Module Handbook
Mechatronics and Information Technology Bachelor Program (B.Sc.)
SPO 2016
Valid from Winter Term 2021/22
Date: 15/09/2021
Table Of Contents

1. About this handbook .. 10
 1.1. Notes and rules .. 10
 1.1.1. Begin and completion of a module ... 10
 1.1.2. Module versions ... 10
 1.1.3. General and partial examinations ... 10
 1.1.4. Types of exams ... 10
 1.1.5. Repeating exams ... 10
 1.1.6. Additional accomplishments ... 11
 1.1.7. Further information .. 11

2. Qualification Objectes ... 12

3. Study and Examination Regulations ... 13

4. Amendment Statute .. 31

5. Curriculum .. 35

6. Field of study structure ... 40
 6.1. Orientation Exam ... 40
 6.2. Bachelor Thesis ... 40
 6.3. Internship ... 40
 6.4. Engineering Fundamentals .. 41
 6.5. Specialization in Mechatronics .. 42
 6.6. Interdisciplinary Qualifications .. 44
 6.7. Additional Examinations .. 45
 6.8. Master Transfer Account .. 46

7. Modules ... 50
 7.2. Actuators and Sensors in Nanotechnology - M-MACH-102698 .. 51
 7.3. Advanced Mathematics - M-MATH-102859 .. 53
 7.4. Advanced Topics and Methods in Mechanical Engineering 1 - M-MACH-104919 55
 7.5. Advanced Topics and Methods in Mechanical Engineering 2 - M-MACH-105091 56
 7.6. Algorithms I - M-INFO-100030 .. 57
 7.7. Antennas and Multiple Antenna Systems - M-ETIT-100565 .. 58
 7.8. Appliance and Power Tool Design - M-MACH-102705 ... 59
 7.9. Automated Manufacturing Systems - M-MACH-105108 .. 61
 7.11. Automotive Engineering I - M-MACH-100501 ... 63
 7.12. Automotive Engineering II - M-MACH-100502 .. 64
 7.13. Automotive Vision - M-MACH-102693 .. 65
 7.15. Basic Electronic Circuits Laboratory - M-ETIT-102113 ... 67
 7.16. Basics of Technical Logistics I - M-MACH-105283 ... 68
 7.17. Battery Modeling in MATLAB - M-ETIT-103271 .. 69
 7.20. BioMEMS - Microsystems Technologies for Life Sciences and Medicine I - M-MACH-100489 ... 72
 7.22. BioMEMS - Microsystems Technologies for Life Sciences and Medicine III - M-MACH-100491 ... 74
 7.23. BUS-Controls - M-MACH-105286 .. 75
 7.24. CAE-Workshop - M-MACH-102684 ... 76
 7.25. Channel Coding: Algebraic Methods for Communications and Storage - M-ETIT-105616 ... 77
 7.27. Communication Engineering I - M-ETIT-102103 ... 79
 7.28. Communications Engineering II - M-ETIT-100440 ... 80
 7.29. Complex Analysis and Integral Transformations - M-ETIT-104534 81
 7.30. Computational Intelligence - M-MACH-105296 .. 82
 7.31. Computer Organization - M-INFO-103179 ... 83
 7.32. Computer Vision for Human-Computer Interaction [24180] - M-INFO-100810 84
 7.33. Control of Linear Multivariable Systems - M-ETIT-100374 .. 85
 7.34. Control Theory Laboratory - M-ETIT-105467 ... 86
 7.35. Decently Controlled Intralogistic Systems - M-MACH-102687 87
 7.36. Deep Learning and Neural Networks - M-INFO-104460 .. 88
Table Of Contents

7.38. Digital Technology - M-ETIT-102102 ... 90
7.39. Distributed Discrete Event Systems - M-ETIT-100361 ... 91
7.40. Dynamics of the Automotive Drive Train - M-MACH-102700 92
7.41. Electric Energy Systems - M-ETIT-102156 ... 93
7.43. Electric Rail Vehicles - M-MACH-102692 ... 95
7.44. Electrical Machines and Power Electronics - M-ETIT-102124 96
7.45. Electromagnetical Fields - M-ETIT-104428 .. 97
7.46. Electromagnetical Waves - M-ETIT-104515 .. 98
7.47. Electromagnetical Waves/Fundamentals on High Frequency Techniques - M-ETIT-105647 ... 99
7.48. Electronic Devices and Circuits - M-ETIT-104465 .. 100
7.49. Elements of Technical Logistics - M-MACH-102688 .. 101
7.50. Elements of Technical Logistics incl. Project - M-MACH-105015 102
7.56. Fundamentals of Combustion I - M-MACH-102707 ... 111
7.57. Fundamentals of Energy Technology - M-MACH-102690 .. 112
7.58. Fundamentals on High Frequency Techniques - M-ETIT-102129 113
7.59. Further Examinations - M-MACH-104332 .. 114
7.60. Fuzzy Sets [24611] - M-INFO-100839 ... 115
7.61. Handling Characteristics of Motor Vehicles I - M-MACH-105288 116
7.65. Hybrid and Electric Vehicles - M-ETIT-100514 .. 120
7.66. Image Processing - M-ETIT-102651 ... 121
7.67. Information and Automation Technology II/Laboratory for Machine Learning Algorithms - M-ETIT-105644 ... 122
7.68. Information and Automation Technology II/Seminar Embedded Systems - M-ETIT-105645 ... 123
7.69. Information Processing in Sensor Networks - M-INFO-100895 124
7.70. Information Systems and Supply Chain Management - M-MACH-105281 125
7.71. Information Technology - M-ETIT-104539 ... 126
7.72. Information Technology II and Automation Technology - M-ETIT-104547 128
7.74. Internship - M-MACH-104265 ... 130
7.75. Introduction into Energy Economics - M-WIWI-100498 ... 131
7.76. Introduction to High Voltage Engineering - M-ETIT-105276 132
7.77. Introduction to Microsystem Technology I - M-MACH-102691 133
7.78. Introduction to Microsystem Technology II - M-MACH-102706 134
7.81. IT-Fundamentals of Logistics: Opportunities for Digital Transformation - M-MACH-105282 ... 137
7.82. Lab Computer-Aided Methods for Measurement and Control - M-MACH-105291 139
7.83. Lab Course Electrical Drives and Power Electronics - M-ETIT-100401 140
7.84. Lab Course Electrical Power Engineering - M-ETIT-100419 141
7.85. Laboratory Biomedical Engineering - M-ETIT-100389 .. 142
7.86. Laboratory Circuit Design - M-ETIT-100518 .. 143
7.87. Laboratory for Applied Machine Learning Algorithms - M-ETIT-104823 144
7.88. Laboratory Hardware and Software in Power Electronic Systems - M-ETIT-103263 ... 145
7.89. Laboratory Mechatronic Measurement Systems - M-ETIT-103448 146
7.90. Laboratory Mechatronics - M-MACH-102699 .. 147
7.91. Lightweight Engineering Design - M-MACH-102696 .. 148
7.92. Linear Electric Circuits - M-ETIT-104519 ... 149
7.93. Localization of Mobile Agents [24613] - M-INFO-100840 ... 150
7.94. Logistics and Supply Chain Management - M-MACH-105298 151
7.95. Machine Dynamics - M-MACH-102694 ... 152
7.96. Machine Learning 1 - M-WIWI-105003 ... 153
7.97. Machine Learning 2 - M-WIWI-105006 ... 154
7.98. Machine Tools and Industrial Handling - M-MACH-105107 155
Table Of Contents

7.100. Manufacturing Processes - M-MACH-102549 .. 157
7.102. Material Science and Engineering [CIW-MACH-01] - M-MACH-102567 ... 159
7.103. Materials - M-ETIT-102734 .. 161
7.104. Measurement Technology - M-ETIT-102652 .. 162
7.107. Mechanics in Microtechnology - M-MACH-102713 ... 169
7.108. Mechano-Informatics and Robotics - M-INFO-100757 ... 170
7.109. Mechatronical Systems and Products - M-MACH-102749 ... 171
7.110. Medical Imaging Techniques I - M-ETIT-100384 .. 173
7.111. Medical Robotics [24681] - M-INFO-100620 .. 174
7.112. Microactuators - M-MACH-100487 ... 175
7.113. Microenergy Technologies - M-MACH-102714 .. 176
7.114. Mobile Computing and Internet of Things [IN3INMC] - M-INFO-101249 ... 177
7.115. Motor Vehicle Laboratory - M-MACH-102695 ... 178
7.117. Numerical Methods - M-MATH-105831 ... 180
7.118. Optics and Solid State Electronics - M-ETIT-104067 ... 181
7.119. Optoelectronic Components - M-ETIT-100509 ... 182
7.120. Optoelectronics - M-ETIT-100480 ... 183
7.121. Organ Support Systems - M-MACH-102702 .. 184
7.122. Orientation Exam - M-MACH-104333 ... 185
7.123. Photovoltaic System Design - M-ETIT-100411 ... 186
7.124. Physiology and Anatomy for Engineers I - M-ETIT-100390 .. 187
7.125. Plug-and-Play Material Handling - M-MACH-104983 ... 188
7.126. Power Electronics - M-ETIT-100533 .. 189
7.127. Power Generation - M-ETIT-100407 ... 190
7.128. Power Transmission and Power Network Control - M-ETIT-100534 .. 191
7.129. Practical Project Robotics and Automation I (Software) - M-INFO-102224 192
7.130. Practical Project Robotics and Automation II (Hardware) - M-INFO-102230 193
7.131. Principles of Medicine for Engineers - M-MACH-102720 ... 194
7.132. Principles of Whole Vehicle Engineering I - M-MACH-105289 ... 195
7.133. Principles of Whole Vehicle Engineering II - M-MACH-105290 .. 196
7.135. Production Techniques Laboratory - M-MACH-102711 .. 199
7.136. Programming [IN1INPROG] - M-INFO-101174 .. 200
7.139. Radiation Protection - M-ETIT-100562 ... 203
7.140. Radio-Frequency Electronics - M-ETIT-105124 .. 204
7.141. Rail System Technology - M-MACH-103232 .. 205
7.142. Rail Vehicle Technology - M-MACH-102683 .. 206
7.144. Robotics - Practical Course - M-INFO-102522 .. 209
7.145. Robotics I - Introduction to Robotics - M-INFO-100893 ... 210
7.146. Robotics II: Humanoid Robotics - M-INFO-102756 ... 211
7.148. Seamless Engineering - M-MACH-105725 ... 213
7.149. Seminar Battery I - M-ETIT-105319 ... 214
7.150. Seminar Embedded Systems - M-ETIT-100455 ... 215
7.151. Seminar Fuel Cell II - M-ETIT-105320 ... 216
7.152. Seminar on Selected Chapters of Biomedical Engineering - M-ETIT-100383 217
7.154. Sensors - M-ETIT-100379 .. 219
7.155. Signals and Systems - M-ETIT-104525 ... 220
7.156. Soft Skills - M-MACH-104355 ... 221
7.157. Software Engineering I [IN1INSWT1] - M-INFO-101175 ... 222
7.158. Software Engineering II [IN4INSWT2] - M-INFO-100833 .. 223
7.159. Stochastic Information Processing [24113] - M-INFO-100829 .. 224
7.160. Superconducting Magnet Technology and Power Systems - M-ETIT-105705 225

Mechatronics and Information Technology Bachelor Program (B.Sc.)
Module Handbook valid from WT 21/22, Date: 15.09.2021
7.161. Superconductors for Energy Applications - M-ETIT-105299 ... 227
7.162. System Dynamics and Control Engineering - M-ETIT-102181 ... 229
7.163. Technical Design in Product Development - M-MACH-105318 ... 230
7.166. Theory of Probability - M-ETIT-102104 ... 234
7.168. Thermal Solar Energy - M-MACH-102388 ... 236
7.170. Virtual Engineering I - M-MACH-105293 ... 239
7.171. Wearable Robotic Technologies - M/INFO-103294 .. 240

8. Courses ... 241
8.1. Accessibility - Assistive Technologies for Visually Impaired Persons - T/INFO-101301 ... 241
8.2. Actuators and Sensors in Nanotechnology - T-MACH-105238 .. 242
8.3. Advanced Mathematics I - T-MATH-100275 .. 243
8.4. Advanced Mathematics II - T-MATH-100276 .. 244
8.5. Advanced Mathematics III - T-MATH-100277 ... 245
8.6. Algorithms I - T/INFO-100001 .. 246
8.7. Antennas and Multiple Antenna Systems - T-ETIT-106491 .. 247
8.8. Appliance and Power Tool Design - T-MACH-105229 ... 248
8.9. Appliance and Power Tool Design Project Work - T-MACH-110767 .. 249
8.10. Automated Manufacturing Systems - T-MACH-108844 .. 250
8.11. Automated Visual Inspection and Image Processing - T/INFO-101363 ... 252
8.12. Automotive Engineering I - T-MACH-100092 ... 253
8.13. Automotive Engineering II - T-MACH-102117 .. 255
8.15. Bachelor Thesis - T-MACH-108800 ... 258
8.16. Basic Electronic Circuits Laboratory - T-ETIT-101943 ... 259
8.17. Basics of Manufacturing Technology - T-MACH-105219 .. 260
8.18. Basics of Technical Logistics I - T-MACH-109919 .. 262
8.20. Biologically Inspired Robots - T/INFO-101351 .. 265
8.21. Biomedical Measurement Techniques I - T-ETIT-106492 .. 266
8.22. BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I - T-MACH-100966 267
8.23. BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II - T-MACH-100967 268
8.25. BUS-Controls - T-MACH-102150 ... 270
8.26. BUS-Controls - Advance - T-MACH-108889 .. 272
8.27. CAE-Workshop - T-MACH-105212 ... 273
8.28. Channel Coding: Algebraic Methods for Communications and Storage - T-ETIT-111244 275
8.29. Cognitive Systems - T/INFO-101356 ... 276
8.30. Communication Engineering I - T-ETIT-101936 .. 277
8.31. Communications Engineering II - T-ETIT-100745 .. 278
8.32. Complex Analysis and Integral Transformations - T-ETIT-109285 ... 279
8.33. Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies - T- MACH-105535 ... 280
8.34. Computational Intelligence - T-MACH-105314 .. 282
8.35. Computer Organization - T/INFO-103531 .. 284
8.36. Computer Vision for Human-Computer Interaction - T/INFO-101347 ... 285
8.37. Control of Linear Multivariable Systems - T-ETIT-100666 .. 286
8.38. Control Theory Laboratory - T-ETIT-111009 ... 287
8.39. Cooperation in Interdisciplinary Teams - T-MACH-105699 ... 288
8.40. Decentrally Controlled Intralogistic Systems - T-MACH-105230 ... 289
8.41. Deep Learning and Neural Networks - T/INFO-109124 ... 292
8.42. Design Principles for Interactive Real-Time Systems - T/INFO-101290 ... 293
8.43. Digital Technology - T-ETIT-101918 .. 294
8.44. Distributed Discrete Event Systems - T-ETIT-100960 ... 295
8.45. Dynamics of the Automotive Drive Train - T-MACH-105226 ... 296
8.46. Electric Energy Systems - T-ETIT-101923 .. 297
8.47. Electric Rail Vehicles - T-MACH-102121 .. 298
8.48. Electrical Engineering Components - T-ETIT-109292 ... 299
8.49. Electrical Machines and Power Electronics - T-ETIT-101954 ... 300
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109078</td>
<td>Electromagnetic Fields</td>
</tr>
<tr>
<td>T-ETIT-109245</td>
<td>Electromagnetic Waves</td>
</tr>
<tr>
<td>T-ETIT-109138</td>
<td>Electronic Devices and Circuits</td>
</tr>
<tr>
<td>T-ETIT-109318</td>
<td>Electronic Devices and Circuits</td>
</tr>
<tr>
<td>T-MACH-102159</td>
<td>Elements and Systems of Technical Logistics</td>
</tr>
<tr>
<td>T-MACH-108946</td>
<td>Elements and Systems of Technical Logistics - Project</td>
</tr>
<tr>
<td>T-MACH-100282</td>
<td>Engineering Mechanics I</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Engineering Mechanics II</td>
</tr>
<tr>
<td>T-MACH-100299</td>
<td>Engineering Mechanics III</td>
</tr>
<tr>
<td>T-MACH-105274</td>
<td>Engineering Mechanics IV</td>
</tr>
<tr>
<td>T-MACH-111389</td>
<td>Examination Material Science I & II</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
</tr>
<tr>
<td>T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
</tr>
<tr>
<td>T-ETIT-101955</td>
<td>Fundamentals on High Frequency Techniques</td>
</tr>
<tr>
<td>T-INFO-101376</td>
<td>Fuzzy Sets</td>
</tr>
<tr>
<td>T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
</tr>
<tr>
<td>T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
</tr>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
</tr>
<tr>
<td>T-INFO-101361</td>
<td>Human-Machine-Interaction in Anthropometrics: Basics</td>
</tr>
<tr>
<td>T-INFO-106257</td>
<td>Human-Machine-Interaction Pass</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
</tr>
<tr>
<td>T-INFO-101377</td>
<td>Machine Dynamics</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
</tr>
<tr>
<td>T-ETIT-109300</td>
<td>Information Technology I</td>
</tr>
<tr>
<td>T-ETIT-109301</td>
<td>Information Technology I - Practical Course</td>
</tr>
<tr>
<td>T-ETIT-109319</td>
<td>Information Technology II and Automation Technology</td>
</tr>
<tr>
<td>T-INFO-101328</td>
<td>Innovative Concepts for Programming Industrial Robots</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
</tr>
<tr>
<td>T-MACH-108803</td>
<td>Internship</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
</tr>
<tr>
<td>T-WIWI-102746</td>
<td>Introduction to Energy Economics</td>
</tr>
<tr>
<td>T-ETIT-110702</td>
<td>Introduction to High Voltage Engineering</td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
</tr>
<tr>
<td>T-WIWI-102758</td>
<td>Introduction to Operations Research I and II</td>
</tr>
<tr>
<td>T-INFO-101273</td>
<td>Introduction to Video Analysis</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
</tr>
<tr>
<td>T-MACH-105341</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
</tr>
<tr>
<td>T-ETIT-100718</td>
<td>Lab Course Electrical Drives and Power Electronics</td>
</tr>
<tr>
<td>T-ETIT-100728</td>
<td>Lab Course Electrical Power Engineering</td>
</tr>
<tr>
<td>T-ETIT-101934</td>
<td>Laboratory Biomedical Engineering</td>
</tr>
<tr>
<td>T-ETIT-100788</td>
<td>Laboratory Circuit Design</td>
</tr>
<tr>
<td>T-ETIT-109839</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
</tr>
<tr>
<td>T-ETIT-106498</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
</tr>
<tr>
<td>T-ETIT-106854</td>
<td>Laboratory Mechatronic Measurement Systems</td>
</tr>
<tr>
<td>T-MACH-105370</td>
<td>Laboratory Mechatronics</td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Lightweight Engineering Design</td>
</tr>
<tr>
<td>T-ETIT-109316</td>
<td>Linear Electronic Networks</td>
</tr>
<tr>
<td>T-ETIT-109317</td>
<td>Linear Electronic Networks - Workshop A</td>
</tr>
<tr>
<td>T-ETIT-109811</td>
<td>Linear Electronic Networks - Workshop B</td>
</tr>
<tr>
<td>T-ETIT-109839</td>
<td>Localization of Mobile Agents</td>
</tr>
<tr>
<td>T-MACH-110771</td>
<td>Logistics and Supply Chain Management</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
</tr>
</tbody>
</table>

Table Of Contents
Table Of Contents

<table>
<thead>
<tr>
<th>Module</th>
<th>Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning 1 - Basic Methods</td>
<td>T-WIWI-106340</td>
<td>378</td>
</tr>
<tr>
<td>Machine Learning 2 – Advanced Methods</td>
<td>T-WIWI-106341</td>
<td>379</td>
</tr>
<tr>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>T-MACH-110962</td>
<td>381</td>
</tr>
<tr>
<td>Manufacturing Measurement Technology</td>
<td>T-ETIT-106057</td>
<td>383</td>
</tr>
<tr>
<td>Material Flow in Logistic Systems</td>
<td>T-MACH-102151</td>
<td>384</td>
</tr>
<tr>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>T-MACH-110375</td>
<td>386</td>
</tr>
<tr>
<td>Mathematical Methods in Dynamics</td>
<td>T-MACH-105293</td>
<td>387</td>
</tr>
<tr>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>T-MACH-105295</td>
<td>389</td>
</tr>
<tr>
<td>Mathematical Methods of Vibration Theory</td>
<td>T-MACH-105294</td>
<td>391</td>
</tr>
<tr>
<td>Measurement</td>
<td>T-ETIT-101937</td>
<td>392</td>
</tr>
<tr>
<td>Mechanical Design Basics I and II</td>
<td>T-MACH-110363</td>
<td>393</td>
</tr>
<tr>
<td>Mechanical Design Basics I, Tutorial</td>
<td>T-MACH-110364</td>
<td>395</td>
</tr>
<tr>
<td>Mechanical Design Basics II, Tutorial</td>
<td>T-MACH-110365</td>
<td>396</td>
</tr>
<tr>
<td>Mechanical Design III & IV</td>
<td>T-MACH-104810</td>
<td>398</td>
</tr>
<tr>
<td>Mechanical Design III, Tutorial</td>
<td>T-MACH-110355</td>
<td>400</td>
</tr>
<tr>
<td>Mechanical Design IV, tutorial</td>
<td>T-MACH-110956</td>
<td>402</td>
</tr>
<tr>
<td>Mechanics in Microtechnology</td>
<td>T-MACH-105334</td>
<td>403</td>
</tr>
<tr>
<td>Mechano-Informatics and Robotics</td>
<td>T-INFO-101294</td>
<td>404</td>
</tr>
<tr>
<td>Mechatronical Systems and Products</td>
<td>T-MACH-105574</td>
<td>405</td>
</tr>
<tr>
<td>Medical Imaging Techniques I</td>
<td>T-ETIT-101930</td>
<td>406</td>
</tr>
<tr>
<td>Medical Robotics</td>
<td>T-INFO-101357</td>
<td>407</td>
</tr>
<tr>
<td>Methods and Processes of PGE</td>
<td>T-MACH-109192</td>
<td>408</td>
</tr>
<tr>
<td>Microactuators</td>
<td>T-MACH-101910</td>
<td>410</td>
</tr>
<tr>
<td>Microenergy Technologies</td>
<td>T-MACH-105557</td>
<td>411</td>
</tr>
<tr>
<td>Mobile Computing and Internet of Things</td>
<td>T-INFO-102061</td>
<td>412</td>
</tr>
<tr>
<td>Modelling and Simulation</td>
<td>T-MACH-100300</td>
<td>413</td>
</tr>
<tr>
<td>Modelling of Microstructures</td>
<td>T-MACH-105303</td>
<td>416</td>
</tr>
<tr>
<td>Motor Vehicle Labor</td>
<td>T-MACH-105222</td>
<td>418</td>
</tr>
<tr>
<td>Novel Actuators and Sensors</td>
<td>T-MACH-102152</td>
<td>420</td>
</tr>
<tr>
<td>Numerical Methods - Exam</td>
<td>T-MATH-111700</td>
<td>421</td>
</tr>
<tr>
<td>Optics and Solid State Electronics</td>
<td>T-ETIT-109444</td>
<td>422</td>
</tr>
<tr>
<td>Optoelectronic Components</td>
<td>T-ETIT-101907</td>
<td>423</td>
</tr>
<tr>
<td>Optoelectronics</td>
<td>T-ETIT-100767</td>
<td>424</td>
</tr>
<tr>
<td>Organ Support Systems</td>
<td>T-MACH-105228</td>
<td>425</td>
</tr>
<tr>
<td>Photovoltaic System Design</td>
<td>T-ETIT-100724</td>
<td>426</td>
</tr>
<tr>
<td>Physical Basics of Laser Technology</td>
<td>T-MACH-102102</td>
<td>427</td>
</tr>
<tr>
<td>Physics for Engineers</td>
<td>T-MACH-100530</td>
<td>429</td>
</tr>
<tr>
<td>Physiology and Anatomy for Engineers I</td>
<td>T-ETIT-101932</td>
<td>431</td>
</tr>
<tr>
<td>Plug-and-Play Material Handling</td>
<td>T-MACH-106693</td>
<td>432</td>
</tr>
<tr>
<td>Power Electronics</td>
<td>T-ETIT-100801</td>
<td>433</td>
</tr>
<tr>
<td>Power Generation</td>
<td>T-ETIT-101924</td>
<td>434</td>
</tr>
<tr>
<td>Power Transmission and Power Network Control</td>
<td>T-ETIT-101941</td>
<td>435</td>
</tr>
<tr>
<td>Practical Project Robotics and Automation I (Software)</td>
<td>T-INFO-104545</td>
<td>436</td>
</tr>
<tr>
<td>Practical Project Robotics and Automation II (Hardware)</td>
<td>T-INFO-104552</td>
<td>437</td>
</tr>
<tr>
<td>Presentation</td>
<td>T-MACH-107760</td>
<td>438</td>
</tr>
<tr>
<td>Principles of Medicine for Engineers</td>
<td>T-MACH-105235</td>
<td>439</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>T-MACH-105147</td>
<td>440</td>
</tr>
<tr>
<td>Production Techniques Laboratory</td>
<td>T-MACH-105346</td>
<td>441</td>
</tr>
<tr>
<td>Programming</td>
<td>T-INFO-101531</td>
<td>443</td>
</tr>
<tr>
<td>Programming Pass</td>
<td>T-INFO-101967</td>
<td>444</td>
</tr>
<tr>
<td>Project Management in the Development of Products for Safety-Critical Applications</td>
<td>T-ETIT-109148</td>
<td>445</td>
</tr>
<tr>
<td>Quality Management</td>
<td>T-MACH-102107</td>
<td>446</td>
</tr>
<tr>
<td>Radiation Protection</td>
<td>T-ETIT-100825</td>
<td>448</td>
</tr>
<tr>
<td>Radio-Frequency Electronics</td>
<td>T-ETIT-110359</td>
<td>449</td>
</tr>
<tr>
<td>Rail System Technology</td>
<td>T-MACH-106424</td>
<td>450</td>
</tr>
<tr>
<td>Rail Vehicle Technology</td>
<td>T-MACH-105353</td>
<td>452</td>
</tr>
<tr>
<td>Real-Time Systems</td>
<td>T-INFO-101340</td>
<td>454</td>
</tr>
<tr>
<td>Robotics - Practical Course</td>
<td>T-INFO-105107</td>
<td>455</td>
</tr>
<tr>
<td>Robotics I - Introduction to Robotics</td>
<td>T-INFO-108014</td>
<td>456</td>
</tr>
<tr>
<td>Robotics II: Humanoid Robotics</td>
<td>T-INFO-105723</td>
<td>457</td>
</tr>
<tr>
<td>Robotics III - Sensors and Perception in Robotics</td>
<td>T-INFO-109931</td>
<td>458</td>
</tr>
<tr>
<td>Scientific Computing for Engineers</td>
<td>T-MACH-100532</td>
<td>459</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>8.174</td>
<td>Seamless Engineering - T-MACH-111401</td>
<td></td>
</tr>
<tr>
<td>8.175</td>
<td>Seminar Battery I - T-ETIT-110800</td>
<td></td>
</tr>
<tr>
<td>8.176</td>
<td>Seminar Embedded Systems - T-ETIT-100753</td>
<td></td>
</tr>
<tr>
<td>8.177</td>
<td>Seminar Fuel Cell I - T-ETIT-110798</td>
<td></td>
</tr>
<tr>
<td>8.178</td>
<td>Seminar on Selected Chapters of Biomedical Engineering - T-ETIT-100710</td>
<td></td>
</tr>
<tr>
<td>8.179</td>
<td>Seminar Power Electronics in Regenerative Energy Systems - T-ETIT-100714</td>
<td></td>
</tr>
<tr>
<td>8.180</td>
<td>Sensors - T-ETIT-101911</td>
<td></td>
</tr>
<tr>
<td>8.181</td>
<td>Signals and Systems - T-ETIT-109313</td>
<td></td>
</tr>
<tr>
<td>8.182</td>
<td>Signals and Systems - Workshop - T-ETIT-109314</td>
<td></td>
</tr>
<tr>
<td>8.183</td>
<td>Software Engineering I - T-INFO-101968</td>
<td></td>
</tr>
<tr>
<td>8.184</td>
<td>Software Engineering I Pass - T-INFO-101995</td>
<td></td>
</tr>
<tr>
<td>8.185</td>
<td>Software Engineering II - T-INFO-101370</td>
<td></td>
</tr>
<tr>
<td>8.186</td>
<td>Stochastic Information Processing - T-INFO-101366</td>
<td></td>
</tr>
<tr>
<td>8.187</td>
<td>Superconducting Magnet Technology and Power Systems - T-ETIT-111381</td>
<td></td>
</tr>
<tr>
<td>8.188</td>
<td>Superconductors for Energy Applications - T-ETIT-110788</td>
<td></td>
</tr>
<tr>
<td>8.189</td>
<td>System Dynamics and Control Engineering - T-ETIT-101921</td>
<td></td>
</tr>
<tr>
<td>8.190</td>
<td>Systematic Materials Selection - T-MACH-100531</td>
<td></td>
</tr>
<tr>
<td>8.191</td>
<td>Technical Design in Product Development - T-MACH-105361</td>
<td></td>
</tr>
<tr>
<td>8.192</td>
<td>Technical Thermodynamics and Heat Transfer I - T-MACH-104747</td>
<td></td>
</tr>
<tr>
<td>8.193</td>
<td>Technical Thermodynamics and Heat Transfer II - T-MACH-105287</td>
<td></td>
</tr>
<tr>
<td>8.194</td>
<td>Theory of Probability - T-ETIT-101952</td>
<td></td>
</tr>
<tr>
<td>8.195</td>
<td>Thermal Solar Energy - T-MACH-105225</td>
<td></td>
</tr>
<tr>
<td>8.196</td>
<td>Tutorial Advanced Mathematics I - T-MATH-100525</td>
<td></td>
</tr>
<tr>
<td>8.197</td>
<td>Tutorial Advanced Mathematics II - T-MATH-100526</td>
<td></td>
</tr>
<tr>
<td>8.198</td>
<td>Tutorial Advanced Mathematics III - T-MATH-100527</td>
<td></td>
</tr>
<tr>
<td>8.199</td>
<td>Tutorial Engineering Mechanics I - T-MACH-100528</td>
<td></td>
</tr>
<tr>
<td>8.200</td>
<td>Tutorial Engineering Mechanics II - T-MACH-100284</td>
<td></td>
</tr>
<tr>
<td>8.201</td>
<td>Tutorial Engineering Mechanics III - T-MACH-105202</td>
<td></td>
</tr>
<tr>
<td>8.204</td>
<td>Vibration Theory - T-MACH-105290</td>
<td></td>
</tr>
<tr>
<td>8.205</td>
<td>Virtual Engineering (Specific Topics) - T-MACH-105381</td>
<td></td>
</tr>
<tr>
<td>8.206</td>
<td>Virtual Engineering I - T-MACH-102123</td>
<td></td>
</tr>
<tr>
<td>8.207</td>
<td>Wearable Robotic Technologies - T-INFO-106557</td>
<td></td>
</tr>
<tr>
<td>8.208</td>
<td>Wildcard Additional Examinations 1 - T-MACH-106638</td>
<td></td>
</tr>
<tr>
<td>8.209</td>
<td>Wildcard Additional Examinations 10 - T-MACH-106650</td>
<td></td>
</tr>
<tr>
<td>8.210</td>
<td>Wildcard Additional Examinations 2 - T-MACH-106639</td>
<td></td>
</tr>
<tr>
<td>8.211</td>
<td>Wildcard Additional Examinations 3 - T-MACH-106640</td>
<td></td>
</tr>
<tr>
<td>8.212</td>
<td>Wildcard Additional Examinations 4 - T-MACH-106641</td>
<td></td>
</tr>
<tr>
<td>8.213</td>
<td>Wildcard Additional Examinations 5 - T-MACH-106643</td>
<td></td>
</tr>
<tr>
<td>8.214</td>
<td>Wildcard Additional Examinations 6 - T-MACH-106646</td>
<td></td>
</tr>
<tr>
<td>8.215</td>
<td>Wildcard Additional Examinations 7 - T-MACH-106647</td>
<td></td>
</tr>
<tr>
<td>8.216</td>
<td>Wildcard Additional Examinations 8 - T-MACH-106648</td>
<td></td>
</tr>
<tr>
<td>8.217</td>
<td>Wildcard Additional Examinations 9 - T-MACH-106649</td>
<td></td>
</tr>
<tr>
<td>8.218</td>
<td>Workshop Mechatronical Systems and Products - T-MACH-108680</td>
<td></td>
</tr>
</tbody>
</table>
1 About this handbook

1.1 Notes and rules

The program exists of several subjects (e.g. Fundamentals of Engineering). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.1.1 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he/she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.1.2 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student's "binding declaration" on the choice of the module in the sense of ◆5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive.

1.1.3 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

1.1.4 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.

1.1.5 Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim.
1.1.6 Additional accomplishments
Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam.

1.1.7 Further information
More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).
Qualification Objectives of the Bachelor Program Mechatronics and Information Technology at KIT

Through a research and practical orientation of the six-semester Bachelor’s degree program in Mechatronics and Information Technology at KIT, graduates of the program are prepared for lifelong learning and employment in typical professional fields of mechatronics in industry, services and public administration. They acquire the academic qualifications to pursue a master’s degree program in Mechatronics and Information Technology or related disciplines.

In the fundamental area of the studies, graduates acquire sound basic knowledge in mathematics, engineering mechanics and electrical engineering. This is complemented by basic knowledge of mechanical design, automation and information technology, production technology and mechatronic systems and products. With this in-depth knowledge of scientific theories, principles and methods, graduates can successfully deal with clearly specified problems that have a unique solution approach in mechatronics.

In the specialization field and the bachelor thesis, cross-disciplinary problem-solving and synthesis skills for engineering systems are developed. Graduates are able to generate new solutions in the areas of their choice of engineering.

Graduates of the Bachelor program in Mechatronics and Information Technology at KIT can select basic methods in order to create models and compare them in familiar situations. They are able to take over and to work independently on preset problems and resulting tasks in organized teams, to integrate the results of others and to present and interpret their own results in written form. They can identify, analyze and develop systems and processes and apply predefined assessment criteria.
Amtliche Bekanntmachung

2016 Ausgegeben Karlsruhe, den 10. Mai 2016 Nr. 29

Inhalt

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechatronik und Informationstechnik 200
Studien- und Prüfungsordnung
des Karlsruher Instituts für Technologie (KIT) für den
Bachelorstudiengang Mechatronik und Informationstechnik

vom 03. Mai 2016

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 03. Mai 2016 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
 § 1 Geltungsbereich
 § 2 Ziele des Studiums, akademischer Grad
 § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
 § 4 Modulprüfungen, Studien- und Prüfungsleistungen
 § 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
 § 6 Durchführung von Erfolgskontrollen
 § 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
 § 6 b Computergestützte Erfolgskontrollen
 § 7 Bewertung von Studien- und Prüfungsleistungen
 § 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
 § 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
 § 10 Abmeldung; Versäumnis, Rücktritt
 § 11 Täuschung, Ordnungsverstoß
 § 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
 § 13 Studierende mit Behinderung oder chronischer Erkrankung
 § 14 Modul Bachelorarbeit
 § 14 a Berufspraktikum
 § 15 Zusatzleistungen
 § 15 a Mastervorzug
 § 16 Überfachliche Qualifikationen
§ 17 Prüfungsausschuss
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung
§ 20 a Leistungsnachweise für die Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich

Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Mechatronik und Informationstechnik am KIT. Dieser Studiengang wird gemeinsam von der KIT-Fakultät für Elektrotechnik und Informationstechnik sowie der KIT-Fakultät für Maschinenbau am KIT angeboten.

§ 2 Ziel des Studiums, akademischer Grad

(1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.

(2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Mechatronik und Informationstechnik verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Der Studiengang nimmt teil am Programm „Studienmodelle individueller Geschwindigkeit“. Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg).

(2) Die Regelstudienzeit beträgt sechs Semester. Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 2 Satz 3 bis 5. Eine qualifizierte Teilnahme liegt vor, wenn die Studierenden Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtaufwand 10 Semesterwochenstunden) belegt hat. Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

(2) Prüfungsleistungen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungs begleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
 1. in den Bachelorstudiengang Mechatronik und Informationstechnik am KIT eingeschrieben ist;
 2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
 3. nachweist, dass er in dem Bachelorstudiengang Mechatronik und Informationstechnik den Prüfungsanspruch nicht verloren hat und
 4. die in § 20 a genannte Voraussetzung erfüllt.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhanges durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.
§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 5 zu beachten. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

(6) Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/einem Prüfenden in Gegenwart einer oder eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studierenden.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuhalten und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet.

Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle
benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde. Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können.

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische und fachliche Betreuung zu gewährleisten.Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen
(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

- sehr gut (very good): hervorragende Leistung,
- gut (good): eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
- befriedigend (satisfactory): eine Leistung, die durchschnittlichen Anforderungen entspricht,
- ausreichend (sufficient): eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
- nicht ausreichend (failed): eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

- 1,0; 1,3: sehr gut
- 1,7; 2,0; 2,3: gut
- 2,7; 3,0; 3,3: befriedigend
- 3,7; 4,0: ausreichend
- 5,0: nicht ausreichend
Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.

Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwa
tet.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Notenbereich</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5</td>
<td>= sehr gut</td>
<td></td>
</tr>
<tr>
<td>von 1,6</td>
<td>bis 2,5</td>
<td>= gut</td>
</tr>
<tr>
<td>von 2,6</td>
<td>bis 3,5</td>
<td>= befriedigend</td>
</tr>
<tr>
<td>von 3,6</td>
<td>bis 4,0</td>
<td>= ausreichend</td>
</tr>
</tbody>
</table>

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

2. Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen. Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Abs. 2 vorliegt. Ohne ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine Fristüberschreitung von

1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von einem Semester nachweist oder

2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von zwei Semestern nachweist.

Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Abs. 2 auszustellende Bescheinigung, die beim Studierendenservice des KIT einzureichen ist. Im Falle von Nr. 1 kann der Vorsitzende des Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Ablegen der Orientierungsprüfung erforderlich ist, insbesondere weil die Module, die Bestandteil der Orientierungsprüfung sind, nur einmal jährlich angeboten werden.
§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Wiederholung von Prüfungsleistungen hat spätestens bis zum Ende des Prüfungszeitraumes des übernächsten Semesters zu erfolgen.

(7) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(8) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(9) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(10) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

§ 10 Abmeldung; Versäumnis, Rücktritt
(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden, hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß
(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweils gültigen Gesetzes (Bundeselterngeld- und Elternzeitgesetz - BEEG) auf Antrag zu berücksichtigen. Der/die Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, dem Prüfungsausschuss, unter Beifügung der erforderlichen Nachweise schriftlich mitteilen, in welchem Zeitraum die Elternzeit in Anspruch genommen werden soll. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die bei einer Arbeitnehmerin bzw. einem Arbeitnehmer den Anspruch auf Elternzeit auslösen würden, und teilt
§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behindernten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 20 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

(1a) Dem Modul Bachelorarbeit sind 12 LP zugeordnet. Es besteht aus der Bachelorarbeit und einer Präsentation. Die Präsentation hat innerhalb der maximalen Bearbeitungsdauer gemäß Absatz 4 Satz 2, jedoch spätestens sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

Die Ausgabe des Themas erfolgt in diesem Fall über die/den Vorsitzende/n des Prüfungsausschusses.

(3) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

(5) Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.” Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5,0) bewertet.

§ 14 a Berufspraktikum

(2) Die Studierenden setzen sich in eigener Verantwortung mit geeigneten privaten oder öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Das Nähere regelt das Modulhandbuch.
§ 15 Zusatzleistungen

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 15 a Mastervorzug

§ 16 Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschuss

(1) Für den Bachelorstudiengang Mechatronik und Informationstechnik wird ein Prüfungsausschuss gebildet. Er besteht aus vier stimmberechtigten Mitgliedern: zwei Hochschullehrer/innen / leitenden Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG / Privatdozentinnen bzw. - dozenten, zwei akademischen Mitarbeiterinnen und Mitarbeitern nach § 52 LHG / wissenschaftlichen Mitarbeiter/innen gemäß § 14 Abs. 3 Ziff. 2 KITG aus den nach § 1 Satz 2 beteiligten KIT-Fakultäten und zwei Studierenden mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und den Masterstudiengang Mechatronik und Informationstechnik erhöht sich die Anzahl der Studierenden auf vier Mitglieder mit beratender Stimme, wobei je zwei dieser vier aus dem Bachelor- und aus dem Masterstudiengang stammen. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr. Jede gemäß § 1 Satz 2 beteiligte KIT-Fakultät muss stimmberechtigt vertreten sein.

(2) Die/der Vorsitzende, ihre/sein Stellvertreter/in, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter/innen werden von den KIT-Fakultätsräten der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten bestellt, die akademischen Mitarbeiter/innen nach § 52 LHG, die wissenschaftlichen Mitarbeiter gemäß § 14 Abs. 3 Ziff. 2 KITG und die Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Die/der Vorsitzende und deren/dessen Stellvertreter/in müssen Hochschullehrer/innen oder leitende Wissenschaftler/innen § 14 Abs. 3 Ziff. 1 KITG sein. Die/der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch das jeweilige Prüfungssekretariat unterstützt.
(3) Der Prüfungsausschuss achtet auf die Einhaltung der Bestimmungen dieser Studien- und Prüfungsordnung sowie deren Umsetzung in den gemäß § 1 Satz 2 beteiligten KIT-Fakultäten und fällt die Entscheidungen in Prüfungsangelegenheiten. Er entscheidet über die Anerkennung von Studienzeiten sowie Studien- und Prüfungsleistungen und trifft die Feststellung gemäß § 19 Absatz 1 Satz 1. Er berichtet der den gemäß § 1 Satz 2 beteiligten KIT-Fakultäten regelmäßig über die Entwicklung der Prüfungs- und Studienzeiten, einschließlich der Bearbeitungszeiten für die Bachelorarbeiten und die Verteilung der Modul- und Gesamtnoten. Er ist zuständig für Anregungen zur Reform der Studien- und Prüfungsordnung und zu Modulbeschreibungen. Der Prüfungsausschuss entscheidet mit der Mehrheit seiner Stimmen. Bei Stimmengleichheit entscheidet der Vorsitzende des Prüfungsausschusses.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n zur Verschwiegenheit.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolviierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsbe rechtigte Person hinzuzuziehen.

§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrer/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche einer der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern eine der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten eine Prüfungsbefugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem mathematisch-naturwissenschaftlichen oder ingenieurwissenschaftlichen Studiengang oder einen gleichwertigen akademischen Abschluss erworben hat.
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufskollegs der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studien- bzw. Prüfungsleistung (Anrechnung) dienen die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Studiengang Mechatronik und Informationstechnik immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems erworben Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung

(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14) und dem Berufspraktikum (§ 14 a).

(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:

1. Ingenieurwissenschaftliche Grundlagen: Modul(e) im Umfang von 110 LP,
2. Vertiefung in der Mechatronik: Modul(e) im Umfang von 37 LP,
3. Überfachliche Qualifikationen im Umfang von 6 LP gemäß § 16.

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.
§ 20 a Leistungsnachweise für die Bachelorprüfung
Voraussetzung für die Anmeldung zur letzten Modulprüfung der Bachelorprüfung ist die Be-
scheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 14 a. In Ausnahmefällen,
die die Studierenden nicht zu vertreten haben, kann der Prüfungsausschuss die nachträgliche
Vorlage dieses Leistungsnachweises genehmigen.

§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen mindestens
mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichte-
ter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit.

(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem
Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with
distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records
(1) Über die Bachelorprüfung werden nach Bewertung der letzten Prüfungsleistung eine Bap-
chelorurkunde und ein Zeugnis erstellt. Die Ausfertigung von Bachelorurkunde und Zeugnis soll
nicht später als drei Monate nach Ablegen der letzten Prüfungsleistung erfolgen. Bachelorurku-
unde und Bachelorzeugnis werden in deutscher und englischer Sprache ausgestellt. Bachelorur-
kunde und Zeugnis tragen das Datum der erfolgreichen Erbringung der letzten Prüfungsleistung.
Diese Dokumente werden den Studierenden zusammen ausgehändigt. In der Bachelorurkunde
wird die Verleihung des akademischen Bachelorgrades beurkundet. Die Bachelorurkunde wird
von dem Präsidenten und den KIT-Dekaninnen/ den KIT-Dekanen der gemäß § 1 Satz 2 betei-
ligten KIT-Fakultäten unterzeichnet und mit dem Siegel des KIT versehen.

(2) Das Zeugnis enthält die Fach- und Modulnoten sowie die den Modulen und Fächern zuge-
ordnete Leistungspunkte und die Gesamtnote. Sofern gemäß § 7 Abs. 2 Satz 2 eine differentier-
tete Bewertung einzelner Prüfungsleistungen vorgenommen wurde, wird auf dem Zeugnis auch die
entsprechende Dezimalnote ausgewiesen; § 7 Abs. 4 bleibt unberührt. Das Zeugnis ist von den
KIT-Dekaninnen/ den KIT-Dekanen der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten und von
der/dem Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und engli-
scher Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein
Transcript of Records in deutscher und englischer Sprache.

(4) Das Transcript of Records enthält in strukturierter Form alle erbrachten Studien- und Pru-
fungsleistungen. Dies beinhaltet alle Fächer und Fachnoten samt den zugeordneten Leistungs-
punkten, die dem jeweiligen Fach zugeordneten Module mit den Modulnoten und zugeordneten
Leistungspunkten sowie die den Modulen zugeordneten Erfolgskontrollen samt Noten und zuge-
ordneten Leistungspunkten. Absatz 2 Satz 2 gilt entsprechend. Aus dem Transcript of Records
soll die Zugehörigkeit von Lehrveranstaltungen zu den einzelnen Modulen deutlich erkennbar
sein. Angerechnete Studien- und Prüfungsleistungen sind im Transcript of Records aufzuneh-
men. Alle Zusatzleistungen werden im Transcript of Records aufgeführt.

(5) Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des
Transcript of Records werden vom Studierendenservice des KIT ausgestellt.
III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen
Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 24 Aberkennung des Bachelorgrades
(1) Haben Studierende bei einer Prüfungstätigkeit getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die Studierende die Zulassung vorsätzlich zu Unrecht erworben, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.

§ 25 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften
(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2016 in Kraft.

(3) Studierende, die auf Grundlage der Studien- und Prüfungsordnung für den Bachelorstudien-
gang Mechatronik und Informationstechnik vom 24. Juli 2012 (Amtliche Bekanntmachung des
KIT Nr. 38 vom 24. Juli 2012) zuletzt geändert durch die Dritte Satzung zur Änderung der Studi-
en- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudi-
engang Mechatronik und Informationstechnik vom 10. Juli 2015 (Amtliche Bekanntmachung des
KIT Nr. 51 vom 15.Juli 2015), ihr Studium am KIT aufgenommen haben, können Prüfungen auf
Grundlage dieser Studien- und Prüfungsordnung letztmalig am 30. September 2021 ablegen.

(4) Studierende, die auf Grundlage der Studien- und Prüfungsordnung der Universität Karlsruhe
für den interfakultativen Diplomstudiengang Mechatronik vom 15. August 2001 (Amtliche Be-
kanntmachungen der Universität Karlsruhe (TH) Nr. 24 vom 04. September 2001), zuletzt geän-
dert durch die Satzung zur Änderung der Prüfungsordnung der Universität Karlsruhe (TH) für
den interfakultativen Diplomstudiengang Mechatronik vom 10. September 2003 (Amtliche Be-
kanntmachungen der Universität Karlsruhe (TH) Nr. 34 vom 22. Oktober 2003), ihr Studium an der
Universität Karlsruhe (TH) aufgenommen haben, können die Diplomprüfung einschließlich etwa-
ger Wiederholungen letztmalig bis zum 30. September 2017 ablegen.

Karlsruhe, den 03. Mai 2016

Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechatronik und Informationstechnik

Seite

280
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Mechatronik und Informationstechnik

vom 26. September 2018

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 26. September 2018 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 8 Absatz 1 wird wie folgt gefasst:

„(1) Die Teilmodulprüfung „Technische Mechanik I“ im Modul „Technische Mechanik“ und die Modulprüfung im Modul „Lineare Elektrische Netze“ sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen)."

2. § 12 Absatz 1 wird wie folgt geändert:

a) Satz 1 wird wie folgt gefasst:

„Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung.“

b) Satz 2 wird aufgehoben.

c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

3. § 14 Absatz 1a wird wie folgt geändert:

a) In Satz 1 wird die Angabe „12 LP“ durch die Angabe „15 LP“ ersetzt.

4. § 17 Absatz 7 wird wie folgt geändert:

In Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.
5. § 18 Absatz 3 wird wie folgt geändert:
Nach dem Wort „sofern“ werden die Wörter „eine der gemäß § 1 Satz 2 beteiligten KIT-Fakultäten eine Prüfungsbefugnis erteilt hat und“ gestrichen.

6. § 20 Absatz 2 wird wie folgt geändert:

a) In Satz 1 Nummer 2 wird nach dem Wort „von“ die Angabe „37 LP“ durch die Angabe „38 LP“ ersetzt.

b) In Satz 1 Nummer 3 wird nach dem Wort „von“ die Angabe „6 LP“ durch die Angabe „2 LP“ ersetzt.

c) Nach Satz 1 wird folgender Satz 2 eingefügt:
„Die Vermittlung weiterer überfachlicher Qualifikationen im Umfang von 4 LP gemäß § 16 findet im Rahmen der fachwissenschaftlichen Module Lineare Elektrische Netze, Elektronische Schaltungen sowie Signale und Systeme im Pflichtfach Ingenieurwissenschaftliche Grundlagen statt.“

d) Der bisherige Satz 2 wird Satz 3.

7. Dem § 21 Absatz 2 wird folgender Satz angefügt:
„Dabei wird die Note des Moduls Bachelorarbeit mit dem doppelten Gewicht berücksichtigt.“

Artikel 2 – Inkrafttreten, Übergangsvorschrift

(1) Die Satzung tritt am 01. Oktober 2018 in Kraft und gilt für
1. Studierende, die ihr Studium im Bachelorstudiengang Mechatronik und Informationstechnik am KIT im ersten Fachsemester aufnehmen, sowie für

2. Studierende, die ihr Studium im Bachelorstudiengang Mechatronik und Informationstechnik am KIT in einem höheren Fachsemester aufnehmen, sofern dieses Fachsemester nicht über dem Fachsemester liegt, das der erste Jahrgang nach Ziff. 1 erreicht.

(2) Die Studien- und Prüfungsordnung des KIT für den Bachelorstudiengang Mechatronik und Informationstechnik in der Fassung vom 03. Mai 2016 (Amtliche Bekanntmachung des KIT Nr. 29 vom 10. Mai 2016) gilt für

1. Studierende, die ihr Studium im Bachelorstudiengang Mechatronik und Informationstechnik am KIT zuletzt im Sommersemester 2018 aufgenommen haben, sowie für

2. Studierende, die ihr Studium im Bachelorstudiengang Mechatronik und Informationstechnik am KIT ab dem Wintersemester 2018/19 in einem höheren Fachsemester aufnehmen, sofern das Fachsemester über dem liegt, das der erste Jahrgang nach Absatz 1 Ziff. 1 erreicht hat.

Karlsruhe, den 26. September 2018

Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Studienplan für den Bachelorstudiengang Mechatronik und Informationstechnik

Zusammensetzung der Leistungspunkte (LP) insgesamt

Module im Pflichtfach „Ingenieurwissenschaftliche Grundlagen“: 110 LP
Module im Vertiefungsfach „Vertiefung in der Mechatronik“: 38 LP
Modul im Fach „Überfachliche Qualifikationen“: 2 LP
Berufspraktikum: 15 LP
Bachelorarbeit: 15 LP
Summe: 180 LP

Prüfungsart und -dauer

Angaben über Prüfungsart oder -dauer werden nach § 6 Absatz 2 der Prüfungsordnung für den Bachelorstudiengang fristgerecht bekannt gegeben. Prüfungsart und/oder -dauer können nach § 6 Absatz 2 und 3 geändert werden.

Zusammensetzung der Module im Pflichtfach „Ingenieurwissenschaftliche Grundlagen“

Modul M-MATH-102859 - Höhere Mathematik (21 LP)
 ▪ T-MATH-100525 - Übungen zu Höhe Mathematik I
 ▪ T-MATH-100275 - Höhere Mathematik I (7 LP)
 ▪ T-MATH-100526 - Übungen zu Höhe Mathematik II
 ▪ T-MATH-100276 - Höhere Mathematik II (7 LP)
 ▪ T-MATH-100527 - Übungen zu Höhe Mathematik III
 ▪ T-MATH-100277 - Höhere Mathematik III (7 LP)

Modul M-MACH-102402 - Technische Mechanik (18 LP)
 ▪ T-MACH-100528 - Übungen zu Technische Mechanik I
 ▪ T-MACH-100282 - Technische Mechanik I (7 LP)
 ▪ T-MACH-100284 - Übungen zu Technische Mechanik II
 ▪ T-MACH-100283 - Technische Mechanik II (6 LP)
 ▪ T-MACH-105202 - Übungen zu Technische Mechanik III
 ▪ T-MACH-100299 - Technische Mechanik III (5 LP)

Modul M-ETIT-104519 - Lineare elektrische Netze (9 LP)
 ▪ T-ETIT-109317 - Lineare Elektrische Netze – Workshop A (1 LP)
 ▪ T-ETIT-109811 - Lineare Elektrische Netze – Workshop B (1 LP)
 ▪ T-ETIT-109316 - Lineare Elektrische Netze (7 LP)

Modul M-ETIT-104465 - Elektronische Schaltungen (7 LP)
 ▪ T-ETIT-109138 - Elektronische Schaltungen - Workshop (1 LP)
 ▪ T-ETIT-109318 - Elektronische Schaltungen (6 LP)

Modul M-ETIT-104428 - Elektromagnetische Felder (6 LP)
 ▪ T-ETIT-109078 - Elektromagnetische Felder (6 LP)

Modul M-ETIT-102124 - Elektrische Maschinen und Stromrichter (6 LP)
 ▪ T-ETIT-101954 - Elektrische Maschinen und Stromrichter (6 LP)
Studienplan BSc Mechatronik und Informationstechnik

Modul M-MACH-101299 - Maschinenkonstruktionslehre (8 LP)
 ▪ T-MACH-110364 - Maschinenkonstruktionslehre Grundlage I, Vorleistung (1 LP)
 ▪ T-MACH-110365 - Maschinenkonstruktionslehre Grundlage II, Vorleistung (1 LP)
 ▪ T-MACH-110363 - Maschinenkonstruktionslehre Grundlagen I und II (6 LP)

Modul M-MACH-102549 - Fertigungsprozesse (4 LP)
 ▪ T-MACH-105219 - Grundlagen der Fertigungstechnik (4 LP)

Modul M-ETIT-102102 - Digitaltechnik (6 LP)
 ▪ T-ETIT-101918 - Digitaltechnik (6 LP)

Modul M-ETIT-104539 - Informationstechnik I (6 LP)
 ▪ T-ETIT-109301 - Informationstechnik I - Praktikum (2 LP)
 ▪ T-ETIT-109300 - Informationstechnik I (4 LP)

Modul M-ETIT-104525 - Signale und Systeme (7 LP)
 ▪ T-ETIT-109314 - Signale und Systeme - Workshop (1 LP)
 ▪ T-ETIT-109313 - Signale und Systeme (6 LP)

Modul M-ETIT-102181 - Systemdynamik und Regelungstechnik (6 LP)
 ▪ T-ETIT-101921 - Systemdynamik und Regelungstechnik (6 LP)

Modul M-MACH-102749 - Mechatronische Systeme und Produkte (6 LP)
 ▪ T-MACH-108680 - Workshop Mechatronische Systeme und Produkte (3 LP)
 ▪ T-MACH-105574 - Mechatronische Systeme und Produkte (3 LP)

Zusammensetzung der Module im Vertiefungsfach
 „Vertiefung in der Mechatronik“

Vertiefung in der Mechatronik Wahlblock 1: „Elektrotechnik und Informationstechnik“
Wählen Sie in diesem Wahlblock 1 Modul aus. Wählbare Module siehe Modulhandbuch.

Vertiefung in der Mechatronik Wahlblock 2: „Maschinenbau“
Wählen Sie in diesem Wahlblock 1 Modul aus. Wählbare Module siehe Modulhandbuch.

Vertiefung in der Mechatronik Wahlblock 3:
Wählen Sie in diesem Wahlblock weitere 1 bis 2 Module, bis 8 LP erreicht oder erstmalig überschritten werden. Wählbare Module siehe Modulhandbuch

Vertiefung in der Mechatronik Ergänzungsbereich
Sofern nach Auswahl der Module in den Wahlblöcken 1 bis 3 in Summe noch keine 38 LP im Vertiefungsfach erreicht sind, müssen Ergänzungsmodule gewählt werden, bis mindestens 38 LP erreicht werden. Nicht zulässig ist es, weitere Module anzumelden, wenn bereits 38 LP erreicht oder erstmalig überschritten wurden.

Als Ergänzungsmodule können alle noch nicht verwendeten Module aus den Wahlblöcken 1 bis 3 ausgewählt werden. (Bereits in den Modulen der Wahlblöcke 1 bis 3 erbrachte Leistungen können gemäß § 7 (5) der SPO nicht nochmal in Ergänzungsmodulen anerkannt werden.) Weitere Ergänzungsmodule sind im Modulhandbuch aufgeführt.

