

Modulhandbuch Materialwissenschaft und Werkstofftechnik Bachelor 2022 (Bachelor of Science (B.Sc.))

SPO 2022 Wintersemester 2022/23 Stand 23.09.2022

KIT-FAKULTÄT FÜR MASCHINENBAU

Inhaltsverzeichnis

	Qualifikationsziele	
2.	Studienplan	6
3.	Aufbau des Studiengangs	13
	3.1. Orientierungsprüfung	13
	3.2. Bachelorarbeit	13
	3.3. Ingenieurwissenschaftliche Grundlagen	13
	3.4. Naturwissenschaftliche Grundlagen	13
	3.5. Materialwissenschaftliche Grundlagen	14
	3.6. Ergänzungsfach	
	3.7. Überfachliche Qualifikationen	
	3.8. Mastervorzug	14
4.	Module	15
	4.1. Allgemeine und Anorganische Chemie (AAC) - M-CHEMBIO-101117	15
	4.2. Angewandte Chemie - M-CHEMBIO-100299	
	4.3. Anorganisch-Chemisches Praktikum - M-CHEMBIO-101728	18
	4.4. Bachelorarbeit - M-MACH-105974	
	4.5. Eigenschaften - M-MACH-103713	
	4.6. Elektronische Eigenschaften von Festkörpern - M-ETIT-103813	
	4.7. Experimentalphysik - M-PHYS-100283	
	4.8. Höhere Mathematik I - M-MATH-100280	
	4.9. Höhere Mathematik II - M-MATH-100281	
	4.10. Höhere Mathematik III - M-MATH-100282	
	4.11. Informatik - M-MACH-103840	
	4.12. Keramik - M-MACH-105977	
	4.13. Kinetik - M-MACH-103711	
	4.14. Konstruktionswerkstoffe - M-MACH-100291	
	4.15. Kontinuumsmechanik - M-MACH-105180	
	4.16. Materialphysik und Metalle - M-MACH-100287	
	4.17. Modellierung und Simulation - M-MACH-100296	
	4.18. Nachhaltige Produktionswirtschaft - M-MACH-105902	
	4.19. Organische Chemie für Ingenieure - M-CHEMBIO-101115	
	4.21. Passive Bauelemente - M-ETIT-100293	
	4.22. Polymere - M-CHEMBIO-100289	
	4.23. Rheologie - M-CHEMBIO-100300	
	4.24. Schlüsselqualifikationen - M-MACH-105976	
	4.25. Simulation - M-MACH-103712	
	4.26. Technische Mechanik I - M-MACH-100279	-
	4.27. Technische Mechanik II - M-MACH-100284	
	4.28. Thermodynamik - M-MACH-103710	
	4.29. Wahlmodul - M-MACH-103746	
	4.30. Werkstoffanalytik - M-MACH-103714	
	4.31. Werkstoffprozesstechnik - M-MACH-100294	
5	Teilleistungen	
٥.	5.1. Allgemeine und Anorganische Chemie - T-CHEMBIO-101866	
	5.2. Angewandte Chemie - T-CHEMBIO-100302	
	5.3. Angewandte Werkstoffsimulation - T-MACH-105527	
	5.4. Anorganisch-Chemisches Praktikum - T-CHEMBIO-103348	
	5.5. Applied Materials Simulation - T-MACH-110929	
	5.6. Bachelorarbeit - T-MACH-112129	
	5.7. Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen - T-WIWI-102819	
	5.8. Betriebswirtschaftslehre: Produktionswirtschaft und Marketing - T-WIWI-102818	
	5.9. Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft - T-WIWI-102817	
	5.10. Biochemie - T-CIWVT-111064	
	5.11. Einführung in die Mechatronik - T-MACH-100535	66
	5.12. Einführung in die Rheologie - T-CHEMBIO-100303	67
	5.13. Elektromagnetische Felder - T-ETIT-109078	68
	5.14. Elektronische Eigenschaften von Festkörpern - T-ETIT-107698	
	5.15. Elektrotechnik I für Wirtschaftsingenieure - T-ETIT-100533	70

5.16.	Elektrotechnik II für Wirtschaftsingenieure - T-ETIT-100534	71
5.17.	Exercises for Applied Materials Simulation - T-MACH-110928	72
5.18.	Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria - T-MACH-110924	74
5.19.	Exercises for Materials Characterization - T-MACH-110945	76
5.20.	Exercises for Microstructure-Property-Relationships - T-MACH-110930	77
5.21.	Exercises for Solid State Reactions and Kinetics of Phase Transformations - T-MACH-110926	78
5.22.	Experimentalphysik - T-PHYS-100278	79
5.23.	Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion - T-MACH-107667	81
5.24.	Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria - T-MACH-110925	83
	Gefüge-Eigenschafts-Beziehungen - T-MACH-107604	
5.26.	Genetik - T-CIWVT-111063	86
5.27.	Grundlagen der Mess- und Regelungstechnik - T-MACH-104745	87
5.28.	Höhere Mathematik I - T-MATH-100275	90
5.29.	Höhere Mathematik II - T-MATH-100276	91
5.30.	Höhere Mathematik III - T-MATH-100277	92
5.31.	Informatik für Materialwissenschaften - T-MACH-107786	93
5.32.	Keramik-Grundlagen - T-MACH-100287	94
5.33.	Konstruktionswerkstoffe - T-MACH-100293	95
5.34.	Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110377	96
	Maschinen und Prozesse - T-MACH-105208	
5.36.	Maschinen und Prozesse, Vorleistung - T-MACH-105232	99
5.37.	Maschinenkonstruktionslehre I und II - T-MACH-112225	101
5.38.	Maschinenkonstruktionslehre I, Vorleistung - T-MACH-112226	102
5.39.	Maschinenkonstruktionslehre II, Vorleistung - T-MACH-112227	103
5.40.	Materialphysik und Metalle - T-MACH-100285	104
5.41.	Materials Characterization - T-MACH-110946	107
5.42.	Materialwissenschaftliches Praktikum A - T-MACH-100286	108
5.43.	Materialwissenschaftliches Praktikum B - T-MACH-112139	110
5.44.	Materialwissenschaftliches Seminar - T-MACH-100290	113
5.45.	Mathematische Methoden der Kontinuumsmechanik - T-MACH-110375	114
5.46.	Mathematische Methoden der Mikromechanik - T-MACH-110378	115
5.47.	Mechanische Verfahrenstechnik - T-CIWVT-101886	116
5.48.	Microstructure-Property-Relationships - T-MACH-110931	117
	Mikrobiologie - T-CIWVT-111065	
5.50.	Modellierung und Simulation - T-MACH-100300	119
	Modern Physics - T-PHYS-103629	
	Moderne Physik für Informatiker - T-PHYS-102323	
5.53.	Nachhaltige Produktionswirtschaft - T-MACH-111859	124
5.54.	Numerische Mathematik für die Fachrichtung Informatik - T-MATH-102242	125
5.55.	Organische Chemie für Ingenieure - T-CHEMBIO-101865	126
	Passive Bauelemente - T-ETIT-100292	
5.57.	Physik für Ingenieure - T-MACH-100530	128
5.58.	Physikalische Chemie I - T-CHEMBIO-100301	130
5.59.	Physikalische Chemie II - T-CHEMBIO-100538	131
	Polymere - T-CHEMBIO-100294	
5.61.	Präsentation - T-MACH-112130	133
	Regelungstechnik und Systemdynamik - T-MACH-102126	
	Selbstverbuchung-BSc-HOC-SPZ-ZAK-benotet - T-MACH-112145	
	Selbstverbuchung-BSc-HOC-SPZ-ZAK-unbenotet - T-MACH-112144	
	Solid State Reactions and Kinetics of Phase Transformations - T-MACH-110927	
	Strömungslehre 1&2 - T-MACH-105207	
5.67.	Systematische Werkstoffauswahl - T-MACH-100531	142
	Technische Mechanik I - T-MACH-100282	
5.69.	Technische Mechanik II - T-MACH-100283	145
	Technische Mechanik III - T-MACH-100299	
	Thermodynamische Grundlagen / Heterogene Gleichgewichte - T-MACH-107670	
	Übungen zu Angewandte Werkstoffsimulation - T-MACH-107671	
	Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion - T-MACH-107632	
	Übungen zu Gefüge-Eigenschafts-Beziehungen - T-MACH-107683	
	Übungen zu Höhere Mathematik I - T-MATH-100525	
	Übungen zu Höhere Mathematik II - T-MATH-100526	
5.77.	Übungen zu Höhere Mathematik III - T-MATH-100527	156

	5.78. Übungen zu Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110333	157
	5.79. Übungen zu Mathematische Methoden der Kontinuumsmechanik - T-MACH-110376	158
	5.80. Übungen zu Mathematische Methoden der Mikromechanik - T-MACH-110379	159
	5.81. Übungen zu Technische Mechanik I - T-MACH-100528	160
	5.82. Übungen zu Technische Mechanik II - T-MACH-100284	161
	5.83. Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte - T-MACH-107669	162
	5.84. Übungen zu Werkstoffanalytik - T-MACH-107685	164
	5.85. Volkswirtschaftslehre I: Mikroökonomie - T-WIWI-102708	165
	5.86. Volkswirtschaftslehre II: Makroökonomie - T-WIWI-102709	167
	5.87. Werkstoffanalytik - T-MACH-107684	169
	5.88. Werkstoffprozesstechnik - T-MACH-100295	
	5.89. Zellbiologie - T-CIWVT-111062	
6.	Studien- und Prüfungsordnung	174

Qualifikationsziele

Durch eine forschungsorientierte und interdisziplinäre Ausrichtung der sechssemestrigen Ausbildung werden die Bachelor-Absolventinnen und -Absolventen des Studiengangs MatWerk des KIT auf lebenslanges Lernen und einen Einsatz in Industrie, Dienstleistung und öffentlicher Verwaltung mit vielfältigen Berufsfeldern vorbereitet, die Bezug zur Herstellung, Weiterverarbeitung, Anwendung und Charakterisierung von Werkstoffen haben. Die Absolventinnen und Absolventen erwerben außerdem die wissenschaftliche Qualifikation für einen Masterstudiengang im Bereich der Materialwissenschaft und Werkstofftechnik oder verwandter Studienrichtungen.

Im grundlagenorientierten Bereich der Ausbildung erwerben die Absolventinnen und Absolventen fundiertes Grundwissen in den Bereichen Materialwissenschaft, Mathematik, Chemie und Physik. Dies wird ergänzt durch ingenieur- und geisteswissenschaftliches Basiswissen in Technischer Mechanik, Elektrotechnik und Betriebswirtschaft. Darauf aufbauend wird vertieft auf die Werkstoffprozesstechnik und den anwendungsorientierten Einsatz von Werkstoffen eingegangen. Der hohe Anteil an mündlichen Prüfungen zielt darauf ab, die kompetenzorientierte Wissensvermittlung zu unterstützen. Mit den erlangten Kompetenzen und fundierten Kenntnissen der wissenschaftlichen Theorien, Prinzipien und Methoden können die Absolventinnen und Absolventen vorgegebene Probleme im Feld der Materialwissenschaft und Werkstofftechnik lösen.

Die Absolventinnen und Absolventen sind auf die technischen und nichttechnischen Anforderungen des Ingenieurberufs durch teamorientierte Laborpraktika, Workshops und Seminare vorbereitet. Hierdurch sind sie in der Lage, im betrieblichen Umfeld mit Kollegen verantwortungsvoll und situationsangemessen zu handeln.

Wegen des besonderen Profils wird im gesamten Studiengang und besonders in der Bachelorarbeit ein fach-disziplinübergreifendes Denken gefördert, das zur Entwicklung einer Kompetenz zur Lösung von Problemen mit Bezug zur Herstellung, der Verarbeitung und dem Einsatz von Werkstoffen führt. Die Absolventinnen und Absolventen können in den von ihnen gewählten Anwendungsbereichen der Materialwissenschaft und Werkstofftechnik neue Lösungen generieren.

Absolventinnen und Absolventen des Bachelor-Studiengangs MatWerk am KIT können in vertrauten Situationen grundlegende Methoden auswählen, um die Auswahl oder den Einsatz von Materialien in verschiedenen Anwendungen zu beurteilen. Sie sind in der Lage, vorgegebene Probleme und die sich daraus ergebenden Aufgaben in arbeitsteilig organisierten Teams zu übernehmen, selbstständig zu bearbeiten, die Ergebnisse anderer zu integrieren und die eigenen Ergebnisse schriftlich darzulegen sowie zu interpretieren. Sie können den Einsatz von Materialien in der Wertschöpfungskette beurteilen und weiterentwickeln und dabei vorgegebene Bewertungsmaßstäbe unter Berücksichtigung technischer, ökonomischer und gesellschaftlicher Randbedingungen anlegen.

Studienplan der KIT-Fakultät Maschinenbau für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik (MatWerk) PO-Version 2022

Inhaltsverzeichnis

0.	Abkürzungsverzeichnis	. 2
1.	Studienpläne, Fächer, Module und Prüfungen	. 2
	Prüfungsmodalitäten	
	2. Module des Bachelorstudiums "B.Sc."	
	3. Studienplan des Bachelorstudiums "B.Sc."	
1.4	Wahlmöglichkeiten im Wahlmodul des Ergänzungsfachs	. 5
	i. Modul Bachelorarbeit	
	6. Mastervorzugsleistungen	

Änderungshistorie (ab 01.10.2022)

Datum	Beschreibung der Änderungen

Studienplan der KIT-Fakultät für Maschinenbau für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik PO2022
Beschluss des KIT-Fakultätsrates vom 06.04.2022 mit redaktionellen Änderungen, gültig ab 01.10.2022
Seite 1 von 7

0. Abkürzungsverzeichnis

KIT-Fakultäten: mach KIT-Fakultät für Maschinenbau

inf KIT-Fakultät für Informatik

etit KIT-Fakultät für Elektrotechnik und Informationstechnik chem KIT-Fakultät für Chemie und Biowissenschaften

ciw KIT-Fakultät für Chemieingenieurwesen und Verfahrens-

technik

phys KIT-Fakultät für Physik

wiwi KIT-Fakultät für Wirtschaftsingenieurwesen

Semester: WS Wintersemester

SS Sommersemester

ww wahlweise (Angebot im Sommer- und Wintersemester)

Leistungen: V Vorlesung

Ü Übung
P Praktikum
LP Leistungspunkte
mPr mündliche Prüfung

sPr schriftliche Prüfung
PA Prüfungsleistung anderer Art

SL Studienleistung

OR Orientierungsprüfung

Gew Gewichtung einer Prüfungsleistung im Modul

bzw. in der Gesamtnote des Moduls

Sonstiges: B.Sc. Studiengang Bachelor of Science

M.Sc. Studiengang Master of Science

MatWerk Materialwissenschaft und Werkstofftechnik SPO Studien- und Prüfungsordnung

SWS Studien- und Prufungsordnun SWS Semesterwochenstunden

w wählbar p verpflichtend

1. Studienpläne, Fächer, Module und Prüfungen

Die Angabe der Leistungspunkte (LP) erfolgt gemäß dem "European Credit Transfer and Accumulation System" (ECTS).

1.1. Prüfungsmodalitäten

In jedem Semester ist für jede Prüfung mindestens ein Prüfungstermin anzubieten. Prüfungstermine sowie Termine, zu denen die Meldung zu den Prüfungen spätestens erfolgen muss, werden von der Prüfungskommission festgelegt. Die Meldung für die Prüfungen erfolgt in der Regel mindestens eine Woche vor der Prüfung. Melde- und Prüfungstermine werden rechtzeitig durch Anschlag bekanntgegeben, bei schriftlichen Prüfungen möglichst zu Beginn der Vorlesungszeit.

Über Hilfsmittel, die bei einer Prüfung benutzt werden dürfen, entscheidet der Prüfer. Eine Liste der zugelassenen Hilfsmittel ist gleichzeitig mit der Ankündigung des Prüfungstermins bekanntzugeben.

Studienleistungen können mehrfach wiederholt werden.

Studienplan der KIT-Fakultät für Maschinenbau für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik PO2022 Beschluss des KIT-Fakultätsrates vom 06.04.2022 mit redaktionellen Änderungen, gültig ab 01.10.2022

Seite 2 von 7

1.2. Module des Bachelorstudiums "B.Sc."

Voraussetzung für die Zulassung zu den Erfolgskontrollen ist der Nachweis über die angegebenen Prüfungs- oder Studienleistungen. Benotete Erfolgskontrollen gehen mit dem angegebenen Gewicht (Gew) in die Modulnote ein.

Das in § 16 und § 20 Absatz 2 SPO beschriebene Fach "Überfachliche Qualifikationen" besteht aus dem Modul "Schlüsselqualifikationen", in welchem Veranstaltungen aus dem Angebot des KIT-House of Competence (HoC), des KIT-Sprachenzentrums (SPZ) und des Zentrum für Angewandte Kulturwissenschaft und Studium Generale (ZAK) belegt und Erfolgskontrollen mit einem Leistungsumfang von insgesamt 6 LP frei gewählt werden können. Auf Antrag kann der Prüfungsausschuss weitere frei wählbare Erfolgskontrollen im Modul "Schlüsselqualifikationen" genehmigen.

	Modul	Teilleistung	Koordinator	Studien- leistung	LP	Erfolgs- kontrolle	Gew
1	Höhere Mathematik I	Höhere Mathematik I		SL	7	sPr, OR	7
2	Höhere Mathematik II	Höhere Mathematik II	Griesmaier	SL	7	sPr	7
3	Höhere Mathematik III	Höhere Mathematik III		SL	7	sPr	7
4	Experimentalphysik	Experimentalphysik A	Schimmel		8	sPr	15
		Experimentalphysik B	Ochminici		7	31 1	10
5	Allgemeine und Anorganische Chemie	Allgemeine und Anorganische Chemie	Ruben		5	sPr	5
6	Anorganisch- Chemisches Prakti- kum	Anorganisch-Chemisches Praktikum	Anson	sPr	6	PA	6
7	Organische Chemie für Ingenieure	Organische Chemie für CIW, BIW, VT und MWT	Meier		5	sPr	5
8	Technische Mechanik I	Technische Mechanik I	Darlin	SL	7	sPr	7
9	Technische Mechanik II	Technische Mechanik II	Böhlke	SL	6	sPr	6
10	Materialphysik und Metalle	Materialphysik und Metalle	Pundt		12	mPr, OR	14
		Materialwissenschaftl. Praktikum A	Heilmaier		2	SL	14
11	Keramik	Keramik-Grundlagen	Hoffmann		6	mPr	
		Materialwissenschaftl. Praktikum B	Gorr		4	SL	12
		Materialwissenschaftl. Seminar	Gruber		2	SL	
12	Polymere	Polymere	Wilhelm		6	m/sPr	6
13	Elektronische Eigen- schaften von Festkör- pern	Elektronische Eigenschaften von Festkörpern	Colsmann		5	sPr	5
14	Passive Bauelemente	Passive Bauelemente	Colsmann		5	sPr	5
15	Konstruktionswerk- Stoffe	Konstruktionswerkstoffe	Guth		6	mPr	6
16	Werkstoffprozess- Technik	Werkstoffprozesstechnik	Liebig		6	mPr	6
17	Kontinuumsmechanik	Kontinuumsmechanik der Festkörper und Fluide	Böhlke/ Frohnapfel		5	sPr	5
18	Informatik	Informatik für Material- wissenschaften	Weygand		6	sPr	6
19	Modellierung und Simulation	Modellierung und Simulation	Nestler		5	sPr	5
20	Angewandte Chemie	Angewandte Chemie	Grunwaldt		5	m/sPr	5
21	Rheologie	Einführung in die Rheologie	Wilhelm		6	m/sPr	6
22	Nachhaltige Produkti- onswirtschaft	Nachhaltige Produktions- wirtschaft	Lanza		5	sPr	5
23	Schlüsselqualifikatio- nen	HoC/SPZ/ZAK- Veranstaltungen	Heilmaier		6	SL*	0
24	Wahlmodul	siehe 1.4			8	m/sPr	8

Studienplan der KIT-Fakultät für Maschinenbau für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik PO2022 Beschluss des KIT-Fakultätsrates vom 06.04.2022 mit redaktionellen Änderungen, gültig ab 01.10.2022

Seite 3 von 7

* Das Fach Überfachliche Qualifikationen und das Modul Schlüsselqualifikationen sind unbenotet. Gegebenenfalls benotete Erfolgskontrollen im Modul Schlüsselqualifikationen werden im Transcript of Records gelistet aber nicht für die Gesamtnote des Studiengangs angerechnet.

1.3. Studienplan des Bachelorstudiums "B.Sc."

Semester Fach	1 32 LP	2 33 LP	3 32 LP	4 27 LP	5 29 LP	6 27 LP	Summe 180 LP
Ingenieurwis- senschaftliche Grundlagen	Höhere Mathematik I 7 LP, sPr	Höhere Mathematik II 7 LP, sPr	Höhere Mathematik III 7 LP, sPr Technische Mechanik I 7 LP, sPr Nachhaltige Produktions- wirtschaft 5 LP, sPr	Technische Mechanik II 6 LP, sPr	Kontinuums- mechanik der Festkörper und Fluide 5 LP, sPr	5. 5.	44 LP
Naturwissen- schaftliche Grundlagen	Experimen- talphysik A 8 LP Allg. und Anorg. Chemie 5 LP, sPr	Experimen- talphysik B 7 LP, sPr Org. Chemie für CIW, BIW, VT und MWT 5 LP, sPr Anorgchem. Praktikum 6 LP, PA				veit 15 LP + Präsentation 3 LP)	31 LP
Materialwis- senschaftliche Grundlagen	Material- physik 6 LP Informatik für Materialwis- senschaften 6 LP, sPr	Metalle 6 LP, mPr Materialwiss. Praktikum A 2 LP, SL	Keramik- Grundlagen 6 LP, mPr Chemie u. Physik der Makromolek. I 3 LP Materialwiss. Praktikum B 4 LP, SL	Chemie u. Physik der Makromolek. II 3 LP, m/sPr Materialwiss. Seminar 2 LP, SL Angewandte Chemie 5 LP, m/sPr Einführung in die Rheologie 6 LP, m/sPr Elektronische Eigenschaften von Festkörpern für Materialwissenschaften 5 LP, sPr	Modell. und Simulation 5 LP, sPr Passive Bauelemente 5 LP, sPr Werkstoffpro- zesstechnik 6 LP, mPr Konstrukti- onswerkstoffe 6 LP, mPr	Bachelorarbeit 15 LP (Bachelorarbeit 12 LP + Präsentation 3 LP)	76 LP
Überfachliche Qualifikatio- nen				,	HoC/SPZ/ ZAK-Veranst. 2 LP, SL	HoC/SPZ/ ZAK-Veranst. 4 LP, 2 SL	6 LP
Ergänzungs- fach						Siehe 1.4 8 LP, 2 m/sPr	8 LP

Studienplan der KIT-Fakultät für Maschinenbau für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik PO2022 Beschluss des KIT-Fakultätsrates vom 06.04.2022 mit redaktionellen Änderungen, gültig ab 01.10.2022 Seite 4 von 7

1.4. Wahlmöglichkeiten im Wahlmodul des Ergänzungsfachs

VNr	Teilleistung	Dozent	sws	LP	Erfolgs- kontrolle	Sem	Inst
2142890 +2142891	Physik für Ingenieure	Gumbsch Nesterov- Müller	2+2	5	sPr	SS	IAM- CMS
2174576 +2174577	Systematische Werkstoffauswahl	Dietrich	2+1	4	sPr	SS	IAM- WK
2304223	Elektrotechnik I für Wirtschafts- ingenieure	Menesklou	2	3	sPr	WS	IAM- WET
2304224	Elektrotechnik II für Wirtschafts- ingenieure	Menesklou	3	5	sPr	SS	IAM- WET
2105011	Einführung in die Mechatronik	Reischl, Lorch	3	6	sPr	WS	IAI
2145178 +2145185 + neu	Maschinenkonstruktionslehre I + II	Matthiesen	4+2	8	sPr	WS/SS	IPEK
5206 +5207	Physikalische Chemie I	Olzmann	4+2	8	sPr	WS	IPC
5206 +5207	Physikalische Chemie II	Klopper	4+2	7	sPr	SS	IPC
2161203 +2161204	Technische Mechanik III	Fidlin	2+2	5	sPr	WS	ITM
2161254 +2161255	Mathematische Methoden der Kontinuumsmechanik	Böhlke	2+1	5	sPr	WS	ITM
2162280 +2162281	Mathematische Methoden der Mikromechanik	Böhlke	2+1	6	sPr	SS	ITM
2154512 +2153512	Strömungslehre I+II	Frohnapfel	3+3	8	sPr	SS/WS	ISTM
2185000 +2187000	Maschinen und Prozesse*	Bauer Ku- bach Maas Pritz	4+1	8	sPr	WS	IST IFKM ITT
3134140 +2187000	Machines and Processes*	Bauer Ku- bach Maas Pritz	4+1	8	sPr	SS	IST IFKM ITT
2137301 +2137302	Grundlagen der Mess- und Regelungstechnik**	Stiller	3+1	8	sPr	WS	MRT
2138332 +2138333	Regelungstechnik und Systemdy- namik**	Stiller	2+1	5	sPr	SS	MRT
2600023	Betriebswirtschaftslehre: Unter- nehmensführung und Informati- onswirtschaft	Weinhardt Strych Nieken	2	3	sPr	WS	FBV
2600024 +2500027	Betriebswirtschaftslehre: Produktionswirtschaft und Marketing	Klarmann Schultmann Fichtner	2+2	4	sPr	SS	FBV IIP IISM
2610026 +2610027	Betriebswirtschaftslehre: Finanz- wirtschaft und Rechnungswesen	Ruckes Wouters	2+2	4	sPr	WS	FBV
2610012 +2610013	Volkswirtschaftslehre I: Mikroökonomie	Puppe	3+2	5	sPr	WS	ECON
2600014 +2600015	Volkswirtschaftslehre II: Makroökonomie	Wigger	4+2	5	sPr	SS	ECON
0187400 +0187500	Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen	Weiß	2+1	6	sPr	SS	IANM
neu	Biologie im Ingenieurwesen I - Zellbiologie	Gottwald	2	3	sPr	WS	CIW

Studienplan der KIT-Fakultät für Maschinenbau für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik PO2022 Beschluss des KIT-Fakultätsrates vom 06.04.2022 mit redaktionellen Änderungen, gültig ab 01.10.2022 Seite 5 von 7

22405	Biologie im Ingenieurwesen I - Genetik	Neumann	2	2	sPr	WS	CIW
22406	Biologie im Ingenieurwesen II - Biochemie	Rudat	2	3	sPr	SS	CIW
22407	22407 Biologie im Ingenieurwesen II - Mikrobiologie 22901 +22902 Mechanische Verfahrenstechnik 2306004 +2306005 Elektromagnetische Felder		2	2	sPr	ws	CIW
			2+2	6	sPr	WS	CIW
			2+2	6	sPr	SS	ETI
4044011 +4044012	Modern Physics	Pilawa	4+2	6	sPr	WS	PHYS
4040451 +4040452	Moderne Physik für Informatiker	Mühlleitner	4+2	9	sPr	SS	ITP

Von den beiden Teilleistungen "Maschinen und Prozesse" und "Machines and Processes" kann nur eine im Wahlmodul abgelegt werden.

1.5. Modul Bachelorarbeit

Das Modul Bachelorarbeit besteht aus einer Bachelorarbeit und einer Präsentation über den Hintergrund und die wissenschaftlichen Inhalte der Bachelorarbeit. Die Präsentation soll 30 Minuten umfassen und wird anschließend mit den verantwortlichen Betreuern und dem Publikum fachlich diskutiert. Die Leistung im Rahmen der Präsentation und der fachlichen Diskussion geht in die Gesamtnote des Moduls Bachelorarbeit ein.

^{**} Von den beiden Teilleistungen "Grundlagen der Mess- und Regelungstechnik" und "Regelungstechnik und Systemdynamik" kann nur eine im Wahlmodul abgelegt werden.

1.6. Mastervorzugsleistungen

Im Rahmen der Mastervorzugsleistungen (§ 15 a SPO) können folgende Module gewählt werden:

Modul	Teilleistung	Koordinator	LP	Erfolgs- kontrolle
Thermodynamik	Thermodynamische Grundlagen / Heterogene Gleichgewichte Fundamentals in Materials Thermo- dynamics and Heterogeneous Equi- libria	Seifert	6	SL, mPr
Kinetik	Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion Solid State Reactions and Kinetics of Phase Transformations		6	SL, mPr
Simulation	Angewandte Werkstoffsimulation Applied Materials Simulation	Gumbsch	6	SL, mPr
Eigenschaften	Gefüge-Eigenschafts-Beziehungen enschaften Microstructure-Property- Relationships		6	SL, mPr
Werkstoffanalytik	Werkstoffanalytik Materials Characterization	Pundt	6	SL, mPr

3 Aufbau des Studiengangs

Pflichtbestandteile		
Orientierungsprüfung Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.		
Bachelorarbeit	15 LP	
Ingenieurwissenschaftliche Grundlagen	44 LP	
Naturwissenschaftliche Grundlagen	31 LP	
Materialwissenschaftliche Grundlagen	76 LP	
Ergänzungsfach	8 LP	
Überfachliche Qualifikationen	6 LP	
Freiwillige Bestandteile	•	
Mastervorzug Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.		

3.1 Orientierungsprüfung

Pflichtbestandteil	e	
M-MACH-106200	Orientierungsprüfung	0 LP

3.2 Bachelorarbeit Leistungspunkte

Pflichtbestandtei	е	
M-MACH-105974	Bachelorarbeit	15 LP

3.3 Ingenieurwissenschaftliche Grundlagen Leistungspunkte 44

Pflichtbestandteile			
M-MATH-100280	Höhere Mathematik I	7 LP	
M-MATH-100281	Höhere Mathematik II	7 LP	
M-MATH-100282	Höhere Mathematik III	7 LP	
M-MACH-100279	Technische Mechanik I	7 LP	
M-MACH-100284	Technische Mechanik II	6 LP	
M-MACH-105180	Kontinuumsmechanik	5 LP	
M-MACH-105902	Nachhaltige Produktionswirtschaft	5 LP	

3.4 Naturwissenschaftliche Grundlagen Leistungspunkte 31

Pflichtbestandteile		
M-PHYS-100283	Experimentalphysik	15 LP
M-CHEMBIO-101115	Organische Chemie für Ingenieure	5 LP
M-CHEMBIO-101117	Allgemeine und Anorganische Chemie (AAC)	5 LP
M-CHEMBIO-101728	Anorganisch-Chemisches Praktikum	6 LP

3.5 Materialwissenschaftliche Grundlagen

Leistungspunkte 76

Pflichtbestandteile		
M-CHEMBIO-100300	Rheologie	6 LP
M-ETIT-100293	Passive Bauelemente	5 LP
M-MACH-100287	Materialphysik und Metalle	14 LP
M-MACH-100291	Konstruktionswerkstoffe	6 LP
M-MACH-100294	Werkstoffprozesstechnik	6 LP
M-MACH-100296	Modellierung und Simulation	5 LP
M-ETIT-103813	Elektronische Eigenschaften von Festkörpern	5 LP
M-CHEMBIO-100299	Angewandte Chemie	5 LP
M-MACH-103840	Informatik	6 LP
M-MACH-105977	Keramik	12 LP
M_CHEMBIO_100289	Polymere	61P

3.6 Ergänzungsfach

Leistungspunkte

8

Pflichtbestandteile	
M-MACH-103746 Wahlmodul	8 LP

3.7 Überfachliche Qualifikationen

Leistungspunkte

3

Pflichtbestandteil	e	
M-MACH-105976	Schlüsselqualifikationen	6 LP

3.8 Mastervorzug

Wahlinformationen

Bitte beachten Sie: Eine als Mastervorzugsleistung angemeldete Erfolgskontrolle kann nach dem erfolgreichen Ablegen aller für den Bachelorabschluss erforderlichen Studien- und Prüfungsleistungen nur als Mastervorzugsleistung erbracht werden, solange Sie im Bachelorstudiengang immatrikuliert sind. Weiter darf noch keine Masterzulassung vorliegen und gleichzeitig das Mastersemester begonnen haben.

Dies bedeutet, dass ab Bekanntgabe der Zulassung zum Masterstudium und Beginn des Mastersemester die Teilnahme an der Prüfung als **regulärer erster Prüfungsversuch** im Rahmen des Masterstudiums erfolgt.

Mastervorzug (Wahl: max. 30 LP)			
M-MACH-103710	Thermodynamik	6 LP	
M-MACH-103711	Kinetik	6 LP	
M-MACH-103712	Simulation	6 LP	
M-MACH-103713	Eigenschaften	6 LP	
M-MACH-103714	Werkstoffanalytik	6 LP	

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein:
 - Bachelorarbeit
 - Ergänzungsfach
 - · Ingenieurwissenschaftliche Grundlagen
 - Materialwissenschaftliche Grundlagen
 - · Naturwissenschaftliche Grundlagen
 - · Überfachliche Qualifikationen

4 Module

4.1 Modul: Allgemeine und Anorganische Chemie (AAC) [M-CHEMBIO-101117]

Verantwortung: Prof. Dr. Mario Ruben

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Naturwissenschaftliche Grundlagen

Voraussetzung für: M-CHEMBIO-101728 - Anorganisch-Chemisches Praktikum

LeistungspunkteNotenskalaTurnusDauerSprache5ZehntelnotenJedes Wintersemester1 SemesterDeutsch

Pflichtbestandteile			
T-CHEMBIO-101866	Allgemeine und Anorganische Chemie	5 LP	Ruben

Level

3

Version

1

Erfolgskontrolle(n)

benotet: Prüfungsklausur (150 min)

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden besitzen ein grundlegendes Verständnis der anorganischen Chemie. Mit der Kenntnis des Periodensystems der Elemente, des grundlegenden Aufbaus von Atomen und chemischen Bindungen kennen die Studierenden spezifische anorganische Stoffe, sind in der Lage, diese zu beschreiben und deren verschiedene Reaktionsvermögen abzuschätzen und nach chemischen Gesetzmäßigkeiten zu interpretieren.

