Modulhandbuch
Materialwissenschaft und Werkstofftechnik Master 2017
(Master of Science (M.Sc.))
SPO 2017
Sommersemester 2024
Stand 13.03.2024

KIT-FAKULTÄT FÜR MASCHINENBAU
Inhaltsverzeichnis

1. Qualifikationsziele ... 7
2. Studienplan ... 8
3. Aufbau des Studiengangs ... 23
4. Module .. 25
 4.1. Begleitstudium - Angewandte Kulturwissenschaft - M-ZAK-106235 ... 25
 4.2. Begleitstudium - Nachhaltige Entwicklung - M-ZAK-106099 ... 28
 4.3. Berufspraktikum - M-MACH-103838 ... 31
 4.4. Computational Materials Science - M-MACH-103739 ... 32
 4.5. Eigenschaften - M-MACH-103713 .. 34
 4.6. Funktionswerkstoffe - M-MACH-103741 .. 35
 4.7. Kinetik - M-MACH-103711 ... 37
 4.8. Konstruktionswerkstoffe - M-MACH-103738 ... 39
 4.9. Masterarbeit - M-MACH-103835 ... 41
 4.10. Materialprozesstechnik - M-MACH-103740 .. 43
 4.11. Schlüsselqualifikationen - M-MACH-103721 .. 45
 4.12. Simulation - M-MACH-103712 ... 46
 4.13. Technische Vertiefung - M-MACH-103715 ... 47
 4.14. Thermodynamik - M-MACH-103710 ... 49
 4.15. Werkstoffanalytik - M-MACH-103714 ... 51
5. Teilleistungen ... 52
 5.1. Adaptive Optics - T-ETIT-107644 .. 52
 5.2. Additive Manufacturing for Process Engineering - Examination - T-CIWVT-110902 53
 5.3. Akten und Sensoren in der Nanotechnik - T-MACH-105238 ... 54
 5.4. Alternative Antriebe für Automobile - T-MACH-105655 ... 55
 5.5. Angewandte Tribologie in der industriellen Produktentwicklung - T-MACH-105215 56
 5.6. Angewandte Werkstoffsimulation - T-MACH-105527 ... 57
 5.7. Antriebssystechnik A: Fahrzeugantriebstechnik - T-MACH-105233 ... 59
 5.8. Antriebssystechnik B: Stationäre Antriebssysteme - T-MACH-105216 60
 5.9. Applied Materials Simulation - T-MACH-110929 ... 61
 5.10. Arbeitswissenschaft I: Ergonomie - T-MACH-105518 ... 63
 5.11. Arbeitswissenschaft II: Arbeitsorganisation - T-MACH-105519 ... 65
 5.12. Atomistische Simulation und Partikeldynamik - T-MACH-113412 .. 67
 5.13. Aufbau und Eigenschaften verschleißfester Werkstoffe - T-MACH-102141 68
 5.15. Auslegung hochbelasteter Bauteile - T-MACH-105310 .. 72
 5.16. Automatisierte Produktionsanlagen - T-MACH-108844 .. 73
 5.17. Automotive Engineering I - T-MACH-102203 .. 75
 5.18. Bahnsystemtechnik - T-MACH-106424 .. 77
 5.20. Batterien und Brennstoffzellen - T-ETIT-100983 ... 80
 5.22. Bauelemente der Elektrotechnik - T-ETIT-109292 ... 82
 5.23. Berufspraktikum - T-MACH-107764 ... 83
 5.24. Betriebstoffe für Verbrennungsmotoren - T-MACH-105184 .. 84
 5.27. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II - T-MACH-100967 87
 5.28. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III - T-MACH-100968 88
 5.29. Bruch- und Schädigungsmechanik - T-BGU-100887 ... 89
 5.30. CAE-Workshop - T-MACH-105212 ... 90
 5.31. Computational Condensed Matter Physics - T-PHYS-109895 .. 92

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
5.32. Computational Photonics, without ext. Exercises - T-PHYS-106131 .. 93
5.33. Data Science and Scientific Workflows - T-MACH-111588 ... 94
5.34. Data Science and Scientific Workflows (Project) - T-MACH-111603 ... 96
5.35. Datenanalyse für Ingenieure - T-MACH-105694 .. 98
5.36. Einführung in die Bionik - T-MACH-111807 ... 100
5.37. Einführung in die Finite-Elemente-Methode - T-MACH-105320 ... 101
5.38. Einführung in die Materialtheorie - T-MACH-105321 .. 102
5.39. Electromagnetics and Numerical Calculation of Fields - T-ETIT-100640 ... 103
5.40. Elektronenmikroskopie I und II, mit Übungen - T-PHYs-111915 ... 104
5.41. Elektronische Eigenschaften von Festkörpern I, ohne Übungen - T-PHYS-102578 105
5.42. Elektronische Eigenschaften von Festkörpern II, ohne Übungen - T-PHYS-104423 106
5.43. Energieeffiziente Intralogistiksysteme (macht und wiwi) - T-MACH-105151 107
5.44. Engineering Materials for the Energy Transition - T-MACH-112691 ... 108
5.45. Exercises for Applied Materials Simulation - T-MACH-110928 ... 109
5.46. Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria - T-MACH-110924 111
5.47. Exercises for Materials Characterization - T-MACH-110945 .. 112
5.48. Exercises for Microstructure-Property-Relationships - T-MACH-110830 .. 113
5.49. Exercises for Solid State Reactions and Kinetics of Phase Transformations - T-MACH-110926 114
5.50. Experimentelles metallographisches Praktikum - T-MACH-105447 ... 115
5.51. Experimentelles Schweißtechnisches Praktikum, in Gruppen - T-MACH-110299 117
5.52. Fabrication and Characterisation of Optoelectronic Devices - T-ETIT-103613 119
5.53. Fahrzeuggleichbaut - Strategien, Konzepte, Werkstoffe - T-MACH-110537 120
5.54. Faserverstärkte Kunststoffe - Polymere, Fasern, Halbleger, Verarbeitung - T-MACH-105535 122
5.55. Fertigungsprozesse der Mikrosystemtechnik - T-MACH-102166 .. 124
5.56. Fertigungstechnik - T-MACH-102105 ... 126
5.57. Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion - T-MACH-107667 128
5.58. Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria - T-MACH-110925 130
5.59. Fundamentals of Optics and Photonics - T-PHYS-103628 ... 132
5.60. Fundamentals of Optics and Photonics - Unit - T-PHYS-103630 .. 133
5.61. Funktionskeramiken - T-MACH-110517 ... 134
5.62. Gefüge-Eigenschafts-Beziehungen - T-MACH-107604 .. 135
5.63. Gießereikunde - T-MACH-105157 .. 136
5.64. Grundlagen der Fahrzeugtechnik I - T-MACH-100092 .. 137
5.65. Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie - T-MACH-102111 139
5.66. Grundlagen der Mikrosystemtechnik I - T-MACH-105182 ... 140
5.67. Grundlagen der Mikrosystemtechnik II - T-MACH-105183 .. 141
5.68. Grundlagen der nichtlinearen Kontinuumsmekhanik - T-MACH-105324 142
5.69. Grundlagen der Plasmatechnologie - T-ETIT-100770 .. 143
5.70. Grundlagen der technischen Verbrennung I - T-MACH-105213 ... 144
5.71. Grundlagen der technischen Verbrennung II - T-MACH-105325 .. 146
5.72. Grundlagenmodul - Selbstverbuchung BAK - T-ZAK-112653 ... 148
5.73. Grundlagenmodul - Selbstverbuchung BeNe - T-ZAK-112345 ... 149
5.74. Grundsätze der Nutzfahrzeugentwicklung - T-MACH-111389 .. 150
5.75. High Performance Computing - T-MACH-105398 .. 152
5.76. High Temperature Materials - T-MACH-105459 ... 154
5.77. Hochtemperaturkorrosion - T-MACH-111458 .. 155
5.78. Hydroide und elektrische Fahrzeuge - T-ETIT-100784 .. 157
5.79. Hydrogen as Energy Carrier - T-CHEMBIO-112317 .. 158
5.80. Hydrogen in Materials – Exercises and Lab Course - T-MACH-112159 ... 159
5.82. Konstruieren mit Polymerwerkstoffen - T-MACH-105330 ... 161
5.83. Konstruktiver Leichtbau - T-MACH-105221 ... 163
5.84. Laser Material Processing - T-MACH-112763 .. 165
5.85. Laser Metrology - T-ETIT-100643 .. 167
5.86. Lasereinsatz im Automobilbau - T-MACH-105164 .. 168
5.87. Lasergestützte Methoden und deren Einsatz für Energiespeichermaterialien - T-MACH-106739 170
5.88. Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis - T-MACH-110954 173
5.89. Light and Display Engineering - T-ETIT-100644 ... 175
5.90. Masterarbeit - T-MACH-107759 ... 176
5.91. Materialien für elektrochemische Speicher und Wandler - T-CIWVT-108146 177
5.92. Materialien und Werkstoffe für die Energiewende - T-MACH-109082 ... 178
5.93. Materialkunde der Nichteisenmetalle - T-MACH-111826 ... 179

Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Seite</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>5.94. Materials Characterization - T-MACH-110946</td>
</tr>
<tr>
<td>181</td>
<td>5.95. Mathematische Methoden der Mikromechanik - T-MACH-110378</td>
</tr>
<tr>
<td>182</td>
<td>5.96. Measurement and Control Systems - T-MACH-103622</td>
</tr>
<tr>
<td>183</td>
<td>5.97. Mechanik und Festigkeitslehre von Kunststoffen - T-MACH-105333</td>
</tr>
<tr>
<td>184</td>
<td>5.98. Mechanik von Mikrosystemen - T-MACH-105334</td>
</tr>
<tr>
<td>185</td>
<td>5.99. Microstructure-Property-Relationships - T-MACH-110931</td>
</tr>
<tr>
<td>186</td>
<td>5.100. Mikro NMR Technologie - T-MACH-105782</td>
</tr>
<tr>
<td>187</td>
<td>5.101. Mikrostruktursimulation - T-MACH-105303</td>
</tr>
<tr>
<td>189</td>
<td>5.102. Mikrosystem Simulation - T-MACH-108383</td>
</tr>
<tr>
<td>190</td>
<td>5.103. Moderne Charakterisierungsmethoden für Materialien und Katalysatoren - T-CHEMBIO-107622</td>
</tr>
<tr>
<td>191</td>
<td>5.104. Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft - T-ZAK-112659</td>
</tr>
<tr>
<td>192</td>
<td>5.105. Mündliche Prüfung - Begleitstudium Nachhaltige Entwicklung - T-ZAK-112351</td>
</tr>
<tr>
<td>193</td>
<td>5.106. Nano-Optics - T-PHYS-102282</td>
</tr>
<tr>
<td>194</td>
<td>5.107. Nanotribologie und -mechanik - T-MACH-102167</td>
</tr>
<tr>
<td>197</td>
<td>5.108. Neue Aktoren und Sensoren - T-MACH-102152</td>
</tr>
<tr>
<td>199</td>
<td>5.110. Optical Engineering - T-ETIT-100676</td>
</tr>
<tr>
<td>200</td>
<td>5.111. Optical Transmitters and Receivers - T-ETIT-100639</td>
</tr>
<tr>
<td>201</td>
<td>5.112. Optical Waveguides and Fibers - T-ETIT-101945</td>
</tr>
<tr>
<td>202</td>
<td>5.113. Optoelectronic Components - T-ETIT-101907</td>
</tr>
<tr>
<td>203</td>
<td>5.114. Optoelektronik - T-ETIT-100767</td>
</tr>
<tr>
<td>204</td>
<td>5.115. Phase Transformations in Materials - T-MACH-111391</td>
</tr>
<tr>
<td>207</td>
<td>5.116. Photovoltaik - T-ETIT-101939</td>
</tr>
<tr>
<td>208</td>
<td>5.117. Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung - T-MACH-105537</td>
</tr>
<tr>
<td>210</td>
<td>5.118. Plastic Electronics / Polymerelektronik - T-ETIT-100763</td>
</tr>
<tr>
<td>211</td>
<td>5.119. Plasticity of Metals and Intermetallics - T-MACH-110818</td>
</tr>
<tr>
<td>213</td>
<td>5.120. Plastizität auf verschiedenen Skalen - T-MACH-105516</td>
</tr>
<tr>
<td>215</td>
<td>5.121. Polyengineering I - T-MACH-102137</td>
</tr>
<tr>
<td>216</td>
<td>5.122. Polyengineering II - T-MACH-102138</td>
</tr>
<tr>
<td>218</td>
<td>5.123. Polymers in MEMS A: Chemistry, Synthesis and Applications - T-MACH-102192</td>
</tr>
<tr>
<td>219</td>
<td>5.124. Polymers in MEMS B: Physics, Microstructuring and Applications - T-MACH-102191</td>
</tr>
<tr>
<td>220</td>
<td>5.125. Polymers in MEMS C: Biopolymers and Bioplastics - T-MACH-102200</td>
</tr>
<tr>
<td>222</td>
<td>5.126. Practical in Additive Manufacturing for Process Engineering - T-CIWVT-110903</td>
</tr>
<tr>
<td>223</td>
<td>5.127. Praktikum Produktionstechnisierte Messtechnik - T-MACH-108878</td>
</tr>
<tr>
<td>225</td>
<td>5.128. Praktikum 'Technische Keramik' - T-MACH-105178</td>
</tr>
<tr>
<td>226</td>
<td>5.129. Praxismodul - T-ZAK-112660</td>
</tr>
<tr>
<td>227</td>
<td>5.130. Product Lifecycle Management - T-MACH-105147</td>
</tr>
<tr>
<td>228</td>
<td>5.131. Produkt- und Produktionssysteme für moderne Automobil - T-MACH-110318</td>
</tr>
<tr>
<td>230</td>
<td>5.132. Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung - T-MACH-102155</td>
</tr>
<tr>
<td>231</td>
<td>5.133. Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils - T-MACH-110960</td>
</tr>
<tr>
<td>233</td>
<td>5.134. Pulvermetallurgische Hochleistungswerkstoffe - T-MACH-102157</td>
</tr>
<tr>
<td>234</td>
<td>5.135. Qualitätsmanagement - T-MACH-102107</td>
</tr>
<tr>
<td>236</td>
<td>5.136. Rechner unterstützte Mechanik I - T-MACH-105351</td>
</tr>
<tr>
<td>237</td>
<td>5.137. Rechner unterstützte Mechanik II - T-MACH-105352</td>
</tr>
<tr>
<td>238</td>
<td>5.138. Robotik I - Einführung in die Robotik - T-INF-108014</td>
</tr>
<tr>
<td>240</td>
<td>5.139. Schadenskunde - T-MACH-105724</td>
</tr>
<tr>
<td>241</td>
<td>5.140. Schienenfahrzeugtechnik - T-MACH-105353</td>
</tr>
<tr>
<td>243</td>
<td>5.141. Schweißtechnik - T-MACH-105170</td>
</tr>
<tr>
<td>245</td>
<td>5.142. Schwingfestigkeit - T-MACH-112106</td>
</tr>
<tr>
<td>246</td>
<td>5.143. Selbstverbuchung-MSC-HOC-SPZ-ZAK-benotet - T-MACH-112687</td>
</tr>
<tr>
<td>247</td>
<td>5.144. Selbstverbuchung-MSC-HOC-SPZ-ZAK-benotet - T-MACH-113324</td>
</tr>
<tr>
<td>248</td>
<td>5.145. Selbstverbuchung-MSC-HOC-SPZ-ZAK-benotet - T-MACH-113322</td>
</tr>
<tr>
<td>249</td>
<td>5.146. Selbstverbuchung-MSC-HOC-SPZ-ZAK-unbenotet - T-MACH-112686</td>
</tr>
<tr>
<td>250</td>
<td>5.147. Selbstverbuchung-MSC-HOC-SPZ-ZAK-unbenotet - T-MACH-113321</td>
</tr>
<tr>
<td>251</td>
<td>5.148. Selbstverbuchung-MSC-HOC-SPZ-ZAK-unbenotet - T-MACH-113323</td>
</tr>
<tr>
<td>252</td>
<td>5.149. Seminar Werkstoffsimulation - T-MACH-107660</td>
</tr>
<tr>
<td>254</td>
<td>5.150. Sensoren - T-ETIT-101911</td>
</tr>
<tr>
<td>255</td>
<td>5.151. Sensorsysteme - T-ETIT-100709</td>
</tr>
<tr>
<td>256</td>
<td>5.152. Simulation der Prozesskette kontinuierlich verstärkter Faserverbundbauteile - T-MACH-105971</td>
</tr>
<tr>
<td>258</td>
<td>5.153. Simulation nanoskaliger Systeme, ohne Seminar - T-PHYS-102504</td>
</tr>
<tr>
<td>259</td>
<td>5.154. Single-Photon Detectors - T-ETIT-108390</td>
</tr>
</tbody>
</table>
5.155. Solar Energy - T-ETIT-100774 ... 260
5.156. Solid State Reactions and Kinetics of Phase Transformations - T-MACH-110927 ... 261
5.157. Solid-State Optics, ohne Übungen - T-PHYS-104773 .. 263
5.158. Spektroskopie mit Elektronen und weichen Röntgenstrahlen - T-CHEMBIO-107821 ... 264
5.159. Struktur- und Phasenanalyse - T-MACH-102170 ... 265
5.160. Superconducting Magnet Technology - T-ETIT-113440 266
5.161. Superconducting Materials - T-ETIT-111096 .. 267
5.162. Superconducting Power Systems - T-ETIT-113439 ... 268
5.163. Superconductivity for Engineers - T-ETIT-111239 ... 269
5.164. Superhard Thin Film Materials - T-MACH-111257 .. 270
5.165. Superharte Dünnschichtmaterialien - T-MACH-102103 272
5.166. Technische Informationssysteme - T-MACH-102083 ... 274
5.167. Technische Schwingungsführung - T-MACH-105290 .. 276
5.168. Technologie der Stahlbauteile - T-MACH-105362 ... 277
5.169. The ABC of DFT - T-PHYS-105960 .. 279
5.170. Theoretical Quantum Optics - T-PHYS-110303 ... 280
5.171. Thermische Solarenergie - T-MACH-109225 ... 281
5.172. Thermische Turboschaltungen I - T-MACH-105363 ... 283
5.173. Thermische Turboschaltungen II - T-MACH-105364 .. 286
5.174. Thermodynamische Grundlagen / Heterogene Gleichgewichte - T-MACH-107670 ... 288
5.175. Thermophysics of Advanced Materials - T-MACH-111459 290
5.176. Thin Film and Small-scale Mechanical Behavior - T-MACH-105554 293
5.177. Thin Films – Preparation, Structure, Thermodynamics - T-MACH-112158 295
5.179. Thin Films: Technology, Physics, and Applications II - T-ETIT-108121 297
5.180. Triologie - T-MACH-105531 ... 298
5.181. Turbinen-Luftstrahl-Triebwerke - T-MACH-105366 ... 300
5.182. Tutorial Nonlinear Continuum Mechanics - T-MACH-111027 302
5.183. Übungen - Triologie - T-MACH-109303 .. 303
5.184. Übungen zu Angewandte Werkstoffsimulation - T-MACH-107671 305
5.185. Übungen zu Einführung in die Finite-Elemente-Methode - T-MACH-103303 307
5.186. Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion - T-MACH-107632 ... 308
5.187. Übungen zu Gefüge-Eigenschafts-Beziehungen - T-MACH-107683 309
5.188. Übungen zu Mathematische Methoden der Mikromechanik - T-MACH-110379 310
5.189. Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte - T-MACH-107669 ... 311
5.190. Übungen zu Werkstoffanalytik - T-MACH-107685 ... 313
5.191. Umformtechnik - T-MACH-105177 .. 315
5.192. Verbrennungsmotoren I - T-MACH-102194 .. 317
5.193. Verbrennungsmotoren II - T-MACH-104609 ... 318
5.194. Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK - T-ZAK-112655 ... 319
5.195. Vertiefungsmodul - Global Cultures - Selbstverbuchung BAK - T-ZAK-112658 ... 320
5.196. Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK - T-ZAK-112657 ... 321
5.197. Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK - T-ZAK-112656 ... 322
5.198. Vertiefungsmodul - Selbstverbuchung BeNe - T-ZAK-112346 323
5.199. Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK - T-ZAK-112654 ... 324
5.200. Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe - T-ZAK-112347 ... 325
5.201. Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe - T-ZAK-112350 ... 326
5.203. Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe - T-ZAK-112349 ... 328
5.204. Wasserstoff in Materialien - Übungen und Laborkurs - T-MACH-112942 ... 329
5.205. Wasserstoff in Materialien: von der Energieverspeicherung zur Materialversprödung - T-MACH-110957 ... 330
5.206. Werkstoffanalytik - T-MACH-107684 .. 332
5.207. Werkstoffe für den Leichtbau - T-MACH-105211 .. 333
5.208. Werkstoffe in der additiven Fertigung - T-MACH-110165 ... 335
5.209. Werkstoffmodellierung: versetzungs- und versetzungsbaubasierte Plastizität - T-MACH-105369 ... 337
5.211. Windkraft - T-MACH-105234 ... 340
5.212. Wissenschaftliches Programmieren für Ingenieure - T-MACH-100532 341