Zusammensetzung des Moduls im Fach „Überfachliche Qualifikationen“

Modul M-MACH-104355 Schlüsselqualifikationen (2 LP)
- T-MACH-105699 - Kooperation in interdisziplinären Teams (2 LP)

Modul Berufspraktikum

Modul M-MACH-104265 - Berufspraktikum (15 LP)
- T-MACH-108803 - Berufspraktikum (15 LP)

Modul Bachelorarbeit

Modul M-MACH-104262 - Bachelorarbeit (15 LP)
- T-MACH-107760 - Präsentation (3 LP)
- T-MACH-108800 - Bachelorarbeit (12 LP)

Orientierungsprüfung

Die Orientierungsprüfung nach SPO § 8 besteht aus der Teilmodulprüfung „Technische Mechanik I“ im Modul „Technische Mechanik“ und der Modulprüfung „Lineare elektrische Netze“.

Zusätzliche Leistungen

Es können nach SPO § 15 (1) auch Leistungen mit bis zu 30 Leistungspunkten mehr erworben werden, als für das Bestehen der Bachelorprüfung erforderlich sind. Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

Mastervorzug

Studierende, die bereits mindestens 120 LP erworben haben, können gemäß SPO § 15 a Leistungspunkte aus einem konsekutiven Masterstudiengang am KIT im Umfang von höchstens 30 LP erwerben. Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Mastervorzug zu deklarieren.

Exemplarischer Studienablaufplan

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Fach</th>
<th>Modul</th>
<th>Teilleistungen</th>
<th>LP</th>
<th>Prüfung / Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>M-MATH-102859</td>
<td>T-MATH-100525 - Übungen zu Höhere Mathematik I</td>
<td>7</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100275 - Höhere Mathematik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-102402</td>
<td>T-MACH-100528 - Übungen zu Technische Mechanik I</td>
<td>7</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-100282 - Technische Mechanik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104519</td>
<td>T-ETIT-109317 - Lineare Elektrische Netze - Workshop A</td>
<td>1</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109811 - Lineare Elektrische Netze - Workshop B</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109316 - Lineare Elektrische Netze</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-102102</td>
<td>T-ETIT-101918 - Digitaltechnik</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-101299</td>
<td>T-MACH-110364 - Maschinenkonstruktionslehre Grundlage I, Vorleistung</td>
<td></td>
<td>1 Studienleistung</td>
</tr>
<tr>
<td>2</td>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>M-MATH-102859</td>
<td>T-MATH-100528 - Übungen zu Höhere Mathematik II</td>
<td>7</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100276 - Höhere Mathematik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-102402</td>
<td>T-MACH-100283 - Technische Mechanik II</td>
<td>6</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-100284 - Technische Mechanik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104465</td>
<td>T-ETIT-109138 - Elektronische Schaltungen - Workshop</td>
<td>1</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109318 - Elektronische Schaltungen</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104428</td>
<td>T-ETIT-109078 - Elektromagnetische Felder</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-101299</td>
<td>T-MACH-110365 - Maschinenkonstruktionslehre Grundlage II, Vorleistung</td>
<td></td>
<td>1 Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-110363 - Maschinenkonstruktionslehre Grundlagen I und II</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>M-MATH-102859</td>
<td>T-MATH-100527 - Übungen zu Höhere Mathematik III</td>
<td>7</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MATH-100277 - Höhere Mathematik III</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-102402</td>
<td>T-MACH-105202 - Übungen zu Technische Mechanik III</td>
<td>5</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-100299 - Technische Mechanik III</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-102124</td>
<td>T-ETIT-101954 - Elektrische Maschinen und Stromrichter</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104525</td>
<td>T-ETIT-109314 - Signale und Systeme - Workshop</td>
<td>1</td>
<td>Studienleistung Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109313 - Signale und Systeme</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-102549</td>
<td>T-MACH-105219 - Grundlagen der Fertigungstechnik</td>
<td>4</td>
<td>Prüfung</td>
</tr>
<tr>
<td>4</td>
<td>Ingenieurwissenschaftliche Grundlagen</td>
<td>M-ETIT-104539</td>
<td>T-ETIT-109301 - Informationstechnik I - Praktikum</td>
<td>2</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-ETIT-109300 - Informationstechnik I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>siehe S. 2</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Überfachliche Qualifikationen</td>
<td>M-MACH-102749</td>
<td>T-MACH-108680 - Workshop Mechatronische Systeme und Produkte</td>
<td>3</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-105574 - Mechatronische Systeme und Produkte</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-102181</td>
<td>T-ETIT-101921 - Systemdynamik und Regelungstechnik</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-ETIT-104355</td>
<td>T-MACH-105699 - Kooperation in interdisziplinären Teams</td>
<td>2</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>siehe S. 2</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Überfachliche Qualifikationen</td>
<td>M-MACH-104265</td>
<td>T-MACH-108803 - Berufspraktikum</td>
<td>15</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-MACH-104262</td>
<td>T-MACH-107760 - Präsentation</td>
<td>3</td>
<td>Studienleistung Abschlussarbeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-MACH-108800 - Bachelorarbeit</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Exemplarische Wahloption

Die exemplarische Wahloption zeigt beispielhaft eine zulässige Kombination von Modulen im Vertiefungsfach, mit der exakt die angegebenen Leistungspunkte im 4. und 5. Semester erreicht werden können.

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Wahlblock</th>
<th>Modul</th>
<th>Teilleistungen</th>
<th>LP</th>
<th>Prüfung / Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Wahlblock 2</td>
<td>M-MACH-102829</td>
<td>T-MACH-110955 - Maschinenkonstruktionslehre III, Vorleistung</td>
<td>1</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>4</td>
<td>Wahlblock 1</td>
<td>M-ETIT-105643</td>
<td>T-ETIT-101923 - Elektroenergiesysteme</td>
<td>5</td>
<td>Prüfung</td>
</tr>
<tr>
<td>4</td>
<td>Wahlblock 2</td>
<td>M-MACH-102829</td>
<td>T-MACH-110956 - Maschinenkonstruktionslehre IV, Vorleistung T-MACH-104810 - Maschinenkonstruktionslehre III & IV</td>
<td>11</td>
<td>Prüfung</td>
</tr>
<tr>
<td>5</td>
<td>Wahlblock 3</td>
<td>M-ETIT-104547</td>
<td>T-ETIT-109319 - Informationstechnik II und Automatisierungstechnik</td>
<td>4</td>
<td>Prüfung</td>
</tr>
<tr>
<td>5</td>
<td>Wahlblock 1</td>
<td>M-ETIT-105643</td>
<td>T-ETIT-100784 - Hybride und elektrische Fahrzeuge</td>
<td>4</td>
<td>Prüfung</td>
</tr>
<tr>
<td>5</td>
<td>Wahlblock 3</td>
<td>M-ETIT-102103</td>
<td>T-ETIT-101936 – Nachrichtentechnik I</td>
<td>6</td>
<td>Prüfung</td>
</tr>
<tr>
<td></td>
<td>Ergänzungs bereich</td>
<td>M-INFO-100893</td>
<td>T-INFO-108014 - Robotik I - Einführung in die Robotik</td>
<td>6</td>
<td>Prüfung</td>
</tr>
</tbody>
</table>
6 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation Exam</td>
<td>0 CR</td>
</tr>
<tr>
<td>M-MACH-104333 Orientation Exam</td>
<td></td>
</tr>
<tr>
<td>Bachelor Thesis</td>
<td>15 CR</td>
</tr>
<tr>
<td>M-MACH-104262 Bachelor Thesis</td>
<td></td>
</tr>
<tr>
<td>Internship</td>
<td>15 CR</td>
</tr>
<tr>
<td>M-MACH-104265 Internship</td>
<td></td>
</tr>
<tr>
<td>Engineering Fundamentals</td>
<td>110 CR</td>
</tr>
<tr>
<td>M-MACH-104266 Engineering Fundamentals</td>
<td></td>
</tr>
<tr>
<td>Specialization in Mechatronics</td>
<td>38 CR</td>
</tr>
<tr>
<td>M-MACH-104267 Specialization in Mechatronics</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Qualifications</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-MACH-104268 Interdisciplinary Qualifications</td>
<td></td>
</tr>
</tbody>
</table>

| Voluntary | |
| **Additional Examinations** | |
| This field will not influence the calculated grade of its parent. |
| **Master Transfer Account** | |
| This field will not influence the calculated grade of its parent. |

6.1 Orientation Exam

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104333 Orientation Exam</td>
<td>0 CR</td>
</tr>
</tbody>
</table>

6.2 Bachelor Thesis

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104262 Bachelor Thesis</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

6.3 Internship

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104265 Internship</td>
<td>15 CR</td>
</tr>
</tbody>
</table>
6.4 Engineering Fundamentals

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-102859</td>
<td>Advanced Mathematics</td>
<td>21 CR</td>
</tr>
<tr>
<td>M-MACH-102402</td>
<td>Engineering Mechanics</td>
<td>18 CR</td>
</tr>
<tr>
<td>M-ETIT-104519</td>
<td>Linear Electric Circuits</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-104465</td>
<td>Electronic Devices and Circuits</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-ETIT-104428</td>
<td>Electromagnetical Fields</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-102124</td>
<td>Electrical Machines and Power Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-101299</td>
<td>Mechanical Design</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102549</td>
<td>Manufacturing Processes</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-102102</td>
<td>Digital Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-104539</td>
<td>Information Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-104525</td>
<td>Signals and Systems</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-ETIT-102181</td>
<td>System Dynamics and Control Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102749</td>
<td>Mechatronical Systems and Products</td>
<td>6 CR</td>
</tr>
</tbody>
</table>
6 FIELD OF STUDY STRUCTURE

6.5 Specialization in Mechatronics

<table>
<thead>
<tr>
<th>Note regarding usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>First usage possible from 4/1/2021.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Election notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsary Elective Modules</td>
</tr>
</tbody>
</table>

1. Part 1: Electrical Engineering and Information Technology
You have to select one of the listed modules.

2. Part 2: Mechanical Engineering
You have to select one of the listed modules.

You have to select one or two modules so that 8 LP are achieved or for the first time exceeded.

4. Part 4: Supplementary Modules
If you have not achieved 38 LP after having selected modules in part 1-3, you have to select supplementary modules until 38 LP are achieved. It is not allowed to select further modules, if 38 LP are achieved or for the first time exceeded. Modules already selected in part 1-3 cannot be acknowledged as supplementary modules.
Election block: Compulsary Elective Modules: Electrical Engineering and Information Technology (1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-105643</td>
<td>Electric Energy Systems/Hybrid and Electric Vehicles</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-105644</td>
<td>Information and Automation Technology II/Laboratory for Machine Learning Algorithms</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-ETIT-105645</td>
<td>Information and Automation Technology II/Seminar Embedded Systems</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-ETIT-105646</td>
<td>Theory of Probability/Communication Engineering I</td>
<td>11 CR</td>
</tr>
<tr>
<td>M-ETIT-105647</td>
<td>Electromagnetical Waves/Fundamentals on High Frequency Techniques</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Election block: Compulsary Elective Modules: Mechanical Engineering (1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102829</td>
<td>Mechanical Design III+IV</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-MACH-102565</td>
<td>Fluid Mechanics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102386</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102567</td>
<td>Material Science and Engineering</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management (at least 8 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100803</td>
<td>Real-Time Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-101418</td>
<td>Introduction to Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-102156</td>
<td>Electric Energy Systems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-104515</td>
<td>Electromagnetical Waves</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-102129</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100514</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-104547</td>
<td>Information Technology II and Automation Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102829</td>
<td>Mechanical Design III+IV</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-INFO-100757</td>
<td>Mechano-Informatics and Robotics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-102103</td>
<td>Communication Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101174</td>
<td>Programming</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-103179</td>
<td>Computer Organization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-105320</td>
<td>Seminar Fuel Cell I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-100455</td>
<td>Seminar Embedded Systems</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101175</td>
<td>Software Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102565</td>
<td>Fluid Mechanics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102386</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-ETIT-102104</td>
<td>Theory of Probability</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102567</td>
<td>Material Science and Engineering</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Supplementary Modules (between 1 and 15 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100030</td>
<td>Algorithms I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100565</td>
<td>Antennas and Multiple Antenna Systems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-103294</td>
<td>Wearable Robotic Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100764</td>
<td>Accessibility - Assistive Technologies for Visually Impaired Persons</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-103271</td>
<td>Battery Modeling in MATLAB</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-100384</td>
<td>Medical Imaging Techniques I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-102651</td>
<td>Image Processing</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-100814</td>
<td>Biologically Inspired Robots</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-104460</td>
<td>Deep Learning and Neural Networks</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100803</td>
<td>Real-Time Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-101418</td>
<td>Introduction to Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100736</td>
<td>Introduction to Video Analysis</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-105276</td>
<td>Introduction to High Voltage Engineering</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-MACH-102692</td>
<td>Electric Rail Vehicles</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-102156</td>
<td>Electric Energy Systems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-104515</td>
<td>Electromagnetical Waves</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-102113</td>
<td>Basic Electronic Circuits Laboratory</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100407</td>
<td>Power Generation</td>
<td>3 CR</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>M-ETIT-103043</td>
<td>Manufacturing Measurement Technology</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-102129</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100514</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-104547</td>
<td>Information Technology II and Automation Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100895</td>
<td>Information Processing in Sensor Networks</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100819</td>
<td>Cognitive Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-104534</td>
<td>Complex Analysis and Integral Transformations</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-104823</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100518</td>
<td>Laboratory Circuit Design</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102829</td>
<td>Mechanical Design III+IV</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-INFO-100757</td>
<td>Mechano-Informatics and Robotics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100729</td>
<td>Human Computer Interaction</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100824</td>
<td>Human-Machine-Interaction in Anthropomatics: Basics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101249</td>
<td>Mobile Computing and Internet of Things</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-102103</td>
<td>Communication Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100440</td>
<td>Communications Engineering II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-104067</td>
<td>Optics and Solid State Electronics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-ETIT-100509</td>
<td>Optoelectronic Components</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100480</td>
<td>Optoelectronics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100411</td>
<td>Photovoltaic System Design</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-100390</td>
<td>Physiology and Anatomy for Engineers I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-103263</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101174</td>
<td>Programming</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100562</td>
<td>Radiation Protection</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-105124</td>
<td>Radio-Frequency Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-103179</td>
<td>Computer Organization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-104897</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-105319</td>
<td>Seminar Battery I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-105320</td>
<td>Seminar Fuel Cell I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-100397</td>
<td>Seminar Power Electronics in Regenerative Energy Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100383</td>
<td>Seminar on Selected Chapters of Biomedical Engineering</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101175</td>
<td>Software Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100833</td>
<td>Software Engineering II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102565</td>
<td>Fluid Mechanics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-ETIT-105299</td>
<td>Superconductors for Energy Applications</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-105705</td>
<td>Superconducting Magnet Technology and Power Systems</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-MACH-102831</td>
<td>Engineering Mechanics IV</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102386</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MACH-102830</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-ETIT-102104</td>
<td>Theory of Probability</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-104919</td>
<td>Advanced Topics and Methods in Mechanical Engineering 1</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105091</td>
<td>Advanced Topics and Methods in Mechanical Engineering 2</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102567</td>
<td>Material Science and Engineering</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

6.6 Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104355</td>
<td>Soft Skills</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
6.7 Additional Examinations

<table>
<thead>
<tr>
<th>Election block: Additional Examinations (at most 30 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-104332</td>
<td>Further Examinations</td>
</tr>
</tbody>
</table>
6.8 Master Transfer Account

Election notes

Please note: Upon successful completion of all studies and exams needed for the bachelor's degree, a control of success registered as a prior master's examination may only be passed as long as you are enrolled in the bachelor's program. You should not yet have been admitted to the master's program and the master's semester should not yet have started.

This means that as soon as your admission to the master's program has been expressed and the master's semester has started, your participation in the examination is the **first regular examination** attempt within the framework of your master's studies.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102698</td>
<td>Actuators and Sensors in Nanotechnology</td>
<td>4</td>
</tr>
<tr>
<td>M-INFO-103294</td>
<td>Wearable Robotic Technologies</td>
<td>4</td>
</tr>
<tr>
<td>M-INFO-100826</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>6</td>
</tr>
<tr>
<td>M-MACH-105108</td>
<td>Automated Manufacturing Systems</td>
<td>8</td>
</tr>
<tr>
<td>M-MACH-103232</td>
<td>Rail System Technology</td>
<td>4</td>
</tr>
<tr>
<td>M-ETIT-100384</td>
<td>Medical Imaging Techniques I</td>
<td>3</td>
</tr>
<tr>
<td>M-INFO-100814</td>
<td>Biologically Inspired Robots</td>
<td>3</td>
</tr>
<tr>
<td>M-ETIT-100387</td>
<td>Biomedical Measurement Techniques I</td>
<td>3</td>
</tr>
<tr>
<td>M-MACH-100489</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine I</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-100490</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine II</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-100491</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine III</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-105286</td>
<td>BUS-Controls</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102684</td>
<td>CAE-Workshop</td>
<td>4</td>
</tr>
<tr>
<td>M-ETIT-105616</td>
<td>Channel Coding: Algebraic Methods for Communications and Storage</td>
<td>3</td>
</tr>
<tr>
<td>M-MACH-105296</td>
<td>Computational Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>M-INFO-100810</td>
<td>Computer Vision for Human-Computer Interaction</td>
<td>6</td>
</tr>
<tr>
<td>M-INFO-104460</td>
<td>Deep Learning and Neural Networks</td>
<td>6</td>
</tr>
<tr>
<td>M-MACH-102687</td>
<td>Decentrally Controlled Intralogistic Systems</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102700</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>5</td>
</tr>
<tr>
<td>M-INFO-100803</td>
<td>Real-Time Systems</td>
<td>6</td>
</tr>
<tr>
<td>M-WIWI-100498</td>
<td>Introduction into Energy Economics</td>
<td>5</td>
</tr>
<tr>
<td>M-MACH-102692</td>
<td>Electric Rail Vehicles</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102688</td>
<td>Elements of Technical Logistics</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-105015</td>
<td>Elements of Technical Logistics incl. Project</td>
<td>6</td>
</tr>
<tr>
<td>M-ETIT-100419</td>
<td>Lab Course Electrical Power Engineering</td>
<td>6</td>
</tr>
<tr>
<td>M-ETIT-100534</td>
<td>Power Transmission and Power Network Control</td>
<td>5</td>
</tr>
<tr>
<td>M-MACH-102702</td>
<td>Organ Support Systems</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-105288</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102703</td>
<td>Vehicle Lightweight Design - Strategies, Concepts, Materials</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102693</td>
<td>Automotive Vision</td>
<td>6</td>
</tr>
<tr>
<td>M-MACH-102705</td>
<td>Appliance and Power Tool Design</td>
<td>8</td>
</tr>
<tr>
<td>M-INFO-100753</td>
<td>Design Principles for Interactive Real-Time Systems</td>
<td>3</td>
</tr>
<tr>
<td>M-MACH-102690</td>
<td>Fundamentals of Energy Technology</td>
<td>8</td>
</tr>
<tr>
<td>M-MACH-100501</td>
<td>Automotive Engineering I</td>
<td>8</td>
</tr>
<tr>
<td>M-MACH-100502</td>
<td>Automotive Engineering II</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102720</td>
<td>Principles of Medicine for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102691</td>
<td>Introduction to Microsystem Technology I</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102706</td>
<td>Introduction to Microsystem Technology II</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-102707</td>
<td>Fundamentals of Combustion I</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-105824</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-105289</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>2</td>
</tr>
<tr>
<td>M-MACH-105290</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>2</td>
</tr>
<tr>
<td>M-MACH-105283</td>
<td>Basics of Technical Logistics I</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-105281</td>
<td>Information Systems and Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>M-INFO-100895</td>
<td>Information Processing in Sensor Networks</td>
<td>6</td>
</tr>
<tr>
<td>M-INFO-100791</td>
<td>Innovative Concepts for Programming Industrial Robots</td>
<td>4</td>
</tr>
<tr>
<td>M-MACH-105282</td>
<td>IT-Fundamentals of Logistics: Opportunities for Digital Transformation</td>
<td>4</td>
</tr>
<tr>
<td>M-INFO-100819</td>
<td>Cognitive Systems</td>
<td>6</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>M-MACH-102696</td>
<td>Lightweight Engineering Design</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102695</td>
<td>Motor Vehicle Laboratory</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100533</td>
<td>Power Electronics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-105467</td>
<td>Control Theory Laboratory</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-105298</td>
<td>Logistics and Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100840</td>
<td>Localization of Mobile Agents</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-105003</td>
<td>Machine Learning 1</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-WIWI-105006</td>
<td>Machine Learning 2</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102694</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-104984</td>
<td>Material Flow in Logistic Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-102713</td>
<td>Mechanics in Microtechnology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102699</td>
<td>Laboratory Mechatronics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100729</td>
<td>Human Computer Interaction</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100824</td>
<td>Human-Machine-Interaction in Anthropomatics: Basics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-ETIT-102652</td>
<td>Measurement Technology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102714</td>
<td>Microenergy Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100487</td>
<td>Microactuators</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105292</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MATH-105831</td>
<td>Numerical Methods</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-104983</td>
<td>Plug-and-Play Material Handling</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100389</td>
<td>Laboratory Biomedical Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100401</td>
<td>Lab Course Electrical Drives and Power Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-103448</td>
<td>Laboratory Mechatronic Measurement Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-105291</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102718</td>
<td>Product Development - Methods of Product Development</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-102711</td>
<td>Production Techniques Laboratory</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-104475</td>
<td>Project Management in the Development of Products for Safety-Critical Applications</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-102224</td>
<td>Practical Project Robotics and Automation I (Software)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-102230</td>
<td>Practical Project Robotics and Automation II (Hardware)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-105332</td>
<td>Quality Management</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-100374</td>
<td>Control of Linear Multivariable Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-102522</td>
<td>Robotics - Practical Course</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-102756</td>
<td>Robotics II: Humanoid Robotics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-104897</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-100820</td>
<td>Medical Robotics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-MACH-102683</td>
<td>Rail Vehicle Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105725</td>
<td>Seamless Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-100378</td>
<td>Sensors</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-100829</td>
<td>Stochastic Information Processing</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-103205</td>
<td>Engineering Mechanics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-105318</td>
<td>Technical Design in Product Development</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102388</td>
<td>Thermal Solar Energy</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100839</td>
<td>Fuzzy Sets</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100361</td>
<td>Distributed Discrete Event Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-105293</td>
<td>Virtual Engineering 1</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102717</td>
<td>Heat and Mass Transfer</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-102734</td>
<td>Materials</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-105107</td>
<td>Machine Tools and Industrial Handling</td>
<td>8 CR</td>
</tr>
</tbody>
</table>
Modelled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 120 credits in the following fields:
 - Bachelor Thesis
 - Internship
 - Engineering Fundamentals
 - Interdisciplinary Qualifications
 - Specialization in Mechatronics
7 Modules

7.1 Module: Accessibility - Assistive Technologies for Visually Impaired Persons (2400052) [M-INFO-100764]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101301</td>
</tr>
</tbody>
</table>
7.2 Module: Actuators and Sensors in Nanotechnology [M-MACH-102698]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105238 | Actuators and Sensors in Nanotechnology | 4 CR | Kohl

Competence Certificate
oral exam: 45 min

Competence Goal

- Knowledge of the principles of actuation and sensing
- Knowledge of important fabrication technologies
- Explanation of typical properties (time constants, sensitivities, forces, etc.)
- Explanation of layout and function of the actuators and sensors

Prerequisites
keine

Content
- Physical principles of actuation and sensing
- Scaling and size effects
- Fabrication technologies
- Selected developments
- Applications

The lecture includes amongst others the following topics:

- Nano technologies
- Nano electro mechanical systems (NEMS)
- Nano magneto mechanical and multiferroic systems
- Polymer-based nano actuators
- Nano motors, molecular systems
- Adaptive nano optical systems
- Nanosensors: concepts, materials, fabrication
- Examples on different categories of materials and applications:
 - C-based, MeOx-based nano sensors
 - Physical, chemical, biological nano sensors
 - Multivariant data analysis / interpretation

Recommendation

The lecture addresses students in the fields of mechanical engineering, mechatronics and information technology, materials science and engineering, physics, electrical engineering and economic sciences. A comprehensive introduction is given in the basics and current developments on the nanoscopic length scale.

Workload

Time of attendance: 15 * 1.5 h = 22.5 h
Preparation and follow up: 15 * 5.5 h = 82.5 h
Exam Preparation and Exam: 15 h
Total: 120 h = 4 LP
Literature
- Lecture notes
7.3 Module: Advanced Mathematics [M-MATH-102859]

Responsible: Prof. Dr. Roland Griesmaier
Organisation: KIT Department of Mathematics
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Grade to a tenth</td>
<td>3 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100525</td>
<td>Tutorial Advanced Mathematics I</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100526</td>
<td>Tutorial Advanced Mathematics II</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100527</td>
<td>Tutorial Advanced Mathematics III</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100275</td>
<td>Advanced Mathematics I</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100276</td>
<td>Advanced Mathematics II</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100277</td>
<td>Advanced Mathematics III</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried by three written examinations of length 120 minutes each and by three sets of homework assignments (pre-requisites). A "pass" result on a pre-requisites in Advanced Mathematics I, II and III, respectively, is a requirement for registration for the corresponding written examination.

Competence Goal

The students know the fundamentals of one-dimensional calculus. They can reliably use limits, functions, power series and integrals. They understand central concepts such as continuity, differentiability or integrability and they know important statements about these concepts. The students can follow the arguments leading to these statements as presented in the lectures and are able to independently prove simple assertions based on these statements.

The students know about the fundamentals of linear algebra. They are able to use vectors, linear maps and matrices without problems. They have basic knowledge about Fourier series. The students also can theoretically and practically deal with initial value problems of ordinary differential equations. They can make use of classical solution techniques for linear differential equations.

The students know about differential calculus for vector-valued functions of several variables and about techniques of vector calculus such as the definition and application of differential operators, the computation of domain, line and surface integrals and important integral theorems. They have basic knowledge about partial differential equations and know basic facts from stochastics.

Prerequisites

None.

Content

Fundamentals, sequences and convergence, functions and continuity, series, differential calculus of one real variable, integral calculus, vector spaces, linear maps, eigenvalues, Fourier series, differential equations, Laplace transform, multidimensional calculus, domain integrals, vector calculus, partial differential equations, stochastics

Workload

In class: 270 hours

- lectures, tutorials and examinations

Independent study: 360 hours

- independent review of course material
- work on homework assignments
- preparation for written exams
Learning type
Lecture, problem classes, tutorials
Module: Advanced Topics and Methods in Mechanical Engineering 1 [M-MACH-104919]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Election notes
Only one of the listed bricks can be chosen in the compulsory-elective block.

Election block: Advanced Topics and Methods in Mechanical Engineering 1 (1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105381</td>
<td>Virtual Engineering (Specific Topics)</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-1055212</td>
<td>CAE-Workshop</td>
<td>4 CR</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>5 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>4 CR</td>
<td>Geimer, Pult</td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>4 CR</td>
<td>Mittwollen, Oellerich</td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>4 CR</td>
<td>Maas</td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematical Methods in Dynamics</td>
<td>6 CR</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematical Methods of Vibration Theory</td>
<td>6 CR</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-105295</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>6 CR</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>5 CR</td>
<td>August, Nestler</td>
</tr>
<tr>
<td>T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>5 CR</td>
<td>Gumbsch, Nestler</td>
</tr>
<tr>
<td>T-MACH-105530</td>
<td>Physics for Engineers</td>
<td>5 CR</td>
<td>Dienwiebel, Gumbsch, Nesterov-Müller, Weygand</td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td>5 CR</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>5 CR</td>
<td>Dietrich, Schulze</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>5 CR</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Vibration Theory</td>
<td>5 CR</td>
<td>Fidlin, Seemann</td>
</tr>
<tr>
<td>T-MACH-105292</td>
<td>Heat and Mass Transfer</td>
<td>4 CR</td>
<td>Maas, Yu</td>
</tr>
<tr>
<td>T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>4 CR</td>
<td>Gumbsch, Weygand</td>
</tr>
</tbody>
</table>

Competence Certificate
oral/written exam

Competence Goal
The Student have learned to evaluate, select and apply scientific methods in Mechanical Engineering in different areas (according to their choice of course).

Prerequisites
None

Workload
The work load is about 120 hours, corresponding to 4 credit points. The work load varies from lecture to lecture, for example a lecture consisting of 4 credit points includes 28 h of presence during the lecture and 92 h self-study, exam and preparation, 120 hours in total.

Learning type
Lectures, Tutorials
7.5 Module: Advanced Topics and Methods in Mechanical Engineering 2 [M-MACH-105091]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: Specialization in Mechatronics (Supplementary Modules)

Credits 4
Grading scale Grade to a tenth
Recurrence Each term
Duration 1 term
Language German
Level 3
Version 3

Election notes
Only one of the listed bricks can be chosen in the compulsory-elective block.

<table>
<thead>
<tr>
<th>Election block: Advanced Topics and Methods in Mechanical Engineering 2 (1 item)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105381 Virtual Engineering (Specific Topics)</td>
</tr>
<tr>
<td>T-MACH-105212 CAE-Workshop</td>
</tr>
<tr>
<td>T-MACH-105209 Introduction into the Multi-Body Dynamics</td>
</tr>
<tr>
<td>T-MACH-102093 Fluid Power Systems</td>
</tr>
<tr>
<td>T-MACH-109919 Basics of Technical Logistics I</td>
</tr>
<tr>
<td>T-MACH-105213 Fundamentals of Combustion I</td>
</tr>
<tr>
<td>T-MACH-105210 Machine Dynamics</td>
</tr>
<tr>
<td>T-MACH-105293 Mathematical Methods in Dynamics</td>
</tr>
<tr>
<td>T-MACH-105294 Mathematical Methods of Vibration Theory</td>
</tr>
<tr>
<td>T-MACH-105295 Mathematical Methods in Fluid Mechanics</td>
</tr>
<tr>
<td>T-MACH-105303 Modelling of Microstructures</td>
</tr>
<tr>
<td>T-MACH-100300 Modelling and Simulation</td>
</tr>
<tr>
<td>T-MACH-100531 Physics for Engineers</td>
</tr>
<tr>
<td>T-MACH-102102 Physical Basics of Laser Technology</td>
</tr>
<tr>
<td>T-MACH-105147 Product Lifecycle Management</td>
</tr>
<tr>
<td>T-MACH-100531 Systematic Materials Selection</td>
</tr>
<tr>
<td>T-MACH-105652 Fundamentals of Combustion Engine Technology</td>
</tr>
<tr>
<td>T-MACH-102083 Integrated Information Systems for Engineers</td>
</tr>
<tr>
<td>T-MACH-105290 Vibration Theory</td>
</tr>
<tr>
<td>T-MACH-105292 Heat and Mass Transfer</td>
</tr>
<tr>
<td>T-MACH-100532 Scientific Computing for Engineers</td>
</tr>
</tbody>
</table>

Competence Certificate
oral/written exam

Competence Goal
The Student have learned to evaluate, select and apply scientific methods in Mechanical Engineering in different areas (according to their choice of course).

Prerequisites
None

Workload
The work load is about 120 hours, corresponding to 4 credit points. The work load varies from lecture to lecture, for example a lecture consisting of 4 credit points includes 28 h of presence during the lecture and 92 h self-study, exam and preparation, 120 hours in total.

Learning type
Lectures, Tutorials
7.6 Module: Algorithms I [M-INFO-100030]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-100001</th>
<th>Algorithms I</th>
<th>CR</th>
<th>Dachsbacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: Antennas and Multiple Antenna Systems [M-ETIT-100565]

Responsible: Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-106491 | Antennas and Multiple Antenna Systems | 5 CR | Zwick |

Competence Certificate
The success control is carried out as part of a written overall examination (120 minutes) of the selected courses, with which the minimum requirement for LP is met.

Competence Goal
The students have in-depth knowledge of antennas and antenna systems. This includes functionality, calculation methods but also aspects of practical implementation. You will be able to understand how any antenna works and to develop and dimension antennas with specified properties.

Module grade calculation
The module grade is the grade of the written exam.

Prerequisites
The "Antenna and Multiple Antenna Systems" module must not be started or completed.

Content
The lecture teaches the basics of field theory as well as the functioning of all essential antenna structures. The functionality of antenna arrays is also visualized using Matlab exercises. Furthermore, antenna measurement methods are taught, as well as an insight into modern antenna and multi-antenna systems. In addition, a practice-oriented workshop on computer-aided design and simulation of antennas is carried out, in which the students learn to use the software tool CST and thus carry out antenna design tasks independently. Individual antennas are then set up and measured so that the students get to know the entire process.

Workload
Each credit corresponds to approximately 25-30 hours of work (of the student). This is based on the preferred student who achieves an average performance. The workload includes:
- Attendance study time lecture / exercise: 30 h
- Attendance study time computer exercise CST / MATLAB: 30h
- Self-study time including exam preparation: 90 h

A total of 150 h = 5 LP
7.8 Module: Appliance and Power Tool Design [M-MACH-102705]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105229</td>
<td>Appliance and Power Tool Design</td>
<td>2 CR</td>
<td>Matthiesen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110767</td>
<td>Appliance and Power Tool Design Project Work</td>
<td>6 CR</td>
<td>Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam: Duration ca. 40 min.
Final presentation with the results of the project work. 15 min. presentation, 10 min discussion

Competence Goal

The students are able to ...
- analyze complex and contradictory problems regarding the overall system user–machine and hence to create new solutions with focus on customer use.
- list, to identify and to explain strategies and approaches for the design of technical machines, to transfer them on new problems and to evaluate the working results concerning quality, costs and customer use.
- name the impact of specific boundary conditions, e.g. high quantities of mechatronic systems considering the customer, on the resulting design, to interpret the consequences and to evaluate the effects in unknown situations.
- name aspects of a successful product engineering in a team of worldwide acting companies regarding the field customer, company and market.
- evaluate their relevance for self-chosen examples and to transfer them on unknown problems.

Module grade calculation

The module grade is composed of:
1. Grade of the oral exam (25%)
2. Grade of project work (75%)

Prerequisites

None

Content

Operation system, system of objects and system of objectives of mechatronic appliances and power tool designs.
Mode of operation as enabler of design, components of mechatronic systems, application oriented design, guidelines for appliance and power tool design.
Part of the lecture is a project work, in which theory will be reprocessed and presented in a practical way. In such exercises the students also will present their results developed in project teams.
The interaction of analysis and synthesis will be acquired in student teams at the example of different appliances and power tools.

Recommendation

None
Annotation
Participation in the course on device design requires simultaneous participation in the project work on device technology. For organisational reasons the number of participants is limited. A registration form will be provided on the IPEK homepage at the beginning of August. If the number of applicants is too large, a selection procedure will take place. This is based on the following selection criteria:

• Students within the course of studies will be decided on the basis of their progress (not only with semesters), which will be determined in a personal interview. The personal selection interviews take place in addition, in order to make the students aware of the special project-oriented format and the time required in correlation with the ECTS points of the course before the final registration for the course.
• With the same study progress after waiting period
• With same waiting time by lot.
• The same procedure is used for students from other courses.

Workload
Präsenzzeit Vorlesung: 21 h
Projektarbeit: 195 h
Klausurvorbereitung und Präsenz in selbiger: 24 h

Learning type
Lecture, exercise, project work
7.9 Module: Automated Manufacturing Systems [M-MACH-105108]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-108844 | Automated Manufacturing Systems | 8 CR | Fleischer |

Competence Certificate
oral exam (40 min)

Competence Goal
The students

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: "Handling Technology", "Industrial Robotics", "Sensory" and "Controls".
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Content
The module provides an overview of the structure and functioning of automated manufacturing systems. In the introduction chapter the basic elements for the realization of automated manufacturing systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- Quality assurance in automated manufacturing
- automatic machines, cells, centers and systems for manufacturing and assembly
- structures of multi-machine systems
- planning of automated manufacturing systems

In the second part of the module, the basics are illustrated using implemented manufacturing processes for the production of automotive components (chassis and drive technology). The analysis of automated manufacturing systems for manufacturing of defined components is also included. In the field of vehicle power train both, the automated manufacturing process for the production of the conventional internal-combustion engine and the automated manufacturing process for the production of the prospective electric power train (electric motor and battery) are considered. In the field of car body, the focus is on the analysis of the process chain for the automated manufacturing of conventional sheet metal body parts, as well as for automated manufacturing of body components made out of fiber-reinforced plastics. Within tutorials, the contents from the module are advanced and applied to specific problems and tasks.

Workload
1. Presence time lecture/exercise: 15 * 6 h = 90 h
2. Pre- and post-processing time lecture/exercise: 15 * 9 h = 135 h
3. Exam preparation and presence in the same: 15 h
In total: 240 h = 8 LP

Learning type
Lectures, exercise, field trip
7.10 Module: Automated Visual Inspection and Image Processing (24169) [M-INFO-100826]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101363</td>
</tr>
</tbody>
</table>
7.11 Module: Automotive Engineering I [M-MACH-100501]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-100092 | Automotive Engineering I | 8 CR | Gauterin, Unrau |

Competence Certificate
written exam; duration approximately 2 hours

Competence Goal
The students know the movements and the forces at the vehicle and are familiar with active and passive security. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution, so that they can apply their knowledge effectively in actual practise. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to judge and to develop the complex system "vehicle".

Prerequisites
Only one out of the two moduls "M-MACH-100501 - Grundlagen der Fahrzeugtechnik I" and "M-MACH-102686 - Automotive Engineering I" is allowed.

Content
The module provides an overview of:
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of the longitudinal and transverse forces, passive safety
3. Engines: combustion engine, alternative drives (e.g. electric motor, fuel cell)
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Workload
1. regular attendance lecture: 15 * 2 * 2 h = 60 h
2. pre and post processing lecture: 15 * 2 * 3 h = 90 h
3. examination preparation and presence in examination: 90 h
In total: 240 h = 8 LP

Literature
3. Gnadtler, R.: Script to the lecture 'Automotive Engineering I'
Module: Automotive Engineering II [M-MACH-100502]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102117 | Automotive Engineering II | 4 CR | Gauterin, Unrau |

Competence Certificate

Written exam; duration approximately 1,5 h

Competence Goal

The students have an overview of the modules, which are necessary for the road holding of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, the tyres, the steering elements and the brakes. They know different execution forms, the function and the influence on the driving or brake behavior. They can apply their knowledge effectively in actual practise. They are able to develop the appropriate components correctly. They are ready to analyze, to judge and to optimize the complex relationship of the different components under consideration of boundary conditions.

Prerequisites

none

Content

The module provides an overview of:

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of the designs

Workload

1. regular attendance lecture: 15 * 2 h = 30 h
2. pre and postprocessing lecture: 15 * 3 h = 45 h
3. examination preparation and presence in examination: 45 h

In total: 120 h = 4 LP

Literature

3. Gnadler, R.: Script to the lecture 'Automotive Engineering II'
7.13 Module: Automotive Vision [M-MACH-102693]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105218 | Automotive Vision | 6 CR | Lauer, Stiller |

Competence Certificate

| Type of Examination: written exam | Duration of Examination: 60 minutes |

Competence Goal

After having participated in the lecture the participants have gained knowledge on modern techniques of signal processing and artificial intelligence which can be used to evaluate video sequences, to relate the image content to a spatial context and to interpret the content semantically. This comprises, binocular reconstruction, recognition of movements in video sequences, state space modeling and Bayesian filters, and the recognition of road surfaces and object behavior. The participants have learned to analyze the algorithms mathematically, to implement them in software, and to apply them to tasks in autonomous driving and mobile robots. The participants are able to analyze problems in the areas mentioned before and to develop appropriate solutions.

Prerequisites

none

Content

Machine perception and interpretation of the environment forms the basis for the generation of intelligent behavior. Especially visual perception opens the door to novel automotive applications. Driver assistance systems already improve safety, comfort and efficiency in vehicles. Yet, several decades of research will be required to achieve an automated behavior with a performance equivalent to a human operator. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision and advanced information processing techniques are presented to provide a broad overview on seeing vehicles. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects. The lecture consists out of 2 hours/week of lecture and 1 hour/week of computer exercises. In the computer exercises methods introduced in the lecture will be implemented in MATLAB and tested experimentally.

Workload

180 hours
composed out of
hours of lecture: 15*3 h = 45 h
preparation time prior to and after lecture: 15*5 h = 75 h
exam preparation and exam: 60 h

Learning type

Lecture

Literature

TBA
7.14 Module: Bachelor Thesis [M-MACH-104262]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: Bachelor Thesis

Grading scale

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Credits</th>
<th>Level</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108800</td>
<td>Bachelor Thesis</td>
<td>12 CR</td>
<td>3</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-107760</td>
<td>Presentation</td>
<td>3 CR</td>
<td>3</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

The module Bachelor Thesis consists of a written bachelor thesis and an oral presentation of a scientific subject chosen by the student himself/herself or given by the supervisor. The bachelor thesis is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

The scope of the module Bachelor Thesis corresponds to 15 ECTS (written thesis 12 LP, oral presentation 3 ECTS). The maximal processing time of the bachelor thesis takes 6 months. The examination board defines the languages the thesis has to be written in. The date of issue of the subject has to be fixed by the supervisor and the student and to be put on record at the examination board. The subject of the bachelor thesis may be only returned once and only within the first month of processing time.

On a reasoned request of the student, the examination board can extend the processing time by up to one month. If the bachelor thesis is not completed in time, this examination is "failed" (5.0), unless the student is not responsible.

The bachelor thesis is to be evaluated by not less than a professor or a senior scientist according to § 14 Abs. 3 Ziff. 1 KITG and another examiner. Generally, one of the two examiners is the person who has assigned the thesis. If the examiners do not agree, the bachelor thesis is graded by the examination board within this assessment; another expert can be appointed too. The bachelor thesis has to be graded within a period of six weeks after the submission.

Competence Goal

The student is able to work independently on a defined, subject-relevant theme based on scientific criteria within a given period of time. The student is able to do research, to analyze information, to abstract as well as collect and recognize basic principles and regularities on the basis of less structured information. He/she overviews a question, is able to choose scientific methods and techniques, and use them to solve the question or to identify other potentials. In general, this will be carried out in consideration of social and/or ethical aspects.

The student can interpret, evaluate, and if needed plot the results obtained. He/she is able to clearly structure a scientific work and (a) to communicate it in written form using technical terminology as well as (b) to present it in oral form and discuss it with experts.

Prerequisites

The requirement for admission to the bachelor’s thesis module are 120 ECTS. As to exceptions, the examination board decides on a request of the student.

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 120 credits in the following fields:
 a. Internship
 b. Engineering Fundamentals
 c. Interdisciplinary Qualifications
 d. Specialization in Mechatronics

Content

The student shall be allowed to make suggestions for the topic of his/her bachelor thesis. The topic is set by the supervisor of the thesis in accordance with § 14 (3) SPO.

Workload

450 hours

Learning type

Bachelor Thesis and presentation
7.15 Module: Basic Electronic Circuits Laboratory [M-ETIT-102113]

Responsible: Dr.-Ing. Armin Teltschik
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Description</th>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101943</td>
<td>Basic Electronic Circuits Laboratory</td>
<td>6 CR</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
The success control takes place in the form of an oral final colloquium of 20 minutes duration and during the internship by checking the completed test tasks. To participate in the final colloque, at least 8 of the 9 attempts must be successfully completed. The successfully carried out experiments together with the final colloquium form an examination unit. If you fail, the internship must be repeated completely. The event is not graded.

Competence Goal
The students learn how to use typical electrical engineering laboratory equipment (e.g. multimeter, function generator, oscilloscope). Measuring devices are used in practical tests. The students deepen the already learned basics of electronic circuit technology and digital technology in practice. You will learn how to use the associated measurement, analysis and simulation tools and will be familiarized with the interpretation of data sheets.

Module grade calculation
The event is not graded.

Prerequisites
none

Content
Tests are carried out in the following areas:
- oscilloscope measurement technology,
- Operational amplifiers: basic circuits, arithmetic circuits, Fourier / analysis & synthesis
- Measurement technology with LabVIEW
- Circuit simulation with SPICE
- Small signal behavior of bipolar transistors
- AC voltage, small transformers, rectifiers, linear regulators
- digital technology, machine design, Detection of runtime errors
- DC chopper

Recommendation
The course "Digital Technology" (23615) and "Electronic Circuits" (23655) must have been heard beforehand or otherwise knowledge of the content of the above. LV must have been acquired.

Annotation
To participate in the final colloque, at least 8 of the 9 attempts must be successfully completed. The successfully carried out experiments together with the final colloquium form an examination unit. If you fail, the internship must be repeated completely.

Workload
Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. Workload (for a lecture)

- Attendance time in the internship: 36 h
- Preparation / follow-up of the same: 63/36 h
- Exam preparation and attendance yourself: 20 h

Mechatronics and Information Technology Bachelor Program (B.Sc.)
Module Handbook valid from WT 21/22, Date: 15.09.2021
7.16 Module: Basics of Technical Logistics I [M-MACH-105283]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-109919 | Basics of Technical Logistics I | 4 CR | Mittwollen, Oellerich |

Competence Certificate
The assessment consists of an oral or a written exam according to Section 4 (2), 1 or 2 of the examination regulation.

Competence Goal
Students are able to:

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines
- Model real machines applying knowledge from lessons and calculate their dimensions.

Prerequisites

none

Content

- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

Recommendation

Basics knowledge of technical mechanics is preconditioned

Workload

presence: 48h
rework: 72h

Learning type

Lectures
Module: Battery Modeling in MATLAB [M-ETIT-103271]

Responsible: Dr.-Ing. Andre Weber

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-106507</td>
<td>Battery Modeling in MATLAB</td>
<td>3 CR</td>
<td>Weber</td>
<td>Each winter term</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
Module: Biologically Inspired Robots (24619) [M-INFO-100814]

Responsible: Prof. Dr.-Ing. Rüdiger Dillmann
Dr.-Ing. Arne Rönnau

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)
Master Transfer Account

Credits: 3
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory
T-INFO-101351 Biologically Inspired Robots 3 CR Dillmann, Rönnau
7.19 Module: Biomedical Measurement Techniques I [M-ETIT-100387]

Responsible: Prof. Dr. Werner Nahm

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-106492 | Biomedical Measurement Techniques I | 3 CR | Nahm |

Module grade calculation

The module grade is the grade of the written exam.

Bonus points can also be awarded:

The achievement of bonus points works as follows:

- Bonus tasks are solved voluntarily.
- in ILIAS the students wear groups of max. 3 participants for a bonus task.
- The solution to the bonus task must be set in ILIAS at the specified time.
- The solutions are read by the lecture assistants and corrected and approved if necessary
- the groups present their solutions in the lecture (20 min)
- Lecturers award the bonus points individually for each student based on the written solution and the presentation.
- Each participant can acquire a maximum of 6 bonus points.
- Bonus points can only be earned once.

The bonus points are credited as follows:

- Success control is carried out in a written test (written exam) of 60 min (max. 60 points)
- The exam consists of 6 tasks with 5 points each and 5 tasks with 6 points = 11 tasks
- For the passed bonus task, a maximum of 6 points can be credited to the exam result.

The total number of points remains limited to 60 points.
7.20 Module: BioMEMS - Microsystems Technologies for Life Sciences and Medicine I [M-MACH-100489]

Responsible: apl. Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100966</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>4 CR</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (75 min)

Competence Goal
The lecture will first address relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Prerequisites
none

Content
Introduction into various microtechnical manufacturing methods: LIGA, Micro milling, Silicon Micromachining, Laser Microstructuring, µEDM, Metal-Etching Biomaterials, Sterilisation.
Examples of use in the life science sector: basic micro fluidic structures: micro channels, micro filters, micromixers, micropumps, microvalves, Micro and nanotiter plates, Microanalysis systems (µTAS), Lab-on-chip applications.

Workload
Literature: 20 h
Lessions: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd., Auflage: 3. Auflage, 2011
Module: BioMEMS - Microsystems Technologies for Life Sciences and Medicine II [M-MACH-100490]

Responsible: apl. Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-100967 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II | 4 CR | Guber |

Competence Certificate
Written exam (75 min)

Competence Goal
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences und in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Prerequisites
None

Content
Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
- LabCD, Protein Crystallisation
- Microarrays
- Tissue Engineering
- Cell Chip Systems
- Drug Delivery Systems
- Micro reaction technology
- Microfluidic Cells for FTIR-Spectroscopy
- Microsystem Technology for Anesthesia, Intensive Care and Infusion
- Analysis Systems of Person’s Breath
- Neurobionics and Neuroprosthesis
- Nano Surgery

Workload
- Literature: 20 h
- Lessons: 21 h
- Preparation and Review: 50 h
- Exam preparation: 30 h

Literature
- Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
- Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
- M. Madou
 Fundamentals of Microfabrication
7.22 Module: BioMEMS - Microsystems Technologies for Life Sciences and Medicine III [M-MACH-100491]

Responsible: apl. Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-100968 BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III 4 CR Guber

Competence Certificate
Written exam (75 min)

Competence Goal
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences und in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Prerequisites
none

Content
Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Workload
Literature: 20 h
Lessions: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II;
Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
7.23 Module: BUS-Controls [M-MACH-105286]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 CR</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Controls</td>
<td>4 CR</td>
<td>Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-108889</td>
<td>BUS-Controls - Advance</td>
<td>0 CR</td>
<td>Daiß, Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Competence Goal
The students will get an overview of the theoretic and practical functioning of different bus systems.
After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system.
Hereunto the students program in the practical orientated lessons IFM-controllers using the programming environment CoDeSys.

Prerequisites
Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108889 must have been passed.

Content

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Recommendation
Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.
The number of participants is limited. A registration in mandatory, the details will be announced on the webpages of the *Institute of Vehicle System Technology* / *Institute of Mobile Machines*. In case of too many applications, attendance will be granted based on pre-qualification.

Workload

1. Regular attendance: 21 hours
2. Self-study: 9 hours
3. Programming: 50 hours
4. Exam and preparation: 40 hours

Learning type
Lecture, Tutorial

Literature

7.24 Module: CAE-Workshop [M-MACH-102684]

Responsible: Prof. Dr.-Ing. Albert Albers

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105212 | CAE-Workshop | 4 CR | Albers, Matthiesen |

Competence Certificate

Written examination (with practical part on the computer), duration 60 min

Competence Goal

The students are able to ...

- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis and structure optimization with industrial common software.
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Prerequisites

None

Content

- introduction to the finite element analysis (FEA)
- stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- introduction to topology and shape optimization
- creation and calculation of various optimization models with the optimization package of Abaqus

Workload

Regular attendance: 31.5 h

Self-study: 88.5 h

Independent work with different software tools (supported by tutors and assistants)

Discussing and presenting results in small groups

Learning type

Seminar

Literature

The workshop script will be allocated at Ilias.
Module: Channel Coding: Algebraic Methods for Communications and Storage [M-ETIT-105616]

Responsible: Prof. Dr.-Ing. Laurent Schmalen
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account (Usage from 4/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-111244</td>
<td>Channel Coding: Algebraic Methods for Communications and Storage</td>
<td>3 CR</td>
<td>Schmalen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The exam is held as an oral exam of 20 Min according to 4 Abs. 2 Nr. 1 SPO Bachelor/Master Elektrotechnik und Informationstechnik. Grade of the module corresponds to the grade of the oral exam.

Competence Goal
The students are able to analyse and assess problems of algebraic channel coding. They can apply methods of algebraic coding theory in the context of communication systems for data transmission and data storage and are able to assess their implementation. Additionally, they will get knowledge to current research topics and research results.

Module grade calculation
Grade of the module corresponds to the grade of the oral exam.

Prerequisites
Knowledge of basic engineering as well as basic knowledge of communications engineering.

Content
This course focuses on the formal and mathematical basics for the design of coding schemes in digital communication systems. These include schemes for data transmission, data storage and networking. The course starts by introducing the necessary fundamentals of algebra which are then used to derive codes for different applications. Besides codes that are important for data transmission applications, e.g., BCH and Reed-Solomon-Codes, we also investigate codes for the efficient storage and reconstruction of data in distributed systems (locally repairable codes) and codes that increase the throughput in computer networks (network codes). Real applications are always given to discuss practical aspects and implementations of these coding schemes. Many of these applications are illustrated by example code in software (python/MATLAB).

Recommendation
Previous attendance of the lectures "Communication Engineering I" and "Probability Theory" is recommended.

Workload
1. Attendance to the lecture: 15 * 2 h = 30 h
2. Preparation and review: 15 * 4 h = 60 h
3. Preparation for the exam: included in preparation and review
4. In total: 90 h = 3 LP

Mechatronics and Information Technology Bachelor Program (B.Sc.)
Module Handbook valid from WT 21/22, Date: 15.09.2021
Module: Cognitive Systems (24572) [M-INFO-100819]

Responsible: Prof. Dr. Gerhard Neumann
Prof. Dr. Alexander Waibel

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)
Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101356</th>
<th>Cognitive Systems</th>
<th>6 CR</th>
<th>Neumann, Waibel</th>
</tr>
</thead>
</table>
Module: Communication Engineering I [M-ETIT-102103]

Responsible: Prof. Dr.-Ing. Laurent Schmalen
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101936</td>
<td>Communication Engineering I</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Type of examination: written exam. Duration of Examination: approx. 180 minutes.

Prerequisites
none
7.28 Module: Communications Engineering II [M-ETIT-100440]

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100745</td>
<td>Communications Engineering II</td>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites

None
7.29 Module: Complex Analysis and Integral Transformations [M-ETIT-104534]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Dr.-Ing. Mathias Kluwe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109285</td>
<td>Complex Analysis and Integral Transformations</td>
<td>4</td>
<td>CR</td>
<td>Kluwe</td>
</tr>
</tbody>
</table>
Module: Computational Intelligence [M-MACH-105296]

Responsible: apl. Prof. Dr. Ralf Mikut
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account (Usage from 4/2/2020)

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory
T-MACH-105314 Computational Intelligence 4 CR Mikut, Reinartz, Reischl

Competence Certificate
A performance assessment is obligatory and can be oral, a written exam, or of another kind.

Competence Goal
The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Prerequisites
None

Content
- Terms and definitions Computational Intelligence, application fields and examples
- Fuzzy logic: fuzzy sets; fuzzification and membership functions; inference: T-norms and -conorms, operators, aggregation, activation, accumulation; defuzzification methods, structures for fuzzy control
- Artificial Neural Nets: biology of neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
- Evolutionary Algorithms: Basic algorithm, Genetic Algorithms and Evolution Strategies, Evolutionary Algorithm GLEAM, integration of local search strategies, memetic algorithms, application examples

Workload
The work load is about 120 hours, corresponding to 4 credit points.

Learning type
Lecture
7.31 Module: Computer Organization [M-INFO-103179]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-103531 | Computer Organization | 6 CR | Karl |

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 3
Version 1

Module Handbook valid from WT 21/22, Date: 15.09.2021
7.32 Module: Computer Vision for Human-Computer Interaction (24180) [M-INF-100810]

Responsible: Prof. Dr.-Ing. Rainer Stiefelhagen
Organisation: KIT Department of Informatics
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101347</td>
<td>Computer Vision for Human-Computer Interaction</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Stiefelhagen
7.33 Module: Control of Linear Multivariable Systems [M-ETIT-100374]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>1 term</td>
<td></td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100666 Control of Linear Multivariable Systems</td>
</tr>
</tbody>
</table>

Compence Certificate
Success is checked as part of a written overall test (120 minutes) of the course.

Compence Goal
- The students first acquired basic knowledge of the various forms of description of linear multivariable systems in the frequency and time domain with both time-continuous and time-discrete models.
- In particular, they are able to transform multi-size systems in the state space to different normal forms depending on the requirements.
- The students have an understanding of fundamental properties such as Stability, trajectory profiles, controllability and observability as well as pole / zero configuration are achieved and the systems can analyze them accordingly.
- You master the basic principles for controlling linear multi-variable systems both in the frequency domain (series decoupling) and in the time domain (pole specification with pre-filter).
- In concrete terms, the students are familiar with the design procedures modal control, decoupling control in the time domain and the complete modal synthesis.
- You are familiar with the problem of state quantity determination by state observers and the design of complete and reduced observers.
- Students are able to use advanced concepts such as output feedback and dynamic controllers if necessary.
- You can continue to counter the problems of high model orders in the state space by reducing the order based on the dominance analysis.

Module grade calculation
The module grade is the grade of the written exam.

Prrequisites
none

Content
The aim is to impart basic and advanced methods for the treatment of linear multi-size systems, the focus being on the state space. In this way, the students are introduced to a model that allows more modern and, in particular, non-linear processes. On the one hand, the module provides a comprehensive overview of the most important aspects in the variable description of the systems and the analysis of their characteristic properties. On the other hand, all facets of the synthesis of regulations for initial and permanent disorders and the observers often required for this are conveyed.

Recommendation
For a deeper understanding, basic knowledge of system dynamics and control technology is absolutely necessary, as taught in the ETIT Bachelor module "System Dynamics and Control Technology" M-ETIT-102181.

Workload
Each credit point corresponds to 30 hours of work (of the student). Fall under the workload

Attendance time in lecture / exercise (3 + 1 SWS: 60h = 2 CP)
Preparation / follow-up lecture / exercise (90h = 3 CP)
Preparation / attendance time written exam (30h = 1 CP)
7.34 Module: Control Theory Laboratory [M-ETIT-105467]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-111009 | Control Theory Laboratory | 6 CR | Hohmann |

Prerequisites

None
7.35 Module: Decentrally Controlled Intralogistic Systems [M-MACH-102687]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105230 Decentrally Controlled Intralogistic Systems 4 CR Furmans, Hochstein

Competence Certificate
The success control takes place as a study achievement in the form of the presentation of the work results (Lego robot and code) as well as a presentation of five to ten minutes and following discussion.

Competence Goal
Students are able to:

- Name and explain the basics of intralogistic conveyor systems
- Describe and explain communication types between decentralized systems
- Apply the basics of project management in subsequent projects
- Developing constructive solutions for mechanical problems
- Implementing designed behavior patterns in a graphical programming language
- Applying the theory learned to a practical problem
- Evaluate solutions developed through group discussions and presentations

Prerequisites
None

Content
This module is designed to teach students theoretical and practical aspects of automated, decentralized intralogistics. Theoretical basics of mechanical engineering and automation technology will be experienced in practice by implementing a model with Lego Mindstorms. In addition, the basics of control engineering are taught and joint development work in small groups as well as thinking with system boundaries are practised. The students plan self-contained parts of an intralogistic circuit that must interact with other systems in order to master a given transport task. This requires a well thought-out design as well as suitable programming and the coordination of common interfaces.