Inhalt

• Aufbau der Materie, Atommodelle, Periodensystem der Elemente• Einführung in die chemische Bindung• Metalle, Ionenkristalle, kovalente Verbindungen, Komplexverbindungen• Chemische Reaktionen, Chemisches Gleichgewicht, Massenwirkungsgesetz, Löslichkeitsprodukt• Säuren und Basen, Säure-Basen-Gleichgewichte, Redoxreaktionen• Fällungsreaktionen, Löslichkeitsprodukt• Elektrochemische Grundbegriffe,• Chemie der Elemente

Zusammensetzung der Modulnote

Note Prüfungsklausur

Arbeitsaufwand

Präsenzzeit: 56h Selbststudium: 94h

Literatur

Mortimer, Müller (aktuelle Auflage): Chemie, Thieme Verlag

Riedel (aktuelle Auflage): Moderne Anorganische Chemie, de Gruyter Verlag

Hollemann, Wieberg (aktuelle Auflage): Lehrbuch der Anorganischen Chemie, de Gruyter Verlag

M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham: Allgemeine und Anorganische Chemie, Spektrum Verlag 2004

C. E. Housecroft, A. G. Sharpe, Anorganische Chemie, Pearson Verlag 2006.

4.2 Modul: Angewandte Chemie [M-CHEMBIO-100299]

Verantwortung: Dr. Nico Dingenouts

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-100302	Angewandte Chemie	5 LP	

Erfolgskontrolle(n)

Klausur, (schriftliche Prüfungsleistung, 90 min)

Zur Klausur ist eine Anmeldung erforderlich. Diese erfolgt über das Studierendenportal.

Voraussetzungen

keine

Qualifikationsziele

Vorlesung "Angewandte Chemie für Bachelorstudierende der Chemie"

Die Studierenden haben ein grundlegendes Verständnis der angewandten Chemie. Hierzu gehören sowohl die technologische Betrachtungsweise von chemischen Prozessen als auch die Polymerchemie. Zum einen geht es um die Umsetzung von chemischen Reaktionen in industrielle Größenordnung, großtechnische Anwendungen, die Bedeutung katalytischer Prozesse, zum anderen sollen den Studenten Grundbegriffe über den Aufbau und die Synthese von Polymeren sowie der Bedeutung und der Einsatzgebiete von Kunststoffen vermittelt werden.

Inhalt

Chemische Technik

Technologische Betrachtungsweise von chemischen Prozessen, Kriterien zur Umsetzung von Laborreaktionen in Technikumsoder Industriemaßstab,

Überblick zu Reaktionsführung und Reaktortypen, Bilanzierung von idealen Reaktoren, Kinetik und Katalyse, Grundoperationen, Fließbilder

Stoffströme zur Produktion von chemischen Grundstoffen,

anorganische und organische Zwischen- und Massenprodukte, "Green Chemistry"

Polymerchemie

Wirtschaftliche und technische Bedeutung von Kunststoffen, Produktionsmengen und Einsatzgebiete

Mögliche Syntheserouten von Polymeren, Herstellung von Kunststoffen, Charakterisierung von Kunststoffen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Vorlesung "Angewandte Chemie für Bachelorstudierende der Chemie":

Präsenzzeit in der Vorlesung: 30 h

Präsenzzeit in der Übung und Exkursion: 15 h

Vor- und Nachbereitung inkl. Klausurvorbereitung: 75 h

Summe: 120 h (4 LP)

Lehr- und Lernformen

Das Modul besteht aus folgender Lehrveranstaltung:

Vorlesung und Übung "Angewandte Chemie für Bachelorstudierende der Chemie" (2+1 SWS, 4 LP, Pflicht, SS) mit halbtägiger Exkursion

Folgende Leistung ist zu erbringen:

Literatur

Inhalt der Vorlesungen, Standardlehrbücher:

ChemischeTechnik

- 1. Behr, D.W. Agar, J. Jörissen, Einführung in die Technische Chemie, Spektrum-Verlag, 2008 (on-line via KIT-Bibliothek verfügbar).
- Baerns, A.Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken. Technische Chemie. Wiley-VCH, 2006 (1 Band), ISBN 3527310002.

Polymerchemie

1. Tieke, Makromolekulare Chemie, Wiley-VCH, Weinheim: 2005; M.D. Lechner, K. Gehrke, E.H. Nordmeier, Makromolekulare Chemie, Birkhäuser Verlag, Basel: 2010.

Weitere Informationen unter: http://www.itcp.kit.edu/vorlesung_angewandte_chemie.php

4.3 Modul: Anorganisch-Chemisches Praktikum [M-CHEMBIO-101728]

Verantwortung: Dr. Christopher Anson

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Naturwissenschaftliche Grundlagen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile			
T-CHEMBIO-103348	Anorganisch-Chemisches Praktikum	6 LP	Anson

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul umfasst eine Prüfungsleistung anderer Art gemäß SPO 2015 B.Sc. Angewandte Geowissenschaften § 4 (2). Diese beinhaltet die Erstellung von insgesamt 4 Protokollen, d.h. zu jeder Analyse je ein Protokoll. Jedes Protokoll umfasst 6-10 Seiten, und beinhaltet: Beschreibung der Durchführung der Analyse, H- und P-Sätze der verwendeten Chemikalien (Sicherheitsmaßnahmen), Reaktionsgleichungen, Beobachtungen, Liste der in der Probe gefundenen Kationen und Anionen

Voraussetzungen

Bestandene Klausur des Modul Anorganische Chemie Grundlagen M-CHEMBIO-102006).

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Das Modul M-CHEMBIO-101117 - Allgemeine und Anorganische Chemie (AAC) muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Die Studierenden können in einem chemischen Labor sicher arbeiten und kennen die damit zusammenhängenden Verhaltensund Sicherheitsvorschriften.

Sie werden eine saubere und ordentliche Arbeitsweise im Labor entwickeln.

Sie können selbstständig einfache chemische Experimente und Analysen durchführen, und ebenso selbstständig die Risiken und richtigen Sicherheitsmaßnahmen der benötigten chemischen Gefahrstoffe (H- und P-Sätze) recherchieren und eigenverantwortlich beachten.

Sie kennen chemische Nachweise für mehrere anorganische Kationen und Anionen.

Sie können im Labor mit einfachen Arbeitsgeräten umgehen.

Sie sind in der Lage eine Mischung von anorganischen Salzen zu lösen und anschließend die enthaltenen Kationen und Anionen voneinander zu trennen und nachzuweisen.

Sie werden anhand dieser praktischen experimentellen Arbeit im Labor und auch im Seminar zum Praktikum ihre chemischen Grundkenntnisse aus der Vorlesung (insbesondere Stöchiometrie, Säure-Base-Gleichgewichte und pH-Werte, Redoxreaktionen, Löslichkeitsprodukte, Fällungs- und Komplexgleichgewichte) vertiefen.

Inhalt

Sicherheit im Labor

Umgang mit Gefahrstoffen (GHS: H- und P-Sätze)

Chemische und spektroskopische Nachweise mehrerer Kationen und Anionen

Trennung und Identifizierung der Kationen und Anionen in einer den Studierenden unbekannten Probe durch einen klassischen Trennungsgang

Zusammensetzung der Modulnote

Die Modulnote wird von der Gesamtpunktzahl der vier Protokolle berechnet. Das Modul wird mit 50% bestanden.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Anorganisch-Chemisches Praktikum" beträgt 180 h und besteht aus Präsenz im Praktikum und in den Seminaren (80 h) sowie Selbststudium für die Vorbereitung der Praktikumsversuche und dem Verfassen der Versuchsprotokolle (100 h).

Literatur

Jander/Blasius: Einführung in das Anorganisch-Chemische Praktikum (aktuelle Auflage) oder

Jander/Blasius, Anorganische Chemie I: Theoretische Grundlagen und Qualitative Analyse (aktuelle Auflage)

4.4 Modul: Bachelorarbeit [M-MACH-105974]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier **Einrichtung:** KIT-Fakultät für Maschinenbau

Bestandteil von: Bachelorarbeit

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
15	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-MACH-112129	Bachelorarbeit	12 LP	Heilmaier
T-MACH-112130	Präsentation	3 LP	Heilmaier

Erfolgskontrolle(n)

Das Modul Bachelorarbeit besteht aus einer schriftlichen Ausarbeitung (Bachelorarbeit) sowie einer mündlichen Präsentation eines selbst gewählten oder gegebenen wissenschaftlichen Themas. Die Studierenden sollen darin zeigen, dass sie in der Lage sind, ein Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten. Der Umfang der Bachelorarbeit entspricht 12 Leistungspunkten. Die maximale Bearbeitungsdauer beträgt vier Monate. Thema und Aufgabenstellung sind an den vorgesehenen Umfang anzupassen.

Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Auf begründeten Antrag des Studenten kann der Prüfungsausschuss die Bearbeitungszeit um maximal einen Monat verlängern. Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit "nicht ausreichend" (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

Die Bachelorarbeit wird von mindestens einem/einer Hochschullehrer/in, einem/einer leitenden Wissenschaftler/in gemäß § 14 abs. 3 Ziff. 1 KITG oder habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau und einem/einer weiteren Prüfenden bewertet. In der Regel ist eine/r der Prüfenden die Person, die die Arbeit vergeben hat.

Bei nicht übereinstimmender Beurteilung dieser beiden Personen setzt der Prüfungsausschuss im Rahmen der Bewertung dieser beiden Personen die Note der Bachelorarbeit fest; er kann auch einen weiteren Gutachter bestellen. Die Bewertung hat innerhalb von sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen. Die Präsentation soll ca. 20 Minuten dauern, entspricht im Umfang 3 LP und wird anschließend mit dem anwesenden Fachpublikum diskutiert.

Voraussetzungen

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 140 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. In den folgenden Bereichen müssen in Summe mindestens 140 Leistungspunkte erbracht worden sein:
 - Ergänzungsfach
 - · Ingenieurwissenschaftliche Grundlagen
 - Materialwissenschaftliche Grundlagen
 - Naturwissenschaftliche Grundlagen
 - Überfachliche Qualifikationen

Qualifikationsziele

Der/die Studierende kann selbstständig ein abgegrenztes, fachrelevantes Thema in einem vorgegebenen Zeitrahmen nach wissenschaftlichen Kriterien bearbeiten. Er/sie ist in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen und zu erkennen. Er/sie überblickt eine Fragestellung, kann wissenschaftliche Methoden und Verfahren auswählen und diese zur Lösung einsetzen bzw. weitere Potentiale aufzeigen. Dies erfolgt grundsätzlich auch unter Berücksichtigung von gesellschaftlichen und/oder ethischen Aspekten.

Die gewonnenen Ergebnisse kann er/sie interpretieren, evaluieren und bei Bedarf grafisch darstellen.

Er/sie ist in der Lage, eine wissenschaftliche Arbeit klar zu strukturieren und sie (a) in schriftlicher Form unter Verwendung der Fachterminologie zu kommunizieren, sowie (b) in mündlicher Form zu präsentieren und mit Fachleuten zu diskutieren.

Inhalt

Das Thema der Bachelorarbeit kann vom Studierenden selbst vorgeschlagen werden. Es wird vom Betreuer der Bachelorarbeit unter Beachtung von § 14 (3) der SPO festgelegt.

Arbeitsaufwand

Für die Ausarbeitung und Präsentation der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 450 Stunden gerechnet.

4.5 Modul: Eigenschaften [M-MACH-103713]

Verantwortung: Dr. Patric Gruber

Prof. Dr. Christoph Kirchlechner

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Mastervorzug

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Semester	1 Semester	Deutsch/Englisch	4	3

Wahlinformationen

Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung ("Übung") ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)					
T-MACH-107683	Übungen zu Gefüge-Eigenschafts-Beziehungen	2 LP	Gruber, Kirchlechner		
T-MACH-107604	Gefüge-Eigenschafts-Beziehungen	4 LP	Gruber, Kirchlechner		
T-MACH-110930	Exercises for Microstructure-Property-Relationships	2 LP	Gruber, Kirchlechner		
T-MACH-110931	Microstructure-Property-Relationships	4 LP	Gruber, Kirchlechner		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 30 Minuten).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden verstehen grundlegend den Zusammenhang zwischen dem Gefüge und den Materialeigenschaften. Dieser Zusammenhang wird für die mechanischen Eigenschaften (Elastizität, Plastizität, Bruch, Ermüdung, Kriechen) sowie für die Funktionseigenschaften (Leitfähigkeit, magnetische Eigenschaften) und jeweils für alle Werkstoffhauptklassen erarbeitet. Die Studierenden können die Eigenschaften phänomenologisch beschreiben, die zugrundeliegenden materialphysikalischen Mechanismen erklären und verstehen wie die Eigenschaften über das Gefüge gezielt eingestellt werden können. Sie können umgekehrt auch auf Basis des Gefüges die mechanischen und funktionellen Eigenschaften des Werkstoffes ableiten.

Inhalt

Es werden folgende Gefüge-Eigenschafts-Beziehungen für die verschiedenen Materialklassen behandelt:

- Elastizität und Plastizität
- Bruchmechanik
- Ermüdung
- Kriechen
- Elektrische Leitfähigkeit: Metallische Leiter, Halbleiter, Supraleiter, leitfähige Polymere
- Magnetische Eigenschaften und Magnetwerkstoffe

Neben der phänomenologischen Beschreibung und physikalische Erklärung des Materialverhaltens wird auch ein Überblick zu den jeweiligen experimentellen Methoden gegeben.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Eigenschaften" beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (33 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (87 h) und für die Übungen (48 Stunden).

Lehr- und Lernformen

Vorlesungen (Pflicht) Übungen (Pflicht)

4.6 Modul: Elektronische Eigenschaften von Festkörpern [M-ETIT-103813]

Verantwortung: apl. Prof. Dr. Alexander Colsmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-107698	Elektronische Eigenschaften von Festkörpern	5 LP	Colsmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden

- verfügen über grundlegende Kenntnisse der Quantenmechanik (Schrödinger-Gleichung, Eigenzustände, Aufbau der Materie).
- besitzen grundlegende Kenntnisse zum elektronischen Transport in Festkörpern
- besitzen grundlegende Kenntnisse der Halbleiterphysik (Bandstruktur, Transporteigenschaften, Halbleitergrundgleichungen).
- kennen die Grundlagen der Modellierung von Halbleiterbauelementen und können die erlernten mathematischen und physikalischen Methoden auf andere Bereiche übertragen.
- haben ein Verständnis der Wirkungsweise verschiedener Halbleitermaterialien
- · haben ein mikroskopisches Verständnis der Wirkungsweise einer pn-Diode und Transistors

Inhalt

Grundlagen der Quantenmechanik

Elektronische Zustände

Elektronen in Kristallen

Quantenstatistik für Ladungsträger

Elektronische Transporteigenschaften (Drude-Modell, Konzept der effektiven Masse, Ladungstransport QM Betrachtung, Elektronenstreuung)

Halbleiter

Dotierte Halbleiter

Halbleiterbauelemente (Diode, Transistor)

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen und Übungen: 30 h
- 2. Vor-/Nachbereitung derselbigen: 60 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 60 h

4.7 Modul: Experimentalphysik [M-PHYS-100283]

Verantwortung: Prof. Dr. Thomas Schimmel **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: Naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
15	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	2

Pflichtbestandteile				
T-PHYS-100278	Experimentalphysik	15 LP	Pilawa, Schimmel	

Erfolgskontrolle(n)

Die Modulnote wird durch eine schriftliche Prüfung bestimmt, weitere Einzelheiten siehe bei der jeweiligen Teilleistung.

Voraussetzungen

keine

Qualifikationsziele

Experimentalphysik A:

Die Studierenden identifizieren die Grundlagen der Physik auf breiter Basis. In der Experimentalphysik A werden insbesondere an Beispielen aus der Mechanik Grundkonzepte der Physik (Kraftbegriff, Felder, Superpositionsprinzip, Arbeit, Leistung, Energie, Erhaltungssätze etc.) beschrieben. Vom Stoffgebiet werden die Grundlagen der Mechanik in voller Breite sowie die Sätze zu Schwingungen und Wellen und die Thermodynamik (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff) behandelt.

Experimentalphysik B:

Die Studierenden erwerben umfassende Kenntnisse in den Grundlagen der Physik auf breiter Basis von Elektrizität und Magnetismus, elektromagnetischen Wellen, geometrischer Optik und Wellenoptik bis hin zu den Grundkonzepten der modernen Physik (spezielle Relativitätstheorie, Quantenmechanik, Welle-Teilchen-Dualismus, Aufbau der Atome und Kerne).

Inhalt

Experimentalphysik A:

- Mechanik: Kraft, Impuls, Energie, Stoßprozesse, Erhaltungssätze, Drehimpuls, Drehmoment, Statische Felder, Gravitation und Keplersche Gesetze
- Schwingungen und Wellen
- Thermodynamik: Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff

Experimentalphysik B:

· Elektromagnetismus:

Elektrostatik (el. Ladung, Coulobsches Gesetz, el. Felder),

Magnetostatik (Ströme, Magnetfelder),

Elektrodynamik (Kräfte und Ströme, Supraleiter; Energieströme und Impuls im elektromagnetischen Feld; Elektrodynamik; Elektrische Schwingungen – der Wechselstrom; Elektromagnetische Wellen, die vier Maxwellgleichungen)

Optik:

Geometrische Optik inkl. Reflexionsgesetz und Brechungsgesetz, Totalreflexion, optische Instrumente Wellenoptik inkl. Beugung und Huygenssches Prinzip, Kohärenz und Interferenz, Laser, Polarisation Lichtquanten

Moderne Physik:

Spezielle Relativitätstheorie

Welle-Teilchen-Dualismus und Heisenbergsche Unschärferalation

Aufbau der Atome

Aufbau der Kerne und Radioaktivität

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Experimentalphysik" beträgt 450 h in 2 Semestern und besteht aus Präsenz in den Vorlesungen (90 h) und Übungen (48 h) sowie Selbststudium für die Vorlesung (132 h) und für die Übungen (180 Stunden).

4.8 Modul: Höhere Mathematik I [M-MATH-100280]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jährlich	1 Semester	Deutsch	3	3

Pflichtbestandteile					
T-MATH-100275	Höhere Mathematik I	7 LP	Arens, Griesmaier, Hettlich		
T-MATH-100525	Übungen zu Höhere Mathematik I Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Grundlagen der eindimensionalen Analysis. Der korrekte Umgang mit Grenzwerten, Funktionen, Potenzreihen und Integralen gelingt ihnen sicher. Sie verstehen zentrale Begriffe wie Stetigkeit, Differenzierbarkeit oder Integrierbarkeit, wichtige Aussagen hierzu sind ihnen bekannt. Die in der Vorlesung dargelegten Begründungen dieser Aussagen können die Studierenden nachvollziehen und einfache, hierauf aufbauende Aussagen selbstständig begründen.

Inhalt

Grundbegriffe, Folgen und Konvergenz, Funktionen und Stetigkeit, Reihen, Differentialrechnung einer reellen Veränderlichen, Integralrechnung.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

· Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vorbereitung auf die studienbegleitende Modulprüfung

Literatur

wird in der Vorlesung bekannt gegeben.

Grundlage für

Höhere Mathematik II

4.9 Modul: Höhere Mathematik II [M-MATH-100281]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile					
T-MATH-100276	Höhere Mathematik II	7 LP	Arens, Griesmaier, Hettlich		
T-MATH-100526	Übungen zu Höhere Mathematik II Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Grundlagen der Vektorraumtheorie.

Die Verwendung von Vektoren, linearen Abbildungen und Matrizen gelingt ihnen problemlos. Sie haben grundlegende Kenntnisse über Fourierreihen. Weiterhin beherrschen die Studierenden den theoretischen und praktischen Umgang mit Anfangswertproblemen für gewöhnliche Differentialgleichungen. Sie können klassische Lösungsmethoden für lineare Differentialgleichungen anwenden.

Inhalt

Vektorräume, lineare Abbildungen, Eigenwerte, Fourierreihen, Differentialgleichungen, Laplacetransformation

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

· Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Folgende Module sollten bereits belegt worden sein: Höhere Mathematik 1

Literatui

wird in der Vorlesung bekannt gegeben.

Grundlage für

Höhere Mathematik III

4.10 Modul: Höhere Mathematik III [M-MATH-100282]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile					
T-MATH-100277	Höhere Mathematik III	7 LP	Arens, Griesmaier, Hettlich		
T-MATH-100527	Übungen zu Höhere Mathematik III Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Differentialrechnung für vektorwertige Funktionen mehrerer Veränderlicher und Techniken der Vektoranalysis wie die Definition und Anwendung von Differentialoperatoren, die Berechnung von Gebiets-, Kurven- und Oberflächenintegralen sowie zentrale Integralsätze. Sie haben grundlegende Kenntnisse über partielle Differentialgleichungen und beherrschen Grundbegriffe der Stochastik.

Inhalt

Mehrdimensionale Analysis, Gebietsintegrale, Vekoranalysis, partielle Differentialgleichungen, Stochastik

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Folgende Module sollten bereits belegt worden sein: Höhere Mathematik I und II

Literatu

wird in der Vorlesung bekannt gegeben.

4.11 Modul: Informatik [M-MACH-103840]

Verantwortung: Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-MACH-107786	Informatik für Materialwissenschaften	6 LP	Weygand

Erfolgskontrolle(n)

schriftliche Prüfung, 90 min

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden verfügen über grundlegende Informatikkenntnisse, um Daten aus Experimenten und Simulationen zu verarbeiten, darzustellen und einfache numerische Probleme zu lösen. Sie beherrschen die Grundlagen der Programmierung in Python unter Unix. Die Anwendung der Objektorientierten Programmierung in den Übungen erlaubt es den Studierenden, die für den weiteren Studienverlauf notwendige Selbständigkeit in der Verwendung und Erweiterung von Bibliotheken zu erreichen.

Inhalt

- 1. Einführung: Anwendungsbeispiele
- 2. Aufbau von Rechnern
- 3. Aussagenlogik
- 4. Darstellung von Daten: Fließzahlen, Ganzahlen
- 5. Einführung in Python
- 6. Datenverarbeitung
- 7. Skripte: Automatisierung der Datenverarbeitung
- 8. Algorithmen: Suchen, Sortieren
- 9. Numerik
- 10. Versionskontrolle
- 11. Parallelisierung
- 12. Skriptsprache versus kompilierte Sprache: Python Fortran

Arbeitsaufwand

Präsenzzeit: 56 h

Vor- und Nachbereitungszeit: 124 h

Lehr- und Lernformen

Vorlesungen, Übungen

Literatur

Vorlesungsfolien

Bücher:

- Langtangen, A Primer on Scientific Programming with Python, Springer-Verlag Berlin Heidelberg 2016,
- · Shaw, Learn Python the Hard Way
- Scopatz/Huff, Effective Computation in Physics, O'Reilly Media 2015,
- Ernst, Grundkurs Informatik, Springer Vieweg 2016
- Huckle und Schneider, Numerische Methoden, Springer 2006

4.12 Modul: Keramik [M-MACH-105977]

Verantwortung: Prof. Dr. Michael Hoffmann **Einrichtung:** KIT-Fakultät für Maschinenbau

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12	Zehntelnoten	Jedes Semester	2 Semester	Deutsch	3	1

Pflichtbestandteile						
T-MACH-100287	Keramik-Grundlagen	6 LP	Hoffmann			
T-MACH-100290	Materialwissenschaftliches Seminar Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	2 LP	Gruber, Wagner			
T-MACH-112139	Materialwissenschaftliches Praktikum B	4 LP	Gorr, Oberacker			

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min

3 Studienleistungen (1 Praktikumsschein, 2 Seminare)

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die spezifischen Kristallstrukturen und Kristallbaufehler für nichtmetallisch-anorganische Materialien. Sie sind vertraut mit binären und ternären Phasendiagrammen und kennen pulvertechnologische Formgebungsverfahren. Sie können auf Basis der Kenntnis der spezifischen Mikrostruktur der Keramiken und den Vorkenntnissen aus dem Modul Materialphysik und Metalle deren mechanischen und physikalischen Eigenschaften erklären. Damit kennen die Studenten die materialphysikalischen Grundlagen für die beiden Werkstoffhauptgruppen Metalle und Keramiken. Diese sollen in den Arbeitstechniken in MWT, Materialwissenschaftliches Praktikum B und Materialwissenschaftliches Seminar praktisch angewendet werden. Die Studierenden sind dann in der Lage eine materialwissenschaftliche Fragestellung wissenschaftlich aufzubereiten und zu präsentieren. Die Studierenden kennen auch experimentelle Methoden zur Charakterisierung von Mikrostruktur und Eigenschaften von Metallen und Keramiken und können Versuchsergebnisse auswerten und diskutieren.

Inhalt

Keramik-Grundlagen: Kristallstruktur, Kristallbaufehler, Mikrostruktur und Eigenschaften von Keramiken, Pulvertechnologie, linear elastische Bruchmechanik, Zähigkeitssteigerung, Kriechen, elektrische Eigenschaften von Keramiken

Arbeitstechniken in MWT: wechselnde Themen, Literaturrecherche, Präsentationstechniken

Materialwissenschaftliches Praktikum B: Röntgenographie, Quantitative Gefügeanalyse, Thermische Analyse, Formgebung und Sintern, Pulvercharakterisierung, Tribologie

Materialwissenschaftliches Seminar: Materialwissenschaftliche Themen aus dem Bereich der Vorlesungen Materialphysik, Metalle und Keramik-Grundlagen

Arbeitsaufwand

Präsenzzeit: 102 h

Vor- und Nachbereitungszeit: 288 h

Lehr- und Lernformen

Vorlesungen, Übungen, Praktikum, Seminare

Level 2

4.13 Modul: Kinetik [M-MACH-103711]

Verantwortung: Prof. Dr. Hans Jürgen Seifert **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: Mastervorzug

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
4Version
4

Wahlinformationen

Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung ("Übung") ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)					
T-MACH-107632	Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion	2 LP	Franke, Seifert		
T-MACH-107667	Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion	4 LP	Franke, Seifert		
T-MACH-110926	Exercises for Solid State Reactions and Kinetics of Phase Transformations	2 LP	Gorr		
T-MACH-110927	Solid State Reactions and Kinetics of Phase Transformations	4 LP	Gorr		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 30 Minuten).

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sollen nach der Teilnahme an den Lehrveranstaltungen fähig sein,

- Diffusionsmechanismen zu beschreiben,
- die Fickschen Gesetze zu formulieren,
- einfache Lösungen der Diffusionsgleichung anzugeben,
- · Diffusionsexperimente auszuwerten,
- · Interdiffusionprozesse zu beschreiben,
- den thermodynamischen Faktor zu erklären,
- parabolisches Schichtwachstum zu beschreiben,
- · die Perlitbildung zu erläutern,
- Gefügeumwandlungen gemäß den Modellen von Avrami und Johnson-Mehl darzulegen,
- ZTU-Schaubilder zu erklären und anzuwenden.

Inhalt

- 1. Kristallfehler und Diffusionsmechanismen
- 2. Mikroskopische Beschreibung der Diffusion
- 3. Phänomenologische Beschreibung
- 4. Diffusionskoeffizienten
- 5. Diffusionsprobleme; analytische Lösungen
- 6. Diffusion mit Phasenumwandlung
- 7. Gefügekinetik
- 8. Diffusion entlang Oberflächen, Korngrenzen, Versetzungen
- 9. Numerische Behandlung von diffusionskontrollierten Phasenumwandlungen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Teilnahme an den Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion ist Pflicht.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Kinetik" beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (21 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (99 h) und für die Übungen (48 Stunden).

Empfehlungen

- Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
- Grundvorlesungen in Mathematik
- Vorlesung Physik oder Physikalische Chemie

Kenntnisse aus der Vorlesung "Heterogene Gleichgewichte" (Seifert) sind zu empfehlen.

Lehr- und Lernformen

Vorlesungen (Pflicht) Übungen (Pflicht)

Literatur

- 1. J. Crank, "The Mathematics of Diffusion", 2nd Ed., Clarendon Press, Oxford, 1975.
- 2. J. Philibert, "Atom Movements", Les Éditions de Physique, Les Ulis, 1991.
- 3. D.A. Porter, K.E. Easterling, M.Y. Sherif, "Phase Transformations in Metals and Alloys", 3rd edition, CRS Press, 2009.
- 4. H. Mehrer, "Diffusion in Solids", Springer, Berlin, 2007.

4.14 Modul: Konstruktionswerkstoffe [M-MACH-100291]

Verantwortung: Dr. Karl-Heinz Lang

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-MACH-100293	Konstruktionswerkstoffe	6 LP	Guth

Erfolgskontrolle(n)

Mündliche Prüfung ca. 25 Minuten

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die Bandbreite der Konstruktionswerkstoffe und können die Einsatzgebiete der Werkstoffe beurteilen. Sie sind in der Lage die Werkstoffeigenschaften auf die Bauteilanforderungen zu übertragen. Sie können umgekehrt auch den Einfluss des Anforderungsprofils des Bauteils auf das Werkstoffverhalten beurteilen.

Inhalt

Grundbeanspruchungsarten und überlagerte Beanspruchung von Werkstoffen (statisch, zyklisch, einachsig, mehrachsig, hohe Temperatur), Grundlagen der Werkstoffauswahl, Bauteilbewertung

Arbeitsaufwand

Präsenzzeit: 45 h

Vor- und Nachbereitungszeit: 135 h

Lehr- und Lernformen

Vorlesung, Übung

Level 3

4.15 Modul: Kontinuumsmechanik [M-MACH-105180]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-MACH-110377	Kontinuumsmechanik der Festkörper und Fluide	4 LP	Böhlke, Frohnapfel	
T-MACH-110333	Übungen zu Kontinuumsmechanik der Festkörper und Fluide	1 LP	Böhlke, Frohnapfel	

Erfolgskontrolle(n)

Prüfungsleistung schriftlich, 90 min; Die Übungen sind als Studienleistung T-MACH-110333 Klausurvorleistungen

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Moduls können die Studierenden die Prinzipien der Kontinuumsmechanik für die Modellierung von Festkörpern und Flüssigkeiten angeben. Die Absolventinnen und Absolventen können Tensoroperationen im Rahmen der Kontinuumsmechanik an konkreten Beispiele durchführen sowie numerische Konzepte zur Lösung von Problemen bei der Modellierung von Festkörpern bzw Flüssigkeiten angeben. Darüber hinaus sind die Die Absolventinnen und Absolventen in der Lage, konkrete Problemstellungen bei der Modellierung von Festkörpern bzw Flüssigkeiten mit kommerzieller Software zu bearbeiten.

Inhalt

Dieses Modul soll Studierenden die theoretischen und praktischen Aspekte der Kontinuumsmechanik von Festkörpern und Flüssigkeiten vermitteln. Zu Beginn gibt es eine Einführung in die Tensorrechnung und die Kinematik. Dann werden die Bilanzgleichungen der Mechanik und Thermodynamik behandelt. Das Modul vermittelt einen Überblick über die Materialtheorie der Festkörper und Fluide. Dazu gehören auch die Feldgleichungen für Festkörper und Fluide. Über die thermomechanische Kopplungen hinaus vermittelt das Modul Kenntnisse in der Dimensionsanalyse.

Anmerkungen

keine

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung und Übungen: 15 * 2 h + 15* 2 h = 60 h
- 2. Vor- und Nachbereitungszeit Vorlesung und Übungen: 15 * 3 h = 45 h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 45 h

Empfehlungen

keine

Lehr- und Lernformen

Vorlesung, Übung, Ergänzungsseminar, Sprechstunden

Literatur

siehe enthaltene Teileistungen

4.16 Modul: Materialphysik und Metalle [M-MACH-100287]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier

Prof. Dr. Oliver Kraft

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
14	Zehntelnoten	Jedes Semester	2 Semester	Deutsch	3	1

Pflichtbestandteile					
T-MACH-100285	Materialphysik und Metalle	12 LP	Heilmaier, Pundt		
T-MACH-100286	Materialwissenschaftliches Praktikum A Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	2 LP	Heilmaier		

Erfolgskontrolle(n)

mündliche Prüfung, ca. 45 min, Kombinationsprüfung

Studienleistung (Praktikumsschein)

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die spezifischen Kristallstrukturen und Kristallbaufehler von Werkstoffen, speziell metallischen Werkstoffen. Sie sind vertraut mit der Interpretation relevanter binärer und ternärer Phasendiagramme und können diese auf der Basis thermodynamischer und kinetischer Grundlagen ableiten sowie Phasenumwandlungen theoretisch beschreiben. Sie können auf Grundlage dieser Erkenntnisse sowie weiterführenden Betrachtungen zum Wechselspiel von Legierungsbildung und Wärmebehandlung einschließlich Nichtgleichgewichtszuständen deren mechanische, physikalische und chemische Eigenschaften erklären. Damit kennen die Studenten die materialphysikalischen Grundlagen für die beiden Werkstoffhauptgruppen Metalle. Die Studierenden sind dann in der Lage eine materialwissenschaftliche Fragestellung wissenschaftlich aufzubereiten und zu präsentieren. Die Studierenden kennen auch experimentelle Methoden zur Charakterisierung von Mikrostruktur und Eigenschaften von Metallen und können Versuchsergebnisse auswerten und diskutieren.

Inhalt

- · Aufbau der Werkstoffe und ihre Gitterfehler
- Mechanische Eigenschaften (Steifigkeit, Festigkeit, Zähigkeit, Ermüdung, Kriechen)
- · Elektrische, magnetische, optische und thermische Eigenschaften
- · Oxidation und Korrosion
- · Thermodynamische Grundlagen ein- und zweikomponentiger Systeme sowie mehrphasiger Systeme
- Keimbildung und Keimwachstum
- · Diffusionsprozesse in kristallinen Werkstoffen
- Zustandsschaubilder (Prinzip und relevante Anwendungsbeispiele)
- · Auswirkungen von Legierungselementen auf Legierungsbildung
- Nichtgleichgewichtsgefüge
- Wärmebehandlungsverfahren

Arbeitsaufwand

Präsenzzeit: 112 h

Vor- und Nachbereitungszeit: 338 h

Lehr- und Lernformen

Vorlesungen, Übungen, Praktikum

Level 1

4.17 Modul: Modellierung und Simulation [M-MACH-100296]

Verantwortung: Prof. Dr. Britta Nestler

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-MACH-100300	Modellierung und Simulation	5 LP	Gumbsch, Nestler

Erfolgskontrolle(n)

Eine Erfolgskontrolle muss stattfinden und kann schriftlich, mündlich oder anderer Art sein.

Voraussetzungen

keine

Qualifikationsziele

Der/die Studierende

- kann grundlegende Algorithmen und numerische Methoden erläutern, die u.a. bei der Werkstoffsimulation eingesetzt werden
- kann numerischeLösungsverfahren für dynamische Systeme und partielle Differentialgleichungen beschreiben und anwenden
- kann Methoden zur numerischen Lösung von Wärme- und Stoffdiffusionsprozessen anwenden, die ebenfalls für die Simulation von Mikrostrukturausbildungen genutzt werden können
- verfügt durch das begleitende Rechnerpraktikum über Erfahrungen mit der Implementierung / Programmierung der erarbeiteten numerischen Verfahren.