6. Studien- und Prüfungsordnung.. 343
7. Änderungssatzung ... 365
8. Berichtigung der Änderungssatzung .. 368
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Zweite Änderungssatzung</td>
<td>370</td>
</tr>
<tr>
<td>10. Dritte Änderungssatzung</td>
<td>371</td>
</tr>
<tr>
<td>11. Vierte Änderungssatzung</td>
<td>372</td>
</tr>
</tbody>
</table>
Qualifikationsziele

Die Absolventinnen und Absolventen des Master-Studiengangs MatWerk am KIT sind in der Lage, selbständig an Wertschöpfungsprozessen von der Materialentwicklung und Herstellung über die Weiterverarbeitung bis hin zur Produktentwicklung mitzuarbeiten und durch ihre forschungsorientierte Ausbildung auch in der Wissenschaft mitzuwirken. Sie sind insbesondere für eine verantwortungsvolle Tätigkeit in Industrie, technischer Dienstleistungen und Wissenschaft qualifiziert und erwerben die Befähigung zur Promotion.

Im Vertiefungsbereich, bestehend aus zwei Schwerpunkten, erwerben die Absolventinnen und Absolventen umfassende und detaillierte Kenntnisse in von ihnen ausgewählten Gebieten der Materialwissenschaft und Werkstofftechnik. Die forschungsorientierte Handlungskompetenz wird dabei in Fachpraktika im Rahmen der Schwerpunktwahl in den Forschungslaboren des KITs ausgebaut. Die Absolventinnen und Absolventen sind damit befähigt, eine wichtige Rolle in komplexen Forschungs- und Entwicklungsprojekten einzunehmen sowie am Innovationsprozess kompetent mitzuwirken und sind auf später Leitungsfunktionen fachlich vorbereitet.

In weiteren, auch nichttechnischen Wahlfächern eignen sich die Studierenden weitere Kompetenzen insbesondere in sozialwissenschaftlichen und wirtschaftswissenschaftlichen, selbst ausgewählten Fächern an. Sie sind unter anderem in der Lage, Entschließungen unter Berücksichtigung von gesellschaftlichen, ökonomischen und ethischen Randbedingungen durchzuführen. Sie haben in einem Industriepraktikum ihre Fertigkeiten und Kenntnisse im betrieblichen Umfeld erprobt und gefestigt.

Die Absolventinnen und Absolventen sind in der Lage, selbständig Aufgaben zu identifizieren, sich die zur Lösung notwendigen Informationen zu beschaffen, Methoden auszuwählen und sich Fähigkeiten anzueignen und damit ihren Beitrag zur Wertschöpfung zu leisten.
Inhaltsverzeichnis

0. Abkürzungsverzeichnis ... 2
1. Studienpläne, Module und Prüfungen ... 2
 1.1. Prüfungsmodalitäten... 2
 1.2. Module im Masterstudium.. 3
 1.3. Studienplan des Masterstudiums „M.Sc.“ .. 4
 1.4. Wahmöffmöglichkeiten im Modul Technische Vertiefung im Fach Interdisziplinäre Ergänzung 6
 1.5. Modul Masterarbeit ... 8
2. Berufspraktikum .. 8
 2.1. Inhalt und Durchführung des Berufspraktikums .. 8
 2.2. Anerkennung des Berufspraktikums .. 8
3. Schwerpunkte .. 9
 3.1. Umfang und Struktur .. 9
 3.2. Schwerpunkte und darin enthaltene Wahmöffmöglichkeiten .. 10