Annotation
number of participants limited
participants will be selected
One course during summer semester in english

Workload
Time of attendance: 2x5x8h = 80h
Self-study: 40h
Total: 120h

Learning type
Seminar
7.36 Module: Deep Learning and Neural Networks [M-INFO-104460]

Responsible: Prof. Dr. Alexander Waibel
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)
Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-109124</th>
<th>Deep Learning and Neural Networks</th>
<th>6 CR</th>
<th>Waibel</th>
</tr>
</thead>
</table>
Module: Design Principles for Interactive Real-Time Systems (24648) [M-INFO-100753]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer

Organisation: KIT Department of Informatics

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101290</td>
<td>Design Principles for Interactive Real-Time Systems</td>
<td>3 CR</td>
<td>Beyerer</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
7.38 Module: Digital Technology [M-ETIT-102102]

Responsible: Prof. Dr.-Ing. Jürgen Becker

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101918</td>
<td>Digital Technology</td>
<td>6</td>
<td>CR</td>
<td>Becker</td>
<td>6 CR</td>
<td>Becker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none
7.39 Module: Distributed Discrete Event Systems [M-ETIT-100361]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100960</td>
<td>Distributed Discrete Event Systems</td>
<td>4</td>
<td>CR</td>
<td>Heizmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
Module: Dynamics of the Automotive Drive Train [M-MACH-102700]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
A performance assessment is an oral exam (approx. 30 minutes).

Competence Goal
After having attended this lecture students will be able to understand typical vibration phenomena in a vehicle powertrain and to simulate the essential components of the vehicle powertrain including components of the engine steering. The method of the simulation-based concept choice and the necessary interaction between OEMs and the delivering industry is part of the taught knowledge. The students will also gain experience in the application of numerical simulation methods for solving practical problems of torsion vibrations in highly non-linear systems.

Prerequisites
none

Content
Lectures: The concept of a simulation-based optimization of the vehicle powertrain and its components. Modelling of the components of the power system including internal-combustion engine, torsional vibration damper (two mass flywheel, centrifugal force pendulum, internal damper/torsion damped clutch disc), hydrodynamical transformer, gear, Kardan wave, differential, wheels, driving manoeuvre and its appraisal incl. start, neutral gear, approach, acceleration drive, load alteration, gear alteration, shearing force, stop, and different special manoeuvres like change of intentions or misuse.

Exercise: Elementary numerical proceedings to simulate nonlinear dynamic systems. Modelling of the powertrain in a simulation environment SimulationX or MapleSim.

Recommendation
Basic knowledge of the powertrain technology and elementary vibration knowledge are advantageous. The lectures refer to the book

Especially chapter 6 and 7 are recommended.

Workload
Each credit point is equivalent to 25-30 hours of workload (per student). This refers to an average student who shows an average performance. The workload is as follows:

time of attendance lectures: 30 h
time of attendance exercise: 30 h
self-study including exam preparation: 90 h
total 150 h - 5 credit points

Literature
- Pfeiffer F., Mechanical System Dynamics, Springer, 2008
7.41 Module: Electric Energy Systems [M-ETIT-102156]

Responsible: Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)

Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101923</td>
<td>Electric Energy Systems</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

none
7.42 Module: Electric Energy Systems/Hybrid and Electric Vehicles [M-ETIT-105643]

Responsible: Prof. Dr. Martin Doppelbauer
Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>2 terms</td>
<td>Becker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101923</td>
<td>Electric Energy Systems</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>2 terms</td>
<td>Leibfried</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

1. Electric Energy Systems:
 Type of examination: written exam. Duration of examination: approx. 120 minutes
2. Hybrid and Electric Vehicles:
 Type of examination: written exam. Duration of examination: approx. 120 minutes

Prerequisites

none
7.43 Module: Electric Rail Vehicles [M-MACH-102692]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechatronics (Supplementary Modules)
Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102121 | Electric Rail Vehicles | 4 CR | Geimer, Gratzfeld |

Competence Certificate
Oral examination
Duration ca. 20 minutes
No tools or reference materials may be used during the exam.

Competence Goal

- The students know the history of electric traction in railway transportation from the very beginning to modern vehicles with three-phase traction drives and understand their economic impact.
- They know the basics of railway transportation, wheel-rail-contact and vehicle dynamics and can deduce the requirements for electric rail vehicles out of it.
- They understand purpose, design and functionality of electric traction drives.
- They know the basic setup of train control management system and understand the most important functions.
- They are informed about actual concepts and new developments in the field of electric railway vehicles.
- They learn about the different systems of traction power supply with its advantages and disadvantages.

Prerequisites

none

Content

1. Introduction: history of electric traction in railways, economic impact
2. Wheel-rail-contact: carrying of vehicle mass, adhesion, current return
3. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
4. Electric drives: purpose of electric drive and basic configurations, traction motors, converters, drives for vehicles at dc and ac lines and without contact wire, multi-system, dual power and hybrid vehicles, conventional drives for existing vehicles
5. Train control management system: definitions, bus systems, components, network architectures, examples, future trends
6. Vehicle concepts: modern vehicle concepts for mass transit and electric main line
7. Traction power supply: power supply of railway vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire

Annotation

A bibliography is available for download (Ilias-platform).

Workload

Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours
total: 120 hours = 4 ECTS

Learning type

Lecture
7.44 Module: Electrical Machines and Power Electronics [M-ETIT-102124]

Responsible: Dr.-Ing. Klaus-Peter Becker

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101954 | Electrical Machines and Power Electronics | 6 CR | Becker |

Prerequisites

none
7.45 Module: Electromagnetical Fields [M-ETIT-104428]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109078</td>
<td>Electromagnetical Fields</td>
<td>6 CR</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Prerequisites

none
7.46 Module: Electromagnetical Waves [M-ETIT-104515]

Responsible: Prof. Dr.-Ing. Sebastian Randel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-ETIT-109245</th>
<th>Electromagnetic Waves</th>
<th>6 CR</th>
<th>Randel</th>
</tr>
</thead>
</table>
Module: Electromagnetical Waves/Fundamentals on High Frequency Techniques [M-ETIT-105647]

Responsible: Prof. Dr.-Ing. Sebastian Randel
Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CRs</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109245</td>
<td>Electromagnetical Waves</td>
<td>6</td>
<td>Randel</td>
</tr>
<tr>
<td>T-ETIT-101955</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>6</td>
<td>Zwick</td>
</tr>
</tbody>
</table>

Competence Certificate

1. Electromagnetical Waves:
 Type of examination: written exam. Duration of examination: approx. 120 minutes

2. Fundamentals on High Frequency Techniques:
 Type of examination: handwritten reports and written exam. Duration of examination: approx. 120 minutes

Prerequisites
none
Module: Electronic Devices and Circuits [M-ETIT-104465]

Responsible: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109318</td>
<td>Electronic Devices and Circuits</td>
<td>6 CR</td>
<td>Ulusoy</td>
</tr>
<tr>
<td>T-ETIT-109138</td>
<td>Electronic Devices and Circuits - Workshop</td>
<td>1 CR</td>
<td>Zwick</td>
</tr>
</tbody>
</table>

Prerequisites

None
7.49 Module: Elements of Technical Logistics [M-MACH-102688]

Responsible: Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102159 | Elements and Systems of Technical Logistics | 4 CR | Fischer, Mittwollen |

Competence Certificate

The assessment consists of an oral examination (approx. 20min).

Competence Goal

Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively and
- Equip material flow systems with appropriate machines.

Prerequisites

none

Content

- material flow systems and their (conveying) technical components
- mechanical behaviour of conveyors;
- structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
- sample applications and calculations in addition to the lectures inside practical lectures

Workload

Lecture and exercise: 4 LP = 120 h

1. Attendance time lecture: 28 h
2. Preparation/follow-up lecture: 56 h
3. Attendance time exercise: 12 h
4. Preparation/follow-up exercise: 24 h
Module: Elements of Technical Logistics incl. Project [M-MACH-105015]

Responsible: Dr.-Ing. Martin Mittwollen
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102159</td>
<td>Elements and Systems of Technical Logistics</td>
<td>4 CR</td>
<td>Fischer, Mittwollen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108946</td>
<td>Elements and Systems of Technical Logistics - Project</td>
<td>2 CR</td>
<td>Fischer, Mittwollen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20min) and presentation of performed project and defense (approx. 30min)

Competence Goal

Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively and
- Equip material flow systems with appropriate machines.

Prerequisites

none

Content

material flow systems and their (conveying) technical components
mechanical behaviour of conveyors;
structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
sample applications and calculations in addition to the lectures inside practical lectures

Workload

Lecture and exercise: 6 LP = 180 h

1. Attendance time lecture: 28 h
2. Preparation/follow-up lecture: 56 h
3. Attendance time exercise: 12 h
4. Preparation/follow-up exercise: 24 h
5. Attendance time project: 4 h
6. Preparation/follow-up project: 56 h

Learning type

Lecture, tutorial, project
7.51 Module: Engineering Mechanics [M-MACH-103205]

Responsible: Prof. Dr.-Ing. Thomas Böhlike
Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Mechanical Engineering (at least 5 credits)

T-MACH-105209	Introduction into the Multi-Body Dynamics	5 CR	Seemann
T-MACH-105274	Engineering Mechanics IV	5 CR	Seemann
T-MACH-110375	Mathematical Methods in Continuum Mechanics	4 CR	Böhlike
T-MACH-110376	Tutorial Mathematical Methods in Continuum Mechanics	2 CR	Böhlike

Competence Certificate
A performance assessment in the bricks to be chosen is obligatory and can be an oral or a written exam. For details see eligible bricks.

Competence Goal
Introduction to multi-body dynamics: After completing this module, graduates will be able to describe the kinematics of a rigid body using rotational matrices, angular velocities and corresponding derivatives in various reference systems. They can specify holonomic and non-holonomic constraints for closed kinematic chains. In addition, the graduates can derive Newton-Euler's and Lagrangian equations and apply the principle of d'Alembert and the principle of virtual power. Finally, they can analyze the structure of the equations of motion.

Engineering Mechanics IV: The graduates can study the kinematics for movements of points and systems. Based on Newton-Euler's axioms they can derive the equations of motion. In addition to classical synthetic methods, graduates can efficiently apply analytical methods with energy expressions as a starting point.

Mathematical methods of continuum mechanics: After completing the module, graduates can perform the essential operations of tensor algebra and tensor analysis for both second and higher-level tensors, in oblique and curvilinear coordinate systems. They can then apply these operations in the description of infinitesimal and finite deformations of continuum mechanical systems. In addition, graduates can specify the transport theorem and balance equations for continuum mechanical systems and use material equations.

Prerequisites
none

Content
Contents of "Introduction to Multi-Body Dynamics": The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d'Alembert, principle of virtual power, Lagrange's equations, Kane's equations, structure of the equations of motion.

Contents of "Engineering Mechanics IV": Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption.

Workload
Introduction to Multi-Body Dynamics: presence lecture: 15 * 2 h = 30 h, preparation and recap: 15 * 2 h = 30 h, exam preparation and presence during exam: 90 h

Engineering Mechanics IV: presence lecture and tutorial: 15 * 2 h + 15 * 2 h = 60 h, preparation and recap lecture and tutorial: 15 * 2 h + 15 * 2 h = 60 h, exam preparation and presence during exam: 30 h

Mathematical methods of continuum mechanics: presence lecture and tutorial: 15 * 2 h + 8 * 2 h = 46 h, preparation and recap lecture and tutorial: 15 * 2 h + 8 * 2 h = 46 h, exam preparation and presence during exam: 58 h
Learning type
Lecture, Tutorials, Lab Course, Consultation hours
Module: Engineering Mechanics [M-MACH-102402]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Fundamentals

Credits 18
Grading scale Grade to a tenth
Recurrence Each term
Duration 3 terms
Language German
Level 2
Version 1

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td>7</td>
<td>CR</td>
<td></td>
<td></td>
<td>Boehlke</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-100528</td>
<td>Tutorial Engineering Mechanics I</td>
<td>0</td>
<td>CR</td>
<td></td>
<td></td>
<td>Boehlke</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-100283</td>
<td>Engineering Mechanics II</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>Boehlke</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-100284</td>
<td>Tutorial Engineering Mechanics II</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Boehlke</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-100299</td>
<td>Engineering Mechanics III</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>Seemann</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105202</td>
<td>Tutorial Engineering Mechanics III</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Seemann</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

prerequisites EM I, II (see T-MACH-100528 "Engineering Mechanics I (Tutorial)" as well as T-MACH-100284 "Engineering Mechanics II (Tutorial)"): they consist of solving problems of the work sheets in four categories: written mandatory homework, written homework, computational homework, colloquia.

exam-prerequisites EM III (see T-MACH-105202 "Engineering Mechanics III Tutorial). They consist of solving problems of the work sheets.

"Engineering Mechanics I", written exam, 90 minutes; graded;
"Engineering Mechanics II", written exam, 90 minutes; graded;
"Engineering Mechanics III", written exam, 90 Minutes; graded;

The final grade of this module is computed as ECTS-based weighted sum of the included exams.

Competence Goal

After finishing the students can

- assess stress and strain distributions for the basic load cases within the framework of thermoelasticity
- compute and evaluate 3D stress and strain states
- apply the principle of virtual displacements
- apply energy methods and compute approximate solutions
- evaluate the stability of equilibrium positions
- list elastic-plastic material laws
- solve worksheet problems to topics of the lecture using the computer algebra system MAPLE.

In this lecture and tutorial students learn how to describe models of systems for a plain motion. They realize how to calculate speed and acceleration. The derivation of equations of motion for systems of particles and rigid bodies can be done. The students know the dependence of the kinetic energy on the kinetic quantities and the inertia parameters of the system and can apply the principle of work or the principle of the conservation of mechanical energy for conservative systems.

Prerequisites

None
Content
Engineering Mechanics I:
- basics of vector calculus
- force systems
- statics of rigid bodies
- internal forces and moments in bars and beams
- friction
- centre of gravity, centre of mass
- work, energy, principle of virtual work
- statics of inextensible ropes
- elastostatics of tension-compression-bars

Engineering Mechanics II:
- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theorems in 3D
- energy methods in elastostatics
- approximation methods
- stability
- inelastic material behaviour

Engineering Mechanics III:
- Kinematics: Cartesian, cylindrical and natural coordinates.
- Time derivatives in moving reference frames.
- Angular velocities of reference frames.
- Kinetics of a particle: Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies.
- Principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems.
- Systems of particles: Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.
- Plain motion of rigid bodies: Pure translation, pure rotation, general plain motion. Instantaneous center of rotation.
- Kinetics, moment of momentum, principle of work and principle of energy conservation for a rotation around a space-fixed axis.
- Principle of linear momentum and principle of moment of momentum for arbitrary plain motion.
- Principle of d'Alembert for plain motion.
- Principles of linear and moment of momentum in integral form.
- Applications for impact problems.

Workload
- regular attendance: 150,5 Stunden
- self-study: 389,5 Stunden

Learning type
- Lectures, Tutorials, Lab course groups, attestation of solved worksheets, colloquia, consultation hours (optional)
7.53 Module: Engineering Mechanics IV (5) [M-MACH-102831]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam

Competence Goal
The students know some possibilities to describe the position and orientation of a rigid body for an arbitrary 3D motion. They realize that the rotational velocity is a vector which may change both magnitude and orientation. They can apply the principle of linear momentum and the principle of moment of momentum to a spatial motion of a rigid body and notice that this is much more complicated compared to a plain motion. The students can calculate the coordinates of the inertia tensor. They see that many effects which may be seen with gyroscopes can be explained by the principle of moment of momentum. For systems with many particles or bodies but only few degrees of freedom the students know that the application of analytical methods like the principle of D'Alembert in Lagrangian form or the Lagrange equations may be advantageous. They can apply these principles to simple problems. For vibration problems the students can interpret the most important expressions like eigenfrequency, resonance or eigenvalue problem. Forced vibration of systems with one degree of freedom can be investigated by the students.

Prerequisites
None

Content
Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption

Workload
time of attendance: 40h; self-study: 110h

Learning type
Lecture
7.54 Module: Fluid Mechanics (BSc-Modul 12, SL) [M-MACH-102565]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Part of:
- Specialization in Mechatronics (Compulsary Elective Modules: Mechanical Engineering)
- Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105207</td>
<td>Fluid Mechanics 1&2</td>
</tr>
</tbody>
</table>

Competence Certificate
Common examination of "Fluid Mechanics I" and "Fluid Mechanics II"; written exam, 3 hours (graded)

Competence Goal
After having completed this module the student is capable of deriving the mathematical equations that describe the motion of fluids and can determine flow quantities for generic problems. He/she can name characteristic properties of fluids and distinguish different flow states. The student is capable of determining fluid quantities in fundamental applications. This includes the calculation of:

- static and dynamic forces acting from the fluid onto the solid
- two-dimensional viscous flows
- one-dimensional incompressible and compressible flows without losses
- lossy flows through pipes

Module grade calculation
result of exam

Prerequisites
none

Content
properties of fluids, surface tension, hydro- and aerostatics, kinematics, stream tube theory (compressible and incompressible), losses in pipeline systems, dimensional analysis, dimensionless numbers

tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Annotation
For the Bachelor’s program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.
For the Bachelor’s program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload
regular attendance: 64 hours self-study: 176 hours

Learning type
Lectures + tutorials

Literature
Zirep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg
Kuhlmann, H.: Strömungsmechanik, Pearson Studium
Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag
Competence Certificate

Oral exam; duration approximately 30 minutes

Competence Goal

The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They are able to plan, to steer, and to handle this process. They can apply their knowledge effectively in actual practice. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

They are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.

They know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application. They can apply their knowledge effectively in actual practice.

Prerequisites

None

Content

The module provides an overview of:

1.1. Introduction, definitions, history
1.2. Development tools
1.3. Complete vehicle
1.4. Cab, bodyshell work
1.5. Cab, interior fitting
1.6. Alternative drive systems
1.7. Drive train
1.8. Drive system diesel engine
1.9. Intercooled diesel engines
2.1. Gear boxes of commercial vehicles
2.2. Intermediate elements of the drive train
2.3. Axle systems
2.4. Front axles and driving dynamics
2.5. Chassis and axle suspension
2.6. Braking System
2.7. Systems
2.8. Excursion
Workload
1. regular attendance lecture: 8 * 4 h = 32 h
2. pre and postprocessing lecture: 8 * 6 h = 48 h
3. examination preparation and presence in examination: 40 h
In total: 120 h = 4 LP (2 semester)

Learning type
Tutorial

Literature
7.56 Module: Fundamentals of Combustion I [M-MACH-102707]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105213 Fundamentals of Combustion I</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam, graded, approx. 3 h

Competence Goal
After completing the course, the students are able to analyze the functionality of technical combustion systems (e.g. piston engines, gas turbines, furnaces). With regard to environmental pollution, students can name the mechanisms of combustion and pollutant formation and assess concepts for reducing pollutants. They can explain the fundamental chemical and physical processes of combustion and name experimental methods for investigating flames. Furthermore, the students can also describe the differences between laminar and turbulent flames and explain the principles of ignition processes.

Module grade calculation
Grade of the written exam (100%)

Prerequisites
none

Content
The lecture gives an overview of the basic terms and phenomena of technical combustion. In a basic chapter, experimental methods for investigating flames are taught. Conservation equations for laminar flames are derived based on scientific phenomena. In addition, the laminar premixed flame and the laminar non-premixed flame are treated as examples. Knowledge of chemical reactions and their description with reaction mechanisms is conveyed. Furthermore, ignition processes are taught. The content of the lecture is deepened in exercises and applied to specific problems and tasks.

Recommendation
none

Workload
General attendance: 30 h
Preparation time for the lecture: 30 h
General attendance (Tutorial): 30 h
Self-study: 30 h

Learning type
Lecture
Exercise course

Literature
Lecture notes,
7.57 Module: Fundamentals of Energy Technology [M-MACH-102690]

Responsible: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Competence Certificate
A performance assessment will consist of a written examination of 90 minutes.

Competence Goal
The objective of the module is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

Module grade calculation
The module grade is the grade of the written examination.

Prerequisites
none

Content
The following relevant fields of the energy industry are covered:
- Energy demand and energy situation
- Energy types and energy mix
- Basics. Thermodynamics relevant to the energy sector
- Conventional fossil-fired power plants
- Combined Cycle Power Plants
- Cogeneration
- Nuclear energy
- Regenerative energies: hydropower, wind energy, solar energy, other energy systems
- Energy storage
- Transport of energy
- Power generation and environment. Future of the energy industry

Workload
1. lectures: 15 * 3 h = 45 h
2. preparation for lectures: 15 * 2 h = 30 h
3. tutorials: 15 * 2 h = 30 h
4. preparation for tutorials: 15 * 1 h = 15 h
5. preparation for exam: 120 h
Total: 240 h = 8 LP
Module: Fundamentals on High Frequency Techniques [M-ETIT-102129]

Responsible: Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

T-ETIT-101955 Fundamentals on High Frequency Techniques 6 CR Zwick

Competence Certificate

Success control is carried out as part of a written overall examination (120 minutes) of the selected courses, with which the minimum requirement for CP is met and the assessment of homework. Students can work on the homework exercises during the semester and submit them for correction. The handover is in handwritten form.

Competence Goal

In this course, students will gain a basic knowledge and understanding of the field of radio frequency technology and will be able to apply this knowledge to other areas of the course. These include, in particular, line theory, microwave network analysis and the basics of more complex microwave systems (receiver noise, non-linear distortion, compression antennas, amplifiers, mixers, oscillators, radio systems, FMCW radar, S parameters). The methods learned enable the solution of simple or basic high-frequency technical problems (e.g. impedance matching, standing waves).

Module grade calculation

The module grade is the grade of the written exam. If at least 50% of the total points of the homework are achieved, the student receives a grade bonus of 0.3 or 0.4 grade points on passing the written exam. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade of the written exam by one grade (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

The grade bonus once acquired will remain for a possible written examination in a later semester. The homework is a voluntary additional service, i.e. Even without the grade bonus, the full score or top grade can be achieved in the exam.

Prerequisites

None

Content

Basic lecture on high frequency technology: The main focus of the lecture is to provide a basic understanding of high frequency technology as well as the methodological and mathematical foundations for the design of microwave systems. The main topics are passive components and linear circuits at higher frequencies, line theory, microwave network analysis and an overview of microwave systems.

Accompanying the lecture, exercises are given on the lecture material. These are discussed in a large hall exercise and the associated solutions are presented in detail. In addition, the most important connections from the lecture are repeated again in the exercise.

In addition to the exercise in the hall, a tutorial is used to independently work on typical high-frequency technology tasks. The students work on the tasks in small groups and receive help from a student tutor.

Recommendation

Knowledge of the basics of high frequency technology is helpful.

Workload

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

- Attendance study time lecture / exercise: 60 h
- Classroom study time: 15 h
- Self-study time including exam preparation: 105 h
- A total of 180 h = 6 LP
7.59 Module: Further Examinations [M-MACH-104332]

Organisation: KIT Department of Mechanical Engineering
Part of: Additional Examinations

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Further Examinations (at most 30 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106638</td>
<td>Wildcard Additional Examinations 1</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106639</td>
<td>Wildcard Additional Examinations 2</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106640</td>
<td>Wildcard Additional Examinations 3</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106641</td>
<td>Wildcard Additional Examinations 4</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106643</td>
<td>Wildcard Additional Examinations 5</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106646</td>
<td>Wildcard Additional Examinations 6</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106647</td>
<td>Wildcard Additional Examinations 7</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106648</td>
<td>Wildcard Additional Examinations 8</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106649</td>
<td>Wildcard Additional Examinations 9</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-106650</td>
<td>Wildcard Additional Examinations 10</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Prerequisites

None
7.60 Module: Fuzzy Sets (24611) [M-INFO-100839]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Uwe Hanebeck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>Master Transfer Account</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101376</td>
<td>Fuzzy Sets</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Hanebeck
Module: Handling Characteristics of Motor Vehicles I [M-MACH-105288]

Responsible: Dr.-Ing. Hans-Joachim Unrau
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105152 | Handling Characteristics of Motor Vehicles I | 4 CR | Unrau |

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Prerequisites

None

Content

1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Workload

The total work load for this module is about 120 Hours (4 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 4 credit points is about 120 hours.

Learning type

Lecture

Literature

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105292 Heat and Mass Transfer 4 CR Maas, Yu

Competence Certificate
Written exam, graded, approx. 3 hours

Competence Goal
The students will have knowledge of the basic processes, laws and calculation methods of heat and mass transfer based on dimension analysis. Further, they can use it to analyze and derive application systems of industrial importance in the fields of mechanical engineering, energy and process engineering.

Module grade calculation
Grade of the written exam (100%)

Prerequisites
none

Content
The lecture gives an overview of stationary and unsteady heat conduction phenomena in homogeneous and composite bodies: such as plates, pipe shells and spherical shells. Molecular diffusion in gases and the analogy between diffusion and heat conduction are thought. The lecture provides an overview of convective, forced heat transfer in pipes / channels with a flow, as well as plates and profiles that are flown over. In addition, the module conveys knowledge of the mass / heat transfer analogy and the multiphase, convective heat transfer (condensation, evaporation), as well as the convective mass transfer is taught. This module is intended to convey to students the theoretical and practical aspects of the radiant heat transport of solids and gases. The content of the lecture is deepened in exercises and applied to specific problems and tasks.

Recommendation
none

Workload
General attendance: 30 h
Preparation time for the lecture: 30 h
General attendance (Tutorial): 30 h
Self-study: 30 h

Learning type
Lecture
Exercise course

Literature
- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"
7.63 Module: Human Computer Interaction (24659) [M-INFO-100729]

Responsible: Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)

Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
<td>6 CR</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-INFO-106257</td>
<td>Human-Machine-Interaction Pass</td>
<td>0 CR</td>
<td>Beigl</td>
</tr>
<tr>
<td>Credits</td>
<td>Grading scale</td>
<td>Recurrence</td>
<td>Duration</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101361 | Human-Machine-Interaction in Anthropomatics: Basics | 3 CR | Beyerer, Geisler |

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Dr. Jürgen Geisler

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)
Master Transfer Account

Credits 3
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 4
Version 1
7.65 Module: Hybrid and Electric Vehicles [M-ETIT-100514]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100784</td>
<td>Hybrid and Electric Vehicles</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Prerequisites

none
7.66 Module: Image Processing [M-ETIT-102651]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-105566 | Image Processing | 3 CR | Heizmann |

Prerequisites

none
Module: Information and Automation Technology II/Laboratory for Machine Learning Algorithms [M-ETIT-105644]

Responsible: Prof. Dr.-Ing. Jürgen Becker
 Prof. Dr.-Ing. Eric Sax
 Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology)

Credits: 10
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 2 terms
Language: German
Level: 3
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109319</td>
<td>Information Technology II and Automation Technology</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-ETIT-109839</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
<td>6</td>
<td>CR</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

1. Information Technology II and Automation Technology:
 Type of examination: written exam. Duration of examination: approx. 120 minutes. Content: lecture and exercise.

2. Laboratory for Applied Machine Learning Algorithms:
 Type of examination: alternative exam assessment
 The examination consists of written reports, assessment of team work, an oral presentation, and an oral exam at the end of the lecture period. The overall impression is rated.

Prerequisites
none

Responsible:
- Prof. Dr.-Ing. Jürgen Becker
- Prof. Dr.-Ing. Eric Sax
- Prof. Dr. Wilhelm Stork

Organisation:
- KIT Department of Electrical Engineering and Information Technology

Part of:
- Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology)

Credits: 7
- Grade to a tenth
- Each summer term
- Duration 1 term
- Language German
- Level 3
- Version 1

Mandatory
<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>CR</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109319</td>
<td>Information Technology II and Automation Technology</td>
<td>4</td>
<td>Sax</td>
</tr>
<tr>
<td>T-ETIT-100753</td>
<td>Seminar Embedded Systems</td>
<td>3</td>
<td>Becker, Sax, Stork</td>
</tr>
</tbody>
</table>

Competence Certificate

1. Information Technology II and Automation Technology:
 - Type of examination: written exam. Duration of examination: approx. 120 minutes. Content: lecture and exercise.

2. Seminar Embedded Systems:
 - Type of examination: alternative exam assessment
 - The examination consists of a written report and an oral presentation. The overall impression is rated.

Prerequisites
- none
7.69 Module: Information Processing in Sensor Networks [M-INFO-100895]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)
Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101466</th>
<th>Information Processing in Sensor Networks</th>
<th>6 CR</th>
<th>Hanebeck</th>
</tr>
</thead>
</table>
7.70 Module: Information Systems and Supply Chain Management [M-MACH-105281]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>German</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Competence Goal

Students are able to:

- Describe requirements of logistical processes regarding IT systems,
- Choose information systems to support logistical processes and use them according to the requirements of a supply chain.

Prerequisites

none

Content

1) Overview of logistics systems and processes
2) Basic concepts of information systems and information technology
3) Introduction to IS in logistics: Overview and applications
4) Detailed discussion of selected SAP modules for logistics support

Workload

regular attendance: 21 hours
self-study: 69 hours

Learning type
Lectures

Literature
7.71 Module: Information Technology [M-ETIT-104539]

Responsible: Prof. Dr.-Ing. Eric Sax
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

- T-ETIT-109300 Information Technology I 4 CR Sax
- T-ETIT-109301 Information Technology I - Practical Course 2 CR Sax

Competence Certificate
The module grade is the grade of the written exam. Successful completion of the internship is a prerequisite for passing the module.

The success control of the module consists of:
1. A "written exam" of 120 minutes for the courses lecture, exercise (4 CP)
2. A success control in the form of project documentation and control of the source code in the course of the practical course (2 CP)

Competence Goal
The students get to know the structure and functioning of information technology systems and their use.

Students can
- differentiate the characteristics of embedded systems.
- name different programming languages ??and paradigms and compare their differences.
- explain the basic components of the C++ programming language and create programs in this language.
- list the components required to create an executable program and describe their interaction.
- Represent program structures with the help of graphical description means.
- Differentiate the object-oriented programming paradigm from traditional approaches and create object-oriented programs.
- Graphically depict the structure of object-oriented programs
- Describe general computer architectures, compare their advantages and disadvantages, and explain options for increasing performance.
- Describe different levels of abstraction for data storage. There are various ways to store, organize, name and evaluate data in a structured manner.
- Describe the tasks of an operating system and reflect the basic functions of processes and threads.
- explain the phases and processes of project management and outline the planning of small projects.

By participating in the information technology internship, students can break down complex programming problems into simple and clear modules and develop suitable algorithms and data structures, and convert them into an executable program using a programming language.

Module grade calculation
The module grade is the grade of the written exam. Successful completion of the internship is a prerequisite for passing the module.

Prerequisites
None
Content

Lecture Information Technology I:
Basic lecture on information technology. The focus of the event is:
Programming languages, program creation and program structures
object orientation
Computer architectures and embedded systems
Data structures and databases
project management
Operating systems and processes

Exercise Information Technology I:
Accompanying the lecture, the basics of the programming language C++ are taught in the exercise. For this purpose, exercises with reference to the lecture material are given, and the solutions to this are explained in detail. The focus is on the construction and analysis of programs and their creation.

Internship information technology:
In the implementation into a structured and executable source code, in compliance with given quality criteria, the writing of complex C / C++ code sections and the handling of an integrated development environment are trained. The implementation takes place on a microcontroller board, which is already known from other courses.
The project is processed in small teams, which break the entire project down into individual tasks and process them independently. Here, contents from lectures and exercises are taken up again and applied to specific problems. At the end of the internship, each project team should demonstrate the successful completion of their work on the "TivSeg platform".

Recommendation
Knowledge of the basics of programming is recommended (attendance of the MINT course C++). The contents of the module digital technology are helpful.

Workload
Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in 14 lectures and 7 exercises (21.5 hours)
Preparation / follow-up of lecture and exercise (41 hours)
Exam preparation and attendance in the same (40 hours)
Information technology internship 5 appointments (7.5 hours)
Preparation / follow-up of the internship (40 hours)
7.72 Module: Information Technology II and Automation Technology [M-ETIT-104547]

Responsible: Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-109319 | Information Technology II and Automation Technology | 4 CR | Sax |

Competence Certificate
Type of examination: written exam. Duration of Examination: approx. 120 minutes. Content: lecture and exercise.

Prerequisites
None
<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Modules

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credit Hours</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101328</td>
<td>4 CR</td>
<td>Hein</td>
</tr>
</tbody>
</table>
Competence Certificate

An internship of at least thirteen weeks has to be fulfilled, which is suitable to provide the student an insight into the professionell work in the area of mechatronics and information technology. 15 ECTS are allocated to the internship.

Original certificates and reports about the internship has to be provided to the appropriate internship office.

The reports have to contain a compilation of activities during the internship with the following content: company, area of production, workshop or department, instruction period in each workshop or department with start and end date and one detailed report per week or project. The report hast to consist of at least one DIN A4 page per week and should have the format of a scientific report. The reports should give evidence, that the author has done all reported activities by himself, for example by describing the work flow or reflecting the gained experience. Sketches, drawings, schematics etc. can save a long report.

The reports have to be checked by the supervisor in the company and have to be approved by stamp and signature. Periods which are not verified by a report cannot be accredited.

Competence Goal

The aim of the internship is, that the student will be lead to the typical activities of an engineer by contributing to specific technical tasks. He/she shall acquire knowhow related to his/her discipline and collect further impressions about his/her later professional enviroment and his/her position and responsibility within a company. As far as possible he/she should also get insights into organization and managment of a company.

Prerequisites

None

Content

It is recommended, to select one out of the following fields with respect of the intended area of specialization in the master course:

1. calculation, simulation, development and design
2. production and assembly (planning, preparation, controlling, calculation) of units, assembly parts, devices, apparats, tools, machines of the entire mechatronics
3. planning of measurements, measurement and testing technology, quality control
4. planning, planning of service, maintenance and repair
5. assembly and commissioning, tools and jig manufacturing
6. heat treatment and surface engineering
7. operation and maintenance (field support) of complete sites of mechatronics (power plants, switchboard plants, grids, drives, equipment of information and data systems technology, high frequency equipment, equipment of measurement, control, process technology and so on)
8. research laboratories
9. test areas and proving grounds, planning of assembly/deassembly
10. computing centers and software engineering

Annotation

Further information are provided by the internship guidelines for the BSc-course in Mechatronics and Information Technology.

Workload

450 hours

Learning type

Internship
Module: Introduction into Energy Economics [M-WIWI-100498]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: Master Transfer Account

Credits 5 Grading scale Grade to a tenth Recurrence Each summer term Duration 1 term Level 4 Version 4

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102746</td>
<td>Introduction to Energy Economics</td>
<td>5</td>
<td>Grade to a tenth</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Competence Goal
The student is able to

- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Prerequisites
None

Content
1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

Workload
The total workload for this course is approximately 165.0 hours. For further information see German version.
7.76 Module: Introduction to High Voltage Engineering [M-ETIT-105276]

Responsible: Dr.-Ing. Michael Suriyah

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-110702</td>
</tr>
</tbody>
</table>

Oral Exam Certificate
Oral exam approx. 20 minutes.

Competence Goal
The students acquire both basic knowledge and understanding of current topics, challenges and trends in high-voltage engineering. In addition to specific high-voltage fundamentals, the module is intended to impart and discuss new findings in the field of high-voltage technology. The effects on operating behaviour, ageing, measurement technology and diagnostics will be examined in more detail.

Module grade calculation
The module grade is the grade of the oral exam.

Content
The integration of renewable energies into the existing grid is a huge challenge in terms of ensuring a stable and secure energy supply. High-voltage technology is a key technology to make the energy transition a success. In addition to the conventional three-phase transmission, high-voltage direct current (HVDC) transmission is becoming more and more important in Germany as part of network expansion of transmission grids. The aim of this event is to comprehensively convey and discuss new findings in the field of high voltage engineering. New materials and test methods for insulation systems and products are of particular importance.

- Materials of high voltage engineering
- Equipment of electrical power engineering
- Methods of high-voltage measurement technology
- Monitoring, diagnostics and condition assessment of resources
- Guest lecture from the industry

Recommendation
Basic knowledge in network theory, field theory and electrical metrology

Workload
Each credit point corresponds to 30 hours of work (of the student). Fall under the workload

- Presence time in lecture (30 h = 1 LP)
- Self-study time (60 h = 2 LP)
- Total (90 h = 3 LP)
Module: Introduction to Microsystem Technology I [M-MACH-102691]

Responsible: apl. Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td>4</td>
<td></td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam: 60 min

Competence Goal
The lecture gives an introduction into the basics of microsystems technology. In analogy to processes employed in fabrication of microelectronics circuits the core technologies as well as materials for producing microstructures and components are presented. Finally, various techniques for Silicon micromachining are explained and illustrated with examples for micro-components and micro-systems.

Prerequisites
None

Content
- Introduction in Nano- and Microtechnologies
- Silicon and processes for fabricating microelectronics circuits
- Basic physics background and crystal structure
- Materials for micromachining
- Processing technologies for microfabrication
- Silicon micromachining
- Examples

Workload
Time of attendance: 15 * 1,5 h = 22,5 h
Preparation and follow up: 15 * 5,5 h = 82,5 h
Exam Preparation and Exam: 15 h
Total: 120 h = 4 LP

Literature
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
Module: Introduction to Microsystem Technology II [M-MACH-102706]

Responsible: apl. Prof. Dr. Andreas Guber

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105183 | Introduction to Microsystem Technology II | 4 CR | Jouda, Korvink |

Competence Certificate

Written exam: 60 min

Competence Goal

The lecture gives an introduction into the basics of microsystems technology. In the first part, methods for lithographic pattern transfer are summarized. Then specific techniques such as the LIGA process, micro-machining, and laser-patterning are explained and examples are given. Finally assembly and packaging methods are presented leading into a discussion of entire microsystems.

Prerequisites

none

Content

- Introduction in Nano- and Microtechnologies
 - Lithography
 - LIGA-technique
 - Mechanical microfabrication
 - Patterning with lasers
 - Assembly and packaging
 - Microsystems

Workload

- Time of attendance: \(15 \times 1.5 h = 22.5 h\)
- Preparation and follow up: \(15 \times 5.5 h = 82.5 h\)
- Exam Preparation and Exam: 15 h

Total: \(120 h = 4 LP\)

Literature

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
7.79 Module: Introduction to Operations Research (WW1OR) [M-WIWI-101418]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of:
- Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102758</td>
<td>Introduction to Operations Research I and II</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses.

Competence Goal

The student

- names and describes basic notions of the essential topics in Operations Research (linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models).
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Module grade calculation

The overall grade of the module is the grade of the written examination.

Prerequisites

None

Content

This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.

This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
7.80 Module: Introduction to Video Analysis (24684) [M-INFO-100736]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)

Mandatory

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101273</td>
<td>Introduction to Video Analysis</td>
<td>3 CR</td>
<td>Beyerer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: IT-Fundamentals of Logistics: Opportunities for Digital Transformation [M-MACH-105282]

Responsible: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Frank Thomas

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account (Usage from 4/1/2020)

Credits 4
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language German
Level 4
Version 2

Mandatory
T-MACH-105187 IT-Fundamentals of Logistics 4 CR Thomas

Competence Certificate
The assessment consists of an oral exam (30 min.) or an written exam (60 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 1/2 of the examination regulation.

Competence Goal
The students …

• can describe the business process models from goods-inbound to goods-outbound based on sound basic knowledge, and derive the corresponding analysis models.
• will learn through the modularisation of the business process elements to think in reusable, adaptive IT components.
• will accomplish excellent work as a highly-motivated employee together in interdisciplinary teams (responses from the industry).

Prerequisites
none
Content
The rapid development of information technology influences business processes drastically. A strategic IT-orientation for an enterprise without a critical appreciation of worldwide IT-development (where the half-life value of IT for logistic systems knowledge is less than 3 years) is dangerous. The pressure of costs is always in focus. For this purpose the contents of this course, as well as the detailed script will be continuously revised, and the influences on business processes will be shown in practical examples.

Focuses:
System architecture in Material Flow Control Systems (MFCS)
A guiding principle for a new system architecture for MFC systems is the consideration of making new standardized, functional groups available for re-usability.
Design and application of innovative Material Flow Control Systems (MFCS)
The most important task of the MFCS is the commissioning of conveying systems with driving commands in a way that optimally utilizes the facility and serves the logistics processes on schedule.
Identification of goods – Application in Logistics
Along with business processes, coded information is the link between the flow of information and the flow of materials, and contributes to error prevention in the communication between people and machines.
Data communication in Intra-logistics
Information describes the content of a message that is of value to the recipient. The recipient can be both a human and a machine.
Business processes for Intra-logistics – Software follows function!
If the business processes from Goods Incoming to Goods Outgoing are adapted with reusable building blocks then capabilities become visible. Against this background the consideration becomes apparent, how, through an innovative software architecture, a reusable building-block based framework can be made. Therefore applies: Software follows function. And only if all project requirements are documented in the planing phase, and supported together in an inter-disciplinary team - consisting of logistics planners, the customers (users) and the implementation leader (IL).
Software development in accordance with industrial standards
Today's development of object-oriented software, and the increasing penetration of industrial software production with this technology, makes it possible to create system designs that already offer these opportunities in their facility - both for a high degree of reuse and for easier adaptability.
In software development, object-oriented methods are used to improve the productivity, maintainability and software quality. An important aspect of object-orientation is: the objects used are primarily intended to depict the real world.

Workload
regular attendance: 21 hours
self-study: 69 hours

Learning type
Lectures
7.82 Module: Lab Computer-Aided Methods for Measurement and Control [M-MACH-105291]

Responsible: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation:
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105341 | Lab Computer-Aided Methods for Measurement and Control | 4 CR | Stiller |

Competence Certificate
Successful passed Colloquia

Competence Goal
Powerful and cheap computation resources have led to major changes in the domain of measurement and control. Engineers in various fields are nowadays confronted with the application of computer-aided methods. This lab tries to give an insight into the modern domain of measurement and control by means of practically oriented and flexible experiments. Based on experiments on measurement instrumentation and digital signal processing, elementary knowledge in the domain of visual inspection and image processing will be taught. Thereby, commonly used software like MATLAB/Simulink will be used in both simulation and realization of control loops. The lab closes with selected applications, like control of a robot or supersonic computer tomography.

Prerequisites
none

Content

1. Digital technology
2. Digital storage oscilloscope and digital spectrum analyzer
3. Supersonic computer tomography
4. Lighting and image acquisition
5. Digital image processing
6. Image interpretation
7. Control synthesis and simulation
8. Robot: Sensors
9. Robot: Actuating elements and path planning

The lab comprises 9 experiments.

Recommendation
Basic studies and preliminary examination; basic lectures in automatic control

Workload
120 hours

Learning type
Tutorial

Literature
Instructions to the experiments are available on the institute's website.
M 7.83 Module: Lab Course Electrical Drives and Power Electronics [M-ETIT-100401]

Responsible: Dr.-Ing. Klaus-Peter Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100718 | Lab Course Electrical Drives and Power Electronics | 6 CR | Becker |

Prerequisites

none
7.84 Module: Lab Course Electrical Power Engineering [M-ETIT-100419]

Responsible: Dr.-Ing. Rainer Badent
Dr.-Ing. Klaus-Peter Becker

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100728 | Lab Course Electrical Power Engineering | 6 CR | Badent, Becker |

Competence Certificate
Success is checked in the form of an oral examination. The overall grade results from the 8 attempts.

Prerequisites
none
7.85 Module: Laboratory Biomedical Engineering [M-ETIT-100389]

Responsible: Prof. Dr. Werner Nahm
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101934</td>
<td>Laboratory Biomedical Engineering</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites
Passed exam of the module "Biomedizinische Messtechnik I".

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-ETIT-100387 - Biomedical Measurement Techniques I must have been passed.
7.86 Module: Laboratory Circuit Design [M-ETIT-100518]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100788 | Laboratory Circuit Design | 6 CR | Becker, Sander |

Competence Goal
The practical course teaches necessary knowledge and abilities to design electric circuits as used to interface microcontrollers/ FPGAs with sensors and actors. At the end of this course the participants are capable of selecting electronic components based on relevant criteria, combining them to basic building blocks, and setting up a working system for a given problem. In addition to circuit design, basic methods and abilities for the creation of PCB layouts are taught. Finally, the participants are enabled to assemble and test their designed circuits in real setups.

Prerequisites
none

Content
This course is a three-week practical block event. Its goal is the development and setup of the complete electronics used to run a self-balancing single-axis transportation device.

The first part of the course covers commonly used electric circuits which are presented in interactive lecture style. This covers circuits for voltage supply, clock generation, sensor signal pre-processing, power drivers, and display control, among others. Real-world components are presented based on their datasheets. To consolidate this knowledge, the lecture is interwoven with small practical exercises where students set up and experiment with the presented circuits. This first part aims at refreshing basic knowledge from previous courses as well as imparting knowledge on often-used basic circuits.

After presenting the basic circuits there is a short presentation on PCB layout design. This part comprises an introduction of the PCB layout tool used in the course, followed by tips on placement and wiring of components on the PCB. It covers the topics of noise and crosstalk reduction, placement of bypass capacitors, and ground design.

During the third and longest part of the course, the participants work in teams to create a concept, schematics, and layouts of circuit parts to run the transportation device. Requirements are given concerning the functionality of the circuit parts as well as interfaces to neighboring parts only. All further development steps are carried out by the students themselves, based on the knowledge from the first two parts of the course.

Recommendation
Basic knowledge on basic electrical circuits (e.g. courses LEN, Nr. 2305256, ES, Nr. 2312655 and EMS, Nr. 2306387)

Workload
Each credit point equals 25-35h of work (of the student), assuming the average student achieving average performance. The working time comprises:

1. presence in the laboratory: 15 days of 8h each = 120h
2. course preparation/recapitulation: 15 days of 2h each = 30h
3. exam preparation and attendance: 15h
7.87 Module: Laboratory for Applied Machine Learning Algorithms [M-ETIT-104823]

Responsible:
- Prof. Dr.-Ing. Jürgen Becker
- Prof. Dr.-Ing. Eric Sax
- Prof. Dr. Wilhelm Stork

Organisation:
KIT Department of Electrical Engineering and Information Technology

Part of:
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Type of examination: alternative exam assessment
The examination consists of written reports, assessment of team work, an oral presentation, and an oral exam at the end of the lecture period. The overall impression is rated.
7.88 Module: Laboratory Hardware and Software in Power Electronic Systems [M-ETIT-103263]

** Responsible:** Prof. Dr.-Ing. Marc Hiller
** Organisation:** KIT Department of Electrical Engineering and Information Technology
** Part of:** Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-106498</td>
</tr>
</tbody>
</table>

Prerequisites

The moduls "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" and "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" may neither be started nor completed.
7.89 Module: Laboratory Mechatronic Measurement Systems [M-ETIT-103448]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-106854 | Laboratory Mechatronic Measurement Systems | 6 CR | Heizmann |

Competence Certificate

The success control is carried out in the form of a written test of 120 minutes. If there are fewer than 20 candidates, an oral exam of around 20 minutes can alternatively take place. The module grade is the grade of the written or oral exam.

Competence Goal

- Students have in-depth knowledge of different methods for measuring objects, especially surfaces.
- Students master different procedures for the metrological recording of objects and know the relevant requirements, procedures and results.
- Students are able to implement procedures for evaluating sensor data from (surface) measuring devices and to evaluate the quality of the measurement result.

Module grade calculation

The module grade is the grade of the written or oral exam.

Prerequisites

none

Content

A large number of different measuring methods and systems can be used for the quality inspection of technically manufactured objects and their surfaces. Examples are white light interferometry, confocal microscopy and systems based on focus variation. The measurement methods and systems naturally differ in terms of the physical measurement principle used, but also in terms of the evaluation of the raw sensor data recorded.

In this internship, different systems for the metrological recording of (technical) surfaces are presented and their properties are characterized. In the test dates, the students themselves create procedures and algorithms for processing the sensor data in order to obtain information about the desired geometric and / or optical properties of the examined surface. The algorithms obtained are evaluated on the basis of sensor data from exemplary objects and characterized in terms of the quality of the measurement statements achieved.

Recommendation

Knowledge from the lectures "Metrology" or "Metrology in Mechatronics" and "Manufacturing Metrology" as well as basic knowledge of programming (e.g. in Matlab, C / C ++) are helpful.

Annotation

The submission of the protocols of all experiments is required for admission to the examination. The quality of the protocols is assessed; for the admission to the exam, the quality must be acceptable. Attendance of all laboratory dates including the introductory event is required. Already in the event of a single unexcused absence, admission to the examination will not be granted.

Workload

Total: approx. 160 hours, of which

1. Attendance time in introductory session: 1.5 hours
2. Preparation of the test dates: 32 h
3. Attendance time in test appointments (8 appointments of 4 hours each): 32 hours
4. Follow-up of the test dates, Creation of the minutes: 32 h
5. Exam preparation and attendance in the same: 60 h
Module: Laboratory Mechatronics [M-MACH-102699]

Responsible: Prof. Dr. Veit Hagenmeyer
Prof. Dr.-Ing. Wolfgang Seemann
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105370 | Laboratory Mechatronics | 4 CR |

Hagenmeyer, Seemann, Stiller

Competence Certificate

The laboratory course is offered exclusively as ungraded course work. The assessment consists of a group colloquium at the beginning of the individual specialization phases (Part 1). In addition, a robot control system for a pick-and-place task must be successfully implemented in the group phase (Part 2).

Competence Goal

The students are able to put the knowledge from the specialization in mechatronics and Microsystems technology into practice on an exemplary mechatronic system, a handling system. The students can create an automated object recognition, calculate kinematic systems and realize a communication between different systems (PC, CAN, USB).

Furthermore, the students can integrate the individual parts of a manipulator in teamwork to a functioning overall system.

Module grade calculation

The module is not graded. Passing the module is 100% tied to the performance assessment of the partial performance.

Prerequisites

None

Content

Part I
- Control, programming and simulation of robots
- CAN-Bus communication
- Image processing / machine vision
- Dynamic simulation of robots in ADAMS

Part II
In a group work, a kinematic system has to be programmed so that it is able to recognize and grip objects fully automatically.

Workload

1. Attendance time Lecture: 15 * 2 h = 30h
2. self-study: 15 * 6 h = 90h

Total: 120h = 4 LP

Learning type

Seminar
Module: Lightweight Engineering Design [M-MACH-102696]

7.91 Module: Lightweight Engineering Design [M-MACH-102696]

Responsible: Prof. Dr.-Ing. Albert Albers
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105221 Lightweight Engineering Design 4 CR Albers, Burkardt

Competence Certificate
Written examination (90 min)

Competence Goal
The students are able to ...

- evaluate the potential of central lightweight strategies and their application in design processes.
- apply different stiffening methods qualitatively and to evaluate their effectiveness.
- evaluate the potential of computer-aided engineering as well as the related limits and influences on manufacturing.
- reflect the basics of lightweight construction from a system view in the context of the product engineering process.

Prerequisites
none

Content
General aspects of lightweight design, lightweight strategies, construction methods, design principles, lightweight construction, stiffening techniques, lightweight materials, virtual product engineering, bionics, joining techniques, validation, recycling

Additionally, guest speakers from industry will present lightweight design from an practical point of view.

Workload
1. Time of presence lecture: 15 * 2 h = 30 h
2. Prepare/follow-up lecture: 15 * 2 h = 30 h
3. Exam preparation and time of presence: 60 h
Total: 120 h = 4 LP

Literature
Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
7.92 Module: Linear Electric Circuits [M-ETIT-104519]

Responsible: Prof. Dr. Olaf Dössel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Language</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109316</td>
<td>Linear Electronic Networks</td>
<td>7 CR</td>
<td>Dössel</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109317</td>
<td>Linear Electronic Networks - Workshop A</td>
<td>1 CR</td>
<td>Leibfried, Lemmer</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109811</td>
<td>Linear Electronic Networks - Workshop B</td>
<td>1 CR</td>
<td>Dössel</td>
<td></td>
</tr>
</tbody>
</table>
7.93 Module: Localization of Mobile Agents (24613) [M/INFO-100840]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T/INFO-101377</td>
<td>Localization of Mobile Agents</td>
</tr>
</tbody>
</table>
Module: Logistics and Supply Chain Management [M-MACH-105298]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account (Usage from 4/1/2020)

Credits 9
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language English
Level 4
Version 1

Mandatory

T-MACH-110771 Logistics and Supply Chain Management 9 CR Furmans

Competence Certificate
The assessment consists of a 120 minutes written examination (according to §4(2), 1 of the examination regulation).

Competence Goal
The student

• has comprehensive and well-founded knowledge of the central challenges in logistics and supply chain management, an overview of various practical issues and the decision-making requirements and models in supply chains,
• can model supply chains and logistics systems using simple models with sufficient accuracy,
• identifies cause-effect relationships in supply chains,
• is able to evaluate supply chains and logistics systems based on the methods they have mastered.

Prerequisites
None

Content
Logistics and Supply Chain Management provides comprehensive and well-founded fundamentals for the crucial issues in logistics and supply chain management. Within the scope of the lectures, the interaction of different design elements of supply chains is emphasized. For this purpose, qualitative and quantitative description models are used. Methods for mapping and evaluating logistics systems and supply chains are also covered. The lecture contents are enriched by exercises and case studies and partially the comprehension of the contents is provided by case studies. The interacting of the elements will be shown, among other things, in the supply chain of the automotive industry.

Learning type
Lectures, tutorials, case studies.

Literature
Dieter Arnold et. al.: Handbuch Logistik, 2008
Marc Goetschalkx: Supply Chain Engineering, 2011
7.95 Module: Machine Dynamics [M-MACH-102694]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105210</td>
<td>Machine Dynamics</td>
<td>5 CR</td>
<td>Proppe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination

Competence Goal

Students are able to apply engineering-oriented calculation methods in order to model and to understand dynamic effects in rotating machinery. This includes the investigation of runup, stationary operation of rigid rotors including balancing, transient and stationary behavior of flexible rotors, critical speeds, dynamics of slider-crank mechanisms, torsional oscillations.

Prerequisites

none

Content

1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models)
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Workload

Lectures and exercises: 32 h
Studies: 118 h

Learning type

Lecture, tutorial
Module: Machine Learning 1 [M-WIWI-105003]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Competence Goal
- Students gain knowledge of the basic methods in the field of machine learning.
- Students understand advanced concepts of machine learning and their application.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.

Prerequisites
None

Content
The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.

The lecture "Machine Learning 1" covers both symbolic learning methods such as inductive learning (learning from examples, learning by observation), deductive learning (explanation-based learning) and learning from analogies, as well as subsymbolic techniques such as neural networks, support vector machines, genetics Algorithms and reinforcement learning. The lecture introduces the basic principles as well as fundamental structures of learning systems and the learning theory and examines the previously developed algorithms. The design and operation of learning systems is presented and explained in some examples, especially in the fields of robotics, autonomous mobile systems and image processing.

Workload
The total workload for this module is approximately 150 hours.
7.97 Module: Machine Learning 2 [M-WIWI-105006]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-106341 | Machine Learning 2 – Advanced Methods | 5 CR | Zöllner |

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Competence Goal

- Students gain knowledge of the basic methods in the field of machine learning.
- Students understand advanced concepts of machine learning and their application.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.

Prerequisites
None

Content
The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.

The lecture "Machine Learning 2" deals with advanced methods of machine learning such as semi-supervised and active learning, deep neural networks (deep learning), pulsed networks, hierarchical approaches, e.g. As well as dynamic, probabilistic relational methods. Another focus is the embedding and application of machine learning methods in real systems.

The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (robotics, neurorobotics, image processing, etc.).

Workload
The total workload for this module is approximately 150 hours.
7.98 Module: Machine Tools and Industrial Handling [M-MACH-105107]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110962</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>8</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam (40 minutes)

Competence Goal

The students

- are able to assess the use and application of machine tools and high-precision manufacturing systems and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of machine tools and high-precision manufacturing systems (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of machine tools and high-precision manufacturing systems.
- are capable of selecting and evaluating machine tools and high-precision manufacturing systems according to technical and economic criteria.

Content

The module gives an overview of the construction, use and application of machine tools and high-precision manufacturing systems. In the course of the module a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools and high-precision manufacturing systems is conveyed. First, the main components of the systems are systematically explained and their design principles as well as the integral system design are discussed. Subsequently, the use and application of machine tools and high-precision manufacturing systems will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0 and artificial intelligence. Guest lectures from industry round off the module with insights into practice.

The individual topics are:

- Structural components of dynamic manufacturing Systems
- Feed axes: High-precision positioning
- Spindles of cutting machine Tools
- Peripheral Equipment
- Machine control unit
- Metrological Evaluation
- Maintenance strategies and condition Monitoring
- Process Monitoring
- Development process for machine tools and high-precision manufacturing Systems
- Machine examples

Workload

1. Presence time lecture/exercise: 15 * 6 h = 90 h
2. Pre- and post-processing time lecture/exercise: 15 * 9 h = 135 h
3. Exam preparation and presence in the same: 15 h

In total: 240 h = 8 LP

Learning type

Lecture, exercise, field trip
Module: Manufacturing Measurement Technology [M-ETIT-103043]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>ID</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-106057</td>
<td>Manufacturing Measurement Technology</td>
<td>3 CR</td>
<td>Heizmann</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
7.100 Module: Manufacturing Processes [M-MACH-102549]

Responsible: Dr.-Ing. Michael Gerstenmeyer
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105219</td>
<td>Basics of Manufacturing Technology</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (duration: 60 min)

Competence Goal
The students …
- are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
- have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
- are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
- have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
- are enabled to perform a selection of suitable manufacturing processes for given components.
- are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

Prerequisites
none

Content
The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects.