Inhalt

Die Vorlesung gibt eine Einführung in Modellierungs- und Simulationsmethoden. Inhalte sind:

- Splines, Interpolationverfahren, Taylorreihe
- Finite Differenzenverfahren
- Dynamische Systeme
- · Raum-Zeit-Probleme, Numerik partieller Differenzialgleichungen
- · Stoff- und Wärmediffusion
- · Werkstoffsimulation
- parallele und adaptive Algorithmen
- Hochleistungsrechnen
- Computerpraktikum

Lehr- und Lernformen

Vorlesung, Übung, Praktikum

Level 3

4.18 Modul: Nachhaltige Produktionswirtschaft [M-MACH-105902]

Verantwortung: Prof. Dr.-Ing. Kai Furmans

Prof. Dr.-Ing. Gisela Lanza

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-MACH-111859	Nachhaltige Produktionswirtschaft	5 LP	Furmans, Lanza

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min)

Voraussetzungen

keine

Qualifikationsziele

Nach erfolgreichem Abschluss der Lehrveranstaltung sind die Studierenden in der Lage, alleine und im Team ...

- die Begriffe, Zusammenhänge und Modelle, durch welche produzierende Unternehmen beschrieben sind, zu erörtern.
- typische Problemstellungen produzierender Unternehmen, insbesondere vor dem Hintergrund gegenwärtiger und zukünftiger Herausforderungen der ökologischen, sozialen und ökonomischen Nachhaltigkeit, zu erörtern.
- die wichtigsten Methoden zum effizienten und nachhaltigen Wirtschaften in Industrieunternehmen, insbesondere im Sinne der Kreislaufwirtschaft, problembezogen anzuwenden.
- durch Anwendung der gelernten Methoden Entscheidungsalternativen auszuwählen und zu begründen.
- die gelernten Methoden kritisch zu hinterfragen und sich darüber hinausgehende Methoden selbstständig anzueignen.

Inhalt

Das Modul vermittelt ein Gesamtverständnis der betrieblichen Produktionswirtschaft unter besonderer Berücksichtigung von Aspekten der Nachhaltigkeit sowie ein anwendungsorientiertes Verständnis der grundlegenden Fragestellungen und Methoden in Industrieunternehmen. Durch Übungen sowie ein Planspiel synchron zur Vorlesung werden die vermittelten Inhalte durch Anwendung vertieft, so dass die Teilnehmer sie in ihrem späteren Berufsumfeld unmittelbar anwenden können.

Anmerkungen

Es handelt sich um ein gemeinsames Modul des Instituts für Fördertechnik und Logistiksysteme (IFL), und des Instituts für Produktionstechnik (WBK)). Die Institute wechseln sich bei jedem Zyklus ab.

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand

Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden

Lehr- und Lernformen

- 1. Vorlesungen (Pflicht)
- 2. Übungen (Pflicht)

4.19 Modul: Organische Chemie für Ingenieure [M-CHEMBIO-101115]

Verantwortung: Prof. Dr. Michael Meier

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Naturwissenschaftliche Grundlagen

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

 Pflichtbestandteile

 T-CHEMBIO-101865
 Organische Chemie für Ingenieure
 5 LP Meier

Erfolgskontrolle(n)

benotet: Prüfungsklausur

Voraussetzungen

keine

Qualifikationsziele

Bedeutung, Grundlagen- und methoden-orientierte Kenntnis der Organischen Chemie; Zusammenhang zwischen Struktur und Reaktivität herstellen; Kenntnis wichtiger Modelle und Prinzipien der Organischen Chemie; Anwendung des Wissens zur eigenständigen Lösung von Problemstellungen

Inhalt

Nomenklatur, Struktur und Bindung organischer Moleküle; Organische Verbindungsklassen und funktionelle Gruppen; Eigenschaften, Reaktionsmechanismen und Synthese organischer Verbindungen; Stereochemie und optische Aktivität; Technische Polymere und Biopolymere; Methoden zur Strukturaufklärung

Zusammensetzung der Modulnote

Note der Prüfungsklausur

Arbeitsaufwand

Präsenzzeit: 34h Selbststudium: 86h

Literatur

Paula Y. Bruice: Organische Chemie, Pearson Studium, 5. Aufl., München 2007

K.P.C. Vollhardt, Neil Schore; K. Peter: Organische Chemie, 4. Aufl., Wiley-VCH, Weinheim 2005

Neil E. Schore: Arbeitsbuch Organische Chemie, 4. Aufl., Wiley-VCH, Weinheim 2006

Hans Beyer, Wolfgang Walter: Lehrbuch der Organischen Chemie, 24. Aufl., Hirzel, Stuttgart 2004

Adalbert Wollrab: Organische Chemie, 2. Aufl., Springer, Berlin 2002

4.20 Modul: Orientierungsprüfung [M-MACH-106200]

Einrichtung: Universität gesamt **Bestandteil von:** Orientierungsprüfung

Leistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes SemesterDauer
2 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile					
T-MATH-100525	Übungen zu Höhere Mathematik I	0 LP	Arens, Griesmaier, Hettlich		
T-MATH-100275	Höhere Mathematik I	7 LP	Arens, Griesmaier, Hettlich		
T-MACH-100285	Materialphysik und Metalle	12 LP	Heilmaier, Pundt		

Modellierte Fristen

Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen

keine

Anmerkungen

Für Studierende, die im Sommersemester 2020, im Wintersemester 2020/2021, im Sommersemester 2021 oder im Wintersemester 2021/2022 in einem Studiengang eingeschrieben sind oder waren, verlängert sich die Frist zum Ablegen der Orientierungsprüfung um jeweils ein Semester (§ 32 Abs. 5 a Satz 1 LHG). Dies bedeutet, dass sich die Frist für

- Studierende, welche in einem der genannten Semester im gleichen Studiengang eingeschrieben sind, um ein Semester verlängert;
- Studierende, welche in zwei der genannten Semester im gleichen Studiengang eingeschrieben sind, um zwei Semester verlängert;
- Studierende, welche in drei oder mehr der genannten Semester im gleichen Studiengang eingeschrieben sind, um maximal drei Semester verlängert.

4.21 Modul: Passive Bauelemente [M-ETIT-100293]

Verantwortung: apl. Prof. Dr. Alexander Colsmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-100292	Passive Bauelemente	5 LP	Colsmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die physikalisch-chemischen Eigenschaften der wichtigsten in der Elektrotechnik eingesetzten Materialien (metallische und nichtmetallische Leiterwerkstoffe, Dielektrika und magnetische Materialien) und die daraus realisierten Bauelemente. Sie haben ein grundlegendes Verständnis der wissenschaftlichen Methoden zur Analyse und Herstellung von passiven Bauelementen und können dieses Wissen auf andere Bereiche ihres Studiums übertragen. Sie sind in der Lage, mit Spezialisten verwandter Disziplinen auf dem Gebiet der elektrischen und elektronischen Bauelemente zu diskutieren.

Inhalt

Werkstoffe spielen eine zentrale Rolle für den technischen und wirtschaftlichen Fortschritt in wichtigen Schlüsseltechnologien wie Informations-, Energie- und Umwelttechnik. Ausgehend von grundlegenden Materialeigenschaften, wie Festkörperstrukturen und elektrischen Eigenschaften, werden Anwendungen in passiven Bauelementen entwickelt und diskutiert. Hierbei liegen die Schwerpunkte auf metallischen und nichtmetallischen Leiterwerkstoffen und ihren Bauelementen (z.B. nichtlineare Widerstände wie NTC, PTC, Varistor), auf den Polarisationsmechanismen in dielektrischen Werkstoffen und ihren Anwendungen (z.B. Kondensatoren, Piezo- und Ferroelektrika), sowie auf magnetischen Werkstoffen und ihren Bauelementen. Eine Einführung in elektrische Schaltkreise rundet den Vorlesungsinhalt ab. Das vermittelte Wissen bildet zudem eine gute Ausgangslage für weiterführende Veranstaltungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
- 2. Vor- und Nachbereitungszeit Vorlesung: 15 * 4 h = 60 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor- und Nachbereitungszeit Übung: 15 * 3 h = 45 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor- und Nachbereitungszeit verrechnet.

Insgesamt: 150 h = 5 LP

Empfehlungen

Die Inhalte des Moduls "M-ETIT-103813 – Elektronische Eigenschaften von Festkörper" sind von grundlegedner Bedeutung.

4.22 Modul: Polymere [M-CHEMBIO-100289]

Verantwortung: Prof. Dr. Manfred Wilhelm

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
2 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-100294	Polymere	6 LP	

Erfolgskontrolle(n)

Modulabschlussprüfung (Prüfungsleistung)

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden haben ein umfangreiches Verständnis der Polymerchemie, der zugehörigen Charakterisierungsmethoden und der Anwendungen/Einsatzgebiete von Kunststoffen. Hierzu gehört zum einen eine umfangreiche Kenntnis der möglichen Synthesewege von Polymeren, zum anderen haben die Studierenden auch Einblick in die Polymercharakterisierung gewonnen und können damit auch Zusammenhänge zwischen Syntheseparametern und resultierenden Werkstoffeigenschaften verstehen.

Inhalt

Grundlagen der Polymersynthese, Struktur und Eigenschaften von Polymermolekülen, Technische Anwendungsgebiete, Standardcharakterisierungsmethoden, Moderne Methoden der Polymersynthese, Synthese spezieller Topologie, Erweiterte Polymercharakterisierung

Arbeitsaufwand

Vorlesung "Einführung in die Chemie und Physik der Makromoleküle I", Präsenzzeit in der Vorlesung: 30 h, Vor- und Nachbereitung inkl. Vorbereitung auf die Modulabschlussprüfung: 60 h Summe: 90 h (3 LP) (jedes Wintersemester)

Vorlesung "Einführung in die Chemie und Physik der Makromoleküle II", Präsenzzeit in der Vorlesung: 30 h, Vor- und Nachbereitung inkl. Vorbereitung auf die Modulabschlussprüfung: 60 h Summe: 90 h (3 LP) (jedes Sommersemester)

Lehr- und Lernformen

Vorlesung

4.23 Modul: Rheologie [M-CHEMBIO-100300]

Verantwortung: Prof. Dr. Manfred Wilhelm

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-100303	Einführung in die Rheologie	6 LP	

Erfolgskontrolle(n)

Prüfungsleistung schriftlich, 90 min

Bei wenigen Teilnehmern auch mündliche Prüfung möglich, wird zu Beginn bekanntgegeben.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die Grundlagen der Fließeigenschaften von viskosen Materialien. Sie können die rheologischen Eigenschaften modellhaft beschreiben. Sie kennen spezifische Einsatzgebiete der Rheologie in der Verarbeitung von Polymeren und können den Zusammenhang zwischen Herstellung, Struktur und Eigenschaften erklären. Sie kennen experimentelle Charakterisierungsmethoden und können entsprechende Versuchsergebnisse beurteilen.

Inhalt

Einführung in die Rheologie (Lehrveranstaltung Nr. 5502):

- Anwendungen der Rheologie
- Grundlagen Fließeigenschaften
- Grundlagen Rheologie (Modelle und experimentelle Geräte)
- Beispiele der Anwendung (Dispersionen, Polymerschmelzen)
- · Nichtlineare Rheologie

Praktikum Rheologie (Lehrveranstaltung Nr. 5503):

- Verschiedene Rheologische Charakterisierungsmethoden
- Versuchsdurchführung und Analyse grundlegender rheologischer Materialeigenschaften
- Erstellung von Versuchsprotokollen (nicht benotet)

Arbeitsaufwand

Einführung in die Rheologie:

Präsenzzeit: 21 h Selbststudium: 69 h Praktikum Rheologie:

Präsenzzeit (Praktikumsversuche und Seminare): 18 h Selbststudium (Vorbereitung der Protokolle usw.): 72 h

Summe Arbeitsaufwand: 180 h

Lehr- und Lernformen

Vorlesung, Praktikum

4.24 Modul: Schlüsselqualifikationen [M-MACH-105976]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Überfachliche Qualifikationen

Leistungspunkte
6Notenskala
best./nicht best.Turnus
Jedes SemesterDauer
2 SemesterSprache
DeutschLevel
3Version
1

Wahlinformationen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.

Schlüsselqualifikationen (Wahl: mind. 6 LP)			
T-MACH-112144	Selbstverbuchung-BSc-HOC-SPZ-ZAK-unbenotet	2 LP	Heilmaier
T-MACH-112145	Selbstverbuchung-BSc-HOC-SPZ-ZAK-benotet	2 LP	Heilmaier

Erfolgskontrolle(n)

Studienleistungen

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können nach Abschluss des Moduls Schlüsselqualifikationen:

- Arbeitsschritte, Vorhaben und Ziele bestimmen und koordinieren, systematisch und zielgerichtet vorgehen, Prioritäten setzen, Unwesentliches erkennen sowie die Machbarkeit einer Aufgabe einschätzen
- die Grundsätze zur Sicherung guter wissenschaftlicher Praxis anwenden,
- Methoden zur Planung einer konkreten Aufgabe unter vorgegebenen Rahmenbedingungen ziel- und ressourcenorientiert beschreiben und anwenden.
- Methoden für die wissenschaftliche Recherche und Auswahl von Fachinformationen nach vorher festgelegten Kriterien der Qualität beschreiben und diese auf vorgegebene Probleme anwenden,
- · die Qualität einer Literaturstelle fachgerecht bewerten,
- empirische Methoden erörtern und an ausgewählten Beispielen anwenden,
- Fachinformationen in klarer, lesbarer und überzeugend argumentierter Weise in verschiedenen Darstellungsformen (z. B. Poster, Exposé, Abstract) schriftlich darstellen und angemessen grafisch visualisieren (z.B. Konstruktionszeichnungen, Ablaufdiagramme).
- Fachinhalte überzeugend und ansprechend präsentieren und verteidigen,
- in einem heterogenen Team aufgabenorientiert arbeiten, etwaige Konflikte selbstständig bewältigen und lösen sowie Verantwortung übernehmen für sich und andere,
- im Team sachlich zielgerichtet und zwischenmenschlich konstruktiv kommunizieren, eigene Interessen vertreten, die Interessen anderer in eigenen Worten wiedergeben und berücksichtigen sowie den Gesprächsverlauf erfolgreich gestalten.

Inhalt

Das Modul "Schlüsselqualifikationen" bilden frei wählbare Veranstaltungen aus dem Angebot des KIT-House of Competence (HoC), des KIT-Sprachenzentrums (SPZ) und des Zentrum für Angewandte Kulturwissenschaft und Studium Generale (ZAK) mit einem Leistungsumfang von insgesamt mindestens 6 LP. Auf Antrag kann die Prüfungskommission weitere Lehrveranstaltungen als frei wählbare Fächer im Modul "Schlüsselqualifikationen" genehmigen.

Arbeitsaufwand

Der Arbeitsaufwand ergibt sich aus der Summe der Arbeitsaufwände der gewählten Teilleistungen.

4.25 Modul: Simulation [M-MACH-103712]

Verantwortung: Prof. Dr. Peter Gumbsch **Einrichtung:** KIT-Fakultät für Maschinenbau

Bestandteil von: Mastervorzug

Leistungspunkte 6	Notenskala Zehntelnoten	Turnus Jedes Sommersemester	Dauer 1 Semester	Sprache Deutsch/ Englisch	Level 4	Version 3	
		Sommersemester	Semester	Englison			

Wahlinformationen

Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung ("Übung") ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)					
T-MACH-107671	Übungen zu Angewandte Werkstoffsimulation	2 LP	Gumbsch, Schneider		
T-MACH-105527	Angewandte Werkstoffsimulation	4 LP	Gumbsch, Schneider		
T-MACH-110928	Exercises for Applied Materials Simulation	2 LP	Gumbsch, Schneider		
T-MACH-110929	Applied Materials Simulation	4 LP	Gumbsch, Schneider		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 30 Minuten)

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- · die Anwendungsbereiche atomistischer Simulationsmethoden erläutern
- · die Möglichkeiten und Herausforderungen von Simulationsansätzen auf verschiedenen Skalen benennen und diskutieren.

Inhalt

Dieses Modul soll den Studierenden einen Überblick über verschiedene Simulationsmethoden im Bereich der Material- und Ingenieurwissenschaften geben. Hierbei werden numerische Verfahren vorgestellt und deren Einsatz in unterschiedlichen Anwendungsfeldern und Größenskalen aufgezeigt und diskutiert. Anhand von theoretischen sowie praktischen Aspekten soll eine kritische Auseinandersetzung mit den Chancen und Herausforderungen der numerischen Werkstoffsimulation erfolgen.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Simulation" beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (33 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (87 h) und für die Übungen (48 Stunden).

Lehr- und Lernformen

Vorlesung, Übung

4.26 Modul: Technische Mechanik I [M-MACH-100279]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile	Pflichtbestandteile				
T-MACH-100282	Technische Mechanik I	7 LP	Böhlke, Langhoff		
T-MACH-100528	Übungen zu Technische Mechanik I Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Böhlke, Langhoff		

Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 Minuten; benotet

Prüfungsvorleistung in TM I (siehe Teilleistung T-MACH-100528 - Übungen zu Technische Mechanik I): Testate sind in den folgenden vier Kategorien zu erbringen: schriftliche Pflicht-Hausaufgaben, schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien.

Die Teilleistung T-MACH-100528 ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als drei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-100282).

Voraussetzungen

keine

Qualifikationsziele

Die Studenten können

- die grundlegenden mathematischen Berechnungen der Vektorrechnung und Differential- und Integralrechnung in Anwendung auf mechanische Systemeim Ingenieurwesen ausführen
- ausgehend vom Kraftbegriff verschiedene Gleichgewichtssysteme analysieren, darunter ebene und räumliche Kräftegruppen am starren Körper
- innere Schnittgrößen an ebenen und räumlichen Tragwerken berechnen
- zusätzlich zum Gleichgewichtsaxiom das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- · die Stabilität von Gleichgewichtslagen untersuchen
- Linien-, Flächen-, Volumen- und Massenmittelpunkte für homogene und inhomogene Körper in 1D, 2D und 3D berechnen
- · die Statik undehnbarer Seile analysieren
- · Systeme mit Haftreibung berechnen
- im Rahmen der Statik gerader Stäbe innere Beanspruchungen mittels linear elastischer und linear thermo-elastischer Stoffgesetze berechnen

Inhalt

Grundzüge der Vektorrechnung, Kraftsysteme, Statik starrer Körper, Schnittgrößen in Stäben u. Balken, Schwerpunkt u. Massenmittelpunkt, Arbeit, Energie, Prinzip der virtuellen Verschiebungen, Elastostatik der Zug-Druck-Stäbe, Statik der undehnbaren Seile, Haftung und Gleitreibung

Anmerkungen

keine

Arbeitsaufwand

Präsenzzeit: 21,5 Stunden Selbststudium: 188,5 Stunden

Empfehlungen

keine

Lehr- und Lernformen

Vorlesungen, Übungen, Kleingruppenübungen am Rechner, Bewertung bearbeiteter Übungsblätter, Kolloquien, Sprechstunden (freiwillige Teilnahme)

Literatur

wird in der Vorlesung "Technische Mechanik I" bekanntgegeben

Grundlage für

Technische Mechanik II

4.27 Modul: Technische Mechanik II [M-MACH-100284]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile	Pflichtbestandteile			
T-MACH-100283	Technische Mechanik II	6 LP	Böhlke, Langhoff	
T-MACH-100284	Übungen zu Technische Mechanik II Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Böhlke, Langhoff	

Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 Minuten; benotet

Prüfungsvorleistung in TM II (siehe Teilleistung T-MACH-100284 - Übungen zu Technische Mechanik II): Testate sind in den folgenden vier Kategorien zu erbringen: schriftliche Pflicht-Hausaufgaben, schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien.

Die Teilleistung T-MACH-100284 ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als zwei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien .

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-100283).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können

- Spannungs- und Verzerrungsverteilungen für die Grundlastfälle im Rahmen der linearen Elastizität und linearen Thermoelastizität bewerten
- 3D-Spannungs- und Verzerrungszustände berechnen und bewerten
- · das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- · Energiemethoden anwenden und Näherungslösungen bewerten
- die Stabilität von Gleichgewichtslagen bewerten
- Übungsaufgaben zu den Themen der Vorlesungen unter Verwendung des Computeralgebrasystems MAPLE lösen

Inhalt

Balkenbiegung; Querkraftschub; Torsionstheorie; Spannungs- und Verzerrungszustand in 3D; Hooke'sches Gesetz in 3D; Elastizitätstheorie in 3D; Energiemethoden der Elastostatik; Näherungsverfahren; Stabilität ealstischer Stäbe

Anmerkungen

keine

Arbeitsaufwand

Präsenzzeit: 21,5 Stunden Selbststudium: 158,5 Stunden

Empfehlungen

keine

Lehr- und Lernformen

Vorlesungen, Übungen, Kleingruppenübungen am Rechner, Bewertung bearbeiteter Übungsblätter, Kolloquien, Sprechstunden (freiwillige Teilnahme)

Literatur

wird in der Vorlesung "Technische Mechanik II" bekanntgegeben

4.28 Modul: Thermodynamik [M-MACH-103710]

Verantwortung: Prof. Dr. Hans Jürgen Seifert **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: Mastervorzug

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
4Version
4

Wahlinformationen

Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung ("Übung") ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)					
T-MACH-107669	Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte	2 LP	Seifert		
T-MACH-107670	Thermodynamische Grundlagen / Heterogene Gleichgewichte	4 LP	Franke, Seifert		
T-MACH-110924	Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria	2 LP	Seifert		
T-MACH-110925	Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria	4 LP	Seifert		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 30 Minuten).

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die Konstitution (Lehre der heterogenen Gleichgewichte, Phasendiagramme/Zustandsdiagramme) von binären, ternären und mehrkomponentigen Werkstoffsystemen.

Sie können die thermodynamischen Eigenschaften von ein- und mehrphasigen Werkstoffen und deren Reaktionen mit Gas- und Schmelzphasen analysieren. Sie können die erlernten Zusammenhänge auf Fragen der Herstellung, des Fügens und der Anwendung der Werkstoffe (metallische Legierungen, technische Keramiken, Verbundwerkstoffe) anwenden.

Inhalt

- 1. Binäre Phasendiagramme
- 2. Ternäre Phasendiagramme
- Vollständige Mischbarkeit
- Eutektische Systeme
- Peritektische Systeme
- Übergangsreaktionen
- Systeme mit intermetallischen Phasen
- 3. Thermodynamik der Lösungsphasen
- 4. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluß der Gasphase
- 5. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen
- 6. Thermodynamik von multikomponentigen, multiphasigen Werkstoffsystemen
- 7. Thermodynamische Berechnungen mit der CALPHAD-Methode

Zusammensetzung der Modulnote

- Die Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Teilnahme an den Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte ist Pflicht.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Thermodynamik" beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (21 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (99 h) und für die Übungen (48 Stunden).

Empfehlungen

- Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
- Grundvorlesungen in Mathematik
- Vorlesung Physik oder Physikalische Chemie

Kenntnisse aus der Vorlesung "Festkörperreaktionen, Kinetik von Phasenumwandlungen, Korrosion" (Dozent: P. Franke) sind zu empfehlen.

Lehr- und Lernformen

Vorlesungen (Pflicht) Übungen (Pflicht)

Literatur

- 1. Phase Equilibria, Phase Diagrams and Phase Transformations, Their Thermodynamic Basis; M. Hillert, University Press, Cambridge (2007)
- 2. Introduction to the Thermodynamics of Materials; D.R. Gaskell, Taylor & Francis (2008)

4.29 Modul: Wahlmodul [M-MACH-103746]

Verantwortung: Dr. Patric Gruber

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Ergänzungsfach

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion8ZehntelnotenUnregelmäßig1 SemesterDeutsch34

T-WIWI-102819	Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen	4 LP	Ruckes, Uhrig- Homburg, Wouters
T-WIWI-102818	Betriebswirtschaftslehre: Produktionswirtschaft und Marketing	4 LP	Fichtner, Klarmann, Lützkendorf, Ruckes, Schultmann
T-WIWI-102817	Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft	3 LP	Nieken, Ruckes
T-CIWVT-111064	Biochemie	3 LP	Rudat
T-MACH-100535	Einführung in die Mechatronik	6 LP	Böhland, Reischl
T-ETIT-109078	Elektromagnetische Felder	6 LP	Doppelbauer
T-ETIT-100533	Elektrotechnik I für Wirtschaftsingenieure	3 LP	Menesklou
T-ETIT-100534	Elektrotechnik II für Wirtschaftsingenieure	5 LP	Menesklou
T-CIWVT-111063	Genetik	2 LP	Neumann
T-MACH-104745	Grundlagen der Mess- und Regelungstechnik	8 LP	Stiller
T-MACH-110378	Mathematische Methoden der Mikromechanik	5 LP	Böhlke
T-MACH-110379	Übungen zu Mathematische Methoden der Mikromechanik	1 LP	Böhlke
T-MACH-110375	Mathematische Methoden der Kontinuumsmechanik	4 LP	Böhlke
T-MACH-110376	Übungen zu Mathematische Methoden der Kontinuumsmechanik	2 LP	Böhlke
T-MACH-112225	Maschinenkonstruktionslehre I und II	6 LP	Matthiesen
T-MACH-112226	Maschinenkonstruktionslehre I, Vorleistung	1 LP	Matthiesen
T-MACH-112227	Maschinenkonstruktionslehre II, Vorleistung	1 LP	Matthiesen
T-MACH-105208	Maschinen und Prozesse	8 LP	Bauer, Kubach, Maas Pritz
T-MACH-105232	Maschinen und Prozesse, Vorleistung	0 LP	Bauer, Kubach, Maas Pritz
T-CIWVT-101886	Mechanische Verfahrenstechnik	6 LP	Dittler
T-CIWVT-111065	Mikrobiologie	2 LP	Neumann, Syldatk
T-PHYS-103629	Modern Physics	6 LP	Pilawa
T-PHYS-102323	Moderne Physik für Informatiker	9 LP	Gieseke, Mühlleitner
T-MATH-102242	Numerische Mathematik für die Fachrichtung Informatik	4,5 LP	Rieder, Weiß, Wiener
T-CHEMBIO-100301	Physikalische Chemie I	8 LP	
T-CHEMBIO-100538	Physikalische Chemie II	7 LP	Klopper
T-MACH-100530	Physik für Ingenieure	5 LP	Dienwiebel, Gumbsch Nesterov-Müller, Weygand
T-MACH-102126	Regelungstechnik und Systemdynamik	5 LP	Stiller
T-MACH-105207	Strömungslehre 1&2	8 LP	Frohnapfel
T-MACH-100531	Systematische Werkstoffauswahl	4 LP	Dietrich, Schulze
T-MACH-100299	Technische Mechanik III	5 LP	Seemann
T-WIWI-102708	Volkswirtschaftslehre I: Mikroökonomie	5 LP	Puppe, Reiß
T-WIWI-102709	Volkswirtschaftslehre II: Makroökonomie	5 LP	Wigger
T-CIWVT-111062	Zellbiologie	3 LP	Gottwald

Erfolgskontrolle(n)

Mündliche oder schriftliche Prüfungen entsprechend der gewählten Teilleistungen. Die Erfolgskontrolle ist bei jeder Teilleistung angegeben.

Voraussetzungen

Keine

Qualifikationsziele

Das Veranstaltungen im Wahlpflichtmodul dienen der umfassenden, vertieften Auseinandersetzung mit Grundlagen in ausgewählten Bereichen der Ingenieurs- und Naturwissenschaften.

Inhalt

s. detaillierte Beschreibung der Inhalte der Wahlveranstaltungen.

Arbeitsaufwand

Der Arbeitsaufwand ergibt sich aus der Summe der Arbeitsaufwände der gewählten Teilleistungen.

Lehr- und Lernformen

Vorlesungen, Übungen

Level 3

4.30 Modul: Werkstoffanalytik [M-MACH-103714]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier **Einrichtung:** KIT-Fakultät für Maschinenbau

Bestandteil von: Mastervorzug

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
4Version
4

Wahlinformationen

Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung ("Übung") ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)				
T-MACH-107684	Werkstoffanalytik	4 LP	Gibmeier, Schneider	
T-MACH-107685	Übungen zu Werkstoffanalytik	2 LP	Gibmeier, Schneider	
T-MACH-110946	Materials Characterization	4 LP	Gibmeier, Schneider	
T-MACH-110945	Exercises for Materials Characterization	2 LP	Gibmeier, Schneider	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 25 Minuten).

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden haben Grundkenntnisse über werkstoffanalytische Verfahren. Sie besitzen ein grundsätzliches Verständnis, diese Grundkenntnisse auf ingenieurswissenschaftliche Fragestellungen zu übertragen. Darüber hinaus sind die Studierenden in der Lage, Werkstoffe durch ihre mikroskopische und submikroskopische Struktur zu beschreiben.

Inhalt

In diesem Modul werden folgende Methoden vorgestellt:

- · Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- · Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- · Spektroskopische Methoden (z.B. EDX/WDX)

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Werkstoffanalytik" beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (21 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (99 h) und für die Übungen (48 Stunden).

Lehr- und Lernformen

Vorlesungen (Pflicht) Übungen (Pflicht)

Literatur

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).

Literatur wird zu Beginn der Veranstaltung bekanntgegeben.

4.31 Modul: Werkstoffprozesstechnik [M-MACH-100294]

Verantwortung: Dr. Joachim Binder

Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: Materialwissenschaftliche Grundlagen

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

 Pflichtbestandteile

 T-MACH-100295
 Werkstoffprozesstechnik
 6 LP Binder, Liebig

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 min, begleitendes Praktikum in Werkstoffprozesstechnik muss erfolgreich abgeschlossen sein.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, die verschiedenen Verfahren der Werkstoff- und Fertigungstechnik zu benennen, die ihnen zugrundeliegenden Prinzipien zu beschreiben und diese den Hauptgruppen der Fertigungsverfahren zuzuordnen.

Die Studierenden können Fertigungsverfahren anhand gegebener Fragestellungen oder vorgegebener Anwendungsszenarien auswählen und beachten dabei werkstoffspezifische Randbedingungen, die sie aus den in vorausgehenden Modulen erarbeiteten werkstoffkundlichen Grundlagen ableiten können.

Die Studierenden sind in der Lage, mit fertigungstechnischen Einrichtungen im Labormaßstab einfache Experimente durchzuführen, Korrelationen zwischen verwendeten Fertigungsparametern und den resultierenden Materialeigenschaften zu ziehen, indem sie diese mit geeigneten Prüfverfahren analysieren und dazu jene geeignet auswählen, auswerten und dokumentieren.

Inhalt

Einführung:

Fertigungshauptgruppen, systematische Prozessauswahl

Polymere:

Rohstoffe, Materialgesetze, Modelle, Rheologie, Urformen, Umformen, Fügeverfahren

Keramik:

Rohstoffe, Pulversynthese, Additive und Masseaufbereitung, Urformen und Umformen von Glas, Urformgebung, abtragende Verfahren, Stoffeigenschaften ändern, Endbearbeitung

Metalle:

Rohstoffe, Materialgewinnung und -aufbereitung, Urformen, Umformen, Trennen, Fügen

Halbleiter:

Rohstoffe, Urformen, Stoffeigenschaft ändern

Zusammenfassung

Anmerkungen

Vorlesung: Skript, Beamer, Notizen an der Tafel

Praktikum: Versuchseinrichtungen, Papier, Schreibzeug, Versuchsskript, Taschenrechner

Arbeitsaufwand

Der Arbeitsaufwand für die Vorlesung "Werkstoffprozesstechnik" beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (36 h) inkl. der integrierten Übungen, Präsenzzeit im Praktikum (12 h), Vor- und Nachbearbeitungszeit zuhause (72 h), und Prüfungsvorbereitungszeit (60 h).

Lehr- und Lernformen

Vorlesungen (Pflicht) Übungen (Pflicht) Praktikum (Pflicht)

Literatur

Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung

5 Teilleistungen

5.1 Teilleistung: Allgemeine und Anorganische Chemie [T-CHEMBIO-101866]

Verantwortung: Prof. Dr. Mario Ruben

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101117 - Allgemeine und Anorganische Chemie (AAC)

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich5DrittelnotenJedes Wintersemester1

Lehrveranstaltungen					
WS 22/23	5004	Allgemeine und Anorganische Chemie (für Studierende des Chemieingenieurwesens)	3 SWS	Vorlesung (V) / Q ⁴	Ruben
WS 22/23	5005	Seminar zur Vorlesung Allgemeine und Anorganische Chemie (für Studierende des Chemieingenieurwesens)	2 SWS	Seminar (S) / 🗣	Scheiba

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

5.2 Teilleistung: Angewandte Chemie [T-CHEMBIO-100302]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** M-CHEMBIO-100299 - Angewandte Chemie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Semester	1

Prüfungsvo	eranstaltungen		
SS 2022	7100019	Angewandte Chemie, 1. Klausur	Deutschmann, Grunwaldt, Meier, Théato
SS 2022	7100050	Angewandte Chemie, 2. Klausur	Deutschmann, Meier, Grunwaldt, Théato

Voraussetzungen

5.3 Teilleistung: Angewandte Werkstoffsimulation [T-MACH-105527]

Verantwortung: Prof. Dr. Peter Gumbsch

Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103712 - Simulation

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Sommersemester3

Lehrveranstaltungen					
SS 2022	2182614	Angewandte Werkstoffsimulation	4 SWS	Vorlesung / Übung (VÜ) / ■	Gumbsch, Schulz
Prüfungsveranstaltungen					
SS 2022	76-T-MACH-105527	Angewandte Werkstoffsimulation			Gumbsch, Schulz

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung ca. 30 Minuten

keine Hilfsmittel

Voraussetzungen

Die erfolgreiche Teilnahme an Übungen zu Angewandte Werkstoffsimulation ist Voraussetzung für die Zulassung zur mündlichen Prüfung Angewandte Werkstoffsimulation.

T-MACH-110928 – Exercises for Applied Materials Simulation darf nicht begonnen sein.