Änderungshistorie (ab 01.10.2020)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Beschreibung der Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.03.2021</td>
<td>Aktualisierung der Lehrveranstaltungen in den Schwerpunkten</td>
</tr>
<tr>
<td>24.09.2021</td>
<td>Aktualisierung der Lehrveranstaltungen in den Schwerpunkten</td>
</tr>
<tr>
<td>30.09.2021</td>
<td>Aktualisierung der Lehrveranstaltungen und Prüfungsleistungen im Modul Technische Vertiefung und in den Schwerpunkten</td>
</tr>
<tr>
<td>02.09.2022</td>
<td>Aktualisierung der Lehrveranstaltungen im Modul Technische Vertiefung und in den Schwerpunkten</td>
</tr>
<tr>
<td>28.01.2023</td>
<td>Aktualisierung der Lehrveranstaltungen in den Schwerpunkten</td>
</tr>
<tr>
<td>28.06.2023</td>
<td>Aktualisierung der Lehrveranstaltungen in den Schwerpunkten</td>
</tr>
<tr>
<td>12.03.2024</td>
<td>Aktualisierung der Lehrveranstaltungen in den Schwerpunkten</td>
</tr>
</tbody>
</table>

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
0. Abkürzungsverzeichnis

KIT-Fakultäten: mach KIT-Fakultät für Maschinenbau
inf KIT-Fakultät für Informatik
etit KIT-Fakultät für Elektrotechnik und Informationstechnik
chem KIT-Fakultät für Chemie und Biowissenschaften
ciw KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
phys KIT-Fakultät für Physik
wiwi KIT-Fakultät für Wirtschaftswissenschaften

Semester: WS Wintersemester
SS Sommersemester
ww wahlweise (Angebot im Sommer- und Wintersemester)

Sprache: D Deutsch
E Englisch

Leistungen: V Vorlesung
Ü Übung
P Praktikum
LP Leistungspunkte
mPr mündliche Prüfung
sPr schriftliche Prüfung
PA Prüfungsleistung anderer Art
SL Studienleistung
Gew Gewichtung einer Prüfungsleistung im Modul
bzw. in der Gesamtnote des Moduls

Sonstiges: B.Sc. Studiengang Bachelor of Science
M.Sc. Studiengang Master of Science
MatWerk Materialwissenschaft und Werkstofftechnik
SPO Studien- und Prüfungsordnung
SWS Semesterwochenstunden
w wählbar
p verpflichtend

1. Studienpläne, Module und Prüfungen

Die Angabe der Leistungspunkte (LP) erfolgt gemäß dem „European Credit Transfer and Accumulation System“ (ECTS).

1.1. Prüfungsmodalitäten

Für die Erfolgskontrollen in den Schwerpunkt-Modulen gelten folgende Regeln: Die Prüfungen sind grundsätzlich mündlich abzunehmen, bei unvertretbar hohem Prüfungsauwand kann eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Bei mündlichen Prüfungen in Schwerpunkten bzw. Schwerpunkt-Teilmodulen soll die Prüfungsdauer 5 Minuten pro Leistungspunkt betragen. Erstreckt sich eine mündliche Prüfung über mehr als 12 LP, soll die Prüfungsdauer 60 Minuten betragen.
1.2. Module im Masterstudium

Folgende Module sind im Masterstudiengang zu belegen:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Teilleistung</th>
<th>Koordinator</th>
<th>LP</th>
<th>Erfolgskontrolle</th>
<th>Gew</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Thermodynamik</td>
<td>Thermodynamische Grundlagen / Heterogene Gleichgewichte, Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria</td>
<td>Seifert</td>
<td>6</td>
<td>SL, mPr</td>
<td>6</td>
</tr>
<tr>
<td>2 Kinetik</td>
<td>Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion, Solid State Reactions and Kinetics of Phase Transformations, Corrosion</td>
<td>Seifert</td>
<td>6</td>
<td>SL, mPr</td>
<td>6</td>
</tr>
<tr>
<td>3 Simulation</td>
<td>Angewandte Werkstoffsimulation, Applied Materials Simulation</td>
<td>Gumbsch</td>
<td>6</td>
<td>SL, mPr</td>
<td>6</td>
</tr>
<tr>
<td>4 Eigenschaften</td>
<td>Gefüge-Eigenschafts-Beziehungen, Microstructure-Property-Relationships</td>
<td>Kirchlechner</td>
<td>6</td>
<td>SL, mPr</td>
<td>6</td>
</tr>
<tr>
<td>5 Werkstoffanalytik</td>
<td>Werkstoffanalytik, Materials Characterization</td>
<td>Pundt</td>
<td>6</td>
<td>SL, mPr</td>
<td>6</td>
</tr>
<tr>
<td>6 Schwerpunkt I</td>
<td>vgl. Abschnitt 3</td>
<td>16</td>
<td>mPr</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>7 Schwerpunkt II</td>
<td>vgl. Abschnitt 3</td>
<td>16</td>
<td>mPr</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>8 Technische Vertiefung</td>
<td>siehe 1.4</td>
<td>12</td>
<td>m/sPr</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9 Schlüsselqualifikationen</td>
<td>HoC/SPZ/ZAK-Veranstaltungen</td>
<td>4</td>
<td>SL*</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

In den Modulen 1-5 werden alle Teilleistungen sowohl in Englisch als auch in Deutsch angeboten.

In den Modulen 6-9 kann jeweils bis zum Gesamtumfang der Leistungspunkte des Moduls aus englischen oder deutschen Teilleistungen gewählt werden.

* Das Fach Überfachliche Qualifikationen und das Modul Schlüsselqualifikationen sind unbenotet. Gegebenenfalls benotete Erfolgskontrollen im Modul Schlüsselqualifikationen werden im Transcript of Records gelistet aber nicht für die Gesamtnote des Studiengangs angerechnet.

Zusätzlich ist ein Berufspraktikum im Umfang von 9 Wochen zu absolvieren (12 LP).
Im Anschluss an die Modulprüfungen ist eine Masterarbeit im Umfang von 6 Monaten (30 LP) zu erstellen und zu präsentieren.

1.3. **Studienplan des Masterstudiums „M.Sc.“**

Durchgehend deutschsprachige Variante:

<table>
<thead>
<tr>
<th>Fach</th>
<th>Semester</th>
<th>WS 1 (32 LP)</th>
<th>SS 2 (30 LP)</th>
<th>WS 3 (28 LP)</th>
<th>SS 4 (30 LP)</th>
<th>Summe 120 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialwiss. Vertiefung</td>
<td></td>
<td>Thermodynamische Grundlagen / Heterogene Gleichgewichte 6 LP, mPr</td>
<td>Angewandte Werkstoffsimulation 6 LP, mPr</td>
<td></td>
<td></td>
<td>30 LP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion 6 LP, mPr</td>
<td>Gefüge-Eigenschafts-Beziehungen 6 LP, mPr</td>
<td>Werkstoffanalytik 6 LP, mPr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwerpunkt I *</td>
<td></td>
<td>Siehe 3.2 8 LP, 2 mPr</td>
<td>Siehe 3.2 8 LP, 2 mPr</td>
<td></td>
<td></td>
<td>16 LP</td>
</tr>
<tr>
<td>Schwerpunkt II *</td>
<td></td>
<td></td>
<td>Siehe 3.2 16 LP, 4 mPr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interdisziplinäre Ergänzung</td>
<td></td>
<td>Siehe 1.4 4 LP, m/sPr</td>
<td>Siehe 1.4 8 LP, 2 m/sPr</td>
<td></td>
<td></td>
<td>12 LP</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td></td>
<td>HoC/SPZ/ZAK-Veranst. 4 LP, SL</td>
<td></td>
<td></td>
<td></td>
<td>4 LP</td>
</tr>
<tr>
<td>Berufspraktikum 12 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 LP</td>
</tr>
</tbody>
</table>

* Wahl von zwei aus vier möglichen Schwerpunkten entsprechend Abschnitt 3. Der konkrete LP-Umfang pro Semester ist von der Wahlkombination abhängig.
Durchgehend englischsprachige Variante:

