweight steel construction
- FRP and hybrid parts
- Battery, fuel cell and electric motor production
- Joining technology in modern car bodies
- Modern factories and production processes, Industry 4.0.

Learning Outcomes:
The students ...

- are able to name the presented general conditions of vehicle development and are able to discuss their influences on the final product using practical examples.
- are able to name the various lightweight approaches and identify possible areas of application.
- are able to identify the different production processes for manufacturing lightweight structures and explain their functions.
- are able to perform a process selection based on the methods and their characteristics.

Workload:
regular attendance: 25 hours
self-study: 95 hours

Organizational issues
Termine werden über Ilias bekannt gegeben.
Bei der Vorlesung handelt es sich um eine Blockveranstaltung. Eine Anmeldung über Ilias ist erforderlich.
The lecture is a block course. An application in Ilias is mandatory.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
### 7.180 Course: Product Lifecycle Management [T-MACH-105147]

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102583 - Major Field: Information Management  
M-MACH-102589 - Major Field: Production Systems  
M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2121350</td>
<td>Product Lifecycle Management</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💼 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

**Competence Certificate**

Written examination 90 min.

**Prerequisites**

None

**Below you will find excerpts from events related to this course:**

### Product Lifecycle Management

2121350, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Lecture (V)

**On-Site**

**Content**

The course includes:

- Basics for product data management and data exchange
- IT system solutions for Product Lifecycle Management (PLM)
- Economic viability analysis and implementation problems
- Illustrative scenario for PLM using the example of the institute's own I4.0Lab

After successful attendance of the course, students can:

- identify the challenges of data management and exchange and describe solution concepts for these challenges.
- clarify the management concept PLM and its goals and highlight the economic benefits.
- explain the processes required to support the product life cycle and describe the most important business software systems (PDM, ERP, …) and their functions.
Literature
Vorlesungsfolien.


Course: Product, Process and Resource Integration in the Automotive Industry [T-MACH-102155]

Responsible: Prof. Dr.-Ing. Sama Mbang
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management
       M-MACH-102818 - Major Field: Vehicle Technology

Type | Credits | Grading scale | Recurrence | Version
---|---|---|---|---
Oral examination | 4 | Grade to a third | Each summer term | 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2123364</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>2</td>
<td>Lecture / Practice ( / Mbang</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>ST 2022</td>
<td>76-T-MACH-102155</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>Mbang</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Oral examination 20 min.

Prerequisites
None

Annotation
Limited number of participants.

Below you will find excerpts from events related to this course:

Product, Process and Resource Integration in the Automotive Industry Lecture / Practice (VÜ)
2123364, SS 2022, 2 SWS, Language: German, Open in study portal

On-Site

Content

- Overview of product development in the automotive sector (process- and work cycle, IT-Systems)
- Integrated product models in the automotive industry (product, process and resource)
- New CAx modeling methods (intelligent feature technology, templates & functional modeling)
- Automation and knowledge-based mechanism for product design and production planning
- Product development in accordance with defined process and requirement (3D-master principle, tolerance models)
- Concurrent Engineering, shared working
- Enhanced concepts: the digital and virtual factory (application of virtual technologies and methods in the product development)

Organizational issues
Blockveranstaltung

Literature
Vorlesungsfolien
7.182 Course: Production Technology for E-Mobility [T-MACH-110984]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102816 - Major Field: Fundamentals of Energy Technology
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2150605</th>
<th>Production Technology for E-Mobility</th>
<th>2 SWS</th>
<th>Lecture / 📚</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-110984</th>
<th>Production Technology for E-Mobility</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
Written Exam (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Production Technology for E-Mobility
2150605, SS 2022, 2 SWS, Language: German, Open in study portal
Lecture (V) Blended (On-Site/Online)

Content
In the lecture Production Engineering for Electromobility the students should be enabled to design, select and develop production processes for the production of the components of an electric drive train (electric motor, battery cells, fuel cells) by using research-oriented teaching.

Learning Outcomes:
The students are able to:

- describe the structure and function of a fuel cell, an electric traction drive and a battery system.
- reproduce the process chains for the production of the components fuel cell, battery and electric traction drive.
- apply methodical tools to solve problems along the process chain.
- derive the challenges in the production of electric drives for electric mobility.
- describe the factors influencing the individual process steps on each other using the process chain of Li-ion battery cells.
- enumerate or describe the necessary process parameters to counteract the influencing factors of the process steps in Li-ion battery cell production.
- apply methodical tools to solve problems along the process chain for the production of Li-ion battery cells.
- derive the challenge of mounting and dismounting battery modules.
- derive the challenges in the production of fuel cells for use in mobility.

Workload:
regular attendance: 42 hours
self-study: 78 hours

Literature
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
### 7.183 Course: Programming in CAE-Applications [T-MACH-111431]

**Responsible:** Prof. Dr.-Ing. Luise Kärger  
**Organisation:** KIT Department of Mechanical Engineering  

**Part of:** M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Mode</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113109</td>
<td>Programming in CAE-Applications</td>
<td>2</td>
<td>Practical course / Blended (On-Site/Online)</td>
<td>Kärger</td>
</tr>
</tbody>
</table>

**Legend:**  
- 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

**Competence Certificate**  
Colloquia on exercises during the semester and presentation of a group task at the end of the semester (ungraded)

**Prerequisites**  
The number of participating students is limited. Details for the admission process can be found in the category "Organizational issues" of the associated event.

**Recommendation**

- Basics of the finite element method (ideally with Abaqus)  
- Basic knowledge of continuum mechanics  
- Basics of programming  
- Basic knowledge of fibre-reinforced polymers

Below you will find excerpts from events related to this course:

**Programming in CAE-Applications**  
2113109, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)  
Practical course (P)  
Blended (On-Site/Online)
Content
The development of components supported by numerical simulations, for example through the finite element method (FEM), has become an indispensable part of modern engineering work. They allow a virtual evaluation of different component variants and thus contribute to an efficient product development process. For the correct use of CAE methods and the generation of reliable simulation results, knowledge of the methodological background and a goal-oriented approach for the model setup and simulation evaluation is essential. Thereby, recurring problems can be solved efficiently and automatically by programming sequence and evaluation scripts. The investigation of modern material systems such as continuous fiber-reinforced plastics represents an additional challenge. For these complex materials, there is often a lack of commercially available methods, which is why the implementation of user-defined material models through suitable subroutines is increasingly necessary.

In this workshop, students learn about the everyday work of computational engineers. Step by step, the basics of the finite element method are worked out using practical examples in Abaqus, as well as typical procedures for model setup and evaluation. Building on this, basic knowledge of script programming in Python and the implementation of material models in Fortran subroutines is taught. The aim of the course is to illustrate the contents in an application-oriented manner through a combination of lectures, supervised classroom exercises and solving project tasks in small groups during the semester.

Main topics:

- Fundamentals of FE structural simulations with anisotropic materials using continuous fiber-reinforced plastics as an example (Abaqus)
- Automated model setup and evaluation with Python scripts
- Efficient evaluation of the result quality of FE-simulations
- Derivation of measures to improve structural load-bearing capacity
- User-defined material modelling (Fortran subroutines)

Learning Objectives:

Students will be able to

- understand the basics of the finite element method and use the FE software Abaqus to solve practical calculation tasks,
- automate the FE model generation as well as the result evaluation,
- evaluate the simulation results, identify errors and derive conclusions for improving the load-bearing capacity,
- understand the basics for developing material subroutines and implement them for simple examples.

Organizational issues


The room allocation and the weekly course date will be announced at the beginning of the winter semester on the Institute's homepage (https://www.fast.kit.edu/lbt/1205.php).

Due to the desired supervision ratio and the institute's equipment, the maximum number of participating students is limited. Preliminary registration takes place via the associated form on the Institute's homepage (https://www.fast.kit.edu/lbt/1205.php), which will be published there together with further details at the beginning of September. If there are too many interested students, a selection will take place among all interested students.
7.184 Course: Project Internship Aditive Manufacturing: Development and Production of an Additive Component [T-MACH-110960]

**Responsible:** Dr.-Ing. Frederik Zanger

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102589 - Major Field: Production Systems
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2149700</td>
<td>Project Internship Aditive Manufacturing: Development and Production of an Additive Component</td>
<td>2 SWS</td>
<td>Practical course / Online</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Zanger, Lubkowitz**

**Competence Certificate**

Alternative test achievement (graded)

The competence certificate is a project work; alternative test achievement according to § 4 Abs. 2 No. 3 of the SPO. Here, the project work, the milestone-based presentation of the results in presentation form (10 min each) and a final oral examination (15 min) are included in the assessment.

**Prerequisites**

none

*Below you will find excerpts from events related to this course:*

V  Project Internship Aditive Manufacturing: Development and Production of an Additive Component

2149700, WS 22/23, 2 SWS, Language: German, Open in study portal

Practical course (P) Blended (On-Site/Online)
Content
The lecture "Project Internship Additive Manufacturing: Development and Production of an Additive Component" combines the basics of metallic laser powder bed fusion (LPBF) with a development project in cooperation with an industrial company. The students learn the basics of the following topics in the project-related lecture:

- Influence of different process variables on the component quality of parts produced in the LPBF process
- Preparation and simulation of the LPBF process
- Production of additive metallic components
- Process monitoring and quality assurance in additive manufacturing
- Topology optimization
- CAM for subtractive rework

The topics addressed in the course will be applied practically in various workshops on the individual topics and transferred to the developmental task in self-study.

Finally, the results of the elaborations are produced additively and post-processed subtractively.

Learning Outcomes:
The students ...

- are able to describe the properties and applications of the additive manufacturing processes laser powder bed fusion (LPBF) and lithography assisted ceramic manufacturing (LCM).
- are able to select the appropriate manufacturing process for a technical application.
- are able to describe and implement the creation of a product along the entire additive process chain (CAD, simulation, work preparation, CAM) from the idea to the production.
- are able to discuss the development process for components that are optimized for additive manufacturing.
- are able to perform topology optimization.
- are able to simulate the additive process, compensate for process-related distortions and determine the ideal alignment on the building platform.
- are able to create necessary support structures for the additive process and to derive a building order file.
- are able to create a CAM model for the subtractive rework process of additive parts.

Workload:
regular attendance: 12 hours
self-study: 108 hours

Organizational issues

Literature
Skript zur Veranstaltung wird über Ilias ([https://ilias.studium.kit.edu/](https://ilias.studium.kit.edu/)) bereitgestellt
Lecture notes will be provided in Ilias ([https://ilias.studium.kit.edu/](https://ilias.studium.kit.edu/))
7.185 Course: Project Management in Global Product Engineering Structures [T-MACH-105347]

**Responsible:** Prof. Dr.-Ing. Albert Albers  
Prof. Dr.-Ing. Peter Gutzmer  
Prof. Dr.-Ing. Sven Matthiesen

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102583 - Major Field: Information Management  
M-MACH-102812 - Major Field: Powertrain Systems  
M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102818 - Major Field: Vehicle Technology  
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
oral exam (20 min)

Aids: None

**Prerequisites**  
none
### 7.186 Course: Project Workshop: Automotive Engineering [T-MACH-102156]

**Responsible:** Dr.-Ing. Michael Frey  
Prof. Dr. Frank Gauterin  
Dr.-Ing. Martin Gießler

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2115817 Project Workshop: Automotive Engineering 3 SWS Lecture / 🍄 Gauterin, Gießler, Frey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2115817 Project Workshop: Automotive Engineering 3 SWS Lecture / 🍄 Gauterin, Gießler, Frey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-102156 Project Workshop: Automotive Engineering Gauterin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** Online, 🍄 Blended (On-Site/Online), 📈 On-Site, ✗ Cancelled

#### Competence Certificate

**Oral examination**

Duration: 30 up to 40 minutes

Auxiliary means: none

#### Prerequisites

none

#### Below you will find excerpts from events related to this course:

**Project Workshop: Automotive Engineering**

2115817, SS 2022, 3 SWS, Language: German, Open in study portal

**Lecture (V)**

Blended (On-Site/Online)

#### Content

During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

**Learning Objectives:**

The students are familiar with typical industrial development processes and working style. They are able to apply knowledge gained at the university to a practical task. They are able to analyze and to judge complex relations. They are ready to work self-dependently, to apply different development methods and to work on approaches to solve a problem, to develop practice-oriented products or processes.

**Organizational issues**

Begrenzte Teilnehmerzahl mit Auswahlverfahren, die Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.

Raum und Termine: s. Aushang bzw. Homepage
Content
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Learning Objectives:
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Organizational issues
Begrenzte Teilnehmeranzahl mit Auswahlverfahren, in deutscher Sprache. Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Termin und Raum: siehe Institutshomepage.
Limited number of participants with selection procedure, in German language. Please send the application at the end of the previous semester.
Date and room: see homepage of institute.

Literature

Skripte werden beim Start-up Meeting ausgegeben.
The scripts will be supplied in the start-up meeting.
7.187 Course: Python Algorithm for Vehicle Technology [T-MACH-110796]

Responsible: Stephan Rhode
Organisation: Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events
ST 2022 2114862 Python Algorithms for Automotive Engineering 2 SWS Lecture / 🇦 Online Rhode
Exams
ST 2022 76-T-MACH-110796 Python Algorithm for Vehicle Technology Rhode
WT 22/23 76-T-Mach-110796 Python Algorithm for Vehicle Technology Rhode

Competence Certificate
Written Examination
Duration: 90 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Python Algorithms for Automotive Engineering
2114862, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content
Teaching content:
- Introduction to Python and useful tools and libraries for creating algorithms, graphical representation, optimization, symbolic arithmetic and machine learning
  - Anaconda, Pycharm, Jupyter
  - NumPy, Matplotlib, SymPy, Scikit-Learn
- Methods and tools for creating software
  - Version management GitHub, git
  - Testing software pytest, Pylint
  - Documentation Sphinx
  - Continuous Integration (CI) Travis CI
  - Workflows in Open Source and Inner Source, Kanban, Scrum
- Practical programming projects to:
  - Road sign recognition
  - Vehicle state estimation
  - Calibration of vehicle models by mathematical optimization
  - Data-based modelling of the powertrain of an electric vehicle

Objectives:
The students have an overview of the programming language Python and important Python libraries to solve automotive engineering problems with computer programs. The students know current tools around Python to create algorithms, to apply them and to interpret and visualize their results. Furthermore, the students know basics in the creation of software to be used in later programming projects in order to develop high-quality software solutions in teamwork. Through practical programming projects (road sign recognition, vehicle state estimation, calibration, data-based modelling), the students can perform future complex tasks from the area of driver assistance systems.