T-MACH-110929 – Applied Materials Modelling darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-107671 Übungen zu Angewandte Werkstoffsimulation muss erfolgreich abgeschlossen worden sein
- 2. Die Teilleistung T-MACH-110929 Applied Materials Simulation darf nicht begonnen worden sein.
- 3. Die Teilleistung T-MACH-110928 Exercises for Applied Materials Simulation darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Angewandte Werkstoffsimulation

2182614, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Online

Inhalt

Diese Vorlesung soll den Studierenden einen Überblick über verschiedene Simulationsmethoden im Bereich der Material- und Ingenieurwissenschaften geben. Hierbei werden numerische Verfahren vorgestellt und deren Einsatz in unterschiedlichen Anwendungsfeldern und Größenskalen aufgezeigt und diskutiert. Anhand von theoretischen sowie praktischen Aspekten soll eine kritische Auseinandersetzung mit den Chancen und Herausforderungen der numerischen Werkstoffsimulation erfolgen.

Der/die Studierende kann

- · verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

Präsenzzeit: 34 Stunden Übung: 11 Stunden

Selbststudium: 165 Stunden Mündliche Prüfung ca. 35 Minuten

Hilfsmittel: keine

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Organisatorisches

Die Vorlesung wir nur als Aufzeichnung angeboten!

Bitte besuchen Sie die englischsprachige Veranstaltung "Applied Materials Simulation" (2182616)!

Weitere Informationen finden Sie in ILIAS.

Kontakt: johannes.schneider@kit.edu

Literaturhinweise

- 1. D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, 2001
- 2. W. Kurz, D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, 1998
- 3. P. Haupt: Continuum Mechanics and Theory of Materials, Springer, 1999
- 4. M. P. Allen, D. J. Tildesley: Computer simulation of liquids, Clarendon Press, 1996

5.4 Teilleistung: Anorganisch-Chemisches Praktikum [T-CHEMBIO-103348]

Verantwortung: Dr. Christopher Anson

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101728 - Anorganisch-Chemisches Praktikum

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6DrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen					
SS 2022	5040	Anorganisch-chemisches Praktikum für Geowissenschaftler	6 SWS	Praktikum (P) / 🗣	Anson, Assistenten, Breher, Feldmann, Powell, Roesky, Ruben	
Prüfungsve	Prüfungsveranstaltungen					
SS 2022	7100014	Anorganisch-Chemisches Praktikum	organisch-Chemisches Praktikum für AGEW, GEÖK und TVWL			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

4 Vorprotokolle, jeweils im

Umfang von 5-15 Seiten, sowie die Ergebnisse der 4 Analysen

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Anorganisch-chemisches Praktikum für Geowissenschaftler

Praktikum (P) Präsenz

5040, SS 2022, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

In der vorlesungsfreien Zeit

5.5 Teilleistung: Applied Materials Simulation [T-MACH-110929]

Verantwortung: Prof. Dr. Peter Gumbsch

Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103712 - Simulation

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Sommersemester1

Lehrveranstaltungen					
SS 2022	2182616	Applied Materials Simulation	4 SWS	Vorlesung / Übung (VÜ) / ⊈ ⁴	Schulz, Gumbsch
Prüfungsveranstaltungen					
SS 2022	76-T-MACH-110929	Applied Materials Simulation			Gumbsch

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung ca. 30 Minuten

keine Hilfsmittel

Voraussetzungen

Die erfolgreiche Teilnahme an Exercises for Applied Materials Simulation ist Voraussetzung für die Zulassung zur mündlichen Prüfung Applied Materials Simulation.

T-MACH-107671 – Übungen zu Angewandte Werkstoffsimulation darf nicht begonnen sein.

T-MACH-105527 - Angewandte Werkstoffsimulation darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-110928 Exercises for Applied Materials Simulation muss erfolgreich abgeschlossen worden sein
- 2. Die Teilleistung T-MACH-105527 Angewandte Werkstoffsimulation darf nicht begonnen worden sein.
- 3. Die Teilleistung T-MACH-107671 Übungen zu Angewandte Werkstoffsimulation darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Applied Materials Simulation

2182616, SS 2022, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Inhalt

Diese Vorlesung soll den Studierenden einen Überblick über verschiedene Simulationsmethoden im Bereich der Material- und Ingenieurwissenschaften geben. Hierbei werden numerische Verfahren vorgestellt und deren Einsatz in unterschiedlichen Anwendungsfeldern und Größenskalen aufgezeigt und diskutiert. Anhand von theoretischen sowie praktischen Aspekten soll eine kritische Auseinandersetzung mit den Chancen und Herausforderungen der numerischen Werkstoffsimulation erfolgen.

Der/die Studierende kann

- · verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

Präsenzzeit: 34 Stunden Übung: 11 Stunden

Selbststudium: 165 Stunden Mündliche Prüfung ca. 35 Minuten

Hilfsmittel: keine

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

- 1. D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, 2001
- 2. W. Kurz, D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, 1998
- 3. P. Haupt: Continuum Mechanics and Theory of Materials, Springer, 1999
- 4. M. P. Allen, D. J. Tildesley: Computer simulation of liquids, Clarendon Press, 1996

5.6 Teilleistung: Bachelorarbeit [T-MACH-112129]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-105974 - Bachelorarbeit

Teilleistungsart Abschlussarbeit Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Semester Version 1

Erfolgskontrolle(n)

Die Studierenden sollen in der Bachelorarbeit zeigen, dass sie in der Lage sind, ein Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten.

Der Umfang der Bachelorarbeit entspricht 12 Leistungspunkten. Die maximale Bearbeitungsdauer beträgt vier Monate. Thema und Aufgabenstellung sind an den vorgesehenen Umfang anzupassen.

Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Auf begründeten Antrag des Studenten kann der Prüfungsausschuss die Bearbeitungszeit um maximal einen Monat verlängern. Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit "nicht ausreichend" (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

Die Bachelorarbeit wird von mindestens einem/einer Hochschullehrer/in, einem/einer leitenden Wissenschaftler/in gemäß § 14 abs. 3 Ziff. 1 KITG oder habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau und einem/einer weiteren Prüfenden bewertet. In der Regel ist eine/r der Prüfenden die Person, die die Arbeit vergeben hat.

Bei nicht übereinstimmender Beurteilung dieser beiden Personen setzt der Prüfungsausschuss im Rahmen der Bewertung dieser beiden Personen die Note der Bachelorarbeit fest; er kann auch einen weiteren Gutachter bestellen. Die Bewertung hat innerhalb von sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

Voraussetzungen

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 140 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (vgl. §14 (1) der SPO).

Abschlussarbeit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 4 Monate

Maximale Verlängerungsfrist 1 Monate

Korrekturfrist 6 Wochen

Anmerkungen

Für die Ausarbeitung der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 360 Stunden gerechnet.

5.7 Teilleistung: Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen [T-WIWI-102819]

Verantwortung: Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-MACH-103746 - Wahlmodul

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester1

Prüfungsveranstaltungen				
SS 2022	7900167	Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen	Ruckes, Wouters	
SS 2022	7900248	Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen	Ruckes, Wouters	
WS 22/23	7900004	Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen	Ruckes, Wouters	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO).

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

5.8 Teilleistung: Betriebswirtschaftslehre: Produktionswirtschaft und Marketing [T-WIWI-102818]

Verantwortung: Prof. Dr. Wolf Fichtner

Prof. Dr. Martin Klarmann

Prof. Dr.-Ing. Thomas Lützkendorf

Prof. Dr. Martin Ruckes Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten

Turnus
Jedes Sommersemester

Version 1

Prüfungsve	eranstaltungen		
SS 2022	7900040	Betriebswirtschaftslehre: Produktionswirtschaft und Marketing	Klarmann, Schultmann
WS 22/23	7900003	Betriebswirtschaftslehre: Produktionswirtschaft und Marketing	Schultmann, Klarmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

5.9 Teilleistung: Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft [T-WIWI-102817]

Verantwortung: Prof. Dr. Petra Nieken

Prof. Dr. Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Notenskala
Drittelnoten

Jedes Wintersemester
1

Prüfungsveranstaltungen					
SS 2022	7900182	Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft	Lindstädt, Weinhardt		
WS 22/23	7900153	Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft	Lindstädt, Weinhardt		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

5.10 Teilleistung: Biochemie [T-CIWVT-111064]

Verantwortung: Dr. Jens Rudat

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	22406	Biologie im Ingenieurwesen II - Biochemie	2 SWS	Vorlesung (V) / 🗣	Rudat	
Prüfungsve	eranstaltungen					
SS 2022	7221-V-406 BC	06 BC Biochemie			Syldatk, Rudat	
WS 22/23	7221-V-406 BC	Biochemie			Rudat	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

5.11 Teilleistung: Einführung in die Mechatronik [T-MACH-100535]

Verantwortung: Moritz Böhland

apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-103746 - Wahlmodul

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6DrittelnotenJedes Wintersemester2

Lehrveranstaltungen						
WS 22/23	2105011	Einführung in die Mechatronik	3 SWS	Vorlesung (V) / 🕃	Reischl, Böhland	
Prüfungsveranstaltungen						
SS 2022	76-T-MACH-100535	Einführung in die Mechatronik			Reischl	

Legende: 🖥 Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 2h)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Einführung in die Mechatronik

2105011, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt Lerninhalt:

- Einleitung
- · Aufbau mechatronischer Systeme
- · Mathematische Behandlung mechatronischer Systeme
- · Sensorik und Aktorik
- · Messwerterfassung und -interpretation
- Modellierung mechatronischer Systeme
- Steuerung und Regelung
- Informationsverarbeitung

Lernziele:

Der Studierende kennt die fachspezifischen Herausforderungen in der interdisziplinären Zusammenarbeit im Rahmen der Mechatronik

Er ist in der Lage Ursprung, Notwendigkeit und methodische Umsetzung dieser interdisziplinären Zusammenarbeit zu erläutern und kann deren wesentliche Schwierigkeiten benennen, sowie die Besonderheiten der Entwicklung mechatronischer Produkte aus entwicklungsmethodischer Sicht erläutern.

Der Studierende hat grundlegende Kenntnisse zu Grundlagen der Modellbildung mechanischer, pneumatischer, hydraulischer und elektrischer Teilsysteme, sowie geeigneter Optimierungsstrategien.

Der Studierende kennt den Unterschied des Systembegriffs in der Mechatronik im Vergleich zu rein maschinenbaulichen Systemen.

Literaturhinweise

Heimann, B.; Gerth, W.; Popp, K.: Mechatronik. Leipzig: Hanser, 1998 Isermann, R.: Mechatronische Systeme - Grundlagen. Berlin: Springer, 1999 Roddeck, W.: Einführung in die Mechatronik. Stuttgart: B. G. Teubner, 1997

Töpfer, H.; Kriesel, W.: Funktionseinheiten der Automatisierungstechnik. Berlin: Verlag Technik, 1988 Föllinger, O.: Regelungstechnik. Einführung in die Methoden und ihre Anwendung. Heidelberg: Hüthig, 1994 Bretthauer, G.: Modellierung dynamischer Systeme. Vorlesungsskript. Freiberg: TU Bergakademie, 1997

5.12 Teilleistung: Einführung in die Rheologie [T-CHEMBIO-100303]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-100300 - Rheologie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten1

Prüfungsve	Prüfungsveranstaltungen				
SS 2022	7100005	Einführung in die Rheologie	Dingenouts, Wilhelm		

Voraussetzungen

5.13 Teilleistung: Elektromagnetische Felder [T-ETIT-109078]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveran	Lehrveranstaltungen						
SS 2022	2306004	Elektromagnetische Felder	2 SWS	Vorlesung (V) / 🛱	Doppelbauer		
SS 2022	2306005	Übung zu 2306004 Elektromagnetische Felder	2 SWS	Übung (Ü) / ♀ ⁴	Menger, Kesten		
SS 2022	2306006	Tutorium zu 2306004 Elektromagnetische Felder	SWS	Zusatzübung (ZÜ) /	Doppelbauer		
Prüfungsveranstaltungen							
SS 2022	7300019	Elektromagnetische Felder			Doppelbauer		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

5.14 Teilleistung: Elektronische Eigenschaften von Festkörpern [T-ETIT-107698]

Verantwortung: apl. Prof. Dr. Alexander Colsmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103813 - Elektronische Eigenschaften von Festkörpern

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich5DrittelnotenJedes Sommersemester2

Lehrverans	Lehrveranstaltungen						
SS 2022	2313758	Elektronische Eigenschaften von Festkörpern für Materialwissenschaften	2 SWS	Vorlesung (V) / 🗣	Colsmann, Röhm		
SS 2022	2313759	Übungen zu 2313758 Elektronische Eigenschaften von Festkörpern für Materialwissenschaften	1 SWS	Übung (Ü) / 🗣	Colsmann, Röhm		
Prüfungsv	eranstaltungen						
SS 2022	7313758	Elektronische Eigenschaften von Festkörpern für Materialwissenschaften			Colsmann		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung.

Voraussetzungen

siehe Institutsangaben

5.15 Teilleistung: Elektrotechnik I für Wirtschaftsingenieure [T-ETIT-100533]

Verantwortung: Dr. Wolfgang Menesklou

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrverans	Lehrveranstaltungen						
WS 22/23	2304223	Elektrotechnik I für Wirtschaftsingenieure	2 SWS	Vorlesung (V) / 🕃	Menesklou		
WS 22/23	2304225	Übungen zu 2304223 Elektrotechnik I für Wirtschaftsingenieure	2 SWS	Übung (Ü) / 🕃	Menesklou		
Prüfungsv	eranstaltungen						
SS 2022	7304223	Elektrotechnik I für Wirtschaftsingenieure			Menesklou		
WS 22/23	7304223	Elektrotechnik I für Wirtschaftsingen	ieure		Menesklou		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von ca. 90 Minuten.

Voraussetzungen

keine

5.16 Teilleistung: Elektrotechnik II für Wirtschaftsingenieure [T-ETIT-100534]

Verantwortung: Dr. Wolfgang Menesklou

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2304224	Elektrotechnik II für Wirtschaftsingenieure	3 SWS	Vorlesung (V) / 🗣	Menesklou
Prüfungsveranstaltungen					
SS 2022	7304224	Elektrotechnik II für Wirtschaftsinger	Menesklou		
WS 22/23	7304224	Elektrotechnik II für Wirtschaftsingenieure			Menesklou

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von ca. 90 Min.

Anmerkungen

Inhalte und Qualifikationsziele unter: Modul: M-ETIT-101935 - Elektrotechnik II für Wirtschaftsingenieure

5.17 Teilleistung: Exercises for Applied Materials Simulation [T-MACH-110928]

Verantwortung: Prof. Dr. Peter Gumbsch

Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau **Bestandteil von:** M-MACH-103712 - Simulation

Voraussetzung für: T-MACH-110929 - Applied Materials Simulation

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

TurnusJedes Sommersemester

Version

Lehrveranstaltungen						
SS 2022	2182616	Applied Materials Simulation	4 SWS	Vorlesung / Übung (VÜ) / ♀	Schulz, Gumbsch	
Prüfungsveranstaltungen						
SS 2022	76-T-MACH-110928	10928 Exercises for Applied Materials Simulation			Gumbsch	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung aller Übungsaufgaben

Voraussetzungen

T-MACH-107671 – Übungen zu Angewandte Werkstoffsimulation darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107671 - Übungen zu Angewandte Werkstoffsimulation darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Applied Materials Simulation

2182616, SS 2022, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Inhalt

Diese Vorlesung soll den Studierenden einen Überblick über verschiedene Simulationsmethoden im Bereich der Material- und Ingenieurwissenschaften geben. Hierbei werden numerische Verfahren vorgestellt und deren Einsatz in unterschiedlichen Anwendungsfeldern und Größenskalen aufgezeigt und diskutiert. Anhand von theoretischen sowie praktischen Aspekten soll eine kritische Auseinandersetzung mit den Chancen und Herausforderungen der numerischen Werkstoffsimulation erfolgen.

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

Präsenzzeit: 34 Stunden Übung: 11 Stunden

Selbststudium: 165 Stunden Mündliche Prüfung ca. 35 Minuten

Hilfsmittel: keine

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

- 1. D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, 2001
- 2. W. Kurz, D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, 1998
- 3. P. Haupt: Continuum Mechanics and Theory of Materials, Springer, 1999
- 4. M. P. Allen, D. J. Tildesley: Computer simulation of liquids, Clarendon Press, 1996

5.18 Teilleistung: Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria [T-MACH-110924]

Verantwortung: Prof. Dr. Hans Jürgen Seifert
Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103710 - Thermodynamik

Voraussetzung für: T-MACH-110925 - Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2022	2194721	Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria	1 SWS	Übung (Ü) / 🗣	Seifert, Franke		
Prüfungsve	eranstaltungen						
SS 2022	76-T-MACH-110924	Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria			Seifert		

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen

T-MACH-107669 Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107669 - Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria

Übung (Ü) Präsenz

2194721, SS 2022, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

- 1. Ternäre Phasendiagramme
- Vollständige Mischbarkeit
- Eutektische Systeme
- 2. Thermodynamik der Lösungsphasen
- 3. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluss der Gasphase
- 4. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen

In dieser Übung wird die Konstruktion von isothermen Schnitten und Temperatur-Konzentration-Schnitten in ternären Materialsystemen behandelt. Die thermodynamischen Eigenschaften von multiphasigen Werkstoffen werden berechnet.

Empfehlungen:

- · Vorlesung Thermodynamische Grundlagen / Heterogene Gleichgewichte
- Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
- · Vorlesung Physikalische Chemie

Präsenzzeit: 14 Stunden Selbststudium: 46 Stunden

Literaturhinweise

- 1. Phase Equilibria, Phase Diagrams and Phase Transformations, Their Thermodynamic Basis; M. Hillert, University Press, Cambridge (2007)
- 2. Introduction to the Thermodynamics of Materials; D.R. Gaskell, Taylor & Francis (2008)

5.19 Teilleistung: Exercises for Materials Characterization [T-MACH-110945]

Verantwortung: Dr.-Ing. Jens Gibmeier

Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103714 - Werkstoffanalytik

Voraussetzung für: T-MACH-110946 - Materials Characterization

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version 1

Lehrverans	staltungen				
WS 22/23	2173432	Tutorials and Lab Courses for "Materials Characterization"	1 SWS	Übung (Ü) / 🗯	Gibmeier

Legende: Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Regelmäßige Teilnahme

Voraussetzungen

T-MACH-107685 – Übungen zu Werkstoffanalytik darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107685 - Übungen zu Werkstoffanalytik darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Tutorials and Lab Courses for "Materials Characterization"

2173432, WS 22/23, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt

s. Vorlesung "Werkstoffanalytik" (V-Nr. 2174586)

Literaturhinweise

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).

Literatur wird zu Beginn der Veranstaltung bekanntgegeben.

5.20 Teilleistung: Exercises for Microstructure-Property-Relationships [T-MACH-110930]

Verantwortung: Dr. Patric Gruber

Einrichtung:

Bestandteil von:

Prof. Dr. Christoph Kirchlechner KIT-Fakultät für Maschinenbau M-MACH-103713 - Eigenschaften

Voraussetzung für: T-MACH-110931 - Microstructure-Property-Relationships

Teilleistungsart Leistungspunkte
Studienleistung 2

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version 1

Lehrveranstaltungen					
WS 22/23	2177021	Exercises in Microstructure- Property-Relationships	1 SWS	Übung (Ü) / 🗯	Kirchlechner, Wagner, Gruber

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Bestehen eines mündlichen Abschlusskolloquiums

Voraussetzungen

T-MACH-107683 – Übungen zu Gefüge-Eigenschafts-Beziehungen darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107683 - Übungen zu Gefüge-Eigenschafts-Beziehungen darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Exercises in Microstructure-Property-Relationships

2177021, WS 22/23, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt

Übungen zur Vorlesung Gefüge-Eigenschafts-Beziehungen LV Nr. 2177020.

5.21 Teilleistung: Exercises for Solid State Reactions and Kinetics of Phase Transformations [T-MACH-110926]

Verantwortung: Prof. Dr.-Ing. Bronislava Gorr Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103711 - Kinetik

Voraussetzung für: T-MACH-110927 - Solid State Reactions and Kinetics of Phase Transformations

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	2194723	Exercises for Solid State Reactions and Kinetics of Phase Transformations, Corrosion	1 SWS	Übung (Ü) / 😘	Gorr, Martini	
Prüfungsve	eranstaltungen					
SS 2022	76-T-MACH-110926	Exercises for Solid State Reactions and Kinetics of Phase Transformations			Gorr	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen

T-MACH-107632 – Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107632 - Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Exercises for Solid State Reactions and Kinetics of Phase Transformations, Corrosion

2194723, SS 2022, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt

- 1. Ficksche Gesetze
- 2. Berechnung von Diffusionskoeffizienten
- 3. Diffusion und Erstarrungsvorgänge

Empfehlungen: Vorlesung Festkörperreaktionen/Kinetik von Phasenumwandlungen, Korrosion; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Vorlesung Physikalische Chemie

Vertiefung der Vorlesung anhand durchgerechneter Beispiele

Präsenzzeit: 14 Stunden Selbststudium: 46 Stunden

Literaturhinweise

Vorlesungsskript;

Lecture notes

5.22 Teilleistung: Experimentalphysik [T-PHYS-100278]

Verantwortung: apl. Prof. Dr. Bernd Pilawa

Prof. Dr. Thomas Schimmel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-100283 - Experimentalphysik

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Semester Version 1

Lehrverans	staltungen				
SS 2022	4040021	Experimentalphysik B für die Studiengänge Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geoökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT, Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik	4 SWS	Vorlesung (V) / •	Pilawa
SS 2022	4040122	Übungen zur Experimentalphysik B für die Studiengänge Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geoökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT, Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik	2 SWS	Übung (Ü) / 🗣	Pilawa, Wertz, NN
WS 22/23	4040011	Experimentalphysik A für die Studiengänge Elektrotechnik, Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geoökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik	4 SWS	Vorlesung (V) / ♣	Schimmel
WS 22/23	4040112	Übungen zur Experimentalphysik A für die Studiengänge Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geoökologie, Technische Volkswirtschaftslehre, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik	2 SWS	Übung (Ü) / ●	Schimmel, Wertz
Prüfungsv	eranstaltunger			1	
SS 2022	7800001	Experimentalphysik			Schimmel

Erfolgskontrolle(n) Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen Keine

5.23 Teilleistung: Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion [T-MACH-107667]

Verantwortung: Dr. Peter Franke

Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103711 - Kinetik

Teilleistungsart Prüfungsleistung mündlich Leistungspunkte

Notenskala Drittelnoten

Turnus Jedes Wintersemester Version 4

Lehrveranstaltungen						
WS 22/23	2193003	Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion	2 SWS	Vorlesung (V) / 🕉	Franke	
Prüfungsve	eranstaltungen					
SS 2022	76-T-MACH-107667	Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion			Seifert, Franke	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Die erfolgreiche Teilnahme an Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion ist Voraussetzung für die Zulassung zur mündlichen Prüfung Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion.

T-MACH-110926 - Exercises for Solid State Reactions and Kinetics of Phase Transformations darf nicht begonnen sein.

T-MACH-110927 - Solid State Reactions and Kinetics of Phase darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- Die Teilleistung T-MACH-107632 Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-110927 Solid State Reactions and Kinetics of Phase Transformations darf nicht begonnen worden sein.
- 3. Die Teilleistung T-MACH-110926 Exercises for Solid State Reactions and Kinetics of Phase Transformations darf nicht begonnen worden sein.

Empfehlungen

Grundvorlesungen in Materialwissenschaft und Werkstofftechnik

Grundvorlesungen in Mathematik

Vorlesung Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion Vorlesung (V) 2193003, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen Präsenz/Online gemischt

Inhalt

Mündliche Prüfung (ca. 30 min)

Lehrinhalt:

- 1. Kristallfehler und Diffusionsmechanismen
- 2. Mikroskopische Beschreibung der Diffusion
- 3. Phänomenologische Beschreibung
- 4. Diffusionskoeffizienten
- 5. Diffusionsprobleme; analytische Lösungen
- 6. Diffusion mit Phasenumwandlung
- 7. Gefügekinetik
- 8. Diffusion entlang Oberflächen, Korngrenzen, Versetzungen
- 9. Numerische Bahandlung von diffusionskontrollierten Phasenumwandlungen

Empfehlungen: Kenntnisse aus der Vorlesung "Heterogene Gleichgewichte" (Seifert) sind zu empfehlen; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Grundvorlesungen in Mathematik; Vorlesung Physikalische Chemie

Präsenzzeit: 22 Stunden Selbststudium: 98 Stunden

Die Studierenden sollen nach der Teilnahme an den Lehrveranstaltungen fähig sein:

- · Diffusionsmechanismen zu beschreiben
- · die Fickschen Gesetze zu formulieren
- · einfache Lösungen der Diffusionsgleichung anzugeben
- Diffusionsexperimente auszuwerten
- · Interdiffusionprozesse zu beschreiben
- · den thermodynamischen Faktor zu erklären
- parabolisches Schichtwachstum zu beschreiben
- · die Perlitbildung zu erläutern
- · Gefügeumwandlungen gemäß den Modellen von Avrami und Johnson-Mehl darzulegen
- ZTU-Schaubilder zu erklären und anzuwenden

Literaturhinweise

- 1. J. Crank, "The Mathematics of Diffusion", 2nd Ed., Clarendon Press, Oxford, 1975.
- 2. J. Philibert, "Atom Movements", Les Éditions de Physique, Les Ulis, 1991.
- 3. D.A. Porter, K.E. Easterling, M.Y. Sherif, "Phase Transformations in Metals and Alloys", 3rd edition, CRS Press, 2009.
- 4. H. Mehrer, "Diffusion in Solids", Springer, Berlin, 2007.

5.24 Teilleistung: Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria [T-MACH-110925]

Verantwortung: Prof. Dr. Hans Jürgen Seifert **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103710 - Thermodynamik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2022	2194720	Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria	2 SWS	Vorlesung (V) / •	Seifert, Franke	
Prüfungsv	eranstaltungen					
SS 2022	76-T-MACH-110925	Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria			Seifert	

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Die erfolgreiche Teilnahme an Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria ist Voraussetzung für die Zulassung zur mündlichen Prüfung Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria.

T-MACH-107669 – Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen sein.

T-MACH-107670 - Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- Die Teilleistung T-MACH-107670 Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen worden sein.
- Die Teilleistung T-MACH-110924 Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria muss erfolgreich abgeschlossen worden sein.
- 3. Die Teilleistung T-MACH-107669 Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen worden sein.

Empfehlungen

Grundvorlesungen in Materialwissenschaft und Werkstofftechnik

Grundvorlesungen in Mathematik

Vorlesung Physik oder Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria

Vorlesung (V) Präsenz

2194720, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Mündliche Prüfung (ca. 30 min)

Lehrinhalt:

- 1. Binäre Phasendiagramme
- 2. Ternäre Phasendiagramme
- Vollständige Mischbarkeit
- Eutektische Systeme
- Peritektische Systeme
- Übergangsreaktionen
- Systeme mit intermetallischen Phasen
- 3. Thermodynamik der Lösungsphasen
- 4. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluß der Gasphase
- 5. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen
- 6. Thermodynamik von multikomponentigen, multiphasigen Werkstoffsystemen
- 7. Thermodynamische Berechnungen mit der CALPHAD-Methode

Empfehlungen: Kenntnisse aus der Vorlesung "Festkörperreaktionen, Kinetik von Phasenumwandlungen, Korrosion" (Gorr) sind zu empfehlen; Grundvorlesungen Materialwissenschaft und Werkstofftechnik; Grundvorlesungen Mathematik; Vorlesung Physik oder Physikalische Chemie

Präsenzzeit: 22 Stunden Selbststudium: 98 Stunden

Die Studierenden kennen die Konstitution (Lehre der heterogenen Gleichgewichte) von binären, ternären und multikomponentigen Werkstoffsystemen und können die thermodynamischen Eigenschaften von multiphasigen Werkstoffen und deren Reaktionen mit Gas- und Schmelzphasen analysieren.

Sie können die erlernten Zusammenhänge auf Fragen der Herstellung, des Fügens und der Anwendung der Werkstoffe (metallische Legierungen, technische Keramiken, Verbundwerkstoffe) anwenden.

Literaturhinweise

- 1. Phase Equilibria, Phase Diagrams and Phase Transformations, Their Thermodynamic Basis; M. Hillert, University Press, Cambridge (2007)
- 2. Introduction to the Thermodynamics of Materials; D.R. Gaskell, Taylor & Francis (2008)

5.25 Teilleistung: Gefüge-Eigenschafts-Beziehungen [T-MACH-107604]

Verantwortung: Dr. Patric Gruber

Prof. Dr. Christoph Kirchlechner KIT-Fakultät für Maschinenbau

Einrichtung: KIT-Fakultät für Maschinenbau **Bestandteil von:** M-MACH-103713 - Eigenschaften

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Sommersemester	3

Lehrveranstaltungen						
SS 2022	2178124	Gefüge-Eigenschafts- Beziehungen	3 SWS	Vorlesung (V) / ●	Kirchlechner, Gruber	
Prüfungsveranstaltungen						
SS 2022	S 2022 76-T-MACH-107604 Gefüge-Eigenschafts-Beziehungen			Kirchlechner, Gruber		

Legende: 🖥 Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Die erfolgreiche Teilnahme an Übungen zu Gefüge-Eigenschafts-Beziehungen ist Voraussetzung für die Zulassung zur mündlichen Prüfung Gefüge-Eigenschafts-Beziehungen.

T-MACH-110930 - Exercises for Microstructure-Properties-Relationships darf nicht begonnen sein.

T-MACH-110931 - Microstructure-Properties-Relationships darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- Die Teilleistung T-MACH-107683 Übungen zu Gefüge-Eigenschafts-Beziehungen muss erfolgreich abgeschlossen worden sein.
- Die Teilleistung T-MACH-110930 Exercises for Microstructure-Property-Relationships darf nicht begonnen worden sein.
- 3. Die Teilleistung T-MACH-110931 Microstructure-Property-Relationships darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Gefüge-Eigenschafts-Beziehungen

2178124, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhali

Es werden folgende Gefüge-Eigenschafts-Beziehungen für die verschiedenen Materialklassen behandelt:

- Elastizität und Plastizität
- Bruchmechanik
- Ermüdung
- Kriechen
- Elektrische Leitfähigkeit: Metallische Leiter, Halbleiter, Supraleiter, leitfähige Polymere
- Magnetische Eigenschaften und Magnetwerkstoffe

Neben der phänomenologischen Beschreibung und physikalische Erklärung des Materialverhaltens wird auch ein Überblick zu den jeweiligen experimentellen Methoden gegeben.

Die Studierenden verstehen grundlegend den Zusammenhang zwischen dem Gefüge und den Materialeigenschaften. Dieser Zusammenhang wird für die mechanischen Eigenschaften (Elastizität, Plastizität, Bruch, Ermüdung, Kriechen) sowie für die Funktionseigenschaften (Leitfähigkeit, magnetische Eigenschaften) und jeweils für alle Werkstoffhauptklassen erarbeitet. Die Studierenden können die Eigenschaften phänomenologisch beschreiben, die zugrundeliegenden materialphysikalischen Mechanismen erklären und verstehen wie die Eigenschaften über das Gefüge gezielt eingestellt werden können. Sie können umgekehrt auch auf Basis des Gefüges die mechanischen und funktionellen Eigenschaften des Werkstoffes ableiten.

Mündliche Prüfung ca. 30 Minuten

5.26 Teilleistung: Genetik [T-CIWVT-111063]

Verantwortung: Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	2	Drittelnoten	Jedes Wintersemester	1

Prüfungsveranstaltungen				
SS 2022	7221-V-405 GEN	Genetik	Neumann	
WS 22/23	7221-V-405 GEN	Genetik	Neumann	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Es wird empfohlen, zunächst die Teilleistung Zellbiologie zu absolvieren.

5.27 Teilleistung: Grundlagen der Mess- und Regelungstechnik [T-MACH-104745]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	8	Drittelnoten	Jedes Wintersemester	3

Lehrverans	Lehrveranstaltungen					
WS 22/23	2137301	Grundlagen der Mess- und Regelungstechnik	3 SWS	Vorlesung (V) / 🗣	Stiller	
WS 22/23	2137302	Übungen zu Grundlagen der Mess- und Regelungstechnik	1 SWS	Übung (Ü) / 🗣	Stiller, Fischer, Müßigmann	
WS 22/23	3137020	Measurement and Control Systems	3 SWS	Vorlesung (V) / 🗣	Stiller	
WS 22/23	3137021	Measurement and Control Systems (Tutorial)	1 SWS	Übung (Ü) / 🗣	Stiller, Fischer, Müßigmann	
Prüfungsveranstaltungen						
SS 2022	76-T-MACH-104745	Grundlagen der Mess- und Regelungstechnik			Stiller	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung

2,5 Stunden

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Grundlagen der Mess- und Regelungstechnik 2137301, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt Lehrinhalt

- 1. Dynamische Systeme
- 2. Eigenschaften wichtiger Systeme und Modellbildung
- 3. Übertragungsverhalten und Stabilität
- 4. Synthese von Reglern
- 5. Grundbegriffe der Messtechnik
- 6. Estimation
- 7. Messaufnehmer
- 8. Einführung in digitale Messverfahren

Lernziele

In allen Zweigen der Technik sind die verschiedensten physikalische Größen zu messen und häufig auch auf bestimmte Werte zu regeln: Druck, Temperatur, Durchfluss, Drehzahl, Leistung, Spannung, Strom usw.. Allgemeiner ausgedrückt ist das Ziel der Messtechnik die Gewinnung von Informationen über den Zustand eines Systems, während sich die Regelungstechnik mit der Steuerung und Regelung von Energie- und Stoffströmen sowie dem Ziel befasst, den Zustand eines Systems in gewünschter Weise zu beeinflussen. Ziel ist die Einführung in dieses Gebiet und allgemein in die systemtechnische Denkweise. Im regelungstechnischen Teil wird die klassische lineare Systemtheorie behandelt, im messtechnischen Teil die elektrische Messung nichtelektrischer Größen.