<table>
<thead>
<tr>
<th>Semester</th>
<th>WS</th>
<th>SS</th>
<th>WS</th>
<th>SS</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fach</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>120 LP</td>
</tr>
<tr>
<td>Materialwiss. Vertiefung</td>
<td>Microstructure-Property-Relationships 6 LP, mPr</td>
<td>Applied Materials Simulation 6 LP, mPr</td>
<td></td>
<td></td>
<td>30 LP</td>
</tr>
<tr>
<td></td>
<td>Materials Characterization 6 LP, mPr</td>
<td>Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria 6 LP, mPr</td>
<td>Solid State Reactions and Kinetics of Phase Transformations, Corrosion 6 LP, mPr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwerpunkt I *</td>
<td>Siehe 3.2 8 LP, 2 mPr</td>
<td>Siehe 3.2 8 LP, 2 mPr</td>
<td></td>
<td></td>
<td>16 LP</td>
</tr>
<tr>
<td>Schwerpunkt II *</td>
<td></td>
<td></td>
<td>Siehe 3.2 16 LP, 4 mPr</td>
<td></td>
<td>16 LP</td>
</tr>
<tr>
<td>Interdisziplinäre Ergänzung</td>
<td></td>
<td>Siehe 1.4 4 LP, m/sPr</td>
<td>Siehe 1.4 8 LP, 2 m/sPr</td>
<td></td>
<td>12 LP</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td></td>
<td></td>
<td>HoC/SPZ/ZAK-Veranst. 4 LP, SL</td>
<td></td>
<td>4 LP</td>
</tr>
<tr>
<td>Berufspraktikum</td>
<td>12 LP</td>
<td></td>
<td></td>
<td></td>
<td>12 LP</td>
</tr>
</tbody>
</table>

* Wahl von zwei aus vier möglichen Schwerpunkten entsprechend Abschnitt 3. Der konkrete LP-Umfang pro Semester ist von der Wahlkombination abhängig.
1.4. Wahlmöglichkeiten im Modul Technische Vertiefung im Fach Interdisziplinäre Ergänzung

<table>
<thead>
<tr>
<th>LV-Nr</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
<th>SWS</th>
<th>LP</th>
<th>Erfolgskontrolle</th>
<th>Sem</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>2306321+2306323</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>Doppelbauer, Richter</td>
<td>3</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2147175</td>
<td>CAE-Workshop</td>
<td>Albers</td>
<td>3</td>
<td>4</td>
<td>PA</td>
<td>WS/SS</td>
<td>D</td>
</tr>
<tr>
<td>2146180</td>
<td>Antriebssystemtechnik A: Fahrzeugantreibetechnik</td>
<td>Albers</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2145150</td>
<td>Antriebssystemtechnik B: Stationäre Antriebssysteme</td>
<td>Albers</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2117500</td>
<td>Energieeffiziente Intralogistiksysteme</td>
<td>Schönung</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2145181</td>
<td>Angewandte Tribologie in der industriellen Produktentwicklung</td>
<td>Albers</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2181114</td>
<td>Tribologie</td>
<td>Scherge/Dienwiebel</td>
<td>5</td>
<td>8</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2113805</td>
<td>Grundlagen der Fahrzeugtechnik I*</td>
<td>Gauterin</td>
<td>4</td>
<td>8</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2113809</td>
<td>Automotive Engineering I*</td>
<td>Gauterin/Gießler</td>
<td>4</td>
<td>8</td>
<td>sPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2113812 +2114844</td>
<td>Grundsätze der Nutzfahrzeugentwicklung I+II</td>
<td>Zürn</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS/SS</td>
<td>D</td>
</tr>
<tr>
<td>2149670</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>Steegmüller, Kienzle</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2123364</td>
<td>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung</td>
<td>Mbang</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2133113</td>
<td>Verbrennungsmotoren I</td>
<td>Kubach</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2134151</td>
<td>Verbrennungsmotoren II</td>
<td>Kubach</td>
<td>3</td>
<td>5</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2150904</td>
<td>Automatisierte Produktionsanlagen</td>
<td>Fleischer</td>
<td>6</td>
<td>8</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2133108</td>
<td>Betriebssstoffe für motorische Antriebe</td>
<td>Kehrwald</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2189906</td>
<td>Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung</td>
<td>Dagan, Metz</td>
<td>1</td>
<td>2</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2169472</td>
<td>Thermische Solarenergie</td>
<td>Stiegitz</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2157381</td>
<td>Windkraft</td>
<td>Lewald</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2165515+2165517</td>
<td>Grundlagen der technischen Verbrennung I+II</td>
<td>Maas</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>3165016+3165017</td>
<td>Fundamentals of Combustion I*</td>
<td>Maas</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2166538+2166589</td>
<td>Grundlagen der technischen Verbrennung II</td>
<td>Maas</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2170478</td>
<td>Turbinen-Luftstrahl-Triebwerke</td>
<td>Bauer</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2424152</td>
<td>Robotik I – Einführung in die Robotik</td>
<td>Asfour</td>
<td>4</td>
<td>6</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2109035</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>Deml</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2109036</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>Deml</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2149667</td>
<td>Qualitätsmanagement</td>
<td>Lanza</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2115919</td>
<td>Bahnsystemtechnik</td>
<td>Gratzfeld</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS/SS</td>
<td>D</td>
</tr>
<tr>
<td>2115996</td>
<td>Schienenfahrzeugtechnik</td>
<td>Gratzfeld</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS/SS</td>
<td>D</td>
</tr>
<tr>
<td>2133132</td>
<td>Alternative Antriebe für Automobile</td>
<td>Noreikat</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>Code</td>
<td>Veranstaltung</td>
<td>Dozent</td>
<td>Kreditstunden</td>
<td>Leistung</td>
<td>Semester</td>
<td>Veranstaltungstyp</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>2106014</td>
<td>Datenanalyse für Ingenieure</td>
<td>Mikut, Reischl</td>
<td>3</td>
<td>sPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2169453+2169454</td>
<td>Thermische Turbomaschinen I*</td>
<td>Bauer</td>
<td>5</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2169553+2169454</td>
<td>Thermische Turbomaschinen I (auf Englisch) *</td>
<td>Bauer</td>
<td>5</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2170476+2170477</td>
<td>Thermische Turbomaschinen II*</td>
<td>Bauer</td>
<td>3</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2170553+2170477</td>
<td>Thermische Turbomaschinen II (auf Englisch) *</td>
<td>Bauer</td>
<td>5</td>
<td>mPr</td>
<td>SS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2121350</td>
<td>Product Lifecycle Management</td>
<td>Ovtcharova</td>
<td>2</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>Ovtcharova</td>
<td>3</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2161212+2161213</td>
<td>Technische Schwingungslehre</td>
<td>Fidlin</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2146190</td>
<td>Konstruktiver Leichbau</td>
<td>Albers</td>
<td>2</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2143882</td>
<td>Fertigungsprozesse der Mikrosystem-technik</td>
<td>Bade</td>
<td>2</td>
<td>mPr</td>
<td>WS/SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2141864</td>
<td>BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin: I</td>
<td>Guber</td>
<td>2</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2142883</td>
<td>BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin: II</td>
<td>Guber</td>
<td>2</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2142879</td>
<td>BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin: III</td>
<td>Guber</td>
<td>2</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2125763</td>
<td>Struktur- und Phasenanalyse</td>
<td>Wagner</td>
<td>2</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>4027111+12</td>
<td>Elektronenmikroskopie I+II (mit Übungen)</td>
<td>Eggeler</td>
<td>8</td>
<td>mPr</td>
<td>SS/WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>4027021+22</td>
<td>Bionik für Ingenieure und Naturwissenschaftler</td>
<td>Hölscher</td>
<td>2</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>231760</td>
<td>Fabrication and Characterisation of Optoelectronic Devices</td>
<td>Richards</td>
<td>2</td>
<td>sPr</td>
<td>SS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>4044021+4044022</td>
<td>Fundamentals of Optics and Photonics</td>
<td>Hunger</td>
<td>6</td>
<td>sPr</td>
<td>WS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>7148</td>
<td>Basic Molecular Cell Biology</td>
<td>Weth</td>
<td>2</td>
<td>sPr</td>
<td>SS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>3137020+3137021</td>
<td>Measurement and Control Systems</td>
<td>Stiller</td>
<td>4</td>
<td>sPr</td>
<td>WS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2141853</td>
<td>Polymers in MEMS A - Chemistry, Synthesis and Applications</td>
<td>Rapp</td>
<td>2</td>
<td>mPr</td>
<td>WS</td>
<td>D/E</td>
<td></td>
</tr>
<tr>
<td>2141854</td>
<td>Polymers in MEMS B - Physics, Manufacturing and Applications</td>
<td>Worgull</td>
<td>2</td>
<td>mPr</td>
<td>WS</td>
<td>D/E</td>
<td></td>
</tr>
<tr>
<td>2142855</td>
<td>Polymers in MEMS C - Biopolymers and Bioplastics</td>
<td>Worgull</td>
<td>2</td>
<td>mPr</td>
<td>SS</td>
<td>D/E</td>
<td></td>
</tr>
</tbody>
</table>

* Folgende Lehrveranstaltungen können nicht miteinander kombiniert werden:
 - Grundlagen der Fahrzeugtechnik I und Automotive Engineering I
 - Grundlagen der technischen Verbrennung I und Fundamentals of Combustion I
 - Thermische Turbomaschinen I und Thermische Turbomaschinen I (auf Englisch)
 - Thermische Turbomaschinen II und Thermische Turbomaschinen II (auf Englisch)
1.5. Modul Masterarbeit

2. Berufspraktikum

2.1. Inhalt und Durchführung des Berufspraktikums

Im Rahmen des Masterstudiums ist ein Berufspraktikum gemäß SPO § 14a zu absolvieren. Das Praktikum soll Einblicke in die und Erfahrungen in der Ingenieurtätigkeit im betrieblichen Umfeld vermitteln. Die vorgeschriebene Mindestdauer beträgt 9 Wochen. Ausgefallene Arbeitszeit muss in jedem Falle nachgeholt werden. Bei Ausfallzeiten sollte der Praktikant den auszubildenden Betrieb um eine Vertragsverlängerung ersuchen, um die berufspraktischen Tätigkeit im erforderlichen Umfang durchführen zu können.