The following topics will be covered:
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment

Workload
regular attendance: 21 hours
self-study: 99 hours

Learning type
Lecture

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Credits: 9

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.

Competence Goal

The student

- acquires comprehensive and well-founded knowledge on the main topics of logistics, an overview of different logistic questions in practice and knows the functionality of material handling systems,
- is able to illustrate logistic systems with adequate accuracy by using simple models,
- is able to realize coherences within logistic systems,
- is able to evaluate logistic systems by using the learnt methods.

Prerequisites

none

Content

The module Material Flow in Logistic Systems provides comprehensive and well-founded basics for the main topics of logistics. Within the lectures, the interaction between several components of logistic systems will be shown. The module focuses on technical characteristics of material handling systems as well as on methods for illustrating and evaluating logistics systems. To gain a deeper understanding, the course is accompanied by exercises and case studies.

Recommendation

Recommended elective subject: Probability Theory and Statistics

Annotation

Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Learning type

Lecture, tutorial
Module: Material Science and Engineering (CIW-MACH-01) [M-MACH-102567]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering

Part of:
- Specialization in Mechatronics (Compulsory Elective Modules: Mechanical Engineering)
- Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-105148 | Examination Material Science I & II | 9 CR | Schneider

Competence Certificate
oral exam

Competence Goal
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can describe the typical property profiles and can name applications for the most important engineering materials.

The students are able to describe standard materials characterization methods and can explain the evaluation of these methods. They can judge materials on base of the data obtained by these methods.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to asses materials on base of the data obtained by these methods.

Module grade calculation
grade of the oral exam

Prerequisites
None

Mechatronics and Information Technology Bachelor Program (B.Sc.)
Module Handbook valid from WT 21/22, Date: 15.09.2021
Content
Atomic structure and atomic bonds

Structures of crystalline and amorphous solids

Defects in crystalline solids

Alloys

Transport and transformation phenomena in the solid state

Corrosion

Wear

Mechanical properties

Testing of materials

Ferrous materials

Non-ferrous metals and alloys

Polymers

Engineering ceramics

Composites

Workload
regular attendance: 90 hours
self-study: 180 hours

Learning type
lectures and exercises

Literature
W. Bergmann: Werkstofftechnik I + II, Hanser Verlag, München, 2008/9
M. Merkel: Taschenbuch der Werkstoffe, Hanser Verlag, München, 2008
lecture notes and lab script
Module: Materials [M-ETIT-102734]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Materials (1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>5 CR</td>
<td>Dietrich, Schulze</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td>4 CR</td>
<td>Henning</td>
</tr>
<tr>
<td>T-ETIT-109292</td>
<td>Electrical Engineering Components</td>
<td>6 CR</td>
<td>Kempf</td>
</tr>
</tbody>
</table>

Prerequisites

none

Annotation

The three parts of the module "M-ETIT-102734 - Materials" are mutually exclusive.

Course „Passive Bauelemente“ will be taught in Wintersemester 2020/21 for the last time. Replacement will be "Bauelemente der Elektrotechnik".
7.104 Module: Measurement Technology [M-ETIT-102652]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101937 | Measurement | 5 CR | Heizmann |

Prerequisites

none

Annotation

Can be replaced by another module in the English language specialisations. Please consult your departmental advisor about which substitute module is suitable here.
From WS2021/2022 on, the module is offered in English.
7.105 Module: Mechanical Design (CIW-MACH-02) [M-MACH-101299]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110363</td>
<td>Mechanical Design Basics I and II</td>
<td>6 CR</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110364</td>
<td>Mechanical Design Basics I, Tutorial</td>
<td>1 CR</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110365</td>
<td>Mechanical Design Basics II, Tutorial</td>
<td>1 CR</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination on the contents of Mechanical Design I&II

Duration: 90 min plus reading time

Preliminary examination: Successful participation in the preliminary work in the field of Mechanical Design I&II
Competence Goal

Learning objects springs:

- be able to recognize spring types and explain stress
- identify and describe the properties of a resilient LSS in machine elements presented later on
- understanding and explaining the principle of action
- know and list areas of application for springs
- graphically illustrate the load and the resulting stresses
- be able to describe the degree of species usefulness as a means of lightweight construction
- be able to analyze different solution variants with regard to lightweight construction (use species efficiency)
- being able to explain several springs as a circuit and calculate total spring stiffness

Learning objects Technical Systems:

- being able to explain what a technical system is
- “Thinking in systems.”
- using system technology as an abstraction tool for handling complexity
- recognizing functional relationships of technical systems
- getting to know the concept of function
- being able to use C&C²-A as a means of system technology

Learning objects Visualization:

- ability to create and interpret schematics
- using freehand technical drawing as a means of communication
- to be able to apply the technical basics of freehand drawing
- derivation of 2D representations into different perspective representations of technical structures and vice versa
- master reading of technical drawings
- dedicated dimensioning of technical drawings
- create sectional views of technical systems as a technical sketch

Learning objects Bearings:

- be able to recognize bearings in machine systems and explain their basic functions
- name bearings (type/type/function) and recognize them in machine systems and technical drawings
- being able to name areas of application and selection criteria for the various bearings and bearing arrangements and explain interrelationships
- ability to functionally explain the design of the bearing definitions in different directions radially/axially and circumferentially
- know and describe selection as an iterative process as an example
- be able to perform dimensioning of bearing arrangements as an example of the engineer’s approach to dimensioning machine elements
- develop first ideas for probabilities in predicting the life of machine elements
- recognise from the damage pattern whether static or dynamic overload was the cause of material failure
- calculate equivalent static and dynamic bearing loads from the catalogue and given external forces on the bearing
- being able to name, explain and transfer the basic equation of the dimensioning to the bearing dimensioning

Learning objectives seals:

The students...

- can discuss the basic functions of seals
- can describe the physical causes for mass transfer
- can apply the C&C-Model on seals
- can name, describe and apply the three most important classification criteria of seals
- can explain the function of a contacting seal and a non-contacting seal.
- can differentiate the seal types and organize them to the classification criteria.
- can discuss the structure and the effect of a radial shaft seal
- can evaluate radial shaft seals, compression packings, mechanical seals, gap seals and labyrinth seals
- can describe and apply the constructional principle of selffortification
- can describe the stick-slip phenomenon during the movement sequences of a reciprocating seal

Learning design:

The students...

- understand the meaning of design
- are able to recognize and implement basic rules and principles of design
- are able to design the connection of partial systems into the total system
- can name requirements of design and take them into account
- know the main groups of manufacturing methods
- are able to explain the manufacturing processes
- are able to depict a casted design in a drawing clearly, e.g. draft of the mold, no material accumulation, …
- know how components are designed
Know how the production of the components has an effect on their design
Know the requirements and boundary conditions on design

Learning bolted connections:
The students...

- can list and explain various bolt applications.
- can recognize bolt types and explain their function
- can build a C&C² model of a bolted joint and discuss the influences on its function
- can explain the function of a bolted connection with the help of a spring model
- can reproduce, apply and discuss the screw equation.
- Can estimate the load-bearing capacity of low-loaded bolted joints for dimensioning purposes
- Can indicate which bolted joint is to be calculated and which only roughly dimensioned.
- Can carry out the dimensioning of bolted connections as flange connections
- Can create, explain and discuss the force deflection diagram of a bolted connection

Prerequisites
None

Content
MKL I:
Introduction to product development
Tools for visualization (technical drawing)
Product creation as a problem solution
Technical Systems Product Development

- Systems theorie
- Contact and Channel Approach C&C²-A

Basics of selected construction and machine elements

- Federn
- bearings and fence
- sealings

The lecture is accompanied by exercises with the following content:
gear workshop
Tools for visualization (technical drawing)
Technical Systems Product Development

- Systemtheorie
- Contact and Channel Approach C&C²-A

Exercises for springs
Exercises for bearings and fence

MKL II:

- sealings
- design
- dimensioning
- component connections
- bolts
Workload
MKL1:
presence: 33.5 h
Attendance in lectures: 15 * 1.5 h = 22.5 h
Presence in exercises: 8 * 1.5 h = 12 h
self-study: 56.5 h
Personal preparation and wrap-up of lecture and exercises including the processing of the test certificates and preparation for the exam: 56.5 h
Total: 90 h = 3 LP
MKL2:
Presence: 33 h
Attendance in lectures: 15 * 1.5 h = 22.5 h
Presence in exercises: 7 * 1.5 h = 10.5 h
Self study: 87 h
Personal preparation and wrap-up of lectures and exercises, including the processing of the test certificates and preparation for the exam: 87 h
Total: 150 h = 5 LP
Additional expenditure for degree programs from other disciplines MKL1 + MKL2 in total: 30 h = 1 LP

Learning type
Lecture
Tutorial
Project work during the semester
Online-test
Module: Mechanical Design III+IV (13 LP) [M-MACH-102829]

Responsible:
Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation:
KIT Department of Mechanical Engineering

Part of:
Specialization in Mechatronics (Compulsary Elective Modules: Mechanical Engineering)
Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104810</td>
<td>Mechanical Design III & IV</td>
<td>11</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110955</td>
<td>Mechanical Design III, Tutorial</td>
<td>1</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110956</td>
<td>Mechanical Design IV, tutorial</td>
<td>1</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination, consisting of theoretical and constructive part.
The theoretical examination lasts 1 hour plus reading time
The constructional examination takes 3 hours plus reading time.
Both parts of the examination must be passed in order to pass the overall examination for machine design apprenticeship III+IV.

Competence Goal
In mechanical design, students acquire skills in analysis and synthesis using examples (= leading examples). The examples include individual machine elements such as bearings or springs as well as more complex systems such as gears or clutches. After completing the machine design course, the students can apply the learned contents to further technical systems - even those not known from the lecture - by transferring the exemplary learned operating principles and basic functions to other contexts. This enables students to independently analyze unknown technical systems and to synthesize systems suitable for given problems.

Prerequisites
None

Content
tolerances and fits
component connections
gears
basics of component dimensioning
shaft clutches
fundamentals of fluid technology
electrical machines
Workload
MKL 3:
Presence: 45 h
Attendance time lecture (15 L): 22,5h
Attendance time exercises (7 exercises): 10,5h
Attendance time milestones project work (3x 4h): 12h
Self-study: 135h
Project work in a team: 90h
Personal preparation and follow-up of lecture and exercise: 45h
MKL 4:
Attendance lectures (13 L): 19,5h
Attendance time exercises (6 exercises): 9h
Attendance time milestones project work (3x 4h): 12h
Self-study: 169,5 h
Project work in a team: 105h
Personal preparation and follow-up of lecture and exercise, incl. preparation for the exam: 64,5h
Total: 390 h = 13 LP

Learning type
Lecture
Tutorial
Project work during the semester
Module: Mechanics in Microtechnology [M-MACH-102713]

Responsible: Prof. Dr. Christian Greiner
Dr. Patric Gruber

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

Credits 4
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 4
Version 1

Competence Goal
The students know and understand size and scaling effects in micro- and nanosystems. They understand the impact of mechanical phenomena in small dimensions. Based on this they can judge how they determine material processing as well as working principles and design of microsensors and microactuators.

Prerequisites
none

Content
1. Introduction: Application and Processing of Microsystems
2. Scaling Effects
3. Fundamentals: Stress and Strain, (anisotropic) Hooke’s Law
4. Fundamentals: Mechanics of Beams and Membranes
5. Thin Film Mechanics: Origin and Role of Mechanical Stresses
6. Characterization of Mechanical Properties of Thin Films and Small Structures: Measurement of Stresses and Mechanical Parameters such as Young's Modulus and Yield Strength, Thin Film Adhesion and Stiction
7. Transduction: Piezo-resistivity, Piezo-electric Effect, Electrostatics, ...
8. Aktuation: Inverse Piezo-electric Effect, Shape Memory, Electromagnetic Actuation, ...

Workload
regular attendance: 22,5 hours
self-study: 97,5 hours

Learning type
lecture

Literature
Folien,
2. L.B. Freund and S. Suresh: „Thin Film Materials“
Module: Mechano-Informatics and Robotics [M-INFO-100757]

Responsibility: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101294 | Mechano-Informatics and Robotics | 4 CR | Asfour |

Competence Goal

Students understand the basics of the synergistic integration of methods from mechatronics, computer science and artificial intelligence using the example of humanoid robotics. They are acquainted with the basic concepts and methods of machine learning, the description of robot movements and actions as well as artificial neural networks and their application in robotics. In particular, they are able to apply basic methods to problems and know relevant tools. Using research-oriented examples from humanoid robotics, students have learned – in an interactive way – to think analytically and to proceed in a structured and goal-oriented way when analyzing, formalizing and solving tasks.

Content

The lecture addresses topics at the interface between robotics and artificial intelligence, which are illustrated and explained based on examples from current research in the area of humanoid robotics. The lecture introduces fundamental algorithms in robotics and machine learning as well as methods for describing dynamical systems and representing robot motions and actions. This includes an introduction to artificial neural networks, the description of dynamical systems in state space as well as the learning of movement primitives. The topics and content are illustrated by practical examples from humanoid robotics.

Recommendation

Der Besuch des Basispraktikums Mobile Roboter wird empfohlen.
Module: Mechatronical Systems and Products [M-MACH-102749]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation:
KIT Department of Mechanical Engineering

Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105574</td>
<td>Mechatronical Systems and Products</td>
<td>3 CR</td>
<td>Hohmann, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-108680</td>
<td>Workshop Mechatronical Systems and Products</td>
<td>3 CR</td>
<td>Hohmann, Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate
Success is monitored within the framework of an written examination (60 minutes) and an alternative academic achievement

Competence Goal
The students

- are able to describe the difficulties of interdisciplinary projects.
- are able to coordinate processes, structures, responsibilities and interfaces within a project
- know different solutions for mechanic/electric problems
- know the elements of the treated product development processes, are able to describe different views onto them and execute them
- know the model based systems engineering approaches
- know the basic principles of virtual design and are able to apply the methods of virtual system design
- are able to identify the differences between virtuality and reality
- are able to recognize the advantages of early validation
- Students are able to understand and apply model description with Bond graphs and generalized system elements
- Students are able to synthesize and analyze multi-domain models
- Students are able to apply parameter identification methods

Module grade calculation
The module grade is composed in equal parts of the grades of the module's sub-services.

Prerequisites
None

Content
The lecture provides the theoretic basics, which will be applied and enhanced in development project during the semester. The project will take part in small groups, where the students have to organize and distribute the tasks on their own. In the project work - the workshop Mechatronical Systems and Products - they work on a development task in teams. This involves various development phases, from the development of technical solution concepts to the development and validation of virtual prototypes and physical functional prototypes.

Recommendation
It is recommended not to take this module with other time-consuming workshops, such as MD, at the same time.

Annotation
All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey "Anmeldung und Gruppeneinteilung" in ILIAS before the start of the semester.

Workload
1. Time of presence lecture: 17 * 1.5 h = 25.5 h
2. Prepare/follow-up lecture: 17 * 1.5 h = 25.5 h
3. Time of presence exercise + workshop: 4 * 1.5h + 12 * 7h = 90 h
4. Prepare/follow-up exercise: 4 * 1.5h = 6 h
5. Exam preparation and time of presence: 33 h
Total: 180 h = 6 LP
Learning type
Lecture, exercise and project work

Literature

Module: Medical Imaging Techniques I [M-ETIT-100384]

Responsible: Prof. Dr. Olaf Dössel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Competence Goal

Students have a thorough understanding of all methods of medical imaging with ionizing radiation. They know the physical basics, the technical solutions and the essential aspects when using imaging in medicine.

Module grade calculation

The module grade is the grade of the written exam.

Prerequisites

none

Content

- X-ray physics and technology of X-ray imaging
- Digital radiography, X-ray image intensifier, flat X-ray detectors
- Theory of imaging systems, modulation transfer function
- and quantum detection efficiency
- Computer tomography CT
- Ionizing radiation, dosimetry and radiation protection
- SPECT and PET

Workload

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

- Attendance time in lectures (2 h 15 appointments each) = 30 h
- Self-study (3 h 15 appointments each) = 45 h
- Preparation / post-processing = 20 h
- Total effort approx. 95 hours = 3 LP
7.111 Module: Medical Robotics (24681) [M-INFO-100820]

Responsible: Prof. Dr.-Ing. Torsten Kröger
Jun.-Prof. Dr. Franziska Mathis-Ullrich

Organisation: KIT Department of Informatics

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101357</td>
<td>Medical Robotics</td>
<td>3 CR</td>
<td>Kröger, Mathis-Ullrich</td>
<td></td>
</tr>
</tbody>
</table>
Module: Microactuators [M-MACH-100487]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

Credits 4
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language German
Level 4
Version 1

Mandatory
T-MACH-101910 Microactuators 4 CR Kohl

Competence Certificate
Written exam: 60 min

Competence Goal
- Knowledge of the actuation principles including pros and cons
- Knowledge of important fabrication technologies
- Explanation of layout and function of the microactuators
- Calculation of important properties (time constants, forces, displacements, etc.)
- Development of a layout based on specifications

Prerequisites
none

Content
- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications
The lecture includes amongst others the following topics:
 • Microelectromechanical systems: linear actuators, microrelais, micromotors
 • Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
 • Microrobotics: Microgrippers, polymer actuators (smart muscle)
 • Information technology: Optical switches, mirror systems, read/write heads

Workload
Time of attendance: 15 * 1,5 h = 22,5 h
Preparation and follow up: 15 * 5,5 h = 82,5 h
Exam Preparation and Exam: 15 h
Total: 120 h = 4 LP

Literature
- Lecture notes
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
7.113 Module: Microenergy Technologies [M-MACH-102714]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam: 45 min

Competence Goal
- Knowledge of the principles of energy conversion
- Knowledge of the underlying concepts of thermodynamics and materials science
- Explanation of layout, fabrication and function of the treated devices
- Calculation of important properties (time constants, forces, displacements, power, degree of efficiency, etc.)
- Development of a layout based on specifications

Prerequisites
none

Content
- Basic physical principles of energy conversion
- Layout and design optimization
- Technologies
- Selected devices
- Applications

The lecture includes amongst others the following topics:
Micro energy harvesting of vibrations
Thermal micro energy harvesting
Microtechnical applications of energy harvesting
Heat pumps in micro technology
Micro cooling

Workload
- Time of attendance: 15 * 1.5 h = 22.5 h
- Preparation and follow up: 15 * 5.5 h = 82.5 h
- Exam Preparation and Exam: 15 h
- Total: 120 h = 4 LP

Literature
- Lecture notes (overhead transparencies) „Micro Energy Technologies“
Module: Mobile Computing and Internet of Things (IN3INMC) [M-INFO-101249]

7.114 Module: Mobile Computing and Internet of Things (IN3INMC) [M-INFO-101249]

Responsible: Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-102061 | Mobile Computing and Internet of Things | 5 CR | Beigl |

Prerequisites

None
7.115 Module: Motor Vehicle Laboratory [M-MACH-102695]

Responsible: Dr.-Ing. Michael Frey
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105222 | Motor Vehicle Labor | 4 CR | Frey |

Competence Certificate

After completion of the experiments: written examination
Duration: 90 minutes
Auxiliary means: none

Competence Goal

The students have deepened their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions. They are ready to analyze and to judge measurement results.

Prerequisites

None

Content

1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle
2. Investigation of a twin-tube and a single-tube shock absorber
3. Behavior of car tyres under longitudinal forces and lateral forces
4. Behavior of car tires on wet road surface
5. Rolling resistance, energy dissipation and high-speed strength of car tires
6. Investigation of the moment transient characteristic of a Visco clutch

Annotation

The admission is limited to 12 persons per group.

Workload

- regular attendance: 31.5 hours
- self-study: 103.5 hours

Literature

3. Gnader, R.: Documents to the Motor Vehicle Laboratory
Module: Novel Actuators and Sensors [M-MACH-105292]

Responsible: Prof. Dr. Manfred Kohl

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102152 | Novel Actuators and Sensors | 4 CR | Kohl, Sommer |

Competence Certificate

Written exam, 60 min

Competence Goal

- Knowledge of the actuation and sensing principles including pros and cons
- Knowledge of important fabrication technologies
- Explanation of layout and function of the actuators and sensors
- Calculation of important properties (time constants, forces, displacements, sensitivity etc.)
- Development of a layout based on specifications

Prerequisites

None

Content

The content of the lecture is among others:

- Piezo actuators
- Magnetostriktive actuators
- Shape memory actuators
- Electro-/Magnetorheologicical actuators
- Sensors: Concepts, materials, fabrication
- Micromechanical sensors: Pressure, force, inertial sensors
- Temperature sensors
- Sensors for bioanalytics
- Mechano-magnetic sensors

Workload

lecture time 18 h

self preparation: 102 h

Learning type

Lecture

Literature

- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
Module: Numerical Methods [M-MATH-105831]

Responsible: Prof. Dr. Wolfgang Reichel
Organisation: KIT Department of Mathematics
Part of: Master Transfer Account (Usage from 10/1/2021)

Credits: 5
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-111700</td>
<td>Numerical Methods - Exam</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Success control takes the form of a written examination (120 minutes).

Competence Goal
Students who pass the module are familiar with basic concepts and ways of thinking on the topic of numerical mathematics. They know different procedures for solving linear and nonlinear problems in numerical mathematics. They are furthermore able to use numerical methods for solving problems from applications in an independent, critical, and needs-based way.

Module grade calculation
The module grade is the grade of the written exam.

Prerequisites
none

Content
In the lecture basic ideas and numerical methods for the following topics will be presented:

- systems of linear equations, Gauss-algorithm, LR-decomposition, Cholesky decomposition
- eigenvalue problems, von-Mises iteration
- linear optimization (also called linear programming)
- error analysis
- Newton’s method
- quadrature, Newton-Cotes formulas
- numerical solution of initial value problems, Runge-Kutta methods
- finite difference method for solving boundary value problems
- finite elements

Workload
Approximately 150h workload. The workload includes:
45h - attendance in lectures, exercises and examination
105h – self studies:

- follow-up and deepening of the course content
- solving problem sheets
- literature study and internet research on the course content
- preparation for the module examination
Module: Optics and Solid State Electronics [M-ETIT-104067]

Responsible: Prof. Dr. Ulrich Lemmer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-109444 | Optics and Solid State Electronics | 8 CR |

Prerequisites

None
Module: Optoelectronic Components [M-ETIT-100509]

Responsible: Prof. Dr. Wolfgang Freude
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-ETIT-101907 Optoelectronic Components 4 CR Freude

Competence Certificate
Type of Examination: oral exam
Duration of Examination: approx. 30 minutes
Modality of Exam: Oral examination, usually one examination day per month during the Summer and Winter terms. An extra questions-and-answers session will be held if students wish so.

Competence Goal
Comprehending the physical layer of optical communication systems. Developing a basic understanding which enables a designer to read a device’s data sheet, to make most of its properties, and to avoid hitting its limitations.

The students

- understand the components of the physical layer of optical communication systems
- acquire the knowledge of operation principles and impairments of optical waveguides
- know the basics of laser diodes, luminescence diodes and semiconductor optical amplifiers
- understand pin-photodiodes
- know the systems’ sensitivity limits, which are caused by optical and electrical noise

Module grade calculation
The module grade is the grade of the oral exam.

Prerequisites
none

Content
The course concentrates on the most basic optical communication components. Emphasis is on physical understanding, exploiting results from electromagnetic field theory, (light waveguides), solid-state physics (laser diodes, LED, and photodiodes), and communication theory (receivers, noise). The following components are discussed:

- Light waveguides: Wave propagation, slab waveguides, strip wave-guides, integrated optical waveguides, fibre waveguides
- Light sources and amplifiers: Luminescence and laser radiation, luminescent diodes, laser diodes, stationary and dynamic behavior, semiconductor optical amplifiers
- Receivers: pin photodiodes, electronic amplifiers, noise

Recommendation
Minimal background required: Calculus, differential equations, Fourier transforms and p-n junction physics.

Annotation
There are no prerequisites, but solution of the problems on the exercise sheet, which can be downloaded as homework each week, is highly recommended. Also, active participation in the problem classes and studying in learning groups are strongly advised.

Workload
total 120 h, hereof 45 h contact hours (30 h lecture, 15 h problem class), and 75 h homework and self-studies

Literature
Detailed textbook-style lecture notes as well as the presentation slides can be downloaded from the IPQ lecture pages.
Further textbooks in German (also in electronic form) can be named on request.
7.120 Module: Optoelectronics [M-ETIT-100480]

Responsible: Prof. Dr. Ulrich Lemmer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100767 | Optoelectronics | 4 CR | Lemmer |

Competence Certificate
The success check is carried out in the context of a written exam.

Module grade calculation
The module grade is the grade of the written exam.

Prerequisites
none

Workload
1. Presence time in lectures, exercises: 32 h
2. Preparation / Post-processing of the same: 48 h
3. Exam preparation and presence in same: 40 h
Module: Organ Support Systems [M-MACH-102702]

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105228 | Organ Support Systems | 4 CR | Pylatiuk |

Competence Certificate

A performance assessment is held in form of a written examination of 45 minutes.

Competence Goal

Students have comprehensive knowledge of the functioning of support systems and their components (e.g. sensors, actuators) for different human organs (e.g. heart, kidney, liver, eye, ear, locomotor system). They know the physical basics, the technical solutions and the essential aspects of these medical technology systems and their current limitations. Furthermore, they know bioreactors and other methods of using the body's own cells to support organs (tissue engineering). Furthermore, they have comprehensive knowledge of organ transplantation and its limitations.

Module grade calculation

The module grade is the grade of the written exam.

Prerequisites

none

Content

Hemodialysis, liver dialysis, heart-lung machine, artificial hearts, biomaterials, definition and classification of organ support and organ replacement, hearing prostheses, visual prostheses, exoskeletons, neuroprostheses, endoprostheses, tissue engineering.

Recommendation

The content of module MMACH-105235 complements this lecture.

Workload

1. Attendance time Lecture: 15 * 2h = 30h
2. Pre- and postprocessing time Lecture: 15 * 3h = 45h
3. Exam preparation and attendance exam: 45h

Total: 120h = 4 LP

Literature

- E. Wintermantel, Suk-Woo Ha: Medizintechnik. Springer Verlag.
Module: Orientation Exam [M-MACH-104333]

Organisation: University
Part of: Orientation Exam

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td>7 CR</td>
<td>Böhlike, Langhoff</td>
</tr>
<tr>
<td>T-ETIT-109316</td>
<td>Linear Electronic Networks</td>
<td>7 CR</td>
<td>Dössel</td>
</tr>
<tr>
<td>T-ETIT-109317</td>
<td>Linear Electronic Networks - Workshop A</td>
<td>1 CR</td>
<td>Leibfried, Lemmer</td>
</tr>
<tr>
<td>T-ETIT-109811</td>
<td>Linear Electronic Networks - Workshop B</td>
<td>1 CR</td>
<td>Dössel</td>
</tr>
</tbody>
</table>

Modelled deadline
This module must be passed until the end of the 3. term.

Prerequisites
None

Annotation

The deadline for taking the orientation exam shall be extended by two semesters for first-year students of the winter semester of 2018/19 and first-year students of the winter semester of 2019/20, provided that they were enrolled in the same degree program during both semesters.

For first-year students of the winter semester of 2020/2021 or for students who have changed their degree program for the winter semester of 2020/2021, the deadline for taking the orientation exam shall be extended by one semester.
7.123 Module: Photovoltaic System Design [M-ETIT-100411]

Responsible: Dipl.-Ing. Robin Grab
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100724 | Photovoltaic System Design | 3 CR | Grab |

Prerequisites

none
Module: Physiology and Anatomy for Engineers I [M-ETIT-100390]

Responsible: Prof. Dr. Werner Nahm
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101932</td>
<td>Physiology and Anatomy for Engineers I</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Success control is carried out in the form of a written test of 60 minutes.

Competence Goal
Basic understanding of the functions of the human body and the processes involved.

Module grade calculation
The module grade is the grade of the written exam.

Prerequisites
none

Content
The lecture provides basic knowledge about the essential organ systems of humans and medical terminology. It is aimed at students of technical courses who are interested in physiological issues.

- Thematic blocks of the first part (winter semester)
 - Introduction - organizational levels in the body
 - Basics of biochemistry in the body
 - Cell structure, cell physiology, tissue
 - Transport mechanisms in the body
 - Neurophysiology I (nerve cell, muscle cell, the autonomic nervous system)
 - Heart and circulatory system with blood and lymph
 - breathing

Workload
Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

- Attendance time in lectures (2 h 15 appointments each) = 30 h
- Self-study (3 h 15 appointments each) = 45 h
- Preparation / post-processing = 20 h
- Total effort approx. 95 hours = 3 LP
7.125 Module: Plug-and-Play Material Handling [M-MACH-104983]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-106693 | Plug-and-Play Material Handling | 4 CR | Auberle, Furmans |

Competence Certificate
The success control takes place as a study achievement in the form of a presentation of at least 10 minutes.

Competence Goal
- Naming and explaining the basics of plug-and-play conveyor technology
- Extend your knowledge of plug-and-play conveyor technology through independent research
- Applying the learned theory to a problem from practice
- Using the Software Framework ROS (Robot Operating System)
- Implementation of a decentralized communication protocol
- Designing components for additive manufacturing (3D printing)
- Evaluate developed solutions on the basis of logistical key figures

Prerequisites
None.

Content
- Theoretical basics and structure of plug-and-play conveyor technology
- Practical application of content in teamwork with mobile and stationary platforms
- Planning and implementation of a control system using the software framework ROS
- Definition, design and implementation of interfaces between teams and platforms
- Presentation of the work results and evaluation of these on the basis of logistical key figures

Workload
regular attendance: 80 hours
self-study: 40 hours

Learning type
seminar
7.126 Module: Power Electronics [M-ETIT-100533]

Responsible: Dr.-Ing. Klaus-Peter Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100801 | Power Electronics | 5 CR | Becker |

Prerequisites
None
7.127 Module: Power Generation [M-ETIT-100407]

Responsible: Dr.-Ing. Bernd Hoferer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101924 | Power Generation | 3 CR | Hoferer |

Prerequisites

Anyone who has completed the Electrical Power Generation (EEE) module in the Bachelor (SPO 2015 and 2018) should Master does not select the Electric Power Generation and Power Grid module.
Module: Power Transmission and Power Network Control [M-ETIT-100534]

Responsible: Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

none

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course</th>
<th>Credits</th>
<th>Leibfried</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101941</td>
<td>Power Transmission and Power Network Control</td>
<td>5 CR</td>
<td></td>
</tr>
</tbody>
</table>
Module: Practical Project Robotics and Automation I (Software) [M-INFO-102224]

Responsible: Prof. Dr.-Ing. Björn Hein
Prof. Dr.-Ing. Thomas Längle

Organisation: KIT Department of Informatics

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-104545</td>
<td>Practical Project Robotics and Automation I (Software)</td>
<td>6 CR</td>
<td>Hein, Längle</td>
</tr>
</tbody>
</table>
7.130 Module: Practical Project Robotics and Automation II (Hardware) [M-INFO-102230]

Responsible: Prof. Dr.-Ing. Björn Hein
Prof. Dr.-Ing. Thomas Längle
Organisation: KIT Department of Informatics
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-104552 | Practical Project Robotics and Automation II (Hardware) | 6 CR | Hein, Längle |
7.131 Module: Principles of Medicine for Engineers [M-MACH-102720]

** Responsible:** apl. Prof. Dr. Christian Pylatiuk
** Organisation:** KIT Department of Mechanical Engineering
** Part of:** Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105235 | Principles of Medicine for Engineers | 4 CR | Pylatiuk |

Competence Certificate

A performance assessment is held in form of a written examination of 45 minutes.

Competence Goal

Students have a comprehensive understanding of the functioning and anatomical construction of organs, which are assigned to different medical disciplines. Furthermore, they know the physical basics, the technical solutions and the essential aspects of the application of medical technology procedures in diagnostics and therapy. They are familiar with common clinical pictures in the different medical disciplines and their relevance in health care. Through their acquired knowledge, students can communicate with physicians about medical-technical procedures and assess mutual expectations more realistically.

Module grade calculation

The module grade is the grade of the written exam.

Prerequisites

none

Content

Definition of disease and health and history of medicine, evidence-based medicine" and personalized medicine, nervous system, conduction, musculoskeletal system, cardiovascular system, anesthesia, respiratory system, sensory organs, gynecology, digestive organs, surgery, nephrology, orthopedics, immune system, genetics.

Recommendation

The content of module MMACH-105228 complements this lecture.

Workload

1. Attendance time Lecture: 15 * 2h = 30h
2. Pre- and postprocessing time Lecture: 15 * 3h = 45h
3. Exam preparation and attendance exam: 45h

Total: 120h = 4 LP

Literature

- Adolf Faller, Michael Schünke: Der Körper des Menschen. Thieme Verlag.
Module: Principles of Whole Vehicle Engineering I [M-MACH-105289]

Responsible: Hon.-Prof. Rolf Frech
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

Credits 2
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 4
Version 1

Mandatory
T-MACH-105162 Fundamentals of Automobile Development I 2 CR Frech

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Prerequisites
None

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Workload
The total work load for this module is about 60 Hours (2 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 2 credit points is about 60 hours.

Learning type
Lecture
M 7.133 Module: Principles of Whole Vehicle Engineering II [M-MACH-105290]

Responsible: Hon.-Prof. Rolf Frech
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Prerequisites
None

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Workload
The total work load for this module is about 60 Hours (2 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 2 credit points is about 60 hours.

Learning type
Lecture

Responsible: Prof. Dr.-Ing. Albert Albers
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109192</td>
<td>Methods and Processes of PGE - Product Generation Development</td>
<td>6 CR</td>
<td>Albers, Burkardt, Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination (processing time: 120 min + 10 min reading time)

Competence Goal
The students are able to ...

- classify product development in companies and differentiate between different types of product development.
- name the relevant influencing factors of a market for product development.
- name, compare and use the central methods and process models of product development within moderate complex technical systems.
- explain problem solving techniques and associated development methods.
- explain product profiles and to differentiate and choose suitable creative techniques of solution/idea generation finding on this basis.
- use design guidelines to create simple technical systems and to explain these guidelines.
- name and compare quality assurance methods; to choose and use suitable methods for particular applications.
- explain the different methods of design of experiment.
- explain the costs in development process.

Prerequisites
None

Content
Basics of Product Development: Basic Terms, Classification of the Product Development into the industrial environment, generation of costs / responsibility for costs
Concept Development: List of demands / Abstraction of the Problem Definition / Creativity Techniques / Evaluation and selection of solutions
Drafting: Prevailing basic rules of Design / Design Principles as a problem oriented accessory
Quality Assurance in early Development Phases: Methods of Quality Assurance in an overview/QFD/FMEA

Workload
1. Time of presence lecture: 15 * 3h = 45 h
2. Prepare/follow-up lecture: 15 * 4,5 h = 67,5 h
3. Time of presence exercise: 4 * 1,5h = 6 h
4. Prepare/follow-up exercise: 4 * 3 h = 12 h
5. Exam preparation and time of presence: 49,5 h
Total: 180 h = 6 LP

Learning type
Lecture
Tutorial

Literature

Lecture documents
Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997
Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag, 1993
Module: Production Techniques Laboratory [M-MACH-102711]

Responsible: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Jivka Ovtcharova
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105346</td>
<td>Production Techniques Laboratory</td>
<td>4</td>
<td>CR</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
A performance assessment (non-graded) is obligatory and can be oral, a written exam, or of another kind.

Competence Goal
The students acquire in the lab profound knowledge about the scientific theories, principles and methods of Production Engineering. Afterwards they are able to evaluate and design complex production systems according to problems of manufacturing and process technologies, materials handling, handling techniques, information engineering as well as production organisation and management.

After completion this lab, the students are able
- to analyse and solve planning and layout problems of the discussed fields,
- to evaluate and configure the quality and efficiency of production, processes and products,
- to plan, control and evaluate the production of a production enterprise,
- to configure and evaluate the IT architecture of a production enterprise,
- to design and evaluate appropriate techniques for conveying, handling and picking within a production system,
- to design and evaluate the part production and the assembly by considering the work processes and the work places.

Prerequisites
None

Content
The production technique laboratory (PTL) is a collaboration of the institutes wbk, IFL, IMI and ifab.

1. Computer Aided Product Development (IMI)
2. Computer communication in factory (IMI)
3. Production of parts with CNC turning machines (wbk)
4. Controlling of production systems using PLCs (wbk)
5. Automated assembly systems (wbk)
6. Optical identification in production and logistics (IFL)
7. RFID identification systems (IFL)
8. Storage and order-picking systems (IFL)
9. Design of workstations (ifab)
10. Time study (ifab)
11. Accomplishment of workplace design (ifab)

Workload
Present time: 20 h
Self study: 100 h

Learning type
Seminar

Literature
Handout and literature online ILIAS.
7.136 Module: Programming (IN1INPROG) [M-INFO-101174]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101967</td>
<td>Programming Pass</td>
<td>0 CR</td>
<td>Koziolek, Reussner</td>
<td></td>
</tr>
<tr>
<td>T-INFO-101531</td>
<td>Programming</td>
<td>6 CR</td>
<td>Koziolek, Reussner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Goal

Students should learn:

- basic structures of the programming language Java and how to apply them; in particular control and simple data structures, object orientation and implementation of basic algorithms
- basics of programming methodology and the ability to autonomously write executable small to medium sized Java programs

Content

- objects and classes
- types, values and variables
- methods
- control structures
- recursion
- references, lists
- inheritance
- input and output
- exceptions
- programming methodology
- implementation of basic algorithms in Java (such as sorting algorithms)
Module: Project Management in the Development of Products for Safety-Critical Applications [M-ETIT-104475]

Responsible: Dr.-Ing. Manfred Nolle
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109148</td>
<td>Project Management in the Development of Products for Safety-Critical Applications</td>
<td>4 CR</td>
<td>Nolle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.138 Module: Quality Management [M-MACH-105332]

Responsible: Prof. Dr.-Ing. Gisela Lanza

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102107 | Quality Management | 4 CR | Lanza |

Competence Certificate

Written Exam (60 min)

Competence Goal

The students ...

- are capable to comment on the content covered by the module.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the module to new problems from the context of the module.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the module for a specific problem.

Prerequisites

None

Content

Based on the quality philosophies Total Quality Management (TQM) and Six-Sigma, the module will specifically address the needs of a modern quality management. The process orientation in a modern company and the process-specific fields of quality assurance are presented in detail. Preventive as well as non-preventive quality management methods, which are state of the art in operational practice today, are content of the module. The use of suitable measurement techniques in production engineering (production measurement technology) as well as their potential levels of integration in the production system are discussed. The use of suitable statistical methods for data analysis and their modern extension by methods of artificial intelligence are be discussed. The contents are complemented by legal aspects in the field of quality management.

Main topics of the module:

- The term "Quality"
- Total Quality Management (TQM)
- Six-Sigma and universal methods and tools within the DMAIC cycle
- QM in early product stages – Determination and realization of customer requirements
- QM in product development
- Production measurement Technology
- QM in production - statistical Methods
- Artificial intelligence and machine learning in quality Management
- Operating behaviour and reliability
- Legal aspects in QM

Workload

1. Presence time lecture: $15 \times 2\ h = 30\ h$
2. Pre- and post-processing time lecture: $15 \times 3\ h = 45\ h$
3. Exam preparation and presence in the same: $45\ h$

In total: $120\ h = 4\ LP$

Learning type

Lecture
Module: Radiation Protection [M-ETIT-100562]

Responsible: Prof. Dr. Olaf Dössel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

Credits	Grading scale	Recurrence	Duration	Language	Level	Version
3 | Grade to a tenth | Each summer term | 1 term | English | 3 | 1

Competence Certificate
Success control is carried out as part of an overall written examination (2 h).

Competence Goal
Basic understanding of radiation and radiation effects and the basic principles of radiation protection with ionizing radiation.

Module grade calculation
The module grade is the grade of the written exam.

Prerequisites
none

Content
Introduction to radiation protection The lecture deals with the basics of radiation protection (for ionizing radiation) and gives an overview of the field. The topics covered are:

- Radiation and radiation applications,
- Interaction of radiation with matter,
- Measurement of radiation - principles and detectors,
- Biological effects of radiation, Dosimetry (external and internal exposures),
- Legal aspects (legal regulations, ethics) and
- Radiation protection - principles and applications

Workload
Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

- Attendance time in lectures (2 h 15 appointments each) = 30 h
- Self-study (3 h 15 appointments each) = 45 h
- Preparation / post-processing = 20 h
- Total effort approx. 95 hours = 3 LP
7.140 Module: Radio-Frequency Electronics [M-ETIT-105124]

Responsible: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-110359 | Radio-Frequency Electronics | 5 CR | Ulusoy |

Competence Certificate
The success criteria will be determined by a written examination.

Competence Goal
- The students have a comprehensive understanding of the theory and the basic design methodology of electronic circuits at high frequencies.
- They understand the limitations of active and passive circuit elements including various transistor technologies and their impact on the applications.
- They understand the limitations and how linear network theory is applied for advanced electronic circuits.
- The students can apply the acquired theoretical knowledge using modern design tools.

Module grade calculation
The module grade is the grade of the written examination.

Prerequisites
Passing the workshop is a prerequisite for the exam.

Content
In this module, the theory and design methodology of high-frequency electronic circuits will be studied in detail. The focus of the module is on the fundamentals of active linear circuits. The important topics are phasor analysis, resonance, impedance matching networks, two-port parameters of transistors, high-frequency behavior of basic amplifier circuits, practical design methodology of high-frequency amplifiers, and introduction to the design of non-linear circuits using the linear design methodology. In the tutorial the student will have the possibility to apply their theoretical knowledge by designing, assembling and testing a radio-frequency amplifier in the framework of a design challenge.

Recommendation
Contents of the modules "Linear electrical networks" and "Electronic circuits".

Workload
1. Attendance to the lectures (15*(2)=30h)
2. Attendance to the exercises and workshop (15*(2)=30h)
3. Preparation to the lectures, exercises and workshop (15*(1+1)=30h)
4. Preparation of homework assignments and to the oral exam (20+40h)
Total: 150h = 5L
7.141 Module: Rail System Technology [M-MACH-103232]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-106424</td>
<td>Rail System Technology</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination
Duration ca. 20 minutes
No tools or reference materials may be used during the exam.

Competence Goal

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- Based on operating requirements and legal framework they derive the requirements concerning a capable infrastructure and suitable concepts of rail vehicles.
- They recognize the impact of alignment, understand the important function of the wheel-rail-contact and estimate the impact of driving dynamics on the operating program.
- They evaluate the impact of operating concepts on safety and capacity of a rail system.
- They know the infrastructure to provide power supply to rail vehicles with different drive systems.

Prerequisites

none

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Annotation

A bibliography is available for download (Ilias-platform).

Workload

Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours
total: 120 hours = 4 ECTS

Learning type

Lecture
Module: Rail Vehicle Technology [M-MACH-102683]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination

Duration ca. 20 minutes

No tools or reference materials may be used during the exam.

Competence Goal

- The students learn the role of rail vehicles and understand their classification. They understand the basic structure and know the functions of the main systems. They understand the overall tasks of vehicle system technology.
- They learn functions and requirements of car bodies and judge advantages and disadvantages of design principles. They know the functions of the car body's interfaces.
- They know about the basics of running dynamics and bogies.
- The students learn about advantages and disadvantages of different types of traction drives and judge, which one fits best for each application.
- They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
- They know the basic setup of train control management system and understand the most important functions.
- They specify and define suitable vehicle concepts based on requirements for modern rail vehicles.

Prerequisites

none

Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Annotation

A bibliography is available for download (Ilias-platform).

Workload

Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours
Total: 120 hours = 4 ECTS
Learning type
Lecture
7.143 Module: Real-Time Systems (24576) [M-INFO-100803]

Responsible: Prof. Dr.-Ing. Thomas Längle

Organisation: KIT Department of Informatics

Part of:
- Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)
- Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101340 | Real-Time Systems | 6 CR | Längle |
7.144 Module: Robotics - Practical Course [M-INFO-102522]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Master Transfer Account

Credits
- 6

Grading scale
- Grade to a tenth

Recurrence
- Each summer term

Duration
- 1 term

Language
- German

Level
- 4

Version
- 2

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-105107</td>
<td>Robotics - Practical Course</td>
<td>6</td>
<td>CR Asfour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Goal
The student knows concrete solutions for different problems in robotics. He/she uses methods of inverse kinematics, grasp and motion planning, and visual perception. The student can implement solutions in the programming language C++ with the help of suitable software frameworks.

Content
The practical course is offered as an accompanying course to the lectures Robotics I-III. Every week, a small team of students will work on solving a given robotics problem. The list of topics includes robot modeling and simulation, inverse kinematics, robot programming via statecharts, collision-free motion planning, grasp planning, and robot vision.

Recommendation
7.145 Module: Robotics I - Introduction to Robotics [M-INFO-100893]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of:
- Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)
- Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-108014</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Module: Robotics II: Humanoid Robotics [M-INFO-102756]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Master Transfer Account

Credits: 3
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German/English
Level: 4
Version: 2

M Mandatory

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credit</th>
<th>Course Name</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-105723</td>
<td>3 CR</td>
<td>Robotics II: Humanoid Robotics</td>
<td></td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Competence Goal
The students have an overview of current research topics in autonomous learning robot systems using the example of humanoid robotics. They are able to classify and evaluate current developments in the field of cognitive humanoid robotics.

The students know the essential problems of humanoid robotics and are able to develop solutions on the basis of existing research.

Prerequisites
None

Content
The lecture presents current work in the field of humanoid robotics that deals with the implementation of complex sensorimotor and cognitive abilities. In the individual topics different methods and algorithms, their advantages and disadvantages, as well as the current state of research are discussed.

The topics addressed are: Applications and real world examples of humanoid robots; biomechanical models of the human body, biologically inspired and data-driven methods of grasping, active perception, imitation learning and programming by demonstration; semantic representations of sensorimotor experience as well as cognitive software architectures of humanoid robots.
Module: Robotics III - Sensors and Perception in Robotics (24635) [M/INFO-104897]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)
Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T/INFO-109931 | Robotics III - Sensors and Perception in Robotics | 3 CR | Asfour |

Competence Goal

Students can name the main sensor principles used in robotics.
Students can explain the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and semantic scene understanding.
Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.
7.148 Module: Seamless Engineering [M-MACH-105725]

Responsible: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-111401</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another type. The module grade is the grade of the brick. The description of the form of examination can be found in the description of the partial performance.

Competence Goal
After successful completion of the course, the students are able to model and parameterise the requirements and boundary conditions for typical mechatronic systems. In addition, students learn the ability to select the appropriate procedures, processes, methods and tools for the development of a mechatronic system.

Important core competences in the areas of communication, problem solving and self-organisation are further essential components of the workshop, which enable the students to do reflected work independently and in a team.

Prerequisites
None

Content
This module is designed to teach students how to develop a heterogeneous integrated mechatronic system. In the lecture, students are introduced to a system-oriented, higher-level approach to the description, assessment and development of a mechatronic system.

Parallel to this, the contents taught are applied and deepened in the practical part on hardware that is close to industry. The students learn the systematic development in a simulative environment as well as the transition from simulation to real hardware.

To achieve this, important components of software development in the robotics environment are taught. This includes, among other things, the basics of programming (Python) as well as the handling of the framework "Robot Operating System (ROS)". In addition, students gain insights into the use of sensors and actuators, image processing, autonomous navigation of automated guided vehicles and robotic grasping.

Recommendation
None

Annotation
None

Workload
1. attendance time lecture and exercise: 45 h
2. interdisciplinary qualification: 45 h
3. group work project: 130 h
4. colloquia and final event: 30 h
5. exam preparation and presence in the same: 20 h

In total: 270 = 9 LP

Learning type
Lecture, exercise, project.

Literature
None
7.149 Module: Seminar Battery I [M-ETIT-105319]

Responsible: Dr.-Ing. Andre Weber
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules) (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-110800 | Seminar Battery I | 3 CR |

Competence Certificate
The performance review takes the form of a written paper and a seminar presentation. The overall impression will be evaluated.

Competence Goal
After completion of the seminar the students are able to work independently on an engineering problem in the field of batteries, to analyze the related literature and to present it in the form of a written paper and a presentation.

Module grade calculation
The assessment of the written paper and the seminar presentation will be included in the module grade. Further details will be given at the beginning of the course.

Prerequisites
none

Content
The seminar "Batteries I" is primarily aimed at bachelor students who are planning to write their bachelor thesis in the field of batteries. In this seminar the participants will work on a scientific topic in the field of batteries. This usually includes a literature study, the compilation of the methods, procedures and results described in the publications as well as a critical evaluation of the same. In individual cases, next to a literature study more practical topics can be in focus.
The results are summarized in a seminar paper and presented in a lecture during the seminar. The grading is based on the written paper as well as the presentation.

Workload

1. presence time seminar: 15 * 2 h = 30 h
2. preparation of seminar paper: 30 h
3. preparation of seminar presentation: 30 h
Total: 90 h = 3 LP
M 7.150 Module: Seminar Embedded Systems [M-ETIT-100455]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100753</td>
<td>Seminar Embedded Systems</td>
<td>3 CR</td>
<td>Becker, Sax, Stork</td>
</tr>
</tbody>
</table>

Competence Certificate

Type of examination: alternative exam assessment. The examination consists of a written report and an oral presentation. The overall impression is rated.

Prerequisites

none
Module: Seminar Fuel Cell I [M-ETIT-105320]

Responsible: Dr.-Ing. Andre Weber
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Lecture</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-110798</td>
<td>Seminar Fuel Cell I</td>
<td>3 CR</td>
<td>Weber</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination consists of a written paper and an oral presentation of the students work. The overall impression is rated.

Competence Goal
After completing the seminar, the students are able to familiarize themselves independently with an engineering question in the field of fuel cells, analyze the associated literature and present it in the form of a written report and a presentation.

Module grade calculation
The module grade results of the assessment of the written paper and the oral presentation. Details will be given during the lecture.

Prerequisites
none

Content
The seminar “Fuel Cell Research Projects” is primarily aimed at students who are planning to carry out a scientific thesis in the fuel cell research area.
In this seminar the participants deal with scientific questions in the field of fuel cells. This includes a literature search, the compilation of the methods, processes and results described in the publications as well as a critical evaluation of the same.
The results are summarized in a seminar paper and presented in a lecture during the seminar. The written work and a lecture that has to be given during the event are included in the grading of the thesis.

Workload
1. Presence seminar: 15 * 2 h = 30 h
2. Preparation of seminar paper and lecture: 30 h
3. Preparation of seminar lecture: 30 h
Total: 90 h = 3 LP
Module: Seminar on Selected Chapters of Biomedical Engineering [M-ETIT-100383]

Responsible: Dr.-Ing. Axel Loewe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100710 | Seminar on Selected Chapters of Biomedical Engineering | 3 CR | Loewe |

Competence Certificate

Success monitoring is carried out in the context of a lecture followed by a discussion.

Competence Goal

The students are able to research a scientific topic from biomedical technology, work out essentials, process the content, prepare a lecture and finally present it.

Prerequisites

none

Content

The seminar aims to enable students to independently work on and present a scientific topic in the field of biomedical engineering in order to improve their presentation skills. First, an introduction to presentation techniques and feedback rules is given. Then there is a test presentation to try out the techniques learned. Finally, the students select a topic of biomedical engineering for their presentation and prepare a specialist lecture on this topic.

Workload

Attendance time: 15 weeks * 2SWS = 30h

Development of the topic, exchange with supervisor, preparation of the lecture: 60h
Module: Seminar Power Electronics in Regenerative Energy Systems [M-ETIT-100397]

Responsible: Dr.-Ing. Klaus-Peter Becker
Organisation:
KIT Department of Electrical Engineering and Information Technology
KIT Department of Informatics
Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100714</td>
<td>Seminar Power Electronics in Regenerative Energy Systems</td>
<td>4 CR Becker</td>
</tr>
</tbody>
</table>

Prerequisites
keine
7.154 Module: Sensors [M-ETIT-100378]

<table>
<thead>
<tr>
<th>Credits</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Responsible: Dr. Wolfgang Menesklou
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101911</td>
<td>Sensors</td>
</tr>
<tr>
<td>3 CR</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>
Module: Signals and Systems [M-ETIT-104525]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109313</td>
<td>Signals and Systems</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T-ETIT-109314</td>
<td>Signals and Systems - Workshop</td>
<td>1</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites

none
Module: Soft Skills [M-MACH-104355]

Responsible: Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105699 | Cooperation in Interdisciplinary Teams | 2 CR | Matthiesen |

Competence Certificate

Accompanying the workshop, delivery services are required. In these the application of the knowledge of the students is examined.

Competence Goal

The students:

- can apply the principles for ensuring good scientific practice
- can describe the difficulties of interdisciplinary project work
- can coordinate processes, structures, areas of responsibility and interfaces within a project
- know the elements of the treated product development processes (PEP) and can explain the different views of a PEP

Prerequisites

None

Content

The students receive a semester-accompanying development task, which they must solve independently. The development task is handled in small groups in which the students organize themselves and divide the tasks independently. This involves various development phases, from the development of technical solution concepts to the development and validation of virtual prototypes and physical functional prototypes. At the end of the semester, the experiences of the development task are reflected upon.

Workload

60 h, thereof 5 h attendance time, 55 h self-study and study preparation

Learning type

Exercise and project work
7.157 Module: Software Engineering I (IN1INSWT1) [M-INFO-101175]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of:
Specialization in Mechatronics (Compulsory Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101968</td>
<td>Software Engineering I</td>
<td>6 CR</td>
<td>Koziolek, Reussner, Tichy</td>
</tr>
<tr>
<td>T-INFO-101995</td>
<td>Software Engineering I Pass</td>
<td>0 CR</td>
<td>Tichy</td>
</tr>
</tbody>
</table>

Competence Goal

The students acquire basic knowledge about the principles, methods and tools of software engineering. They learn how to build and to maintain complex software systems in a systematic way.

Content

The content of the lecture is the entire lifecycle of software, spanning project planning, system analysis, cost estimation, design, implementation, validation, verification, and finally the maintaining of software. The covered topics include UML, design patterns, software tools, programming environments and configuration control/versioning systems.

Workload

approx. 180 h
Module: Software Engineering II (IN4INSWT2) [M-INFO-100833]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101370 | Software Engineering II | 6 CR | Koziolek, Reussner, Tichy |

Content
Requirements engineering, software development processes, software quality, software architectures, MDD, Enterprise Software Patterns software maintainability, software security, dependability, embedded software, middleware, domain-driven design
Module: Stochastic Information Processing (24113) [M-INFO-100829]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101366</td>
<td>Stochastic Information Processing</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Hanebeck
7.160 Module: Superconducting Magnet Technology and Power Systems [M-ETIT-105705]

Responsible: Prof. Dr. Tabea Arndt
Prof. Dr. Mathias Noe

Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Specialization in Mechatronics (Supplementary Modules) (Usage from 4/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-111381</td>
</tr>
</tbody>
</table>

Competence Certificate

The module grade is given by the result of a single oral exam (abt. 45 minutes).

The oral examination includes the contents of Superconducting Magnet Technology (offered every summer term) and Superconducting Power Systems (offered every winter term)

Competence Goal

- The students have a solid knowledge of architecture and design aspects of applications in magnets, windings and energy technology devices.
- For the most important magnet and power system applications the students can apply the state of the art and can reflect the main benefits.
- The students have a clear understanding of opportunities, benefits and limitations of superconducting components and devices.
- The students are able to perform the required design calculations and to solve fundamental design questions independently

Prerequisites

none
Content
As the materials become increasingly mature and powerful, using superconductivity in a variety of applications of electrical engineering is of rising interest and benefit, too. This module focuses on two aspects A) Superconducting Magnet Technology and B) Superconducting Power Systems.

A) Windings, coils and magnets may be used as a device by itself (providing high magnetic fields e.g. in MRI, NMR) or as components for Power Systems. This section will cover the following aspects:
- Unique selling points of superconducting windings.
- Basic approaches and tools to design superconducting windings.
- Discussion of winding architectures
- Criteria to design the appropriate operating temperatures, materials, conductors, cooling technology for the electromagnetic purpose.
- Limits and opportunities when preparing and operating superconducting windings.
- Measures for safe operation of superconducting magnets.
- High-Field Magnets
- Magnets for Fusion Technology
- 3D topologies (e.g. in dipol magnets or motors/ generators)
- As an example, the comprehensive design of a cryogen-free cooled, persistent mode operated 1 T-class HTS magnet.
- New options potentially offered by widespread use of hydrogen.

B) This section will provide an overview of the state of the art, will give an insight into the basic setup, the design, the characteristic parameters and the specific operation behaviour of the following applications:
- Power Transmission Cables and Lines
- Motors and Generators
- Transformers
- Fault Current Limiters
- Magnetic Energy Storage
- Basics of Cryo Technology

For each application a design example is shown and the focus is given on the conceptual design of each application.

The lecturers may change the details of the content without further announcement. Materials will be offered on ILIAS.

Recommendation
Having knowledge in „Superconducting Materials“ is beneficial.
Successful participation in „Superconductivity for Engineers“

Annotation
summer/winter term
SoSe: Superconducting Magnet Technology
WS: Superconducting Power Systems

Workload
1. Attendance in lectures, exercises: 80 h
2. Preparation and clean-up of 1.: 80 h
3. Preparation of and attendance in exam: 45 h
Module: Superconductors for Energy Applications [M-ETIT-105299]

Responsible: apl. Prof. Dr. Francesco Grilli

Organisation:
- KIT Department of Chemical and Process Engineering
- KIT Department of Electrical Engineering and Information Technology
- KIT Department of Mechanical Engineering

Part of: Specialization in Mechatronics (Supplementary Modules)

Credits
- **Grading scale:** Grade to a tenth
- **Recurrence:** Each summer term
- **Duration:** 1 term
- **Language:** English
- **Level:** 3
- **Version:** 1

| Mandatory | T-ETIT-110788 | Superconductors for Energy Applications | 5 CR | Grilli |

Competence Certificate
Written exam approx. 90 minutes.