Voraussetzungen:

Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace-Transformation

Nachweis: Schriftlich, Dauer: 2,5 Stunden, Hilfsmittel: alle Bücher, Aufzeichnungen, Mitschriften zugelassen (keine Taschenrechner oder elektr. Geräte)

Arbeitsaufwand:

210 Stunden

Literaturhinweise

Buch zur Vorlesung:

C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

· Measurement and Control Systems:

R.H. Cannon: Dynamics of Physical Systems, McGraw-Hill Book Comp., New York,

1967

G.F. Franklin: Feedback Control of Dynamic Systems, Addison-Wesley Publishing Company,

USA, 1988

R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

- C. Phillips and R. Harbor: Feedback Control Systems, Prentice-Hall
 - Regelungstechnische Bücher:

J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag

R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag

O. Föllinger: Regelungstechnik, Hüthig-Verlag

W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

Schmidt, G.: Grundlagen der Regelungstechnik, Springer-Verlag, 2. Aufl., 1989

· Messtechnische Bücher:

E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992 U. Kiencke, H. Kronmüller, R. Eger: Meßtechnik, Springer-Verlag, 5. Aufl., 2001

H.-R. Tränkler: Taschenbuch der Messtechnik, Verlag Oldenbourg München, 1996

W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999

Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl.,

1980

Übungen zu Grundlagen der Mess- und Regelungstechnik

2137302, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz

Inhalt

Übung zu Veranstaltung 2137301

Measurement and Control Systems

3137020, WS 22/23, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Literaturhinweise

· Measurement and Control Systems:

R.H. Cannon: Dynamics of Physical Systems, McGraw-Hill Book Comp., New York,1967 G.F. Franklin: Feedback Control of Dynamic Systems, Addison-Wesley Publishing Company, USA, 1988

R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley C. Phillips and R. Harbor: Feedback Control Systems, Prentice-Hall

· Regelungstechnische Bücher:

J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag O. Föllinger: Regelungstechnik, Hüthig-Verlag W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

Schmidt, G.: Grundlagen der Regelungstechnik, Springer-Verlag, 2. Aufl., 1989

· Messtechnische Bücher:

E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992 U. Kiencke, H. Kronmüller, R. Eger: Meßtechnik, Springer-Verlag, 5. Aufl., 2001 H.-R. Tränkler: Taschenbuch der Messtechnik, Verlag Oldenbourg München, 1996 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999

Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

5.28 Teilleistung: Höhere Mathematik I [T-MATH-100275]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MACH-106200 - Orientierungsprüfung M-MATH-100280 - Höhere Mathematik I

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
7

Notenskala
Drittelnoten
Jedes Semester
3

Lehrverans	Lehrveranstaltungen					
WS 22/23	0131000	Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik	4 SWS	Vorlesung (V)	Arens	
WS 22/23	0131200	Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT	4 SWS	Vorlesung (V)	Arens	
Prüfungsv	eranstaltungen					
SS 2022	6700025	Höhere Mathematik I			Arens, Griesmaier, Hettlich	
WS 22/23	6700007	Höhere Mathematik I			Arens, Griesmaier, Hettlich	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 1-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 1.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100525 - Übungen zu Höhere Mathematik I muss erfolgreich abgeschlossen worden sein.

5.29 Teilleistung: Höhere Mathematik II [T-MATH-100276]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100281 - Höhere Mathematik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7	Drittelnoten	Jedes Semester	2

Lehrveran	staltungen				
SS 2022	0180800	Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik	4 SWS	Vorlesung (V)	Arens
SS 2022	0181000	Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT	4 SWS	Vorlesung (V)	Arens
Prüfungsv	veranstaltungen	•	•		·
SS 2022	6700001	Höhere Mathematik II			Arens, Griesmaier, Hettlich
WS 22/23	6700008	Höhere Mathematik II			Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 2-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 2.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100526 - Übungen zu Höhere Mathematik II muss erfolgreich abgeschlossen worden sein.

5.30 Teilleistung: Höhere Mathematik III [T-MATH-100277]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100282 - Höhere Mathematik III

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7	Drittelnoten	Jedes Semester	2

Lehrverans	Lehrveranstaltungen					
WS 22/23	0131400	Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau	4 SWS	Vorlesung (V)	Hettlich	
Prüfungsv	eranstaltungen					
SS 2022	6700002	Höhere Mathematik III			Arens, Griesmaier, Hettlich	
WS 22/23	6700009	Höhere Mathematik III			Arens, Griesmaier, Hettlich	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 3-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 3.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100527 - Übungen zu Höhere Mathematik III muss erfolgreich abgeschlossen worden sein.

5.31 Teilleistung: Informatik für Materialwissenschaften [T-MACH-107786]

Verantwortung: Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103840 - Informatik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6DrittelnotenJedes Wintersemester1

Prüfungsveranstaltungen				
SS 2022	76-T-MACH-107786	Informatik für Materialwissenschaften	Weygand	
WS 22/23	76T-MACH 107786	Informatik für Materialwissenschaften	Weygand	

Voraussetzungen

keine

5.32 Teilleistung: Keramik-Grundlagen [T-MACH-100287]

Verantwortung: Prof. Dr. Michael Hoffmann **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und

Technologien

Bestandteil von: M-MACH-105977 - Keramik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
WS 22/23	2125757	Keramik-Grundlagen	3 SWS	Vorlesung (V) / 🗣	Hoffmann		
Prüfungsve	Prüfungsveranstaltungen						
SS 2022	76-T-MACH-100287	Keramik-Grundlagen			Hoffmann, Schell, Wagner		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min) zu einem festgelegten Termin.

Die Wiederholungsprüfung findet an einem festgelegten Termin statt.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Keramik-Grundlagen

2125757, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Literaturhinweise

- · H. Salmang, H. Scholze, "Keramik", Springer
- · Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
- · Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
- · S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier

5.33 Teilleistung: Konstruktionswerkstoffe [T-MACH-100293]

Verantwortung: Dr.-Ing. Stefan Guth

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-100291 - Konstruktionswerkstoffe

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6DrittelnotenJedes Sommersemester2

Lehrveranstaltungen						
SS 2022	2174580	Konstruktionswerkstoffe	4 SWS	Vorlesung / Übung (VÜ) / ເເ≩	Guth	
Prüfungsveranstaltungen						
SS 2022	76-T-MACH-100293	Konstruktionswerkstoffe			Guth	

Legende: Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Konstruktionswerkstoffe

2174580, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt

Inhalt

Die Vorlesung wird online angeboten. Nähere Infos werden über ILIAS verteilt.

Vorlesungen und Übungen zu den Themen:

- Grundbeanspruchungen und überlagerte Beanspruchungen
- Hochtemperaturbeanspruchung
- Auswirkung von Kerben
- einachsige, mehrachsige und überlagerte schwingende Beanspruchung
- Kerbschwingfestigkeit
- Betriebsfestigkeit
- Bewertung rissbehafteter Bauteile
- Einfluss von Eigenspannungen
- Grundlagen der Werkstoffauswahl
- Dimensionierung von Bauteilen

Lernziele:

Die Studierenden sind in der Lage, Konstruktionswerkstoffe auszuwählen und mechanisch beanspruchte Bauteile entsprechend dem Stand der Technik zu dimensionieren. Ihnen sind die wichtigsten Konstruktionswerkstoffe vertraut. Sie können diese Werkstoffe an Hand ihrer Werkstoffwiderstände beurteilen und Eigenschaftsprofile mit Anforderungsprofilen abgleichen. Die Bauteildimensionierung schließt auch komplexe Situationen ein, wie mehrachsige Beanspruchungen, gekerbte Bauteile, statische und schwingende Beanspruchungen, eigenspannungsbehaftete Bauteile und Beanspruchung bei hohen homologen Temperaturen.

Voraussetzungen:

keine

Arbeitsaufwand:

Präsenszeit: 42h Selbstarbeitszeit: 138h

5.34 Teilleistung: Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110377]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-105180 - Kontinuumsmechanik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1 Sem.	3

Lehrveranstaltungen						
WS 22/23	2161252	Kontinuumsmechanik der Festkörper und Fluide	2 SWS	Vorlesung (V) / 🕃	Böhlke, Frohnapfel	
Prüfungsveranstaltungen						
WS 22/23	76-T-MACH-110377	Kontinuumsmechanik der Festkör	Böhlke, Frohnapfel			

Legende: Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung

Voraussetzungen

bestandene Studienleistung "Übung zu Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110333)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-MACH-110333 - Übungen zu Kontinuumsmechanik der Festkörper und Fluide muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Kontinuumsmechanik der Festkörper und Fluide

2161252, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

- · Einführung in die Tensorrechnung
- Kinematik
- · Bilanzgleichungen der Mechanik und Thermodynamik
- · Materialtheorie der Festkörper und Fluide
- Feldgleichungen für Festkörper und Fluide
- Thermomechanische Kopplungen
- Dimensionsanalyse

Literaturhinweise

Vorlesungsskript

Greve, R.: Kontinuumsmechanik, Springer 2003 Liu, I-S.: Continuum Mechanics. Springer, 2002

Schade, H.: Strömungslehre, de Gruyter 2013

5.35 Teilleistung: Maschinen und Prozesse [T-MACH-105208]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer

Dr.-Ing. Heiko Kubach Prof. Dr. Ulrich Maas Dr. Balazs Pritz

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	8	Drittelnoten	Jedes Semester	2

Lehrverans	Lehrveranstaltungen						
SS 2022	3134140	Machines and Processes	4 SWS	Vorlesung / Übung (VÜ) / ♀	Bauer, Maas, Kubach, Pritz		
WS 22/23	2185000	Maschinen und Prozesse	4 SWS	Vorlesung / Übung (VÜ) / ♀	Bauer, Kubach, Maas, Pritz		
Prüfungsv	eranstaltungen						
SS 2022	76-T-MACH-105208	Maschinen und Prozesse (Exan	Maschinen und Prozesse (Exam in German Language)				
SS 2022	76-T-MACH-105208e	Machines and Processes (Exam in English Language)			Kubach, Bauer, Maas, Pritz		
WS 22/23	76-T-MACH-105208	Maschinen und Prozesse (Klaus	Kubach, Maas, Bauer				

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 120 min)

Voraussetzungen

Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105232 - Maschinen und Prozesse, Vorleistung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Maschinen und Prozesse

2185000, WS 22/23, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Inhalt

Grundlagen der Thermodynamik

Thermische Strömungsmaschinen

- Dampfturbinen
- Gasturbinen
- GuD Kraftwerke
- · Turbinen und Verdichter
- Flugtriebwerke

Hydraulische Strömungsmaschinen

- Betriebsverhalten
- Charakterisierung
- Regelung
- Kavitation
- · Windturbinen, Propeller

Verbrennungsmotoren

- Kenngrößen
- Konstruktionselemente
- Kinematik
- Motorprozesse
- Emissionen

5.36 Teilleistung: Maschinen und Prozesse, Vorleistung [T-MACH-105232]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer

Dr.-Ing. Heiko Kubach Prof. Dr. Ulrich Maas Dr. Balazs Pritz

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-103746 - Wahlmodul

Voraussetzung für: T-MACH-105208 - Maschinen und Prozesse

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Semester	1

Lehrveranstaltungen						
SS 2022	2187000	Maschinen und Prozesse (Praktikum)	1 SWS	Praktikum (P) / 🗣	Bauer, Kubach, Maas, Pritz	
WS 22/23	2187000	Maschinen und Prozesse (Praktikum)	1 SWS	Praktikum (P) / 🗣	Bauer, Kubach, Pritz, Schmidt, Bykov	
Prüfungsv	Prüfungsveranstaltungen					
SS 2022	76-T-MACH-105232	Maschinen und Prozesse, Vorleistung (German and English)			Kubach, Bauer, Maas, Pritz	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

erfolgreich absolvierter Praktikumsversuch

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Maschinen und Prozesse (Praktikum)

2187000, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz

Inhalt

Nachweis:

erfolgreich absolvierter Praktikumsversuch und schriftliche Klausur (2 h)

Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein

Anmerkung:

Praktikum und Vorlesung finden im Sommer- und Wintersemester statt.

Im SS findet die VL auf englisch statt. Das Praktikum ist immer zweisprachig.

Medien:

Folien zum Download

Dokumentation des Praktikumsversuchs

Lehrinhalte:

Grundlagen der Thermodynamik

Thermische Strömungsmaschinen

- Dampfturbinen
- Gasturbinen
- · GuD Kraftwerke
- · Turbinen und Verdichter
- Flugtriebwerke

Hydraulische Strömungsmaschinen

- · Betriebsverhalten
- Charakterisierung
- Regelung
- Kavitation
- Windturbinen, Propeller

Verbrennungsmotoren

- Kenngrößen
- Konstruktionselemente
- Kinematik
- Motorprozesse
- Emissionen

Arbeitsaufwand: Präsenzzeit: 48 h, Selbststudium 160 h

Lernziele:

Die Studenten können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen

Maschinen und Prozesse (Praktikum)

2187000, WS 22/23, 1 SWS, Im Studierendenportal anzeigen

Praktikum (P) Präsenz

Inhalt

Praktisches Experiment

5.37 Teilleistung: Maschinenkonstruktionslehre I und II [T-MACH-112225]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten Version 2

Lehrveranstaltungen					
WS 22/23	2145178	Maschinenkonstruktionslehre I	2 SWS	Vorlesung (V) / ♀	Albers, Matthiesen

Legende: Online, 😂 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Klausur (90min) über die Inhalte von MKL I und MKL II.

Voraussetzungen

Die Teilleistungen "T-MACH-112226 - Maschinenkonstruktionslehre I, Vorleistung" und "T-MACH-112227– Maschinenkonstruktionslehre II, Vorleistung" müssen erfolgreich bestanden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Maschinenkonstruktionslehre I

2145178, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Literaturhinweise Vorlesungsumdruck:

Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2

Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Steinhilper, Sauer, Springer Verlag, ISBN 3-540-22033-X

oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

5.38 Teilleistung: Maschinenkonstruktionslehre I, Vorleistung [T-MACH-112226]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Lehrverans	Lehrveranstaltungen					
WS 22/23	2145185	Übungen zu Maschinenkonstruktionslehre I	1 SWS	Übung (Ü) / ⊈ ⁵	Albers, Matthiesen, Mitarbeiter	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Des weiteren wird ein Onlinetest zur Wissensüberprüfung durchgeführt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre I

2145185, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2

Grundlagen der Berechnung und Gestaltung von

Maschinenelementen;

Steinhilper, Sauer, Springer Verlag, ISBN 3-540-22033-X

Grundlagen von Maschinenelementen für Antriebsaufgaben;

Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Version

5.39 Teilleistung: Maschinenkonstruktionslehre II, Vorleistung [T-MACH-112227]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-103746 - Wahlmodul

TeilleistungsartLeistungspunkteNotenskalaTurnusStudienleistung1best./nicht best.Jedes Sommersemester

Erfolgskontrolle(n)

CIW/ VT/ IP-M/ WiING / MATH/ MWT: Zum Bestehen der Vorleistung ist es erforderlich, dass eine Konstruktionsaufgabe erfolgreich absolviert wird.

MIT: Zum Bestehen der Vorleistung ist es erforderlich, dass eine Konstruktionsaufgabe erfolgreich absolviert wird.

NWT: Für Studierende der Fachrichtung NwT ist stattdessen als Studienleistung die Erstellung eines Lehrvideos zur Vermittlung eines technischen Systems als Prüfungsvorleistung zu erbringen

Voraussetzungen

Keine

5.40 Teilleistung: Materialphysik und Metalle [T-MACH-100285]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier

Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-100287 - Materialphysik und Metalle

M-MACH-106200 - Orientierungsprüfung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	12	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
SS 2022	2174598	Metalle	4 SWS	Vorlesung (V) / 🕃	Pundt, Kauffmann
SS 2022	2174599	Übungen zur Vorlesung "Metalle"	1 SWS	Übung (Ü) / 🗯	Pundt, Kauffmann
WS 22/23	2177010	Materialphysik	3 SWS	Vorlesung (V) / 🗣	Gruber
Prüfungsveranstaltungen					
SS 2022	76-T-MACH-100285	Materialphysik und Metalle			Pundt, Gruber

Legende: ☐ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 45 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Metalle

2174598, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Eigenschaften von reinen Stoffen; Thermodynamische Grundlagen ein- und zweikomponentiger Systeme, sowie mehrphasiger Systeme; Keimbildung und Keimwachstum; Diffusionsprozesse in kristallinen Werkstoffen; Zustandsschaubilder; Auswirkungen von Legierungselementen auf Legierungsbildung; Nichtgleichgewichtsgefüge; Wärmebehandlungsverfahren

Lernziele

Die Studierenden haben Kenntnis von den thermodynamischen Grundlagen von Phasenumwandlungen, der Kinetik von Phasenumwandlungen in Festkörpern, den Mechanismen der Gefügebildung und den Gefüge-Eigenschafts-Beziehungen und können diese auf metallische Werkstoffe anwenden. Sie können die Auswirkungen von Wärmebehandlungen und Legierungszusätzen auf das Gefüge und die mechanischen sowie physikalischen Eigenschaften von metallischen Werkstoffen einschätzen. Diese Fähigkeit wird insbesondere für Eisenbasislegierungen (Stähle und Gusseisen) sowie Aluminiumlegierungen vertieft

Voraussetzungen:

Materialphysik

Arbeitsaufwand:

Präsenzzeit: 42 h Selbststudium: 138 h

Organisatorisches

Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise

- D.A. Porter, K. Easterling, Phase Transformation in Metals and Alloys, 2nd edition, Chapman & Hall, London 1997,
- G. Gottstein. Physikalische Grundlagen der Materialkunde, Springer 2007
- E. Hornbogen, H. Warlimont, Metalle (Struktur und Eigenschaften von Metallen und Legierungen), Springer-Verlag, Berlin 2001
- H.-J. Bargel, G. Schulze, Werkstoffkunde, Springer-Verlag Berlin 2005
- J. Rösler, H. Harders, M. Bäker, Mechanisches Verhalten der Werkstoffe, Vieweg+Teubner Wiesbaden, 2008
- J. Freudenberger: http://www.ifw-dresden.de/institutes/imw/lectures/lectures/pwe

Übungen zur Vorlesung "Metalle"

2174599, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt

Eigenschaften von reinen Stoffen; Thermodynamische Grundlagen ein- und zweikomponentiger Systeme, sowie mehrphasiger Systeme; Keimbildung und Keimwachstum; Diffusionsprozesse in kristallinen Werkstoffen; Zustandsschaubilder; Auswirkungen von Legierungselementen auf Legierungsbildung; Nichtgleichgewichtsgefüge; Wärmebehandlungsverfahren

Lernziele:

Die Studierenden haben praktische Erfahrung in der Anwendung der thermodynamischen Grundlagen von Phasenumwandlungen, der Kinetik von Phasenumwandlungen in Festkörpern, den Mechanismen der Gefügebildung und den Gefüge-Eigenschafts-Beziehungen. Sie können die Auswirkungen von Wärmebehandlungen und Legierungszusätzen auf das Gefüge und die mechanischen sowie physikalischen Eigenschaften von metallischen Werkstoffen einschätzen. Diese Fähigkeit wird insbesondere für Eisenbasislegierungen (Stähle und Gusseisen) sowie Aluminiumlegierungen geübt.

Voraussetzungen:

Vorlesung und Übung zu Materialphysik sowie Vorlesung zu Metalle

Arbeitsaufwand:

Präsenzzeit: 14 h Selbststudium: 16 h

Organisatorisches

Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise

G. Gottstein: "Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen", Springer (2014) http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

J. Freudenberger: "Skript zur Vorlesung Physikalische Werkstoffeigenschaften", IFW Dresden (2004) https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften

P. Haasen: "Physikalische Metallkunde", Cambridge University Press (2003) http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

R.W. Cahn, P. Haasen (Editoren): "Physical Metallurgy", Serie, North Holland (1996) http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

D. A. Porter, K. Easterling: "Phase Transformation in Metals and Alloys", Chapman & Hall (2009) http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

E. Hornbogen, H. Warlimont: "Metalle: Struktur und Eigenschaften von Metallen und Legierungen", Springer (2016) http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

E. Hornbogen, G. Eggeler, E. Werner: "Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen", Springer (2012)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

H.-J. Bargel, G. Schulze: "Werkstoffkunde", Springer (2012) http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

J. Rösler, H. Harders, M. Bäker: "Mechanisches Verhalten der Werkstoffe", Springer Vieweg (2016) http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)

Materialphysik

2177010, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Mechanische Eigenschaften (Steifigkeit, Festigkeit, Zähigkeit, Ermüdung, Kriechen) Elektrische, magnetische, optische und thermische Eigenschaften Oxidation und Korrosion Anwendungsbeispiele

Die Studierenden kennen die Bandbreite von Materialeigenschaften von Konstruktionswerkstoffen und Funktionswerkstoffen. Sie verstehen die Zusammenhänge zwischen atomarem Festkörperaufbau (chemische Bindung, Kristallstruktur und -defekten), mikroskopischen Beobachtungen (Mikrostruktur/Gefüge) und physikalischen Materialeigenschaften. Sie können Struktur-Eigenschafts-Beziehungen und die daraus resultierenden Einsatzmöglichkeiten von Werkstoffen (Metalle, Keramiken, Polymere, Verbundwerkstoffe) beurteilen.

Organisatorisches

Die Vorlesung beginnt am Mittwoch, den 26.10.2022.

Literaturhinweise

Ashby M.F. and Jones D.R.H., Engineering Materials 1: An Introduction to Properties, Applications and Design. 3. Aufl., Verlag Butterworth-Heinemann, Oxford, 2004.

Ashby M.F. and Jones D.R.H., Engineering Materials 2: An Introduction to Microstructures, Processing and Design. 3. Aufl., Verlag Butterworth-Heinemann, Oxford, 2005.

Hornbogen, E., Eggeler G. und Werner E., Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer und Verbundwerkstoffen, Springer-Verlag, Berlin, 2008.

Schatt W. und Worch H., Werkstoffwissenschaft, Verlag Wiley-VCH, Weinheim, 2002.

Callister W.D. and Rethwisch D.G., Fundamentals of Materials Science and Engineering: An Integrated Approach., Verlag John Wiley & Sons, New York, 2008.

J. Rösler, H. Harders, M. Bäker, Mechanisches Verhalten der Werkstoffe, Vieweg-Teubner, 3. Auflage

5.41 Teilleistung: Materials Characterization [T-MACH-110946]

Verantwortung: Dr.-Ing. Jens Gibmeier

Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103714 - Werkstoffanalytik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 22/23	2173431	Materials Characterization	2 SWS	Vorlesung (V) / 🗯	Schneider, Gibmeier	
Prüfungsveranstaltungen						
SS 2022	76-T-MACH-110946	Materials Characterization			Gibmeier	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

Die erfolgreiche Teilnahme an Exercises for Materials Characterization ist Voraussetzung für die Zulassung zur mündlichen Prüfung Materials Characterization.

T-MACH-107685 – Übungen zu Werkstoffanalytik darf nicht begonnen sein.

T-MACH-107684 – Werkstoffanalytik darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- Die Teilleistung T-MACH-110945 Exercises for Materials Characterization muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-107685 Übungen zu Werkstoffanalytik darf nicht begonnen worden sein.
- Die Teilleistung T-MACH-107684 Werkstoffanalytik darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Materials Characterization

2173431, WS 22/23, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Die Studierenden haben Grundkenntnisse über werkstoffanalytische Verfahren. Sie besitzen ein grundsätzliches Verständnis, diese Grundkenntnisse auf ingenieurswissenschaftliche Fragestellungen zu übertragen. Darüber hinaus sind die Studierenden in der Lage, Werkstoffe durch ihre mikroskopische und submikroskopische Struktur zu beschreiben.

Literaturhinweise

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).

Literatur wird zu Beginn der Veranstaltung bekanntgegeben.

5.42 Teilleistung: Materialwissenschaftliches Praktikum A [T-MACH-100286]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-100287 - Materialphysik und Metalle

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Sommersemester	3

Lehrveranstaltungen							
SS 2022	2174578	Materialwissenschaftliches Praktikum A im Bachelorstudiengang MWT	sws	Praktikum (P) / 🕉	Heilmaier, Kauffmann		
Prüfungsveranstaltungen							
SS 2022	76-T-MACH-100286	Materialwissenschaftliches Praktikum A			Heilmaier, Gruber		

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Mündliches Kolloquium zu Beginn jedes Themenblocks; unbenotete Bescheinigung der erfolgreichen Teilnahme.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Materialwissenschaftliches Praktikum A im Bachelorstudiengang MWT

2174578, SS 2022, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz/Online gemischt

Inhalt

Durchführung und Auswertung von Laborversuchen zu dem Themenblock:

Gefüge und Eigenschaften

Lernziele:

Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung benennen, Ihre Durchführung und die notwendigen Auswertemethoden beschreiben und können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Die Studierenden sind in der Lage zur Klärung werkstoffkundlicher Fragestellungen geeignete Versuche auszuwählen, sie kennen die praktischen Versuchsabläufe und können aus den gemessenen und erhobenen Daten entsprechende Kennwerte berechnen und diese interpretieren.

Voraussetzungen:

Vorlesungen und Übungen zu "Materialphysik" sowie begleitende Vorlesung zu "Metalle"

Arbeitsaufwand:

Präsenzzeit: 22 Stunden Selbststudium: 38 Stunden

Organisatorisches

Weitere Informationen finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise

Vorlesungsskript, Vorlesungsvideos, Übungsblätter, Übungsvideos der begleitenden Vorlesungen und Übungen Weiterführende Informationen gibt es hier:

- G. Gottstein: "Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen", Springer (2014) http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)
- J. Freudenberger: "Skript zur Vorlesung Physikalische Werkstoffeigenschaften", IFW Dresden (2004) https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften
- P. Haasen: "Physikalische Metallkunde", Cambridge University Press (2003) http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810
- R.W. Cahn, P. Haasen (Editoren): "Physical Metallurgy", Serie, North Holland (1996) http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656
- D. A. Porter, K. Easterling: "Phase Transformation in Metals and Alloys", Chapman & Hall (2009) http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X
- E. Hornbogen, H. Warlimont: "Metalle: Struktur und Eigenschaften von Metallen und Legierungen", Springer (2016) http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)
- E. Hornbogen, G. Eggeler, E. Werner: "Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen", Springer (2012)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

- H.-J. Bargel, G. Schulze: "Werkstoffkunde", Springer (2012) http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)
- J. Rösler, H. Harders, M. Bäker: "Mechanisches Verhalten der Werkstoffe", Springer Vieweg (2016) http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)

5.43 Teilleistung: Materialwissenschaftliches Praktikum B [T-MACH-112139]

Verantwortung: Prof. Dr.-Ing. Bronislava Gorr

Dr.-Ing. Rainer Oberacker

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und

Technologien

Bestandteil von: M-MACH-105977 - Keramik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	4	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23	2193101	Materialwissenschaftliches Praktikum B im Bachelorstudiengang MatWerk	2 SWS	Praktikum (P) / 🕉	Gorr, Martini, Wagner

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Durchführung von Praktikumsversuchen

Eingangskolloquium

Protokollerstellung und Abtestat

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Materialwissenschaftliches Praktikum B im Bachelorstudiengang MatWerk

2193101, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz/Online gemischt

Inhalt

Anmeldung bis 18.10.2022 per Email an florian.martini@kit.edu

Voraussetzungen für den Erhalt des Scheins sind:

- Anwesenheit bei allen sechs Praktika
- Erfolgreiche Teilnahme an allen sechs Kolloquien
- Gute Praktikumsprotokolle (3-5 Seiten Text plus Grafiken und Auswertungen) für alle Versuche; Abgabe eine Woche nach dem jeweiligen Praktikumstag
- Erhalt des Testats für alle sechs Versuche
- Erhalt des Testats für mind. fünf Versuche im ersten Durchgang
- Entschuldigung und ärztliches Attest bei Fernbleiben vom Praktikum

Lehrinhalt:

- 1. Röntgenographische Phasen- und Strukturanalyse (IAM-AWP)
- 2. Quantitative Gefügeanalyse (IAM-WBM)
- 3. Diffusion in Festkörpern (IAM-AWP)
- 4. Formgebung und Sintern (IAM-KWT)
- 5. Tribologie (IAM-CMS)
- 6. Pulvercharakterisierung (IAM-ESS)
- Für die Teilnahme "Materialwissenschaftliches Praktikum B (2193101)" ist eine Voranmeldung per E-Mail erforderlich; Anmeldeschluss wird bekannt gegeben;
- Anwesenheitspflicht an allen Praktikumstagen
- Es wird ein zentraler Wiederholungstermin angeboten

Präsenzzeit: 48 Stunden Selbststudium: 42 Stunden

Die Teilnehmer lernen kennen bzw. sollten in der Lage sein:

- Mikro- und makroskopische, mechanische und thermische, sowie prozesstechnische Aspekte der Materialwissenschaft und Werkstofftechnik
- Das theoretische Vorwissen aus der Vorlesung mit den Inhalten aus dem Praktikum zu einer ganzheitlichen Sicht auf die Materialwissenschaft und Werkstofftechnik zu vernetzen
- Die Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen und makroskopischen Beobachtungen bzw. Versuchen und Werkstoffkennwerten zu erkennen
- · Die Ergebnisse aus den jeweiligen Versuchen zusammenzufassen und entsprechend zu diskutieren

Organisatorisches

Dienstags, 08:45 - 18:00.

Einführungsveranstaltung: 25.10.2022 von 09:00 bis 11:15 online via MS-Teams.

Praktika finden über den gesamten Campus verteilt statt.

Röntgenographische Phasen und Strukturanalyse (IAM AWP, KIT Campus Nord, Gebäude 681, Raum 107)

Quantitative Gefügeanalyse (IAM MMI, KIT Campus Nord, Geb. 696, Raum 114)

Diffusion (IAM AWP, KIT Campus Nord, Gebäude 695, Raum 219)

Formgebung und Sintern (IAM KWT, KIT Campus Süd, 3. Stock, Gebäudeteil B, Kolloqiumsraum 412.2)

Tribologie (IAM ZM, KIT Campus Süd, Gebäude 30.48, Raum 104)

Pulvercharakterisierung (IAM ESS, KIT Campus Nord, Bau 574 / Raum 228 & 230)

Literaturhinweise

- 1. a) Ch. Kittel, Einführung in die Festkörperphysik, Kap. 1 und 2
- b) W. Kleber, Einführung in die Kristallographie, Kap. 5
- c) H. Ibach, H. Lüth, Festkörperphysik, Kap. 3
- d) H. Neff, Grundlagen und Anwendungen der Röntgenfeinstrukturanalyse
- 2. a) G. Gottstein (2007). Physikalische Grundlagen der Materialtheorie. Springer, Berlin.
- b) C.Oliver, G.M.Pharr: J.Mat.Res. 7, 1564, (1992)
- c) Macherauch, Praktikum in Werkstoffkunde, Vieweg-Verlag (1992)
- 3. a) A. Paul, T. Laurila, V. Vuorinen, S. Divinski, Thermodyanmics diffusion and the Kirkendall effect in solids, Springer International Publishing Switzerland, 2014; avaliable as e-book
- b) D.A. Porter, K.E. Easterling, M.Y. Sherif, "Phase Transformations in Metals and Alloys", 3rd edition, CRS Press, 2009.
- c) J. Philibert, "Atom Movements", Les Éditions de Physique, Les Ulis, 1991.
- 4. a) W. Schatt. Pulvermetallurgie: Technologien und Werkstoffe. Springer-Verlag Berlin Heidelberg, (2007). ISBN: 978-3-540-68112-0 (als Online-Ressource im KIT-Netz verfügbar)
- b) H. Salmang, H. Scholze, R. Telle. Keramik. Springer-Verlag Berlin Heidelberg (2007). ISBN: 978-3-540-63273-3 (als Online-Ressource im KIT-Netz verfügbar)
- 5. a) H. Czichos, K.-H. Habig: Tribologie-Handbuch. Springer Vieweg, Wiesbaden, 2015 (http://link.springer.com/book/10.1007%2F978-3-8348-2236-9)
- b) K. Sommer, R. Heinz, J. Schöfer: Verschleiß metallischer Werkstoffe: Erscheinungsformen sicher beurteilen. Springer Vieweg, Wiesbaden, 2014 (http://link.springer.com/book/10.1007%2F978-3-8348-2464-6)
- c) O. Pigors: Werkstoffe in der Tribotechnik Reibung, Schmierung und Verschleißbeständigkeit von Werkstoffen und Bauteilen. Deutscher Verlag für Grundstoffindustrie, Leipzig/Stuttgart 1993.
- 6. a) M. Stieß: Mechanische Verfahrenstechnik Partikeltechnologie 1, Springer-Verlag Berlin Heidelberg (2009), Kapitel 2 und 5
- b) Müller, Schuhmann: Teilchengrößenmessungen in der Laborpraxis, Wissenschaftliche Verlagsgesellschaft Stuttgart (1996), Kapitel 2 und 4

5.44 Teilleistung: Materialwissenschaftliches Seminar [T-MACH-100290]

Verantwortung: Dr. Patric Gruber

Dr. rer. nat. Stefan Wagner

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und

Grenzflächenmechanik

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-105977 - Keramik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Sommersemester	2

Lehrveranstaltungen						
SS 2022	2178450	Materialwissenschaftliches Seminar	2 SWS	Seminar (S) / 🗣	Gruber, Wagner	
Prüfungsveranstaltungen						
SS 2022	76-T-MACH-100290	Materialwissenschaftliches Seminar			Gruber, Wagner	

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Teilnahme an allen Seminarterminen

Vorbereitung eines Vortrages (Abstimmungstreffen mit Betreuer)

Präsentation eines Vortrages

Voraussetzungen

Materialphysik, Metalle, Keramik-Grundlagen

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Materialwissenschaftliches Seminar

2178450, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Seminar (S) Präsenz

Inhalt

Ort/Zeit siehe KIT-ILIAS

Materialwissenschaftliche Themen aus dem Bereich der Vorlesungen Materialphysik, Metalle und Keramik-Grundlagen.

Die Studierenden können eine materialwissenschaftliche Fragestellung unter vorgegebenen Rahmenbedingungen ziel- und ressourcenorientiert bearbeiten. Sie sind in der Lage Fachinformationen nach festgelegten Kriterien zu recherchieren und auszuwählen. Die Studierenden können ein materialwissenschaftliches Thema in klarer und überzeugend argumentierter Weise in Form eines Vortrages aufbereiten und präsentieren.