Um eine ausreichende Breite der berufspraktischen Ausbildung zu gewährleisten, müssen Tätigkeiten aus mindestens zwei verschiedenen Arbeitsgebieten nachgewiesen werden.

Die Tätigkeiten können aus folgenden Gebieten gewählt werden:
- Werkstoffentwicklung
- Werkstoffprüfung / Qualitätskontrolle
- Materialsynthese
- Werkstoffauswahl im Produktentstehungsprozess
- Metallurgie / Pulvermetallurgie
- Umformtechnik
- Umformtechnik
- Oberflächenbehandlung
- andere werkstofftechnische Tätigkeitsgebiete (nach Rücksprache mit dem Praktikantenamt der KIT-Fakultät für Maschinenbau).

2.2. Anerkennung des Berufspraktikums

Bildungsinländern wird nachdrücklich empfohlen, das Berufspraktikum ganz oder teilweise im Ausland abzuleisten. Berufspraktische Tätigkeiten in ausländischen Betrieben werden allerdings nur anerkannt, wenn sie nachvollziehbar den o.a. Richtlinien entsprechen.
3. Schwerpunkte

3.1. Umfang und Struktur

In jedem Fall werden bei der Festlegung der Schwerpunktnote alle Teilmodulnoten gemäß ihrer Leistungspunkte gewichtet. Bei der Bildung der Gesamtnote wird jeder Schwerpunkt mit 16 LP gewertet.

3.2. Schwerpunkte und darin enthaltene Wahlmöglichkeiten

SP 1: Konstruktionswerkstoffe

LV-Nr	Lehrveranstaltung	Dozent	SWS	LP	Erfolgs-	Sem	Sprache
--------	---	---------------------	-----	----	kontrolle		
2114053	Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzüge, Verarbeitung	Henning	2	4	mPr	SS	D
2125751	Praktikum "Technische Keramik"	Schell	2	4	SL	WS	D
2126749	Pulvermetallurgische Hochleistungswerkstoffe	Schell	2	4	mPr	SS	D
2173580	Mechanik und Festigkeitslehre von Kunststoffen	von Bernstorff	2	4	mPr	WS	D
2173586	Schwingfestigkeit	Guth	2	4	mPr	SS	D
2174571	Konstruieren mit Polymerwerkstoffen	Liedel	2	4	mPr	SS	D
2174572	Werkstoffe für den Leichtbau	Liebig	2	4	mPr	SS	D
2174573	Technologie der Stahlbauteile	Schulze	2	4	mPr	SS	D
2175590	Experimentelles metallographisches Praktikum	Mühl	3	4	SL	Ww	D
2177618	Superharte Dünnschichtmaterialien*	Ulrich	2	4	mPr	WS	D
2194729	Superhard Thin Film Materials*	Ulrich	2	4	mPr	SS	E
2194643	Aufbau und Eigenschaften verschleißfester Werkstoffe*	Ulrich	2	4	mPr	SS	D
2181712	Nanotribologie und –mechanik	Dienwiebel / Hölscher	2	4	PA	Ww	D/E
2181745	Auslegung hochbelasteter Bauteile	Aktaa	2	4	mPr	WS	D
2193050	Hochtemperaturkorrosion	Gorr	2	4	mPr	WS	D
2113102	Fahrzeuggleichtbau – Strategien, Konzepte, Werkstoffe	Henning	2	4	mPr	WS	D
2181750	Plastizität auf verschiedenen Skalen	Schulz/Greiner	2	4	PA	WS	D
2182572	Schadenskunde	Schneider/Greiner	2	4	mPr	WS	D
2181708	Biomechanik: Design in der Natur und nach der Natur	Matheck	2	4	SL	SS	D
2173583	Hydrogen in Materials: Design in der Natur und nach der Natur	Pundt	2	4	mPr	SS	E
2173584	Hydrogen in Materials: Design in the Natur	Wagner	2	4	SL	SS	E
2174572	Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung**	Pundt	2	4	mPr	WS	D
2174573	Wasserstoff in Materialien: Übungen und Laborkurs***	Wagner	2	4	SL	WS	D
2173600	Werkstoffe in der additiven Fertigung	Dietrich	2	4	mPr	WS	D
2173648	Plasticity of Metals and Intermetallics	Kauffmann	4	8	mPr	SS	E
2174605	High Temperature Materials	Heilmaier	2	4	mPr	WS	E
2178123	Thin Film and Small Scale Mechanical Behavior	Gruber/ Weygand	2	4	mPr	SS	E
2193051	Thermophysics of Advanced Materials	Sergeev	2	4	mPr	ww	E
2173421	Phase Transformations in Materials	Heilmaier/ Kauffman	2	4	mPr	WS	E
2174555	Materialkunde der Nichteisenmetalle	Heilmaier/Gorr	3	4	mPr	SS	D
2173573	Thin Films – Preparation, Structure, Thermodynamics	Wagner	2	4	mPr	WS	E

* Von den Erfolgskontrollen/Teilleistungen „Superharte Dünnschichtmaterialien“, „Superhard Thin Film Materials“ und „Aufbau und Eigenschaften verschleißfester Werkstoffe“ kann nur eine im Schwerpunkt SP1 abgelegt werden.

Studienplan der KIT-Fakultät für Maschinenbau für den Masterstudiengang Materialwissenschaft und Werkstofftechnik SPO2017

Beschluss des KIT-Fakultätsrates vom 27.11.2019 mit redaktionellen Änderungen, gültig ab 01.04.2022

10/15

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))

Modulhandbuch mit Stand vom 13.03.2024

17

*** Von den beiden Teilleistungen „Hydrogen in Materials: Exercises and Lab Course“ und „Wasserstoff in Materialien: Übungen und Laborkurs“ kann nur eine im Schwerpunkt SP1 abgelegt werden.
SP 2: Computational Materials Science