Organizational issues
Die Vorlesung findet digital über ILIAS statt. Die Rücksprache Termine finden in Präsenz am Campus Ost, Geb. 70.04, Raum 219 statt.
Termine hierzu werden noch bekannt gegeben.
Literature

- A Whirlwind Tour of Python, Jake VanderPlas, Publisher: O'Reilly Media, Inc. Release Date: August 2016, ISBN: 9781492037859
- Introduction to Machine Learning with Python, Sarah Guido, Andreas C. Müller, Publisher: O'Reilly Media, Inc., Release Date: October 2016, ISBN: 9781449369880
### Course: Quality Management [T-MACH-102107]

**Responsible:** Prof. Dr.-Ing. Gisela Lanza  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102589 - Major Field: Production Systems  
- M-MACH-102815 - Major Field: Engineering Design  
- M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2149667</td>
<td>Quality Management</td>
<td>2</td>
<td>Lecture / 🧩</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-102107</td>
<td>Quality Management</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

Written Exam (60 min)

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

#### Quality Management

2149667, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)  
Lecture (V)  
Blended (On-Site/Online)
Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

- The term "Quality"
- Total Quality Management (TQM) and Six Sigma
- Universal methods and tools
- QM during early product stages – product definition
- QM during product development and in procurement
- QM in production – manufacturing metrology
- QM in production – statistical methods
- QM in service
- Quality management systems
- Legal aspects of QM

Learning Outcomes:
The students …

- are capable to comment on the content covered by the lecture.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Start: 24.10.2022
Vorlesungstermine montags 09:45 Uhr
Übung erfolgt während der Vorlesung

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt:

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
7.189 Course: Rail System Technology [T-MACH-106424]

**Responsible:** Prof. Dr.-Ing. Marcus Geimer
                  Prof. Dr.-Ing. Peter Gratzfeld

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102638 - Major Field: Rail System Technology

**Type** | **Credits** | **Grading scale** | **Recurrence** | **Version**
---|---|---|---|---
Oral examination | 4 | Grade to a third | Each term | 1

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Heckele, Gratzfeld</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Heckele, Gratzfeld</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-106424</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Heckele, Gratzfeld</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-106425</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Heckele, Gratzfeld</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-106424</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Heckele, Reimann, Gratzfeld</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

**Competence Certificate**

Oral examination

Duration: ca. 20 minutes

No tools or reference materials may be used during the exam.

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Rail System Technology**

2115919, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

On-Site

**Content**

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

**Literature**

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download ([Ilias-platform](#)).
Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
Course: Rail Vehicle Technology [T-MACH-105353]

**7.190 Course: Rail Vehicle Technology [T-MACH-105353]**

**Responsible:** Prof. Dr.-Ing. Marcus Geimer  
Prof. Dr.-Ing. Peter Gratzfeld

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102638 - Major Field: Rail System Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reimann, Gratzfeld</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reimann, Gratzfeld</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td></td>
<td>Reimann, Gratzfeld</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105355</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td></td>
<td>Reimann, Gratzfeld</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td></td>
<td>Reimann, Heckele, Gratzfeld</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105355</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td></td>
<td>Reimann, Gratzfeld</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

Oral examination  
Duration: ca. 20 minutes  
No tools or reference materials may be used during the exam.

**Prerequisites**

none

**Below you will find excerpts from events related to this course:**

**Rail Vehicle Technology**

2115996, SS 2022, 2 SWS, Language: German, Open in study portal  
*Lecture (V)*  
*On-Site*

**Content**

1. Vehicle system technology: structure and main systems of rail vehicles  
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows  
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement  
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives  
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)  
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends  

**Literature**

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.  
A bibliography is available for download (Ilias-platform).

**Rail Vehicle Technology**

2115996, WS 22/23, 2 SWS, Language: German, Open in study portal  
*Lecture (V)*  
*On-Site*
Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Course: Railways in the Transportation Market [T-MACH-105540]

**Responsible**: Prof. Dr.-Ing. Marcus Geimer  
Prof. Dr.-Ing. Peter Gratzfeld

**Organisation**: KIT Department of Mechanical Engineering

**Part of**: M-MACH-102638 - Major Field: Rail System Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2022</th>
<th>2114914</th>
<th>Railways in the Transportation Market</th>
<th>2 SWS</th>
<th>Block / On-Site</th>
<th>Gratzfeld</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>ST 2022</th>
<th>76-T-MACH-105540</th>
<th>Railways in the Transportation Market</th>
<th>Gratzfeld</th>
</tr>
</thead>
</table>

**Competence Certificate**  
Oral examination  
Duration: ca. 20 minutes  
No tools or reference materials may be used during the exam.

**Prerequisites**  
one

**Below you will find excerpts from events related to this course:**

**Railways in the Transportation Market**  
2114914, SS 2022, 2 SWS, Language: German, Open in study portal

**Content**  
The lecture gives an overview about perspective, challenges and chances of rail systems in the national and European market. Following items will be discussed:

- Introduction and basics  
- Rail reform in Germany  
- Overview of Deutsche Bahn  
- Regulation of railways  
- Financing and development of rail infrastructure  
- Group strategy “Strong Rail” and their building blocks: (climate, environment, digitalization, “Strong Rail” in Baden-Württemberg)  
- Trends in the transportation market  
- Field of actions in transport policy  
- Intra- and intermodal competition  
- Summary

**Learning Objectives:**

- To capture the entrepreneurial perspective on transport companies  
- To appraise the intra- and intermodal competition  
- To understand the regulative determinant  
- To reflect trends in transportation market  
- To comprehend strategic challenges, chances and fields of actions of transport companies  
- To apply intermodal perspective  
- To take important key figures of railways and transportation market  
- To realize the relevance of sustainability and digitalization
Organizational issues
Die Blockvorlesung „Die Eisenbahn im Verkehrsmarkt“ findet am **23.06./24.06./25.06.2022 von 9.00 bis 16.00 Uhr** am Campus Ost. Geb. 70.04, R 220 in Präsenz statt. Die Prüfung findet am **20.07.2022** in Präsenz statt.

Literature
keine
Course: Reliability Engineering 1 [T-MACH-107447]

**Responsible:** Dr.-Ing. Alexei Konnov

**Organisation:** KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

**Part of:**
- M-MACH-102817 - Major Field: Information Technology
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam

**Prerequisites**
one
### 7.193 Course: Robotics I - Introduction to Robotics [T-INFO-108014]

**Responsible:** Prof. Dr.-Ing. Tamim Asfour  
**Organisation:** KIT Department of Informatics  
**Part of:** M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Events

| WT 22/23 | 2424152 | Robotics I - Introduction to Robotics | 3/1 SWS | Lecture / 🗣 | Asfour |

#### Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7500218</th>
<th>Robotik I - Einführung in die Robotik</th>
<th>Asfour</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7500106</td>
<td>Robotics I - Introduction to Robotics</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
7 COURSES

7.194 Course: Safety Engineering [T-MACH-105171]

Responsible: Hans-Peter Kany
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102815 - Major Field: Engineering Design
                   M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2117061</td>
<td>Lecture / Kany</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), ⏱ On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

V Safety Engineering

2117061, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

Media

Presentations

Learning content

The course provides basic knowledge of safety engineering. In particular the basics of health at the working place, job safety in Germany, national and European safety rules and the basics of safe machine design are covered. The implementation of these aspects will be illustrated by examples of material handling and storage technology. This course focuses on: basics of safety at work, safety regulations, basic safety principles of machine design, protection devices, system security with risk analysis, electronics in safety engineering, safety engineering for storage and material handling technique, electrical dangers and ergonomics. So, mainly, the technical measures of risk reduction in specific technical circumstances are covered.

Learning goals

The students are able to:

- Name and describe relevant safety concepts of safety engineering,
- Discuss basics of health at work and labour protection in Germany,
- Evaluate the basics for the safe methods of design of machinery with the national and European safety regulations and
- Realize these objectives by using examples in the field of storage and material handling systems.

Recommendations

None

Workload

Regular attendance: 21 hours
Self-study: 99 hours

Organizational issues

Termine: siehe ILIAS.

Literature

Defren/Wickert: Sicherheit für den Maschinen- und Anlagenbau, Druckerei und Verlag: H. von Ameln, Ratingen
7.195 Course: Scientific Computing for Engineers [T-MACH-100532]

**Responsible:** Prof. Dr. Peter Gumbsch  
Dr. Daniel Weygand  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Type**  
Written examination

**Credits**  
4

**Grading scale**  
Grade to a third

**Recurrence**  
Each winter term

**Version**  
3

**Competence Certificate**  
Written exam (90 minutes)

**Prerequisites**  
The brick can not be combined with the brick "Application of advanced programming languages in mechanical engineering" (T-MACH-105390).

**Below you will find excerpts from events related to this course:**

<table>
<thead>
<tr>
<th>Scientific computing for Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181738, WS 22/23, 2 SWS, Language: German, Open in study portal</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☞ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
Content
1. Introduction: why scientific computing
2. computer architectures
3. Introduction to Unix/Linux
4. Foundations of C++
   * program organization
   * data types, operator, control structures
   * dynamic memory allocation
   * functions
   * class
   * OpenMP parallelization
5. numeric algorithms
   * finite differences
   * MD simulations: 2nd order differential equations
   * algorithms for particle simulations
   * solver for linear systems of eqns.

The student can
- apply the programming language C++ for scientific computing in the field of materials science
- adapt programs for use on parallel platforms
- choose suitable numerical methods for the solution of differential equations.

The lecture can not be combined with the lecture "Application of advanced programming languages in mechanical engineering" (2182735).

regular attendance: 22.5 hours
Lab: 22.5 hours (optional)
self-study: 75 hours
written exam 90 minutes

Literature
1. C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München
2. C++ and object-oriented numeric computing for Scientists and Engineers, Daoqui Yang, Springer Verlag.
3. The C++ Programming Language, Bjarne Stroustrup, Addison-Wesley
4. Die C++ Standardbibliothek, S. Kuhlins und M. Schader, Springer Verlag

Numerik:
1. Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
2. Numerische Mathematik, H.R. Schwarz, Teubner Stuttgart
3. Numerische Simulation in der Molekülodynamik, Griebel, Knapek, Zumbusch, Caglar, Springer Verlag

Exercises for Scientific Computing for Engineers
2181739, WS 22/23, 2 SWS, Language: German, Open in study portal
Course: Selected Problems of Applied Reactor Physics and Exercises [T-MACH-105462]

Responsible: apl. Prof. Dr. Ron Dagan
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 2190411 | Selected Problems of Applied Reactor Physics and Exercises | 2 SWS | Lecture / 🗣 | Dagan, Metz |

Exams

| ST 2022 | 76-T-MACH-105462 | Selected Problems of Applied Reactor Physics and Exercises | Dagan |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, approx. 1/2 hour

Prerequisites

none

Below you will find excerpts from events related to this course:

Selected Problems of Applied Reactor Physics and Exercises

2190411, SS 2022, 2 SWS, Language: German/English, Open in study portal

Content

- Nuclear energy and forces
- Radioactive decay
- Nuclear processes
- Fission and the importance of delayed neutrons
- Basics of nuclear cross sections
- Principles of chain reaction
- Static theory of mono energetic reactors
- Introduction to reactor kinetic
- student laboratory

The students

- have solid understanding of the basic reactor physics
- are able to estimate processes of growth and decay of radionuclides; out of it, they can perform dose calculation and introduce their biological hazards
- can calculate the relationship of basic parameters which are needed for a stable reactor operation
- understand important dynamical processes of nuclear reactors.

Regular attendance: 26 h
self study 94 h
oral exam about 30 min.

Literature

K. Wirtz Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton, Nuclear reactor Analysis, J. Wiley $ Sons, Inc. 1975 (in English)
7.197 Course: Self-Booking-BSc-HOC-SPZ-ZAK-Graded [T-MACH-111685]

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102576 - Key Competences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**
Completed coursework

**Prerequisites**
None

**Self service assignment of supplementary studies**
This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaften und Studium Generale

**Annotation**
Interdisciplinary qualifications (IQ) completed at the House-of-Competence (HoC), at the Zentrum für Angewandte Kulturwissenschaften (ZAK) or at the Sprachenzentrum (SpZ) can be assigned in self-service.

First, select a partial accomplishment named "self-assignment" in your study schedule and second, assign an IQ-achievement via the tab "IQ achievements".
7.198 Course: Self-Booking-BSc-HOC-SPZ-ZAK-Non-Graded [T-MACH-111684]

**Responsible:** Prof. Dr.-Ing. Martin Heilmaier  
**Organisation:** KIT Department of Mechanical Engineering  

**Part of:** M-MACH-102576 - Key Competences

### Type
- Completed coursework

### Credits
- 2

### Grading scale
- Pass/fail

### Recurrence
- Each term

### Version
- 1

### Competence Certificate
Completed coursework

### Prerequisites
None

### Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence  
- Sprachenzentrum  
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

### Annotation
Interdisciplinary qualifications (IQ) completed at the House-of-Competence (HoC), at the Zentrum für Angewandte Kulturwissenschaften (ZAK) or at the Sprachenzentrum (SpZ) can be assigned in self-service.