Competence Goal
The students acquire a good knowledge of physical properties of superconductors including those currently employed in energy applications (niobium-based superconductors, cuprates, MgB2) and also promising recently discovered ones (pnictides).

The students have a thorough understanding of the wide range of superconducting energy applications (magnets, cables, fault current limiters, motors, transformers, etc.). They can discuss the advantages they offer with respect to their conventional counterparts; they can also define the scientific and technical challenges involved in those applications.

With the practical exercise, the students learn to use different software packages (Matlab, Comsol Multiphysics) and to model the electromagnetic and thermal behavior of superconducting wires and applications.

The students are able to talk about topic-related aspects in English using the technical terminology of the field of study.

Module grade calculation
The module grade is the grade of the written exam.

Prerequisites
A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.

The module superconducting materials for energy applications must not be taken.

Content
Superconductivity is one of the most important discoveries in physics in the twentieth century and has just celebrated its 100th birthday. Investigating the origins of the universe in particle accelerators or having detailed images of the human body with MRI would be impossible without employing technology based on superconductors. The near future will see superconductors enter our everyday life even more deeply, in the form of cables powering our cities, fault current limiters protecting our electric grids, and super-fast levitating trains reducing dramatically travel times.

The lecture provides an introduction to superconductivity with an overview of its main features and of the theories developed to explain it. Superconducting materials and their properties will be presented, especially materials currently employed in energy applications (niobium-based superconductors, uprates, MgB2) and promising recently discovered ones (pnictides). The wide range of superconducting energy applications (magnets, cables, fault current limiters, motors, transformers, etc.) will be covered as well as the advantages they offer with respect to their conventional counterparts.

The practical exercises are based on using numerical models (e.g. finite-element method or network approach) to investigate the electromagnetic and thermal behavior of superconducting wires and applications such as cables and magnets.
Workload
Each credit point (LP) corresponds to approximately 25-30 hours of work (by the student). This is based on the average student who achieves an average performance.

The workload in hours is broken down as follows:
1. Presence time in lectures, exercises 32 h
2. Preparation / Post-processing of the same 30 h
3. Exam preparation and presence in the same 70 h
Module: System Dynamics and Control Engineering [M-ETIT-102181]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Fundamentals

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101921</td>
<td>System Dynamics and Control Engineering</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites

none
Module: Technical Design in Product Development [M-MACH-105318]

Responsible: Prof. Dr.-Ing. Albert Albers
Organisation: KIT Department of Mechanical Engineering
Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-MACH-105361</th>
<th>Technical Design in Product Development</th>
<th>4 CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Albers, Matthiesen, Schmid</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination; duration approx. 1h

Competence Goal
The students:

• acquire and possess sound design skills for use at the interface between engineer and designer.
• master all relevant human-product requirements, such as demographic/geographic and psychographic characteristics, relevant modes of perception, typical recognition contents as well as ergonomic basics.
• have a command of the procedure for designing a product, product range or product system from the structure, through form, colour and graphic design within the phases of the design process.
• have a command of the functional and structural design as well as the important human-machine interface of interface design, have knowledge of the essential parameters of a good corporate design.

Module grade calculation
The module grade is composed of:
1. Grade of the written examination (100%)

Prerequisites
None

Content
Value relevant parameters of the technical design
Basics Interface Design
Macroergonomics: Planning and concept phase
Microergonomics: Concept and design phase
Microergonomics: development phase
Best practice

Annotation
After attending the module, students will have the knowledge of the essential fundamentals of technically oriented design, as an integral part of methodical product development.

Workload
1. Time of presence lecture: 21 h
2. Prepare/follow-up lecture exam preparation: 99 h
Total: 120 h = 4 LP

Learning type
Tutorial.
Media:
• Beamer
• Models
Literature
Markus Schmid, Thomas Maier
Technisches Interface Design
Anforderungen, Bewertung, Gestaltung.
2017
Hartmut Seeger
Design technischer Produkte, Produktprogramme und -systeme
Industrial Design Engineering.
2., bearb. und erweiterte Auflage.
ISBN: 3540236538
September 2005 - gebunden - 396 Seiten
Module: Technical Thermodynamics and Heat Transfer I [M-MACH-102386]

Responsible: Prof. Dr. Ulrich Maas

Organisation: KIT Department of Mechanical Engineering

Part of:
- Specialization in Mechatronics (Compulsary Elective Modules: Mechanical Engineering)
- Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
- Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104747</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>8 CR</td>
<td>Maas</td>
<td>8 CR</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105204</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer I</td>
<td>0 CR</td>
<td>Maas</td>
<td>0 CR</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This item will not influence the grade calculation of this parent.

Competence Certificate

Prerequisite: attestation each semester by homework assignments

Written exam, graded, approx. 3 hours

Competence Goal

The students acquire the competency to master the fundamentals of thermodynamics and the ability to apply the knowledge in problem-solving in various branches of mechanical engineering and especially in the Energy Technology sector.

An integral part of the model is that students can define the fundamental laws of thermodynamics and their application. The students are competent in describing and comparing the main processes in energy conversion that are important in mechanical engineering. Using tools also applied in industry, they are capable of analyzing and rating the efficiency of processes. The students are capable of discussing the thermodynamic correlation of ideal gas mixtures, real gases and of humid air as well explaining the properties on a molecular basis and analyzing them with the help of the laws of thermodynamics.

Module grade calculation

Grade of the written exam

Prerequisites

None

Content

- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Annotation

For the Bachelor's program Mechanical Engineering the module (including all brick details, exams and courses) is offered in German.

For the Bachelor's program Mechanical Engineering (International) the module (including all brick details, exams and courses) is offered in English.

Workload

lectures and exercises: 75 h
homework and preparation of examination: 165 h

Learning type

Lecture
Exercise course
Tutorial
Module: Technical Thermodynamics and Heat Transfer II (7) [M-MACH-102830]

Responsible: Prof. Dr. Ulrich Maas

Organisation: KIT Department of Mechanical Engineering

Part of: Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-MACH-105287</th>
<th>Technical Thermodynamics and Heat Transfer II</th>
<th>7 CR</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105288</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer II</td>
<td>0 CR</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisite: attestation each semester by homework assignments

Written exam, graded, approx. 3 hours

Competence Goal

The students acquire the competency to master the fundamentals of thermodynamics and the ability to apply the knowledge a problem-solving in various branches of mechanical engineering and especially in the Energy Technology sector.

An integral part of the model is that students can define the fundamental laws of thermodynamics and their application. The students are competent in describing and comparing the main processes in energy conversion that are important in mechanical engineering. Using tools also applied in industry, they are capable of analyzing and rating the efficiency of processes. The students are capable of discussing the thermodynamic correlation of ideal gas mixtures, real gases and of humid air as well explaining the properties on a molecular basis and analyzing them with the help of the laws of thermodynamic. Furthermore, the students are capable of explaining chemical reactions in the context of thermodynamics as well as defining and applying the heat transfer mechanisms.

Module grade calculation

weight according to CP

Prerequisites

None

Content

- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

Recommendation

Technical Thermodynamics and Heat Transfer I

Workload

lectures and exercises: 60 h

homework and preparation of examination: 150 h

Learning type

Lecture

Exercise course

Tutorial
Module: Theory of Probability [M-ETIT-102104]

Responsible: Dr.-Ing. Holger Jäkel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology, Mechanical Engineering, Informatics, Economics and Management)
Specialization in Mechatronics (Supplementary Modules)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101952 | Theory of Probability | 5 CR | Jäkel |

Competence Certificate
Type of examination: written exam. Duration of examination: approx. 120 minutes.

Prerequisites
none
7 MODULES

Module: Theory of Probability/Communication Engineering I [M-ETIT-105646]

Responsible: Dr.-Ing. Holger Jäkel
Prof. Dr.-Ing. Laurent Schmalen

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Specialization in Mechatronics (Compulsary Elective Modules: Electrical Engineering and Information Technology)

Credits 11
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 3
Version 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101952</td>
<td>Theory of Probability</td>
<td>5</td>
<td>CR</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-ETIT-101936</td>
<td>Communication Engineering I</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

1. Theory of Probability:
 Type of examination: written exam. Duration of examination: approx. 120 minutes

2. Communication Engineering I:
 Type of examination: written exam. Duration of examination: approx. 180 minutes

Prerequisites

none
Module: Thermal Solar Energy [M-MACH-102388]

Responsible: Prof. Dr. Robert Stieglitz
Organisation: KIT Department of Mechanical Engineering

Part of: Master Transfer Account

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105225</td>
<td>Thermal Solar Energy</td>
<td>4</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
A performance assessment is obligatory; oral exam about 30 minutes

Competence Goal
Based on the elaboration of the basic physics knowledge of the solar irradiation, heat radiation, optics and thermal-hydraulics, the student will be able to

- select solar thermal components such as mirrors, glasses, selective absorbers and insulation materials and their manufacturing processes and to calculate and assess their performance,
- identify different collector types and to indicate their potential field of application,
- characterize the entire solar thermal collector system with respect to its performance and derive from the collector characteristics its suitability for different types of use,
- embed collectors into a technical overall system for heat (household, process heat, heat storage networks) or electricity generation (power plant), to calculate the system efficiency and independently develop the basics of its optimization.
- identify adequate thermal storage types for the temporal separation of generation and consumption, to dimension them appropriately and to integrate them into a system concept,
- evaluate solar thermal systems in their entirety (capacity, estimation of system dynamics, response behavior, efficiency) and know options for integration into networks (heat, cold, electricity).

Prerequisites
none

Content
Fundamentals of thermal solar energy from solar irradiation (influence of time and place, modifications in the atmosphere) and their implementation in a collector to integration into a technical overall system. In detail:

1. introduction to the energy demand and evaluation of the application potential of solar thermal energy.
2. primary energy source SUN: Sun, solar constant, solar radiation (scattering, absorption in the atmosphere, direct-diffuse radiation, angular influences, radiation balance).
3. solar collectors: basic design of a collector, basics of determining the efficiency, significance of concentration and its limitations, solar thermal collector types (designs, efficiency, system technology).
5. momentum and heat transport: basic equations of single- and multi-phase transport, basic ideas of local and system engineering calculation methods, stability limits.

Optional

6. solar thermal low-temperature systems: collector variants, methods for system simulation, planning and dimensioning of systems, system-related system design and stagnation scenarios and their handling.
7. solar thermal high-temperature systems: solar thermal power plants (classification of system components, loss mechanisms, upwind power plants), coupling of collector with energy generation process.

At the end:

8. Thermal energy storage: Explanation of terms (energy contents, storage forms and materials, potentials ...), storage concepts (system structure, design ratio), system integration.
Recommendation
desirable are reliable knowledge in physics in optics and thermodynamics
Basics in heat and mass transfer, material science, energy technology and fluid mechanics

Workload
regular lecture attendance: 30 h
self-study: 60 h (incl. supplementary searches)
exam preparation 30 h

Learning type
Präsentation complemented by printouts

Literature
supply of lecture material in printed and electronic form
Stieglitz & Heinzel; Thermische Solarenergie -Grundlagen-Technologie- Anwendungen. Springer Vieweg Verlag. 711 Seiten.
ISBN 978-3-642-29474-7
Competence Certificate
Written exam; Duration approx. 90 min

Competence Goal
Students learn that lightweight design is a process of realizing a demanded function by using the smallest possible mass. They understand lightweight construction as a complex optimization problem with multiple boundary conditions, involving competences from methods, materials and production.

Students learn the established lightweight strategies and ways of construction. They know the metallic materials used in lightweight construction and understand the relation between material and vehicle body.

Prerequisites
none

Content
- **Strategies in lightweight design**
- Shape optimization, light weight materials, multi-materials and concepts for lightweight design
- **Construction methods**
- Differential, integral, sandwich, modular, bionic
- **body construction**
- Shell, space-frame, monocoque
- **metallic materials**
- Steel, aluminium, magnesium, titan

Workload
1. Attendance of lectures: 21 h
2. Preparation and attendance of examination: 99 h
Total: 120 h = 4 LP

Learning type
Lecture

Literature
Module: Virtual Engineering 1 [M-MACH-105293]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: Part of: Master Transfer Account

Credits 4 Grading scale Grade to a tenth Recurrence Each winter term Duration 1 term Language English Level 4 Version 1

Mandatory
T-MACH-102123 Virtual Engineering I 4 CR Ovtcharova

Competence Certificate
Written exam, graded, 90 min.

Competence Goal
After successful attendance of the course, students can:

- conceptualize complex systems with the methods of virtual engineering and continue the product development in different domains.
- model the digital product with regard to planning, design, manufacturing, assembly and maintenance.
- use validation systems to validate product and production in an exemplary manner.
- Describe AI methods along the product creation process.

Module grade calculation
Examination result "Virtual Engineering 1" 100%

Content

- Conception of the product (system approaches, requirements, definitions, structure)
- Generation of domain-specific product data (CAD, ECAD, software, ...) and AI methods
- Validation of product properties and production processes through simulation
- Digital twin for optimization of products and processes using AI methods

Recommendation
None

Workload
120 h

Learning type
Lecture and exercises

Literature
Lecture slides
7.171 Module: Wearable Robotic Technologies [M-INFO-103294]

| Responsible | Prof. Dr.-Ing. Tamim Asfour
| | Prof. Dr.-Ing. Michael Beigl |
| Organisation | KIT Department of Informatics |
| Part of | Specialization in Mechatronics (Supplementary Modules)
| | Master Transfer Account |

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-106557 | Wearable Robotic Technologies | 4 CR | Asfour, Beigl |

Competence Goal

The students have received fundamental knowledge about wearable robotic technologies and understand the requirements for the design, the interface to the human body and the control of wearable robots. They are able to describe methods for modelling the human neuromusculoskeletal system, the mechatronic design, fabrication and composition of interfaces to the human body. The students understand the symbiotic human–machine interaction as a core topic of Anthropomatics and have knowledge of state of the art examples of exoskeletons, orthoses and prostheses.

Content

The lecture starts with an overview of wearable robot technologies (exoskeletons, prostheses and orthoses) and its potentials, followed by the basics of wearable robotics. In addition to different approaches to the design of wearable robots and their related actuator and sensor technology, the lecture focuses on modeling the neuromusculoskeletal system of the human body and the physical and cognitive human-robot interaction for tightly coupled hybrid human-robot systems. Examples of current research and various applications of lower, upper and full body exoskeletons as well as prostheses are presented.
8 Courses

8.1 Course: Accessibility - Assistive Technologies for Visually Impaired Persons

[T-INFO-101301]

Responsible: Prof. Dr.-Ing. Rainer Stiefelhagen

Organisation: KIT Department of Informatics

Part of: M-INFO-100764 - Accessibility - Assistive Technologies for Visually Impaired Persons

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2400052</td>
<td>Accessibility - Assistive Technologies for Visually Impaired Persons</td>
<td>2 SWS</td>
<td>Lecture / 🖥️</td>
<td>Stiefelhagen, Schwarz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500007</td>
<td>Accessibility - Assistive Technologies for Visually Impaired Persons</td>
<td></td>
<td></td>
<td>Stiefelhagen</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500038</td>
<td>Accessibility - Assistive Technologies for Visually Impaired Persons</td>
<td></td>
<td></td>
<td>Stiefelhagen</td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Accessibility - Assistive Technologies for Visually Impaired Persons

2400052, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

According to the World Health Organization there are 285 million visually impaired persons worldwide, of which 39 million are blind and 246 million have low vision. The partial or full loss of sight leads to a number of challenges that visually impaired persons have to face. These include difficulties in mobility and navigation in unknown terrain, missing information in social interaction or handling and finding of objects in daily live.

There are already several technical aids available to support blind and visually impaired persons. So digitized texts can be made accessible by sound output or Braille display. There are also various tools which are especially designed for blind persons such as ‘speaking’ clocks or pocket calculators. However, the most important technical aid by far to improve mobility is the white cane. Although a number of electronic aids to detect obstacles and to support orientation have been developed over the last years they only offer reduced functionality for a relatively high price and are therefore rarely used.

The lecture will give an overview about IT-based assistive technology (AT) for people with visual impairments. It covers the following topics:

- Information about visual impairments and their impact
- Existing assistive technology for various application areas
- AT to access information content
- Designing barrier-free software & websites
- Possibilities and ongoing research in using computer vision methods to develop novel AT for the visually impaired, e.g. to support mobility, and content access among other things.
8.2 Course: Actuators and Sensors in Nanotechnology [T-MACH-105238]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102698 - Actuators and Sensors in Nanotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2141866</td>
<td>Actuators and sensors in nanotechnology</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Module Code</th>
<th>Title</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105238</td>
<td>Actuators and Sensors in Nanotechnology</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam

Prerequisites
none

Below you will find excerpts from events related to this course:

Actuators and sensors in nanotechnology

<table>
<thead>
<tr>
<th>Event</th>
<th>Module Code</th>
<th>Title</th>
<th>Type</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2141866, WS 21/22, 2 SWS, Language: German, Open in study portal</td>
<td>Lecture (V)</td>
<td></td>
</tr>
</tbody>
</table>
8 COURSES

Course: Advanced Mathematics I [T-MATH-100275]

8.3 Course: Advanced Mathematics I [T-MATH-100275]

| Responsible: | PD Dr. Tilo Arens
| | Prof. Dr. Roland Griesmaier
	PD Dr. Frank Hettlich
Organisation:	KIT Department of Mathematics
Part of:	M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4 SWS</td>
<td>Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td>Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>6700025</td>
<td>Advanced Mathematics I</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A "pass" result on the pre-requesite in AM I is a requirement for registration for the examination in AM I.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100525 - Tutorial Advanced Mathematics I must have been passed.
8.4 Course: Advanced Mathematics II [T-MATH-100276]

 Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

 Organisation: KIT Department of Mathematics

 Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

 Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Module title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 0180800</td>
<td>4 SWS</td>
<td>Lecture / 🖥</td>
<td>Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>Hettlich</td>
</tr>
<tr>
<td>ST 2021 0181000</td>
<td>4 SWS</td>
<td>Lecture / 🖥</td>
<td>Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

 Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Module title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 6700001</td>
<td>Advanced Mathematics II</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

 Prerequisites
A "pass" result on the pre-requisite in AM II is a requirement for registration for the examination in AM II.

 Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100526 - Tutorial Advanced Mathematics II must have been passed.
8.5 Course: Advanced Mathematics III [T-MATH-100277]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>0131400</td>
<td>Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>6700002</td>
<td>Advanced Mathematics III</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites

A "pass" result on the pre-requisite in AM III is a requirement for registration for the examination in AM III.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MATH-100527 - Tutorial Advanced Mathematics III must have been passed.
8.6 Course: Algorithms I [T-INFO-100001]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: M-INFO-100030 - Algorithms I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>24500</td>
<td>Algorithms I</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Dachsbacher, Kleine Büning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Code</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500194</td>
<td>Algorithms I</td>
<td>Dachsbacher</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500281</td>
<td>Algorithms I</td>
<td>Dachsbacher</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
8.7 Course: Antennas and Multiple Antenna Systems [T-ETIT-106491]

Responsible: Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100565 - Antennas and Multiple Antenna Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Hours</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2308416</td>
<td>Antennas and Multiple Antenna Systems</td>
<td>Lecture</td>
<td>3 SWS</td>
<td>Zwick</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2308417</td>
<td>Workshop for 2308416 Antennas and Multiple Antenna Systems</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Kretschmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7308416</td>
<td>Antennas and Multiple Antenna Systems</td>
</tr>
</tbody>
</table>

Prerequisites

T-ETIT-100638 - Antennen und Mehrantennensysteme wurde weder begonnen, noch abgeschlossen.

Das Modul "Antennen und Antennensysteme" darf nichtbegonnen oder abgeschlossen sein.
Course: Appliance and Power Tool Design [T-MACH-105229]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102705 - Appliance and Power Tool Design

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Name</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Appliance and Power Tool Design</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Lecture / 🖥️</td>
<td>Matthiesen</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Appliance and Power Tool Design Project Work</td>
<td>1 SWS</td>
<td>Project</td>
<td>Project (P / 🖥️)</td>
<td>Matthiesen, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Name</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Appliance and Power Tool Design Project Work</td>
<td>1 SWS</td>
<td>Project (P)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗑 On-Site, 🆕 Cancelled

Competence Certificate

Oral examination (20 min)

Prerequisites

The participation in "Appliance and power tool design" requires the concurrent project work.

Due to organizational reasons, the number of participants is limited. At the beginning of August, a registration form will be available at the IPEK website. In the case of too many applicants, a selection process will be taking place. An early application is advantageous.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110767 - Appliance and Power Tool Design Project Work must have been started.

Below you will find excerpts from events related to this course:

Appliance and Power Tool Design

2145164, SS 2021, 3 SWS, Language: German, [Open in study portal](#)

Lecture (V) Online

Organizational issues

Mündliche Prüfung

Prüfungsdauer: 30 min

Hilfsmittel: keine

Gemeinsame Prüfung von Vorlesung und Projektarbeit.

Appliance and Power Tool Design Project Work

2145165, SS 2021, 1 SWS, [Open in study portal](#)

Project (PRO) Online

Organizational issues

Weitere Informationen werden zum Vorlesungsbeginn über Ilias und die IPEK-Homepage bekannt gegeben.
8.9 Course: Appliance and Power Tool Design Project Work [T-MACH-110767]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102705 - Appliance and Power Tool Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>Exam Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2145165</td>
<td>Appliance and Power Tool Design Project Work</td>
<td>1</td>
<td>Project (P)</td>
<td>Matthiesen, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Code</th>
<th>Course Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-110767</td>
<td>Appliance and Power Tool Design Project Work</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Presentation of performed project and defense (30min) according to §4 (2), No. 3 of the examination regulation

Annotation
The participation in the project work requires the participation in "Appliance and power tool design". Due to organizational reasons, the number of participants is limited. At the beginning of August, a registration form will be available at the IPEK website. In the case of too many applicants, a selection process will be taking place. An early application is advantageous.

Below you will find excerpts from events related to this course:

Appliance and Power Tool Design Project Work
2145165, SS 2021, 1 SWS, Open in study portal

Organizational issues
Weitere Informationen werden zum Vorlesungsbeginn über Ilias und die IPEK-Homepage bekannt gegeben.
8.10 Course: Automated Manufacturing Systems [T-MACH-108844]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105108 - Automated Manufacturing Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>2150904</th>
<th>Automated Manufacturing Systems</th>
<th>6 SWS</th>
<th>Lecture / Practice (VÜ) / Fleischer</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>76-T-MACH-108844</th>
<th>Automated Manufacturing Systems</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Competence Certificate

oral exam (40 minutes)

Prerequisites

"T-MACH-102162 - Automatisierte Produktionsanlagen" must not be commenced.

Below you will find excerpts from events related to this course:

Automated Manufacturing Systems

2150904, SS 2021, 6 SWS, Language: German, [Open in study portal](#)
Content
The lecture provides an overview of the structure and functioning of automated manufacturing systems. In the introduction chapter the basic elements for the realization of automated manufacturing systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- Quality assurance in automated manufacturing
- automatic machines, cells, centers and systems for manufacturing and assembly
- structures of multi-machine systems
- planning of automated manufacturing systems

An interdisciplinary view of these subareas enables Industry 4.0 solutions.
In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components (chassis and drive technology). The analysis of automated manufacturing systems for manufacturing of defined components is also included.
In the field of vehicle power train both, the automated manufacturing process for the production of the conventional internal-combustion engine and the automated manufacturing process for the production of the prospective electric power train (electric motor and battery) are considered. In the field of car body, the focus is on the analysis of the process chain for the automated manufacturing of conventional sheet metal body parts, as well as for automated manufacturing of body components made out of fiber-reinforced plastics.
Within tutorials, the contents from the lecture are advanced and applied to specific problems and tasks.

Learning Outcomes:
The students …

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: “Handling Technology”, “Industrial Robotics”, “Sensory” and “Controls”.
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues
Vorlesungstermine dienstags 8.00 Uhr und donnerstags 8.00 Uhr, Übungstermine donnerstags 9.45 Uhr.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.11 Course: Automated Visual Inspection and Image Processing [T-INFO-101363]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: M-INFO-100826 - Automated Visual Inspection and Image Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>24169</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Beyerer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500003</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>Beyerer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500008</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>Beyerer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Automated Visual Inspection and Image Processing

24169, WS 21/22, 4 SWS, Language: German, Open in study portal

Lecture (V)

Content

Topics covered:

- sensors and concepts for image acquisition
- light and colour
- image signals (system theory, Fourier transformation, stochastic processes)
- excursion to wave optics
- pre-processing and image enhancement
- image restoration
- segmentation
- morphological image processing
- texture analysis
- detection
- image pyramids, multi-scale analysis and wavelet-transform

Educational objective:

- Students have a sound knowledge regarding the basic concepts and methods of image processing (pre-processing and image enhancement, image restoration, image segmentation, morphological filtering, texture analysis, detection, image pyramids, multi-scale analysis and the wavelet transform)
- Students are in the position to work out and to evaluate solution concepts for problems of automated visual inspection
- Students have a sound knowledge of the different sensors and methods for the acquisition of image data as well as of the relevant optical principles
- Students know different concepts to describe image data and they know the essential system theoretical concepts and interrelations

Organizational issues

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Empfehlungen:

Grundkenntnisse der Optik und der Signalverarbeitung sind hilfreich.

Literature

Weiterführende Literatur

8.12 Course: Automotive Engineering I [T-MACH-100092]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100501 - Automotive Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4 SWS</td>
<td>Lecture / 🗣️</td>
<td>Gauterin, Unrau</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4 SWS</td>
<td>Lecture / 🗣️</td>
<td>Gauterin, Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4 SWS</td>
<td>Automotive Engineering</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4 SWS</td>
<td>Automotive Engineering</td>
<td>Unrau, Gauterin</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination

Duration: 120 minutes

Auxiliary means: none

Prerequisites

The brick "T-MACH-102203 - Automotive Engineering I" is not started or finished. The bricks "T-MACH-100092 - Grundlagen der Fahrzeugtechnik I" and "T-MACH-102203 - Automotive Engineering I" can not be combined.

Below you will find excerpts from events related to this course:

Content

1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performance, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:

The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

Organizational issues

Kann nicht mit der Veranstaltung [2113809] kombiniert werden. Can not be combined with lecture [2113809].
Literature

Automotive Engineering I
2113809, WS 21/22, 4 SWS, Language: English, Open in study portal

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

Organizational issues
Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literature
8.13 Course: Automotive Engineering II [T-MACH-102117]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100502 - Automotive Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2114835</td>
<td>2 SWS</td>
<td>Automotive Engineering II</td>
<td>Unrau</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2114855</td>
<td>2 SWS</td>
<td>Automotive Engineering II</td>
<td>Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 76-T-MACH-102117</td>
<td>2 SWS</td>
<td>Automotive Engineering II</td>
<td>Unrau, Gauterin</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 76-T-MACH-102117</td>
<td>2 SWS</td>
<td>Automotive Engineering II</td>
<td>Unrau, Gauterin</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 76T-MACH-102117-2</td>
<td></td>
<td>Automotive Engineering II</td>
<td>Gauterin, Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🔍 On-Site, ❌ Cancelled

Competence Certificate

Written Examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Automotive Engineering II
2114835, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of designs

Learning Objectives:

The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Organizational issues

Kann nicht mit der Veranstaltung [2114855] kombiniert werden.
Can not be combined with lecture [2114855]
Literature

Automotive Engineering II
2114855, SS 2021, 2 SWS, Language: English, Open in study portal

Content
1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of the designs

Learning Objectives:
The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Literature
Elective literature:
8.14 Course: Automotive Vision [T-MACH-105218]

Responsible:
Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-102693 - Automotive Vision

Type
Written examination

Credits
6

Grading scale
Grade to a third

Recurrence
Each summer term

Version
2

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>2138340</th>
<th>Automotive Vision</th>
<th>3 SWS</th>
<th>Lecture</th>
<th>Lauer, Peter</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>76-T-MACH-105218</th>
<th>Automotive Vision</th>
<th>Stiller, Lauer</th>
</tr>
</thead>
</table>

Legend: 🌐 Online, 🏛 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled

Competence Certificate

Type of Examination: written exam

Duration of Examination: 60 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Automotive Vision

ST 2021, SS 2021, 3 SWS, Language: English, Open in study portal

Content

Lernziele (EN):
Machine perception and interpretation of the environment for the basis for the generation of intelligent behaviour. Especially visual perception opens the door to novel automotive applications. First driver assistance systems can already improve safety, comfort and efficiency in vehicles. Yet, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on ‘seeing vehicles’. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

Lehrinhalt (EN):
1. Driver assistance systems
2. Binocular vision
3. Feature point methods
4. Optical flow/tracking in images
5. Tracking and state estimation
6. Self-localization and mapping
7. Lane recognition
8. Behavior recognition

Nachweis: Written examination 60 minutes

Arbeitsaufwand (EN): 120 hours

Literature
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
8.15 Course: Bachelor Thesis [T-MACH-108800]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104262 - Bachelor Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>12</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The bachelor’s thesis is designed to show that the student is able to deal with a problem of his/her subject area in an independent manner and within the given period of time using scientific methods.

The scope of the bachelor thesis corresponds to 12 ECTS. The maximal processing time of the bachelor thesis takes 6 months. The examination board defines the languages the thesis has to be written in. The date of issue of the subject has to be fixed by the supervisor and the student and to be put on record at the examination board. The subject of the bachelor thesis may be only returned once and only within the first month of processing time.

On a reasoned request of the student, the examination board can extend the processing time by up to one month. If the bachelor thesis is not completed in time, this examination is "failed" (5,0), unless the student is not responsible.

The bachelor thesis is to be evaluated by not less than a professor or a senior scientist according to § 14 Abs. 3 Ziff. 1 KITG and another examiner. Generally, one of the two examiners is the person who has assigned the thesis. If the examiners do not agree, the bachelor thesis is graded by the examination board within this assessment; another expert can be appointed too. The bachelor thesis has to be graded within a period of six weeks after the submission.

Prerequisites
The requirement for admission to the bachelor's thesis module are 120 ECTS. As to exceptions, the examination board decides on a request of the student.

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 120 credits in the following fields:
 - Internship
 - Engineering Fundamentals
 - Interdisciplinary Qualifications
 - Specialization in Mechatronics

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 6 months
- **Maximum extension period**: 1 months
- **Correction period**: 6 weeks

This thesis requires confirmation by the examination office.
8.16 Course: Basic Electronic Circuits Laboratory [T-ETIT-101943]

Responsible: Dr.-Ing. Armin Teltschik
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102113 - Basic Electronic Circuits Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (oral)</td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Description</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7301084</td>
<td>Basic Electronic Circuits Laboratory</td>
<td>Teltschik</td>
</tr>
</tbody>
</table>

Competence Certificate

The success control takes place in the form of an oral final colloquium of 20 minutes duration and during the internship by checking the completed test tasks.

To participate in the final colloquium, at least 8 of the 9 attempts must be successfully completed. The successfully carried out experiments together with the final colloquium form an examination unit. If you fail, the internship must be repeated completely.

The event is not graded.

Prerequisites

non

Recommendation

The course "Digital Technology" (23615) and "Electronic Circuits" (23655) must have been heard beforehand or otherwise knowledge of the content of the above. LV must have been acquired.

Annotation

To participate in the final colloquium, at least 8 of the 9 attempts must be successfully completed. The successfully carried out experiments together with the final colloquium form an examination unit. If you fail, the internship must be repeated completely.
8.17 Course: Basics of Manufacturing Technology [T-MACH-105219]

- **Responsible:** Prof. Dr.-Ing. Volker Schulze
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-102549 - Manufacturing Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2149658</td>
<td>Basics of Manufacturing Technology</td>
<td>2 SWS</td>
<td>Lecture / Practice (/)</td>
<td>Schulze, Gerstenmeyer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105219</td>
<td>Basics of Manufacturing Technology</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Competence Certificate

- **written exam** (duration: 60 min)

Prerequisites

- none

Below you will find excerpts from events related to this course:

- **Basics of Manufacturing Technology**
 - Course Code: 2149658, WS 21/22, 2 SWS, Language: German, Open in study portal
 - Lecture / Practice (VÜ) Blended (On-Site/Online)
Content
The objective of the lecture is to classify the manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to establish basic process knowledge of the common processes. The lecture conveys the basic principles of manufacturing technology and deals with the manufacturing processes based on example components according to their classification into main groups regarding technical and economic aspects. Regard is paid to classic manufacturing processes as well as new developments like additive manufacturing processes.

The following topics will be covered:
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment

Learning Outcomes:
The students ...
- are able to classify the manufacturing processes by their general functionality according to the specific main groups (DIN 8580).
- have the ability to declare and explain the function of the significant manufacturing processes of the main groups (DIN 8580).
- are enabled to describe the characteristic process features (geometry, materials, accuracy, tools, machines) of the significant manufacturing processes of the main groups (DIN 8580).
- have the ability to derive the relevant process specific technical advantages and disadvantages of the characteristic process features.
- are enabled to perform a selection of suitable manufacturing processes for given components.
- are enabled to classify the required manufacturing processes in the expiry of a process chain for the production of given sample products.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Start: 20.10.2021

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
8.18 Course: Basics of Technical Logistics I [T-MACH-109919]

Responsible: Dr.-Ing. Martin Mittwollen
Jan Oellerich

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
- M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2
- M-MACH-105283 - Basics of Technical Logistics I

Type
Written examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2117095 Basics of Technical Logistics</th>
<th>3 SWS</th>
<th>Lecture / Practice (/)</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>76-T-MACH-109919 Basics of Technical Logistics I</th>
<th>3 SWS</th>
<th>Lecturer / Practice (/)</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td></td>
<td></td>
<td>Mitwollen</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-109919-mPr Basics of Technical Logistics I</td>
<td></td>
<td>Mitwollen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge of the basics of technical mechanics preconditioned.

Below you will find excerpts from events related to this course:

Basics of Technical Logistics
2117095, WS 21/22, 3 SWS, Language: German, [Open in study portal]

Lecture / Practice (VÜ)
Blended (On-Site/Online)

Content
- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

Students are able to:
- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines
- Model real machines applying knowledge from lessons and calculate their dimensions.
Organizational issues
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder mündlichen Prüfung (nach §4 (2), 1 bzw. 2SPO).
The assessment consists of a written or oral exam according to Section 4 (2), 1 or 2 of the examination regulation.
Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.
Basics knowledge of technical mechanics is preconditioned.
Ergänzungsblätter, Präsentationen, Tafel.
Supplementary sheets, presentations, blackboard.
Präsenz: 48 Std
Nacharbeit: 132 Std
presence: 48h
rework: 132h

Literature
Empfehlungen in der Vorlesung / Recommendations during lessons
8.19 Course: Battery Modeling in MATLAB [T-ETIT-106507]

Responsible: Dr.-Ing. Andre Weber
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-103271 - Battery Modeling in MATLAB

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 2304228</td>
<td>1 SWS</td>
<td>Lecture</td>
<td>Weber</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 2304229</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Weber</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7300017</td>
<td></td>
<td>Battery Modeling in MATLAB</td>
<td>Weber</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 7304228</td>
<td></td>
<td>Battery Modeling in MATLAB</td>
<td>Weber</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
8.20 Course: Biologically Inspired Robots [T-INFO-101351]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr.-Ing. Rüdiger Dillmann
Dr.-Ing. Arne Rönnau
Organisation: KIT Department of Informatics
Part of: M-INFO-100814 - Biologically Inspired Robots

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>24619</th>
<th>Biologisch Motivierte Robotersysteme</th>
<th>2 SWS</th>
<th>Lecture / 📱</th>
<th>Rönnau</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>7500237</th>
<th>Biologically Inspired Robot</th>
<th>Rönnau</th>
</tr>
</thead>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.21 Course: Biomedical Measurement Techniques I [T-ETIT-106492]

Responsible: Prof. Dr. Werner Nahm
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100387 - Biomedical Measurement Techniques I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Event Type</th>
<th>Type</th>
<th>Lecture</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2305269</td>
<td>Biomedical Measurement Techniques I</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nahm, Schaufelberger</td>
</tr>
</tbody>
</table>

Prerequisites
T-ETIT-101928 - Biomedizinische Messtechnik I darf weder begonnen noch abgeschlossen sein.
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I [T-MACH-100966]

Responsible: apl. Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100489 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine I

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Guber, Ahrens</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>76-T-MACH-100966</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Guber</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam (75 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I

Lecture (V)
Blended (On-Site/Online)

2141864, WS 21/22, 2 SWS, Language: German, Open in study portal

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
8.23 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II [T-MACH-100967]

Responsible: apl. Prof. Dr. Andreas Guber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100490 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2142883 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II | 2 SWS | Lecture / Online | Guber |

Exams

| ST 2021 | 76-T-MACH-100967 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II | Guber |

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🏛 On-Site, ❌ Cancelled

Competence Certificate

Written exam (75 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II

2142883, SS 2021, 2 SWS, Language: German, Open in study portal

Content

Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
- LabCD
- Protein Crystallisation
- Microarrrys
- Tissue Engineering
- Cell Chip Systems
- Drug Delivery Systems
- Micro reaction technology
- Microfluidic Cells for FTIR-Spectroscopy
- Microsystem Technology for Anesthesia, Intensive Care and Infusion
- Analysis Systems of Person’s Breath
- Neurobionics and Neuroprosthesis
- Nano Surgery

Organizational issues

Die Vorlesung findet im Sommersemester aufgrund der aktuellen Situation bis auf Weiteres online statt. Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Foliend in PDF-Format zur Verfügung gestellt.

Die Vorlesung wird voraussichtlich mit der Software ZOOM oder MS Teams zu den im Vorlesungsverzeichnis angekündigten Terminen (hier: Montag 11:30 - 13:00 Uhr) durchgeführt werden. Weitere Informationen werden sobald wie möglich via ILIAS zur Verfügung gestellt.

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

M. Madou
Fundamentals of Microfabrication
8 COURSES
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [T-MACH-100968]

8.24 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [T-MACH-100968]

Responsible: apl. Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-100491 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine III

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2142879</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Written exam (75 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III
2142879, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V)
Online

Content
Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology

NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Organizational issues
Die Vorlesung findet im Sommersemester aufgrund der aktuellen Situation bis auf Weiteres online statt. Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt. Die Vorlesung wird voraussichtlich mit der Software ZOOM oder MS Teams zu den im Vorlesungsverzeichnis angekündigten Terminen (hier: Montag: 14:00 - 15:30 Uhr) durchgeführt werden. Weitere Informationen werden sobald wie möglich via ILIAS zur Verfügung gestellt.

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

M. Madou
Fundamentals of Microfabrication
8.25 Course: BUS-Controls [T-MACH-102150]

Responsible: Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105286 - BUS-Controls

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2</td>
<td>BUS-Controls</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geimer, Metzger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2</td>
<td>BUS-Controls</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2</td>
<td>BUS-Controls</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108889 must have been passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-108889 - BUS-Controls - Advance must have been passed.

Recommendation
Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

The number of participants is limited. A registration is mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

Annotation
The students will get an overview of the theoretic and practical functioning of different bus systems.

After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system. Hereunto the students program in the practical orientated lessons IFM-controllers using the programming environment CoDeSys.

Content:

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Literature:

Below you will find excerpts from events related to this course:
Content

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

- regular attendance: 21 hours
- self-study: 92 hours

Literature

Weiterführende Literatur:

8.26 Course: BUS-Controls - Advance [T-MACH-108889]

Responsible: Kevin Daiß
Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105286 - BUS-Controls

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-108889</td>
<td>BUS-Controls - Advance</td>
<td>Geimer</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-108889</td>
<td>BUS-Controls - Advance</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate
Creation of control program

Prerequisites
none
8.27 Course: CAE-Workshop [T-MACH-105212]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102684 - CAE-Workshop
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>CAE-Workshop</td>
<td>3 SWS</td>
<td>Block / 📚</td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>CAE-Workshop</td>
<td>3 SWS</td>
<td>Block / 📚</td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Written test (with practical part on the computer), duration 60 min.

Prerequisites
None

Annotation
For a successful participation in the examination a continuous attendance at the workshop days is necessary. Limited number of participants. Selection is made according to a selection procedure.

Below you will find excerpts from events related to this course:

CAE-Workshop
2147175, SS 2021, 3 SWS, Language: German, [Open in study portal]

Content
Content:

- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:

- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Exam: 1h Regularly written

Regular attendance: 31.5 h
Self-study: 88.5 h

Organizational issues
Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht

Literature
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.
Content

Content:

- Introduction to the finite element analysis (FEA)
- Stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- Introduction to topology and shape optimization
- Creation and calculation of various optimization models with the Abaqus optimization package

The students are able to:

- name the purposes and limits of numerical simulation and optimization of the virtual product development.
- solve simple realistic tasks in the field of finite element analysis, multi-body-simulation and structure optimization with industrial common software (the content in winter and summer term is different).
- evaluate and to question the results of a simulation.
- identify and improve the mistakes of a simulation or optimization.

Exam: 1h Regularly written
Regular attendance: 31.5 h
Self-study: 88.5 h

Organizational issues
Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht

Literature
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.
8.28 Course: Channel Coding: Algebraic Methods for Communications and Storage [T-ETIT-111244]

Responsible: Prof. Dr.-Ing. Laurent Schmalen

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105616 - Channel Coding: Algebraic Methods for Communications and Storage

Type: Oral examination
Credits: 3
Grading scale: Grade to a third
Recurrence: Each summer term
Expansion: 1 terms
Version: 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2310546</td>
<td>Channel Coding: Algebraic Methods for Communications and Storage</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Schmalen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7310546-1</td>
<td>Channel Coding: Algebraic Methods for Communications and Storage</td>
<td>Schmalen</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7310546-2</td>
<td>Channel Coding: Algebraic Methods for Communications and Storage</td>
<td>Schmalen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The exam is held as an oral exam of 20 Min according to 4 Abs. 2 Nr. 1 SPO Bachelor/Master Elektrotechnik und Informationstechnik. Grade of the module corresponds to the grade of the oral exam.

Prerequisites

none

Recommendation

Previous attendance of the lectures "Communication Engineering I" and "Probability Theory" is recommended.
Course: Cognitive Systems [T-INFO-101356]

Responsible: Prof. Dr. Gerhard Neumann
Prof. Dr. Alexander Waibel

Organisation: KIT Department of Informatics

Part of: M-INFO-100819 - Cognitive Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2021</th>
<th>Kognitive Systeme</th>
<th>4 SWS</th>
<th>Lecture / Practice</th>
<th>Waibel, Stüker, Neumann</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>ST 2021</th>
<th>Cognitive Systems</th>
<th>Waibel, Neumann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7500157</td>
<td>Cognitive Systems Waibel/Neumann</td>
<td>Waibel, Neumann</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⏲️ Cancelled
8.30 Course: Communication Engineering I [T-ETIT-101936]

Responsible: Prof. Dr.-Ing. Laurent Schmalen
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-102103 - Communication Engineering I
- M-ETIT-105646 - Theory of Probability/Communication Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2310506</td>
<td>Communication Engineering I</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Schmalen</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2310508</td>
<td>Übungen zu 2310506 Nachrichtentechnik I</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Schmalen, Bansbach</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7310506</td>
<td>Communication Engineering I</td>
<td>Schmalen</td>
</tr>
</tbody>
</table>

Prerequisites

none
8.31 Course: Communications Engineering II [T-ETIT-100745]

Responsible: Dr.-Ing. Holger Jäkel

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100440 - Communications Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Event Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2310513</td>
<td>Tutorial for 2310511 Communications Engineering II</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
<td>Sturm</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Event Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7310511</td>
<td>Communications Engineering II</td>
<td></td>
<td></td>
<td>Jäkel</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled
8.32 Course: Complex Analysis and Integral Transformations [T-ETIT-109285]

Responsible: Dr.-Ing. Mathias Kluwe
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104534 - Complex Analysis and Integral Transformations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>2303190</th>
<th>Complex analysis and integral transformations</th>
<th>1 SWS</th>
<th>Lecture / 📏</th>
<th>Kluwe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2303191</td>
<td>Übungen zu 2303190 Komplexe Analysis und Integraltransformationen</td>
<td>1 SWS</td>
<td>Practice / 📏</td>
<td>Ye</td>
</tr>
</tbody>
</table>

Exams

| ST 2021 | 7303190 | Complex Analysis and Integral Transformations | Kluwe |

Legend: 📏 Online, 🔄 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
Course: Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies [T-MACH-105535]

Responsible: Prof. Dr.-Ing. Frank Henning
Organisation: KIT Department of Mechanical Engineering

Part of: M-ETIT-102734 - Materials

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105535</td>
<td>Composite Manufacturing - Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam 90 minutes

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-100531 - Systematic Materials Selection must not have been started.

Below you will find excerpts from events related to this course:

Composite Manufacturing – Polymers, Fibers, Semi-Finished Products, Manufacturing Technologies
2114053, SS 2021, 2 SWS, Language: German, Open in study portal
Content

Physical connections of fiber reinforcement

Use and examples
- Automotive construction
- Transport
- Energy and construction
- Sport and recreation

Resins
- Thermoplastics
- Duromeres

Mechanisms of reinforcements
- Glas fibers
- Carbon fibers
- Aramid fibers
- Natural fibers

Semi-finished products - textiles

Process technologies - preps

Recycling of composites

Aim of this lecture:
Students know different polymer resin materials and fiber materials and can deduce their character and use. They understand the reinforcing effect of fibers in a matrix surrounding as well as the tasks of the single components in a compound. They know about the influence of the length of fibers, their mechanical characters and performance in a polymer matrix compound.

Student know the important industrial production processes for continuous and discontinuous reinforced polymer matrix compounds.

Literature

Literatur Leichtbau II

[1-7]

8.34 Course: Computational Intelligence [T-MACH-105314]

Responsible:
apl. Prof. Dr. Ralf Mikut
Dr. Ines Reinartz
apl. Prof. Dr. Markus Reischl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105296 - Computational Intelligence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Mikut, Reischl, Reinartz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Mikut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Mikut</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔔 On-Site, ✗ Cancelled

Competence Certificate

Written exam (Duration: 1h)

Prerequisites

none

Below you will find excerpts from events related to this course:

Computational Intelligence

2105016, WS 21/22, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.

Content:

- Terms and definitions Computational Intelligence, application fields and examples
- Fuzzy logic: fuzzy sets; fuzzification and membership functions; inference: T-norms and -conorms, operators, aggregation, activation, accumulation; defuzzification methods, structures for fuzzy control
- Artificial Neural Nets: biology of neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
- Evolutionary Algorithms: Basic algorithm, Genetic Algorithms and Evolution Strategies, Evolutionary Algorithm GLEAM, integration of local search strategies, memetic algorithms, application examples
- deep learning

Learning objectives:

The students are able to apply the fundamental methods of computational intelligence (fuzzy logic, artificial neural networks, evolutionary algorithms, deep learning) efficiently. They know the basic mathematical foundations and are able to transfer these methods to practical applications.
Literature

Kroll, A. Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet)
8.35 Course: Computer Organization [T-INFO-103531]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-103179 - Computer Organization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>24502</td>
<td>Computer Organization</td>
<td>3 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Henkel, Bauer, Lehmann, Karl</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>24505</td>
<td>Übungen zu Rechnerorganisation</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice</td>
<td>Henkel, Lehmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500240</td>
<td>Computer Organization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Henkel</td>
<td></td>
</tr>
</tbody>
</table>
8.36 Course: Computer Vision for Human-Computer Interaction [T-INFO-101347]

Responsible: Prof. Dr.-Ing. Rainer Stiefelhagen

Organisation: KIT Department of Informatics

Part of: M-INFO-100810 - Computer Vision for Human-Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Period</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>24180</td>
<td>Computer Vision for Human-Computer Interaction</td>
<td>4</td>
<td>Lecture</td>
<td>Stiefelhagen, Sarfraz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Description</th>
<th>Type</th>
<th>Period</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500060</td>
<td>Computer Vision for Human-Computer Interaction</td>
<td>Lecture</td>
<td>Stiefelhagen</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500044</td>
<td>Computer Vision for Human-Computer Interaction</td>
<td>Lecture</td>
<td>Stiefelhagen</td>
<td></td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Computer Vision for Human-Computer Interaction

24180, WS 21/22, 4 SWS, Language: German, Open in study portal

Lecture (V)

Content

In this lecture current projects of the field of image processing will be presented which deal with the visual perception of persons re. human-computer interaction.

In respect of the individual topics we will discuss various methods and algorithms, their pros and cons and state of the art:

- Face detection and localisation
- Facial expression
- Assessment of head turns and viewing direction
- Person tracking and localisation
- Articulated body tracking
- Gesture recognition
- Audio-visual speech recognition
- Multi-camera environments
- Tools and libraries

The student acquires a basic understanding of computer vision topics within the context of human-computer interaction and learns how to apply them.

Organizational issues

findet im WS 2019/20 nicht statt!

Literature

Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema, werden auf der VL-Website bereitgestellt.
8.37 Course: Control of Linear Multivariable Systems [T-ETIT-100666]

Responsible: Dr.-Ing. Mathias Kluwe
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100374 - Control of Linear Multivariable Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2303177 Control of Linear Multivariable Systems</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Kluwe</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2303179 Control of Linear Multivariable Systems (Tutorial to 2303177)</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Jané Soneira</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7303177 Control of Linear Multivariable Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Success is checked as part of a written overall test (120 minutes) of the course.

Prerequisites
none

Recommendation
For a deeper understanding, basic knowledge of system dynamics and control technology is absolutely necessary, as taught in the ETIT Bachelor module "System Dynamics and Control Technology" M-ETIT-102181.
8.38 Course: Control Theory Laboratory [T-ETIT-111009]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105467 - Control Theory Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Block</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2303169</td>
<td>Control Theory Laboratory</td>
<td>4</td>
<td>Block</td>
<td>Hohmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7303156</td>
<td>Control Theory Laboratory</td>
<td>Hohmann</td>
</tr>
</tbody>
</table>

Prerequisites

none
8.39 Course: Cooperation in Interdisciplinary Teams [T-MACH-105699]

Responsible: Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104355 - Soft Skills

Type
- Completed coursework

Credits
- 2

Grading scale
- pass/fail

Recurrence
- Each winter term

Version
- 1

Events
<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>2145166</th>
<th>Cooperation in interdisciplinary teams</th>
<th>2 SWS</th>
<th>Practical course / Blended (On-Site/Online)</th>
<th>Matthiesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105699</td>
<td>Cooperation in interdisciplinary teams</td>
<td>Matthiesen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams
| WT 21/22 | 76-T-MACH-105699 | Cooperation in interdisciplinary teams | Matthiesen |

Legend: 🎷 Online, 🧩 Blended (On-Site/Online), 👥 On-Site, ✗ Cancelled

Competence Certificate
Accompanying the workshop, delivery services are required. In these the application of the knowledge of the students is examined.

Prerequisites
none

Below you will find excerpts from events related to this course:

Cooperation in interdisciplinary teams
| 2145166, WS 21/22, 2 SWS, Language: German, Open in study portal |
|---|---|
| Practical course (P) | Blended (On-Site/Online) |

Literature

8.40 Course: Decentrally Controlled Intralogistic Systems [T-MACH-105230]

Responsible: Prof. Dr.-Ing. Kai Furmans
Dr.-Ing. Maximilian Hochstein

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102687 - Decentrally Controlled Intralogistic Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2117084</td>
<td>Decentrally controlled intralogistic systems</td>
<td>2</td>
<td>Practical course / Online</td>
<td>Furmans, Sperling, Ries</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2117084</td>
<td>Decentrally controlled intralogistic systems</td>
<td>2</td>
<td>Practical course / On-Site</td>
<td>Furmans, Sperling, Ries</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105230</td>
<td>Decentrally Controlled Intralogistic Systems</td>
<td>2</td>
<td></td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Certificate by colloquium with presentation

Prerequisites
None

Below you will find excerpts from events related to this course:

Vehicle
Decentrally controlled intralogistic systems
2117084, SS 2021, 2 SWS, Language: German, Open in study portal

Practical course (P)
Online
Content

Requirements:
Duty of attendance

Recommendations:

Media:
Lego Mindstorms, PC

Teaching content:

- Introduction to intralogistic systems
- Development of a model of a decentralized logistics system
- Object-oriented programming of the control with LabView
- Implementation of the model in Mindstorms
- Presentation of work results

Note:
Limited number of participants (max. 15 students per group, under CORONA-conditions max. 8 students per group)
Selection is made according to a selection procedure
A passage in English language can be offered if required

Workload:
attendance time: 90 hours (workstation is provided)
Self-study: 30 hours

Educational goal:
The students can:

- name and explain the basics of intralogistic conveyor systems
- describe and explain communication types between decentralized systems
- apply the basics of project management in subsequent projects
- dealing with the graphical based software development environment LabView
- developing constructive solutions for mechanical problems
- applying the theory learned to a practical problem
- evaluate solutions developed through group discussions and presentations
- examination:

Examination:
Certificate by colloquium with lecture, documentation of work results and by fulfilling the attendance obligation

Organizational issues

Termine im SS21:
Gruppe 1 (Maximilian Ries) 23.08.2021 - 03.09.2021
Gruppe 2 (Marvin Sperling) 06.09.2021 - 17.09.2021

Corona-bedingte Änderungen vorbehalten

Literature
keine

Decentrally controlled intralogistic systems
2117084, WS 21/22, 2 SWS, Language: German, Open in study portal

Practical course (P)
On-Site
Content
Proof:
• Certificate by colloquium with presentation

Note:
• Number of participants limited
• Participants will be selected
• Compulsory attendance

Media:
• Lego Mindstorms, PC

Teaching content:
• Introduction to material handling systems
• Construction of a model for decentralized logistic systems
• Object-oriented programming with LabView (or Python* with reservation)
• Implementation of the model with Mindstorms
• Presentation of the results

Learning objectives:
Students are able to:
• Model complex cinematic systems and use object-oriented programming for this purpose,
• Build experimental setups in a team for decentralized controlled intralogistic systems, choose appropriate system components and models and finally proof the function by using experiments.

Effort:
• Regular attendance: 90 hours (workplace is provided)
• Self-study: 30 hours

Dates and further information see homepage

Organizational issues
Termine im WS21/22:
Gruppe 1 (Maximilian Ries) 14.02.- 04.03.2022, davon Präsenz: 14.02., 21.02. - 04.03.2022
Gruppe 2 (Marvin Sperling) 28.02.2022 - 18.03.2022, davon Präsenz: 28.02., 07.03. - 18.03.2022

Anmeldezeitraum:
01.11.2021 8:00 Uhr - 30.11.2021 18:00 Uhr (via Ilias-Kurs)
Corona-bedingte Änderungen vorbehalten

Literature
keine
<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Alexander Waibel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-INFO-104460 - Deep Learning and Neural Networks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2400024</td>
</tr>
<tr>
<td></td>
<td>Deep Learning and Neural Networks</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
</tr>
<tr>
<td></td>
<td>Lecture / 🖥</td>
</tr>
<tr>
<td></td>
<td>Waibel, Pham</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500044</td>
</tr>
<tr>
<td></td>
<td>Deep Learning and Neural Networks</td>
</tr>
<tr>
<td></td>
<td>Waibel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.42 Course: Design Principles for Interactive Real-Time Systems [T-INFO-101290]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer

Organisation: KIT Department of Informatics

Part of: M-INFO-100753 - Design Principles for Interactive Real-Time Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 24648</td>
<td>Lecture / 🖥️</td>
<td>2 SWS</td>
<td>Design Principles for Interactive Real-Time Systems</td>
<td>Peinsipp-Byma, Sauer</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021 7500030</td>
<td>Design Principles for Interactive Real-Time Systems</td>
<td>Beyerer, Sauer, Peinsipp-Byma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 7500098</td>
<td>Design Principles for Interactive Real-Time Systems</td>
<td>Beyerer, Sauer, Peinsipp-Byma</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
8.43 Course: Digital Technology [T-ETIT-101918]

Responsible: Prof. Dr.-Ing. Jürgen Becker

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-102102 - Digital Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>3 SWS</td>
<td>Digital Technology</td>
<td>Becker</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>1 SWS</td>
<td>Tutorial for 2311615 Digital Technology</td>
<td>Höfer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7311615</td>
<td>Digital Technology</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Prerequisites
none
8.44 Course: Distributed Discrete Event Systems [T-ETIT-100960]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100361 - Distributed Discrete Event Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Title</th>
<th>Credit Hours</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2302106</td>
<td>Verteilte ereignisdiskrete Systeme</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Heizmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2302108</td>
<td>Übungen zu 2302106 Verteilte ereignisdiskrete Systeme</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Weinreuter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7302106</td>
<td>Distributed Discrete Event Systems</td>
<td>Online</td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🌐 Blended (On-Site/Online), 🌐 On-Site, ☠ Cancelled

Prerequisites

none
Course: Dynamics of the Automotive Drive Train [T-MACH-105226]

Responsibility: Prof. Dr.-Ing. Alexander Fidlin

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102700 - Dynamics of the Automotive Drive Train

Type: Oral examination
Credits: 5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2163111</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>2 SWS</td>
<td>Lecture / 📧</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2163112</td>
<td>Übungen zu Dynamik des Kfz-Antriebsstrangs</td>
<td>2 SWS</td>
<td>Practice</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105226</td>
<td>Dynamics of the Automotive Drive Train</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination, 30 min.