Literaturhinweise

Themenspezifisch

5.45 Teilleistung: Mathematische Methoden der Kontinuumsmechanik [T-MACH-110375]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1 Sem.	1

Lehrveranstaltungen							
WS 22/23	2161254	Mathematische Methoden der Kontinuumsmechanik	2 SWS	Vorlesung (V) / 🗯	Böhlke		
Prüfungsve	Prüfungsveranstaltungen						
WS 22/23	76-T-MACH-110375	Mathematische Methoden der Kontinuumsmechanik			Böhlke		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung

Klausurzulassung: bestandene Studienleistung Übung zu Mathematische Methoden der Kontinuumsmechanik (T-MACH-110376)

Voraussetzungen

bestandene Studienleistung Übungen zu Mathematische Methoden der Kontinuumsmechanik (T-MACH-110376)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-MACH-110376 - Übungen zu Mathematische Methoden der Kontinuumsmechanik muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Mathematische Methoden der Kontinuumsmechanik

2161254, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Tensoralgebra

- Vektoren; Basistransformation; dyadisches Produkt; Tensoren 2. Stufe
- Eigenschaften von Tensoren 2. Stufe: Symmetrie, Antimetrie, Orthogonalität etc.
- Eigenwertproblem, Theorem von Cayley-Hamilton, Invarianten; Tensoren h\u00f6herer Stufe Tensoranalysis
- Tensoralgebra und -analysis in schiefwinkligen und krummlinigen Koordinatensystemen
- · Differentiation von Tensorfunktionen

Anwendungen der Tensorrechnung in der Festigkeitslehre

- · Kinematik infinitesimaler und finiter Deformationen
- · Transporttheorem, Bilanzgleichungen, Spannungstensor
- · Materialgleichungen für Festkörper und Fluide
- Formulierung von Anfangs-Randwertproblemen
- Materialgleichungen für Festkörper und Fluide

Literaturhinweise

Vorlesungsskript

Liu, I-S.: Continuum Mechanics. Springer, 2002. Greve, R.: Kontinuumsmechanik, Springer 2003

Schade, H.: Tensoranalysis.Walter de Gruyter, New York, 1997.

Schade, H: Strömungslehre, de Gruyter 2013

5.46 Teilleistung: Mathematische Methoden der Mikromechanik [T-MACH-110378]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	1 Sem.	2

Lehrveranstaltungen						
SS 2022	2162280	Mathematische Methoden der Mikromechanik	2 SWS	Vorlesung (V) / 😘	Böhlke, Kehrer	
Prüfungsveranstaltungen						
SS 2022	76-T-MACH-110378	Nathematische Methoden der Mikromechanik			Böhlke	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (180 min). Hilfsmittel gemäß Ankündigung.

Klausurzulassung: bestandene Studienleistung Übung zu Mathematische Methoden der Mikromechanik (T-MACH-110379)

Voraussetzungen

Bestehen der Übungen zu Mathematische Methoden der Mikromechanik (T-MACH-110379)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-MACH-110379 - Übungen zu Mathematische Methoden der Mikromechanik muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Mathematische Methoden der Mikromechanik

2162280, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Grundlagen der linearen isotropen und anisotropen Thermoelastizitätstheorie,

Beschreibung von Mikrostrukturen,

Mikro-Makro-Relationen der linearen Thermoelastizitätstheorie,

Approximationen und Schranken für das effektive thermoelastische Materialverhalten,

Mikrostruktursensitives Design von Materialien,

Ausgewählte Probleme im Kontext der Homogenisierung nichtlinearer Materialeigenschaften

Organisatorisches

Nähere Informationen zu Zeit und Ort der Vorlesung im SS 2022: siehe ITM-KM Homepage

Literaturhinweise

- Vorlesungsskript
- · Gummert, P.; Reckling, K.-A.: Mechanik. Vieweg 1994
- Gross, D., Seelig, T.: Bruchmechanik Mit einer Einführung in die Mikromechanik, Springer 2002
- Klingbeil, E.: Variationsrechnung, BI Wissenschaftsverlag, 1977
- Torquato, S.: Random Heterogeneous Materials. Springer, 2002

5.47 Teilleistung: Mechanische Verfahrenstechnik [T-CIWVT-101886]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Semester	1

Lehrverans	staltungen				
WS 22/23	22901	Grundlagen der Mechanischen Verfahrenstechnik (Bach.)	2 SWS	Vorlesung (V) / 🗣	Dittler
WS 22/23	22902	Übung zu 22901 Mechanische Verfahrenstechnik (Bach.)	2 SWS	Übung (Ü) / 🗣	Dittler, und Mitarbeiter
Prüfungsv	eranstaltungen			•	
SS 2022	7292901	Mechanische Verfahrenstechnik			Dittler
WS 22/23	7292901	Mechanische Verfahrenstechnik			Dittler

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015.

Voraussetzungen

keine

Empfehlungen

Module des 1.-4. Semesters.

5.48 Teilleistung: Microstructure-Property-Relationships [T-MACH-110931]

Verantwortung: Dr. Patric Gruber

Prof. Dr. Christoph Kirchlechner KIT-Fakultät für Maschinenbau

Einrichtung: Bestandteil von: M-MACH-103713 - Eigenschaften

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23	2177020	Microstructure-Property- Relationships	3 SWS	Vorlesung (V) / 🛱	Kirchlechner, Gruber

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Die erfolgreiche Teilnahme an Exercises for Microstructure-Properties-Relationships ist Voraussetzung für die Zulassung zur mündlichen Prüfung Microstructure-Properties-Relationships.

T-MACH-107683 - Übungen zu Gefüge-Eigenschafts-Beziehungen darf nicht begonnen sein.

T-MACH-107604 - Gefüge-Eigenschafts-Beziehungen darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-110930 Exercises for Microstructure-Property-Relationships muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-107683 Übungen zu Gefüge-Eigenschafts-Beziehungen darf nicht begonnen worden sein.
- 3. Die Teilleistung T-MACH-107604 Gefüge-Eigenschafts-Beziehungen darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Microstructure-Property-Relationships

2177020, WS 22/23, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Es werden folgende Gefüge-Eigenschafts-Beziehungen für die verschiedenen Materialklassen behandelt:

- Elastizität und Plastizität
- Bruchmechanik
- Ermüdung
- Kriechen
- Elektrische Leitfähigkeit: Metallische Leiter, Halbleiter, Supraleiter, leitfähige Polymere
- Magnetische Eigenschaften und Magnetwerkstoffe

Neben der phänomenologischen Beschreibung und physikalische Erklärung des Materialverhaltens wird auch ein Überblick zu den jeweiligen experimentellen Methoden gegeben.

Die Studierenden verstehen grundlegend den Zusammenhang zwischen dem Gefüge und den Materialeigenschaften. Dieser Zusammenhang wird für die mechanischen Eigenschaften (Elastizität, Plastizität, Bruch, Ermüdung, Kriechen) sowie für die Funktionseigenschaften (Leitfähigkeit, magnetische Eigenschaften) und jeweils für alle Werkstoffhauptklassen erarbeitet.Die Studierenden können die Eigenschaften phänomenologisch beschreiben, die zugrundeliegenden materialphysikalischen Mechanismen erklären und verstehen wie die Eigenschaften über das Gefüge gezielt eingestellt werden können. Sie können umgekehrt auch auf Basis des Gefüges die mechanischen und funktionellen Eigenschaften des Werkstoffes ableiten.

Mündliche Prüfung ca. 30 Minuten

5.49 Teilleistung: Mikrobiologie [T-CIWVT-111065]

Verantwortung: Dr. Anke Neumann

Prof. Dr. Christoph Syldatk

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich2DrittelnotenJedes Wintersemester1

Lehrveranstaltungen					
WS 22/23	22407	Biologie im Ingenieurwesen II - Mikrobiologie	2 SWS	Vorlesung (V) / 🗣	Syldatk, Rudat
Prüfungsveranstaltungen					
SS 2022	7221-V-407-MIBI	Mikrobiologie			Syldatk
WS 22/23	7221-V-406-MIBI	Mikrobiologie			Syldatk

Legende: 🖥 Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

5.50 Teilleistung: Modellierung und Simulation [T-MACH-100300]

Verantwortung: Prof. Dr. Peter Gumbsch

Prof. Dr. Britta Nestler

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-100296 - Modellierung und Simulation

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Semester	3

Lehrveranstaltungen						
SS 2022	2183703	Modellierung und Simulation	2+1 SWS	Vorlesung / Übung (VÜ) / █	Nestler, August	
WS 22/23	2183703	Modellierung und Simulation	3 SWS	Vorlesung / Übung (VÜ) / █	Nestler, August	
Prüfungsve	eranstaltungen					
SS 2022	76-T-MACH-100300	Modellierung und Simulation			Nestler	
WS 22/23	76-T-MACH-100300	Modellierung und Simulation			Nestler, August	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Teinahme am Computerpraktikum (unbenotet) und schriftliche Prüfung, 90 min (benotet)

Voraussetzungen

Keine

Empfehlungen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Modellierung und Simulation

2183703, SS 2022, 2+1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Online

Inhalt

Die Vorlesung gibt eine Einführung in Modellierungs- und Simulationsmethoden. Inhalte sind:

- Splines, Interpolationverfahren, Taylorreihe
- Finite Differenzenverfahren
- Dynamische Systeme
- Raum-Zeit-Probleme, Numerik partieller Differenzialgleichungen
- Stoff- und Wärmediffusion
- Werkstoffsimulation
- parallele und adaptive Algorithmen
- Hochleistungsrechnen
- Computerpraktikum

Der/die Studierende

- kann grundlegende Algorithmen und numerische Methoden erläutern, die u.a. bei der Werkstoffsimulation eingesetzt werden
- kann numerische Lösungsverfahren für dynamische Systeme und partielle Differentialgleichungen beschreiben und anwenden
- kann Methoden zur numerischen Lösung von Wärme- und Stoffdiffusionsprozessen anwenden, die ebenfalls für die Simulation von Mikrostrukturausbildungen genutzt werden können
- verfügt durch das begleitende Rechnerpraktikum über Erfahrungen mit der Implementierung / Programmierung der erarbeiteten numerischen Verfahren.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung

Selbststudium: 116 Stunden

Es werden regelmäßig Übungszettel ausgeteilt. Außerdem wird die Veranstaltung ergänzt durch praktische Übungen am Computer.

schriftliche Klausur: 90 Minuten

Organisatorisches

Die Termine für die Übungen werden in der Vorlesung und im Ilias bekannt gegeben.

Literaturhinweise

1. Scientific Computing, G. Golub and J.M. Ortega (B.G.Teubner Stuttgart 1996)

Modellierung und Simulation

2183703, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Online

Inhalt

Die Vorlesung gibt eine Einführung in Modellierungs- und Simulationsmethoden. Inhalte sind:

- Splines, Interpolationverfahren, Taylorreihe
- Finite Differenzenverfahren
- Dynamische Systeme
- Raum-Zeit-Probleme, Numerik partieller Differenzialgleichungen
- Stoff- und Wärmediffusion
- Werkstoffsimulation
- parallele und adaptive Algorithmen
- Hochleistungsrechnen
- Computerpraktikum

Der/die Studierende

- kann grundlegende Algorithmen und numerische Methoden erläutern, die u.a. bei der Werkstoffsimulation eingesetzt werden
- kann numerischeLösungsverfahren für dynamische Systeme und partielle Differentialgleichungen beschreiben und anwenden
- kann Methoden zur numerischen Lösung von Wärme- und Stoffdiffusionsprozessen anwenden, die ebenfalls für die Simulation von Mikrostrukturausbildungen genutzt werden können
- verfügt durch das begleitende Rechnerpraktikum über Erfahrungen mit der Implementierung / Programmierung der erarbeiteten numerischen Verfahren.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung

Selbststudium: 116 Stunden

Es werden regelmäßig Übungszettel ausgeteilt. Außerdem wird die Veranstaltung ergänzt durch praktische Übungen am Computer.

schriftliche Klausur: 90 Minuten

OrganisatorischesTermine für Rechnerübungen werden in der Vorlesung bekannt gegeben!

Literaturhinweise

1. Scientific Computing, G. Golub and J.M. Ortega (B.G.Teubner Stuttgart 1996)

5.51 Teilleistung: Modern Physics [T-PHYS-103629]

Verantwortung: apl. Prof. Dr. Bernd Pilawa Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	6	Drittelnoten	1

Lehrveranstaltungen					
WS 22/23	4044011	KSOP - Modern Physics	4 SWS	Vorlesung (V) / 🗣	Pilawa
WS 22/23	4044012	KSOP - Exercises to Modern Physics	2 SWS	Übung (Ü) / 🗣	Pilawa, NN
Prüfungsveranstaltungen					
SS 2022	7800020	Modern Physics (MSc Optics & Phot	Pilawa		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen

keine

5.52 Teilleistung: Moderne Physik für Informatiker [T-PHYS-102323]

Verantwortung: Dr. Stefan Gieseke

Prof. Dr. Milada Margarete Mühlleitner

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	9	Drittelnoten	1

Lehrveranstaltungen					
SS 2022	4040451	Moderne Physik für Informatiker	4 SWS	Vorlesung (V) / 🗣	Gieseke
SS 2022	4040452	Übungen zu Moderne Physik für Informatiker	2 SWS	Übung (Ü) / 🗣	Gieseke, NN
Prüfungsv	eranstaltungen			•	•
SS 2022	7800074	Moderne Physik für Informatiker - Klausur 1			Gieseke
SS 2022	7800075	Moderne Physik für Informatiker - Klausur 2			Gieseke

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

keine

5.53 Teilleistung: Nachhaltige Produktionswirtschaft [T-MACH-111859]

Verantwortung: Prof. Dr.-Ing. Kai Furmans

Prof. Dr.-Ing. Gisela Lanza

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-105902 - Nachhaltige Produktionswirtschaft

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Sem. Version

Lehrveranstaltungen						
WS 22/23	2149616	Nachhaltige Produktionswirtschaft	4 SWS	Vorlesung / Übung (VÜ) / ∰	Lanza	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 90 min)

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Nachhaltige Produktionswirtschaft

2149616, WS 22/23, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt

Die Vorlesung vermittelt ein Gesamtverständnis der betrieblichen Produktionswirtschaft unter besonderer Berücksichtigung von Aspekten der Nachhaltigkeit sowie ein anwendungsorientiertes Verständnis der grundlegenden Fragestellungen und Methoden in Industrieunternehmen. Durch Übungen sowie ein Planspiel synchron zur Vorlesung werden die vermittelten Inhalte durch Anwendung vertieft, so dass die Teilnehmer sie in ihrem späteren Berufsumfeld unmittelbar anwenden können.

Lernziele:

Nach erfolgreichem Abschluss der Lehrveranstaltung sind die Studierenden in der Lage, ...

- alleine und im Team die Begriffe, Zusammenhänge und Modelle, durch welche produzierende Unternehmen beschrieben sind, zu erörtern.
- typische Problemstellungen produzierender Unternehmen, insbesondere vor dem Hintergrund gegenwärtiger und zukünftiger Herausforderungen der ökologischen, sozialen und ökonomischen Nachhaltigkeit, zu erörtern.
- die wichtigsten Methoden zum effizienten und nachhaltigen Wirtschaften in Industrieunternehmen, insbesondere im Sinne der Kreislaufwirtschaft, problembezogen anzuwenden.
- durch Anwendung der gelernten Methoden Entscheidungsalternativen auszuwählen und zu begründen.
- die gelernten Methoden kritisch zu hinterfragen und sich darüber hinausgehende Methoden selbstständig anzueignen.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium: 108 Stunden

Organisatorisches

Start: 24.10.2022

Vorlesungstermine montags, Übungstermine freitags.

Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung

Literaturhinweise

Medien:

Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:

Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

5.54 Teilleistung: Numerische Mathematik für die Fachrichtung Informatik [T-MATH-102242]

Prof. Dr. Andreas Rieder Verantwortung:

Dr. Daniel Weiß

Prof. Dr. Christian Wieners KIT-Fakultät für Mathematik

Einrichtung: M-MACH-103746 - Wahlmodul Bestandteil von:

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Semester	4

Lehrveranstaltungen					
SS 2022	0187400	Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen	2 SWS	Vorlesung (V)	Weiß
SS 2022	0187500	Übungen zu 0187400	1 SWS	Übung (Ü)	Weiß
Prüfungsveranstaltungen					
SS 2022	7700013	Numerische Mathematik für die Fachrichtung Informatik			Weiß

Erfolgskontrolle(n)

Schriftliche Prüfung (120 min).

Voraussetzungen

Keine

5.55 Teilleistung: Organische Chemie für Ingenieure [T-CHEMBIO-101865]

Verantwortung: Prof. Dr. Michael Meier

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101115 - Organische Chemie für Ingenieure

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5Drittelnoten2

Lehrverans	Lehrveranstaltungen						
SS 2022	5142	Organische Chemie für CIW/VT und BIW	2 SWS	Vorlesung (V) / 🗣	Levkin		
SS 2022	5143	Übungen zu Organische Chemie für CIW/VT und BIW	2 SWS	Übung (Ü) / 🗣	Levkin		
Prüfungsv	eranstaltungen						
SS 2022	7100017	Organische Chemie für CIW, BIW, VT und MWT			Levkin, Podlech		
SS 2022	7100029	Organische Chemie für CIW, BIW, V	Levkin, Podlech				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

gem. Modulhandbuch

5.56 Teilleistung: Passive Bauelemente [T-ETIT-100292]

Verantwortung: apl. Prof. Dr. Alexander Colsmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100293 - Passive Bauelemente

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich5DrittelnotenJedes Wintersemester2

Lehrveranstaltungen						
WS 22/23	2304206	Passive Bauelemente	2 SWS	Vorlesung (V) /	Colsmann, Röhm	
WS 22/23	2304208	Übung zu 2304206 Passive Bauelemente	1 SWS	Übung (Ü) / 🗣	Colsmann, Röhm	
Prüfungsve	eranstaltungen					
SS 2022	7300007	Passive Bauelemente			Colsmann	
SS 2022	7304206	Passive Bauelemente			Menesklou	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung.

Voraussetzungen

Keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100531 - Systematische Werkstoffauswahl darf nicht begonnen worden sein.

Empfehlungen

Die Inhalte des Moduls "M-ETIT-103813 – Elektronische Eigenschaften von Festkörper" sind von grundlegedner Bedeutung.

Anmerkungen

Nur eine der drei in dem Modul "M-ETIT-102734 - Werkstoffe " enthaltenen Teilleistungen ist erlaubt.

5.57 Teilleistung: Physik für Ingenieure [T-MACH-100530]

Verantwortung: Prof. Dr. Martin Dienwiebel

Prof. Dr. Peter Gumbsch

apl. Prof. Dr. Alexander Nesterov-Müller

Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	1

Lehrveran	Lehrveranstaltungen					
SS 2022	2142890	Physik für Ingenieure	4 SWS	Vorlesung / Übung (VÜ) / ⊈ ⁵	Weygand, Dienwiebel, Nesterov-Müller, Gumbsch	
Prüfungsv	eranstaltungen					
SS 2022	76-T-MACH-100530	Physik für Ingenieure			Gumbsch, Weygand, Nesterov-Müller, Dienwiebel	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung 90 min

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Physik für Ingenieure

2142890, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Inhalt

- 1) Grundlagen der Festkörperphysik
 - · Teilchen Welle Dualismus
 - Schrödingergleichung
 - · Teilchen /Tunneln
 - Wasserstoffatom
- 2) elektrische Leitfähigkeit von Festkörpern
 - · Festkörper: periodische Potenziale
 - Pauliprinzip
 - Bandstukturen
 - · Metalle, Halbleitern und Isolatoren
 - pn-Übergang

3) Optik

- Quantenmechanische Prinzipien des Lasers
- Lineare Optik
- Nicht-lineare Optik
- · Quanten-Optik

Übungen dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für ausführlichen Rückfragen der Studierenden und zur Überprüfung der vermittelten Lehrinhalte in Tests.

Der/die Studierende

- besitzt das grundlegende Verständnis der physikalischen Grundlagen, um den Zusammenhang zwischen den quantenmechanische Prinzipien und elektrischen und optischen Eigenschaften von Materialien zu erklären.
- · kann die relevanten Experimente zur Veranschaulichung quantenmechanischer Prinzipien beschreiben

Präsenzzeit: 22,5 Stunden (Vorlesung) und 22,5 Stunden (Übung)

Selbststudium: 105 Stunden

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO).

Die Note ist die Note der schriftlichen Multiple Choice Prüfung.

Organisatorisches

Kontakt: daniel.weygand@kit.edu

Literaturhinweise

- Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
- Haken und Wolf: Atom- und Quantenphysik. Einführung in die experimentellen und theoretischen Grundlagen, 7. Aufl., Springer, 2000
- Harris, Moderne Physik, Pearson Verlag, 2013

5.58 Teilleistung: Physikalische Chemie I [T-CHEMBIO-100301]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-MACH-103746 - Wahlmodul

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich8DrittelnotenJedes Wintersemester2

Lehrveranstaltungen						
WS 22/23	5206	Physikalische Chemie I	4 SWS	Vorlesung (V)	Schuster, Kappes	
Prüfungsv	Prüfungsveranstaltungen					
WS 22/23	710100052	Physikalische Chemie I			Kappes, Schuster, Olzmann, Elstner	
WS 22/23	710100052_2	Physikalische Chemie I_Nachklausu	ır		Kappes, Schuster, Olzmann, Elstner	

5.59 Teilleistung: Physikalische Chemie II [T-CHEMBIO-100538]

Verantwortung: Prof. Dr. Willem Klopper

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten

Turnus Jedes Sommersemester Version 2

Prüfungsveranstaltungen					
SS 2022	7100152	Physikalische Chemie II	Elstner, Olzmann, Kappes, Schuster		

5.60 Teilleistung: Polymere [T-CHEMBIO-100294]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-100289 - Polymere

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten1

Lehrverans	Lehrveranstaltungen						
SS 2022	5501	Chemie und Physik der Makromoleküle II	2 SWS	Vorlesung (V) / 🗣	Dingenouts, Wilhelm		
WS 22/23	5501	Chemie und Physik der Makromoleküle I	2 SWS	Vorlesung (V) / 🗯	Wilhelm, Dingenouts		
Prüfungsve	Prüfungsveranstaltungen						
SS 2022	7100004	Chemie und Physik der Makromoleküle, Teil I und II			Dingenouts, Wilhelm		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

Keine

5.61 Teilleistung: Präsentation [T-MACH-112130]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-105974 - Bachelorarbeit

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Semester Version 1

Erfolgskontrolle(n)

Die Präsentation soll spätestens sechs Wochen nach Abgabe der Bachelorarbeit erfolgen. Die Präsentation soll ca. 20 Minuten dauern und wird anschließend mit dem anwesenden Fachpublikum diskutiert. Die Studierenden sollen dabei zeigen, dass sie in der Lage sind, den Inhalt ihrer Bachelorarbeit selbstständig nach wissenschaftlichen Kriterien strukturiert darzustellen und diskutieren zu können.

Voraussetzungen

Bachelorarbeit wurde begonnen

Anmerkungen

Für die Präsentation der Bachelorarbeit wird mit einem Gesamtaufwand von ca. 90 Stunden gerechnet.

5.62 Teilleistung: Regelungstechnik und Systemdynamik [T-MACH-102126]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	2

Lehrveran	Lehrveranstaltungen					
SS 2022	2138332	Regelungstechnik und Systemdynamik	2 SWS	Vorlesung (V) / ●	Stiller	
SS 2022	2138333	Übungen zu Regelungstechnik und Systemdynamik	1 SWS	Übung (Ü) / ♀ ⁴	Stiller, Fischer, Le Large	
Prüfungsv	Prüfungsveranstaltungen					
SS 2022	76-T-MACH-102126	Regelungstechnik und Systemdynamik			Stiller	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Regelungstechnik und Systemdynamik

2138332, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhait

Dynamische Systeme, Eigenschaften wichtiger Systeme und Modellbildung, Stabilität, Synthese von Reglern, Estimation

Organisatorisches

Exkursionswoche in KW 23

Literaturhinweise

Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker -Verlag

Übungen zu Regelungstechnik und Systemdynamik

2138333, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz

Inhalt

Übung zu Veranstaltung 2138332

Termine entnehmen Sie bitte der Instituts-Homepage.

Literaturhinweise

Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker -Verlag

5.63 Teilleistung: Selbstverbuchung-BSc-HOC-SPZ-ZAK-benotet [T-MACH-112145]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-105976 - Schlüsselqualifikationen

Teilleistungsart Leistungspunkte Prüfungsleistung anderer Art 2 Notenskala Drittelnoten Turnus Jedes Semester 1

Erfolgskontrolle(n)

Studienleistung

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.

5.64 Teilleistung: Selbstverbuchung-BSc-HOC-SPZ-ZAK-unbenotet [T-MACH-112144]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-105976 - Schlüsselqualifikationen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Semester Version 1

Erfolgskontrolle(n)

Studienleistung

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · House of Competence
- · Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.

5.65 Teilleistung: Solid State Reactions and Kinetics of Phase Transformations [T-MACH-110927]

Verantwortung: Prof. Dr.-Ing. Bronislava Gorr **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103711 - Kinetik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2022	2194722	Solid State Reactions and Kinetics of Phase Transformations, Corrosion	2 SWS	Vorlesung (V) / 🗣	Gorr	
Prüfungsv	Prüfungsveranstaltungen					
SS 2022	76-T-MACH-110927	Solid State Reactions and Kinetics of Phase			Gorr	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Die erfolgreiche Teilnahme an Exercises for Solid State Reactions and Kinetics of Phase Transformations ist Voraussetzung für die Zulassung zur mündlichen Prüfung Solid State Reactions and Kinetics of Phase.

T-MACH-107632 – Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen sein.

T-MACH-107667 - Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-107667 Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen worden sein.
- 2. Die Teilleistung T-MACH-110926 Exercises for Solid State Reactions and Kinetics of Phase Transformations muss erfolgreich abgeschlossen worden sein.
- Die Teilleistung T-MACH-107632 Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen worden sein.

Empfehlungen

Grundvorlesungen in Materialwissenschaft und Werkstofftechnik

Grundvorlesungen in Mathematik

Vorlesung Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Solid State Reactions and Kinetics of Phase Transformations, Corrosion

2194722, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Mündliche Prüfung (ca. 30 min)

Lehrinhalt:

- 1. Kristallfehler und Diffusionsmechanismen
- 2. Mikroskopische Beschreibung der Diffusion
- 3. Phänomenologische Beschreibung
- 4. Diffusionskoeffizienten
- 5. Diffusionsprobleme; analytische Lösungen
- 6. Diffusion mit Phasenumwandlung
- 7. Gefügekinetik
- 8. Diffusion entlang Oberflächen, Korngrenzen, Versetzungen
- 9. Numerische Bahandlung von diffusionskontrollierten Phasenumwandlungen

Empfehlungen: Kenntnisse aus der Vorlesung "Heterogene Gleichgewichte" (Seifert) sind zu empfehlen; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Grundvorlesungen in Mathematik; Vorlesung Physikalische Chemie

Präsenzzeit: 22 Stunden Selbststudium: 98 Stunden

Die Studierenden sollen nach der Teilnahme an den Lehrveranstaltungen fähig sein:

- · Diffusionsmechanismen zu beschreiben
- · die Fickschen Gesetze zu formulieren
- · einfache Lösungen der Diffusionsgleichung anzugeben
- Diffusionsexperimente auszuwerten
- · Interdiffusionprozesse zu beschreiben
- den thermodynamischen Faktor zu erklären
- parabolisches Schichtwachstum zu beschreiben
- · die Perlitbildung zu erläutern
- · Gefügeumwandlungen gemäß den Modellen von Avrami und Johnson-Mehl darzulegen
- · ZTU-Schaubilder zu erklären und anzuwenden

Organisatorisches

The lecture will take place in building 10.91, room 228.

Literaturhinweise

- 1. J. Crank, "The Mathematics of Diffusion", 2nd Ed., Clarendon Press, Oxford, 1975.
- 2. J. Philibert, "Atom Movements", Les Éditions de Physique, Les Ulis, 1991.
- 3. D.A. Porter, K.E. Easterling, M.Y. Sherif, "Phase Transformations in Metals and Alloys", 3rd edition, CRS Press, 2009.
- 4. H. Mehrer, "Diffusion in Solids", Springer, Berlin, 2007.

5.66 Teilleistung: Strömungslehre 1&2 [T-MACH-105207]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	8	Drittelnoten	Jedes Sommersemester	2

Lehrverans	staltungen				
SS 2022	2154512	Strömungslehre I	3 SWS	Vorlesung / Übung (VÜ) / 😘	Frohnapfel
SS 2022	3154510	Fluid Mechanics I	3 SWS	Vorlesung / Übung (VÜ) / 😘	Frohnapfel
WS 22/23	2153512	Strömungslehre II	3 SWS	Vorlesung / Übung (VÜ) / ∰	Frohnapfel
WS 22/23	3153511	Fluid Mechanics II	3 SWS	Vorlesung / Übung (VÜ) / ∰	Frohnapfel
Prüfungsve	eranstaltungen				
SS 2022	76-T-MACH-105207	Strömungslehre (1+2)			Frohnapfel, Kriegseis
SS 2022	76-T-MACH-105207 engl.	Strömungslehre 1&2 engl.			Frohnapfel
WS 22/23	76-T-MACH-105207	Strömungslehre (1+2)			Frohnapfel
WS 22/23	76-T-MACH-105207 engl.	Strömungslehre 1&2 engl.			Frohnapfel

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung 3 Stunden

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Strömungslehre I

2154512, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt

Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- · verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- · zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik

Literaturhinweise

Kundu, P.K., Cohen, K.M.: Fluid Mechanics, Elsevier, 4th Edition, 2008

Durst, F.: Grundlagen der Strömungsmechanik, Springer, 2006

Oertel, H.: Strömungsmechanik, Vieweg-Verlag, 4. Auflage 2006

Oertel, H., Böhle, M.: Übungsbuch Strömungsmechanik, Vieweg-Verlag, 5. Auflage 2006

Zierep, J., Bühler, K.: Strömungsmechanik, Springer Lehrbuch bzw. entsprechende Kapitel in Hütte.Das Ingenieurwissen, Springer

Fluid Mechanics I

3154510, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalf

Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- · Strömungen in Natur und Technik
- · Grundlagen der Strömungsmechanik
- · Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- · Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- · zweidimensionale viskose Strömungen
- · Integralform der Grundgleichungen
- · Einführung in die Gasdynamik

Literaturhinweise

Kundu, P.K., Cohen, K.M.: Fluid Mechanics, Elsevier, 4th Edition, 2008

Durst, F.: Grundlagen der Strömungsmechanik, Springer, 2006

Oertel, H.: Strömungsmechanik, Vieweg-Verlag, 4. Auflage 2006

Oertel, H., Böhle, M.: Übungsbuch Strömungsmechanik, Vieweg-Verlag, 5. Auflage 2006

Zierep, J., Bühler, K.: Strömungsmechanik, Springer Lehrbuch bzw. entsprechende Kapitel in Hütte. Das Ingenieurwissen, Springer

Strömungslehre II

2153512, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt

Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet die sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton'scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise

Kundu, P.K., Cohen, K.M.: Fluid Mechanics, Elsevier, 4th Edition, 2008

Durst, F.: Grundlagen der Strömungsmechanik, Springer, 2006

Oertel, H.: Strömungsmechanik, Vieweg-Verlag, 4. Auflage 2006

Oertel, H., Böhle, M.: Übungsbuch Strömungsmechanik, Vieweg-Verlag, 5. Auflage 2006

Zierep, J., Bühler, K.: Strömungsmechanik, Springer Lehrbuch bzw. entsprechende Kapitel in Hütte.Das Ingenieurwissen, Springer

Fluid Mechanics II

3153511, WS 22/23, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt

Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet die sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton'scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise

Kundu, P.K., Cohen, K.M.: Fluid Mechanics, Elsevier, 4th Edition, 2008

Durst, F.: Grundlagen der Strömungsmechanik, Springer, 2006

Oertel, H.: Strömungsmechanik, Vieweg-Verlag, 4. Auflage 2006

Oertel, H., Böhle, M.: Übungsbuch Strömungsmechanik, Vieweg-Verlag, 5. Auflage 2006

Zierep, J., Bühler, K.: Strömungsmechanik, Springer Lehrbuch bzw. entsprechende Kapitel in Hütte.Das Ingenieurwissen, Springer

5.67 Teilleistung: Systematische Werkstoffauswahl [T-MACH-100531]

Verantwortung: Dr.-Ing. Stefan Dietrich

Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	4

Lehrveranstaltungen						
SS 2022	2174576	Systematische Werkstoffauswahl	3 SWS	Vorlesung (V) / 🛱	Dietrich	
SS 2022	2174577	Übungen zu 'Systematische Werkstoffauswahl'	1 SWS	Übung (Ü) / 😂	Dietrich, Mitarbeiter	
Prüfungsve	Prüfungsveranstaltungen					
SS 2022	76-T-MACH-100531	Systematische Werkstoffauswahl			Dietrich	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung mit einer Dauer von 2 h.

Voraussetzungen

keine

Empfehlungen

Einfache Grundlagen in Werkstoffkunde, Mechanik und Konstruktionslehre wie sie in der Vorlesung Werkstoffkunde I/II vermittelt werden

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Systematische Werkstoffauswahl

2174576, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Die wichtigsten Aspekte und Kriterien der Werkstoffauswahl werden behandelt und Leitlinien für eine systematische Vorgehensweise beim Auswahlprozess erarbeitet. Dabei werden u.a. folgende Themen angesprochen:

- · Informationen und Einleitung
- · Erforderliche Grundlagen der Werkstoffkunde
- · Ausgewählte Methoden / Herangehensweisen der Werkstoffauswahl
- · Beispiele für Materialindices und Werkstoffeigenschaftsschaubilder
- · Zielkonflikt und Formfaktoren
- · Verbundwerkstoffe und Werkstoffverbunde
- · Hochtemperaturwerkstoffe
- · Berücksichtigung von Fertigungseinflüssen
- · Werkstoffauswahl für eine bestehende Produktionslinie
- · Fehlerhafter Werkstoffauswahl und abzuleitende Konsequenzen
- · Zusammenfassung und Fragerunde

Lernziele:

Die Studierenden können für einen vorgegebenen Anwendungsfall den am besten geeigneten Werkstoff auswählen. Sie beherrschen die systematische Werkstoffauswahl mit Hilfe von Werkstoffindices und Werkstoffauwsahldiagrammen. Sie erkennen Zielkonflikte und können gute Kompromisslösungen finden. Sie kennen die Möglichkeiten und Grenzen von hybriden Werkstoffkonzepten (Verbundwerkstoffe, Werkstoffverbunde, Schäume) und können erkennen, ob ein solches Konzept in einem gegebenen Anwendungsfall nutzbare Vorteile erbringt.

Voraussetzungen:

Wilng SPO 2007 (B.Sc.)

Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein

Wilng (M.Sc.)

Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein

Arbeitsaufwand:

Der Arbeitsaufwand für die Vorlesung beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (30 h) sowie Vorund Nachbearbeitungszeit zuhause (30 h) und Prüfungsvorbereitungszeit (60 h).