First, select a partial accomplishment named "self-assignment" in your study schedule and second, assign an IQ-achievement via the tab "IQ achievements".
7 COURSES  
Course: Seminar for Rail System Technology [T-MACH-108692]

7.199 Course: Seminar for Rail System Technology [T-MACH-108692]

Responsible: Prof. Dr.-Ing. Marcus Geimer  
Prof. Dr.-Ing. Peter Gratzfeld  
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102638 - Major Field: Rail System Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Seminar for Rail System Technology</td>
<td>1 SWS</td>
<td>Seminar / 🗣: Tesar, Geimer, Gratzfeld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar for Rail System Technology</td>
<td>1 SWS</td>
<td>Seminar / 🗣: Gratzfeld, Tesar, Geimer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Seminar for Rail System Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar for Rail System Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Examination: Writing a Seminararbeit, final presentation

Prerequisites

none

Below you will find excerpts from events related to this course:

Seminar for Rail System Technology

2115009, SS 2022, 1 SWS, Language: German, Open in study portal

On-Site

Content

1. Railway System: railway as a system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. System structure of railway vehicles: structure and major systems of rail vehicles
4. Scientific working: structuring and writing of scientific papers, literature research, scheduling (mile stones), self-management, presentation skills, using the software Citavi for literature and knowledge management, working with templates in Word, giving and taking feedback
5. The learnt knowledge regarding scientific writing is used to elaborate a Seminararbeit. To this the students create a presentation, train and reflect it and finally present it to an auditorium.

Learning targets:

- The students become aware of the fundamental relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- They overview the technical components of a rail system, in particular rail vehicle technology.
- They are able to use the essential elements of scientific work and present their results in written form and verbal presentation.

Organizational issues


Max. 10 participants. Examination: Writing a Seminararbeit, final presentation. Please check the homepage for further information.
Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).

Seminar for Rail System Technology
2115009, WS 22/23, 1 SWS, Language: German/English, Open in study portal

Content
• Railway system: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact, history, challenges and future developments in the context of mega trends
• Operation: Transportation, public/regional/long-distance transport, freight service, scheduling
• System structure of railway vehicles: Tasks and classification, main systems
• Project management: definitions, project management, main and side processes, transfer to practice
• Scientific working: structuring and writing of scientific papers, literature research, scheduling (mile stones), self-management, presentation skills, using the software Citavi for literature and knowledge management, working with templates in Word, giving and taking feedback
• The learnt knowledge regarding scientific writing is used to elaborate a Seminararbeit. To this the students create a presentation, train and reflect it and finally present it to an auditorium.

Organizational issues
Teilnehmerzahl ist auf 10 begrenzt. Die Prüfung besteht aus einer schriftlichen Ausarbeitung (Seminararbeit) und einem Vortrag über die Ausarbeitung. Weitere Infos siehe Institutshomepage (https://www.fast.kit.edu/bst/929_11545.php)
Max. 10 participants. Examination: Writing a Seminararbeit, final presentation. Please check the homepage for further information.

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
7.200 Course: Signals and Systems [T-ETIT-109313]

**Responsible:** Prof. Dr.-Ing. Michael Heizmann  
**Organisation:** KIT Department of Electrical Engineering and Information Technology  
**Part of:** M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2302109</td>
<td>Signals and Systems</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

**Exams**

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7302109</td>
<td>Signals and Systems</td>
<td></td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

**Prerequisites**
none
7.201 Course: Simulation of Coupled Systems [T-MACH-105172]

**Responsible:** Prof. Dr.-Ing. Marcus Geimer

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2114095</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>76T-MACH-105172</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76T-MACH-105172</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, ☞ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at very ordinary examination date.

A registration in mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

**Prerequisites**

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108888 must have been passed.

**Modeled Conditions**

The following conditions have to be fulfilled:

1. The course T-MACH-108888 - Simulation of Coupled Systems - Advance must have been passed.

**Recommendation**

- Knowledge of ProE (ideally in actual version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

**Annotation**

After completion of course, students are able to:

- build a coupled simulation
- parametrize models
- perform simulations
- conduct troubleshooting
- check results for plausibility

The number of participants is limited.

**Content:**

- Basics of multi-body and hydraulics simulation programs
- Possibilities of coupled simulations
- Modelling and Simulation of Mobile Machines using a wheel loader
- Documentation of the result in a short report

**Literature:**

- Software guide books (PDFs)
- Information about wheel-type loader specifications

Bachelor's Program Mechanical Engineering, Date: 20/09/2022
Module Handbook, valid from Winter Term 2022/23
Below you will find excerpts from events related to this course:

**Simulation of Coupled Systems**
2114095, SS 2022, 2 SWS, Language: German. Open in study portal

**Lecture (V) On-Site**

**Content**
- Knowledge of the basics of multi-body and hydraulic simulation programs
- Possibilities of coupled simulations
- Development of a simulation model by using the example of a wheel loader
- Documentation of the result in a short report

It is recommended to have:
- Knowledge of ProE (ideally in current version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics
- regular attendance: 21 hours
- total self-study: 92 hours

**Literature**

Weiterführende Literatur:
- Diverse Handbücher zu den Softwaretools in PDF-Form
- Informationen zum verwendeten Radlader
Course: Simulation of Coupled Systems - Advance [T-MACH-108888]

**Responsible:** Prof. Dr.-Ing. Marcus Geimer  
Yusheng Xiang

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Course Details</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>Geimer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Preparation of semester report

**Prerequisites**
none
### 7.203 Course: Solar Thermal Energy Systems [T-MACH-106493]

**Responsible:** apl. Prof. Dr. Ron Dagan  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Date</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2189400</td>
<td>Lecture</td>
<td>2022-03-28</td>
<td>Solar Thermal Energy Systems</td>
<td>2 SWS</td>
<td>Dagan</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Legend:**  
- Online,  
- Blended (On-Site/Online),  
- On-Site,  
- Cancelled

**Competence Certificate**

oral exam of about 30 minutes

**Prerequisites**

none

**Recommendation**

**Literature**


*Below you will find excerpts from events related to this course:*

**Solar Thermal Energy Systems**  
2189400, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)
Content
The course deals with fundamental aspects of solar energy
1. Introduction to solar energy – global energy panorama
2. Solar energy resource-
   Structure of the sun, Black body radiation, solar constant, solar spectral distribution
   Sun-Earth geometrical relationship
3. Passive and active solar thermal applications.
4. Solar thermal systems- solar collector-types, concentrating collectors, solar towers,
   Heat losses, efficiency
5. Selected topics on thermodynamics and heat transfer which are relevant for solar systems.
6. Introduction to Solar induced systems: Wind , Heat pumps, Biomass , Photovoltaic
7. Energy storage

The course deals with fundamental aspects of solar energy. Starting from a global energy panorama the course deals with the sun as a thermal energy source. In this context, basic issues such as the sun’s structure, blackbody radiation and solar–earth geometrical relationship are discussed. In the next part, the lectures cover passive and active thermal applications and review various solar collector types including concentrating collectors and solar towers and the concept of solar tracking. Further, the collector design parameters determination is elaborated, leading to improved efficiency. This topic is augmented by a review of the main laws of thermodynamics and relevant heat transfer mechanisms.

The course ends with an overview on energy storage concepts which enhance practically the benefits of solar thermal energy systems.

The students get familiar with the global energy demand and the role of renewable energies learn about improved designs for using efficiently the potential of solar energy gain basic understanding of the main thermal hydraulic phenomena which support the work on future innovative applications will be able to evaluate quantitatively various aspects of the thermal solar systems.

Total 120 h, hereof 30 h contact hours and 90 h homework and self-studies
oral exam about 30 min.

Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
7.204 Course: Steering of a Global Operating Company - The Robert BOSCH GmbH as an Example [T-MACH-110961]

Responsible: Dr. Rudolf Maier
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102576 - Key Competences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2149663 | Steering of a Global Operating Company - The Robert BOSCH GmbH as an Example | 2 SWS | Seminar / Grube |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
alternative achievement (ungraded):
- attendance on at least 12 lecture units

Prerequisites
T-MACH-106375 – The Value Stream in an Industrial Company - The Value Chain at BOSCH as an Example must not have been started.

Below you will find excerpts from events related to this course:
Content
The seminar provides an insight into the main functional units of a company and their typical processes by using Bosch as an example. Furthermore it is based on discussions with the students. Former Bosch top managers explain the essential business processes and functions of the individual departments as well as the classic tasks of an engineer in a worldwide operating automotive supplier. The seminar also provides an insight into the careers of the Bosch directors. In addition to the company processes, the seminar will therefore focus on reports of challenges, successes, failures and product and process innovations.

The topics are as follows:

- Introduction, strategy, innovation
- R&D, product development process
- Production
- Quality management
- Market, marketing, sales
- Aftermarket, service
- Finance, controlling
- Logistics
- Purchasing, supply chain
- IT
- HR, leadership, compliance

Learning Outcomes:
The students ...

- are able to deduce, understand and assess the structure of a global operating enterprise.
- are capable to identify and compare the work flows and processes within a global operating enterprise.
- are able to recognize and assess the problems within interfaces between functional and organizational units which are identified by the experts. Furthermore the students can develop solutions based on this knowledge in order to overcome these problems.

Workload:
regular attendance: 21 hours
self-study: 39 hours

Organizational issues
Start: 26.10.2022
Die Anmeldung zum Seminar erfolgt über Ilias. (https://ilias.studium.kit.edu/)
Das Passwort wird im ersten Termin bekanntgegeben.
The registration for the seminar is via Ilias. (https://ilias.studium.kit.edu/)
The password will be announced in the first appointment.

Literature
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
7.205 Course: Strategic Product Development - Identification of Potentials of Innovative Products [T-MACH-105696]

**Responsible:**
- Prof. Dr.-Ing. Albert Albers
- Prof. Dr.-Ing. Sven Matthiesen
- Prof. Dr.-Ing. Andreas Siebe

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2146198</td>
<td>Strategic product development - identification of potentials of innovative products</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Siebe</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105696</td>
<td>Strategic product development - identification of potentials of innovative products</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Siebe, Albers</td>
</tr>
</tbody>
</table>

**Legend:**
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

**Competence Certificate**

Oral exam in small groups (30 minutes)

**Prerequisites**
The precondition of this partial work is the successful processing of a case study (T-MACH-110396): Documentation and presentation of the overall results (15 minutes)

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The course T-MACH-110396 - Strategic Product Development - Identification of Potentials of Innovative Products - Case Study must have been passed.

**Below you will find excerpts from events related to this course:**

**Strategic product development - identification of potentials of innovative products**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
<td>Strategic product development - identification of potentials of innovative products</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Siebe</td>
</tr>
</tbody>
</table>

**Content**

Introduction into future management, Development of scenarios, scenariobased strategy development, trendmanagement, strategic early detection, innovation- and technologymanagement, scenarios in product development, from profiles of requirements to new products, examples out of industrial praxis.

**Organizational issues**

Anmeldung erforderlich; Termine/ Ort und weitere Informationen siehe IPEK-Homepage
7.206 Course: Strategic Product Development - Identification of Potentials of Innovative Products - Case Study [T-MACH-110396]

**Responsible:** Prof. Dr.-Ing. Albert Albers  
Prof. Dr.-Ing. Sven Matthiesen  
Prof. Dr.-Ing. Andreas Siebe

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102812 - Major Field: Powertrain Systems  
- M-MACH-102815 - Major Field: Engineering Design  
- M-MACH-102818 - Major Field: Vehicle Technology

**Events**

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-110396</td>
<td>Strategic Product Development - Identification of Potentials of Innovative Products - Case Study</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2146198</td>
<td>Strategic product development - identification of potentials of innovative products</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Siebe</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ❌ Cancelled

**Competence Certificate**

Successful processing of a case study (T-MACH-110396): documentation and presentation of the overall results (15 minutes)

Below you will find excerpts from events related to this course:

**V** Strategic product development - identification of potentials of innovative products  
2146198, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

**Content**

Introduction into future management, Development of scenarios, scenariobased strategy development, trendmanagement, strategic early detection, innovation- and technologymanagement, scenarios in product development, from profiles of requirements to new products, examples out of industrial praxis.