Prerequisites

none

Recommendation

Powertrain Systems Technology A: Automotive Systems | Machine Dynamics | Vibration Theory

Below you will find excerpts from events related to this course:

Dynamics of the Automotive Drive Train

2163111, WS 21/22, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Blended (On-Site/Online)

Content

- Main components of the vehicle powertrain and their modelling
- Typical driving situations
- Problem-oriented models for particular driving situations
- System analysis and optimization with respect to dynamic behavior

Literature

- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

Übungen zu Dynamik des Kfz-Antriebsstrangs

2163112, WS 21/22, 2 SWS, Language: German, [Open in study portal](#)

Practice (Ü)

Content

Exercises related to the lecture
8.46 Course: Electric Energy Systems [T-ETIT-101923]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102156 - Electric Energy Systems
M-ETIT-105643 - Electric Energy Systems/Hybrid and Electric Vehicles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2307391 Electric Energy Systems</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Leibfried</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2307393 Übungen zu 2307391 Elektroenergiesysteme</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Steinle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7307391 Electric Energy Systems</td>
<td></td>
<td></td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Prerequisites

none
8.47 Course: Electric Rail Vehicles [T-MACH-102121]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld

Organisation: KIT Department of Mechanical Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Organizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2114346</td>
<td>Electric Rail Vehicles</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Tesar, Gratzfeld</td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-102121</td>
<td>Electrical Railway Traction Systems</td>
<td></td>
<td>Lecture / 🖥</td>
<td>Tesar, Otto, Gratzfeld</td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-102122</td>
<td>Electric Rail Vehicles</td>
<td></td>
<td>Lecture / 🖥</td>
<td>Otto, Tesar, Gratzfeld</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-102121</td>
<td>Electric Rail Vehicles</td>
<td></td>
<td>Lecture / 🖥</td>
<td>Tesar, Otto, Gerhardt, Gratzfeld</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), ☝️ On-Site, ❌ Cancelled

Competence Certificate

- Oral examination

 Duration: ca. 20 minutes

 No tools or reference materials may be used during the exam.

Prerequisites

- none

Below you will find excerpts from events related to this course:

Electric Rail Vehicles
2114346, SS 2021, 2 SWS, Language: German, Open in study portal

Content

1. Introduction: history of electric traction in railways, economic impact
2. Wheel-rail-contact: carrying of vehicle mass, adhesion, current return
3. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
4. Electric drives: purpose of electric drive and basic configurations, traction motors, converters, drives for vehicles at dc and ac lines and without contact wire, multi-system, dual power and hybrid vehicles, conventional drives for existing vehicles
5. Train control management system: definitions, bus systems, components, network architectures, examples, future trends
6. Vehicle concepts: modern vehicle concepts for mass transit and electric main line
7. Traction power supply: power supply of railway vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire

Organizational issues

Die Vorlesung "Elektrische Schienenfahrzeuge" findet im SS 2021 als asynchrone Online-Veranstaltung statt.

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
8.48 Course: Electrical Engineering Components [T-ETIT-109292]

Responsible: Prof. Dr. Sebastian Kempf
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102734 - Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2312700</th>
<th>2312701</th>
<th>LECTURE</th>
<th>PRACTICE</th>
<th>Kempf</th>
<th>Wünsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7312700</td>
<td>Electrical Engineering Components</td>
<td>Kempf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7312700</td>
<td>Electrical Engineering Components</td>
<td>Kempf</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Competence Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>The success control is carried out in the form of a written test of 120 minutes.</td>
</tr>
</tbody>
</table>

Prerequisites

none
8.49 Course: Electrical Machines and Power Electronics [T-ETIT-101954]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Dr.-Ing. Klaus-Peter Becker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Electrical Engineering and Information Technology</td>
</tr>
<tr>
<td>Part of</td>
<td>M-ETIT-102124 - Electrical Machines and Power Electronics</td>
</tr>
</tbody>
</table>

Type
- Written examination

Credits
- 6

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2306387</td>
<td>Electrical Machines and Power Electronics</td>
<td>Lecture / Online</td>
<td>2</td>
<td>Hiller</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2306389</td>
<td>Tutorial for 2306387 Electrical Machines and Power Electronics</td>
<td>Practice / Blended (On-Site/Online)</td>
<td>2</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7306307</td>
<td>Electrical Machines and Power Electronics</td>
<td>Online</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🌹 On-Site
- ✗ Cancelled

Prerequisites
- none
8.50 Course: Electromagnetical Fields [T-ETIT-109078]

Responsible: Prof. Dr. Martin Doppelbauer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104428 - Electromagnetical Fields

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2306004</td>
<td>Electromagnetical Fields</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
<td>Doppelbauer</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2306005</td>
<td>Practice to 2306004 Electromagnetic fields</td>
<td>2 SWS</td>
<td>Practice / 📚</td>
<td>Menger</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2306006</td>
<td>Tutorium zu 2306004 Elektromagnetische Felder</td>
<td>/ 📚</td>
<td></td>
<td>Doppelbauer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7300019</td>
<td>Electromagnetical Fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none

Legend: 📚 Online, 📚 Blended (On-Site/Online), 📚 On-Site, ⌚ Cancelled

Mechatronics and Information Technology Bachelor Program (B.Sc.) Module Handbook valid from WT 21/22, Date: 15.09.2021
8.51 Course: Electromagnetical Waves [T-ETIT-109245]

Responsible: Prof. Dr.-Ing. Sebastian Randel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104515 - Electromagnetical Waves
M-ETIT-105647 - Electromagnetical Waves/Fundamentals on High Frequency Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7309475</td>
<td>Electromagnetic Waves</td>
<td>Randel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7309475</td>
<td>Electromagnetic Waves</td>
<td>Randel</td>
</tr>
</tbody>
</table>
8.52 Course: Electronic Devices an Circuits - Workshop [T-ETIT-109138]

Responsible: Prof. Dr.-Ing. Thomas Zwick
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104465 - Electronic Devices and Circuits

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2308450</td>
<td>Elektronische Schaltungen - Workshop</td>
<td>1 SWS</td>
<td>Practical course /</td>
<td>Zwick</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7308450-1</td>
<td>Electronic Devices an Circuits - Workshop</td>
<td></td>
<td></td>
<td>Zwick, Ulusoym</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.53 Course: Electronic Devices and Circuits [T-ETIT-109318]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr.-Ing. Ahmet Cagri Ulusoy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Electrical Engineering and Information Technology</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-ETIT-104465 - Electronic Devices and Circuits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Event Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2308655</td>
<td>3</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
<td>Lecture / 📚</td>
<td>Ulusoy</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2308657</td>
<td>1</td>
<td>Übungen zu 231265 Elektronische Schaltungen</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Ulusoy</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2308658</td>
<td>/</td>
<td>Tutorien zu 231265 Elektronische Schaltungen</td>
<td>/</td>
<td>📚</td>
<td>Ulusoy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Event Description</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7308655</td>
<td></td>
<td>Electronic Devices and Circuits</td>
<td>📚</td>
<td>Ulusoy</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 📘 Blended (On-Site/Online), 📖 On-Site, ✗ Cancelled
8.54 Course: Elements and Systems of Technical Logistics [T-MACH-102159]

Responsible: Georg Fischer
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-102688 - Elements of Technical Logistics
M-MACH-105015 - Elements of Technical Logistics incl. Project

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2117096</td>
<td>Elements and systems of Technical Logistics</td>
<td>3 SWS</td>
<td>Lecture / Practice (/</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Title</th>
<th>Language</th>
<th>Type / Practice</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-102159</td>
<td>Elements and Systems of Technical Logistics</td>
<td>German</td>
<td></td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧬 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment consists of an oral exam (20 min) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge out of "Basics of Technical Logistics I" (T-MACH-109919) preconditioned.

Below you will find excerpts from events related to this course:

Elements and systems of Technical Logistics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Language</th>
<th>Open in study portal</th>
<th>Lecture / Practice</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117096</td>
<td>Elements and systems of Technical Logistics</td>
<td>3 SWS</td>
<td>German</td>
<td>Open in study portal</td>
<td>Lecture / Practice</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Cancelled

Organizational issues
Die Vorlesung wird ab SS 2022 in stark überarbeiteter Form angeboten werden.
Für die bisherige Veranstaltung werden weiterhin Prüfungen zu den üblichen Terminen angeboten.
Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4 (2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
siehe auch Homepage / ILIAS
This lecture will be offered in a deeply restructured form in SS 2022
Assessment for the former lecture is provided also in the future at the regular times
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulations.
look also at our homepage / ILIAS
8 COURSES

Course: Elements and Systems of Technical Logistics - Project [T-MACH-108946]

8.55 Course: Elements and Systems of Technical Logistics - Project [T-MACH-108946]

Responsible: Georg Fischer
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105015 - Elements of Technical Logistics incl. Project

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Elements and systems of Technical Logistics - project</td>
<td></td>
<td></td>
<td>Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-108946 Elements and Systems of Technical Logistics - Project</td>
<td></td>
<td></td>
<td>Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Presentation of performed project and defense (30min) according to §4 (2), No. 3 of the examination regulation

Prerequisites

T-MACH-102159 (Elements and Systems of Technical Logistics) must have been started

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102159 - Elements and Systems of Technical Logistics must have been started.

Recommendation

Knowledge out of "Basics of Technical Logistics I" (T-MACH-109919) preconditioned.

Below you will find excerpts from events related to this course:

Elements and systems of Technical Logistics - project

2117097, WS 21/22, SWS, Language: German, Open in study portal

Project (PRO)

Cancelled

Organizational issues

Das Projekt (als Ergänzung zur Vorlesung) wird ab SS 2022 in stark überarbeiteter Form angeboten werden.

Für die bisherige Veranstaltung werden weiterhin Prüfungen zu den üblichen Terminen angeboten.

Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4 (2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

siehe auch Homepage / ILIAS

This project (as complement to the lecture) will be offered in a deeply restructured form in SS 2022

Assessment for the former lecture is provided also in the future at the regular times

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulations.

look also at our homepage / ILIAS
8 COURSES

Course: Engineering Mechanics I [T-MACH-100282]

8.56 Course: Engineering Mechanics I [T-MACH-100282]

- **Responsible:** Prof. Dr.-Ing. Thomas Böhlke
 Dr.-Ing. Tom-Alexander Langhoff

- **Organisation:** KIT Department of Mechanical Engineering

- **Part of:**
 - M-MACH-102402 - Engineering Mechanics
 - M-MACH-104333 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Semester</th>
<th>Credits</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2161245</td>
<td>Engineering Mechanics I</td>
<td>3 SWS</td>
<td>Lecture / Online</td>
<td>Böhlke</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>3161010</td>
<td>Engineering Mechanics I (Lecture)</td>
<td>3 SWS</td>
<td>Lecture / Online</td>
<td>Langhoff, Pallicity, Böhlke</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-100282-englisch</td>
<td>Engineering Mechanics I</td>
<td></td>
<td>Langhoff, Böhlke</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-100282</td>
<td>Engineering Mechanics I</td>
<td></td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 90 min, graded

Prerequisites

successful participation in "Engineering Mechanics I (Tutorial)" (see T-MACH-100528)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-100528 - Tutorial Engineering Mechanics I must have been passed.

Below you will find excerpts from events related to this course:

Engineering Mechanics I

2161245, WS 21/22, 3 SWS, Language: German, [Open in study portal]

Lecture (V)

Blended (On-Site/Online)

Content

- Basics of vector calculus
- Force systems
- Statics of rigid bodies
- Internal forces and moments in bars and beams
- Friction
- Centre of gravity, centre of mass
- Work, energy, principle of virtual work
- Statics of inextensible ropes
- Elastostatics of tension-compression- bars

Literature

- Vorlesungsskript
- Hibbeler, R.C: Technische Mechanik 1 - Statik. Prentice Hall. Pearson Studium 2005
8.57 Course: Engineering Mechanics II [T-MACH-100283]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| ST 2021 | 2162250 | Engineering Mechanics II | 3 SWS | Lecture /

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| ST 2021 | 76-T-MACH-100283 | Engineering Mechanics II | 3 SWS | Böhlke, Langhoff

| ST 2021 | 3162010 | Engineering Mechanics II (Lecture) | 3 SWS | Lecture /

| ST 2021 | 76-T-MACH-100283-englisch | Engineering Mechanics II | | Böhlke, Langhoff

| WT 21/22 | 76-T-MACH-100283 | Engineering Mechanics II | | Böhlke, Langhoff

Competence Certificate
written exam, 90 min, graded

Prerequisites
successful participation in *Engineering Mechanics II (Tutorial)* (see T-MACH-100284)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-100284 - Tutorial Engineering Mechanics II must have been passed.

Below you will find excerpts from events related to this course:

Engineering Mechanics II
2162250, SS 2021, 3 SWS, Language: German, [Open in study portal](#)

Content

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theorems in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars

Literature

Vorlesungsstück
Content

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theorems in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars
8.58 Course: Engineering Mechanics III [T-MACH-100299]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WT 21/22</td>
<td>2161203 Engineering Mechanics III</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>ST 2021</td>
<td>76-T-MACH-100299 Engineering Mechanics III</td>
<td></td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam (90 min)

Prerequisites
successful participation in "Engineering Mechanics III (Tutorial)" (see T-MACH-105202)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105202 - Tutorial Engineering Mechanics III must have been passed.

Below you will find excerpts from events related to this course:

Content

Kinetics of a particle:
Newton's axiom, Principle of d'Alembert, work of a force, kinetic and potential energies, principle of linear momentum, principle of moment of momentum, kinetics in moving reference systems

Systems of particles:
Principle of center of mass, Principle of moment of momentum, impacts between particles, systems with variable mass, applications.

Plain motion of rigid bodies:

Literature
Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983
Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975
Göldner, Holzweissig: Leitfaden der Technischen Mechanik.
Hagedorn: Technische Mechanik III.
8.59 Course: Engineering Mechanics IV [T-MACH-105274]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102831 - Engineering Mechanics IV
 M-MACH-103205 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Recurrence</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2162231</td>
<td>Engineering Mechanics IV</td>
<td>2</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Seemann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2162232</td>
<td>Engineering Mechanics IV (Tutorial)</td>
<td>2</td>
<td>Practice / Online</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Seemann, Luo, Schröders, Altoé</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105274</td>
<td>Engineering Mechanics IV</td>
<td>5</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Engineering Mechanics IV

- Code: 2162231, SS 2021, 2 SWS, Language: German, Open in study portal
- Type: Lecture (V)
 - Blended (On-Site/Online)

Content

Spatial kinematics of a rigid body, Euler angles, angular velocity using Euler angles, Euler's equations, inertia tensor, kinetic energy of a rigid body, free gyroscopes, forced gyroscopes, systems of rigid bodies, principle of d'Alembert, Lagrange's equations of the first and second kind, generalized coordinates, free and forced vibration of one degree of freedom systems, frequency response, vibration of multi degree of freedom systems, vibration absorption

Literature

- Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
- Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968

Engineering Mechanics IV (Tutorial)

- Code: 2162232, SS 2021, 2 SWS, Language: German, Open in study portal
- Type: Practice (Ü)
 - Online

Content

In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the exercises are presented and instructions are given for those exercises which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.

Literature

- Hibbeler: Technische Mechanik 3, Dynamik, München, 2006
- Marguerre: Technische Mechanik III, Heidelberger Taschenbücher, 1968
8.60 Course: Examination Material Science I & II [T-MACH-105148]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102567 - Material Science and Engineering

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 21</td>
<td>2182562</td>
<td>Materials Science and Engineering II for ciw, vt, mit</td>
<td>Oral examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
<td>Schneider</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2181555</td>
<td>Materials Science and Engineering I for ciw, vt, MIT</td>
<td>Oral examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurring Course</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 21</td>
<td>76-T-MACH-105148</td>
<td>Examination Material Science I & II</td>
<td>Oral examination</td>
<td>9</td>
<td></td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, ⚡️ Blended (On-Site/Online), 🗺️ On-Site, ✗ CANCELLED

Competence Certificate

oral; 30 to 40 minutes
No tools and reference tools are allowed!

Prerequisites

none

Below you will find excerpts from events related to this course:

Materials Science and Engineering II for ciw, vt, mit

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurring Course</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2182562</td>
<td>Materials Science and Engineering II for ciw, vt, mit</td>
<td>Lecture / Practice (VÜ)</td>
<td>4 SWS</td>
<td></td>
<td>Schneider</td>
</tr>
</tbody>
</table>

2182562, SS 2021, 4 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ) Online

Content

Ferrous materials
Non-ferrous metals and alloys
Polymers
Engineering ceramics
Composites

The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can name representative materials for different material classes and can describe the differences.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to assess materials on base of the data obtained by these methods.

regular attendance: 45 hours
self-study: 105 hours

Combined oral exam with Materials Science and Engineering I; 30 to 40 minutes
No tools and reference tools are allowed!
Organizational issues
Bitte nutzen Sie die Vorlesungsaufzeichnung aus dem SS 19!
ILIAS-Passwort wie im WS 20/21!
Aktuelle Infos zu Online-Übungen werden über ILIAS verteilt!

Literature
Vorlesungsskript
Übungsaufgabenblätter
W. Bergmann: Werkstofftechnik I + II, Hanser Verlag, München, 2008/9
M. Merkel: Taschenbuch der Werkstoffe, Hanser Verlag, München, 2008
J.F. Shackelford; Werkstofftechnologie für Ingenieure, Pearson Studium, München, 2008 (E-Book)

Materials Science and Engineering I for ciw, vt, MIT
2181555, WS 21/22, 4 SWS, Language: German, Open in study portal

Content
Atomic structure and atomic bonds
Structures of crystalline and amorphous solids
Defects in crystalline solids
Alloys
Transport and transformation phenomena in the solid state
Corrosion
Wear
Mechanical properties
Testing of materials
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.
The students can describe the typical property profiles and can name applications for the most important engineering materials.
The students are able to describe standard materials characterization methods and can explain the evaluation of these methods. They can judge materials on base of the data obtained by these methods.
regular attendance: 45 hours
self-study: 75 hours
Oral exam in combination with Materials Science and Engineering II; oral; 30 to 40 minutes
No tools and reference tools are allowed!

Literature
Vorlesungsskript
Aufgabenblätter
W. Bergmann: Werkstofftechnik I + II, Hanser Verlag, München, 2008/9
M. Merkel: Taschenbuch der Werkstoffe, Hanser Verlag, München, 2008
R. Schwab: Werkstoffkunde und Werkstoffprüfung für Dummies, Wiley VCH, Weinheim, 2019
J.F. Shackelford; Werkstofftechnologie für Ingenieure, Pearson Studium, München, 2007
W. D. Callister: Materials Science and Engineering. John Wiley & Sons, 2020
M. Ashby: Materials. Elsevier, 2018
8.61 Course: Exercises in Technical Thermodynamics and Heat Transfer I [T-MACH-105204]

Responsible: Prof. Dr. Ulrich Maas

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102386 - Technical Thermodynamics and Heat Transfer I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type/Blended</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2165502</td>
<td>Exercise course Technical Thermodynamics and Heat Transfer I</td>
<td>2</td>
<td>Practice / Blended</td>
<td>Maas</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>3165015</td>
<td>Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>2</td>
<td>Tutorial / Blended</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105204</td>
<td>Exercises in Technical Thermodynamics and Heat Transfer I</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Homework is mandatory.
8.62 Course: Excercises in Technical Thermodynamics and Heat Transfer II [T-MACH-105288]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102830 - Technical Thermodynamics and Heat Transfer II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>2166556</th>
<th>Technical Thermodynamics and Heat Transfer II (Tutorial)</th>
<th>2 SWS</th>
<th>Practice / Blended (On-Site/Online)</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>3166033</td>
<td>Technical Thermodynamics and Heat Transfer II (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / Blended (On-Site/Online)</td>
<td>Schießl, Maas</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>76-T-MACH-105288</th>
<th>Excercises in Technical Thermodynamics and Heat Transfer II</th>
<th>Maas</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ❎ Cancelled

Competence Certificate
Homework is mandatory.

Prerequisites
none

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II (Tutorial)
2166556, SS 2021, 2 SWS, Language: German, Open in study portal

Practice (Ü)
Blended (On-Site/Online)

Content
Calculation of thermodynamical problems

Literature
Vorlesungsskriptum
8.63 Course: Fluid Mechanics 1&2 [T-MACH-105207]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102565 - Fluid Mechanics

Type	**Credits**	**Grading scale**	**Recurrence**	**Version**
Written examination | 8 | Grade to a third | Each summer term | 2

Events

| Events | | | |
|---|---|---|---|---
| ST 2021 2154512 | Fluid Mechanics I | 3 SWS | Lecture / Practice (/) | Frohnapfel
| ST 2021 3154510 | Fluid Mechanics I | 3 SWS | Lecture / Practice (/) | Frohnapfel
| WT 21/22 2153512 | Fluid Mechanics II | 3 SWS | Lecture / Practice (/) | Frohnapfel
| WT 21/22 3153511 | Fluid Mechanics II | 3 SWS | Lecture / Practice (/) | Frohnapfel

Exams

| Exams | | | |
|---|---|---|---|---
| ST 2021 76-T-MACH-105207 | Fluid Mechanics (1+2) | | Frohnapfel, Kriegseis
| ST 2021 76-T-MACH-105207 engl. | Fluid Mechanics 1&2 | | Frohnapfel
| WT 21/22 76-T-MACH-105207 | Fluid Mechanics (1+2) | | Frohnapfel
| WT 21/22 76-T-MACH-105207 engl. | Fluid Mechanics 1&2 | | Frohnapfel

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

written exam 3 hours

Prerequisites

none

Below you will find excerpts from events related to this course:

Fluid Mechanics I
2154512, SS 2021, 3 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)
Online

Content

Introduction to the fundamentals of fluid mechanics for students of mechanical engineering and related fields, physics and mathematics. The lecture is complemented by a tutorial.

- Introduction
- Flows in Nature and Technology
- Fundamentals of Fluid Mechanics
- Properties of Fluids and Characteristic Fluid Regimes
- Fundamental Equations of Fluid Mechanics (Conservation of Mass, Momentum and Energy)
 - Continuity equation
 - Navier-Stokes equations (Euler Equations)
 - Energy equation
- Hydro- und Aerostatics
- Flows without dissipation (lossless)
- Technical Flows with Losses
- Introduction to Similarity Analysis
- Two-Dimensional Viscous Flows
- Integral Form of the Governing Equations
- Introduction to Gas Dynamics
Literature

Fluid Mechanics I
3154510, SS 2021, 3 SWS, Language: English, Open in study portal

Content
Introduction to the fundamentals of fluid mechanics for students of mechanical engineering and related fields, physics and mathematics. The lecture is complemented by a tutorial.

- Introduction
- Flows in Nature and Technology
- Fundamentals of Fluid Mechanics
- Properties of Fluids and Characteristic Fluid Regimes
- Fundamental Equations of Fluid Mechanics (Conservation of Mass, Momentum and Energy)
 - Continuity equation
 - Navier-Stokes equations (Euler Equations)
 - Energy equation
- Hydro- and Aerostatics
- Flows without dissipation (lossless)
- Technical Flows with Losses
- Introduction to Similarity Analysis
- Two-Dimensional Viscous Flows
- Integral Form of the Governing Equations
- Introduction to Gas Dynamics

Literature

Fluid Mechanics II
2153512, WS 21/22, 3 SWS, Language: German, Open in study portal

Content
The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

- Tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Literature

Fluid Mechanics II
3153511, WS 21/22, 3 SWS, Language: English, Open in study portal
Content
The students know how to derive the fundamental equations for mass and momentum conservation and can introduce material laws for fluids into those. They can discuss the physical meaning of the different terms in the Navier-Stokes-Equations. They are capable of simplifying the mathematical equations that describe the motion of fluids and can compute flow quantities for generic problems based on these simplified equations. This includes the calculation of static and dynamic forces acting from the fluid onto the solid as well as the detailed analysis of two-dimensional viscous flows.

tensor notation, fluid elements in continuum, Reynolds transport theorem, conservation of mass and momentum, continuity equation, constitutive law for Newtonian fluids, Navier-Stokes equations, angular momentum and energy conservation, integral form of the conservation equations, forces between fluids and solids, analytical solutions of the Navier-Stokes equations

Literature
8.64 Course: Fluid Power Systems [T-MACH-102093]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Felix Pult

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
- M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

Type
- Written examination

Credits
- 4

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2114093</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Technology</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture / Online</td>
<td>Geimer, Metzger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>Geimer</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a written exam (90 minutes) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
none

Below you will find excerpts from events related to this course:

Fluid Technology

2114093, WS 21/22, 2 SWS, Language: German, Open in study portal

Lecture (V)
- Blended (On-Site/Online)

Content

In the range of hydrostatics the following topics will be introduced:

- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:

- Compressors
- Motors
- Valves
- Pneumatic circuits.

- regular attendance: 21 hours
- self-study: 92 hours

Literature

Skriptum zur Vorlesung Fluidtechnik
Institut für Fahrzeugsystemtechnik
downloadbar
8 COURSES
Course: Fundamentals in the Development of Commercial Vehicles [T-MACH-111389]

8.65 Course: Fundamentals in the Development of Commercial Vehicles [T-MACH-111389]

Responsible: Dr. Christof Weber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105824 - Fundamentals in the Development of Commercial Vehicles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>1 SWS</td>
<td>Lecture / Online</td>
<td>Weber</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>1 SWS</td>
<td>Lecture / Online</td>
<td>Weber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>7600004</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
<td></td>
<td>Weber</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, x Cancelled

Competence Certificate
Oral group examination
Duration: appr. 30 minutes
Auxiliary means: none

Prerequisites
none

Annotation
Fundamentals in the Development of Commercial Vehicles I, WT
Fundamentals in the Development of Commercial Vehicles II, ST

Below you will find excerpts from events related to this course:

Fundamentals in the Development of Commercial Vehicles II
2114844, SS 2021, 1 SWS, Language: German, Open in study portal

Content
1. Gear boxes of commercial vehicles
2. Intermediate elements of the drive train
3. Axle systems
4. Front axles and driving dynamics
5. Chassis and axle suspension
6. Braking System
7. Systems
8. Excursion

Learning Objectives:
The students know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application.

Organizational issues
Genaue Termine, nähere Informationen und eventuelle Terminänderungen:
siehe Institutshomepage.

Mechatronics and Information Technology Bachelor Program (B.Sc.)
Module Handbook valid from WT 21/22, Date: 15.09.2021
Literature

1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803

Fundamentals in the Development of Commercial Vehicles I

2113812, WS 21/22, 1 SWS, Language: German, Open in study portal

Content

1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodyshell work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Learning Objectives:

The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

The students are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.

Organizational issues

Termine und Nähere Informationen: siehe Institutshomepage

Dates and further information will be published on the homepage of the institute.

Literature

Course: Fundamentals of Automobile Development I [T-MACH-105162]

Responsible: Hon.-Prof. Rolf Frech
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105289 - Principles of Whole Vehicle Engineering I

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2113810</td>
<td>Fundamentals of Automobile Development I</td>
<td>1</td>
<td>Lecture</td>
<td>Frech</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2113851</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>1</td>
<td>Lecture</td>
<td>Frech</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>Frech, Unrau</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>Frech, Unrau</td>
</tr>
</tbody>
</table>

Version 1

Legend: 📱 Online, ✌ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written examination
Duration: 90 minutes
Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Automobile Development I
2113810, WS 21/22, 1 SWS, Language: German, Open in study portal

Lecture (V)
Online

Content

1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives

The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues

Termine und nähere Informationen finden Sie auf der Institutshomepage.
Kann nicht mit Lehrveranstaltung 2113851 kombiniert werden.
Date and further information will be published on the homepage of the institute.
Cannot be combined with lecture 2113851.

Literature

Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons
Principles of Whole Vehicle Engineering I
2113851, WS 21/22, 1 SWS, Language: English, Open in study portal

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aerodynamical dimensioning and design of an automobile I
5. Aerodynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues
Termine und nähere Informationen finden Sie auf der Institutshomepage.
Dat and further information will be published on the homepage of the institute.
Kann nicht mit Lehrveranstaltung 2113810 kombiniert werden
Cannot be combined with lecture 2113810.

Literature
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons
8.67 Course: Fundamentals of Automobile Development II [T-MACH-105163]

Responsible: Hon.-Prof. Rolf Frech
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-105290 - Principles of Whole Vehicle Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2114842</td>
<td>1 SWS</td>
<td>Fundamentals of Automobile Development II</td>
<td>Block / 🟢</td>
<td>Frech</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2114860</td>
<td>1 SWS</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>/ 🟢</td>
<td>Frech</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 76-T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>Frech, Unrau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 76-T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>Unrau, Frech</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of Automobile Development II
2114842, SS 2021, 1 SWS, Language: German, Open in study portal
Block (B) Online

Content

1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:

The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues

Vorlesung findet als Blockvorlesung statt.
Kann nicht mit der Veranstaltung [2114860] kombiniert werden.
Cannot be combined with lecture [2114860].

Literature

Skript zur Vorlesung ist über ILIAS verfügbar.
Principles of Whole Vehicle Engineering II
2114860, SS 2021, 1 SWS, Language: English, Open in study portal

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues
Kann nicht mit der Veranstaltung [2114842] kombiniert werden.
Cannot be combined with lecture [2114842].
Raum 219, Geb. 70.04, Campus Ost.
Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.

Literature
Das Skript zur Vorlesung ist über ILIAS verfügbar.
8.68 Course: Fundamentals of Combustion Engine Technology [T-MACH-105652]

Responsible:
Dr.-Ing. Sören Bernhardt
Dr.-Ing. Heiko Kubach
Jürgen Pfeil
Dr.-Ing. Olaf Toedter
Dr.-Ing. Uwe Wagner

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2133123</td>
<td>Fundamentals of Combustion Engine Technology</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Kubach, Wagner, Toedter, Pfeil, Bernhardt, Velji</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105652</td>
<td>Fundamentals of Combustion Engine Technology</td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105652(SP)</td>
<td>Fundamentals of Combustion Engine Technology</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 30 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of Combustion Engine Technology
2133123, WS 21/22, 2 SWS, Language: German, Open in study portal

Content
Fundamentals of engine processes
Components of combustion engines
Mixture formation systems
Gas exchange systems
Injection systems
Exhaust Gas Aftertreatment Systems
Cooling systems
Ignition Systems
8.69 Course: Fundamentals of Combustion I [T-MACH-105213]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102707 - Fundamentals of Combustion I
- M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
- M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2165515</td>
<td>Fundamentals of Combustion I</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>2165517</td>
<td>Fundamentals of Combustion I</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
<td>Bykov</td>
<td></td>
</tr>
<tr>
<td>Tutorial</td>
<td>3165016</td>
<td>Fundamentals of Combustion I</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>Tutorial</td>
<td>3165017</td>
<td>Fundamentals of Combustion I</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
<td>Bykov</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105213</td>
<td>Fundamentals of Combustion I</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105464</td>
<td>Fundamentals of Combustion I</td>
<td>Maas</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗑 On-Site, ☑ Cancelled

Competence Certificate
Written exam, approx. 3 hours

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of Combustion I
2165515, WS 21/22, 2 SWS, Language: German, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content
- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames
- Ignition processes
- NOx formation
- Formation of hydrocarbons and soot

Literature
Vorlesungsskript,

Fundamentals of Combustion I (Tutorial)
2165517, WS 21/22, 1 SWS, Open in study portal
Practice (Ü)
Online
Literature

- Vorlesungsskript

Fundamentals of Combustion I
3165016, WS 21/22, 2 SWS, Language: English, Open in study portal

<table>
<thead>
<tr>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Content

- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames
- Ignition processes
- NOx formation
- Formation of hydrocarbons and soot

Literature

Vorlesungsskript,

8.70 Course: Fundamentals of Energy Technology [T-MACH-105220]

Responsibilities: Dr. Aurelian Florin Badea, Prof. Dr.-Ing. Xu Cheng

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102690 - Fundamentals of Energy Technology

Type: Written examination
Credits: 8
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lectures/Grading</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2130927</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture</td>
<td>Each summer term</td>
<td>3 SWS</td>
</tr>
<tr>
<td>ST 2021 3190923</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture</td>
<td>Each summer term</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lectures/Grading</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 76-T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture</td>
<td>Each summer term</td>
<td>3 SWS</td>
</tr>
<tr>
<td>ST 2021 76-T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture</td>
<td>Each summer term</td>
<td>3 SWS</td>
</tr>
<tr>
<td>WT 21/22 76-T-MACH-105220</td>
<td>Fundamentals of Energy Technology</td>
<td>Lecture</td>
<td>Each summer term</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, C Cancelled

Competence Certificate
Written examination, 90 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of Energy Technology
2130927, SS 2021, 3 SWS, Language: German, Open in study portal

Lecture (V) Online

Content
The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy demand and energy situation
- Energy types and energy mix
- Basics. Thermodynamics relevant to the energy sector
- Conventional fossil-fired power plants
- Combined Cycle Power Plants
- Cogeneration
- Nuclear energy
- Regenerative energies: hydropower, wind energy, solar energy, other energy systems
- Energy storage
- Transport of energy
- Power generation and environment. Future of the energy industry
Content
The objective of the course is to train the students on state of the art knowledge about the challenging fields of energy industry and the permanent competition between the economical profitability and the long-term sustainability. The students obtain basic knowledge on thermodynamics relevant to the energy sector and comprehensive knowledge on the energy sector: demand, energy types, energy mix, installations for energy production (conventional, nuclear and renewable), transport and energy storage, environmental impact and future tendencies. Students are able to use methods of economic efficiency optimization for the energy sector in a creative way, practice oriented, also specifically trained during the corresponding tutorial. The students are qualified for further training in energy engineering related fields and for (also research-related) professional activity in the energy sector.

The following relevant fields of the energy industry are covered:
- Energy forms
- Thermodynamics relevant to energy industry
- Energy sources: fossil fuels, nuclear energy, renewable sources
- Energy industry in Germany, Europe and worldwide
- Power generation and environment
- Evaluation of energy conversion processes
- Thermal/electrical power plants and processes
- Transport of energy / energy carriers
- Energy storage
- Systems utilizing renewable energy sources
- Basics of economic efficiency and calculus / Optimisation
- Future of the energy industry
Course: Fundamentals on High Frequency Techniques [T-ETIT-101955]

Responsible: Prof. Dr.-Ing. Thomas Zwick

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
- M-ETIT-102129 - Fundamentals on High Frequency Techniques
- M-ETIT-105647 - Electromagnetical Waves/Fundamentals on High Frequency Techniques

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>6</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2308080</td>
<td>Tutorial (/)</td>
<td>Accompanying group tutorial for 2308406 Fundamentals on High Frequency Techniques</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>Bohn</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2308406</td>
<td>Lecture (/)</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>2 SWS</td>
<td>Bohn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021 2308408</td>
<td>Practice (/)</td>
<td>Tutorial for 2308406 Fundamentals on High Frequency Techniques</td>
<td>2 SWS</td>
<td>Zwick</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7308406</td>
<td>Fundamentals on High Frequency Techniques</td>
<td>Zwick</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Success control is carried out as part of a written overall examination (120 minutes) of the selected courses, with which the minimum requirement for CP is met and the assessment of homework. Students can work on the homework exercises during the semester and submit them for correction. The handover is in handwritten form.

Prerequisites

none

Recommendation
Knowledge of the basics of high frequency technology is helpful.

Annotation
The module grade is the grade of the written exam. If at least 50% of the total points of the homework are achieved, the student receives a grade bonus of 0.3 or 0.4 grade points on passing the written exam. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade of the written exam by one grade (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

The grade bonus once acquired will remain for a possible written examination in a later semester. The homework is a voluntary additional service, i.e. Even without the grade bonus, the full score or top grade can be achieved in the exam.
Fuzzy Sets [T-INFO-101376]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: M-INFO-100839 - Fuzzy Sets

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Lecture / Online</td>
<td>3 SWS</td>
<td>Pfaff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Lecture / Online</td>
<td>3 SWS</td>
<td>Pfaff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Lecture / Online</td>
<td>3 SWS</td>
<td>Pfaff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

Below you will find excerpts from events related to this course:

Fuzzy Sets
24611, SS 2021, 3 SWS, Language: German, [Open in study portal](#)

Content

In this module, the fundamental theory and practical applications of fuzzy sets are communicated. The course copes with fuzzy arithmetics, fuzzy logic, fuzzy relations, and fuzzy deduction. The representation of fuzzy sets and their properties are the theoretical foundation. Based on this theory, arithmetic and logical operations are axiomatically derived and analyzed. Furthermore, it is shown how arbitrary functions and relations are transferred into fuzzy sets. An application of the logic part of the module, fuzzy deduction, shows different approaches to applying rule-based systems on fuzzy sets. The final part of the curse treats the problem of fuzzy control.

Literature

Hilfreiche Quellen werden im Skript und in den Vorlesungsfolien genannt.
Course: Handling Characteristics of Motor Vehicles I [T-MACH-105152]

8.73 Course: Handling Characteristics of Motor Vehicles I [T-MACH-105152]

Responsible: Dr.-Ing. Hans-Joachim Unrau
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105288 - Handling Characteristics of Motor Vehicles I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2113807</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>Unrau</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Verbally

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Handling Characteristics of Motor Vehicles I

2113807, WS 21/22, 2 SWS, Language: German, Open in study portal

Content

1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alambert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Learning Objectives:

The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Literature

Course: Heat and Mass Transfer [T-MACH-105292]

Responsible: Prof. Dr. Ulrich Maas
Dr.-Ing. Chunkan Yu

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102717 - Heat and Mass Transfer
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

Course: Heat and Mass Transfer [T-MACH-105292]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021 3122512 Heat and Mass Transfer 2 SWS Lecture / 📧 Maas
WT 21/22 2165512 Heat and Mass Transfer 2 SWS Lecture / 🧬 Maas

Exams

ST 2021 76-T-MACH-105292 Heat and Mass Transfer Maas

Competence Certificate
Written exam, approx. 3 h

Prerequisites
none

Below you will find excerpts from events related to this course:

Heat and Mass Transfer
3122512, SS 2021, 2 SWS, Language: English, Open in study portal

Content
- Steady and unsteady heat transfer in homogenous materials; Plates, pipe sections and sperical shells
- Molecular diffusion in gases; analogies between heat conduction and mass diffusion
- Convective, forced heat transfer in pipes/channels and around plates and profiles.
- Convective mass transfer, heat-/mass transfer analogy
- Multi phase convective heat transfer (condensation, evaporation)
- Radiative heat transfer

Organizational issues
Bitte beachten Sie den Aushang.

Literature
- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"

Heat and mass transfer
2165512, WS 21/22, 2 SWS, Language: German, Open in study portal
Content

- Steady and unsteady heat transfer in homogenous materials; Plates, pipe sections and spherical shells
- Molecular diffusion in gases; analogies between heat conduction and mass diffusion
- Convective, forced heat transfer in pipes/channels and around plates and profiles.
- Convective mass transfer, heat-/mass transfer analogy
- Multi phase convective heat transfer (condensation, evaporation)
- Radiative heat transfer

Literature

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"
8.75 Course: Human-Machine-Interaction [T-INFO-101266]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 24659</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021 7500048</td>
<td></td>
<td>Human-Machine-Interaction</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 7500076</td>
<td></td>
<td>Human-Machine-Interaction</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧱 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-INFO-106257 - Human-Machine-Interaction Pass must have been passed.
8.76 Course: Human-Machine-Interaction in Anthropomatics: Basics [T-INFO-101361]

| Responsible: | Prof. Dr.-Ing. Jürgen Beyerer
	Dr. Jürgen Geisler
Organisation:	KIT Department of Informatics
Part of:	M-INFO-100824 - Human-Machine-Interaction in Anthropomatics: Basics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
<th>Type</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>24100</td>
<td>Human-Machine-Interaction in Anthropomatics: Basics</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>van der Camp</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500005</td>
<td>Human-Machine-Interaction in Anthropomatics: Basics</td>
<td>Grade to a third</td>
<td>Beyerer, Geisler</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500017</td>
<td>Human-Machine-Interaction in Anthropomatics: Basics</td>
<td>Grade to a third</td>
<td>Beyerer, van der Camp</td>
</tr>
</tbody>
</table>
8.77 Course: Human-Machine-Interaction Pass [T-INFO-106257]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>1</td>
<td>Human-Computer-Interaction</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Each summer term</td>
<td>Beigl</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2</td>
<td>Human-Computer-Interaction</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Type</th>
<th>Organizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2</td>
<td>Human-Machine-Interaction</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled
8.78 Course: Hybrid and Electric Vehicles [T-ETIT-100784]

Responsible: Dr.-Ing. Klaus-Peter Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-100514 - Hybrid and Electric Vehicles
- M-ETIT-105643 - Electric Energy Systems/Hybrid and Electric Vehicles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>2</td>
<td>Lecture</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2306323</td>
<td>Tutorial for 2306323 Hybrid and Electric Vehicles</td>
<td>1</td>
<td>Practice</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7306321</td>
<td>Hybrid and Electric Vehicles</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Prerequisites

none
8.79 Course: Image Processing [T-ETIT-105566]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102651 - Image Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2302114 | Bildverarbeitung | 2 SWS | Lecture / 🖥 | Heizmann |

Exams

| ST 2021 | 7302114 | Image Processing | | | Heizmann |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
8.80 Course: Information Processing in Sensor Networks [T-INFO-101466]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: M-INFO-100895 - Information Processing in Sensor Networks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 24102</td>
<td>3 SWS</td>
<td>Information Processing in Sensor Networks</td>
<td>Pfaff, Mayer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7500011</td>
<td></td>
<td>Information Processing in Sensor Networks</td>
<td>Hanebeck, Noack</td>
</tr>
<tr>
<td>WT 21/22 7500030</td>
<td></td>
<td>Information Processing in Sensor Networks</td>
<td>Pfaff</td>
</tr>
</tbody>
</table>
8.81 Course: Information Systems and Supply Chain Management [T-MACH-102128]

| Responsible: | Dr.-Ing. Christoph Kilger |
| Organisation: | KIT Department of Mechanical Engineering |

Part of: M-MACH-105281 - Information Systems and Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture (V)</th>
<th>Exam</th>
<th>Exam Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2118094</td>
<td>Information Systems and Supply Chain Management</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>Mittwollen</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered.

Prerequisites

none

Below you will find excerpts from events related to this course:

Information Systems in Logistics and Supply Chain Management

2118094, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Online

Literature

8.82 Course: Information Technology I [T-ETIT-109300]

Responsible: Prof. Dr.-Ing. Eric Sax
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104539 - Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2311651</td>
<td>Information Technology I</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>Sax</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2311652</td>
<td>Übungen zu 2311651 Informationstechnik I</td>
<td>1</td>
<td>Practice / 🖥</td>
<td>Haas</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7311651</td>
<td>Information Technology I</td>
<td>Sax</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Einer schriftlichen Prüfung nach im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung, Übung.
8 COURSES
Course: Information Technology I - Practical Course [T-ETIT-109301]

8.83 Course: Information Technology I - Practical Course [T-ETIT-109301]

Responsible: Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-104539 - Information Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>pass/fail</td>
<td>Each summer term</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2311653</td>
<td>Informationstechnik I – Praktikum</td>
<td>1 SWS</td>
<td>Practical course / Sax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7311653</td>
<td>Information Technology I - Practical course</td>
<td></td>
<td>Sax</td>
</tr>
</tbody>
</table>

Legend: ☑ Online, ☐ Blended (On-Site/Online), ☮ On-Site, ❌ Cancelled

Competence Certificate
Einer Erfolgskontrolle in Form von Projektdokumentationen und Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum.
8.84 Course: Information Technology II and Automation Technology [T-ETIT-109319]

Responsible: Prof. Dr.-Ing. Eric Sax

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
- M-ETIT-104547 - Information Technology II and Automation Technology
- M-ETIT-105644 - Information and Automation Technology II/Laboratory for Machine Learning Algorithms
- M-ETIT-105645 - Information and Automation Technology II/Seminar Embedded Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2311654 | Information Technology II and Automation Technology | 2 SWS | Lecture / 🖥 | Sax |
| ST 2021 | 2311655 | Übungen zu 2311654 Informationstechnik II und Automatisierungstechnik | 1 SWS | Practice / 🖥 | Brenner |

Exams

| ST 2021 | 7311654 | Information Technology II and Automation Technology | Sax |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Einer schriftlichen Prüfung nach im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung, Übung.
Course: Innovative Concepts for Programming Industrial Robots [T-INFO-101328]

Responsible: Prof. Dr.-Ing. Björn Hein
Organisation: KIT Department of Informatics
Part of: M-INFO-100791 - Innovative Concepts for Programming Industrial Robots

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture/Online</th>
<th>Hein</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 24179</td>
<td>2 SWS</td>
<td>Hein</td>
<td></td>
</tr>
</tbody>
</table>

Innovative Concepts for Programming Industrial Robots

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled
8.86 Course: Integrated Information Systems for Engineers [T-MACH-102083]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Code/Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2121001</td>
<td>Integrated Information Systems for engineers</td>
<td>Lecture / Practice (VÜ) Online</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ) Online</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2121001</td>
<td>Integrated Information Systems for engineers</td>
<td>Lecture / Practice (VÜ) Online</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ) Online</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Code/Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>Lecture / Practice (VÜ) Online</td>
<td>None</td>
<td>None</td>
<td>Each summer term</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Oral examination 20 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

Integrated Information Systems for engineers
2121001, SS 2021, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) Online

Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature
Vorlesungsfolien / lecture slides

Integrated Information Systems for engineers
2121001, WS 21/22, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) Online
Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature

Vorlesungsfolien / lecture slides
8.87 Course: Internship [T-MACH-108803]

Responsible: Prof. Dr. Martin Doppelbauer
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104265 - Internship

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>15</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2021 | 76-T-MACH-108803 | Internship | Gratzfeld |

Competence Certificate

An internship of at least thirteen weeks has to be fulfilled, which is suitable to provide the student an insight into the professionell work in the area of mechatronics and information technology. 15 ECTS are allocated to the internship.

Original certificates and reports about the internship has to be provided to the appropriate internship office.

The reports have to contain a compilation of activities during the internship with the following content:

- company, area of production, workshop or department, instruction period in each workshop or department with start and end date and one detailed report per week or project. The report hast to consist of at least one DIN A4 page per week and should have the format of a scientific report. The reports should give evidence, that the author has done all reported activities by himself, for example by describing the work flow or reflecting the gained experience. Sketches, drawings, schematics etc. can save a long report.

- The reports have to be checked by the supervisor in the company and have to be approved by stamp and signature. Periods which are not verified by a report cannot be accredited.

Prerequisites

None

Annotation

Further information are provided by the internship guidelines for the BSc-course in Mechatronics and Information Technology.
8.88 Course: Introduction into the Multi-Body Dynamics [T-MACH-105209]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-103205 - Engineering Mechanics
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code</th>
<th>Lecture</th>
<th>Theorie</th>
<th>Exam</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2162235</td>
<td>Introduction into the multi-body dynamics</td>
<td>3 SWS</td>
<td>Lecture / Blended</td>
<td>ST 2021 76-T-MACH-105209 Introduction into the Multi-Body Dynamics</td>
<td>Seemann</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>On-Site/Online</td>
<td>Seemann</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code</th>
<th>Exam</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>Seemann</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105209</td>
<td>Introduction into the Multi-Body Dynamics</td>
<td>Seemann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination, 180 min.

Prerequisites

none

Recommendation

Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

Introduction into the multi-body dynamics

2162235, SS 2021, 3 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d’Alembert, principle of virtual power, Lagrange’s equations, Kane’s equations, structure of the equations of motion

Literature

Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
de Ja’lon, J. G., Bayo, E.: Kinematik and Dynamic Simulation of Multibody Systems.
Kane, T.: Dynamics of rigid bodies.
8.89 Course: Introduction to Energy Economics [T-WIWI-102746]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-100498 - Introduction into Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Content

1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

The student is able to

- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Literature

Weiterführende Literatur:

Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
8.90 Course: Introduction to High Voltage Engineering [T-ETIT-110702]

Responsible: Dr.-Ing. Michael Suriyah

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105276 - Introduction to High Voltage Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2021</th>
<th>2307395</th>
<th>Introduction to High Voltage Engineering</th>
<th>2 SWS</th>
<th>Lecture / 🖥</th>
<th>Suriyah</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>ST 2021</th>
<th>7307395</th>
<th>Introduction to High Voltage Engineering</th>
<th>Suriyah</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Oral exam approx. 20 min.

Prerequisites
none

Recommendation
Basic knowledge in network theory, field theory and electrical metrology
8.91 Course: Introduction to Microsystem Technology I [T-MACH-105182]

Responsible: Dr. Vlad Badilita
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102691 - Introduction to Microsystem Technology I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2 SWS Lecture / 🧩</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Written examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written examination (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>Blended (On-Site/Online)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Microsystem Technology I</td>
<td></td>
</tr>
<tr>
<td>2141861, WS 21/22, 2 SWS, Language: English</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Literature

Mikrosystemtechnik für Ingenieure, W. Menz und J. Mohr, VCH Verlagsgesellschaft, Weinheim 2005

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
8.92 Course: Introduction to Microsystem Technology II [T-MACH-105183]

Responsible: Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102706 - Introduction to Microsystem Technology II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Time</th>
<th>Location</th>
<th>Credits</th>
<th>Module</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2142874</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>4</td>
<td>Online</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Time</th>
<th>Location</th>
<th>Credits</th>
<th>Module</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105183</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>4</td>
<td>Online</td>
<td>Korvink, Badilita</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105183</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>4</td>
<td>Online</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Competence Certificate

written examination (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology II

<table>
<thead>
<tr>
<th>Code</th>
<th>Time</th>
<th>Language</th>
<th>Location</th>
<th>Credits</th>
<th>Module</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2142874</td>
<td>2 SWS</td>
<td>English</td>
<td>Online</td>
<td>4</td>
<td>Online</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Content

- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Organizational issues

Topic: Grundlagen der Mikrosystemtechnik II (MST II) SS 21
Time: Thursdays 14:00 - 15:30

Join Zoom Meeting

https://kit-lecture.zoom.us/j/66193228123?pwd=eEpTTFJoNzY5ZktRMG5GTEg3bExmdz09

Meeting ID: 661 9322 8123
Passcode: 424794

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
8.93 Course: Introduction to Operations Research I and II [T-WIWI-102758]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101418 - Introduction to Operations Research

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Mode</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2550040</td>
<td>Introduction to Operations Research I</td>
<td>2</td>
<td>Lecture</td>
<td>Nickel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2530043</td>
<td>Introduction to Operations Research II</td>
<td>2</td>
<td>Lecture</td>
<td>Nickel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2530044</td>
<td>Tutorial (Blended (On-Site/Online))</td>
<td></td>
<td></td>
<td>Dunke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Mode</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7900237</td>
<td>Introduction to Operations Research I and II</td>
<td></td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses.

The overall grade of the module is the grade of the written examination.

Prerequisites

None

Recommendation

Mathematics I and II. Programming knowledge for computing exercises.

It is strongly recommended to attend the course Introduction to Operations Research I [2550040] before attending the course Introduction to Operations Research II [2530043].

Below you will find excerpts from events related to this course:

Introduction to Operations Research I

2550040, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

Examples for typical OR problems.

Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, game theory.

Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal and minimal cost flows in networks.

Learning objectives:

The student

- names and describes basic notions of linear programming as well as graphs and networks,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.
Introduction to Operations Research II

2530043, WS 21/22, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.

Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.

Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dynamical and stochastic inventory models, queuing theory.

Learning objectives:

The student

- names and describes basic notions of integer and combinatorial optimization, nonlinear programming, and dynamic programming;
- knows the indispensable methods and models for quantitative analysis;
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently;
- validates, illustrates and interprets the obtained solutions.

Literature

8.94 Course: Introduction to Video Analysis [T-INFO-101273]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer

Organisation: KIT Department of Informatics

Part of: M-INFO-100736 - Introduction to Video Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 24684 | Introduction to Video Analysis | 2 SWS | Lecture / 📞 | Arens |

Exams

| ST 2021 | 7500031 | Introduction to Video Analysis | Beyerer, Arens |
| WT 21/22 | 7500099 | Introduction to Video Analysis | Beyerer, Arens |

Legend: 📞 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled
8.95 Course: IT-Fundamentals of Logistics [T-MACH-105187]

Responsible: Prof. Dr.-Ing. Frank Thomas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105282 - IT-Fundamentals of Logistics: Opportunities for Digital Transformation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2118184</td>
<td>IT-Fundamentals of Logistics: Opportunities for Digital Transformation</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Thomas</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td></td>
<td></td>
<td>Furmans, Mittwollen, Thomas</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗤 On-Site, ❌ Cancelled

Competence Certificate
The success control takes place in form of a written examination during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered.

Prerequisites
none

Annotation
1) Detailed script can be downloaded online (www.tup.com), updated and enhanced annually.
2) CD-ROM with chapters and exercises at the end of the semester available from the lecturer, also updated and enhanced annually.

Below you will find excerpts from events related to this course:

IT-Fundamentals of Logistics: Opportunities for Digital Transformation
2118184, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)
8.96 Course: Lab Computer-Aided Methods for Measurement and Control [T-MACH-105341]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105291 - Lab Computer-Aided Methods for Measurement and Control

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2137306</td>
<td>Lab Computer-aided methods for measurement and control</td>
<td>3 SWS</td>
<td>Practical course / On-Site</td>
<td>Stiller, Wang</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105341</td>
<td>Lab Computer-Aided Methods for Measurement and Control</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Colloquia

Prerequisites

none

Below you will find excerpts from events related to this course:

Lab Computer-aided methods for measurement and control

2137306, WS 21/22, 3 SWS, Language: German, [Open in study portal](#)

Content

Lerninhalt (EN):

1. Digital technology
2. Digital storage oscilloscope and digital spectrum analyzer
3. Supersonic computer tomography
4. Lighting and image acquisition
5. Digital image processing
6. Image interpretation
7. Control synthesis and simulation
8. Robot: Sensors
9. Robot: Actuating elements and path planning

The lab comprises 9 experiments.

Voraussetzungen: Recommendations:

Basic studies and preliminary examination; basic lectures in automatic control

Arbeitsaufwand (EN): 120 hours

Lernziele (EN):

Powerful and cheap computation resources have led to major changes in the domain of measurement and control. Engineers in various fields are nowadays confronted with the application of computer-aided methods. This lab tries to give an insight into the modern domain of measurement and control by means of practically oriented and flexible experiments. Based on experiments on measurement instrumentation and digital signal processing, elementary knowledge in the domain of visual inspection and image processing will be taught. Thereby, commonly used software like MATLAB/Simulink will be used in both simulation and realization of control loops. The lab closes with selected applications, like control of a robot or supersonic computer tomography.

Nachweis (EN):

Colloquia
Literature

Übungsanleitungen sind auf der Institutshomepage erhältlich.

Instructions to the experiments are available on the institute’s website
8.97 Course: Lab Course Electrical Drives and Power Electronics [T-ETIT-100718]

Responsible: Dr.-Ing. Klaus-Peter Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100401 - Lab Course Electrical Drives and Power Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2306331</td>
<td>Lab Course Electrical Drives and Power Electronics</td>
<td>Becker</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7306331</td>
<td>Lab Course Electrical Drives and Power Electronics</td>
<td>Becker</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
8.98 Course: Lab Course Electrical Power Engineering [T-ETIT-100728]

| Responsible: | Dr.-Ing. Rainer Badent
| | Dr.-Ing. Klaus-Peter Becker |
| Organisation: | KIT Department of Electrical Engineering and Information Technology
| Part of: | M-ETIT-100419 - Lab Course Electrical Power Engineering |

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
</table>
| WT 21/22 | 4 SWS | Practical course /
Lab Course Electrical Power Engineering |
| | | On-Site, | |
| | | Blended (On-Site/Online), |
| | | On-Site, | Cancelled |

Competence Certificate

Success is checked in the form of an oral examination. The overall grade results from the 8 attempts.

Prerequisites

none
8.99 Course: Laboratory Biomedical Engineering [T-ETIT-101934]

Responsible: Prof. Dr. Werner Nahm
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100389 - Laboratory Biomedical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events
- ST 2021 2305276 Laboratory Biomedical Engineering 4 SWS Practical course / ☑️ Nahm

Exams
- ST 2021 7305276 Laboratory Biomedical Engineering Nahm

Legend: ☑️ Online, ☐ Blended (On-Site/Online), ☑️ On-Site, ☑️ Cancelled

Prerequisites
Passed exam of the module "Biomedizinische Messtechnik I".

Modeled Conditions
You have to fulfill one of 2 conditions:

1. The course T-ETIT-106492 - Biomedical Measurement Techniques I must have been passed.
2. The course T-ETIT-101928 - Biomedical Measurement Techniques I must have been passed.
8.100 Course: Laboratory Circuit Design [T-ETIT-100788]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Dr.-Ing. Oliver Sander

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100518 - Laboratory Circuit Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
<th>Course Name</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2311638</td>
<td>Laboratory Circuit Design</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Becker</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7311638</td>
<td>Laboratory Circuit Design</td>
<td>Becker</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7311638</td>
<td>Laboratory Circuit Design</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Prerequisites

none
Course: Laboratory for Applied Machine Learning Algorithms [T-ETIT-109839]

8.101 Course: Laboratory for Applied Machine Learning Algorithms [T-ETIT-109839]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-104823 - Laboratory for Applied Machine Learning Algorithms
M-ETIT-105644 - Information and Automation Technology II/Laboratory for Machine Learning Algorithms

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2311650</td>
<td>Laboratory for Applied Machine Learning Algorithms</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Sax, Stork, Becker</td>
</tr>
</tbody>
</table>

Prerequisites
none
8.102 Course: Laboratory Hardware and Software in Power Electronic Systems [T-ETIT-106498]

Responsible: Prof. Dr.-Ing. Marc Hiller

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-103263 - Laboratory Hardware and Software in Power Electronic Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Description</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2306346</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
<td>4 SWS</td>
<td>Practical course / On-Site</td>
<td>Stoß, Schulz, Hiller</td>
</tr>
<tr>
<td>WT 21/22 2306346</td>
<td>Laboratory Hardware and Software in Power Electronic Systems</td>
<td>4 SWS</td>
<td>Practical course / Blended (On-Site/Online)</td>
<td>Stoß, Schulz, Hiller</td>
</tr>
</tbody>
</table>

Exams

| ST 2021 7306346 | Laboratory Hardware and Software in Power Electronic Systems | Stoß, Becker, Hiller |

Prerequisites
The modules "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" and "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" may neither be started nor completed.