Literaturhinweise

Vorlesungsskriptum; Übungsblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);

Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen

Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006

ISBN: 3-8274-1762-7

Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);

Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen

Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006

ISBN: 3-8274-1762-7

5.68 Teilleistung: Technische Mechanik I [T-MACH-100282]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100279 - Technische Mechanik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen							
WS 22/23	2161245	Technische Mechanik I	3 SWS	Vorlesung (V) / 😘	Böhlke		
WS 22/23	3161010	Engineering Mechanics I (Lecture)	3 SWS	Vorlesung (V) / 🕃	Langhoff, Böhlke		
Prüfungsveranstaltungen							
SS 2022	76-T-MACH-100282	Technische Mechanik I		Böhlke, Langhoff			
SS 2022	76-T-MACH-100282-englisch	Engineering Mechanics I		Böhlke, Langhoff			
WS 22/23	76-T-MACH-100282	Technische Mechanik I		Böhlke, Langhoff			
WS 22/23	76-T-MACH-100282-englisch	Engineering Mechanics I			Böhlke, Langhoff		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 min, benotet

Voraussetzungen

Bestehen der "Übungen zur Technischen Mechanik I" (siehe Teilleistung T-MACH-100528)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100528 - Übungen zu Technische Mechanik I muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Technische Mechanik I

2161245, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

- · Grundzüge der Vektorrechung
- Kraftsysteme
- Statik starrer Körper
- Schnittgrößen in Stäben u. Balken
- · Haftung und Gleitreibung
- Schwerpunkt u. Massenmittelpunkt
- · Arbeit, Energie, Prinzip der virtuellen Verschiebungen
- · Statik der undehnbaren Seile
- · Elastostatik der Zug-Druck-Stäbe

Literaturhinweise

- Vorlesungsskript
- Hibbeler, R.C: Technische Mechanik 1 Statik. Prentice Hall. Pearson Studium 2005
- Gross, D. et al.: Technische Mechanik 1 Statik. Springer 2006
- · Gummert, P.; Reckling, K.-A.: Mechanik. Vieweg 1994
- · Parkus, H.: Mechanik der festen Körper. Springer 1988

5.69 Teilleistung: Technische Mechanik II [T-MACH-100283]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100284 - Technische Mechanik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen									
SS 2022	2162250	Technische Mechanik II	3 SWS	Vorlesung (V) / 💢	Böhlke, Langhoff				
SS 2022	3162010	Engineering Mechanics II (Lecture)	3 SWS	Vorlesung (V) / 😘	Langhoff				
Prüfungsveranstaltungen									
SS 2022	76-T-MACH-100283	Technische Mechanik II			Böhlke, Langhoff				
SS 2022	76-T-MACH-100283-englisch	Engineering Mechanics I	I		Böhlke, Langhoff				
WS 22/23	76-T-MACH-100283	Technische Mechanik II			Böhlke, Langhoff				
WS 22/23	76-T-MACH-100283-englisch	Engineering Mechanics I	I		Böhlke, Langhoff				

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 min, benotet

Voraussetzungen

Bestehen der "Übungen zur Technischen Mechanik II" (siehe Teilleistung T-MACH-100284)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100284 - Übungen zu Technische Mechanik II muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Technische Mechanik II

2162250, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

- Balkenbiegung
- Querkraftschub
- Torsionstheorie
- Spannungs- und Verzerrungszustand in 3D
- · Hooke'sches Gesetz in 3D
- Elastizitätstheorie in 3D
- · Energiemethoden der Elastostatik
- Näherungsverfahren
- · Stabilität ealstischer Stäbe

Literaturhinweise

Vorlesungsskript

Hibbeler, R.C: Technische Mechanik 2 - Festigkeitslehre. Prentice Hall. Pearson Studium 2005.

Gross, D. et al.: Technische Mechanik 2 - Elastostatik. Springer 2006.

Gummert, P.; Reckling, K.-A.: Mechanik. Vieweg 1994. Parkus, H.: Mechanik der festen Körper. Springer 1988.

Engineering Mechanics II (Lecture)

3162010, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

- bending
- shear
- torsion
- · stress and strain state in 3D
- · Hooke's law in 3D
- · elasticity theors in 3D
- energy methods in elastostaticsapproximation methods
- stability of elastic bars

5.70 Teilleistung: Technische Mechanik III [T-MACH-100299]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-103746 - Wahlmodul

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich5DrittelnotenJedes Wintersemester2

Lehrveranstaltungen								
WS 22/23	22/23 2161203 Technische Mechanik III 2 SWS Vorlesung (V) / 🗣		Fidlin					
Prüfungsve	Prüfungsveranstaltungen							
SS 2022	76-T-MACH-100299	Technische Mechanik III			Seemann			
WS 22/23	76-T-MACH-100299	Technische Mechanik III			Fidlin			

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Technische Mechanik III

2161203, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Kinematik: kartesische, zylindrische und natürliche Koordinaten, Ableitungen in verschiedenen Bezugssystemen, Winkelgeschwindigkeiten.

Kinetik des Massenpunktes: Newtonsches Grundgesetz, Prinzip von d'Alembert, Arbeit, kinetische Energie, Potential und Energie, Impuls- und Drallsatz, Relativmechanik.

Systeme von Massenpunkten:

Schwerpunktsatz, Drallsatz, Stöße zwischen Massenpunkten, Systeme mit veränderlicher Masse, Anwendungen.

Ebene Bewegung starrer Körper:

Kinematik für Translation, Rotation und allgemeine Bewegung, Momentanpol. Kinetik, Drallsatz, Arbeitssatz und Energiesatz bei Rotation um raumfeste Achse. Bestimmung der Massenträgheitsmomente um eine Achse durch den Schwerpunkt, Steinersche Ergänzung bei beliebiger Achse. Impuls- und Drallsatz bei beliebiger ebener Bewegung. Prinzip von d'Alembert für ebene Starrkörperbewegung. Impuls- und Drallsatz in integraler Form. Anwendung bei Stoßproblemen.

Literaturhinweise

Hibbeler: Technische Mechanik 3, Dynamik, München, 2006

Gross, Hauger, Schnell: Technische Mechanik Bd. 3, Heidelberg, 1983

Lehmann: Elemente der Mechanik III, Kinetik, Braunschweig, 1975

Göldner, Holzweissig: Leitfaden der Technischen Mechanik.

Hagedorn: Technische Mechanik III.

5.71 Teilleistung: Thermodynamische Grundlagen / Heterogene Gleichgewichte [T-MACH-107670]

Verantwortung: Dr. Peter Franke

Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103710 - Thermodynamik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4DrittelnotenJedes Wintersemester4

Lehrveranstaltungen							
WS 22/23	2193002	Thermodynamische Grundlagen / Heterogene Gleichgewichte	2 SWS	Vorlesung (V) / 🕃	Seifert		
Prüfungsve	eranstaltungen						
SS 2022	76-T-MACH-107670	Thermodynamische Grundlagen /	rmodynamische Grundlagen / Heterogene Gleichgewichte				

Legende: Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Die erfolgreiche Teilnahme an Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte ist Voraussetzung für die Zulassung zur mündlichen Prüfung Thermodynamische Grundlagen / Heterogene Gleichgewicht.

T-MACH-110924 – Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen sein.

T-MACH-110925 – Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- Die Teilleistung T-MACH-107669 Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-110925 Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen worden sein.
- 3. Die Teilleistung T-MACH-110924 Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen worden sein.

Empfehlungen

Grundvorlesungen in Materialwissenschaft und Werkstofftechnik

Grundvorlesungen in Mathematik

Vorlesung Physik oder Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Thermodynamische Grundlagen / Heterogene Gleichgewichte

2193002, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

Mündliche Prüfung (ca. 30 min)

Lehrinhalt:

- 1. Binäre Phasendiagramme
- 2. Ternäre Phasendiagramme
- Vollständige Mischbarkeit
- Eutektische Systeme
- Peritektische Systeme
- Übergangsreaktionen
- Systeme mit intermetallischen Phasen
- 3. Thermodynamik der Lösungsphasen
- 4. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluß der Gasphase
- 5. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen
- 6. Thermodynamik von multikomponentigen, multiphasigen Werkstoffsystemen
- 7. Thermodynamische Berechnungen mit der CALPHAD-Methode

Empfehlungen: Kenntnisse aus der Vorlesung "Festkörperreaktionen, Kinetik von Phasenumwandlungen, Korrosion" (Franke) sind zu empfehlen; Grundvorlesungen Materialwissenschaft und Werkstofftechnik; Grundvorlesungen Mathematik; Vorlesung Physik oder Physikalische Chemie

Präsenzzeit: 22 Stunden Selbststudium: 98 Stunden

Die Studierenden kennen die Konstitution (Lehre der heterogenen Gleichgewichte) von binären, ternären und multikomponentigen Werkstoffsystemen und können die thermodynamischen Eigenschaften von multiphasigen Werkstoffen und deren Reaktionen mit Gas- und Schmelzphasen analysieren.

Sie können die erlernten Zusammenhänge auf Fragen der Herstellung, des Fügens und der Anwendung der Werkstoffe (metallische Legierungen, technische Keramiken, Verbundwerkstoffe) anwenden.

Literaturhinweise

- 1. Phase Equilibria, Phase Diagrams and Phase Transformations, Their Thermodynamic Basis; M. Hillert, University Press, Cambridge (2007)
- 2. Introduction to the Thermodynamics of Materials; D.R. Gaskell, Taylor & Francis (2008)

5.72 Teilleistung: Übungen zu Angewandte Werkstoffsimulation [T-MACH-107671]

Verantwortung: Prof. Dr. Peter Gumbsch

Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau **Bestandteil von:** M-MACH-103712 - Simulation

Voraussetzung für: T-MACH-105527 - Angewandte Werkstoffsimulation

Teilleistungsart Leis Studienleistung

Leistungspunkte

Notenskala best./nicht best.

TurnusJedes Sommersemester

Version 3

Lehrveranstaltungen									
SS 2022	2182614	Angewandte Werkstoffsimulation	4 SWS	Vorlesung / Übung (VÜ) / ■	Gumbsch, Schulz				
Prüfungsve	Prüfungsveranstaltungen								
SS 2022	76-T-MACH-107671	Übungen zu Angewandte Werksto	Ubungen zu Angewandte Werkstoffsimulation		Gumbsch, Schulz				

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung aller Übungsaufgaben

Voraussetzungen

T-MACH-110928 – Exercises for Applied Materials Simulation darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110928 - Exercises for Applied Materials Simulation darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Angewandte Werkstoffsimulation

2182614, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Online

Inhalt

Diese Vorlesung soll den Studierenden einen Überblick über verschiedene Simulationsmethoden im Bereich der Material- und Ingenieurwissenschaften geben. Hierbei werden numerische Verfahren vorgestellt und deren Einsatz in unterschiedlichen Anwendungsfeldern und Größenskalen aufgezeigt und diskutiert. Anhand von theoretischen sowie praktischen Aspekten soll eine kritische Auseinandersetzung mit den Chancen und Herausforderungen der numerischen Werkstoffsimulation erfolgen.

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

Präsenzzeit: 34 Stunden Übung: 11 Stunden

Selbststudium: 165 Stunden Mündliche Prüfung ca. 35 Minuten

Hilfsmittel: keine

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Organisatorisches

Die Vorlesung wir nur als Aufzeichnung angeboten!

Bitte besuchen Sie die englischsprachige Veranstaltung "Applied Materials Simulation" (2182616)!

Weitere Informationen finden Sie in ILIAS.

Kontakt: johannes.schneider@kit.edu

Literaturhinweise

- 1. D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, 2001
- 2. W. Kurz, D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, 1998
- 3. P. Haupt: Continuum Mechanics and Theory of Materials, Springer, 1999
- 4. M. P. Allen, D. J. Tildesley: Computer simulation of liquids, Clarendon Press, 1996

5.73 Teilleistung: Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion [T-MACH-107632]

Verantwortung: Dr. Peter Franke

Einrichtung:

Prof. Dr. Hans Jürgen Seifert KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103711 - Kinetik

Voraussetzung für: T-MACH-107667 - Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
4

Lehrveranstaltungen						
WS 22/23		Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion	1	Übung (Ü) / 🗯	Franke, Ziebert	

Legende: ☐ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen

T-MACH-110926 - Exercises for Solid State Reactions and Kinetics of Phase Transformations darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110926 - Exercises for Solid State Reactions and Kinetics of Phase Transformations darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion

2193004, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt

- 1. Ficksche Gesetze
- 2. Berechnung von Diffusionskoeffizienten
- 3. Diffusion und Erstarrungsvorgänge

Empfehlungen: Vorlesung Festkörperreaktionen/Kinetik von Phasenumwandlungen, Korrosion; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Vorlesung Physikalische Chemie

Vertiefung der Vorlesung anhand durchgerechneter Beispiele

Präsenzzeit: 14 Stunden Selbststudium: 46 Stunden

Literaturhinweise

Vorlesungsskript; Lecture notes

5.74 Teilleistung: Übungen zu Gefüge-Eigenschafts-Beziehungen [T-MACH-107683]

Verantwortung: Dr. Patric Gruber

Einrichtung:

Bestandteil von:

Prof. Dr. Christoph Kirchlechner KIT-Fakultät für Maschinenbau M-MACH-103713 - Eigenschaften

Voraussetzung für: T-MACH-107604 - Gefüge-Eigenschafts-Beziehungen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

TurnusJedes Sommersemester

Version 3

Lehrverans	Lehrveranstaltungen						
SS 2022	2178125	Übungen zu Gefüge- Eigenschafts-Beziehungen	1 SWS	Übung (Ü) / 🗣	Kirchlechner, Wagner, Gruber		
Prüfungsve	eranstaltungen						
SS 2022	SS 2022 76-T-MACH-107683 Übungen zu Gefüge-Eigenschafts-Beziehungen		Kirchlechner, Gruber, Wagner				

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Bestehen eines mündlichen Abschlusskolloquiums

Voraussetzungen

T-MACH-110930 - Exercises for Microstructure-Properties-Relationships darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110930 - Exercises for Microstructure-Property-Relationships darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Übungen zu Gefüge-Eigenschafts-Beziehungen

2178125, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz

Inhal

Übungen zur Vorlesung Gefüge-Eigenschafts-Beziehungen LV Nr. 2178124.

5.75 Teilleistung: Übungen zu Höhere Mathematik I [T-MATH-100525]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MACH-106200 - Orientierungsprüfung

M-MATH-100280 - Höhere Mathematik I

Voraussetzung für: T-MATH-100275 - Höhere Mathematik I

Teilleistungsart Studienleistung schriftlich Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version 2

Lehrveranstaltungen							
WS 22/23	0131100	Übungen zu 0131000	2 SWS	Übung (Ü)	Arens		
WS 22/23	0131300	Übungen zu 0131200	2 SWS	Übung (Ü)	Arens		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

5.76 Teilleistung: Übungen zu Höhere Mathematik II [T-MATH-100526]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100281 - Höhere Mathematik II
Voraussetzung für: T-MATH-100276 - Höhere Mathematik II

Teilleistungsart Studienleistung schriftlich Leistungspunkte

Notenskala best./nicht best.

TurnusJedes Sommersemester

Version 2

Lehrveranstaltungen									
SS 2022	0180900	Übungen zu 0180800	2 SWS	Übung (Ü)	Arens				
SS 2022	0181100	Übungen zu 0181000	2 SWS	Übung (Ü)	Arens				
Prüfungsve	Prüfungsveranstaltungen								
SS 2022	7700024	Übungen zu Höhere Mathematik II			Hettlich, Arens, Griesmaier				

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

5.77 Teilleistung: Übungen zu Höhere Mathematik III [T-MATH-100527]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100282 - Höhere Mathematik III Voraussetzung für: T-MATH-100277 - Höhere Mathematik III

Teilleistungsart Studienleistung schriftlich Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version

Lehrveranstaltungen					
WS 22/23	0131500	Übungen zu 0131400	2 SWS	Übung (Ü)	Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

5.78 Teilleistung: Übungen zu Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110333]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-105180 - Kontinuumsmechanik

Voraussetzung für: T-MACH-110377 - Kontinuumsmechanik der Festkörper und Fluide

Teilleistungsart
StudienleistungLeistungspunkte
1Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Lehrveranstaltungen					
WS 22/23		Übungen zu Kontinuumsmechanik der Festkörper und Fluide	1 SWS	Übung (Ü) / 😘	Dyck, Karl, Böhlke

Legende: ☐ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgreiches Bestehen der Übungen ist Voraussetzung für die Teilnahme an der Klausur "Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110377).

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, und für Studierende der Fachrichtung MATWERK bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsblätter und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsaufgaben.

Voraussetzungen

Keine

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Ubungen zu Kontinuumsmechanik der Festkörper und Fluide

2161253, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt

Siehe Vorlesung "Kontinuumsmechanik der Festkörper und Fluide "

Literaturhinweise

Siehe Vorlesung "Kontinuumsmechanik der Festkörper und Fluide ".

Please refer to the lecture "Continuum mechanics of solids and fluids".

5.79 Teilleistung: Übungen zu Mathematische Methoden der Kontinuumsmechanik [T-MACH-110376]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103746 - Wahlmodul

Voraussetzung für: T-MACH-110375 - Mathematische Methoden der Kontinuumsmechanik

Teilleistungsart Studienleistung	Leistungspunkte	Notenskala best./nicht best.	Turnus Jedes Wintersemester	Dauer 1 Sem.	Version 2
Studienleistung	2		Jedes Wintersemester	1 Sem.	2

Lehrveranstaltungen					
WS 22/23	2161255	Übungen zu Mathematische Methoden der Kontinuumsmechanik	2 SWS	Übung (Ü) / 🗯	Gajek, Lauff, Böhlke

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung der Übungsblätter. Details werden in der ersten Vorlesung bekanntgegeben.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Übungen zu Mathematische Methoden der Kontinuumsmechanik 2161255, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen Übung (Ü) Präsenz/Online gemischt

Inhali

Siehe "Mathematische Methoden der Kontinuumsmechanik"

Literaturhinweise

Siehe "Mathematische Methoden der Kontinuumsmechanik"

5.80 Teilleistung: Übungen zu Mathematische Methoden der Mikromechanik [T-MACH-110379]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103746 - Wahlmodul

Voraussetzung für: T-MACH-110378 - Mathematische Methoden der Mikromechanik

Teilleistungsart Studienleistung

76-T-MACH-110379

Leistungspunkte

Notenskala best./nicht best.

Übungen zu Mathematische Methoden der Mikromechanik

TurnusJedes Sommersemester

Version

Böhlke

Erfolgskontrolle(n)

SS 2022

Erfolgreiche Bearbeitung der Übungsblätter. Details dazu werden in der ersten Vorlesung bekanntgegeben.

5.81 Teilleistung: Übungen zu Technische Mechanik I [T-MACH-100528]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100279 - Technische Mechanik I Voraussetzung für: T-MACH-100282 - Technische Mechanik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	Ō	best./nicht best.	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 22/23	2161246	Übungen zu Technische Mechanik	2 SWS	Übung (Ü) / 🗯	Dyck, Sterr, Böhlke
WS 22/23	3161011	Engineering Mechanics I (Tutorial)	2 SWS	Übung (Ü) / 🗯	Kehrer, Görthofer, Langhoff

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Testate sind in den folgenden vier Kategorien zu erbringen: schriftliche Pflicht-Hausaufgaben, schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien.

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als drei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-100282)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik I

2161246, WS 22/23, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt

Siehe Vorlesung Technische Mechanik I.

Literaturhinweise

Siehe Vorlesung Technische Mechanik I

5.82 Teilleistung: Übungen zu Technische Mechanik II [T-MACH-100284]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100284 - Technische Mechanik II Voraussetzung für: T-MACH-100283 - Technische Mechanik II

Teilleistungsart
Studienleistung schriftlich

Leistungspunkte
0

Notenskala
best./nicht best.

Jedes Sommersemester

Lehrveran	staltungen				
SS 2022	2162251	Übungen zu Technische Mechanik II	2 SWS	Übung (Ü) / 😘	Dyck, Sterr, Böhlke
SS 2022	3162011	Engineering Mechanics II (Tutorial)	2 SWS	Übung (Ü) / 😘	Kehrer, Görthofer, Langhoff
Prüfungsv	eranstaltungen				
SS 2022	76-T-MACH-100284	Übungen zu Technische Mechanik II		Böhlke, Langhoff	
SS 2022	76-T-MACH-100284-englisch	Tutorial Engineering Med	Tutorial Engineering Mechanics II		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Testate sind in den folgenden vier Kategorien zu erbringen: schriftliche Pflicht-Hausaufgaben, schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien.

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als zwei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-100283).

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik II

2162251, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Version

Inhalt

Siehe Vorlesung Technische Mechanik II

Literaturhinweise

Siehe Vorlesung Technische Mechanik II

Engineering Mechanics II (Tutorial)

3162011, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalf

see lecture "Engineering Mechanics II"

Literaturhinweise

see lecture "Engineering Mechanics II"

5.83 Teilleistung: Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte [T-MACH-107669]

Verantwortung: Prof. Dr. Hans Jürgen Seifert
Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103710 - Thermodynamik

Voraussetzung für: T-MACH-107670 - Thermodynamische Grundlagen / Heterogene Gleichgewichte

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
4

Lehrveranstaltungen					
WS 22/23		Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte	1 SWS	Übung (Ü) / 🕸	Seifert, Ziebert

Legende: █ Online, \ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen

T-MACH-110924 – Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110924 - Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte

2193005, WS 22/23, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhali

- 1. Ternäre Phasendiagramme
- Vollständige Mischbarkeit
- Eutektische Systeme
- 2. Thermodynamik der Lösungsphasen
- 3. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluss der Gasphase
- 4. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen

In dieser Übung wird die Konstruktion von isothermen Schnitten und Temperatur-Konzentration-Schnitten in ternären Materialsystemen behandelt. Die thermodynamischen Eigenschaften von multiphasigen Werkstoffen werden berechnet.

Empfehlungen:

- · Vorlesung Thermodynamische Grundlagen / Heterogene Gleichgewichte
- · Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
- · Vorlesung Physikalische Chemie

Präsenzzeit: 14 Stunden Selbststudium: 46 Stunden

Organisatorisches

Die genauen Termine werden in der Vorlesung bekannt gegeben.

Literaturhinweise

- 1. Phase Equilibria, Phase Diagrams and Phase Transformations, Their Thermodynamic Basis; M. Hillert, University Press, Cambridge (2007)
- 2. Introduction to the Thermodynamics of Materials; D.R. Gaskell, Taylor & Francis (2008)

5.84 Teilleistung: Übungen zu Werkstoffanalytik [T-MACH-107685]

Verantwortung: Dr.-Ing. Jens Gibmeier

Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103714 - Werkstoffanalytik

Voraussetzung für: T-MACH-107684 - Werkstoffanalytik

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Sommersemester Version 4

Lehrveranstaltungen						
SS 2022	2174586	Werkstoffanalytik	2 SWS	Vorlesung (V) / 💢	Schneider, Gibmeier	
Prüfungsveranstaltungen						
SS 2022	76-T-MACH-107685	Übungen zu Werkstoffanalytik		_	Gibmeier	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Regelmäßige Teilnahme

Voraussetzungen

T-MACH-110945 – Exercises for Materials Characterization darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110945 - Exercises for Materials Characterization darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Werkstoffanalytik

2174586, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Die Studierenden haben Grundkenntnisse über werkstoffanalytische Verfahren. Sie besitzen ein grundsätzliches Verständnis, diese Grundkenntnisse auf ingenieurswissenschaftliche Fragestellungen zu übertragen. Darüber hinaus sind die Studierenden in der Lage, Werkstoffe durch ihre mikroskopische und submikroskopische Struktur zu beschreiben.

Organisatorisches

Die Veranstaltung findet gem. der aktuell am KIT geltenden Corona-Regeln statt. Stand 11.04.2022 wird die Veranstatung in Präsenz durchgeführt. In jeden Fall bitten wir weiterhin um das Tragen einer Mund-Nasenbedeckung. Im Sommersemester wird die Veranstaltung in deutscher Spache abgehalten. Start der Veranstaltung (erste Vorlesung) ist am 26.04.2022.

The event will be held in accordance with the Corona rules currently in force at KIT. Status of 11.04.2022, the event will be held in presence. In any case, we still ask you to wear a nose and mouth covering. In the summer semester, the event will be held in German. The course (first lecture) will start on 26.04.2022.

Literaturhinweise

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).

Literatur wird zu Beginn der Veranstaltung bekanntgegeben.

5.85 Teilleistung: Volkswirtschaftslehre I: Mikroökonomie [T-WIWI-102708]

Verantwortung: Prof. Dr. Clemens Puppe

Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 22/23	2610012	Volkswirtschaftslehre I: Mikroökonomie	3 SWS	Vorlesung (V) / 🛱	Reiß

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO).

Die Prüfung (Hauptklausur) wird im Anschluss an die Vorlesung angeboten. Die Nachklausur folgt im gleichen Prüfungszeitraum. Zulassungsberechtigt zur Nachklausur sind i.d.R. nur Wiederholer. Näheres bei den Klausurregelungen des Instituts.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Volkswirtschaftslehre I: Mikroökonomie

2610012, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Dieser Kurs vermittelt fundierte Grundlagenkenntnisse in Mikroökonomischer Theorie. Neben Haushalts- und Firmenentscheidungen werden auch Probleme des Allgemeinen Gleichgewichts auf Güter- und Arbeitsmärkten behandelt. Die Teilnehmenden an der Vorlesung sollen schließlich auch in die Lage versetzt werden, grundlegende spieltheoretische Argumentationsweisen, wie sie sich in der modernen VWL durchgesetzt haben, zu verstehen.

In den beiden Hauptteilen der Vorlesung werden Fragen der mikroökonomischen Entscheidungstheorie (Haushalts- und Firmenentscheidungen) sowie Fragen der Markttheorie (Gleichgewichte und Effizienz auf Konkurrenz-Märkten) behandelt. Im letzten Teil der Vorlesung werden Probleme des unvollständigen Wettbewerbs (Oligopolmärkte) sowie Grundzüge der Spieltheorie und der Wohlfahrtstheorie vermittelt.

Hauptziel der Veranstaltung ist die Vermittlung der Grundlagen des Denkens in ökonomischen Modellen. Speziell soll der Studierende in die Lage versetzt werden, Gütermärkte und die Determinanten von Marktergebnissen zu analysieren. Im Einzelnen sollen die Studierenden lernen.

- einfache mikroökonomische Begriffe anzuwenden,
- die ökonomische Struktur von realen Phänomenen zu erkennen,
- die Wirkungen von wirtschaftspolitischen Maßnahmen auf das Verhalten von Marktteilnehmern (in einfachen ökonomischen Entscheidungssituationen) zu beurteilen und
- · evtl. Alternativmaßnahmen vorzuschlagen,
- als Besucher eines Tutoriums einfache ökonomische Zusammenhänge anhand der Bearbeitung von Übungsaufgaben zu erläutern und durch eigene Diskussionsbeiträge zum Lernerfolg der Tutoriumsgruppe beizutragen,
- mit der mikroökonomischen Basisliteratur umzugehen.

Damit erwirbt der Studierende das notwendige Grundlagenwissen, um in der Praxis

- die Struktur ökonomischer Probleme auf mikroökonomischer Ebene zu erkennen und Lösungsvorschläge dafür zu präsentieren,
- · aktive Entscheidungsunterstützung für einfache ökonomische Entscheidungsprobleme zu leisten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO).

Die Prüfung (Hauptklausur) wird im Anschluss an die Vorlesung angeboten. Die Nachklausur folgt im gleichen Prüfungszeitraum. Zulassungsberechtigt zur Nachklausur sind i.d.R. nur Wiederholer. Näheres bei den Klausurregelungen des Instituts.

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden

Präsenzzeit: 45 Stunden Selbststudium: 105 Stunden

Literaturhinweise

- H. Varian, Grundzüge der Mikroökonomik, 5. Auflage (2001), Oldenburg Verlag
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. Münschen, 2005
- Frank, Robert H., Microeconomics and Behavior, 5. Aufl., McGraw-Hill, New York, 2005

5.86 Teilleistung: Volkswirtschaftslehre II: Makroökonomie [T-WIWI-102709]

Verantwortung: Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-MACH-103746 - Wahlmodul

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	2600014	Volkswirtschaftslehre II: Makroökonomie	4 SWS	Vorlesung (V)	Wigger	
SS 2022	2660015	Tutorien zu Volkswirtschaftslehre II	2 SWS	Tutorium (Tu)	Schmelzer, Setio, Herberholz	
Prüfungsve	eranstaltungen					
SS 2022	790vwl2	Volkswirtschaftslehre II: Makroökond	Volkswirtschaftslehre II: Makroökonomie			
WS 22/23	790vwl2	Volkswirtschaftslehre II: Makroökono	/olkswirtschaftslehre II: Makroökonomie			

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 120-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Volkswirtschaftslehre II: Makroökonomie

2600014, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

Klassische Theorie der Gesamtwirtschaftlichen Produktion

Kapitel 1: Bruttoinlandsprodukt

Kapitel 2: Geld und Inflation

Kapitel 3: Offene Volkswirtschaft I

Kapitel 4: Arbeitslosigkeit

Wachstum: Die Ökonomie in der langen Frist

Kapitel 5: Wachstum I Kapitel 6: Wachstum II

Konjunktur: Die Ökonomie in der kurzen Frist

Kapitel 7: Konjunktur und die gesamtwirtschaftliche Nachfrage I Kapitel 8: Konjunktur und die gesamtwirtschaftliche Nachfrage II

Kapitel 9: Offene Volkswirtschaft II

Kapitel 10: Gesamtwirtschaftliches Angebot

Fortgeschrittene Themen der Makroökonomie

Kapitel 11: Dynamisches Modell der Gesamtwirtschaft

Kapitel 12: Mikroökonomische Fundierung

Kapitel 13: Makroökonomische Wirtschaftspolitik

Lernziele:

Die Studierenden...

- · können die grundlegenden Kennzahlen, Fachbegriffe und Konzepte der Makroökonomie nennen.
- · können mithilfe von Modellen komplexe Zusammenhänge auf ihre Grundbestandteile reduzieren.
- · können wirtschaftspolitische Debatten analysieren und sich selbstständig eine Meinung dazu bilden.

Arbeitsaufwand:

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden

Präsenzzeit: 45 Stunden

Vor – und Nachbereitung der LV: 67,5 Stunden Prüfung und Prüfungsvorbereitung: 37,5 Stunden

Literaturhinweise

Als Grundlage dieser Veranstaltung dient das bekannte Lehrbuch "Makroökonomik" von Greg Mankiw vom Schäffer Poeschel Verlag in der aktuellen Fassung.

5.87 Teilleistung: Werkstoffanalytik [T-MACH-107684]

Verantwortung: Dr.-Ing. Jens Gibmeier

Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103714 - Werkstoffanalytik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Sommersemester	4

Lehrveranstaltungen					
SS 2022	2174586	Werkstoffanalytik	2 SWS	Vorlesung (V) / 🕃	Schneider, Gibmeier
Prüfungsveranstaltungen					
SS 2022	76-T-MACH-107684	Werkstoffanalytik			Gibmeier

Legende: Online, S Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

Die erfolgreiche Teilnahme an Übungen zu Werkstoffanalytik ist Voraussetzung für die Zulassung zur mündlichen Prüfung Werkstoffanalytik.

T-MACH-110945 – Exercises for Materials Characterization darf nicht begonnen sein.

T-MACH-110946 – Materials Characterization darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-107685 Übungen zu Werkstoffanalytik muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-110945 Exercises for Materials Characterization darf nicht begonnen worden sein.
- 3. Die Teilleistung T-MACH-110946 Materials Characterization darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Werkstoffanalytik

2174586, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Die Studierenden haben Grundkenntnisse über werkstoffanalytische Verfahren. Sie besitzen ein grundsätzliches Verständnis, diese Grundkenntnisse auf ingenieurswissenschaftliche Fragestellungen zu übertragen. Darüber hinaus sind die Studierenden in der Lage, Werkstoffe durch ihre mikroskopische und submikroskopische Struktur zu beschreiben.

Organisatorisches

Die Veranstaltung findet gem. der aktuell am KIT geltenden Corona-Regeln statt. Stand 11.04.2022 wird die Veranstatung in Präsenz durchgeführt. In jeden Fall bitten wir weiterhin um das Tragen einer Mund-Nasenbedeckung. Im Sommersemester wird die Veranstaltung in deutscher Spache abgehalten. Start der Veranstaltung (erste Vorlesung) ist am 26.04.2022.

The event will be held in accordance with the Corona rules currently in force at KIT. Status of 11.04.2022, the event will be held in presence. In any case, we still ask you to wear a nose and mouth covering. In the summer semester, the event will be held in German. The course (first lecture) will start on 26.04.2022.

Literaturhinweise

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).

Literatur wird zu Beginn der Veranstaltung bekanntgegeben.

5.88 Teilleistung: Werkstoffprozesstechnik [T-MACH-100295]

Verantwortung: Dr. Joachim Binder

Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-100294 - Werkstoffprozesstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 22/23	2173540	Werkstoffprozesstechnik	3 SWS	Vorlesung / Übung (VÜ) / 😘	Liebig, Binder
Prüfungsveranstaltungen					
SS 2022	76-T-MACH-100295	Werkstoffprozesstechnik			Liebig, Binder

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 min, begleitendes Praktikum in Werkstoffprozesstechnik muss erfolgreich abgeschlossen sein.

Voraussetzungen

Begleitendes Praktikum in Werkstofprozesstechnik muss erfolgreich absolviert sein.

Anmerkungen

Vorlesung: Skript, Beamer, Notizen an der Tafel

Praktikum: Versuchseinrichtungen, Papier, Schreibzeug, Versuchsskript, Taschenrechner

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Werkstoffprozesstechnik

2173540, WS 22/23, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt

Inhalt

Einführung

Polymere:

Rohstoffe, Materialgesetze, Modelle, Rheologie, Urformen, Umformen, Fügeverfahren

Keramik:

Rohstoffe, Pulversynthese, Additive und Masseaufbereitung, Urformen und Umformen von Glas, Urformgebung, abtragende Verfahren, Stoffeigenschaften ändern, Endbearbeitung

Metalle:

Rohstoffe, Materialgewinnung und -aufbereitung, Urformen, Umformen, Trennen, Fügen

Halbleiter:

Rohstoffe, Urformen, Stoffeigenschaft ändern

Zusammenfassung

Lernziele:

Die Studierenden sind in der Lage, die verschiedenen Verfahren der Werkstoff- und Fertigungstechnik zu benennen, die ihnen zugrundeliegenden Prinzipien zu beschreiben und diese den Hauptgruppen der Fertigungsverfahren zuzuordnen.