**Organizational issues**

Anmeldung erforderlich; Termine/ Ort und weitere Informationen siehe IPEK-Homepage
7.207 Course: Structural Analysis of Composite Laminates [T-MACH-105970]

Responsible: Prof. Dr.-Ing. Luise Kärger
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102746 - Compulsory Elective Module
M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113106</td>
<td>Structural Analysis of Composite Laminates</td>
<td>2</td>
<td>Lecture / Practice ( / )</td>
<td>Kärger</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate
oral exam, 20 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Structural Analysis of Composite Laminates
2113106, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
On-Site

Content
To reduce fuel consumption and CO2 emissions, lightweight materials such as fiber-reinforced plastics (FRP) are increasingly being used in vehicle construction. The course is dedicated to the calculation of the material and structural behavior of FRP components with the following contents:

- Micromechanics and Homogenization of fibre-matrix-composite
- Macromechanical behavior of individual layer
- Behaviour of multilayer laminate
- FE formulations
- Failure criteria
- Damage analysis
- Dimensioning of FRP parts

Aim of this lecture: The students understand the mechanical correlation between fibre-matrix-configuration and macroscopic material behavior. They can formulate the stress-strain / force-strain relation of an individual layer and of a multilayer laminate by approaches of first and higher order. The students know and can interpret and apply failure criteria and approaches to model damage progression. They know simple dimension strategies to design FRP components.
Literature
### 7.208 Course: Sustainable Product Engineering [T-MACH-105358]

**Responsible:**
- Prof. Dr.-Ing. Albert Albers
- Prof. Dr.-Ing. Sven Matthiesen
- Dr. Karl-Friedrich Ziegahn

**Organisation:**
KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102583 - Major Field: Information Management
- M-MACH-102812 - Major Field: Powertrain Systems
- M-MACH-102815 - Major Field: Engineering Design
- M-MACH-102818 - Major Field: Vehicle Technology
- M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2146192 | Sustainable Product Engineering | 2 SWS | Lecture / 🗣 | Ziegahn |

**Exams**

| ST 2022 | 76-T-MACH-105358 | Sustainable Product Engineering | Ziegahn, Albers |

**Legend:**
- 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**
- written exam (60 min)

**Prerequisites**
- none

**Below you will find excerpts from events related to this course:**

### Sustainable Product Engineering

2146192, SS 2022, 2 SWS, [Open in study portal](#)

**Lecture (V)**
- On-Site

**Content**

understanding of sustainability objectives and their role in product development, the interaction between technical products and their environment, the holistic approach and the equality of economic, social and environmental aspects and environmental aspects

Skills for life-cycle product design using the example of complex automotive components such as airbag systems and other current products

Understanding of product environmental stresses with relevancy to praxis at the example of technology-intensive components, robustness and durability of products as the basis for a sustainable product development, development of skills for the application of environmental simulation during the process of development of technical products

Delivery of key skills such as team skills / project / self / presentation based on realistic projects

The goal of the lecture is to convey the main elements of sustainable product development in the economic, social and ecological context.

The students are able to ...

- identify and describe the sustainability objectives and their role in product development, the interaction between technical products and their environment, the holistic approach and the equality of economic, social and environmental aspects and environmental aspects.
- discuss the skills for life-cycle product design using the example of complex automotive components such as airbag systems and other current products.
- understand the product environmental stresses with relevancy to praxis at the example of technology-intensive components, robustness and durability of products as the basis for a sustainable product development, development of skills for the application of environmental simulation during the process of development of technical products.
- develop skills such as team skills / project / self / presentation based on realistic projects.
### Course: Sustainable Production Economics [T-MACH-111859]

#### Responsible:
- Prof. Dr.-Ing. Kai Furmans
- Prof. Dr.-Ing. Gisela Lanza

#### Organisation:
KIT Department of Mechanical Engineering

#### Part of:
- M-MACH-105902 - Sustainable Production Economics

### Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

**Legend:** Online, Blended (On-Site/Online), On-Site, Cancelled

### Competence Certificate

written exam (duration: 90 min)

### Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-100304 - Production Operations Management must not have been started.
2. The course T-MACH-108734 - Production Operations Management-Project must not have been started.

### Below you will find excerpts from events related to this course:

#### Sustainable Production Economics

2149616, WS 22/23, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) Blended (On-Site/Online)

#### Content

The lecture conveys an overall understanding of operational production management with special consideration of aspects of sustainability as well as an application-oriented understanding of the fundamental issues and methods in industrial companies. Through exercises as well as a business game synchronous to the lecture, the taught contents are deepened through application, so that the participants can apply them directly in their later professional environment.

#### Learning Outcomes:

After successful completion of the course, the students are able ...

- to discuss, alone and in a team, the terms, contexts and models by which manufacturing companies are described;
- to discuss typical problems of manufacturing companies, especially against the background of current and future challenges of ecological, social and economic sustainability;
- to apply the most important methods for efficient and sustainable management in industrial enterprises, in particular in the sense of the circular economy, in a problem-related manner;
- to select and justify decision-making alternatives by applying the methods learned;
- to critically question the methods learned and to independently acquire methods that go beyond this.

### Workload:

regular attendance: 42 hours
self-study: 108 hours

### Organizational issues

Start: 24.10.2022

Vorlesungstermine montags, Übungstermine freitags. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung
Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.
Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
7.210 Course: Sustainable Vehicle Drivetrains [T-MACH-111578]

**Responsible:** Prof. Dr. Thomas Koch  
Dr.-Ing. Olaf Toedter

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102645 - Major Field: Combustion Engine Techniques  
- M-MACH-102818 - Major Field: Vehicle Technology  
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>WT 22/23</th>
<th>2133132</th>
<th>Sustainable Vehicle Drivetrains</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Toedter</th>
</tr>
</thead>
</table>

| Exams | WT 22/23 | 76-T-MACH-105655 | Sustainable Vehicle Drivetrains | Toedter |

**Competence Certificate**

oral exam (20 minutes)

**Prerequisites**

none

Below you will find excerpts from events related to this course:

**Sustainable Vehicle Drivetrains**

2133132, WS 22/23, 2 SWS, Open in study portal

**Content**

Sustainability  
Environmental balance  
Legislation  
Alternative fuels  
BEV  
Fuel cell  
Hybrid drives
### Course: System Integration in Micro- and Nanotechnology [T-MACH-105555]

**Responsible:** Dr. Ulrich Gengenbach  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2106033</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105555</td>
</tr>
</tbody>
</table>

**Legends:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

**Competence Certificate**
oral exam (Duration: 30 min)

**Prerequisites**
none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>System Integration in Micro- and Nanotechnology I</th>
</tr>
</thead>
<tbody>
<tr>
<td>2106033, SS 2022, 2 SWS, Language: German, Open in study portal</td>
</tr>
<tr>
<td>Lecture (V) On-Site</td>
</tr>
</tbody>
</table>

**Content**

- Introduction to system integration (fundamentals)
- Brief introduction to MEMS processes
- Flexures
- Surfaces and plasma processes for surface treatment
- Adhesive bonding in engineering
- Mounting techniques in electronics
- Molded Interconnect devices (MID)
- Functional Printing
- Low temperature cofired ceramics in system integration
- 3D-Integration in semiconductor technology

**Learning objectives:**
The students acquire basic knowledge of challenges and system integration technologies from mechanical engineering, precision engineering and electronics.

**Literature**

- J. Franke, Räumliche elektronische Baugruppen (3D-MID), Carl Hanser-Verlag München, 2013
**7.212 Course: System Integration in Micro- and Nanotechnology 2 [T-MACH-110272]**

**Responsible:** Dr. Ulrich Gengenbach  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2105040</td>
<td>System Integration in Micro- and Nanotechnology 2</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-110272</td>
<td>System Integration in Micro- and Nanotechnology 2</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Gengenbach</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, 🔴 Cancelled

**Competence Certificate**

Oral exam, approx. 15 min.

**Prerequisites**

None

**Annotation**

Attention: The lecture and exam will be offered for the first time in WS20/21!

**Below you will find excerpts from events related to this course:**

**System Integration in Micro- and Nanotechnology 2**

2105040, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Content**

Introduction to system integration (novel processes and applications)

Assembly of hybrid microsystems

Packaging processes

Applications:

- Micro process engineering
- Lab-on-chip systems
- Microoptical systems
- Silicon Photonics

Novel integration processes:

- Direct Laser Writing
- Self Assembly

**Learning objectives**

The students acquire knowledge of novel system integration technologies and their application in microoptic and microfluidic systems.

**Literature**

N.-T. Nguyen, Fundamentals and Applications of Microfluidics, Artech House

G. T. Reed, Silicon Photonics: An Introduction, Wiley
7.213 Course: Systematic Materials Selection [T-MACH-100531]

**Responsible:** Dr.-Ing. Stefan Dietrich  
Prof. Dr.-Ing. Volker Schulze

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2174576</th>
<th>Systematic Materials Selection</th>
<th>3 SWS</th>
<th>Lecture / 📨</th>
<th>Dietrich</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2174577</td>
<td>Exercises in Systematic Materials Selection</td>
<td>1 SWS</td>
<td>Practice / 📨</td>
<td>Dietrich, Mitarbeiter</td>
</tr>
</tbody>
</table>

**Exams**

| ST 2022 | 76-T-MACH-100531 | Systematic Materials Selection | Dietrich |

Legend: 🖥 Online, 📨 Blended (On-Site/Online), ⌁ On-Site, ✗ Cancelled

**Competence Certificate**
The assessment is carried out as a written exam of 2 h.

**Prerequisites**
M-MACH-102562 - Materials Science must be passed.

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The module M-MACH-102562 - Materials Science must have been passed.

**Recommendation**
Basic knowledge in materials science, mechanics and mechanical design due to the lecture Materials Science I/II.

**Below you will find excerpts from events related to this course:**

**Systematic Materials Selection**

2174576, SS 2022, 3 SWS, Language: German, Open in study portal

Lecture (V)  
Blended (On-Site/Online)
Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered:

- Information and introduction
- Necessary basics of materials
- Selected methods / approaches of the material selection
- Examples for material indices and materials property charts
- Trade-off and shape factors
- Sandwich materials and composite materials
- High temperature alloys
- Regard of process influences
- Material selection for production lines
- Incorrect material selection and the resulting consequences
- Abstract and possibility to ask questions

Learning objectives:
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

Requirements:
Wiling SPO 2007 (B.Sc.)
The course Material Science I [21760] has to be completed beforehand.
Wiling (M.Sc.)
The course Material Science I [21760] has to be completed beforehand.

Workload:
The workload for the lecture is 120 h per semester and consists of the presence during the lecture (30 h) as well as preparation and rework time at home (30 h) and preparation time for the oral exam (60 h).

Literature
Vorlesungsskriptum; Übungblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
### 7.214 Course: Technical Acoustics [T-MACH-111382]

**Responsible:**  
Dr. Iris Pantle  
Johannes Walter

**Organisation:**  
KIT Department of Mechanical Engineering  
Institute of Thermal Turbomachinery

**Part of:**  
- M-MACH-102815 - Major Field: Engineering Design  
- M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ST 2022</strong></td>
<td>2158107</td>
<td>Technical Acoustics</td>
<td>2 SWS</td>
<td>Walter, Pantle</td>
</tr>
<tr>
<td><strong>Exams</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ST 2022</strong></td>
<td>76-T-MACH-111382</td>
<td>Technical Acoustics</td>
<td>Pantle, Walter</td>
<td></td>
</tr>
</tbody>
</table>

#### Competence Certificate
oral exam, 30 min.

#### Prerequisites
None

#### Below you will find excerpts from events related to this course:

### Technical Acoustics

2158107, SS 2022, 2 SWS, Language: German, Open in study portal

#### Content

Basics of acoustics  
Perception and weighting of noise (human hearing)  
Description of acoustic parameters, level notation  
Noise propagation  
Acoustical measurement techniques  
regular attendance: 28 hours  
self-study: 60 hours  
preparation for exam: 30 hours  
Oral examination  
Duration: 30 minutes  
No tools or reference materials may be used during the exam.

**WARNING** for ETIT students: the recognition is not possible because the Faculty of Electrical Engineering and Information Technology also offers a "Technical Acoustics" course.

Students get to know the basics of technical acoustics in general. Application of the knowledge in different fields of engineering.

Students learn physical basics of acoustics and human perception. Physical-empirical laws for determination of sound and noise levels of various emission and immission situations will be worked out or derived. Furthermore, general sound measurement methods of machinery will be taught.

Students are able to understand mechanisms of sound origin, propagation and reduction, as well as measuring techniques

#### Organizational issues


#### Literature

1. Vorlesungsskript (von Homepage des Instituts herunterladbar).

Bachelor's Program Mechanical Engineering , Date: 20/09/2022  
Module Handbook, valid from Winter Term 2022/23
### 7.215 Course: Technical Design in Product Development [T-MACH-105361]

**Responsible:** Prof. Dr.-Ing. Albert Albers  
Prof. Dr.-Ing. Sven Matthiesen  
Dr.-Ing. Markus Schmid

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102815 - Major Field: Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Start</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>Days</th>
<th>Room</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2146179</td>
<td>Technical Design in Product Development</td>
<td>2 SWS</td>
<td>Lecture / X</td>
<td>Schmid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

Written exam (60 min)  
Only dictionary is allowed

**Below you will find excerpts from events related to this course:**

#### Technical Design in Product Development

**2146179, SS 2022, 2 SWS, Language: German, Open in study portal**

**Lecture (V)**

**Cancelled**

**Content**

**Introduction**

Relevant parameters on product value in Technical Design  
Design in Methodical Development and Engineering and for a differentiated validation of products  
Design in the concept stage of Product Development  
Design in the draft and elaboration stage of Product Development  

**Best Practice**

After listening the module "technical design" the students should have knowledge about the basics of technical oriented design as an integral part of the methodical product development

The students have knowledge about ...

- the interface between engineer and designer.
- all relevant human-product requirements as f. exp. demographic/ geographic and psychographic features, relevant perceptions, typical content recognition as well as ergonomic bases.
- the approaches concerning the design of a product, product program or product system with focus on structure, form-, color- and graphic design within the phases of the design process.
- the design of functions and supporting structures as well as the important interface between human and machine.
- relevant parameters of a good corporate design.