Legend: 🖥 Online, 🤔 Blended (On-Site/Online), 🗿 On-Site, ⌚ Cancelled
8.103 Course: Laboratory Mechatronic Measurement Systems [T-ETIT-106854]

Responsible: Prof. Dr.-Ing. Michael Heizmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-103448 - Laboratory Mechatronic Measurement Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Heizmann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The success control is carried out in the form of a written test of 120 minutes. If there are fewer than 20 candidates, an oral exam of around 20 minutes can alternatively take place. The module grade is the grade of the written or oral exam.

Prerequisites
none

Recommendation
Knowledge from the lectures "Metrology" or "Metrology in Mechatronics" and "Manufacturing Metrology" as well as basic knowledge of programming (e.g. in Matlab, C / C++) are helpful.

Annotation
Annotations

The submission of the protocols of all experiments is required for admission to the examination. The quality of the protocols is assessed; for the admission to the exam, the quality must be acceptable.

Attendance of all laboratory dates including the introductory event is required. Already in the event of a single unexcused absence, admission to the examination will not be granted.
8.104 Course: Laboratory Mechatronics [T-MACH-105370]

Responsible: Prof. Dr. Veit Hagenmeyer
Prof. Dr.-Ing. Wolfgang Seemann
Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102699 - Laboratory Mechatronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Laboratory mechatronics</td>
<td>3 SWS</td>
<td>Practical course / On-Site</td>
<td>Seemann, Stiller, Böhland, Chen, Burgert, Bitner</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The laboratory course is offered exclusively as ungraded course work. The assessment consists of a group colloquium at the beginning of the individual specialization phases (Part 1). In addition, a robot control system for a pick-and-place task must be successfully implemented in the group phase (Part 2).

Prerequisites
None

Below you will find excerpts from events related to this course:

Laboratory mechatronics
2105014, WS 21/22, 3 SWS, Language: German, Open in study portal

Content
Part I
Control, programming and simulation of robots
CAN-Bus communication
Image processing / machine vision
Dynamic simulation of robots in ADAMS

Part II
Solution of a complex problem in team work

Learning objectives:
The student is able to ...

- use his knowledge about mechatronics and microsystems technology to solve a practical problem. The laboratory course comprises simulation, bus communication, measurement instrumentation, control engineering and programming.
- integrate the different subsystems from a manipulator to a working compound system in teamwork.

Nachweis (EN): certificate of successful attendance
Voraussetzung (EN): none
Arbeitsaufwand (EN):
regular attendance: 33.5 h
self-study: 88.5 h

Organizational issues
Das Praktikum ist anmeldepflichtig.
Die Anmeldungsmodalitäten/-fristen werden auf www.iai.kit.edu bekannt gegeben.
Siehe Internet / Aushang Raum 033 EG, im Gebäude 40.32.
Literature
Materialien zum Mechatronik-Praktikum
Manuals for the laboratory course on Mechatronics
8.105 Course: Lightweight Engineering Design [T-MACH-105221]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102696 - Lightweight Engineering Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Module Code</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>ST 2021</td>
<td>Lightweight Engineering Design</td>
<td>2</td>
<td>Lecture</td>
<td>4</td>
<td>76-T-MACH-105221</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td></td>
<td>WT 21/22</td>
<td>Lightweight Engineering Design</td>
<td>2</td>
<td>Lecture</td>
<td>4</td>
<td>76-T-MACH-105221</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🙋 Blended (On-Site/Online), 🗂️ On-Site, x Cancelled

Competence Certificate

Written examination (90 min)

Prerequisites

None

Below you will find excerpts from events related to this course:

Lightweight Engineering Design

2146190, SS 2021, 2 SWS, Language: German, Open in study portal

Content

General aspects of lightweight design, lightweight strategies, construction methods, design principles, lightweight construction, stiffening techniques, lightweight materials, virtual product engineering, bionics, joining techniques, validation, recycling

Additionally, guest speakers from industry will present lightweight design from an practical point of view.

The students are able to ...

- evaluate the potential of central lightweight strategies and their application in design processes.
- apply different stiffing methods qualitatively and to evaluate their effectiveness.
- evaluate the potential of computer-aided engineering as well as the related limits and influences on manufacturing.
- reflect the basics of lightweight construction from a system view in the context of the product engineering process.
Organizational issues
Vorlesungsfolien können über die eLearning-Plattform Ilias bezogen werden.
Die Prüfungsart wird gemäß der Prüfungsordnung zu Vorlesungsbeginn angekündigt:

- Schriftliche Prüfung: 90 min Prüfungsdauer
- Mündliche Prüfung: 20 min Prüfungsdauer
- Erlaubte Hilfsmittel: keine

Medien: Beamer
Arbeitsbelastung:

- Präsenzzeit: 21 h
- Selbststudium: 99 h

Lecture slides are available via eLearning-Platform Ilias.
The type of examination (written or oral) will be announced at the beginning of the lecture:

- written examination: 90 min duration
- oral examination: 20 min duration
- auxiliary means: None

Media: Beamer
Workload:

- regular attendance: 21 h
- self-study: 99 h

Literature
Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
8.106 Course: Linear Electronic Networks [T-ETIT-109316]

Responsible: Prof. Dr. Olaf Dössel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-104519 - Linear Electric Circuits
- M-MACH-104333 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2305256</td>
<td>Linear Electric Circuits</td>
<td>4</td>
<td>Lecture</td>
<td>Dössel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2305258</td>
<td>Linear Electric Circuits (Tutorial to 2305256)</td>
<td>1</td>
<td>Practice</td>
<td>Brenneisen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7305256</td>
<td>Linear Electronic Networks</td>
<td>Dössel</td>
</tr>
</tbody>
</table>

Prerequisites:
none
8.107 Course: Linear Electronic Networks - Workshop A [T-ETIT-109317]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Prof. Dr. Ulrich Lemmer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
M-ETIT-104519 - Linear Electric Circuits
M-MACH-104333 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Type</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>1</td>
<td>Linear Electric Circuits - Workshop A</td>
<td>Lemmer, Leibfried</td>
</tr>
</tbody>
</table>

Prerequisites
none
8.108 Course: Linear Electronic Networks - Workshop B [T-ETIT-109811]

Responsible: Prof. Dr. Olaf Dössel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-ETIT-104519 - Linear Electric Circuits
- M-MACH-104333 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Linear Electronic Networks Workshop B</th>
<th>Type</th>
<th>Practical course</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2305906</td>
<td>1 SWS</td>
<td>Practical course</td>
<td>Dössel</td>
<td></td>
</tr>
</tbody>
</table>

Mechatronics and Information Technology Bachelor Program (B.Sc.)
Module Handbook valid from WT 21/22, Date: 15.09.2021
8.109 Course: Localization of Mobile Agents [T-INFO-101377]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: M-INFO-100840 - Localization of Mobile Agents

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 24613 | Localization of Mobile Agents | 3 SWS | Lecture / 🖥️ | Zea Cobo, Li |

Exams

| ST 2021 | 7500004 | Localization of Mobile Agents | Zea Cobo, Noack |
| WT 21/22 | 7500020 | Localization of Mobile Agents | Zea Cobo |

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Below you will find excerpts from events related to this course:

Localization of Mobile Agents

24613, SS 2021, 3 SWS, Language: German, [Open in study portal]

Lecture (V) Online

Content

This module provides a systematic introduction into the topic of localization methods. In order to facilitate understanding, the module is divided into four main topics. Dead reckoning treats the instantaneous determination of a vehicle's position based on dynamic parameters like velocity or steering angle. Localization with the help of measurements of known landmarks is part of static localization. In addition to the closed-form solutions for particular measurements (distances and angles), the least squares method for fusion arbitrary measurements is also introduced. Dynamic localization treats the combination of dead reckoning and static localization. The central part of the lecture is the derivation of the Kalman filter, which has been successfully applied in several practical applications. Finally, simultaneous localization and mapping (SLAM) is introduced, which allows localization in case of (partly) unknown landmark positions.

Organizational issues

Prüfungsterminvorschläge und das Verfahren dazu sind auf der Webseite der Vorlesung zu finden.

Literature

Grundlegende Kenntnisse der linearen Algebra und Stochastik sind hilfreich.
Course: Logistics and Supply Chain Management [T-MACH-110771]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105298 - Logistics and Supply Chain Management

Type

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Competence Certificate

The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4(2), 2 SPO) may also be offered.

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-102089 - Logistics - Organisation, Design and Control of Logistic Systems must not have been started.

Annotation

The brick cannot be taken if one of the bricks "T-MACH-102089 – Logistics - Organisation, Design and Control of Logistic Systems" and "T-MACH-105181 – Supply Chain Management" has been taken.

Below you will find excerpts from events related to this course:

Logistics and Supply Chain Management
2118078, SS 2021, 4 SWS, Language: English, Open in study portal

Content

In the lecture "Logistics and Supply Chain Management", comprehensive and well-founded fundamentals of crucial issues in logistics and supply chain management are presented. Furthermore, the interaction of different design elements of supply chains is emphasized. For this purpose, both qualitative and quantitative models are presented and applied. Additionally, methods for mapping and evaluating logistics systems and supply chains are described. The contents of the lecture are deepened in exercises and case studies and comprehension is partially reviewed in case studies. The contents will be illustrated, among other things, on the basis of supply chains in the automotive industry.

Among others, the following topics are covered:

- Inventory Management
- Forecasting
- Bullwhip Effect
- Supply Chain Segmentation and Collaboration
- Key Performance Indicators
- Supply Chain Risk Management
- Production Logistics
- Location Planning
- Route Planning

It is intended to provide an interactive format in which students can also contribute (and work alone or in groups). Since logistics and supply chain management (also in times during and after Corona) requires working in an international environment and therefore many terms are derived from English, the lecture will be held in English.
8.111 Course: Machine Dynamics [T-MACH-105210]

Responsible: Prof. Dr.-Ing. Carsten Proppe

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-102694 - Machine Dynamics
- M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
- M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

Type
- Written examination

Credits
- 5

Grading scale
- Grade to a third

Recurrence
- Each summer term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Content</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2161224</td>
<td>Machine Dynamics</td>
<td>2</td>
<td>Lecture</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2161225</td>
<td>Machine Dynamics (Tutorial)</td>
<td>1</td>
<td>Practice</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2021 | 76-T-MACH-105210 | Machine Dynamics | Proppe |

Competence Certificate

written exam, 180 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

V Machine Dynamics

2161224, SS 2021, 2 SWS, Language: English, [Open in study portal](#)

Content

1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Literature

Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953

Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979

Dresig, Vulfson: Dynamik der Mechanismen, 1989

V Machine Dynamics (Tutorial)

2161225, SS 2021, 1 SWS, Language: English, [Open in study portal](#)

Content

Exercises related to the lecture
8.112 Course: Machine Learning 1 - Basic Methods [T-WIWI-106340]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105003 - Machine Learning 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Machine Learning 1 - Fundamental Methods</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Exercises to Machine Learning 1 - Fundamental Methods</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Zöllner, Daaboul, Polley</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Machine Learning 1 - Basic Methods (Registration until 12 July 2021)</td>
<td></td>
<td></td>
<td>Zöllner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the exam will be offered either as an open-book exam, or as a written exam (60 min):

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None.

Below you will find excerpts from events related to this course:

V Machine Learning 1 - Fundamental Methods
2511500, WS 21/22, 2 SWS, Language: German, Open in study portal
Lecture (V)

Content

The field of knowledge acquisition and machine learning is a rapidly expanding field of knowledge and the subject of numerous research and development projects. The acquisition of knowledge can take place in different ways. Thus a system can benefit from experiences already made, it can be trained, or it draws conclusions from extensive background knowledge.

The lecture covers symbolic learning methods such as inductive learning (learning from examples, learning by observation), deductive learning (explanation-based learning) and learning from analogies, as well as sub-symbolic techniques such as neural networks, support vector machines and genetic algorithms. The lecture introduces the basic principles and structures of learning systems and examines the algorithms developed so far. The structure and operation of learning systems is presented and explained with some examples, especially from the fields of robotics and image processing.

Learning objectives:

- Students acquire knowledge of the fundamental methods in the field of machine learning.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.

Literature

Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Machine Learning - Tom Mitchell
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.
Course: Machine Learning 2 – Advanced Methods [T-WIWI-106341]

8.113 Course: Machine Learning 2 – Advanced Methods [T-WIWI-106341]

- **Responsible:** Prof. Dr.-Ing. Johann Marius Zöllner
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-105006 - Machine Learning 2

Type	**Credits**	**Grading scale**	**Recurrence**	**Version**
Written examination | 5 | Grade to a third | Each summer term | 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2511502</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2021 2511503</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

- **ST 2021 7900080**
 - **Machine Learning 2 – Advanced Methods (Registration until 12 July 2021)**
 - **Zöllner**

Competence Certificate

Depending on further pandemic developments, the exam will be offered either as an open-book exam, or as a written exam (60 min).

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Machine Learning 2 - Advanced methods

- **2511502, SS 2021, 2 SWS, Language: German, Open in study portal**

Content

The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.

The lecture "Machine Learning 2" deals with advanced methods of machine learning such as semi-supervised and active learning, deep neural networks (deep learning), pulsed networks, hierarchical approaches, e.g. As well as dynamic, probabilistic relational methods. Another focus is the embedding and application of machine learning methods in real systems.

The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (robotics, neurorobotics, image processing, etc.).

Learning objectives:

- Students understand extended concepts of machine learning and their possible applications.
- Students can classify, formally describe and evaluate methods of machine learning.
- In detail, methods of machine learning can be embedded and applied in complex decision and inference systems.
- Students can use their knowledge to select suitable models and methods of machine learning for existing problems in the field of machine intelligence.

Recommendations:

Attending the lecture **Machine Learning 1** or a comparable lecture is very helpful in understanding this lecture.
Literatur
Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Machine Learning - Tom Mitchell
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.
8.114 Course: Machine Tools and High-Precision Manufacturing Systems [T-MACH-110962]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105107 - Machine Tools and Industrial Handling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 2149910</td>
<td>Lecture / Practice (/ 🧩 Fleischer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 76-T-MACH-110962</td>
<td>Lecture / Practice (/ 🧩 Fleischer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗿 On-Site, ✗ Cancelled

Competence Certificate

Oral exam (40 minutes)

Prerequisites

T-MACH-102158 - Machine Tools and Industrial Handling must not be commenced.
T-MACH-109055 - Machine Tools and Industrial Handling must not be commenced.
T-MACH-110963 - Machine Tools and High-Precision Manufacturing Systems must not be commenced.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110963 - Machine Tools and High-Precision Manufacturing Systems must not have been started.

Below you will find excerpts from events related to this course:

Machine Tools and High-Precision Manufacturing Systems

2149910, WS 21/22, 6 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) Blended (On-Site/Online)
Content
The lecture gives an overview of the construction, use and application of machine tools and high-precision manufacturing systems. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools and high-precision manufacturing systems is conveyed. First, the main components of the systems are systematically explained and their design principles as well as the integral system design are discussed. Subsequently, the use and application of machine tools and high-precision manufacturing systems will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0 and artificial intelligence. Guest lectures from industry round off the lecture with insights into practice.

The individual topics are:

- Structural components of dynamic manufacturing Systems
- Feed axes: High-precision positioning
- Spindles of cutting machine Tools
- Peripheral Equipment
- Machine control unit
- Metrological Evaluation
- Maintenance strategies and condition Monitoring
- Process Monitoring
- Development process for machine tools and high-precision manufacturing Systems
- Machine examples

Learning Outcomes:
The students …

- are able to assess the use and application of machine tools and high-precision manufacturing systems and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of machine tools and high-precision manufacturing systems (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of machine tools and high-precision manufacturing systems.
- are capable of selecting and evaluating machine tools and high-precision manufacturing systems according to technical and economic criteria.

Workload:

MACH:
- regular attendance: 63 hours
- self-study: 177 hours

WING/TVWL:
- regular attendance: 63 hours
- self-study: 207 hours

Organizational issues
Start: 18.10.2021
Vorlesungstermine montags und mittwochs, Übungstermine donnerstags.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Lectures on Mondays and Wednesdays, tutorial on Thursdays.
The tutorial dates will announced in the first lecture.

Literature

Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.115 Course: Manufacturing Measurement Technology [T-ETIT-106057]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-103043 - Manufacturing Measurement Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2302116 | Fertigungsmesstechnik | 2 SWS | Lecture / 🖥 | Heizmann |

Exams

| ST 2021 | 7302116 | Manufacturing Measurement Technology | Heizmann |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗝 On-Site, ✗ Cancelled
 Competence Certificate
The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.

Prerequisites
none

Recommendation
Recommended elective subject: Probability Theory and Statistics

Annotation
Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Below you will find excerpts from events related to this course:
Content

Learning Content:

- Elements of material flow systems (conveyor elements, fork, join elements)
- Models of material flow networks using graph theory and matrices
- Queuing theory, calculation of waiting time, utilization
- Warehousing and order-picking
- Shuttle systems
- Sorting systems
- Simulation
- Calculation of availability and reliability
- Value stream analysis

After successful completion of the course, you are able (alone and in a team) to:

- Accurately describe a material handling system in a conversation with an expert.
- Model and parameterize the system load and the typical design elements of a material handling system.
- Design a material handling system for a task.
- Assess the performance of a material handling system in terms of the requirements.
- Change the main lever for influencing the performance.
- Expand the boundaries of today’s methods and system components conceptually if necessary.

Literature:
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 7. Auflage 2019

Description:
This course is seperated into 5 topic blocks which are structured in the following parts:
- self-study phase
- exercise
- plenary
- case study (group work)
- colloquium
- review of case study

The groups for the case study will be formed at the beginning of the course (first week). The results of the group work during the lecture period are presented and evaluated in writing. During the colloquiums, the result of the case study is presented and the understanding of the group work and the models dealt with in the course are tested in an oral defense. The participation in the colloquiums is compulsory and will be controlled. For the written submission and the presentation the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

We strongly recommend to attend the introductory session on 20th of October 2021. In this session, the teaching concept of “Materialfluss in Logistiksysteme” is explained and outstanding issues are clarified.

The course registration including the group allocation with ILIAS is mandatory. The registration will be open for several days after the introductory session (registration duration: 20.10.2021 14:00 Uhr - 26.10.2021 14:00 Uhr)

Workload:
- Regular attendance: 35 h
- Self-study: 135 h
- Group work: 100 h

Competence Certificate:
The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result and the presentation of the case studies as group work,
 - 20% assessment of the oral examination during the colloquiums as individual performance.
8.117 Course: Mathematical Methods in Continuum Mechanics [T-MACH-110375]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-103205 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2 SWS</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>Böhlke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2 SWS</td>
<td>Mathematical Methods in Continuum Mechanics</td>
<td>Böhlke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written exam (90 min). Additives as announced.

Prerequisites
Passing the Tutorial to Mathematical Methods of Continuum Mechanics (T-MACH-110376)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110376 - Tutorial Mathematical Methods in Continuum Mechanics must have been passed.

Below you will find excerpts from events related to this course:

Mathematical Methods in Continuum Mechanics
2161254, WS 21/22, 2 SWS, Language: German, Open in study portal

Content
Tensor algebra

- vectors; basis transformation; dyadic product; tensors of 2nd order
- properties of 2nd order tensors: symmetry, anti-symmetry, orthogonality etc.
- eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order
- tensor algebra in curvilinear coordinate systems
- tensor analysis in curvilinear coordinate systems
- Differentiation of tensor functions

Application of tensor calculus in strength of materials

- kinematics of infinitesimal and finite deformations
- transport theorem, balance equations, stress tensor
- constitutive equations for solids and fluids
- Formulation of initial-boundary-value problems

Literature
Vorlesungsskript
Schade, H.: Strömungslehre, de Gruyter 2013
Course: Mathematical Methods in Dynamics [T-MACH-105293]

Responsible: Prof. Dr.-Ing. Carsten Proppe
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Practice</td>
<td>1 SWS</td>
<td></td>
<td>Proppe, Oestringer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

ST 2021 76-T-MACH-105293 Mathematical Methods in Dynamics Proppe

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate

written examination, 180 min.

Prerequisites

none

Below you will find excerpts from events related to this course:

Mathematical Methods in Dynamics

Lecture (V) Online

2161206, SS 2021, 2 SWS, Language: German, Open in study portal

Content

The students know precisely the mathematical methods of dynamics. They are able to use the basic mathematical methods for modelling the dynamical behaviour of elastic and rigid bodies. The students also have a basic understanding of the description of kinematics and kinetics of bodies. They also master the alternative formulations based on weak formulations and variational methods and the approximate solution methods for numerical calculations of the moving behaviour of elastic bodies.

Dynamics of continua:
Concept of continuum, geometry of continua, kinematics and kinetics of continua

Variational principles:
Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
Methods of weighted residuals, method of Ritz
Literature
Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994

P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000

M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

Mathematical Methods in Dynamics
2161206, WS 21/22, 2 SWS, Language: German, [Open in study portal](#)

Content
Dynamics of continua:
- Concept of continuum, geometry of continua, kinematics and kinetics of continua

Dynamics of rigid bodies:
- Kinematics and kinetics of rigid bodies

Variational principles:
- Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
- Methods of weighted residuals, method of Ritz

Applications

Literature
Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994

P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000

M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

Übungen zu Mathematische Methoden der Dynamik
2161207, WS 21/22, 1 SWS, Language: German, [Open in study portal](#)

Content
Exercises related to the lecture
8 COURSES

Course: Mathematical Methods in Fluid Mechanics [T-MACH-105295]

8.119 Course: Mathematical Methods in Fluid Mechanics [T-MACH-105295]

Responsible: Prof. Dr.-Ing. Bettina Frohnapfel
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2154432</td>
<td>Lecture</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
<td>Frohnapfel</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>2154433</td>
<td>Practice</td>
<td>Tutorial in Mathematical Methods of Fluid Mechanics</td>
<td>Practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
<td>Frohnapfel</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>2154540</td>
<td>Lecture</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
<td>Magagnato, Gatti</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105295</td>
<td>Lecture</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
<td>Frohnapfel, Gatti</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105295 (engl.)</td>
<td>Lecture</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
<td>Frohnapfel</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105295</td>
<td>Lecture</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
<td>Frohnapfel</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105295 (engl.)</td>
<td>Lecture</td>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
<td>Frohnapfel, Gatti</td>
<td></td>
</tr>
</tbody>
</table>

Legend: ☐ Online, ☐ Blended (On-Site/Online), ☒ On-Site, ☐ Cancilled

Competence Certificate
written examination - 3 hours

Prerequisites
none

Recommendation
Basic Knowledge about Fluid Mechanics

Below you will find excerpts from events related to this course:

Mathematical Methods in Fluid Mechanics
2154432, SS 2021, 2 SWS, Language: German/English, Open in study portal

Content
The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Potential flow theory
- Creeping flows
- Lubrication theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.
Content

The exercises will practise the lecture topics:

- Curvilinear coordinates and tensor calculus
- Potential flow theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

Organizational issues

Die Übungen zu Mathematische Methoden der Strömungslehre findet gemeinsam mit der englischen Übung statt.

Content

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.

The lecture will cover a selection of the following topics:

- Potential flow theory
- Creeping flows
- Lubrication theory
- Boundary-layer theory
- Laminar-turbulent transition (linear stability theory)
- Turbulent flows
- Numerical solution of the governing equation (finite difference methods)

The students can to simplify the Navier-Stokes equations for specific flow problems. They are able to employ mathematical method in fluid mechanics effectively in order to solve the resulting conservation equations analytically, if possible, or to enable simpler numerical access to the problem. They can describe the limits of applicability of the assumptions made to model the flow behavior.
8.120 Course: Mathematical Methods of Vibration Theory [T-MACH-105294]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
- M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Mathematical methods of vibration theory</th>
<th>2 SWS</th>
<th>Lecture / 🧩</th>
<th>Seemann</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2162241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Mathematical methods of vibration theory (Tutorial)</th>
<th>2 SWS</th>
<th>Practice / 🧩</th>
<th>Seemann, Burgert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2162242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th>76-T-MACH-105294</th>
<th>Mathematical Methods of Vibration Theory</th>
<th>Seemann</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written examination, 180 min.

Prerequisites
none

Recommendation
Engineering Mechanics III/IV

Below you will find excerpts from events related to this course:

V Mathematical methods of vibration theory
2162241, SS 2021, 2 SWS, Language: German, [Open in study portal]

Content
Linear, time-invariant, ordinary single differential equations: homogeneous solution; harmonic, periodic and non-periodic excitations; Duhamel's integral; Fourier and Laplace transform; introduction into the theory of distributions; Systems of ordinary differential equations: matrix notation, eigenvalue theory, fundamental matrix, forced vibrations via modal expansion and transition matrix; Introduction into the dynamic stability theory; Partial differential equations: solution in product form, eigenvalue theory, modal expansion using Ritz series; Variational methods, Hamilton's principle, boundary value problems representing vibrating continua; Perturbation methods

Literature
Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik

V Mathematical methods of vibration theory (Tutorial)
2162242, SS 2021, 2 SWS, Language: German, [Open in study portal]

Content
Seven tutorials with examples of the contents of the course

Literature
Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
8.121 Course: Measurement [T-ETIT-101937]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102652 - Measurement Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2 SWS</td>
<td>Measurement</td>
<td></td>
<td>Heizmann</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>1 SWS</td>
<td>Exercise for 2302105 Measurement</td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

| Exams | | | Heizmann |
|----------------------------|---------|--------------------------------|------------|-------------|
| ST 2021 | Measurement technology | 7302105 |
8.122 Course: Mechanical Design Basics I and II [T-MACH-110363]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101299 - Mechanical Design

Type
Written examination

Credits
6

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2146131</td>
<td>Mechanical Design Basics II</td>
<td>2 SWS Lecture / 🧩 Albers, Matthiesen, Behrendt</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2145131</td>
<td>Mechanical Design Basics I</td>
<td>2 SWS Lecture / 🗣 Albers, Matthiesen, Behrendt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-104739</td>
<td>Mechanical Design Basics I and II</td>
<td>Matthiesen, Albers</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written Exam (90 min) on the topics of MKLG I and MKLG II.

Prerequisites

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110364 - Mechanical Design Basics I, Tutorial must have been passed.
2. The course T-MACH-110365 - Mechanical Design Basics II, Tutorial must have been passed.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Mechanical Design Basics II</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2146131, SS 2021, 2 SWS, Language: German, Open in study portal</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>
Content
Design
Dimensioning
Component connections
Bolted connection

Prerequisites:
MIT:
In a workshop with 3 project sessions the students will be divided into groups and their knowledge will be tested. Attendance in all 3 project sessions is compulsory and is checked. In colloquia the knowledge from the lecture will be tested at the beginning of the project sessions. The successful completion of the colloquia as well as the completion of the workshop task is a prerequisite for successful participation.

CIW/ VT/ IP-M/ WiING/ MATH/ MWT:
During the lecture, students must apply the knowledge from MKL I and II to a design task. This is then evaluated and must be passed for successful participation.

NWT:
For students of the subject area NWT, the creation of a teaching video for the teaching of a technical system must be completed instead as a preliminary examination.

Workload:
Presence time: 21 h
Self study: 51 h

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Mechanical Design Basics I
2145131, WS 21/22, 2 SWS, Language: German, Open in study portal
Course: Mechanical Design Basics I, Tutorial [T-MACH-110364]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2145132</td>
<td>Tutorials Mechanical Design Basics I</td>
<td>1 SWS</td>
<td>Practice / -</td>
<td>Albers, Matthiesen, Behrendt, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚾ Blended (On-Site/Online), ⚒ On-Site, ❌ Cancelled

Competence Certificate

To pass the preliminary work, attendance at 3 workshop sessions of the MKL1 transmission workshop and the passing of a colloquium at the beginning of each workshop are prerequisites.

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorials Mechanical Design Basics I

2145132, WS 21/22, 1 SWS, Language: German, Open in study portal

Practice (Ü)
On-Site

Literature

Konstruktionselemente des Maschinenbaus - 1 und 2

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.124 Course: Mechanical Design Basics II, Tutorial [T-MACH-110365]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Events

ST 2021 2146132 Tutorials Mechanical Design Basics II 2 SWS Practice / Blended (On-Site/Online) Albers, Matthiesen, Mitarbeiter

Exams

ST 2021 76-T-MACH-102133 Mechanical Design Basics II, Tutorial 2 SWS Albers, Matthiesen

Legend: 🖥 Online, ☰ Blended (On-Site/Online), ☘ On-Site, ☒ Cancelled

Competence Certificate
C IW/ VT/ IP-M/ WiING/ MATH/ MWT: For passing the prerequisite it is necessary that a design task is successfully completed as a technical hand drawing
MIT: To pass the preliminary examination, attendance at workshop sessions and a colloquium at the beginning of each workshop are required.
NWT: For students of the subject area NwT, the creation of a teaching video for the teaching of a technical system must be completed instead as a preliminary examination.

Prerequisites
None

Below you will find excerpts from events related to this course:

Tutorials Mechanical Design Basics II
2146132, SS 2021, 2 SWS, Language: German, Open in study portal

Practice (Ü)
Blended (On-Site/Online)
Content
Design
Dimensioning
Component connections
Bolted connection

Prerequisites:

MIT:
In a workshop with 3 project sessions the students will be divided into groups and their knowledge will be tested. Attendance in all 3 project sessions is compulsory and is checked. In colloquia the knowledge from the lecture will be tested at the beginning of the project sessions. The successful completion of the colloquia as well as the completion of the workshop task is a prerequisite for successful participation.

CIW/ VT/ IP-M/ WiING / MATH/ MWT:
During the lecture, students must apply the knowledge from MKL I and II to a design task. This is then evaluated and must be passed for successful participation.

NWT:
For students of the subject area NWT, the creation of a teaching video for the teaching of a technical system must be completed instead as a preliminary examination.

Workload:
MIT Students:
Presence time: 18 h
Self study: 30 h

CIW/ VT/ IP-M/ WiING / NWT/ MATH/ MWT
Presence time: 10,5 h
Self study: 37,5 h

Literature
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
Course: Mechanical Design III & IV [T-MACH-104810]

8.125 Course: Mechanical Design III & IV [T-MACH-104810]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>11</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Mechanical Design IV</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Mechanical Design IV Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Mechanical Design III</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Mechanical Design III (Lecture)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Mechanical Design III & IV</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Mechanical Design III & IV (english)</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate

- written part duration 60 min and
- design part duration 180 min

Sum: 240 min

Prerequisites

Admission to the exam only with successful completion of the Mechanical Design III, Tutorial and Mechanical Design IV, Tutorial.

Modeled Conditions

You have to fulfill one of 2 conditions:

1. The course T-MACH-110955 - Mechanical Design III, Tutorial must have been passed.
2. The course T-MACH-110956 - Mechanical Design IV, tutorial must have been passed.

Below you will find excerpts from events related to this course:

Mechanical Design III

2145151, WS 21/22, 2 SWS, Language: German, Open in study portal
Literatur
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3(für Fortgeschrittene)

V Mechanical Design III (Lecture)
3145016, WS 21/22, 2 SWS, Language: English, Open in study portal

Literatur
Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3(für Fortgeschrittene)
8.126 Course: Mechanical Design III, Tutorial [T-MACH-110955]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>2145153</th>
<th>Tutorials Mechanical Design III</th>
<th>2 SWS</th>
<th>Practice / 💬</th>
<th>Albers, Matthiesen, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2145154</td>
<td>Mechanical Design III Workshop</td>
<td>1 SWS</td>
<td>Practical course / 💬</td>
<td>Albers, Matthiesen, Albers Assistenten</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>3145017</td>
<td>Mechanical Design III (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / 💬</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>3145018</td>
<td>Mechanical Design III (Workshop)</td>
<td>1 SWS</td>
<td>/ 💬</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Exams

| WT 21/22 | 76-T-MACH-110955 | Mechanical Design III, Constructing with Team | Albers, Matthiesen |

Legend: 🖥 Online, 🎤 Blended (On-Site/Online), 🗿 On-Site, ✗ Cancelled

Competence Certificate

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single CAD-workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorials Mechanical Design III

2145153, WS 21/22, 2 SWS, Language: German, [Open in study portal](#)

Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:

Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III Workshop

2145154, WS 21/22, 1 SWS, [Open in study portal](#)

Practical course (P)
On-Site
Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)

Mechanical Design III (Tutorial)
3145017, WS 21/22, 2 SWS, Language: English, Open in study portal

Organizational issues
Termine siehe Lehrveranstaltung 2145154

Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.127 Course: Mechanical Design IV, tutorial [T-MACH-110956]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	2146184	Tutorials Mechanical Design IV	1 SWS	Practice / 🗓️	Albers, Matthiesen, Mitarbeiter
ST 2021	2146187	Workshop 'Mechanical Design IV'	1 SWS	/ 🗓️	Albers, Matthiesen, Mitarbeiter
ST 2021	3146021	Mechanical Design IV Tutorials	1 SWS	Practice / 🗓️	Albers, Mitarbeiter
ST 2021	3146022	Mechanical Design IV Workshop	1 SWS	/ 🗓️	Albers, Mitarbeiter

Exams

| ST 2021 | 76-T-MACH-105285 | Mechanical Design IV, tutorial | Albers, Matthiesen |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓️ On-Site, ✗ Cancelled

Competence Certificate
Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites
None

Below you will find excerpts from events related to this course:

Mechanical Design IV Workshop
3146022, SS 2021, 1 SWS, Language: English, Open in study portal
On-Site

Organizational issues
Registration required, information on the IPEK website.

Literature
Konstruktionselemente des Maschinenbaus - 1 and 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.128 Course: Mechanics in Microtechnology [T-MACH-105334]

Responsible: Prof. Dr. Christian Greiner
Dr. Patric Gruber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102713 - Mechanics in Microtechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Code Details</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2181710</td>
<td>Mechanics in Microtechnology</td>
<td>Lecture / Blended</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Gruber, Greiner</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Code Details</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105334</td>
<td>Mechanics in Microtechnology</td>
<td>Gruber, Greiner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination, ca. 30 min

Prerequisites

none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Code Details</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanic in Microtechnology</td>
<td>2181710</td>
<td>WS 21/22, 2 SWS, Language: German</td>
<td>Lecture (V)</td>
<td>Blended (On-Site/Online)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

1. Introduction: Application and Processing of Microsystems
2. Scaling Effects
3. Fundamentals: Stress and Strain, (anisotropic) Hooke's Law
4. Fundamentals: Mechanics of Beams and Membranes
5. Thin Film Mechanics: Origin and Role of Mechanical Stresses
6. Characterization of Mechanical Properties of Thin Films and Small Structures: Measurement of Stresses and Mechanical Parameters such as Young's Modulus and Yield Stress; Thin Film Adhesion and Stiction
7. Transduction: Piezo-resistivity, Piezo-electric Effect, Electrostatics,...
8. Aktuation: Inverse Piezo-electric Effect, Shape Memory, Electromagnetic Actuation,...

The students know and understand size and scaling effects in micro- and nanosystems. They understand the impact of mechanical phenomena in small dimensions. Based on this they can judge how they determine material processing as well as working principles and design of microsensors and microactuators.

regular attendance: 22.5 hours
self-study: 97.5 hours
oral exam ca. 30 minutes

Literature

Foliens,
2. L.B. Freund and S. Suresh: "Thin Film Materials"
8.129 Course: Mechano-Informatics and Robotics [T-INFO-101294]

Responsible: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: M-INFO-100757 - Mechano-Informatics and Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Number</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2400077</td>
<td>Mechano-Informatics and Robotics</td>
<td>Lecture / 🧩</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Number</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500217</td>
<td>Nachprüfung: Mechano-Informatics and Robotics</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500176</td>
<td>Mechano-Informatics and Robotics</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🎤 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Content

The lecture addresses various engineering and algorithmic aspects and topics in robotics which are illustrated and explained based on examples originating from current research conducted in the field of humanoid robotics. First, this lecture gives an introduction into the mathematical fundamentals which are needed to describe a robotic system as well as the basic algorithms commonly applied in motion planning.

Subsequently, models and methods are introduced with which dynamical systems can be formalized and which can be used to encode and represent robot actions. To do so, we will discuss linear time-invariant systems in state.

Learning Objectives:

Based on the example of robotics students understand the synergistic effects and interdisciplinarity of mechatronics and informatics, the embedded systems, the control, and the methods and the algorithms. They are acquainted with the basic terminology and the methods which are common in robotics, signal processing, action representation, machine learning and cognitive systems. They are capable of applying fundamental state-of-the-art methods and tools for the development and programming of robots. Based on examples originating from current research conducted in the fields of humanoid robotics, the students interactively learn how to identify and formalize problems and tasks and how to develop solutions in an analytical and goal-directed way.

Organizational issues

Zugehörige Veranstaltungen: Empfehlung - Basispraktikum Mobile Roboter

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand:

- 2h Präsenz
- + 2*2h = 4h Vor/Nachbereitung
- + 30h Prüfungsvorbereitung
- 120h
8.130 Course: Mechatronical Systems and Products [T-MACH-105574]

Responsible:
Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-102749 - Mechatronical Systems and Products

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>2303003</th>
<th>Exercise for 2303161 Mechatronical Systems and Products</th>
<th>1 SWS</th>
<th>Practice / 🗣</th>
<th>Matthiesen, Hohmann, N.N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2303161</td>
<td>Mechatronical Systems and Products</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Matthiesen, Hohmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>76-T-MACH-105574 Mechatronical Systems and Products</th>
<th>Matthiesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105574 Mechatronical Systems and Products</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate
written examination (duration: 60min)

Prerequisites
Successful participation in the workshop Mechatronic Systems and Products is mandatory for admission to the examination.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-108680 - Workshop Mechatronical Systems and Products must have been passed.

Annotation
All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey "Anmeldung und Gruppeneinteilung" in ILIAS before the start of the semester.
8.131 Course: Medical Imaging Techniques I [T-ETIT-101930]

Responsible: Prof. Dr. Olaf Dössel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100384 - Medical Imaging Techniques I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2305261</td>
<td>Medical Imaging Techniques I</td>
<td>2 SWS</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Competence Certificate

Success control is carried out in the form of a written test of 120 minutes.

Prerequisites

none
8.132 Course: Medical Robotics [T-INFO-101357]

Responsible: Prof. Dr.-Ing. Torsten Kröger
Jun.-Prof. Dr. Franziska Mathis-Ullrich

Organisation: KIT Department of Informatics
Part of: M-INFO-100820 - Medical Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 24681 | Medical Robotics | 2 SWS | Lecture / 🖥 | Mathis-Ullrich |

Exams

| ST 2021 | 7500244 | Medical Robotics | Mathis-Ullrich |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
8 COURSES

Course: Methods and Processes of PGE - Product Generation Development [T-MACH-109192]

8.133 Course: Methods and Processes of PGE - Product Generation Development [T-MACH-109192]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102718 - Product Development - Methods of Product Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2146176</td>
<td>Methods and processes of PGE - Product Generation Development</td>
<td>4 SWS</td>
<td>Lecture / Online</td>
<td>Albers</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105382</td>
<td>Product Development - Methods of Product Development</td>
<td>Albers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105382-en</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105382</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers, Burkardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105382-en</td>
<td>Methods and Processes of PGE - Product Generation Engineering</td>
<td>Albers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Written exam (processing time: 120 min + 10 min reading time)
Auxiliaries:
- Calculator
- German dictionary (books only)

Prerequisites
None

Annotation
This lecture is the basis for the main subject Integrated Product Development, which is offered as a specialisation.

Below you will find excerpts from events related to this course:

Methods and processes of PGE - Product Generation Development
2146176, SS 2021, 4 SWS, Language: German, Open in study portal

Lecture (V) Online
Content

Note:
This lecture is the basis for the main subject Integrated Product Development, which is offered as a specialisation.

Recommendations:
none

Workload:
regular attendance: 39 h
self-study: 141 h

Examination:
Written exam
Duration: 120 minutes (+10 minutes reading time)

Auxiliaries:
- Calculator
- German dictionary (books only)

Course content:
Basics of Product Development: Basic Terms, Classification of the Product
Development into the industrial environment, generation of costs / responsibility for costs
Concept Development: List of demands / Abstraction of the Problem Definition / Creativity Techniques / Evaluation and selection of solutions
Drafting : Prevailing basic rules of Design / Design Principles as a problem oriented accessory
Rationalization within the Product Development: Basics of Development
Management/ Simultaneous Engineering and Integrated Product Development/Development of Product Lines and Modular Construction Systems
Quality Assurance in early Development Phases : Methods of Quality Assurance in an overview/QFD/FMEA

Learning objectives:
The students are able to ...
- classify product development in companies and differentiate between different types of product development.
- name the relevant influencing factors of a market for product development.
- name, compare and use the central methods and process models of product development within moderate complex technical systems.
- explain problem solving techniques and associated development methods.
- explain product profiles and to differentiate and choose suitable creative techniques of solution/idea generation finding on this basis.
- use design guidelines to create simple technical systems and to explain these guidelines.
- name and compare quality assurance methods; to choose and use suitable methods for particular applications.
- explain the different methods of design of experiment.
- explain the costs in development process.

Literature
Vorlesungsunterlagen
Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997
Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag, 1993
8.134 Course: Microactuators [T-MACH-101910]

Responsible: Prof. Dr. Manfred Kohl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100487 - Microactuators

Type: Written examination

Credits: 4

Grading scale: Grade to a third

Recurrence: Each summer term

Version: 2

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2142881 Microactuators 2 SWS Lecture / 🖥 Kohl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-101910 Microactuators KOHL</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⬇ On-Site, ✗ Cancelled

Competence Certificate
written exam, 60 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Microactuators
2142881, SS 2021, 2 SWS, Language: German, Open in study portal

Content
- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications

The lecture includes amongst others the following topics:

- Microelectrotechnical systems: linear actuators, microrelais, micromotors
- Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
- Microrobotics: Microgrippers, polymer actuators (smart muscle)
- Information technology: Optical switches, mirror systems, read/write heads

Literature
- Folienskript "Mikroaktorik"
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
Course: Microenergy Technologies [T-MACH-105557]

8.135 Course: Microenergy Technologies [T-MACH-105557]

Responsible: Prof. Dr. Manfred Kohl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102714 - Microenergy Technologies

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>Kohl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination (30 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

Microenergy Technologies

2142897, SS 2021, 2 SWS, Language: English, [Open in study portal](#)

Content

- Basic physical principles of energy conversion
- Layout and design optimization
- Technologies
- Selected devices
- Applications

The lecture includes amongst others the following topics:

Micro energy harvesting of vibrations
Thermal micro energy harvesting
Microtechnical applications of energy harvesting
Heat pumps in micro technology
Micro cooling

Literature

- Folienskript "Micro Energy Technologies"
8.136 Course: Mobile Computing and Internet of Things [T-INFO-102061]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-101249 - Mobile Computing and Internet of Things

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exami</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2400051</td>
<td>Mobile Computing and Internet of Things</td>
<td>2+1 SWS</td>
<td>Lecture / Practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500107_0621</td>
<td>Mobile Computing and Internet of Things</td>
<td></td>
<td>Beigl</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500107_0819</td>
<td>Mobile Computing and Internet of Things</td>
<td></td>
<td>Beigl</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500145</td>
<td>Mobile Computing and Internet of Things</td>
<td></td>
<td>Beigl</td>
</tr>
</tbody>
</table>
8.137 Course: Modelling and Simulation [T-MACH-100300]

- **Responsible:** Prof. Dr. Peter Gumbsch
 Prof. Dr. Britta Nestler
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:**
 - M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
 - M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Course Code</th>
<th>Course Name</th>
<th>CR (SWS)</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2183703</td>
<td>Modelling and Simulation</td>
<td>2+1</td>
<td>Lecture / Practice (VÜ)</td>
<td>Nestler</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2183703</td>
<td>Numerical methods and simulation techniques</td>
<td>3</td>
<td>Lecture / Practice (VÜ)</td>
<td>Nestler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Course Name</th>
<th>CR (SWS)</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>Nestler</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-100300</td>
<td>Modelling and Simulation</td>
<td>Nestler</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- 🤖 Online,
- 🧩 Blended (On-Site/Online),
- 🗣 On-Site,
- ☑ Cancelled

Competence Certificate

Written exam, 90 min

Prerequisites

none

Recommendation

preliminary knowledge in mathematics, physics and materials science

Below you will find excerpts from events related to this course:

Modelling and Simulation

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CR (SWS)</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2183703</td>
<td>2+1</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>
Content
The course gives an introduction to modelling and simulation techniques.
The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises
The student can
- explain the basic algorithms and numerical methods which are beside other applications relevant for materials simulations.
- describe and apply numerical solution methods for partial differential equations and dynamical systems
- apply numerical methods to solve heat and mass diffusion problems which can also be used to model microstructure formation processes
- has experiences in how to implement and program the introduced numerical methods from an integrated computer lab.

preliminary knowledge in mathematics, physics and materials science recommended
regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours
We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.
written examination: 90 minutes

Organizational issues
Die Termine für die Übungen werden in der Vorlesung und im Ilias bekannt gegeben.

Literature

Numerical methods and simulation techniques
2183703, WS 21/22, 3 SWS, Language: German, [Open in study portal]

Lecture / Practice (VÜ)
Online
Literature

8.138 Course: Modelling of Microstructures [T-MACH-105303]

Responsible: Dr. Anastasia August
Prof. Dr. Britta Nestler

Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Dates</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Professor/Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2183702</td>
<td>Modelling of Microstructures</td>
<td>Lecture / Practice (VÜ)</td>
<td>3 SWS</td>
<td>August, Nestler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Dates</th>
<th>Code</th>
<th>Type</th>
<th>Professor/Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>August, Nestler, Weygand</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105303</td>
<td>Modelling of Microstructures</td>
<td>August, Nestler, Weygand</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☠ Cancelled

Competence Certificate

oral exam 30 min

Prerequisites

none

Recommendation

materials science
fundamental mathematics

Below you will find excerpts from events related to this course:

Modelling of Microstructures

2183702, WS 21/22, 3 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)

Online
Content

- Brief Introduction in thermodynamics
- Statistical interpretation of entropy
- Gibbs free energy and phase diagrams
- Free energy functional
- Phasefield equation
- Gibbs-Thomson-equation
- Driving forces
- Grand chemical potential functional and the evolution equations
- For compare: Free energy functional with driving forces

The student can

- explain the thermodynamic and statistical foundations for liquid-solid and solid-solid phase transition processes and apply them to construct phase diagrams.
- describe the specific characteristics of dendritic, eutectic and peritectic microstructures.
- explain the mechanisms of grain and phase boundary motion induced by external fields
- use the phase-field method for simulation of microstructure formation processes using modeling approaches and challenges of current research
- has experiences in computing and conduction simulations of microstructure formation from an integrated computer lab.

knowledge in materials science and in fundamental mathematics recommended

regular attendance: 22,5 hours lecture, 11,5 hours exercises
self-study: 116 hours

We regularly hand out exercise sheets. The individual solutions will be corrected.

oral exam ca. 30 min

Literature

4. Gaskell, D.R., Introduction to the thermodynamics of materials
5. Übungsblätter
Course: Motor Vehicle Labor [T-MACH-105222]

Responsible: Dr.-Ing. Michael Frey
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102695 - Motor Vehicle Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2115808 | Motor Vehicle Laboratory | 2 SWS | Practical course / Online | Frey |
| WT 21/22 | 2115808 | Motor Vehicle Laboratory | 2 SWS | Practical course / On-Site | Frey, Böse, Vollat |

Exams

| ST 2021 | 76-T-MACH-105222 | Motor Vehicle Labor | 2 SWS | Frey, Unrau |
| WT 21/22 | 76-T-MACH-105222 | Motor Vehicle Laboratory | 2 SWS | Frey, Unrau |

Legend: Online, Blended (On-Site/Online), On-Site, C Cancelled

Competence Certificate
Colloquium before each experiment
After completion of the experiments: written examination
Duration: 90 minutes
Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Motor Vehicle Laboratory
2115808, SS 2021, 2 SWS, Language: German, Open in study portal

Content
1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle
2. Investigation of a twin-tube and a single-tube shock absorber
3. Behavior of car tyres under longitudinal forces and lateral forces
4. Behavior of car tires on wet road surface
5. Rolling resistance, energy dissipation and high-speed strength of car tires
6. Investigation of the moment transient characteristic of a Visco clutch

Learning Objectives:
The students have deepened their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions. They are ready to analyze and to judge measurement results.
Organizational issues
Genauer Ort und Termine sowie weitere Infos siehe Institutshomepage.

Einteilung in
- Gruppe A: Mo 14:00 - 15:30
- Gruppe B: Mo 16:00 - 17:30
- Gruppe C: Di 09:00 - 10:30
- Gruppe D: Di 11:00 - 12:30
- Gruppe E: Di 14:00 - 15:30
- Gruppe F: Di 16:00 - 17:30

Content
1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle
2. Investigation of a twin-tube and a single-tube shock absorber
3. Behavior of car tyres under longitudinal forces and lateral forces
4. Investigation of acoustic behaviour of vehicles
5. Rolling resistance, energy dissipation and high-speed strength of car tires
6. Investigation of the moment transient characteristic of a Visco clutch

Learning Objectives:
The students have deepened their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions. They are ready to analyze and to judge measurement results.

Organizational issues
Genauer Ort und Termine sowie weitere Hinweise: siehe Institutshomepage.

Einteilung:
Gruppe A: Mo 14:00-15:30
Gruppe B: Mo 16:00-17:30
Gruppe C: Di 09:00-10:30
Gruppe D: Di 11:00-12:30
Gruppe E: Di 14:00-15:30
Gruppe F: Di 16:00-17:30

Literature

8.140 Course: Novel Actuators and Sensors [T-MACH-102152]

Responsible: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105292 - Novel Actuators and Sensors

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Novel actuators and sensors
2141865, WS 21/22, 2 SWS, Language: German, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Literature
- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
8.141 Course: Numerical Methods - Exam [T-MATH-111700]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>apl. Prof. Dr. Peer Kunstmann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Michael Plum</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Wolfgang Reichel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organisation</th>
<th>KIT Department of Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of</td>
<td>M-MATH-105831 - Numerical Methods</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Success control takes the form of a written examination (120 minutes).

Prerequisites
none
8.142 Course: Optics and Solid State Electronics [T-ETIT-109444]

Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104067 - Optics and Solid State Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2021 | 7313719 | Optics and Solid State Electronics | Lemmer, Neumann |

Prerequisites

none
8 COURSES

Course: Optoelectronic Components [T-ETIT-101907]

8.143 Course: Optoelectronic Components [T-ETIT-101907]

Responsible: Prof. Dr. Wolfgang Freude
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100509 - Optoelectronic Components

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2309486</td>
<td>Optoelectronic Components</td>
<td>2 SWS</td>
<td>Freude</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2309487</td>
<td>Optoelectronic Components (Tutorial)</td>
<td>1 SWS</td>
<td>Freude</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7300009</td>
<td>Optoelectronic Components - repeat exam</td>
<td></td>
<td>Freude</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7309486</td>
<td>Optoelectronic Components</td>
<td></td>
<td>Freude</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7309486</td>
<td>Optoelectronic Components</td>
<td></td>
<td>Freude</td>
</tr>
</tbody>
</table>

Legend: § Online, ▪ Blended (On-Site/Online), ♻ On-Site, ✗ Cancelled

Prerequisites

none
8.144 Course: Optoelectronics [T-ETIT-100767]

Responsible: Prof. Dr. Ulrich Lemmer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100480 - Optoelectronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2313726</td>
<td>Optoelectronics</td>
<td>2</td>
<td>Lecture /🗣️️</td>
<td>Lemmer</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2313728</td>
<td>Übungen zu 2313726 Optoelektronik</td>
<td>1</td>
<td>Practice</td>
<td>Lemmer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7313726</td>
<td>Optoelectronics</td>
<td>Lecture /🗣️️</td>
<td>Lemmer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
The success check is carried out in the context of a written exam.

Prerequisites
none

Recommendation
Knowledge of solid state electronics
8 COURSES

Course: Organ Support Systems [T-MACH-105228]

8.145 Course: Organ Support Systems [T-MACH-105228]

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102702 - Organ Support Systems

Type: Written examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination (Duration: 45min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Organ support systems

2106008, SS 2021, 2 SWS, Language: German, Open in study portal

Content

Content:

• Introduction: Definitions and classification of organ support and replacement.
• Special topics: acoustic and visual prostheses, exoskeletons, neuroprostheses, tissue-engineering, hemodialysis, heart-lung machine, artificial hearts, biomaterials.

Learning objectives:
Students have fundamental knowledge about functionality of organ support systems and its components. An analysis of historical developments can be done and limitations of current systems can be found. The limits and possibilities of transplantations can be elaborated.

Literature

• Jürgen Werner: Kooperative und autonome Systeme der Medizintechnik: Funktionswiederherstellung und Organersatz. Oldenbourg Verlag.
• E. Wintermantel, Suk-Woo Ha: Medizintechnik. Springer Verlag.
8.146 Course: Photovoltaic System Design [T-ETIT-100724]

Responsible: Dipl.-Ing. Robin Grab
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100411 - Photovoltaic System Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture Queensland</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2307380</td>
<td>2 SWS</td>
<td>Photovoltaische Systemtechnik</td>
<td>Grab, Präger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7307380</td>
<td></td>
<td>Photovoltaics</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Prerequisites

none
8.147 Course: Physical Basics of Laser Technology [T-MACH-102102]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
- M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>3 SWS</td>
<td>Lecture / Practice</td>
<td>Schneider</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>3 SWS</td>
<td>Physical Basics of Laser Technology</td>
<td>Schneider</td>
<td>3</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate
oral examination (30 min)

no tools or reference materials

Prerequisites
It is not possible, to combine this brick with brick Laser Application in Automotive Engineering [T-MACH-105164] and brick Physical Basics of Laser Technology [T-MACH-109084]

Recommendation
Basic knowledge of physics, chemistry and material science

Below you will find excerpts from events related to this course:

Physical basics of laser technology
2181612, WS 21/22, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ) Online
Content
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focuses on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
- safety aspects

The lecture is complemented by a tutorial.

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- can describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- can illustrate the possible applications of laser sources in measurement and medicine technology
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.

regular attendance: 33,5 hours
self-study: 116,5 hours

The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

It is allowed to select only one of the lectures "Laser in automotive engineering" (2182642) or "Physical basics of laser technology" (2181612) during the Bachelor and Master studies.

Organizational issues
Termine für die Übung werden in der Vorlesung bekannt gegeben!

Literature
T. Graf: Laser - Grundlagen der Laserstrahlerzeugung 2015, Springer Vieweg
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.148 Course: Physics for Engineers [T-MACH-100530]

Responsible: Prof. Dr. Martin Dienwiebel
Prof. Dr. Peter Gumbsch
apl. Prof. Dr. Alexander Nesterov-Müller
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
- M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2142890</th>
<th>Physics for Engineers</th>
<th>4 SWS</th>
<th>Lecture / Practice (/)</th>
<th>Weygand, Dienwiebel, Nesterov-Müller, Gumbsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>76-T-MACH-100530</th>
<th>Physics for Engineers</th>
<th></th>
<th>Gumbsch, Weygand, Nesterov-Müller, Dienwiebel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: ☂ Online, ☘ Blended (On-Site/Online), ⚪ On-Site, ✗ Cancelled

Competence Certificate

written exam 90 min

Prerequisites

none

Below you will find excerpts from events related to this course:

Physics for Engineers

2142890, SS 2021, 4 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)

Online
Content
1) Foundations of solid state physics
 - Wave particle dualism
 - Tunnelling
 - Schrödinger equation
 - H-atom

2) Electrical conductivity of solids
 - solid state: periodic potentials
 - Pauli Principle
 - band structure
 - metals, semiconductors and isolators
 - p-n junction / diode

3) Optics
 - quantum mechanical principles of the laser
 - linear optics
 - non-linear optics

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students and for testing progress in learning of the topics.

The student
 - has the basic understanding of the physical foundations to explain the relationship between the quantum mechanical principles and the optical as well as electrical properties of materials
 - can describe the fundamental experiments, which allow the illustration of these principles

regular attendance: 22,5 hours (lecture) and 22,5 hours (excerises)
self-study: 105 hours

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Organizational issues
Kursbeitritt erfolgt bis zum 15.4.2021 (erste Vorlesung) ohne Passwort.
Kontakt: daniel.weygand@kit.edu

Literature
 - Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
 - Harris, Moderne Physik, Pearson Verlag, 2013
8.149 Course: Physiology and Anatomy for Engineers I [T-ETIT-101932]

Responsible: Prof. Dr. Werner Nahm
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100390 - Physiology and Anatomy for Engineers I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2305281</td>
<td>Lecture</td>
<td>Physiology and Anatomy for Engineers I</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nahm</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7305281</td>
<td>Lecture</td>
<td>Physiology and Anatomy for Engineers I</td>
<td>Breustedt</td>
</tr>
</tbody>
</table>

Competence Certificate

Success control is carried out in the form of a written test of 60 minutes.