Koordinator: Prof. Nestler

<table>
<thead>
<tr>
<th>LV-Nr</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
<th>SWS</th>
<th>LP</th>
<th>Erfolgs-kontrolle</th>
<th>Sem</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>2183717</td>
<td>Seminar "Werkstoffsimulation" (Pflicht)</td>
<td>Gumbsch / Nestler / Böhlke</td>
<td>4</td>
<td>8 PA</td>
<td>WS/SS</td>
<td>D/E</td>
<td></td>
</tr>
<tr>
<td>2181740</td>
<td>Atomistische Simulation und Partikel-dynamik</td>
<td>Gumbsch</td>
<td>3</td>
<td>4 mPr</td>
<td>SS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2183702</td>
<td>Mikrostruktursimulation</td>
<td>Nestler / Weygand / August</td>
<td>3</td>
<td>4 mPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2183721</td>
<td>High Performance Computing</td>
<td>Nestler / Selzer</td>
<td>2</td>
<td>4 sPr</td>
<td>WS/SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2162282+2162257</td>
<td>Einführung in die Finite-Elemente-Methode</td>
<td>Böhlke / Langhoff</td>
<td>3</td>
<td>6 mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2161250+2161147</td>
<td>Rechnerunterstützte Mechanik I</td>
<td>Böhlke / Langhoff</td>
<td>4</td>
<td>6 mPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2162296+2162297</td>
<td>Rechnerunterstützte Mechanik II</td>
<td>Böhlke / Langhoff</td>
<td>4</td>
<td>6 mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2182732</td>
<td>Einführung in die Materialtheorie</td>
<td>Kamlah</td>
<td>2</td>
<td>4 mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2181720</td>
<td>Grundlagen der nichtlinearen Kontinuumsmechanik</td>
<td>Kamlah</td>
<td>2</td>
<td>4 mPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2181738</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>Weygand / Gumbsch</td>
<td>2</td>
<td>4 mPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2182740</td>
<td>Werkstoffmodellierung: Versetzungs-basierte Plastizität</td>
<td>Weygand</td>
<td>2</td>
<td>4 mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2182741</td>
<td>Data Science and Scientific Workflows</td>
<td>Gumbsch / Weygand</td>
<td>3</td>
<td>4 SL, mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>6215903 / 6215904</td>
<td>Bruch- und Schädigungsmechanik</td>
<td>Seelig</td>
<td>4</td>
<td>6 mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2181745</td>
<td>Auslegung hochbelasteter Bauteile</td>
<td>Aktaa</td>
<td>2</td>
<td>4 mPr</td>
<td>WS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2162260+2162281</td>
<td>Mathematische Methoden der Mikro-mechanik</td>
<td>Böhlke</td>
<td>3</td>
<td>6 mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2162344</td>
<td>Nonlinear Continuum Mechanics</td>
<td>Böhlke</td>
<td>3</td>
<td>4 mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2305263+2305265</td>
<td>Electromagnetics and Numerical Calculation of Fields</td>
<td>Dössel</td>
<td>3</td>
<td>4 mPr</td>
<td>WS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>4023141+4023142</td>
<td>Simulation nanoskaliger Systeme</td>
<td>Wenzel</td>
<td>3</td>
<td>6 mPr</td>
<td>SS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>4023021+4023022</td>
<td>Computational Photonics</td>
<td>Rockstuhl</td>
<td>4</td>
<td>6 mPr</td>
<td>WS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>4023151+4023152</td>
<td>The ABC of DFT</td>
<td>Wenzel</td>
<td>3</td>
<td>6 mPr</td>
<td>SS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>4023161+4023162</td>
<td>Computational Condensed Matter Physics</td>
<td>Wenzel</td>
<td>6</td>
<td>12 mPr</td>
<td>SS</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2142875</td>
<td>Mikrosystem Simulation</td>
<td>Korvink</td>
<td>3</td>
<td>4 sPr</td>
<td>SS</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV-Nr</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
<th>SWS</th>
<th>LP</th>
<th>Erfolgskontrolle</th>
<th>Sem</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149657X</td>
<td>X Fertigungstechnik</td>
<td>Schulze</td>
<td>6</td>
<td>8</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2174575X</td>
<td>Gießereikunde</td>
<td>Klar/Günther</td>
<td>2</td>
<td>4</td>
<td>sPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2173571X</td>
<td>Schweißtechnik</td>
<td>Farajian</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2173590X</td>
<td>X Polymereingenieung I</td>
<td>Elsener</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2174596X</td>
<td>X Polymereingenieung II</td>
<td>Elsener</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2193010X</td>
<td>X Grundlagen der Herstellungsverfahren der Keramik und</td>
<td>Schell</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Pulvermetallurgie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22948/22990</td>
<td>Materialien für elektrochemische Speicher und Wandler</td>
<td>Tübke</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS/SS</td>
<td>D</td>
</tr>
<tr>
<td>2177601X</td>
<td>X Aufbau und Eigenschaften von Schutzschichten</td>
<td>Ulrich</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2178642X</td>
<td>X Lasereinsatz im Automobilbau</td>
<td>Schneider</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2150681X</td>
<td>Umformtechnik</td>
<td>Herlan</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2173560X</td>
<td>Experimentelles schweißtechnisches Praktikum, in Gruppen</td>
<td>Schulze/Dietrich</td>
<td>3</td>
<td>4</td>
<td>SL</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2173520X</td>
<td>X Werkstoffrecycling und Nachhaltigkeit</td>
<td>Liebig</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2113110X</td>
<td>X Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und</td>
<td>Kärger/Liebig</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Praxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2114107X</td>
<td>X Simulation der Prozesskette kontinuierlich verstärkter</td>
<td>Kärger</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Faserverbundbauteile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2149700X</td>
<td>X Projektpaketum Additive Fertigung: Entwicklung und Ferti-</td>
<td>Zanger</td>
<td>2</td>
<td>4</td>
<td>PA</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>gung eines additiven Bauteils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2150550X</td>
<td>X Praktikum Produktionsintegrierte Messtechnik</td>
<td>Lanza</td>
<td>3</td>
<td>4</td>
<td>PA</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>22929+22930</td>
<td>X Additive Manufacturing for Process Engineering + Prac-</td>
<td>Klahn</td>
<td>3</td>
<td>6</td>
<td>SL, mPr</td>
<td>SS</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>tical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2141861X</td>
<td>X Grundlagen der Mikrosystemtechnik I</td>
<td>Korvink</td>
<td>2</td>
<td>4</td>
<td>m/s Pr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2142874X</td>
<td>X Grundlagen der Mikrosystemtechnik II</td>
<td>Korvink</td>
<td>2</td>
<td>4</td>
<td>m/s Pr</td>
<td>SS</td>
<td>E</td>
</tr>
<tr>
<td>2301478X</td>
<td>X Laser Metrology</td>
<td>Eichhorn</td>
<td>2</td>
<td>3</td>
<td>mPr</td>
<td>SS</td>
<td>E</td>
</tr>
<tr>
<td>2141501X</td>
<td>X Mikro NMR Technologie</td>
<td>Korvink</td>
<td>2</td>
<td>4</td>
<td>PA</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2311629+2311631</td>
<td>X Optical Engineering</td>
<td>Stork</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
</tbody>
</table>

Studienplan der KIT-Fakultät für Maschinenbau für den Masterstudiengang Materialwissenschaft und Werkstofftechnik SPO2017
Beschluss des KIT-Fakultätsrates vom 27.11.2019 mit redaktionellen Änderungen, gültig ab 01.04.2022

13/15
SP 4: Funktionswerkstoffe

Koordinator: Prof. Ehrenberg

<table>
<thead>
<tr>
<th>LV-Nr</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
<th>SWS</th>
<th>LP</th>
<th>Erfolgskontrolle</th>
<th>Sem</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>2304207+</td>
<td>Batterien und Brennstoffzellen*</td>
<td>Weber</td>
<td>3</td>
<td>5</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2304213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2304231</td>
<td>Sensoren</td>
<td>Meneskiou</td>
<td>2</td>
<td>3</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2304240</td>
<td>Sensore systeme</td>
<td>Wersing</td>
<td>2</td>
<td>3</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2313737</td>
<td>Photovoltaik**</td>
<td>Powalla</td>
<td>4</td>
<td>6</td>
<td>sPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2313726+</td>
<td>Optoelektronik**</td>
<td>Lemmer</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2313728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2313734</td>
<td>Grundlagen der Plasmatecnologie</td>
<td>Kling</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>2141865</td>
<td>Neue Akten und Sensoren</td>
<td>Kohl / Sommer</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2141866</td>
<td>Akten und Sensoren in der Nanotechnik</td>
<td>Kohl</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>4021011</td>
<td>Elektronische Eigenschaften von Festkörper I</td>
<td>Weber / Weiß</td>
<td>4</td>
<td>8</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörper II</td>
<td>Ustinov</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>5404</td>
<td>Spektroskopie mit Elektronen und weichen Röntgenstrahlen</td>
<td>Heske / Weinhardt</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>D</td>
</tr>
<tr>
<td>5439</td>
<td>Moderne Charakterisierungs- methoden zur Charakterisierung von Materialien und Katalysatoren</td>
<td>Grunwald / Kleist / Lichtenberg</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>23660</td>
<td>VLSI-Technologie</td>
<td>Siegel</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2312700+</td>
<td>Bauelemente der Elektrotechnik</td>
<td>Kempf</td>
<td>4</td>
<td>6</td>
<td>sPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2126784</td>
<td>Funktionskeramiken</td>
<td>Hinterstein</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2181710</td>
<td>Mechanik von Mikrosystemen</td>
<td>Gruber / Greiner</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2312717 +</td>
<td>Superconducting Materials***</td>
<td>Holzapfel</td>
<td>4</td>
<td>6</td>
<td>mPr</td>
<td>WS/ SS</td>
<td>E</td>
</tr>
<tr>
<td>2312708+</td>
<td>Superconductivity for Engineers***</td>
<td>Holzapfel / Kempf</td>
<td>3</td>
<td>5</td>
<td>sPr</td>
<td>WS/ SS</td>
<td>E</td>
</tr>
<tr>
<td>2312698</td>
<td>Superconducting Magnet Technology</td>
<td>Arndt</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>E</td>
</tr>
<tr>
<td>2314011</td>
<td>Superconducting Power Systems</td>
<td>Noe</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2193013</td>
<td>Lasergestützte Methoden und deren Einsatz für Energiespeichermaterialien</td>
<td>Pfleging</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>ww</td>
<td>D</td>
</tr>
<tr>
<td>2193007</td>
<td>Materialien und Werkstoffe für die Energiewende***</td>
<td>Seifert</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>D</td>
</tr>
<tr>
<td>2193008</td>
<td>Engineering Materials for the Energy Transition****</td>
<td>Franke/Seifert</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>E</td>
</tr>
<tr>
<td>2313709</td>
<td>Plastic Electronics / Polymerelektronik</td>
<td>Lemmer</td>
<td>2</td>
<td>3</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>5072</td>
<td>Batteries and Fuel Cells*</td>
<td>Ehrenberg / Scheiba</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>5073</td>
<td>Hydrogen as Energy Carrier</td>
<td>Ehrenberg / Leon</td>
<td>2</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2313745+</td>
<td>Solar Energy**</td>
<td>Richards</td>
<td>4</td>
<td>6</td>
<td>sPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2313750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4020011</td>
<td>Solid State Optics</td>
<td>Hetterich</td>
<td>4</td>
<td>8</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2312680+</td>
<td>Single-Photon-Detectors</td>
<td>Ilin</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2312694</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4020021+</td>
<td>Nano Optics</td>
<td>Naber</td>
<td>4</td>
<td>8</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>4020022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2300486+</td>
<td>Optoelectronic Components</td>
<td>Freude</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
<td>E</td>
</tr>
<tr>
<td>2300487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4023011+</td>
<td>Theoretical Quantum Optics</td>
<td>Rockstuhl</td>
<td>3</td>
<td>6</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>4023012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2313724</td>
<td>Adaptive Optics</td>
<td>Gladysz</td>
<td>2</td>
<td>3</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
<tr>
<td>2313747+</td>
<td>Light and Display Engineering</td>
<td>Kling</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
<td>E</td>
</tr>
</tbody>
</table>