**Organizational issues**

Die Veranstaltung **findet 2022 nicht statt.**
Literature
Markus Schmid, Thomas Maier
Technisches Interface Design
Anforderungen, Bewertung, Gestaltung.
2017
Hartmut Seeger
Design technischer Produkte, Produktprogramme und -systeme
Industrial Design Engineering.
2., bearb. und erweiterte Auflage.
ISBN: 3540236538
September 2005 - gebunden - 396 Seiten
7.216 Course: Technical Thermodynamics and Heat Transfer I [T-MACH-104747]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102574 - Technical Thermodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2165501</th>
<th>Technical Thermodynamics and Heat Transfer I</th>
<th>4 SWS</th>
<th>Lecture / 🗣</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3165014</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 76-T-MACH-104747 | Technical Thermodynamics and Heat Transfer I | Maas, Schießl |
| ST 2022 | 76-T-MACH-104747-englisch | Technical Thermodynamics and Heat Transfer I | Maas, Schießl |
| WT 22/23 | 76-T-MACH-104747 | Technical Thermodynamics and Heat Transfer I | Maas, Schießl |
| WT 22/23 | 76-T-MACH-104747-english | Technical Thermodynamics and Heat Transfer I | Maas, Schießl |

Competence Certificate
Prerequisite: attestation each semester by homework assignments
Written exam, approx. 3 hours

Prerequisites
Successful participation in the tutorial (T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer I
2165501, WS 22/23, 4 SWS, Language: German, Open in study portal

Content
- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Organizational issues
Die Vorlesung findet bis Ende November online statt.
Content

- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Literature

Vorlesungsskriptum


7.217 Course: Technical Thermodynamics and Heat Transfer II [T-MACH-105287]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102574 - Technical Thermodynamics

Type | Credits | Grading scale | Recurrence | Version
--- | --- | --- | --- | ---
Written examination | 7 | Grade to a third | Each summer term | 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Format</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Lecture</td>
<td>3 SWS</td>
<td>Blended (On-Site/Online)</td>
<td>Maas</td>
</tr>
<tr>
<td>ST 2022</td>
<td>3166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Lecture</td>
<td>3 SWS</td>
<td>Blended (On-Site/Online)</td>
<td>Schießl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Format</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Maas, Schießl</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105287-englisch</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Maas, Schießl</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Maas, Schießl</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105287-english</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Maas, Schießl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Prerequisite: attestation each semester by homework assignments
Written exam, approx. 3 hours

Prerequisites
Successful participation in the tutorial (T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II
2166526, SS 2022, 3 SWS, Language: German, Open in study portal

Content
- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

Literature
Vorlesungsskriptum
Content

- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

Literature

Vorlesungsskriptum


7.218 Course: Technology of Steel Components [T-MACH-105362]

**Responsible:** Prof. Dr.-Ing. Volker Schulze  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2174579 | Technology of steel components | 2 SWS | Lecture / 📚 | Schulze |

**Exams**

| ST 2022 | 76-T-MACH-105362 | Technology of Steel Components | Schulze |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

**Competence Certificate**  
Oral exam, about 25 minutes

**Prerequisites**  
M-MACH-102562 - Materials Science must be passed.

**Modeled Conditions**  
The following conditions have to be fulfilled:

1. The module M-MACH-102562 - Materials Science must have been passed.

**Below you will find excerpts from events related to this course:**

**Technology of steel components**  
2174579, SS 2022, 2 SWS, Language: German, Open in study portal  
Lecture (V)  
Blended (On-Site/Online)

**Content**  
Meaning, Development and characterization of component states  
Description of the influence of component state on mechanical properties  
Stability of component states  
Steel manufacturing  
Component states due to forming  
Component states due to heat treatments  
Component states due to surface hardening  
Component states due to machining  
Component states due to mechanical surface treatments  
Component states due to joining  
Summarizing evaluation

**Learning objectives:**  
The students have the background to evaluate the influence of manufacture processes on the compound state of metallic compounds. The students can assess the influence and the stability of compound state under mechanical load. The students are capable to describe the individual aspects of interaction of the compound state of steel components due to forming, heat treatment, mechanical surface treatment and joining processes.

**Requirements:**  
Materials Science and Engineering I & II

**Workload:**  
regular attendance: 21 hours  
self-study: 99 hours


**Literature**

Skript wird in der Vorlesung ausgegeben

VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984


V. Schulze: Modern Mechanical Surface Treatments, Wiley, Weinheim, 2005
7.219 Course: Theoretical Description of Mechatronic Systems [T-MACH-105521]

**Responsible:** Prof. Dr.-Ing. Wolfgang Seemann
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**
oral exam, approx. 30 min..

**Prerequisites**
none
7.220 Course: Theory of Stability [T-MACH-105372]

**Responsible:** Prof. Dr.-Ing. Alexander Fidlin
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102820 - Major Field: Mechatronics
- M-MACH-104442 - Major Field: Vibration Theory

**Type**
- Oral examination

**Credits**
- 6

**Grading scale**
- Grade to a third

**Recurrence**
- Each summer term

**Version**
- 1

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2163113</td>
<td>Theory of Stability</td>
<td>2</td>
<td>Lecture / 🕵️</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2163114</td>
<td>Übungen zu Stabilitätstheorie</td>
<td>2</td>
<td>Practice / 🕵️</td>
<td>Fidlin, Yüzbasioglu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105372</td>
<td>Theory of Stability</td>
<td></td>
<td></td>
<td>Fidlin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕵️ Blended (On-Site/Online), 🗺️ On-Site, ✗ Cancelled

**Competence Certificate**

oral exam, 30 min.

**Prerequisites**

none

**Recommendation**

Vibration theory, Mathematical Methods of Vibration Theory

**Below you will find excerpts from events related to this course:**

**Theory of Stability**

2163113, SS 2022, 2 SWS, Language: German, [Open in study portal]

**Lecture (V)**

Blended (On-Site/Online)

**Content**

- Basic concepts of stability
- Lyapunov's functions
- Direct lyapunov's methods
- Stability of equilibria positions
- Attraction area of a stable solution
- Stability according to the first order approximation
- Systems with parametric excitation
- Stability criteria in the control theory

**Literature**

## 7.221 Course: Thermal Solar Energy [T-MACH-105225]

**Responsible:** Prof. Dr. Robert Stieglitz  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105225</td>
<td>Thermal Solar Energy</td>
<td>2 SWS</td>
<td>Stieglitz</td>
</tr>
</tbody>
</table>

**Competition Certificate**  
Oral examination of about 30 minutes

**Prerequisites**  
none

Below you will find excerpts from events related to this course:

**Thermal Solar Energy**  
2169472, WS 22/23, 2 SWS, Language: German, Open in study portal

### Content

In detail:
1. Introduction to energy requirements and evaluation of the potential use of solar thermal energy.
2. Primary energy source SUN: sun, solar constant, radiation (direct, diffuse scattering, absorption, impact angle, radiation balance).
5. Momentum and heat transport: basic equations of single and multiphase transport, calculation methods, stability limits.
6. Low temperature solar thermal systems: collector types, methods for system simulation, planning and dimensioning of systems, system design and stagnation scenarios.
7. High temperature solar thermal systems: solar towers and solar-farm concept, loss mechanisms, chimney power plants and energy production processes.

The lecture elaborates the basics of the solar technology and the definition of the major wordings and its physical content such as radiation, thermal use, insulation etc.. Further the design of solar collectors for different purposes is discussed and analyzed. The functional principle of solar plants is elaborated before at the end the ways for solar cooling is discussed.

The aim of the course is to provide the basic physical principles and the derivation of key parameters for the individual solar thermal use. This involves in addition to the selective absorber, mirrors, glasses, and storage technology. In addition, a utilization of solar thermal energy means an interlink of the collector with a thermal-hydraulic circuit and a storage. The goal is to capture the regularities of linking to derive efficiency correlations as a function of their use and evaluate the performance of the entire system.

### Recommendations / previous knowledge
Basics in heat and mass transfer, material science and fluid mechanics, desirable are reliable knowledge in physics in optics and thermodynamics.

Oral exam of about 25 minutes, no tools or reference materials may be used during the exam.
Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
Bereitstellung des Studienmaterials in gedruckter und elektronischer Form.
7 COURSES

Course: Thermal Turbomachines I [T-MACH-105363]

**7.222 Course: Thermal Turbomachines I [T-MACH-105363]**

**Responsible:** Prof. Dr.-Ing. Hans-Jörg Bauer  
**Organisation:** KIT Department of Mechanical Engineering  
Institute of Thermal Turbomachinery  
**Part of:** M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2169453</td>
<td>Thermal Turbomachines I</td>
<td>Lecture / 🗣️</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bauer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2169454</td>
<td>Tutorial - Thermal Turbo Machines I</td>
<td>Practice / 🗣️</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bauer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2169553</td>
<td>Thermal Turbomachines I (in English)</td>
<td>Lecture / 🗣️</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bauer</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105363</td>
<td>Thermal Turbomachines I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bauer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76T-Mach-105363-Wdh</td>
<td>Thermal Turbomachines I (for repeater)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bauer</td>
</tr>
</tbody>
</table>

**Legend:** 🖥 Online, ☑️ Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

**Competence Certificate**
oral exam, duration 30 min.

**Prerequisites**
none

*Below you will find excerpts from events related to this course:*
Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to describe and analyse not only the individual components but also entire assemblies. The students can assess and evaluate the effects of physical, economical and ecological boundary conditions.

regular attendance: 31,50 h
self-study: 64,40 h

Recommendations:
Recommended in combination with the lecture ‘Thermal Turbomachines II’.

Examination:
oral
Duration: approximately 30 min

no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines II'.
The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to to describe and analyse not only the individual components but also entire assemblies. The students can asses and evaluate the effects of physical, economical and ecological boundary conditions.

regular attendance: 31,50 h
self-study: 64,40 h

Exam:
oral
Duration: approximately 30 min
no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
7.223 Course: Thermal Turbomachines II [T-MACH-105364]

**Responsible:** Prof. Dr.-Ing. Hans-Jörg Bauer

**Organisation:** KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery

**Part of:** M-MACH-102838 - Major Field: Energy Converting Engines

### Type
- Oral examination

### Credits
- 6

### Grading scale
- Grade to a third

### Recurrence
- Each summer term

### Version
- 2

#### Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2170476</td>
<td>Thermal Turbomachines II</td>
<td>3</td>
<td>Lecture / 🗣</td>
<td>Bauer</td>
</tr>
<tr>
<td>2170477</td>
<td>Tutorial - Thermal Turbomachines II (Übung - Thermische Turbomaschinen II)</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Bauer, Mitarbeiter</td>
</tr>
<tr>
<td>2170553</td>
<td>Thermal Turbomachines II (in English)</td>
<td>3</td>
<td>Lecture / Practice ( / 🗣)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

#### Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>Course</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105364</td>
<td>Thermal Turbomachines II</td>
<td></td>
<td>Bauer</td>
</tr>
</tbody>
</table>

**Competence Certificate**
- Oral exam, duration: 30 min.

**Prerequisites**
- None

Below you will find excerpts from events related to this course:

**Thermal Turbomachines II**
- 2170476, SS 2022, 3 SWS, Language: German, Open in study portal
- Lecture (V) On-Site
Content
General overview, trends in design and development

Comparison turbine - compressor

Integrating resume of losses

Principal equations and correlations in turbine and compressor design, stage performance

Off-design performance of multi-stage turbomachines

Control system considerations for steam and gas turbines

Components of turbomachines

Critical components

Materials for turbine blades

Cooling methods for turbine blades (steam and air cooling methods)

Short overview of power plant operation

Combustion chamber and environmental issues

Based on the fundamental skills learned in 'Thermal Turbomachines I' the students have the ability to design turbines and compressors and to analyse the operational behavior of these machines.

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines I'.

regular attendance: 31,50 h
self-study: 64,40 h

Exam:
oral (can only be taken in combination with 'Thermal Turbomachines I')
Duration: 30 min ( --> 1 hour including Thermal Turbomachines I)

Auxiliary: no tools or reference materials may be used during the exam

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

Recommendations:
Recommended in combination with the lecture 'Thermal Turbomachines II'.
regular attendance: 31,50 h
self-study: 64,40 h

The students are able to explain and comment on the design and operation of thermal turbomachines in detail. Moreover, they can evaluate the range of applications for turbomachinery. Therefore, students are able to describe and analyse not only the individual components but also entire assemblies. The students can assess and evaluate the effects of physical, economical and ecological boundary conditions.

Exam:
oral
Duration: approximately 30 min
no tools or reference materials may be used during the exam.

Literature
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
7 COURSES
Course: Tires and Wheel Development for Passenger Cars [T-MACH-102207]

7.224 Course: Tires and Wheel Development for Passenger Cars [T-MACH-102207]

Responsible: Hon.-Prof. Dr. Günter Leister
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2114845</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Leister</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Lecture</td>
<td></td>
<td>Leister</td>
</tr>
</tbody>
</table>

Legend: 🖱 Online, 🕍 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

**Content**

1. The role of the tires and wheels in a vehicle
2. Geometrie of Wheel and tire, Package, load capacity and endurance, Book of requirement
3. Mobility strategy, Minispare, runflat systems and repair kit.
4. Project management: Costs, weight, planning, documentation
5. Tire testing and tire properties
6. Wheel technology including Design and manufacturing methods, Wheeltesting
7. Tire pressure: Indirect and direct measuring systems
8. Tire testing subjective and objective

Learning Objectives:
The students are informed about the interactions of tires, wheels and chassis. They have an overview of the processes regarding the tire and wheel development. They have knowledge of the physical relationships.

Organizational issues

Voraussichtliche Termine, nähere Informationen und eventuelle Terminänderungen:
siehe Instituts homepage.

Literature

Manuskript zur Vorlesung

Manuscript to the lecture
**Course: Tribology [T-MACH-105531]**

**Responsible:** Prof. Dr. Martin Dienwiebel
Prof. Dr.-Ing. Matthias Scherge

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102812 - Major Field: Powertrain Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 2181114 | Tribology | 5 SWS | Lecture / Practice ( / ) | Dienwiebel, Scherge |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

**Competence Certificate**
oral examination (ca. 40 min)
no tools or reference materials

**Prerequisites**
admission to the exam only with successful completion of the exercises [T-MACH-109303]

**Modeled Conditions**
The following conditions have to be fulfilled:

1. The course T-MACH-109303 - Exercises - Tribology must have been passed.

**Recommendation**
preliminary knowledge in mathematics, mechanics and materials science

**Below you will find excerpts from events related to this course:**

<table>
<thead>
<tr>
<th>Tribology</th>
<th>Lecture / Practice (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181114, WS 22/23, 5 SWS, Language: German, Open in study portal</td>
<td>On-Site</td>
</tr>
</tbody>
</table>
Content

1. Chapter 1: Friction
   - adhesion, geometrical and real area of contact, Friction experiments, friction powder, tribological stressing, environmental influences, tribological age, contact models, Simulation of contacts, roughness.