Prerequisites

none
8.150 Course: Plug-and-Play Material Handling [T-MACH-106693]

Responsible: Jonathan Auberle
Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104983 - Plug-and-Play Material Handling

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>2117070</th>
<th>Plug-and-play material handling</th>
<th>2 SWS</th>
<th>Practical course / Blended (On-Site/Online)</th>
</tr>
</thead>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Presentation of the four steps of the course content (design, implementation, test concept and evaluation)

Prerequisites
None

Below you will find excerpts from events related to this course:

Plug-and-play material handling
2117070, WS 21/22, 2 SWS, Language: German, Open in study portal

Practical course (P)
Blended (On-Site/Online)

Content

- Theoretical basics and structure of plug-and-play-capable material handling technology
- Practical application of the contents in teamwork using various industry-related hardware components
- Development of a heterogeneous integrated mechatronic system
- Planning and implementation of a control system using the software framework ROS and the programming language Python
- Use of a simulation environment for development and transition from simulation to real hardware
- Use of different sensor systems
- Presentation of the work results and evaluation of these on the basis of logistical key figures

The students will be able to:

- Name and explain the basics of plug-and-play conveyor technology
- Expand their knowledge of plug-and-play conveyor technology through independent research
- Apply the theory they have learned to a practical problem
- Deal with the software framework ROS (Robot Operating System)
- Evaluate developed solutions on the basis of logistical key figures

Organizational issues

Course: Power Electronics [T-ETIT-100801]

Responsible: Dr.-Ing. Klaus-Peter Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100533 - Power Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2306320 | Power Electronics | 2 SWS | Lecture / 🗣 | Hiller |
| ST 2021 | 2306322 | Übungen zu 2306320 Leistungselektronik | 1 SWS | Practice / 🖥 | Hiller |

Exams

| ST 2021 | 7306320 | Power Electronics | Hiller |

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.152 Course: Power Generation [T-ETIT-101924]

Responsible: Dr.-Ing. Bernd Hoferer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100407 - Power Generation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Module</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2307356</td>
<td>Power Generation</td>
<td>2</td>
<td>Lecture</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Module</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7307356</td>
<td>Power Generation</td>
<td>Hoferer</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
8.153 Course: Power Transmission and Power Network Control [T-ETIT-101941]

Responsible: Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100534 - Power Transmission and Power Network Control

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2307372</td>
<td>Power Transmission and Power Network Control</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2307374</td>
<td>Übungen zu 2307372 Energieübertragung und Netzregelung</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7307372</td>
<td>Power Transmission and Power Network Control</td>
<td></td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☛ Blended (On-Site/Online), ☞ On-Site, ☑ Cancelled

Prerequisites

none
8.154 Course: Practical Project Robotics and Automation I (Software) [T-INFO-104545]

Responsible: Prof. Dr.-Ing. Björn Hein
Prof. Dr.-Ing. Thomas Längle

Organisation: KIT Department of Informatics

Part of: M-INFO-102224 - Practical Project Robotics and Automation I (Software)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>24282</td>
<td>Project practical Robotics and Automation I (Software)</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Hein, Längle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>750003</td>
<td>Project practical Robotics and Automation I (Software)</td>
<td>Hein, Längle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.155 Course: Practical Project Robotics and Automation II (Hardware) [T-INFO-104552]

Responsible: Prof. Dr.-Ing. Björn Hein
Prof. Dr.-Ing. Thomas Längle

Organisation: KIT Department of Informatics

Part of: M-INFO-102230 - Practical Project Robotics and Automation II (Hardware)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code description</th>
<th>Credit</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>24290</td>
<td>Robotics and Automation II (Hardware)</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Hein, Längle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code description</th>
<th>Credit</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>750004</td>
<td>Project practical Robotics and Automation II (Hardware)</td>
<td></td>
<td></td>
<td></td>
<td>Hein, Längle</td>
<td></td>
</tr>
</tbody>
</table>
8.156 Course: Presentation [T-MACH-107760]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104262 - Bachelor Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The colloquium presentation must be held within the maximum processing time of the module Bachelor Thesis but latest 6 weeks after the submission of the bachelor thesis.

The presentation should last around 20 minutes followed by a scientific discussion with the present expert audience. The students should show that they are able to independently present and discuss the content of their bachelor thesis according to scientific criteria.

Prerequisites

Bachelor Thesis has been started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-108800 - Bachelor Thesis must have been started.
8.157 Course: Principles of Medicine for Engineers [T-MACH-105235]

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102720 - Principles of Medicine for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Lecture / 🖥️</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Pylatiuk</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Lecture / 🖥️</td>
<td></td>
<td></td>
<td></td>
<td>Pylatiuk</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Lecture / 🖥️</td>
<td></td>
<td></td>
<td></td>
<td>Pylatiuk</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 📖 On-Site, 🗑️ Cancelled

Competence Certificate

Written examination (Duration: 45min)

Prerequisites

none

Below you will find excerpts from events related to this course:

V Principles of Medicine for Engineers

<table>
<thead>
<tr>
<th>Principles of Medicine for Engineers</th>
<th>Lecture (V)</th>
<th>Language: German, Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105992, WS 21/22, 2 SWS</td>
<td>Online</td>
<td></td>
</tr>
</tbody>
</table>

Content

Content:

- Introduction: Definitions of "health" and "disease". History of medicine and paradigm shift towards evidence based medicine and personalized medicine.
- Special topics: nervous system, saltatory conduction, musculoskeletal system, cardio-circulatory system, narcosis, pain, respiratory system, sensory organs, gynaecology, digestive organs, surgery, nephrology, orthopaedics, immune system, genetics.

Learning objectives:

Students have fundamental knowledge about functionality and anatomy of organs within different medical disciplines. The students further know about technical methods in diagnosis and therapy, common diseases, their relevance and costs. Finally the students are able to communicate with medical doctors in a way, in which they prevent misunderstandings and achieve a more realistic idea of each others expectations.

Literature

- Adolf Faller, Michael Schünke: Der Körper des Menschen. Thieme Verlag.
8.158 Course: Product Lifecycle Management [T-MACH-105147]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2121350</td>
<td>Product Lifecycle Management</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td></td>
<td>Lecture / 🧩</td>
<td>Ovtcharova</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td></td>
<td>Lecture / 🧩</td>
<td>Ovtcharova</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written examination 90 min.

Prerequisites

None

Below you will find excerpts from events related to this course:

Product Lifecycle Management

2121350, WS 21/22, 2 SWS, Language: German, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content

The course includes:

- Basics for product data management and data exchange
- IT system solutions for Product Lifecycle Management (PLM)
- Economic viability analysis and implementation problems
- Illustrative scenario for PLM using the example of the institute's own I4.0Lab

After successful attendance of the course, students can:

- identify the challenges of data management and exchange and describe solution concepts for these challenges.
- clarify the management concept PLM and its goals and highlight the economic benefits.
- explain the processes required to support the product life cycle and describe the most important business software systems (PDM, ERP, ...) and their functions.

Literature

Vorlesungsfolien.

8.159 Course: Production Techniques Laboratory [T-MACH-105346]

Responsible: Prof. Dr.-Ing. Barbara Deml
Prof. Dr.-Ing. Jürgen Fleischer
Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102711 - Production Techniques Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2110678 | Production Techniques Laboratory | 4 SWS | Practical course | Deml, Fleischer, Furmans, Ovtcharova |

| Exams | ST 2021 | 76-T-MACH-105346 | Production Techniques Laboratory | Deml, Furmans, Ovtcharova, Schulze |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚪ On-Site, ⌧ Cancelled

Competence Certificate
Advanced Internship: Participate in practice exercise courses and complete the colloquia successfully.

Elective Subject: Participate in practice exercise courses and complete the colloquia successfully and presentation of a specific topic.

Prerequisites
None

Below you will find excerpts from events related to this course:

Production Techniques Laboratory
2110678, SS 2021, 4 SWS, Language: German, Open in study portal
Content
The production technique laboratory (PTL) is a collaboration of the institutes wbk, IFL, IMI and ifab.

1. Computer Aided Product Development (IMI)
2. Computer communication in factory (IMI)
3. Production of parts with CNC turning machines (wbk)
4. Controlling of production systems using PLCs (wbk)
5. Automated assembly systems (wbk)
6. Optical identification in production and logistics (IFL)
7. RFID identification systems (IFL)
8. Storage and order-picking systems (IFL)
9. Production Management (ifab)
10. Time study (ifab)
11. Accomplishment of workplace design (ifab)

Recommendations:
Participation in the following lectures:

- Informationssystems in logistics and supply chain management
- Material flow in logistic systems
- Manufacturing technology
- Human Factors Engineering

Learning Objects:
The students acquire in the lab profound knowledge about the scientific theories, principles and methods of Production Engineering. Afterwards they are able to evaluate and design complex production systems according to problems of manufacturing and process technologies, materials handling, handling techniques, information engineering as well as production organisation and management.

After completion this lab, the students are able

- to analyse and solve planning and layout problems of the discussed fields,
- to evaluate and configure the quality and efficiency of production, processes and products,
- to plan, control and evaluate the production of a production enterprise,
- to configure and evaluate the IT architecture of a production enterprise,
- to design and evaluate appropriate techniques for conveying, handling and picking within a production system,
- to design and evaluate the part production and the assembly by considering the work processes and the work places.

Organizational issues
Anwesenheitspflicht, Teilnehmerzahl begrenzt. Anmeldung über ILIAS
Arbeitsaufwand von 120 h (=4 LP).
Nachweis: bestanden / nicht bestanden
Regelmäßige Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien.

Literature
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
8 COURSES
Course: Programming [T-INFO-101531]

8.160 Course: Programming [T-INFO-101531]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: M-INFO-101174 - Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 24004</td>
<td>Programming</td>
<td>4 SWS</td>
<td>Lecture / Practice (Heinrich)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7500195</td>
<td>Programming</td>
</tr>
</tbody>
</table>

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-INFO-101967 - Programming Pass must have been passed.
8.161 Course: Programming Pass [T-INFO-101967]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: M-INFO-101174 - Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>24004</td>
<td>Programming</td>
<td>4</td>
<td></td>
<td>Heinrich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500022</td>
<td>Programming Pass</td>
<td>Reussner</td>
</tr>
</tbody>
</table>
8.162 Course: Project Management in the Development of Products for Safety-Critical Applications [T-ETIT-109148]

Responsible: Dr.-Ing. Manfred Nolle
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104475 - Project Management in the Development of Products for Safety-Critical Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 2311641 | Project Management in the Development of Products for Safety-Critical Applications | 2 SWS | Nolle |

Exams

| ST 2021 | 7311641 | Project Management in the development of products for safety-critical applications | Nolle |

Mechatronics and Information Technology Bachelor Program (B.Sc.)
Module Handbook valid from WT 21/22, Date: 15.09.2021
8.163 Course: Quality Management [T-MACH-102107]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105332 - Quality Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2149667</td>
<td>Quality Management</td>
<td>2 SWS</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Lanza</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-102107</td>
<td>Quality Management</td>
<td>Lanza</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written Exam (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Management</td>
<td>2149667, WS 21/22</td>
<td>2 SWS</td>
<td>Lecture (V) Blended (On-Site/Online)</td>
<td>Lanza</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), On-Site, ✗ Cancelled
Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

- The term "Quality"
- Total Quality Management (TQM) and Six Sigma
- Universal methods and tools
- QM during early product stages – product definition
- QM during product development and in procurement
- QM in production – manufacturing metrology
- QM in production – statistical methods
- QM in service
- Quality management systems
- Legal aspects of QM

Learning Outcomes:
The students …

- are capable to comment on the content covered by the lecture.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Start: 18.10.2021
Vorlesungstermine montags 10:00 Uhr
Übung erfolgt während der Vorlesung

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt:

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.164 Course: Radiation Protection [T-ETIT-100825]

Responsible: Prof. Dr. Olaf Dössel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100562 - Radiation Protection

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lectures</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2</td>
<td>Radiation Protection</td>
<td>Breustedt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture / 🖥</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7</td>
<td>Radiation Protection</td>
<td>Breustedt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture / 🖥</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7</td>
<td>Radiation Protection</td>
<td>Breustedt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture / 🖥</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

English success control is carried out as part of an overall written examination (2 h).

Prerequisites

none
8.165 Course: Radio-Frequency Electronics [T-ETIT-110359]

Responsible: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-105124 - Radio-Frequency Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2308503</td>
<td>Radio Frequency Electronics</td>
<td>2 SWS</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7308503</td>
<td>Radio Frequency Electronics</td>
<td></td>
<td>Ulusoy</td>
</tr>
</tbody>
</table>

Competence Certificate
The success criteria will be determined by a written examination.

Recommendation
Contents of the modules "Linear electrical networks" and "Electronic circuits".
8.166 Course: Rail System Technology [T-MACH-106424]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld
Organisation: KIT Department of Mechanical Engineering

Type
Oral examination

Credits
4

Grading scale
Grade to a third

Recurrence
Each term

Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
<th>Exams</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Type</th>
<th>Exams</th>
<th>Grade to a third</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2</td>
<td></td>
<td></td>
<td>Oral examination</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Heckele, Gratzfeld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2</td>
<td></td>
<td></td>
<td>Oral examination</td>
<td>Rail System Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Heckele, Gratzfeld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
<th>Exams</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Type</th>
<th>Exams</th>
<th>Grade to a third</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2</td>
<td></td>
<td></td>
<td>Oral examination</td>
<td>Rail System Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heckele, Gratzfeld</td>
<td></td>
</tr>
<tr>
<td>ST 21/21</td>
<td>2</td>
<td></td>
<td></td>
<td>Oral examination</td>
<td>Rail System Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heckele, Gratzfeld</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2</td>
<td></td>
<td></td>
<td>Oral examination</td>
<td>Rail System Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heckele, Reimann, Gratzfeld</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣️ On-Site, ☑️ Cancelled

Competence Certificate
Oral examination
Duration: ca. 20 minutes
No tools or reference materials may be used during the exam.

Prerequisites
none

Below you will find excerpts from events related to this course:

V Rail System Technology
2115919, SS 2021, 2 SWS, Language: German, Open in study portal

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Organizational issues
Die Vorlesung "Bahnsystemtechnik" findet im SS 2021 als asynchrone Online-Veranstaltung statt.

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
8.167 Course: Rail Vehicle Technology [T-MACH-105353]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Prof. Dr.-Ing. Peter Gratzfeld

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102683 - Rail Vehicle Technology

Type	**Credits**	**Grading scale**	**Recurrence**	**Version**
Oral examination | 4 | Grade to a third | Each term | 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Reimann, Gratzfeld</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reimann, Gratzfeld</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reimann, Gratzfeld</td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105355</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reimann, Gratzfeld</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105353</td>
<td>Rail Vehicle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reimann, Heckele, Gratzfeld</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Oral examination
Duration: ca. 20 minutes
No tools or reference materials may be used during the exam.

Prerequisites

none

 Below you will find excerpts from events related to this course:

Rail Vehicle Technology
2115996, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Organizational issues

Die Vorlesung "Schienenfahrzeugtechnik" findet im SS 2021 als asynchrone Online-Veranstaltung statt.

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).

Rail Vehicle Technology
2115996, WS 21/22, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site
Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
8.168 Course: Real-Time Systems [T-INFO-101340]

Responsible: Prof. Dr.-Ing. Thomas Längle
Organisation: KIT Department of Informatics
Part of: M-INFO-100803 - Real-Time Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Id</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>24576</td>
<td>Real-Time Systems</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Längle, Ledermann, Huck</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Id</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>750002</td>
<td>Real-Time Systems</td>
<td></td>
</tr>
</tbody>
</table>

Legend: ☑ Online, ☐ Blended (On-Site/Online), ☑ On-Site, ☒ Cancelled
8 COURSES

Course: Robotics - Practical Course [T-INFO-105107]

8.169 Course: Robotics - Practical Course [T-INFO-105107]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-102522 - Robotics - Practical Course

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 24870 | Robotics - Practical Course | 4 SWS | Practical course / 🖥 | Asfour |

Exams

| ST 2021 | 7500261 | Robotics - Practical Course | Asfour |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ❌ Cancelled

Recommendation

Should have attended the lectures Robotics I - III, and Mechano-Informatics and Robotics.

Below you will find excerpts from events related to this course:

Robotics - Practical Course

24870, SS 2021, 4 SWS, Language: German, Open in study portal

Practical course (P) Online
8.170 Course: Robotics I - Introduction to Robotics [T-INFO-108014]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-100893 - Robotics I - Introduction to Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

- **WT 21/22**
 - Code: 2424152
 - Title: Robotics I - Introduction to Robotics
 - Type: Lecture / Blended (On-Site/Online)
 - Instructor: Asfour

Exams

- **ST 2021**
 - Code: 7500218
 - Title: Robotik I - Einführung in die Robotik
 - Instructor: Asfour

- **WT 21/22**
 - Code: 7500106
 - Title: Robotics I - Introduction to Robotics
 - Instructor: Asfour

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.171 Course: Robotics II: Humanoid Robotics [T-INFO-105723]

Responsible: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: M-INFO-102756 - Robotics II: Humanoid Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2400074</td>
<td>Robotics II: Humanoid Robotics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500086</td>
<td>Robotics II: Humanoid Robotics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500211</td>
<td>Robotics II: Humanoid Robotics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗝 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Robots II: Humanoid Robotics

2400074, SS 2021, 2 SWS, Language: German/English, Open in study portal

Lecture (V)

Online

Content

The lecture presents current work in the field of humanoid robotics that deals with the implementation of complex sensorimotor and cognitive abilities. In the individual topics different methods and algorithms, their advantages and disadvantages, as well as the current state of research are discussed.

The topics addressed are: biomechanical models of the human body, biologically inspired and data-driven methods of grasping, active perception, imitation learning and programming by demonstration as well as semantic representations of sensorimotor experience.

Learning Objectives:

The students have an overview of current research topics in autonomous learning robot systems using the example of humanoid robotics. They are able to classify and evaluate current developments in the field of cognitive humanoid robotics.

The students know the essential problems of humanoid robotics and are able to develop solutions on the basis of existing research.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand: 90 h

Zielgruppe: Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Literature

Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema, werden auf der VL-Website bereitgestellt.
8 COURSES

Course: Robotics III - Sensors and Perception in Robotics [T-INFO-109931]

8.172 Course: Robotics III - Sensors and Perception in Robotics [T-INFO-109931]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-104897 - Robotics III - Sensors and Perception in Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2400067</td>
<td>2 SWS</td>
<td>Lecture / ≡</td>
<td>Asfour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7500242</td>
<td>2 SWS</td>
<td>Lecture / ≡</td>
<td>Asfour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 7500207</td>
<td>2 SWS</td>
<td>Lecture / ≡</td>
<td>Asfour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Below you will find excerpts from events related to this course:

Robotics III - Sensors and Perception in Robotics

2400067, SS 2021, 2 SWS, Language: German/English, Open in study portal

Lecture (V) Online

Content
The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.

Learning Objectives:

Students know the main sensor principles used in robotics and understand the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and environmental modeling.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Voraussetzungen: Der Besuch der Vorlesung Robotik I – Einführung in die Robotik wird vorausgesetzt

Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Literature

Eine Foliensammlung wird im Laufe der Vorlesung angeboten.

Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.
8.173 Course: Scientific Computing for Engineers [T-MACH-100532]

Responsible: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2181738</td>
<td>Scientific computing for Engineers</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2181739</td>
<td>Exercises for Scientific Computing for Engineers</td>
<td>2 SWS</td>
<td>Practice / Online</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>Weygand, Gumbsch</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-100532</td>
<td>Scientific Computing for Engineers</td>
<td>Weygand, Gumbsch</td>
<td></td>
</tr>
</tbody>
</table>

Legend: ⏪ Online, ┼ Blended (On-Site/Online), ⎚ On-Site, ✗ Cancelled

Competence Certificate
Written exam (90 minutes)

Prerequisites
The brick can not be combined with the brick "Application of advanced programming languages in mechanical engineering" (T-MACH-105390).

Below you will find excerpts from events related to this course:

Scientific computing for Engineers
2181738, WS 21/22, 2 SWS, Language: German, [Open in study portal](#)
Content
1. Introduction: why scientific computing
2. computer architectures
3. Introduction to Unix/Linux
4. Foundations of C++
 * program organization
 * data types, operator, control structures
 * dynamic memory allocation
 * functions
 * class
 * OpenMP parallelization
5. numeric algorithms
 * finite differences
 * MD simulations: 2nd order differential equations
 * algorithms for particle simulations
 * solver for linear systems of eqns.

The student can
- apply the programming language C++ for scientific computing in the field of materials science
- adapt programs for use on parallel platforms
- choose suitable numerical methods for the solution of differential equations.

The lecture can not be combined with the lecture "Application of advanced programming languages in mechanical engineering" (2182735).

regular attendance: 22.5 hours
Lab: 22.5 hours (optional)
self-study: 75 hours
written exam 90 minutes

Literature
1. C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München
2. C++ and object-oriented numeric computing for Scientists and Engineers, Daoqui Yang, Springer Verlag.
3. The C++ Programming Language, Bjarne Stroustrup, Addison-Wesley
4. Die C++ Standardbibliothek, S. Kuhlins und M. Schader, Springer Verlag

Numerik:
1. Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
2. Numerische Mathematik, H.R. Schwarz, Teubner Stuttgart
3. Numerische Simulation in der Moleküldynamik, Griebel, Knapec, Zumbusch, Caglar, Springer Verlag

Exercises for Scientific Computing for Engineers
2181739, WS 21/22, 2 SWS, Language: German, Open in study portal

Content
Exercises for the different topics of the lecture "Scientific computing for Engineers" (2181738)
regular attendance: 22.5 hours

Organizational issues
Veranstaltungsort (RZ Pool Raum) wird in Vorlesung bekannt gegeben

Literature
Skript zur Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)
8.174 Course: Seamless Engineering [T-MACH-111401]

Responsible: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Eric Sax

Organisation:
KIT Department of Electrical Engineering and Information Technology

Part of: M-MACH-105725 - Seamless Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 2117072 | Seamless Engineering | 2 SWS | Lecture / Practice (/) | Furmans, Sax |

Legend: 🌐 Online, ⛩ Blended (On-Site/Online), ⚒ On-Site, ✗ Cancelled

Competence Certificate

The assessment of success takes place in the form of a written examination as well as an examination performance of another kind. The overall grade is composed as follows:

- 50% assessment of an examination as individual performance as the conclusion of the lecture block.
- 50% assessment of colloquia as individual performance on defined milestones during the project work

Prerequisites

None

Recommendation

None

Annotation

The course consists of two components. Theoretical knowledge and basics about structured system design are taught in lecture and exercise. In parallel, a practical part takes place throughout the semester. In this, the students design and implement a mechatronic system in small groups using industry-related hardware and software to deal with a given task in the logistics environment.

Below you will find excerpts from events related to this course:

Seamless Engineering

2117072, WS 21/22, 2 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ)

Blended (On-Site/Online)

Content

This module is designed to teach students how to develop a heterogeneous integrated mechatronic system. In the lecture, students are introduced to a system-oriented, higher-level approach to the description, assessment and development of a mechatronic system.

Parallel to this, in the practical part, the taught contents are applied and deepened on industry-related hardware. The students learn the systematic development in a simulative environment as well as the transition from simulation to real hardware.

To achieve this, important components of software development in the robotics environment are taught. This includes the basics of programming (Python) as well as the handling of the framework "Robot Operating System (ROS)". In addition, students gain insights into the use of sensors and actuators, image processing, autonomous navigation of automated guided vehicles and handling robotics.

After successful completion of the course, graduates will be able to model and parameterize the requirements and boundary conditions for typical mechatronic systems. The students are able to describe mechatronic systems and their tasks in a professional manner, both alone and in a team. In addition, students learn the ability to select the appropriate procedures, processes, methods and tools for the development of a mechatronic system.

Important core competencies in the areas of communication, problem solving and self-organization are further essential components of the workshop, which enables students to work reflectively independently and in a team.
Organizational issues
The course consists of two components. In lecture and exercise, theoretical knowledge and fundamentals of structured system design are taught. In parallel, a practical part takes place throughout the semester. In this, students design and implement a mechatronic system in small groups using industry-related hardware and software to accomplish a given task in a logistics environment.

Registration takes place via the ILIAS course and the poll contained therein. The course is exclusively for mechatronics students and limited to 50 participants.
8.175 Course: Seminar Battery I [T-ETIT-110800]

Organisation: KiT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-105319 - Seminar Battery I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2304226 | Seminar Batteries | 2 SWS | Seminar / Online | Weber |

Exams

| ST 2021 | 7304241 | Seminar Battery I | Weber |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Prerequisites
none

Below you will find excerpts from events related to this course:

V Seminar Batteries
2304226, SS 2021, 2 SWS, Language: German/English, Open in study portal

Content
The seminar batteries is offered all year long (also during the lecture-free periods) and takes place every Tuesday, 9:45 - 11:15h at IAM-ET, building 50.40, 3rd floor in the IAM-ET seminar room (currently only as MS-Teams Meeting). In the seminar, topics related to current research at IAM-ET are discussed once a week. Attendance is mandatory for PhD students and students during their bachelor or master thesis at IAM-ET. Participation in the seminar is also possible for students of the Faculty of Electrical Engineering and Information Technology who are not working at IAM-ET, as well as for students of other faculties. In this case, the seminar mostly consists of a literature research study and a comparative evaluation of different approaches to solve a scientific or technical problem. The grading of your seminar work is based on a written paper and a presentation to be given in the course. If you are interested in participating in the seminar, please contact the lecturer.

Organizational issues
Anmeldungen können unter: andre.weber@kit.edu erfolgen.
8.176 Course: Seminar Embedded Systems [T-ETIT-100753]

Responsible: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
M-ETIT-100455 - Seminar Embedded Systems
M-ETIT-105645 - Information and Automation Technology II/Seminar Embedded Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2311627</td>
<td>Seminar: Embedded Systems</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2311627</td>
<td>Seminar Embedded Systems</td>
<td>2 SWS</td>
<td>Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7311627</td>
<td>Seminar Embedded Systems</td>
<td>Becker, Sax, Stork</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
Course: Seminar Fuel Cell I [T-ETIT-110798]

Responsible: Dr.-Ing. Andre Weber

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105320 - Seminar Fuel Cell I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2304227</td>
<td>Seminar Fuel Cell</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021 7304243</td>
<td>Seminar Fuel Cell I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Success control takes the form of other types of examination.

The grade consists of:
1. written report (50%)
2. seminar lecture (50%)

Prerequisites

none

Below you will find excerpts from events related to this course:

Seminar Fuel Cell

2304227, SS 2021, 2 SWS, Language: German/English, [Open in study portal](#)

Content

The seminar fuel cells and electrolysis is offered all year long (also during the lecture-free periods) and takes place every Monday, 14:00 – 15:30h at IAM-ET, building 50.40, 3rd floor in the IAM-ET seminar room (currently only as MS-Teams Meeting).

In the seminar, topics related to current research at IAM-ET are discussed once a week. Attendance is mandatory for PhD students and students during their bachelor or master thesis at IAM-ET.

Participation in the seminar is also possible for students of the Faculty of Electrical Engineering and Information Technology who are not working at IAM-ET, as well as for students of other faculties. In this case, the seminar mostly consists of a literature research study and a comparative evaluation of different approaches to solve a scientific or technical problem. The grading of your seminar work is based on a written paper and a presentation to be given in the course. If you are interested in participating in the seminar, please contact the lecturer.

Organizational issues

Anmeldungen können unter: andre.weber@kit.edu erfolgen.
8.178 Course: Seminar on Selected Chapters of Biomedical Engineering [T-ETIT-100710]

Responsible: Dr.-Ing. Axel Loewe
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100383 - Seminar on Selected Chapters of Biomedical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 2305254</td>
<td>Seminar on Selected Chapters of Biomedical Engineering</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Loewe</td>
</tr>
</tbody>
</table>

Competence Certificate
Success monitoring is carried out in the context of a lecture followed by a discussion.

Prerequisites
none
8.179 Course: Seminar Power Electronics in Regenerative Energy Systems [T-ETIT-100714]

Responsible: Dr.-Ing. Klaus-Peter Becker

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100397 - Seminar Power Electronics in Regenerative Energy Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2306318</td>
<td>3 SWS</td>
<td>Seminar Power Electronics in Regenerative Energy Systems</td>
<td>Seminar / Hiller</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7306318</td>
<td></td>
<td>Seminar Power Electronics in Regenerative Energy Systems</td>
<td></td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Prerequisites
none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled
8.180 Course: Sensors [T-ETIT-101911]

Responsible: Dr. Wolfgang Menesklou
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100378 - Sensors

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Type/Format</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2304231</td>
<td>Sensors</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7304231</td>
<td>Sensors</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕰 Blended (On-Site/Online), ⚑ On-Site, ✗ Cancelled
8.181 Course: Signals and Systems [T-ETIT-109313]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104525 - Signals and Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2302109</td>
<td>Signals and Systems</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7302109</td>
<td>Signals and Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
8.182 Course: Signals and Systems - Workshop [T-ETIT-109314]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-104525 - Signals and Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Type</th>
<th>Recurrence</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2302905</td>
<td>none</td>
<td>Signals and Systems - Workshop</td>
<td>1 SWS</td>
<td>Heizmann</td>
</tr>
<tr>
<td>Exams</td>
<td>7302314</td>
<td></td>
<td>Signals and Systems - Workshop</td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Type</th>
<th>Recurrence</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7302314</td>
<td>none</td>
<td>Signals and Systems - Workshop</td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Prerequisites

none
8 COURSES

Course: Software Engineering I [T-INFO-101968]

8.183 Course: Software Engineering I [T-INFO-101968]

| Responsible: | Prof. Dr.-Ing. Anne Koziolek
| | Prof. Dr. Ralf Reussner
| | Prof. Dr. Walter Tichy
| Organisation: | KIT Department of Informatics
| Part of: | M-INFO-101175 - Software Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>24518</td>
<td>Softwaretechnik I</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Tichy, Gerking, Hey</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500152</td>
<td>Software Engineering I</td>
<td></td>
<td>Tichy</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500153</td>
<td>Software Engineering I</td>
<td></td>
<td>Tichy</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
8.184 Course: Software Engineering I Pass [T-INFO-101995]

Responsible: Prof. Dr. Walter Tichy
Organisation: KIT Department of Informatics
Part of: M-INFO-101175 - Software Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Type</th>
<th>Tichy, Gerking, Hey</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>24518</td>
<td>Softwaretechnik I</td>
<td>4 SWS</td>
<td>Lecture / Practice (/</td>
<td>Tichy, Gerking, Hey</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Grade</th>
<th>Tichy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500250</td>
<td>Software Engineering I Pass</td>
<td></td>
<td>Tichy</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
8.185 Course: Software Engineering II [T-INFO-101370]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics
Part of: M-INFO-100833 - Software Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>24076</td>
<td>Lecture</td>
<td>Reussner</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500235</td>
<td>Reussner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>7500054</td>
<td>Reussner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literature

Course: Stochastic Information Processing [T-INFO-101366]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: M-INFO-100829 - Stochastic Information Processing

Type: Oral examination
Credits: 6
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events
WT 21/22 24113 Stochastic Information Processing 3 SWS Lecture Hanebeck, Frisch

Exams
ST 2021 7500010 Stochastic Information Processing Hanebeck
ST 2021 7500313 Stochastic Information Processing Hanebeck
WT 21/22 7500031 Stochastic Information Processing Hanebeck

Below you will find excerpts from events related to this course:

Stochastic Information Processing 24113, WS 21/22, 3 SWS, Language: German, Open in study portal

Content
In order to handle complex dynamic systems (e.g., in robotics), an in-step estimation of the system's internal state (e.g., position and orientation of the actuator) is required. Such an estimation is ideally based on the system model (e.g., a discretized differential equation describing the system dynamics) and the measurement model (e.g., a nonlinear function that maps the state space to a measurement subspace). Both system and measurement model are uncertain (e.g., include additive or multiplicative noise).

For continuous state spaces, an exact calculation of the probability densities is only possible in a few special cases. In practice, general nonlinear systems are often traced back to these special cases by simplifying assumptions. One extreme is linearization with subsequent application of linear estimation theory. However, this often leads to unsatisfactory results and requires additional heuristic measures. At the other extreme are numerical approximation methods, which only evaluate the desired distribution densities at discrete points in the state space. Although the working principle of these procedures is usually quite simple, a practical implementation often turns out to be difficult and especially for higher-dimensional systems it is computationally complex.

As a middle ground, analytical nonlinear estimation methods would therefore often be desirable. In this lecture the main difficulties in the development of such estimation methods are presented and corresponding solution modules are presented. Based on these building blocks, some analytical estimation methods are discussed in detail as examples, which are very suitable for practical implementation and offer a good compromise between computing effort and performance. Useful applications of these estimation methods are also discussed. Both known methods and the results of current research are presented.

Organizational issues
Der Prüfungstermin ist per E-Mail (gambichler@kit.edu) zu vereinbaren.

Literature
Weiterführende Literatur
Skript zur Vorlesung

Responsible: Prof. Dr. Tabea Arndt
Prof. Dr. Mathias Noe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105705 - Superconducting Magnet Technology and Power Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2314011</td>
<td>Superconducting Power Systems</td>
<td>3 SWS</td>
<td>Lecture / Practice (Arndt, Noe)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The module grade is given by the result of a single oral exam (abt. 45 minutes).
The oral examination includes the contents of Superconducting Magnet Technology (offered every summer term) and Superconducting Power Systems (offered every winter term)

Prerequisites
none
8.188 Course: Superconductors for Energy Applications [T-ETIT-110788]

Responsible: apl. Prof. Dr. Francesco Grilli

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105299 - Superconductors for Energy Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2312704</td>
<td></td>
<td>Superconductors for Energy Applications</td>
<td>2</td>
<td>Lecture</td>
<td>Grilli</td>
</tr>
<tr>
<td>ST 2021 2312705</td>
<td></td>
<td>Übungen zu Superconductors for Energy Applications</td>
<td>1</td>
<td>Practice</td>
<td>Grilli</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7300014</td>
<td></td>
<td>Superconductors for Energy Applications (Oct. 2021)</td>
<td></td>
<td>Grilli</td>
</tr>
<tr>
<td>ST 2021 7312682</td>
<td></td>
<td>Superconductors for Energy Applications</td>
<td></td>
<td>Grilli</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Written exam approx. 90 minutes.

Prerequisites

A basic knowledge of electromagnetism and thermodynamics is the only requirement. Previous knowledge of superconductivity is not necessary.

T-ETIT-106970 - Superconducting Materials for Energy Applications superconducting materials for energy applications must not be taken.
8.189 Course: System Dynamics and Control Engineering [T-ETIT-101921]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102181 - System Dynamics and Control Engineering

Type	Credits	Grading scale	Recurrence	Version
Written examination | 6 | Grade to a third | Each winter term | 2

| Events | | |
|---|---|---|---|---|
| WT 21/22 | 2303155 | Systemdynamik und Regelungstechnik | 2 SWS | Lecture | Hohmann
| WT 21/22 | 2303156 | Tutorien zu 2303155 Systemdynamik und Regelungstechnik | Tutorial (| Schneider |
| WT 21/22 | 2303157 | Übungen zu 2303155 Systemdynamik und Regelungstechnik | 1 SWS | Practice | Schneider |

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7303155</td>
</tr>
</tbody>
</table>

Prerequisites

none
8.190 Course: Systematic Materials Selection [T-MACH-100531]

Responsible: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of:
M-ETIT-102734 - Materials
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Credits</th>
<th>Type</th>
<th>Title</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2174576</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Systematic Materials Selection</td>
<td>Dietrich</td>
</tr>
<tr>
<td>ST 2021 2174577</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Übungen zu 'Systematische Werkstoffauswahl'</td>
<td>Dietrich, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Credits</th>
<th>Type</th>
<th>Title</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 76-T-MACH-100531</td>
<td></td>
<td></td>
<td>Systematic Materials Selection</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment is carried out as a written exam of 2 h.

Prerequisites
none

Recommendation
Basic knowledge in materials science, mechanics and mechanical design due to the lecture Materials Science I/II.

Below you will find excerpts from events related to this course:

Systematic Materials Selection
2174576, SS 2021, 3 SWS, Language: German, Open in study portal

Lecture (V)
Online
Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered:

- Information and introduction
- Necessary basics of materials
- Selected methods/approaches of the material selection
- Examples for material indices and materials property charts
- Trade-off and shape factors
- Sandwich materials and composite materials
- High temperature alloys
- Regard of process influences
- Material selection for production lines
- Incorrect material selection and the resulting consequences
- Abstract and possibility to ask questions

learning objectives:
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

requirements:
Wiling SPO 2007 (B.Sc.)
The course Material Science I [21760] has to be completed beforehand.
Wiling (M.Sc.)
The course Material Science I [21760] has to be completed beforehand.

workload:
The workload for the lecture is 120 h per semester and consists of the presence during the lecture (30 h) as well as preparation and rework time at home (30 h) and preparation time for the oral exam (60 h).

Literature
Vorlesungsskriptum; Übungslätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7

Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
8.191 Course: Technical Design in Product Development [T-MACH-105361]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Dr.-Ing. Markus Schmid

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105318 - Technical Design in Product Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Technical Design in Product Development</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Schmid</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Technical Design in Product Development (Test Karlsruhe)</td>
<td>Schmid, Albers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧬 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written exam (60 min)
Only dictionary is allowed

Below you will find excerpts from events related to this course:

Technical Design in Product Development

2146179, SS 2021, 2 SWS, Language: German, Open in study portal

Content

Introduction
Relevant parameters on product value in Technical Design
Design in Methodical Development and Engineering and for a differentiated validation of products
Design in the concept stage of Product Development
Design in the draft and elaboration stage of Product Development
Best Practice

After listening the module "technical design" the students should have knowledge about the basics of technical oriented design as an integral part of the methodical product development
The students have knowledge about ...

- the interface between engineer and designer.
- all relevant human-product requirements as f. exp. demographic/ geographic and psychographic features, relevant perceptions, typical content recognition as well as ergonomic bases.
- the approaches concerning the design of a product, product program or product system with focus on structure, form-, color- and graphic design within the phases of the design process.
- the design of functions and supporting structures as well as the important interface between human and machine.
- relevant parameters of a good corporate design.

Organizational issues

Erster Vorlesungstermin: wird noch bekanntgegeben
Literature
Markus Schmid, Thomas Maier
Technisches Interface Design
Anforderungen, Bewertung, Gestaltung.
2017

Hartmut Seeger
Design technischer Produkte, Produktprogramme und -systeme
Industrial Design Engineering.
2., bearb. und erweiterte Auflage.
ISBN: 3540236538
September 2005 - gebunden - 396 Seiten
8.192 Course: Technical Thermodynamics and Heat Transfer I [T-MACH-104747]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102386 - Technical Thermodynamics and Heat Transfer I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4 SWS</td>
<td>Lecture / 🧩</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>4 SWS</td>
<td>Lecture / 🧩</td>
<td>Schießl, Maas</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Technical Thermodynamics and Heat Transfer I-englisch</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔔 On-Site, ✗ Cancelled

Competence Certificate

Prerequisite: attestation each semester by homework assignments
Written exam, approx. 3 hours

Prerequisites

Successful participation in the tutorial (T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I)

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-105204 - Excercises in Technical Thermodynamics and Heat Transfer I must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer I
2165501, WS 21/22, 4 SWS, Language: German, Open in study portal

Content

- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Literature

Vorlesungsskriptum
Technical Thermodynamics and Heat Transfer I
3165014, WS 21/22, 4 SWS, Language: English, Open in study portal

Content
- System, properties of state
- Absolute temperature, model systems
- 1st law of thermodynamics for resting and moving systems
- Entropy and 2nd law of thermodynamics
- Behavior of real substances described by tables, diagrams and equations of state
- Machine processes
- Mixtures of ideal and real compounds

Literature
Vorlesungsskriptum
8 COURSES
Course: Technical Thermodynamics and Heat Transfer II [T-MACH-105287]

8.193 Course: Technical Thermodynamics and Heat Transfer II [T-MACH-105287]

Responsible: Prof. Dr. Ulrich Maas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102830 - Technical Thermodynamics and Heat Transfer II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ID</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Type of Lecture</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>3 SWS</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>3166526</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>3 SWS</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Schießl</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>ID</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Type of Lecture</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-105287-englisch</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>76-T-MACH-105287</td>
<td>Technical Thermodynamics and Heat Transfer II</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, x Cancelled

Competence Certificate
Prerequisite: attestation each semester by homework assignments
Written exam, approx. 3 hours

Prerequisites
Successful participation in the tutorial (T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II)

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-105288 - Exercises in Technical Thermodynamics and Heat Transfer II must have been passed.

Below you will find excerpts from events related to this course:

Technical Thermodynamics and Heat Transfer II
2166526, SS 2021, 3 SWS, Language: German, Open in study portal

Content

- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

Literature
Vorlesungsskriptum
Content

- Repetition of the topics of "Thermodynamics and Heat Transfer I"
- Behavior of mixtures
- Moist air
- Kinetic theory of gases
- Behavior of real substances described by equations of state
- Chemical reactions and applications of the laws of thermodynamics to chemical reactions
- Reaction kinetics
- Heat Transfer

Literature

Vorlesungsskriptum
8.194 Course: Theory of Probability [T-ETIT-101952]

Responsible: Dr.-Ing. Holger Jäkel
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102104 - Theory of Probability
 M-ETIT-105646 - Theory of Probability/Communication Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2310505</td>
<td>Theory of Probability</td>
<td>2</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jäkel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2310507</td>
<td>Tutorial for 2310505 Theory of Probability</td>
<td>1</td>
<td>Practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jäkel</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7310505</td>
<td>Theory of Probability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Lecture</th>
<th>Practice</th>
<th>Jäkel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory of Probability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
Below you will find excerpts from events related to this course:

Thermal Solar Energy
2169472, WS 21/22, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) On-Site

Content

In detail:
1. Introduction to energy requirements and evaluation of the potential use of solar thermal energy.
2. Primary energy source SUN: sun, solar constant, radiation (direct, diffuse scattering, absorption, impact angle, radiation balance).
5. Momentum and heat transport: basic equations of single and multiphase transport, calculation methods, stability limits. optional
6. Low temperature solar thermal systems: collector types, methods for system simulation, planning and dimensioning of systems, system design and stagnation scenarios.
7. High temperature solar thermal systems: solar towers and solar-farm concept, loss mechanisms, chimney power plants and energy production processes

The lecture elaborates the basics of the solar technology and the definition of the major wordings and its physical content such as radiation, thermal use, insulation etc.. Further the design of solar collectors for different purposes is discussed and analyzed. The functional principle of solar plants is elaborated before at the end the ways for solar cooling is discussed.

The aim of the course is to provide the basic physical principles and the derivation of key parameters for the individual solar thermal use. This involves the introduction and selection of solar hydraulics, mirrors, glass, and systems. In addition, the utilization of solar energy is important for interlink of the collector with a thermal-hydraulic circuit and a storage. The goal is to capture the regularities of linking to derive efficiency correlations as a function of their use and evaluate the performance of the entire system.

Recommendations / previous knowledge
Basics in heat and mass transfer, material science and fluid mechanics, desirable are reliable knowledge in physics in optics and thermodynamics.

Oral exam of about 25 minutes, no tools or reference materials may be used during the exam.
Organizational issues
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literature
Bereitstellung des Studienmaterials in gedruckter und elektronischer Form.
Course: Tutorial Advanced Mathematics I [T-MATH-100525]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>0131100</td>
<td>Übungen zu 0131000</td>
<td>2</td>
<td>Practice</td>
<td>Griesmaier</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>0131300</td>
<td>Übungen zu 0131200</td>
<td>2</td>
<td>Practice</td>
<td>Griesmaier</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written assignments (prerequisite). Exact requirements will be communicated in the lectures.

Prerequisites

None.
8.197 Course: Tutorial Advanced Mathematics II [T-MATH-100526]

Responsible:
PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>0180900</td>
<td>Übungen zu 0180800</td>
<td>2</td>
<td>Practice / 🖥</td>
<td>Hettlich</td>
</tr>
<tr>
<td>ST 2021</td>
<td>0181100</td>
<td>Übungen zu 0181000</td>
<td>2</td>
<td>Practice / 🖥</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7700024</td>
<td>Problem Class for Advanced Mathematics II</td>
<td>Hettlich, Arens, Griesmaier</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎓 Blended (On-Site/Online), ⚑ On-Site, ✗ Cancelled

Competence Certificate
Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites
None.
8.198 Course: Tutorial Advanced Mathematics III [T-MATH-100527]

Responsible:
PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-102859 - Advanced Mathematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>0131500</td>
<td>Übungen zu 0131400</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites

None.
8 COURSES

Course: Tutorial Engineering Mechanics I [T-MACH-100528]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Attestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2161246</td>
<td>Tutorial Engineering Mechanics I</td>
<td>2</td>
<td>Practice / 📈</td>
<td>Dyck, Böhlke</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>3161011</td>
<td>Engineering Mechanics I (Tutorial)</td>
<td>2</td>
<td>Practice / 📈</td>
<td>Kehrer, Langhoff, Görthofer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>76-T-MACH-100528-englisch</td>
<td>Tutorial Engineering Mechanics I</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Legend: 🕵 Online, 📈 Blended (On-Site/Online), 🗦 On-Site, ❌ Cancelled

Competence Certificate

Attestations have to be achieved in the following four categories: mandatory written homework problems, written homework problems, computational homework problems, colloquia.

This course is passed if all mandatory written homework problems are passed and if in the other three categories (written homework problems, computational homework problems, colloquia) in total at most three attestations have been finally not passed, at most one in each of the three categories.

Successful participation in this course allows for registration to the Exam "Engineering Mechanics I" (see T-MACH-100282)

Prerequisites
None

Below you will find excerpts from events related to this course:

Tutorial Engineering Mechanics I
2161246, WS 21/22, 2 SWS, Language: German, Open in study portal

Practice (Ü)
Blended (On-Site/Online)

Content
Please refer to the lecture Engineering Mechanics I.

Literature
Siehe Vorlesung Technische Mechanik I
8.200 Course: Tutorial Engineering Mechanics II [T-MACH-100284]

Responsible: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2162251 Tutorial Engineering Mechanics II</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2021 3162011 Engineering Mechanics II (Tutorial)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 76-T-MACH-100284 Tutorial Engineering Mechanics II</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2021 76-T-MACH-100284-englisch Tutorial Engineering Mechanics II</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Attestations have to be achieved in the following four categories: mandatory written homework problems, written homework problems, computational homework problems, colloquia.

This course is passed if all mandatory written homework problems are passed and if in the other three categories (written homework problems, computational homework problems, colloquia) in total at most two attestations have been finally not passed, at most one in each of the three categories.

Successful participation in this course allows for registration to the Exam "Engineering Mechanics II" (see T-MACH-100283)

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorial Engineering Mechanics II

2162251, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

Practice (Ü)

Blended (On-Site/Online)

Content

see lecture Engineering Mechanics II

Literature

Siehe Vorlesung Technische Mechanik II

Engineering Mechanics II (Tutorial)

3162011, SS 2021, 2 SWS, Language: English, [Open in study portal](#)

Practice (Ü)

Online

Content

see lecture "Engineering Mechanics II"

Literature

see lecture "Engineering Mechanics II"
8.201 Course: Tutorial Engineering Mechanics III [T-MACH-105202]

Responsible: Prof. Dr.-Ing. Wolfgang Seemann

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102402 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Practice</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2161204</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>2</td>
<td>Practice / Blended</td>
<td>Seemann, Bitner, Leister</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>3161013</td>
<td>Engineering Mechanics III (Tutorial)</td>
<td>2</td>
<td>Practice / Blended</td>
<td>Seemann, Bitner, Leister</td>
</tr>
</tbody>
</table>

Competence Certificate

Attestations, successful accomplishment of exercise sheets

Prerequisites

None

Below you will find excerpts from events related to this course:

Engineering Mechanics III (Tutorial)

2161204, WS 21/22, 2 SWS, Language: German, [Open in study portal]

Practice (Ü)

Blended (On-Site/Online)

Content

In the Tutorial exercises for the corresponding subjects of the lecture are presented. During the tutorial part of the tutorial exercises are presented and instructions for those exercises are given which have to be done as homework.

The homework is mandatory and is corrected by the tutors. A successful elaboration of the homework is necessary to take part in the final exam.

Literature

Hibbeler: Technische Mechanik 3, Dynamik, München, 2006

Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983

Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975

Göldner, Holzweissig: Leitfaden der Technischen Mechanik.

Hagedorn: Technische Mechanik III.

Engineering Mechanics III (Tutorial)

3161013, WS 21/22, 2 SWS, Language: English, [Open in study portal]

Practice (Ü)

Blended (On-Site/Online)

Content

Exercises related to the lecture
8 COURSES
Course: Tutorial Mathematical Methods in Continuum Mechanics [T-MACH-110376]

- **Responsible:** Prof. Dr.-Ing. Thomas Böhlke
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-103205 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2161255</td>
<td>Tutorial Mathematical Methods in Continuum Mechanics</td>
<td>2</td>
<td>Practice</td>
<td>Böhlke</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ❌ Cancelled

Competence Certificate

Successfully solving the homework sheets. Details are announced in the first lecture.

Prerequisites

None

Below you will find excerpts from events related to this course:

Tutorial Mathematical Methods in Continuum Mechanics

- 2161255, WS 21/22, 2 SWS, Language: German, [Open in study portal](#)

Content

See "Mathematical Methods in Continuum Mechanics"

Literature

Siehe "Mathematische Methoden der Kontinuumsmechanik"

Responsible: Prof. Dr.-Ing. Frank Henning

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102703 - Vehicle Lightweight Design - Strategies, Concepts, Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2113102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-105237</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WT 21/22

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105237</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☠ Cancelled

Competence Certificate

Written exam; Duration approx. 90 min

Prerequisites

none

Recommendation

none

Below you will find excerpts from events related to this course:

Vehicle Lightweight design – Strategies, Concepts, Materials

<table>
<thead>
<tr>
<th>Vehicle Lightweight design – Strategies, Concepts, Materials</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113102, WS 21/22, 2 SWS, Language: German, Open in study portal</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Content

Strategies in lightweight design

Shape optimization, light weight materials, multi-materials and concepts for lightweight design

Construction methods

Differential, integral, sandwich, modular, bionic

Body construction

Shell, space frame, monocoque

Metallic materials

Steel, aluminium, magnesium, titan

Aim of this lecture:

Students learn that lightweight design is a process of realizing a demanded function by using the smallest possible mass. They understand lightweight construction as a complex optimization problem with multiple boundary conditions, involving competences from methods, materials and production.

Students learn the established lightweight strategies and ways of construction. They know the metallic materials used in lightweight construction and understand the relation between material and vehicle body.
Literature
8 COURSES
Course: Vibration Theory [T-MACH-105290]

8.204 Course: Vibration Theory [T-MACH-105290]

Responsible:
Prof. Dr.-Ing. Alexander Fidlin
Prof. Dr.-Ing. Wolfgang Seemann

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Course</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Vibration Theory</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Übungen zu Technische Schwingungslehre</td>
<td>Fidlin, Keller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Vibration Theory</td>
<td>2 SWS</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 180 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Vibration Theory

2161212, WS 21/22, 2 SWS, Language: German

Lecture (V)

Content
Concept of vibration, superposition of vibration with equal and with different frequencies, complex frequency response.

Vibration of systems with one dof: Free undamped and damped vibration, forced vibration for harmonic, periodic and arbitrary excitation. Excitation of undamped vibration in resonance.

Vibration of systems with distributed parameters: Partial differential equations as equations of motion, wave propagation, d'Alembert's solution, Ansatz for separation of time and space, eigenvalue problem, infinite number of eigenvalues and eigenfunctions.

Introduction to rotor dynamics: Laval rotor in rigid and elastic bearings, inner damping, Laval rotor in anisotropic bearings, synchronous and asynchronous whirl, rotors with asymmetric shaft.

Literature
Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Übungen zu Technische Schwingungslehre

2161213, WS 21/22, 2 SWS, Language: German

Practice (Ü)

Content
Exercises related to the lecture
Course: Virtual Engineering (Specific Topics) [T-MACH-105381]

Responsibility: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104919 - Advanced Topics and Methods in Mechanical Engineering 1
M-MACH-105091 - Advanced Topics and Methods in Mechanical Engineering 2

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events
| ST 2021 | 3122031 | Virtual Engineering (Specific Topics) | 2 SWS | Lecture / Online | Ovtcharova, Maier |

Exams
| ST 2021 | 76-T-MACH-105381 | Virtual Engineering (Specific Topics) | Ovtcharova |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, 20 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Virtual Engineering (Specific Topics)
3122031, SS 2021, 2 SWS, Language: English, Open in study portal

Content
Students can
- explain the basics of virtual engineering and name exemplary modeling tools and assign them to the corresponding methods and processes
- Formulate validation questions in the product development process and name obvious solution methods
- explain the basics of systems engineering and establish the connection to the product development process
- explain individual methods of the digital factory and present the functions of the digital factory in the context of the product creation process
- explain the theoretical and technical basics of Virtual Reality technology and show the connection to Virtual Engineering

Organizational issues
Vorlesungszeiten siehe ILIAS / Lecture times see ILIAS

Literature
Lecture slides / Vorlesungsfolien
8.206 Course: Virtual Engineering I [T-MACH-102123]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-105293 - Virtual Engineering 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2121352</td>
<td>Virtual Engineering I</td>
<td>V</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Blended (On-Site/Online)</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>2121353</td>
<td>Exercises Virtual Engineering I</td>
<td>U</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Blended (On-Site/Online)</td>
<td>Ovtcharova, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>76-T-MACH-102123</td>
<td>Virtual Engineering I</td>
<td>V</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Blended (On-Site/Online)</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination 90 min.

Prerequisites

None

Below you will find excerpts from events related to this course:

Virtual Engineering I
2121352, WS 21/22, 2 SWS, Language: English, [Open in study portal](#)

Content

The course includes:

- Conception of the product (system approaches, requirements, definitions, structure)
- Generation of domain-specific product data (CAD, ECAD, software, ...) and AI methods
- Validation of product properties and production processes through simulation
- Digital twin for optimization of products and processes using AI methods

After successful attendance of the course, students can:

- Conceptualize complex systems with the methods of virtual engineering and continue the product development in different domains
- Model the digital product with regard to planning, design, manufacturing, assembly and maintenance.
- Use validation systems to validate product and production in an exemplary manner.
- Describe AI methods along the product creation process.

Literature

Vorlesungsfolien / Lecture slides

Exercises Virtual Engineering I
2121353, WS 21/22, 2 SWS, Language: English, [Open in study portal](#)

Content

The theoretical Konzepts and contents of the lecture will be trained within practical relevance by basic functionalities of VE System solutions.

Organizational issues

Practice dates will probably be offered on different afternoons (14:00 - 17:15) in two-week intervals at the IMI in Kriegsstrasse 77 / Übungstermine werden voraussichtlich an unterschiedlichen Nachmittagen (14:00 - 17:15) in zweiwöchigem Rhythmus am IMI in der Kriegsstrasse 77 angeboten.
Literature
Exercise script / Übungsskript
8.207 Course: Wearable Robotic Technologies [T-INFO-106557]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Tamim Asfour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Michael Beigl</td>
</tr>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-103294 - Wearable Robotic Technologies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Wearable Robotic Technologies</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Each summer term</td>
<td>3</td>
<td>Asfour, Beigl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Wearable Robotic Technologies</td>
<td>Asfour</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Wearable Robotic Technologies</td>
<td>Asfour</td>
<td></td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Wearable Robotic Technologies

2400062, SS 2021, 2 SWS, Language: German/English, Open in study portal

Content

The lecture starts with an overview of wearable robot technologies (exoskeletons, prostheses and orthoses) and its potentials, followed by the basics of wearable robotics. In addition to different approaches to the design of wearable robots and their related actuator and sensor technology, the lecture focuses on modeling the neuromusculoskeletal system of the human body and the physical and cognitive human-robot interaction for tightly coupled hybrid human-robot systems. Examples of current research and various applications of lower, upper and full body exoskeletons as well as prostheses are presented.

Learning Objectives:

The students have received fundamental knowledge about wearable robotic technologies and understand the requirements for the design, the interface to the human body and the control of wearable robots. They are able to describe methods for modelling the human neuromusculoskeletal system, the mechatronic design, fabrication and composition of interfaces to the human body. The students understand the symbiotic human–machine interaction as a core topic of Anthropomatics and have knowledge of state of the art examples of exoskeletons, orthoses and prostheses.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik, Sportwissenschaften

Voraussetzungen: Der Besuch der Vorlesung Mechano-Informatik in der Robotik wird vorausgesetzt
Arbeitsaufwand: 120h

Literature

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Organisation: University

Part of: M-MACH-104332 - Further Examinations
8.209 Course: Wildcard Additional Examinations 10 [T-MACH-106650]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-MACH-104332 - Further Examinations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
8.210 Course: Wildcard Additional Examinations 2 [T-MACH-106639]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-MACH-104332 - Further Examinations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
<tr>
<td>Organisation:</td>
<td>University</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-MACH-104332 - Further Examinations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
8.212 Course: Wildcard Additional Examinations 4 [T-MACH-106641]

<table>
<thead>
<tr>
<th>Organisation</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of</td>
<td>M-MACH-104332 - Further Examinations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
8.213 Course: Wildcard Additional Examinations 5 [T-MACH-106643]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-MACH-104332 - Further Examinations</td>
</tr>
</tbody>
</table>

- **Type**: Examination of another type
- **Credits**: 3
- **Grading scale**: Grade to a third
- **Recurrence**: Each term
- **Version**: 1
8.214 Course: Wildcard Additional Examinations 6 [T-MACH-106646]

Organisation: University
Part of: M-MACH-104332 - Further Examinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>Type</td>
<td>Credits</td>
<td>Grading scale</td>
<td>Recurrence</td>
<td>Version</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Organisation: University

Part of: M-MACH-104332 - Further Examinations
8.216 Course: Wildcard Additional Examinations 8 [T-MACH-106648]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-MACH-104332 - Further Examinations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
8.217 Course: Wildcard Additional Examinations 9 [T-MACH-106649]

<table>
<thead>
<tr>
<th>Organisation</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of</td>
<td>M-MACH-104332 - Further Examinations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Workshop Mechatronical Systems and Products [T-MACH-108680]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102749 - Mechatronical Systems and Products

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2145162</th>
<th>Workshop Mechatronical Systems and Products</th>
<th>2 SWS</th>
<th>Practical course</th>
<th>Matthiesen, Hohmann</th>
</tr>
</thead>
</table>

| Exams | 76-T-MACH-108680 | Workshop Mechatronical Systems and Products | | Hohmann, Matthiesen |

Competence Certificate

Alongside the workshop, deliverables will be requested at defined milestones. In these, the application of the knowledge that has been developed within the framework of the module will be examined. These deliverables consist of CAD designs, control software and reflection reports, for example, are defined in a workshop assignment at the beginning of the semester. The milestones are announced in a calendar at the beginning of the semester and are available to students through ILIAS. The demanded deliveries are uploaded to ILIAS.

Prerequisites

none

Annotation

All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey "Anmeldung und Gruppeneinteilung" in ILIAS before the start of the semester.