Die Studierenden können Fertigungsverfahren anhand gegebener Fragestellungen oder vorgegebener Anwendungsszenarien auswählen und beachten dabei werkstoffspezifische Randbedingungen, die sie aus den in vorausgehenden Modulen erarbeiteten werkstoffkundlichen Grundlagen ableiten können.

Die Studierenden sind in der Lage, mit fertigungstechnischen Einrichtungen im Labormaßstab einfache Experimente durchzuführen, Korrelationen zwischen verwendeten Fertigungsparametern und den resultierenden Materialeigenschaften zu ziehen, indem sie diese mit geeigneten Prüfverfahren analysieren und dazu jene geeignet auswählen, auswerten und dokumentieren.

Voraussetzungen:

keine, Empfehlung: Modul "Materialwissenschaftliche Grundlagen" sollte abgeschlossen sein.

Arbeitsaufwand:

Der Arbeitsaufwand für die Vorlesung "Werkstoffprozesstechnik" beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (36 h) inkl. der integrierten Übungen, Präsenzzeit im Praktikum (12 h), Vor- und Nachbearbeitungszeit zuhause (72 h), und Prüfungsvorbereitungszeit (60 h)

Literaturhinweise

Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung

Presentation slides and additional lecture notes are handed out during the lecture, additional literature recommendations given

5.89 Teilleistung: Zellbiologie [T-CIWVT-111062]

Verantwortung: apl. Prof. Dr. Hans-Eric Gottwald

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-MACH-103746 - Wahlmodul

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich3DrittelnotenJedes Wintersemester1

Prüfungsveranstaltungen			
SS 2022	7221-V-405 ZELL	Zellbiologie	Gottwald
WS 22/23	7221-V-405 ZELL	Zellbiologie	Gottwald

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Amtliche Bekanntmachung

2022 Ausgegeben Karlsruhe, den 26. Juli 2022

Nr. 61

Inhalt

Studien- und Prüfungsordnung des Karlsruher Instituts

447
für Technologie (KIT) für den Bachelorstudiengang

Materialwissenschaft und Werkstofftechnik

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik

vom 26. Juli 2022

Aufgrund von § 10 Absatz 2 Ziff. 4 und § 20 Absatz 2 des Gesetzes über das Karlsruher Institut für Technologie (KIT-Gesetz - KITG) in der Fassung vom 14. Juli 2009 (GBI. S. 317 f), zuletzt geändert durch Artikel 1 des Zweiten KIT-Weiterentwicklungsgesetzes (2. KIT-WG) vom 04. Februar 2021 (GBI S. 77, 83 ff.), und § 32 Absatz 3 Satz 1 des Gesetzes über die Hochschulen in Baden-Württemberg (Landeshochschulgesetz - LHG) in der Fassung vom 1. Januar zuletzt geändert durch Artikel 7 der Zehnten Verordnung des Innenministeriums zur Anpassung des Landesrechts an die geänderten Geschäftsbereiche und Bezeichnungen der Ministerien (10. Anpassungsverordnung) vom 21. Dezember 2021 (GBI 2022, S. 1,2) hat der KIT-Senat am 18. Juli 2022 die folgende Studien- und Prüfungsordnung für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik beschlossen.

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 26. Juli 2022 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen

- § 1 Geltungsbereich
- § 2 Ziel des Studiums, akademischer Grad
- § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
- § 4 Modulprüfungen, Studien- und Prüfungsleistungen
- § 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
- § 6 Durchführung von Erfolgskontrollen
- § 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
- § 6 b Online-Prüfungen
- § 7 Bewertung von Studien- und Prüfungsleistungen
- § 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
- § 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
- § 10 Abmeldung; Versäumnis, Rücktritt
- § 11 Täuschung, Ordnungsverstoß
- § 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
- § 13 Studierende mit Behinderung oder chronischer Erkrankung
- § 14 Modul Bachelorarbeit
- § 15 Zusatzleistungen
- § 15 a Mastervorzug
- § 16 Überfachliche Qualifikationen
- § 17 Prüfungsausschuss

- § 18 Prüfende und Beisitzende
- § 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung

- § 20 Umfang und Art der Bachelorprüfung
- § 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
- § 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen

- § 23 Bescheinigung von Prüfungsleistungen
- § 24 Aberkennung des Bachelorgrades
- § 25 Einsicht in die Prüfungsakten

Präambel

¹Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. ²Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich

¹Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Materialwissenschaft und Werkstofftechnik am KIT.

§ 2 Ziel des Studiums, akademischer Grad

- (1) ¹Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. ²Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.
- (2) ¹Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad "Bachelor of Science (B.Sc.)" für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

- (1) ¹Der Studiengang nimmt teil am Programm "Studienmodelle individueller Geschwindigkeit". ²Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg).
- (2) ¹Die Regelstudienzeit beträgt sechs Semester. Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. ²Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 2 Satz 3 bis 5.
- ³Eine qualifizierte Teilnahme liegt vor, wenn die/der Studierende Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtworkload 10 Semesterwochenstunden) belegt hat. ⁴Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.
- (3) ¹Das Lehrangebot des Studiengangs ist in Fächer, die Fächer sind in Module, die jeweiligen Module in Lehrveranstaltungen gegliedert. ²Die Fächer und ihr Umfang werden in § 20 festgelegt. Näheres beschreibt das Modulhandbuch.
- (4) ¹Der für das Absolvieren von Lehrveranstaltungen und Modulen vorgesehene Arbeitsaufwand wird in Leistungspunkten (LP) ausgewiesen. ²Die Maßstäbe für die Zuordnung von Leistungspunkten entsprechen dem European Credit Transfer System (ECTS). ³Ein Leistungspunkt entspricht einem Arbeitsaufwand von etwa 30 Zeitstunden. ⁴Die Verteilung der Leistungspunkte auf die Semester hat in der Regel gleichmäßig zu erfolgen.
- **(5)** ¹Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studien- und Prüfungsleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 180 Leistungspunkte.
- **(6)** ¹Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutschsprachige Wahlmöglichkeiten gibt.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

(1) ¹Die Bachelorprüfung besteht aus Modulprüfungen. ²Modulprüfungen bestehen aus einer oder mehreren Erfolgskontrollen.

³Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.

- (2) ¹Prüfungsleistungen sind:
 - 1. schriftliche Prüfungen,
 - 2. mündliche Prüfungen oder
 - 3. Prüfungsleistungen anderer Art.
- (3) ¹Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden. ²Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.
- (4) ¹Von den Modulprüfungen sollen mindestens 70 % benotet sein.
- **(5)** ¹Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

- (1) ¹Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. ²In Ausnahmefällen kann eine Anmeldung schriftlich beim Prüfungsausschuss oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. ³Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. ⁴Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.
- (2) ¹Sofern Wahlmöglichkeiten bestehen, müssen Studierende, um zu einer Prüfung in einem bestimmten Modul zugelassen zu werden, vor der ersten Prüfung in diesem Modul mit der Anmeldung zu der Prüfung eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach abgeben. ²Auf Antrag des/der Studierenden an den Prüfungsausschuss kann die Wahl oder die Zuordnung nachträglich geändert werden.
- (3) ¹Zu einer Erfolgskontrolle ist zuzulassen, wer
- in den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen im Sinne des § 14 Abs. 7 Satz 1 der Zulassungs- und Immatrikulationsordnung des KIT beschränkt; und
- nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt, und
- 3. nachweist, dass er in dem Bachelorstudiengang Materialwissenschaft und Werkstofftechnik den Prüfungsanspruch nicht verloren hat.
- (4) ¹Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. ²Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 4 Abs. 1 Satz 1 und 2 der Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. ³Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. ⁴Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben
- (5) ¹Die Zulassung ist abzulehnen, wenn die in Absatz 3 und 4 genannten Voraussetzungen nicht erfüllt sind.

§ 6 Durchführung von Erfolgskontrollen

- (1) ¹Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.
- (2) ¹Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. ²Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. ³Im Einvernehmen von Prüfender bzw. Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch in besonderen Lebenslagen gemäß § 4 Abs. 1 der Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung zu berücksichtigen. ⁴§ 2 und § 4 Abs.1 Satz 3 der Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung gelten entsprechend.
- (3) ¹Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. ²Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.
- **(4)** ¹Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 5) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.
- **(5)** ¹Schriftliche Prüfungen (§ 4 Abs. 2 Nr. 1) sind in der Regel von einer/einem Prüfenden nach § 18 Abs. 2 oder 3 zu bewerten. ²Sofern eine Bewertung durch mehrere Prüfende erfolgt, ergibt sich die Note aus dem arithmetischen Mittel der Einzelbewertungen. ³Entspricht das arithmetische Mittel keiner der in § 7 Abs. 2 Satz 2 definierten Notenstufen, so ist auf die nächstliegende Notenstufe auf- oder abzurunden. ⁴Bei gleichem Abstand ist auf die nächstbessere Notenstufe zu runden. ⁵Das Bewertungsverfahren soll sechs Wochen nicht überschreiten. ⁶Schriftliche Prüfungen dauern mindestens 60 und höchstens 300 Minuten.
- **(6)** ¹Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/m Prüfenden in Gegenwart einer oder eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. ²Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studierenden.

³Die wesentlichen Gegenstände und Ergebnisse der *mündlichen Prüfung* sind in einem Protokoll festzuhalten. ⁴Das Ergebnis der Prüfung ist den Studierenden im Anschluss an die mündliche Prüfung bekannt zugeben.

⁵Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüflings als Zuhörerinnen und Zuhörer bei mündlichen Prüfungen zugelassen. ⁶Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

(7) ¹Für *Prüfungsleistungen anderer Art* (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. ²Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. ³Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

⁴Bei *mündlich* durchgeführten *Prüfungsleistungen anderer Art* muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/r Prüfenden das Protokoll zeichnet.

⁵Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: "Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Quellen und Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht

zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde." ⁶Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. ⁷Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren

¹Für die Durchführung von Erfolgskontrollen im Antwort-Wahl-Verfahren findet die Satzung des Karlsruher Instituts für Technologie (KIT) zur Durchführung von Erfolgskontrollen im Antwort-Wahl-Verfahren in der jeweils gültigen Fassung Anwendung.

§ 6 b Online-Prüfungen

¹Für die Durchführung von Online-Prüfungen findet die Satzung zur Durchführung von Online-Prüfungen am Karlsruher Institut für Technologie (KIT) in der jeweils gültigen Fassung Anwendung.

§ 7 Bewertung von Studien- und Prüfungsleistungen

- (1) ¹Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.
- (2) ¹Folgende Noten sollen verwendet werden:

sehr gut (very good) : hervorragende Leistung,

gut (good) : eine Leistung, die erheblich über den durch-

schnittlichen Anforderungen liegt,

befriedigend (satisfactory) : eine Leistung, die durchschnittlichen Anforde-

rungen entspricht,

ausreichend (sufficient) : eine Leistung, die trotz ihrer Mängel noch den

Anforderungen genügt,

nicht ausreichend (failed) : eine Leistung, die wegen erheblicher Mängel

nicht den Anforderungen genügt.

²Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

1,0; 1,3 : sehr gut 1,7; 2,0; 2,3 : gut

2,7; 3,0; 3,3 : befriedigend 3,7; 4,0 : ausreichend

5.0 : nicht ausreichend.

- (3) ¹Studienleistungen werden mit "bestanden" oder mit "nicht bestanden" gewertet.
- **(4)** ¹Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.
- (5) ¹Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.
- (6) ¹Eine Prüfungsleistung ist bestanden, wenn die Note mindestens "ausreichend" (4,0) ist.

- (7) ¹Die Modulprüfung ist bestanden, wenn alle erforderlichen Erfolgskontrollen bestanden sind. ²Die Modulprüfung und die Bildung der Modulnote sollen im Modulhandbuch geregelt werden. ³Sofern das Modulhandbuch keine Regelung über die Bildung der Modulnote enthält, errechnet sich die Modulnote aus einem nach den Leistungspunkten der einzelnen Teilmodule gewichteten Notendurchschnitt. ⁴Die differenzierten Noten (Absatz 2) sind bei der Berechnung der Modulnoten als Ausgangsdaten zu verwenden.
- (8) ¹Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.
- **(9)** ¹Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.
- (10) ¹Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

```
bis 1,5 = sehr gut

von 1,6 bis 2,5 = gut

von 2,6 bis 3,5 = befriedigend

von 3,6 bis 4,0 = ausreichend.
```

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

- (1) ¹Die Modulprüfungen im Modul "Höhere Mathematik I" sowie die Prüfung "Materialphysik und Metalle" im Modul "Materialphysik und Metalle" sind bis zum Ende des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).
- (2) ¹Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. ²Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

³Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Abs. 2 vorliegt. ⁴Ohne ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine Fristüberschreitung von

- 1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von einem Semester nachweist oder
- 2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von zwei Semestern nachweist.

⁵Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Abs. 2 auszustellende Bescheinigung, die beim Studierendenservice des KIT einzureichen ist. ⁶Im Falle von Nr. 1 kann die/der Vorsitzende des Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Ablegen der Orientierungsprüfung erforderlich ist, insbesondere weil die Module, die Bestandteil der Orientierungsprüfung sind, nur einmal jährlich angeboten werden.

- (3) ¹Ist die Bachelorprüfung bis zum Ende des neunten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Bachelorstudiengang Materialwissenschaft und Werkstofftechnik, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist. ²Die Entscheidung über eine Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss unter Beachtung der in § 32 Abs. 6 LHG genannten Tätigkeiten auf Antrag des/der Studierenden. ³Der Antrag ist schriftlich in der Regel bis sechs Wochen vor Ablauf der in Satz 1 genannten Studienhöchstdauer zu stellen. ⁴Absatz 2 Satz 3 bis 5 gelten entsprechend.
- **(4)** ¹Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

- (1) ¹Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. ²Wird eine schriftliche Wiederholungsprüfung mit "nicht ausreichend" (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. ³In diesem Falle kann die Note dieser Prüfung nicht besser als "ausreichend" (4,0) sein.
- (2) ¹Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.
- (3) ¹Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. ²Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.
- (4) ¹Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.
- (5) ¹Studienleistungen können mehrfach wiederholt werden.
- **(6)** ¹Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit "nicht ausreichend" (5,0) bewertet wurde. ²Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit "nicht bestanden" bewertet wurde.
- (7) ¹Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.
- (8) ¹Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig ("Antrag auf Zweitwiederholung"). ²Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

³Über den ersten Antrag eines/r Studierenden auf Zweitwiederholung entscheidet der Prüfungsausschuss, wenn er den Antrag genehmigt. ⁴Wenn der Prüfungsausschuss diesen Antrag ablehnt, entscheidet ein Mitglied des Präsidiums. ⁵Über weitere Anträge auf Zweitwiederholung entscheidet nach Stellungnahme des Prüfungsausschusses ein Mitglied des Präsidiums. ⁶Wird der Antrag genehmigt, hat die Zweitwiederholung spätestens zum übernächsten Prüfungstermin zu erfolgen. ⁷Absatz 1 Satz 2 und 3 gelten entsprechend.

- (9) ¹Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.
- (10) ¹Die Bachelorarbeit kann bei einer Bewertung mit "nicht ausreichend" (5,0) einmal wiederholt werden. ²Die Präsentation nach § 14 Absatz 1 a ist eine Studienleistung und kann bei einer Bewertung mit "nicht bestanden" (not passed) abweichend von Absatz 5 nur einmal wiederholt werden. ³Die Präsentation ist endgültig nicht bestanden, wenn sie zweimal mit "nicht bestanden" (not passed) bewertet wurde. ⁴Eine zweite Wiederholung der Bachelorarbeit sowie der Präsentation ist ausgeschlossen.

§ 10 Abmeldung; Versäumnis, Rücktritt

- (1) ¹Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). ²Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Prüfungsausschuss erfolgen. ³Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.
- (2) ¹Bei *mündlichen Prüfungen* muss die Abmeldung spätestens drei Werktage vor dem betreffenden Prüfungstermin gegenüber dem/der Prüfenden erklärt werden. ²Der Rücktritt von einer mündlichen Prüfung weniger als drei Werktage vor dem betreffenden Prüfungstermin ist nur unter den Voraussetzungen des Absatzes 5 möglich. ³Der Rücktritt von mündlichen Nachprü-

fungen im Sinne von § 9 Abs. 1 ist grundsätzlich nur unter den Voraussetzungen von Absatz 5 möglich.

- (3) ¹Die Abmeldung von *Prüfungsleistungen anderer Art* sowie von *Studienleistungen* ist im Modulhandbuch geregelt.
- **(4)** ¹Eine Erfolgskontrolle gilt als mit "nicht ausreichend" (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. ²Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.
- (5) ¹Der für den Rücktritt nach Beginn der Erfolgskontrolle oder das Versäumnis geltend gemachte Grund muss dem Prüfungsausschuss unverzüglich schriftlich angezeigt und glaubhaft gemacht werden. ²Bei Krankheit des/der Studierenden oder eines allein zu versorgenden Kindes oder pflegebedürftigen Angehörigen kann die Vorlage eines ärztlichen Attestes verlangt werden.

§ 11 Täuschung, Ordnungsverstoß

- (1) ¹Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit "nicht ausreichend" (5,0) bewertet.
- (2) ¹Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. ²In diesem Fall gilt die betreffende Erfolgskontrolle als mit "nicht ausreichend" (5,0) bewertet. ³In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.
- (3) ¹Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

¹Für den Ausgleich von Nachteilen bei Studierenden in besonderen Lebenslagen findet die Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung Anwendung.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

¹Für den Ausgleich von Nachteilen bei Studierenden in besonderen Lebenslagen findet die Satzung über nachteilsausgleichende Regelungen in den Bachelor- und Masterstudiengängen am Karlsruher Institut für Technologie (KIT) in der jeweils geltenden Fassung Anwendung.

§ 14 Modul Bachelorarbeit

- **(1)** ¹Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 140 LP erfolgreich abgelegt hat. ²Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.
- **(1 a)** ¹Dem Modul Bachelorarbeit sind 15 LP zugeordnet. ²Es besteht aus der Bachelorarbeit mit 12 LP und einer Präsentation mit 3 LP. ³Die Präsentation soll innerhalb von sechs Wochen nach Abgabe der Bachelorarbeit erfolgen.
- (2) ¹Die Bachelorarbeit kann von Hochschullehrer/innen, leitenden Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG in der Fassung vor Inkrafttreten des 2. KIT-WG vom 04. Februar 2021 und habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau vergeben werden. ²Darüber hinaus kann der Prüfungsausschuss weitere Prüfende gemäß § 18 Abs. 2 und 3 zur Vergabe des Themas berechtigen. ³Den Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge

zu machen. ⁴Soll die Bachelorarbeit außerhalb der KIT-Fakultäten für Maschinenbau, Chemie und Biowissenschaften, Chemieingenieurwesen und Verfahrenstechnik, Elektrotechnik und Informationstechnik oder Physik angefertigt werden, so bedarf dies der Genehmigung durch den Prüfungsausschuss. ⁵Die Bachelorarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag der/des einzelnen Studierenden aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach Absatz ⁴ erfüllt. ⁶In Ausnahmefällen sorgt die/der Vorsitzende des Prüfungsausschusses auf Antrag der oder des Studierenden dafür, dass die/der Studierende innerhalb von vier Wochen ein Thema für die Bachelorarbeit erhält. ⁷Die Ausgabe des Themas erfolgt in diesem Fall über die/den Vorsitzende/n des Prüfungsausschusses.

- (3) ¹Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.
- (4) ¹Die Bachelorarbeit soll zeigen, dass die Studierenden in der Lage sind, ein Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten. ²Der Umfang der Bachelorarbeit entspricht 12 Leistungspunkten. ³Die maximale Bearbeitungsdauer beträgt vier Monate. ⁴Thema und Aufgabenstellung sind an den vorgesehenen Umfang anzupassen. ⁵Der Prüfungsausschuss legt fest, in welchen Sprachen die Bachelorarbeit geschrieben werden kann. ⁶Auf Antrag des Studierenden kann der/die Prüfende genehmigen, dass die Bachelorarbeit in einer anderen Sprache als Deutsch geschrieben wird.
- (5) ¹Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. ²Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. ³Die Erklärung kann wie folgt lauten: "Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Quellen und Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben." ⁴Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit "nicht ausreichend" (5,0) bewertet.
- (6) ¹Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. ²Der Zeitpunkt der Abgabe der Bachelorarbeit ist durch den/die Prüfende/n beim Prüfungsausschuss aktenkundig zu machen. ³Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. ⁴Macht der oder die Studierende einen triftigen Grund geltend, kann der Prüfungsausschuss die in Absatz 4 festgelegte Bearbeitungszeit auf Antrag der oder des Studierenden um höchstens einen Monat verlängern. ⁵Wird die Bachelorarbeit nicht fristgerecht abgeliefert, gilt sie als mit "nicht ausreichend" (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.
- (7) ¹Die Bachelorarbeit wird von mindestens einem/einer Hochschullehrer/in, einem/einer leitenden Wissenschaftler/in gemäß § 14 Abs. 3 Ziff. 1 KITG in der Fassung vor Inkrafttreten des 2. KIT-WG vom 04. Februar 2021 oder einem habilitierten Mitglied der KIT-Fakultät für Maschinenbau und einem/einer weiteren Prüfenden bewertet. In der Regel ist eine/r der Prüfenden die Person, die die Arbeit gemäß Absatz 2 vergeben hat. ²Bei nicht übereinstimmender Beurteilung dieser beiden Personen setzt der Prüfungsausschuss im Rahmen der Bewertung dieser beiden Personen die Note der Bachelorarbeit fest; er kann auch eine/n weitere/n Gutachter/in bestellen. ³Die Bewertung hat innerhalb von sechs Wochen nach Abgabe der Bachelorarbeit zu erfolgen.

§ 15 Zusatzleistungen

(1) ¹Es können auch weitere Leistungspunkte (Zusatzleistungen) im Umfang von höchstens 30 LP aus dem Gesamtangebot des KIT erworben werden. ²§ 3 und § 4 der Prüfungsordnung bleiben davon unberührt. ³Diese Zusatzleistungen gehen nicht in die Festsetzung der Gesamt- und

Modulnoten ein. ⁴Die bei der Festlegung der Modulnote nicht berücksichtigten LP werden als Zusatzleistungen im Transcript of Records aufgeführt und als Zusatzleistungen gekennzeichnet. ⁵Auf Antrag der/des Studierenden werden die Zusatzleistungen in das Bachelorzeugnis aufgenommen und als Zusatzleistungen gekennzeichnet. ⁶Zusatzleistungen werden mit den nach § 7 vorgesehenen Noten gelistet.

(2) ¹Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 15 a Mastervorzug

¹Studierende, die im Bachelorstudium bereits mindestens 120 LP erworben haben, können zusätzlich zu den in § 15 Abs. 1 genannten Zusatzleistungen Leistungspunkte aus einem konsekutiven Masterstudiengang am KIT im Umfang von höchstens 30 LP erwerben (Mastervorzugsleistungen). ²§ 3 und § 4 der Prüfungsordnung bleiben davon unberührt. ³Die Mastervorzugsleistungen gehen nicht in die Festsetzung der Gesamt-, Fach- und Modulnoten ein. ⁴Sie werden im Transcript of Records aufgeführt und als solche gekennzeichnet sowie mit den nach § 7 vorgesehenen Noten gelistet. ⁵§ 15 Absatz 2 gilt entsprechend.

§ 16 Überfachliche Qualifikationen

¹Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. ²Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschuss

- (1) ¹Für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik wird ein Prüfungsausschuss gebildet. ²Er besteht aus vier stimmberechtigten Mitgliedern: zwei Hochschullehrer/innen / leitenden Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG in der Fassung vor Inkrafttreten des 2. KIT-WG vom 04. Februar 2021/ Privatdozentinnen bzw. -dozenten, zwei akademischen Mitarbeiterinnen und Mitarbeitern nach § 52 LHG / wissenschaftlichen Mitarbeiter/innen gemäß § 14 Abs. 3 Ziff. 2 KITG in der Fassung vor Inkrafttreten des 2. KIT-WG vom 04. Februar 2021 und einer bzw. einem Studierenden mit beratender Stimme. ²Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und den Masterstudiengang Materialwissenschaft und Werkstofftechnik erhöht sich die Anzahl der Studierenden auf zwei Mitglieder mit beratender Stimme, wobei je eine bzw. einer dieser Beiden aus dem Bachelor- und aus dem Masterstudiengang stammen soll. ³Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.
- (2) ¹Die/der Vorsitzende, ihre/sein Stellvertreter/in, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter/innen werden von dem KIT-Fakultätsrat bestellt, die akademischen Mitarbeiter/innen nach § 52 LHG, die wissenschaftlichen Mitarbeiter gemäß § 14 Abs. 3 Ziff. 2 KITG in der Fassung vor Inkrafttreten des 2. KIT-WG vom 04. Februar 2021 und die Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. ²Die/der Vorsitzende und deren/dessen Stellvertreter/in müssen Hochschullehrer/innen oder leitende Wissenschaftler/innen § 14 Abs. 3 Ziff. 1 KITG in der Fassung vor Inkrafttreten des 2. KIT-WG vom 04. Februar 2021 sein. ³Die/der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch das jeweilige Prüfungssekretariat unterstützt.
- (3) ¹Der Prüfungsausschuss achtet auf die Einhaltung der Bestimmungen dieser Studien- und Prüfungsordnung und fällt die Entscheidungen in Prüfungsangelegenheiten. ²Er entscheidet über die Anerkennung von Studienzeiten sowie Studien- und Prüfungsleistungen und trifft die Feststellung gemäß § 19 Absatz 1 Satz 1. ³Er berichtet der KIT-Fakultät regelmäßig über die Entwicklung der Prüfungs- und Studienzeiten, einschließlich der Bearbeitungszeiten für die Bachelorarbeiten und die Verteilung der Modul- und Gesamtnoten. ⁴Er ist zuständig für Anregungen zur Reform der Studien- und Prüfungsordnung und zu Modulbeschreibungen. ⁵Der Prü-

fungsausschuss entscheidet mit der Mehrheit seiner Stimmen. ⁶Bei Stimmengleichheit entscheidet die/der Vorsitzende des Prüfungsausschusses.

- (4) ¹Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. ²In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/der Vorsitzende des Prüfungsausschusses.
- **(5)** ¹Die Mitglieder des Prüfungsausschusses haben das Recht, der Abnahme von Prüfungen beizuwohnen. ²Die Mitglieder des Prüfungsausschusses, die Prüfenden und die Beisitzenden unterliegen der Verschwiegenheit. ³Sofern sie nicht im öffentlichen Dienst stehen, sind sie durch die/den Vorsitzende/n zur Verschwiegenheit zu verpflichten.
- **(6)** ¹In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsberechtigte Person hinzuzuziehen.
- (7) ¹Belastende Entscheidungen des Prüfungsausschusses sind schriftlich mitzuteilen. ²Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. ³Vor einer Entscheidung ist Gelegenheit zur Äußerung zu geben. ⁴Widersprüche gegen Entscheidungen des Prüfungsausschusses sind innerhalb eines Monats nach Zugang der Entscheidung bei diesem einzulegen. ⁵Über Widersprüche entscheidet das für Lehre zuständige Mitglied des Präsidiums.

§ 18 Prüfende und Beisitzende

- (1) ¹Der Prüfungsausschuss bestellt die Prüfenden. ²Er kann die Bestellung der/dem Vorsitzenden übertragen.
- (2) ¹Prüfende sind Hochschullehr/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG in der Fassung vor Inkrafttreten des 2. KIT-WG vom 04. Februar 2021, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG in der Fassung vor Inkrafttreten des 2. KIT-WG vom 04. Februar 2021 die Prüfungsbefugnis übertragen werden. ²Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.
- (3) ¹Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.
- (4) ¹Die Beisitzenden werden durch die Prüfenden benannt. ²Zu Beisitzenden darf nur benannt werden, wer mindestens eine dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

- (1) ¹Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. ²Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. ³Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studien- und Prüfungsleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.
- (2) ¹Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. ²Studierende, die neu in den Studiengang Materialwissenschaft und Werkstofftechnik immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb

des ersten Semesters nach Immatrikulation zu stellen. ³Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. ⁴Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

- (3) ¹Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als "anerkannt" ausgewiesen. ²Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. ³Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. ⁴Liegen keine Noten vor, wird der Vermerk "bestanden" aufgenommen.
- (4) ¹Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.
- **(5)** ¹Außerhalb des Hochschulsystems erworbene Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. ²Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.
- **(6)** ¹Zuständig für Anerkennung und Anrechnung ist der Prüfungsausschuss. ²Im Rahmen der Feststellung, ob ein wesentlicher Unterschied im Sinne des Absatz 1 vorliegt, sind die zuständigen Fachvertreter/innen zu hören. ³Die Zugangskommission entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung

- (1) ¹Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14).
- (2) ¹Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:
 - 1. Ingenieurwissenschaftliche Grundlagen: Modul(e) im Umfang von 44 LP,
 - 2. Naturwissenschaftliche Grundlagen: Modul(e) im Umfang von 31 LP,
 - 3. Materialwissenschaftliche Grundlagen: Modul(e) im Umfang von 76 LP,
 - 4. Ergänzungsfach: Modul(e) im Umfang von 8 LP,
 - 5. Überfachliche Qualifikationen im Umfang von 6 LP gemäß § 16.

²Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.

§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote

- (1) ¹Die Bachelorprüfung ist bestanden, wenn alle gemäß § 20 erforderlichen Modulprüfungen bestanden wurden.
- (2) ¹Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit.

²Dabei wird die Note des Moduls Bachelorarbeit mit dem doppelten Gewicht der Noten der übrigen Fächer berücksichtigt.

(3) ¹Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat "mit Auszeichnung" (with distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

- (1) ¹Über die Bachelorprüfung werden nach Bewertung der letzten Prüfungsleistung eine Bachelorurkunde und ein Zeugnis erstellt. ²Die Ausfertigung von Bachelorurkunde und Zeugnis soll nicht später als drei Monate nach Ablegen der letzten Prüfungsleistung erfolgen. ³Bachelorurkunde und Bachelorzeugnis werden in deutscher und englischer Sprache ausgestellt. ⁴Bachelorurkunde und Zeugnis tragen das Datum der erfolgreichen Erbringung der letzten Prüfungsleistung. ⁵Diese Dokumente werden den Studierenden zusammen ausgehändigt. ⁶In der Bachelorurkunde wird die Verleihung des akademischen Bachelorgrades beurkundet. ⁷Die Bachelorurkunde wird von dem Präsidenten und der KIT-Dekanin/dem KIT-Dekan der KIT-Fakultät unterzeichnet und mit dem Siegel des KIT versehen.
- (2) ¹Das Zeugnis enthält die Fach- und Modulnoten sowie die den Modulen und Fächern zugeordneten Leistungspunkte und die Gesamtnote. ²Sofern gemäß § 7 Abs. 2 Satz 2 eine differenzierte Bewertung einzelner Prüfungsleistungen vorgenommen wurde, wird auf dem Zeugnis auch die entsprechende Dezimalnote ausgewiesen; § 7 Abs. 4 bleibt unberührt. ³Das Zeugnis ist von der KIT-Dekanin/dem KIT-Dekan der KIT-Fakultät und von der/dem Vorsitzenden des Prüfungsausschusses zu unterzeichnen.
- (3) ¹Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users' Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.
- (4) ¹Das Transcript of Records enthält in strukturierter Form alle erbrachten Studien- und Prüfungsleistungen. ²Dies beinhaltet alle Fächer und Fachnoten samt den zugeordneten Leistungspunkten, die dem jeweiligen Fach zugeordneten Module mit den Modulnoten und zugeordneten Leistungspunkten sowie die den Modulen zugeordneten Erfolgskontrollen samt Noten und zugeordneten Leistungspunkten. ³Absatz 2 Satz 2 gilt entsprechend. ⁴Aus dem Transcript of Records soll die Zugehörigkeit von Erfolgskontrollen zu den einzelnen Modulen deutlich erkennbar sein. ⁵Angerechnete Studien- und Prüfungsleistungen sind im Transcript of Records aufzunehmen. ⁶Alle Zusatzleistungen werden im Transcript of Records aufgeführt.
- **(5)** ¹Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studierendenservice des KIT ausgestellt.

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen

¹Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. ²Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 24 Aberkennung des Bachelorgrades

(1) ¹Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. ²Gegebenenfalls kann die Modulprüfung für "nicht ausreichend" (5,0) und die Bachelorprüfung für "nicht bestanden" erklärt werden.

- **(2)** ¹Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die/der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. ²Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für "nicht ausreichend" (5,0) und die Bachelorprüfung für "nicht bestanden" erklärt werden.
- (3) ¹Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.
- (4) ¹Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. ²Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für "nicht bestanden" erklärt wurde.
- (5) ¹Eine Entscheidung nach Absatz 1 und Absatz 2 Satz 2 ist nach einer Frist von fünf Jahren ab dem Datum des Zeugnisses ausgeschlossen.
- (6) 1Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.

§ 25 Einsicht in die Prüfungsakten

- (1) ¹Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.
- (2) ¹Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.
- (3) ¹Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.
- (4) ¹Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften

- (1) ¹Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2022 in Kraft.
- (2) ¹Gleichzeitig tritt die Studien- und Prüfungsordnung des KIT für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik vom 26. Juni 2017 (Amtliche Bekanntmachung des KIT Nr. 47 vom 27. Juni 2017) zuletzt geändert durch Artikel 21 der Satzung des Karlsruher Instituts für Technologie (KIT) über die Änderung der Studien- und Prüfungsordnungen zur Anwendbarkeit der Satzung zur Durchführung von Online-Prüfungen am Karlsruher Institut für Technologie (KIT) vom 20. Mai 2022 (Amtliche Bekanntmachung des KIT Nr. 37 vom 20. Mai 2022) außer Kraft.
- (3) ¹Studierende, die auf Grundlage der Studien- und Prüfungsordnung für den Bachelorstudiengang Materialwissenschaft und Werkstofftechnik vom 26. Juni 2017 (Amtliche Bekanntmachung des KIT Nr. 47 vom 27. Juni 2017) zuletzt geändert durch Artikel 21 der Satzung des Karlsruher Instituts für Technologie (KIT) über die Änderung der Studien- und Prüfungsordnungen zur Anwendbarkeit der Satzung zur Durchführung von Online-Prüfungen am Karlsruher Institut für Technologie (KIT) vom 20. Mai 2022 (Amtliche Bekanntmachung des KIT Nr. 37 vom 20. Mai 2022) ihr Studium am KIT aufgenommen haben, können Prüfungen auf Grundlage dieser Studien- und Prüfungsordnung letztmalig am 30. September 2027 ablegen.

Karlsruhe, den 26. Juli 2022

gez. Professor Dr.-Ing. Holger Hanselka (Präsident)