2. Chapter 2: Wear
   - plastic deformation at the asperity level, dissipation modes, mechanical mixing, Dynamics of the third body, running-in, running- in dynamics, shear stress.

3. Chapter 3: Lubrication
   - base oils, Striebeck plot, lubrication regimes (HD, EHD, mixed lubrication), additives, oil characterization, solid lubrication.

4. Chapter 4: Measurement Techniques
   - friction measurement, tribometer, dissipated frictional power, conventional wear measurement, continuous wear measurement(RNT)

5. Chapter 5: Roughness
   - profilometry, surface roughness parameters, evaluation length and filters, bearing ratio curve, measurement error

6. Chapter 6: Accompanying Analysis
   - multi-scale topography measurement, chemical surface analysis, structural analysis, mechanical analysis

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students.

The student can

1. describe the fundamental friction and wear mechanisms, which occur in tribologically stressed systems
2. evaluate the friction and wear behavior of tribological systems
3. explain the effects of lubricants and their most important additives
4. identify suitable approaches to optimize tribological systems
5. explain the most important experimental methods for the measurement of friction and wear, and is able to use them for the characterisation of tribo pairs
6. choose suitable methods for the evaluation of roughness and topography from the nm-scale to the mm-scale and is able to interpret the determined values in respect to their effect on the tribological behavior
7. describe the most important surface-analytical methods and their physical principles for the characterization of tribologically stressed sliding surfaces

preliminary knowledge in mathematics, mechanics and materials science recommended

regular attendance: 45 hours
self-study: 195 hours
oral examination (ca. 40 min)
no tools or reference materials
admission to the exam only with successful completion of the exercises

Literature

Course: Turbo Charging of Internal Combustion Engines [T-MACH-111591]

### 7.226 Course: Turbo Charging of Internal Combustion Engines [T-MACH-111591]

**Responsible:** Dr.-Ing. Johannes Kech  
Dr.-Ing. Heiko Kubach

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
- M-MACH-102645 - Major Field: Combustion Engine Techniques  
- M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Competence Certificate**  
oral exam, appr. 20 min

**Prerequisites**  
none
7.227 Course: Turbo Jet Engines [T-MACH-105366]

**Responsible:** Prof. Dr.-Ing. Hans-Jörg Bauer

**Organisation:** KIT Department of Mechanical Engineering Institute of Thermal Turbomachinery

**Part of:** M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2170478</th>
<th>Turbo Jet Engines</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Bauer</th>
</tr>
</thead>
</table>

**Exams**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-105366</th>
<th>Turbo Jet Engines</th>
<th>Bauer</th>
</tr>
</thead>
</table>

**Competence Certificate**
oral exam, duration: 20 min.

**Prerequisites**
none

Below you will find excerpts from events related to this course:

**Content**
Introduction to jet engines and their components
Demands on engines and propulsive efficiency
Thermodynamic and gas dynamic fundamentals and design calculations
Components of air breathing engines
Jet engine design and development process
Engine and component design
Current developments in the jet engines industry

The students have the ability to:

- compare the design concepts of modern jet engines
- analyse the operation of modern jet engines
- apply the thermodynamic and fluidmechanic basics of jet engines
- choose the main components intake, compressor, combustor, turbine and thrust nozzle based on given criteria
- comment on different methods for the reduction of pollutant emissions, noise and fuel consumption

regular attendance: 21 h
self-study: 42 h

**Exam:**
oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam
Literature
Hagen, H.: Fluggasturbinen und ihre Leistungen, G. Braun Verlag, 1982
Hünnecke, K.: Flugtriebwerke, ihre Technik und Funktion, Motorbuch Verlag, 1993
### 7.228 Course: Tutorial Advanced Mathematics I [T-MATH-100525]

**Responsible:** PD Dr. Tilo Arens  
Prof. Dr. Roland Griesmaier  
PD Dr. Frank Hettlich

**Organisation:** KIT Department of Mathematics

**Part of:** M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>0131100</td>
<td>Übungen zu 0131000</td>
<td>2</td>
<td>Practice</td>
<td>Arens</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>0131300</td>
<td>Übungen zu 0131200</td>
<td>2</td>
<td>Practice</td>
<td>Arens</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

**Prerequisites**

None.
**Course: Tutorial Advanced Mathematics II [T-MATH-100526]**

**Responsible:** PD Dr. Tilo Arens  
Prof. Dr. Roland Griesmaier  
PD Dr. Frank Hettlich

**Organisation:** KIT Department of Mathematics

**Part of:** M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>0180900</th>
<th>Übungen zu 0180800</th>
<th>2 SWS</th>
<th>Practice</th>
<th>Arens</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>0181100</td>
<td>Übungen zu 0181000</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Arens</td>
</tr>
</tbody>
</table>

**Exams**

| ST 2022 | 7700024   | Problem Class for Advanced Mathematics II | Hettlich, Arens, Griesmaier |

**Competence Certificate**

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

**Prerequisites**

None.
7.230 Course: Tutorial Advanced Mathematics III [T-MATH-100527]

**Responsible:** PD Dr. Tilo Arens  
Prof. Dr. Roland Griesmaier  
PD Dr. Frank Hettlich

**Organisation:** KIT Department of Mathematics  
**Part of:** M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

| WT 22/23 | 0131500 | Übungen zu 0131400 | 2 SWS | Practice | Hettlich |

**Competence Certificate**

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

**Prerequisites**

None.
7.231 Course: Tutorial Continuum Mechanics of Solids and Fluids [T-MACH-110333]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102582 - Major Field: Continuum Mechanics
M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161253</td>
<td>Tutorial Continuum mechanics of solids and fluids</td>
<td>1 SWS</td>
<td>Practice / 🧩</td>
<td>Dyck, Karl, Böhlke</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⬤ On-Site, x Cancelled

Competence Certificate
Successfully passing the Tutorial is a prerequisite for taking part in the exam "Continuum Mechanics of Solids and Fluids" (T-MACH-110377).

For students of Mechanical Engineering (BSc) that have chosen the Major Field "Continuum Mechanics" and for students of Material Science and Material Technology (BSc) the prerequisites consist of successfully solving the written homework sheets as well as the computational homework sheets during the associated computer tutorials.

For students of Mechanical Engineering that have chosen a different Major Field of students from different fields of study the prerequisites consist of successfully solving only the written homework sheets.

Prerequisites
None

Annotation
Due to capacity reasons it is possible that not all students of this course can be admitted to the computer tutorials. Students of the bachelor's degree program in mechanical engineering who have chosen the Major Field Continuum Mechanics (SP-Nr 13) and students of the bachelor's degree program in material science and material technology will be admitted to the computer tutorials in any case.

If additional places are available in the computer tutorials for this course, these will be allocated according to the BSc average grade.

Below you will find excerpts from events related to this course:

Content
Please refer to the lecture "Continuum mechanics of solids and fluids".

Literature
Siehe Vorlesung " Kontinuumsmechanik der Festkörper und Fluide ".
Please refer to the lecture "Continuum mechanics of solids and fluids".

- **Responsible:** Prof. Dr.-Ing. Thomas Böhlke
  Dr.-Ing. Tom-Alexander Langhoff
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Attestations have to be achieved in the following four categories: mandatory written homework problems, written homework problems, computational homework problems, colloquia.

This course is passed if all mandatory written homework problems are passed and if in the other three categories (written homework problems, computational homework problems, colloquia) in total at most three attestations have been finally not passed, at most one in each of the three categories.

Successful participation in this course allows for registration to the Exam "Engineering Mechanics I" (see T-MACH-100282)

**Prerequisites**
None

Below you will find excerpts from events related to this course:

**Tutorial Engineering Mechanics I**
2161246, WS 22/23, 2 SWS, Language: German, Open in study portal

**Content**
Please refer to the lecture Engineering Mechanics I.

**Literature**
Siehe Vorlesung Technische Mechanik I
7.233 Course: Tutorial Engineering Mechanics II [T-MACH-100284]

**Responsible:** Prof. Dr.-Ing. Thomas Böhlke  
Dr.-Ing. Tom-Alexander Langhoff  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2162251</td>
<td>Tutorial Engineering Mechanics II</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Dyck, Sterr, Böhlke</td>
<td></td>
</tr>
<tr>
<td>ST 2022 3162011</td>
<td>Engineering Mechanics II (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Kehrer, Görthofer, Langhoff</td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-100284</td>
<td>Tutorial Engineering Mechanics II</td>
<td></td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 76-T-MACH-100284-englisch</td>
<td>Tutorial Engineering Mechanics II</td>
<td></td>
<td>Böhlke, Langhoff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ⏲️ Cancelled

**Competence Certificate**

Attestations have to be achieved in the following four categories: mandatory written homework problems, written homework problems, computational homework problems, colloquia.

This course is passed if all mandatory written homework problems are passed and if in the other three categories (written homework problems, computational homework problems, colloquia) in total at most two attestations have been finally not passed, at most one in each of the three categories.

Successful participation in this course allows for registration to the Exam "Engineering Mechanics II" (see T-MACH-100283)

**Prerequisites**

None

*Below you will find excerpts from events related to this course:*

**Tutorial Engineering Mechanics II**

2162251, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

**Content**

see lecture Engineering Mechanics II

**Literature**

Siehe Vorlesung Technische Mechanik II

**Engineering Mechanics II (Tutorial)**

3162011, SS 2022, 2 SWS, Language: English, [Open in study portal](#)

**Content**

see lecture "Engineering Mechanics II"

**Literature**

see lecture "Engineering Mechanics II"
### Course: Tutorial Engineering Mechanics III [T-MACH-105202]

**Responsible:** Prof. Dr.-Ing. Wolfgang Seemann  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2161204</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>Practice</td>
<td>2 SWS</td>
<td></td>
<td>Fidlin, Altoé</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3161013</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>Practice</td>
<td>2 SWS</td>
<td></td>
<td>Römer, Altoé</td>
</tr>
</tbody>
</table>

**Legend:**  
- 🖥 Online  
- ☬ Blended (On-Site/Online)  
- 🗽 On-Site  
- ✗ Cancelled

**Competence Certificate**  
Attestations, successful accomplishment of exercise sheets

**Prerequisites**  
None

**Below you will find excerpts from events related to this course:**

**Engineering Mechanics III (Tutorial)**

2161204, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Content**

In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the tutorial exercises are presented and instructions for those exercises are given which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.

**Literature**

- Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
- Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
- Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
- Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
- Hagedorn: Technische Mechanik III.

**Engineering Mechanics III (Tutorial)**

3161013, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

**Content**

Exercises related to the lecture

**Responsible:** Prof. Dr.-Ing. Wolfgang Seemann

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102572 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
</tr>
<tr>
<td>ST 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
</tr>
</tbody>
</table>

**Competence Certificate**
Attestations, successful accomplishment of exercise sheets

**Below you will find excerpts from events related to this course:**

**Engineering Mechanics IV (Tutorial)**
2162232, SS 2022, 2 SWS, Language: German, Open in study portal

**Practice (Ü)**
Blended (On-Site/Online)

**Content**
In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the exercises are presented and instructions are given for those exercises which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.

**Literature**
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
Magnus: Kreisel, Theorie und Anwendung, Springer-Verlag, Berlin, 1971
Klotter: Technische Schwingungslehre, 1. Bd. Teil A, Heidelberg
7.236 Course: Tutorial Introduction to Computational Fluid Dynamics [T-MACH-111033]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel  
Dr.-Ing. Alexander Stroh
Organisation: KIT Department of Mechanical Engineering

Part of:  
M-MACH-102582 - Major Field: Continuum Mechanics  
M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Event Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2154534</td>
<td>Tutorial Introduction to Computational Fluid Dynamics</td>
<td>2 SWS</td>
<td>Practice Blended (On-Site/Online)</td>
<td>Stroh, Frohnapfel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Event Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-111033</td>
<td>Tutorial Introduction to Computational Fluid Dynamics</td>
<td>Stroh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚡ Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Competence Certificate
The competence certificate consists of successfully solving the computational homework tasks.

Prerequisites
none

Annotation
Successful participation in this course allows for registration to the Exam: "Introduction to Computational Fluid Dynamics" (see T-MACH-110362).

Knowledge of the contents of the courses "Continuum Mechanics of Solids and Fluids" and "Mathematical Methods of Continuum Mechanics" as well as the corresponding tutorials is expected.

Below you will find excerpts from events related to this course:

Tutorial Introduction to Computational Fluid Dynamics
2154534, SS 2022, 2 SWS, Language: German, Open in study portal

Practice (Ü)
Blended (On-Site/Online)

Content

• Introduction and Motivation, Fundamental Equations and Dimensionless Numbers  
• Turbulence and Modelling (DNS, LES, RANS);  
• Numerical Solution of the Navier Stokes Equations: Discretization and Solution Approaches (FDM, FVM), boundary and initial conditions, stability, mistakes in numerics and modelling  
• Set-up of a numerical simulation: pre- and postprocessing, validation, result evaluation, discussion of results  
• Introduction to open-source toolbox OpenFOAM: set-up of simulation, generation of numerical grid with different tools, data evaluation within OpenFOAM and with python;  
• Introduction to a research oriented toolbox for turbulent flows (DNS based on Incompact3d): set-up of simulation, statistical evaluation and analysis with MATLAB und python;  
• Visualization of simulation results in ParaView

This course includes a lecture and a computer course. The limited places in the computer course will be distributed by the institute.
7.237 Course: Tutorial Introduction to the Finite Element Method [T-MACH-110330]

**Responsible:** Prof. Dr.-Ing. Thomas Böhlke  
Dr.-Ing. Tom-Alexander Langhoff  

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102582 - Major Field: Continuum Mechanics  
M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2162257 | Tutorial Introduction to the Finite Element Method | 1 SWS | Practice / 🟢 | Dyck, Lauff, Langhoff, Böhlke |

| ST 2022 | 76-T-MACH-110330 | Tutorial Introduction to the Finite Element Method | Böhlke, Langhoff |

**Exams**

**Competence Certificate**
Successful participation in this course allows for registration to the Exam "Introduction to the Finite Element Method" (see 76-T-MACH-105320)

For students of Mechanical Engineering (BSc) that have chosen the Major Field "Continuum Mechanics" the prerequisites consist of successfully solving the written homework sheets as well as the computational homework sheets during the associated computer tutorials.

For students of Mechanical Engineering that have chosen a different Major Field and for students from different fields of study the prerequisites consist of successfully solving only the written homework sheets.

**Annotation**
Knowledge of the contents of the courses "Continuum Mechanics of Solids and Fluids" and "Mathematical Methods of Continuum Mechanics" as well as the corresponding tutorials are expected.

Due to capacity reasons it is possible that not all students of this course can be admitted to the computer tutorials. Students of the bachelor's degree program in mechanical engineering who have chosen the Major Field Continuum Mechanics (SP-Nr 13) will be admitted to the computer tutorials in any case.

If additional places are available in the computer tutorials for this course, these will be allocated according to the BSc average grade.

**Below you will find excerpts from events related to this course:**

**Tutorial Introduction to the Finite Element Method**  
2162257, SS 2022, 1 SWS, Language: German, Open in study portal  
Practice (Ü) Blended (On-Site/Online)

**Content**
See lecture "Introduction to the Finite Element Method"

**Literature**
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"
7.238 Course: Tutorial Mathematical Methods in Continuum Mechanics [T-MACH-110376]

**Responsible:** Prof. Dr.-Ing. Thomas Böhlke

**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2161255</th>
<th>Tutorial Mathematical Methods in Continuum Mechanics</th>
<th>2 SWS</th>
<th>Practice / 🧩</th>
<th>Gajek, Lauff, Böhlke</th>
</tr>
</thead>
</table>

**Legend:** Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled

**Competence Certificate**

Successfully solving the homework sheets. Details are announced in the first lecture.

**Prerequisites**

None

Below you will find excerpts from events related to this course:

**Content**

See "Mathematical Methods in Continuum Mechanics"

**Literature**

Siehe "Mathematische Methoden der Kontinuumsmechanik"
7.239 Course: Vehicle Comfort and Acoustics I [T-MACH-105154]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102818 - Major Field: Vehicle Technology
M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2114856</th>
<th>Vehicle Ride Comfort &amp; Acoustics I</th>
<th>2 SWS</th>
<th>Lecture / 📚</th>
<th>Gauterin</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2113806</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-105154</th>
<th>Vehicle Comfort and Acoustics I</th>
<th>Gauterin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105154_Wiederholer_2</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>Gauterin</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76T-MACH-105154_Wiederholung</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❔ Cancelled

Competence Certificate

Oral Examination

Duration: approx. 30 to 40 minutes

Auxiliary means: none

Prerequisites

Can not be combined with lecture T-MACH-102206

Below you will find excerpts from events related to this course:

**Vehicle Ride Comfort & Acoustics I**
2114856, SS 2022, 2 SWS, Language: English, Open in study portal

Content

1. Perception of noise and vibrations
2. Fundamentals of acoustics and vibrations
3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations
4. The relevance of tire and chasis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:

The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chasis regarding driving comfort and acoustic under consideration of goal conflicts.
Organizational issues
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]
Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.
Classroom attendance depends on the development of the pandemic situation.

Literature
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

Vehicle Comfort and Acoustics I
2113806, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
1. Perception of noise and vibrations
2. Fundamentals of acoustics and vibrations
3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations
4. The relevance of tire and chassis for the acoustic and mechanical driving comfort:
   phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:
The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chassis regarding driving comfort and acoustic under consideration of goal conflicts.

Organizational issues
Kann nicht mit der Veranstaltung [2114856] kombiniert werden.
Can not be combined with lecture [2114856]

Literature
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
**7.240 Course: Vehicle Comfort and Acoustics II [T-MACH-105155]**

**Responsible:** Prof. Dr. Frank Gauterin  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102818 - Major Field: Vehicle Technology  
M-MACH-104442 - Major Field: Vibration Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

| ST 2022 | 2114825 | Vehicle Comfort and Acoustics II | 2 SWS | Lecture / 🧩 | Gauterin |
| ST 2022 | 2114857 | Vehicle Ride Comfort & Acoustics II | 2 SWS | Lecture / 🧩 | Gauterin |

**Exams**

| ST 2022 | 76-T-MACH-105155 | Vehicle Comfort and Acoustics II | Gauterin |
| ST 2022 | 76-T-MACH-105155_Wiederholung | Vehicle Comfort and Acoustics II | Gauterin |

**Legend:** 🖥 Online, 🧩 Blended (On-Site/Online), 🗺️ On-Site, ✗ Cancelled

**Competence Certificate**

**Oral Examination**

Duration: approx. 30 to 40 minutes

Auxiliary means: none

**Prerequisites**

Can not be combined with lecture T-MACH-102205

**Below you will find excerpts from events related to this course:**

**Vehicle Comfort and Acoustics II**

2114825, SS 2022, 2 SWS, Language: German, [Open in study portal](#)  
Lecture (V)  
Blended (On-Site/Online)
Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
   - phenomena
   - influencing parameters
   - types of construction
   - optimization of components and systems
   - conflicts of goals
   - methods of development

3. Noise emission of motor vehicles
   - noise stress
   - sound sources and influencing parameters
   - legal restraints
   - optimization of components and systems
   - conflict of goals
   - methods of development

Learning Objectives:
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Organizational issues
Kann nicht mit der Veranstaltung [2114857] kombiniert werden.
Can not be combined with lecture [2114857]
Je nach Pandemie Lage wird evtl. kurzfristig auf "Online Veranstaltung" geändert.

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

Vehicle Ride Comfort & Acoustics II
2114857, SS 2022, 2 SWS, Language: English, Open in study portal

Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
   - phenomena
   - influencing parameters
   - types of construction
   - optimization of components and systems
   - conflicts of goals
   - methods of development

3. Noise emission of motor vehicles
   - noise stress
   - sound sources and influencing parameters
   - legal restraints
   - optimization of components and systems
   - conflict of goals
   - methods of development

Learning Objectives:
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.
Organizational issues
Genaue Termine entnehmen Sie bitte der Institushomepage.
Kann nicht mit der Veranstaltung [2114825] kombiniert werden.
Scheduled dates:
see homepage of the institute.
Can not be combined with lecture [2114825].
Classroom attendance depends on the development of the pandemic situation

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
7.241 Course: Vehicle Ergonomics [T-MACH-108374]

**Responsible:** Prof. Dr.-Ing. Barbara Deml  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:**  
M-MACH-102815 - Major Field: Engineering Design  
M-MACH-102818 - Major Field: Vehicle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2110050</th>
<th>Vehicle Ergonomics</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Deml</th>
</tr>
</thead>
</table>

**Exams**

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>76-T-MACH-108374</th>
<th>Vehicle Ergonomics</th>
<th>Deml</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

**Competence Certificate**
written exam, 60 minutes

**Prerequisites**
none

Below you will find excerpts from events related to this course:

**Vehicle Ergonomics**  
2110050, SS 2022, 2 SWS, Language: German, Open in study portal

**Content**
- Basics of physical-body related ergonomics  
- Basics of cognitive ergonomics  
- Theories of driver behaviour  
- Interface design  
- Usability testing

**Learning objective:**
An ergonomic vehicle is best adapted to the requirements, needs and characteristics of its users and thus enables effective, efficient and satisfying interaction. After attending the lecture, students are able to analyse and evaluate the ergonomic quality of various vehicle concepts and derive design recommendations. They can consider aspects of both physical and cognitive ergonomics. Students are familiar with basic ergonomic methods, theories and concepts as well as with theories of human information processing, especially theories of driver behaviour. They are capable of critically reflecting this knowledge and applying it in a flexible way within the user-centered design process.

**Organizational issues**
Die Vorlesung hat einen Arbeitsaufwand von 120 h (= 4 LP).  
Schriftliche Klausur findet am 27.07.2022.

**Literature**
Die Literaturliste wird in der Vorlesung ausgegeben. Die Folien zur Vorlesung stehen auf ILIAS zum Download zur Verfügung.

**Responsible:** Prof. Dr.-Ing. Frank Henning

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102638 - Major Field: Rail System Technology
- M-MACH-102818 - Major Field: Vehicle Technology

**Type**
- Written examination

**Credits**
- 4

**Grading scale**
- Grade to a third

**Recurrence**
- Each winter term

**Version**
- 1

**Events**

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Code Description</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Vehicle Lightweight design – Strategies, Concepts, Materials</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Grade to a third</td>
<td>Henning</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td></td>
<td></td>
<td></td>
<td>Henning</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td></td>
<td></td>
<td></td>
<td>Henning</td>
</tr>
</tbody>
</table>

**Legend:** Online, 🧩 Blended (On-Site/Online), ⬇️ On-Site, ✗ Cancelled

**Competition Certificate**
- Written exam; Duration approx. 90 min

**Prerequisites**
- none

**Recommendation**
- none

**Below you will find excerpts from events related to this course:**

**Vehicle Lightweight design – Strategies, Concepts, Materials**
- 2113102, WS 22/23, 2 SWS, Language: German, Open in study portal
- Lecture (V)
- Blended (On-Site/Online)

**Content**
- **Strategies in lightweight design**
- Shape optimization, light weight materials, multi-materials and concepts for lightweight design
- **Construction methods**
- Differential, integral, sandwich, modular, bionic
- **Body construction**
- Shell, space frame, monocoque
- **Metallic materials**
- Steel, aluminium, magnesium, titan

**Aim of this lecture:**
- Students learn that lightweight design is a process of realizing a demanded function by using the smallest possible mass. They understand lightweight construction as a complex optimization problem with multiple boundary conditions, involving competences from methods, materials and production.
- Students learn the established lightweight strategies and ways of construction. They know the metallic materials used in lightweight construction and understand the relation between material and vehicle body.
Literature
Course: Vibration Theory [T-MACH-105290]

**Responsible:** Prof. Dr.-Ing. Alexander Fidlin
Prof. Dr.-Ing. Wolfgang Seemann

**Organisation:** KIT Department of Mechanical Engineering

**Part of:**
- M-MACH-102746 - Compulsory Elective Module
- M-MACH-102820 - Major Field: Mechatronics
- M-MACH-104430 - Major Field: Modeling and Simulation in Dynamics
- M-MACH-104442 - Major Field: Vibration Theory

**Type:** Written examination
**Credits:** 5
**Grading scale:** Grade to a third
**Recurrence:** Each winter term
**Version:** 2

**Events**

<table>
<thead>
<tr>
<th>Events</th>
<th>2161212</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration Theory</td>
<td>2 SWS</td>
<td>Römer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>2161213</th>
<th>Practice (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übungen zu Technische Schwingungslehre</td>
<td>2 SWS</td>
<td>Römer, Keller</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exams</th>
<th>76-T-MACH-105290</th>
<th>Fidlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Vibration Theory</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Vibration Theory</td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**
written exam, 180 min.

**Prerequisites**
none

**Below you will find excerpts from events related to this course:**

**Vibration Theory**
2161212, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

**Content**

Concept of vibration, superposition of vibration with equal and with different frequencies, complex frequency response.

Vibration of systems with one dof: Free undamped and damped vibration, forced vibration for harmonic, periodic and arbitrary excitation. Excitation of undamped vibration in resonance.


Vibration of systems with distributed parameters: Partial differential equations as equations of motion, wave propagation, d’Alembert’s solution, Ansatz for separation of time and space, eigenvalue problem, infinite number of eigenvalues and eigenfunctions.

Introduction to rotor dynamics: Laval rotor in rigid and elastic bearings, inner damping, Laval rotor in anisotropic bearings, synchronous and asynchronous whirl, rotors with asymmetric shaft.

**Literature**

Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Content
Exercises related to the lecture
### 7.244 Course: Virtual Engineering (Specific Topics) [T-MACH-105381]

**Responsible:** Prof. Dr.-Ing. Jivka Ovtcharova  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102746 - Compulsory Elective Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3122031</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>Ovtcharova, Maier</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105381</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105381</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competence Certificate**

oral exam, approx. 20 min.

**Prerequisites**

none

Below you will find excerpts from events related to this course:

### Virtual Engineering (Specific Topics)

3122031, SS 2022, 2 SWS, Language: English, [Open in study portal]

**Content**

Students can

- explain the basics of virtual engineering and name exemplary modeling tools and assign them to the corresponding methods and processes  
- Formulate validation questions in the product development process and name obvious solution methods  
- explain the basics of systems engineering and establish the connection to the product development process  
- explain individual methods of the digital factory and present the functions of the digital factory in the context of the product creation process  
- explain the theoretical and technical basics of Virtual Reality technology and show the connection to Virtual Engineering

**Organizational issues**

Vorlesungszeiten siehe ILIAS / Lecture times see ILIAS

**Literature**

Lecture slides / Vorlesungsfolien
Course: Virtual Reality Practical Course [T-MACH-102149]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102583 - Major Field: Information Management
M-MACH-102820 - Major Field: Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>22/23</td>
<td>2123375</td>
<td>Virtual Reality Practical Course</td>
<td>3 SWS</td>
<td>Project (P / Online)</td>
<td>Each term</td>
<td>Ovtcharova, Häfner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>2022</td>
<td>76-T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td></td>
<td>Ovtcharova, Häfner</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Assessment of another type (graded)

Prerequisites
None

Annotation
Number of participants is limited

Below you will find excerpts from events related to this course:

Virtual Reality Practical Course
2123375, WS 22/23, 3 SWS, Language: German/English, Open in study portal

Project (PRO) On-Site

Content

- Introduction in Virtual Reality (hardware, software, applications)
- Exercises in the task specific software systems
- Autonomous project work in the area of Virtual Reality in small groups

Organizational issues
Siehe Homepage zur Lehrveranstaltung

Literature
Keine / None
7.246 Course: Warehousing and Distribution Systems [T-MACH-105174]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102821 - Major Field: Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Warehousing and distribution systems</td>
<td>2 SWS</td>
<td>Lecture / Furmans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>Warehousing and Distribution Systems</td>
<td>Furmans</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered.

Prerequisites

none

Below you will find excerpts from events related to this course:

Warehousing and distribution systems

2118097, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site

Literature

ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag

ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag

Warehouse Science

GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISSER, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe : Universitätsverlag

Eine ausführliche Übersicht wissenschaftlicher Paper findet sich bei:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature
### 7.247 Course: Wave and Quantum Physics [T-PHYS-108322]

**Responsible:** apl. Prof. Dr. Gernot Goll  
apl. Prof. Dr. Bernd Pilawa  
**Organisation:** KIT Department of Physics  
**Part of:** M-PHYS-104030 - Physics

**Type**  
Written examination  

**Credits**  
5  

**Grading scale**  
Grade to a third  

**Recurrence**  
Each summer term  

**Version**  
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellen und Quantenphysik</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Übungen zu Wellen und Quantenphysik</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Wave and Quantum Physics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Exercises to Wave and Quantum Physics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Exams**

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>7800123</td>
<td>Wellen und Quantenphysik (Exam in German)</td>
<td>Pilawa</td>
</tr>
<tr>
<td>7800124</td>
<td>Wave and Quantum Physics (Exam in English)</td>
<td>Goll</td>
</tr>
</tbody>
</table>

**Competence Certificate**

Written exam (usually about 180 min)

**Prerequisites**

none
Course: Wave Propagation [T-MACH-105443]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104442 - Major Field: Vibration Theory

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 2

Exams
ST 2022 | 76-T-MACH-105443 | Wave Propagation | Seemann

Competence Certificate
oral exam, 30 min.
7.249 Course: Welding Technology [T-MACH-105170]

**Responsible:** Dr. Majid Farajian  
**Organisation:** KIT Department of Mechanical Engineering  
**Part of:** M-MACH-102819 - Major Field: Materials Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2173571</td>
<td>Welding Technology</td>
<td>2 SWS</td>
<td>Block / Blended (On-Site/Online)</td>
<td>Farajian</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105170</td>
<td>Welding Technology</td>
<td>Farajian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exams**

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗬 On-Site, ❌ Cancelled

**Competence Certificate**

Oral exam, about 20 minutes

**Prerequisites**

none

**Recommendation**

Basics of material science (iron- and non-iron alloys), materials, processes and production, design.

All the relevant books of the German Welding Institute (DVS: Deutscher Verband für Schweißen und verwandte Verfahren) in the field of welding and joining is recommended.

**Below you will find excerpts from events related to this course:**

**Welding Technology**

2173571, WS 22/23, 2 SWS, Language: German, Open in study portal

Block (B)  
Blended (On-Site/Online)
Content
definition, application and differentiation: welding,
welding processes, alternative connecting technologies.
history of welding technology
sources of energy for welding processes
Survey: Fusion welding,
pressure welding.
weld seam preparation/design
welding positions
weldability
gas welding, thermal cutting, manual metal-arc welding
submerged arc welding
gas-shielded metal-arc welding, friction stir welding, laser beam and electron beam welding, other fusion and pressure welding processes
static and cyclic behavior of welded joints,
fatigue life improvement techniques
learning objectives:
The students have knowledge and understanding of the most important welding processes and its industrial application.
They are able to recognize, understand and handle problems occurring during the application of different welding processes relating to design, material and production.
They know the classification and the importance of welding technology within the scope of connecting processes (advantages/disadvantages, alternatives).
The students will understand the influence of weld quality on the performance and behavior of welded joints under static and cyclic load.
How the fatigue life of welded joints could be increased, will be part of the course.
requirements:
basics of material science (iron- and non-iron alloys), of electrical engineering, of production processes.
workload:
The workload for the lecture Welding Technology is 120 h per semester and consists of the presence during the lecture (18 h) as well as preparation and rework time at home (102 h).
exam:
oral, ca. 20 minutes, no auxiliary material
Organizational issues
Blockveranstaltung im Januar und Februar. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich. Vorlesungstermine und Hörsaal werden den angemeldeten Teilnehmern Anfang des Jahres mitgeteilt.
Literature
Für ergänzende, vertiefende Studien gibt das
Handbuch der Schweißtechnik von J. Ruge, Springer Verlag Berlin, mit seinen vier Bänden
Band I: Werkstoffe
Band II: Verfahren und Fertigung
Band III: Konstruktive Gestaltung der Bauteile
Band IV: Berechnung der Verbindungen
einen umfassenden Überblick. Der Stoff der Vorlesung Schweißtechnik findet sich in den Bänden I und II. Einen kompakten Einblick in die Lichtbogenschweißverfahren bietet das Bändchen
Nies: Lichtbogenschweißtechnik, Bibliothek der Technik Band 57, Verlag moderne Industrie AG und Co., Landsberg / Lech
Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.
7.250 Course: Windpower [T-MACH-105234]

**Responsible:** Norbert Lewald  
**Organisation:** KIT Department of Mechanical Engineering  
Institute of Thermal Turbomachinery

**Part of:** M-MACH-102816 - Major Field: Fundamentals of Energy Technology  
M-MACH-102838 - Major Field: Energy Converting Engines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

**Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Credits</th>
<th>Exam Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2157381</td>
<td>2 SWS</td>
<td>/ 🗣️</td>
<td>Lewald, Pritz</td>
</tr>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-105234</td>
<td>Windpower</td>
<td></td>
<td>Lewald</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>76-T-MACH-105234</td>
<td>Windpower</td>
<td></td>
<td>Lewald</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

**Competence Certificate**

written exam, 120 minutes

**Prerequisites**

none

*Below you will find excerpts from events related to this course:*

**Windpower**

2157381, WS 22/23, 2 SWS, Language: German, [Open in study portal]  
On-Site
7.251 Course: Working Methods in Mechanical Engineering [T-MACH-105296]

**Responsible:** Prof. Dr.-Ing. Barbara Deml  
**Organisation:** KIT Department of Mechanical Engineering

**Part of:** M-MACH-102576 - Key Competences

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2110969</td>
<td>Completed coursework</td>
<td>Working Methods in Mechanical Engineering</td>
<td>1 SWS</td>
<td>Course ( / 🤸‍♀️)</td>
<td>Deml</td>
</tr>
<tr>
<td>ST 2022 2142975</td>
<td>Completed coursework</td>
<td>Workshop 'Working Methods in Mechanical Engineering' (IMT)</td>
<td>1 SWS</td>
<td>Others (sons / 🤸‍♀️)</td>
<td>Worgull</td>
</tr>
<tr>
<td>ST 2022 2174970</td>
<td>Completed coursework</td>
<td>Working Methods in Mechanical Engineering</td>
<td>1 SWS</td>
<td>Course ( / 🤸‍♀️)</td>
<td>Deml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course (Ku)</th>
<th>Blended (On-Site/Online)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 76-T-MACH-105296</td>
<td>Working Techniques for Mechanical Engineering</td>
<td>Deml</td>
</tr>
<tr>
<td>ST 2022 76-T-MACH-105296-englisch</td>
<td>Working Methods in Mechanical Engineering</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤸‍♀️ Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

**Competence Certificate**
e-learning module certificates, group exercises, submission of a scientific thesis of at least 30 pages and submission and execution of a maximal 30 minutes scientific presentation.

**Prerequisites**
none

*Below you will find excerpts from events related to this course:*

**Working Methods in Mechanical Engineering**  
2110969, SS 2022, 1 SWS, Language: English, Open in study portal  
Course (Ku) Blended (On-Site/Online)

**Organizational issues**
The course addresses students in the Bachelor program Mechanical Engineering in the fourth semester. Students in the Bachelor program Mechanical Engineering in the second semester, as well as students in the Master program Mechanical Engineering or other programs, may participate in case of vacancies. The lecture consists of an e-learning course, combined with an online exam and accompanying self-study over the entire lecture period.

**Workshop 'Working Methods in Mechanical Engineering' (IMT)**  
2142975, SS 2022, 1 SWS, Language: German, Open in study portal  
Others (sonst.) Blended (On-Site/Online)
Content
Within the frame of a scientific conference the contents from the corresponding lesson will be implemented in a practical way. The students have to organise a scientific conference by themself. The contributions have to prepared by the students and will be presented within the frame of abstracts, conference articles, posters, and presentations.

1. part of the workshop - Organisation of a conference
   - Structure of a conference
   - Generation of workgroups - Committees
   - Exchange of Informations between workgroups
   - Decision-making based on the information available
   - Decision-making based under limitation of time
   - Gerartion of technical progam, budget, flyer etc. of the conference
   - Definition of criteria for abstracts - communication of criteria

2. part of the workshop - Investigation and writing of abstracts
   - Investigation in Literatur / Patent Database
   - Citation of scientific literature
   - Writing of abstracts
   - Evaluation of abstracts

3. part of the workshop - Writing of scientific conference contributions
   - Structure of a scientific article
   - Rules for scientific writing - style
   - Citation - Sources and their citation
   - Design of scientific posters
   - Design of a scientific presentation

4. part of the workshop - Moderation and presentation
   - Presentation of the results of the workshop - oral presentations
   - Presentation of posters
   - Moderation of the conference

Organizational issues
Ort/Termin s. Institutshomepage

Literature
Übungsskript - Wichtige Punkte über wissenschaftliches Schreiben, Zitieren, Postergestaltung, Moderation und Präsentation werden zusammengefasst und bilden einen kleinen Leitfaden für den Workshop
7 COURSES

7.252 Course: Workshop on Computer-based Flow Measurement Techniques [T-MACH-106707]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Organisation: KIT Department of Mechanical Engineering
Institute of Thermal Turbomachinery
Part of: M-MACH-102816 - Major Field: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2171488</td>
<td>Workshop on computer-based flow measurement techniques</td>
<td>3</td>
<td>Practical course / Bauer, Mitarbeiter</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2171488</td>
<td>Workshop on computer-based flow measurement techniques</td>
<td>3</td>
<td>Practical course / Bauer, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>76-T-MACH-106707</td>
<td>Workshop on computer-based flow measurement techniques</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Legend:

🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Prerequisites

none

Below you will find excerpts from events related to this course:

Workshop on computer-based flow measurement techniques

2171488, SS 2022, 3 SWS, Language: German, Open in study portal

Practical course (P)

On-Site
Content
Registration during the lecture period via the website.

The laboratory course offers an introduction into the acquisition of basic test data in fluid mechanics applications as well as a basic hands-on training for the application of modern PC based data acquisition methods. The combination of lectures about measurement techniques, sensors, signal converters, I/O systems, bus systems, data acquisition, handling and control routines and tutorials for typical fluid mechanics applications allows the participant to get a comprehensive insight and a sound knowledge in this field. The graphical programming environment LabVIEW from National Instruments is used in this course as it is one of the standard software tools for data acquisition worldwide.

Basic design of measurements systems

- Logging devices and sensors
- Analog to digital conversion
- Program design and programming methods using LabView
- Data handling
- Bus systems
- Design of a computer aided data acquisition system for pressure, temperature and derived parameters
- frequency analysis

regular attendance: 52,5
self-study: 67,5

The students are able to:

- theoretically describe and explain the fundamentals of computer aided measurements and and adopt them practically
- apply the basics learned during the lecture to a practical problem in the form of a PC excercise

Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Organizational issues
Der aktuelle Status wird auf der ITS-homepage bekannt gegeben.

Literature
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011

Workshop on computer-based flow measurement techniques
2171488, WS 22/23, 3 SWS, Language: German, Open in study portal

Practical course (P)
On-Site
Content
Registration during the lecture period via the website.

The laboratory course offers an introduction into the acquisition of basic test data in fluid mechanics applications as well as a basic hands-on training for the application of modern PC based data acquisition methods. The combination of lectures about measurement techniques, sensors, signal converters, I/O systems, bus systems, data acquisition, handling and control routines and tutorials for typical fluid mechanics applications allows the participant to get a comprehensive insight and a sound knowledge in this field. The graphical programming environment LabVIEW from National Instruments is used in this course as it is one of the standard software tools for data acquisition worldwide.

Basic design of measurements systems
- Logging devices and sensors
- Analog to digital conversion
- Program design and programming methods using LabView
- Data handling
- Bus systems
- Design of a computer aided data acquisition system for pressure, temperature and derived parameters
- Frequency analysis

regular attendance: 52,5
self-study: 67,5

Lernziele:
Die Studenten können:
- die wesentlichen Grundlagen der rechnergestützen Messwerterfassung theoretisch beschreiben und praktisch anwenden
- nach jedem Lernabschnitt den vorgestellten Stoff anhand eines Beispiels am PC in die Praxis umsetzen

The students are able to:
- theoretically describe and explain the fundamentals of computer aided measurements and and adopt them practically
- apply the basics learned during the lecture to a practical problem in the form of a PC exercise

Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Organizational issues
Ort und Zeit siehe Institutshomepage.

Literature
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011