*Studienplan der KIT-Fakultät für Maschinenbau für den Masterstudiengang Materialwissenschaft und Werkstofftechnik SPO2017
Beschluss des KIT-Fakultätsrates vom 27.11.2019 mit redaktionellen Änderungen, gültig ab 01.04.2022
14/15

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024

21
2313749

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Kursnummer2</th>
<th>Besetzung</th>
<th>Kursname</th>
<th>Dozent</th>
<th>Modul</th>
<th>WS</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2309464+ 2309465</td>
<td>Koos</td>
<td>Optical Waveguides and Fibers</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
</tr>
<tr>
<td>X</td>
<td>2309460+ 2309461</td>
<td>Freude</td>
<td>Optical Transmitters and Receivers</td>
<td>4</td>
<td>6</td>
<td>mPr</td>
<td>WS</td>
</tr>
<tr>
<td>X</td>
<td>2312670+ 2312675</td>
<td>Ilin</td>
<td>Thin films: technology, physics and applications I</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>WS</td>
</tr>
<tr>
<td>X</td>
<td>2312671+ 2312673</td>
<td>Ilin</td>
<td>Thin films: technology, physics and applications II</td>
<td>3</td>
<td>4</td>
<td>mPr</td>
<td>SS</td>
</tr>
</tbody>
</table>

* Von den beiden Teilleistungen „Batterien und Brennstoffzellen“ und „Batteries and Fuel Cells“ kann nur eine im Schwerpunkt SP4 abgelegt werden.
*** Von den beiden Teilleistungen „Superconducting Materials“ und „Superconductivity for Engineers“ kann nur eine im Schwerpunkt SP4 abgelegt werden.
**** Von den beiden Teilleistungen „Materialien und Werkstoffe für die Energiewende“ und „Engineering Materials for the Energy Transition“ kann nur eine im Schwerpunkt SP4 abgelegt werden.
3 Aufbau des Studiengangs

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterarbeit</td>
<td>30 LP</td>
</tr>
<tr>
<td>Berufspraktikum</td>
<td>12 LP</td>
</tr>
<tr>
<td>Materialwissenschaftliche Vertiefung</td>
<td>30 LP</td>
</tr>
<tr>
<td>Schwerpunkt I</td>
<td>16 LP</td>
</tr>
<tr>
<td>Schwerpunkt II</td>
<td>16 LP</td>
</tr>
<tr>
<td>Interdisziplinäre Ergänzung</td>
<td>12 LP</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td>4 LP</td>
</tr>
<tr>
<td>Freiwillige Bestandteile</td>
<td></td>
</tr>
<tr>
<td>Zusatzleistungen</td>
<td></td>
</tr>
<tr>
<td>Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.</td>
<td></td>
</tr>
</tbody>
</table>

3.1 Masterarbeit

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103835 Masterarbeit</td>
<td>30 LP</td>
</tr>
</tbody>
</table>

3.2 Berufspraktikum

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103838 Berufspraktikum</td>
<td>12 LP</td>
</tr>
</tbody>
</table>

3.3 Materialwissenschaftliche Vertiefung

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103710 Thermodynamik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-103711 Kinetik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-103712 Simulation</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-103713 Eigenschaften</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-103714 Werkstoffanalytik</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.4 Schwerpunkt I

<table>
<thead>
<tr>
<th>Schwerpunkt I (Wahl: 1 Bestandteil)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103738 Konstruktionswerkstoffe</td>
<td>16 LP</td>
</tr>
<tr>
<td>M-MACH-103739 Computational Materials Science</td>
<td>16 LP</td>
</tr>
<tr>
<td>M-MACH-103740 Materialprozesstechnik</td>
<td>16 LP</td>
</tr>
<tr>
<td>M-MACH-103741 Funktionswerkstoffe</td>
<td>16 LP</td>
</tr>
</tbody>
</table>
3.5 Schwerpunkt II

<table>
<thead>
<tr>
<th>Schwerpunkt II (Wahl: 1 Bestandteil)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103738 Konstruktionswerkstoffe</td>
<td>16 LP</td>
</tr>
<tr>
<td>M-MACH-103739 Computational Materials Science</td>
<td>16 LP</td>
</tr>
<tr>
<td>M-MACH-103740 Materialprozesstechnik</td>
<td>16 LP</td>
</tr>
<tr>
<td>M-MACH-103741 Funktionswerkstoffe</td>
<td>16 LP</td>
</tr>
</tbody>
</table>

3.6 Interdisziplinäre Ergänzung

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103715 Technische Vertiefung</td>
<td>12 LP</td>
</tr>
</tbody>
</table>

3.7 Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-103721 Schlüsselqualifikationen</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

3.8 Zusatzleistungen

<table>
<thead>
<tr>
<th>Zusatzleistungen (Wahl: max. 30 LP)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ZAK-106099 Begleitstudium - Nachhaltige Entwicklung</td>
<td>19 LP</td>
</tr>
<tr>
<td>M-ZAK-106235 Begleitstudium - Angewandte Kulturwissenschaft Die Erstverwendung ist ab 01.04.2023 möglich.</td>
<td>22 LP</td>
</tr>
</tbody>
</table>

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))

Modulhandbuch mit Stand vom 13.03.2024
4 Module

4.1 Modul: Begleitstudium - Angewandte Kulturwissenschaft [M-ZAK-106235]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: Zusatzleistungen (EV ab 01.04.2023)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>3 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlinformationen

Sofern Sie Leistungen des ZAK für die Überfachlichen Qualifikationen und das Begleitstudium nutzen wollen, ordnen Sie diese unbedingt zuerst den Überfachlichen Qualifikationen zu und wenden sich für eine Verbuchung im Begleitstudium an das Sekretariat Lehre des ZAK (stg@zak.kit.edu).

Im Vertiefungsmodul müssen drei Leistungen in drei unterschiedlichen Bausteinen erbracht werden. Zur Wahl stehen die folgenden Bausteine:

- Technik & Verantwortung
- Doing Culture
- Medien & Ästhetik
- Lebenswelten
- Global Cultures

Erbracht werden müssen zwei Leistungen mit je 3 LP und eine Leistung mit 5 LP. Für die Selbstverbuchung im Vertiefungsmodul ist zunächst die passende Teilleistung auszuwählen.

Hinweis: Sofern Sie sich vor dem 01.04.2023 beim ZAK für das Begleitstudium Angewandte Kulturwissenschaft angemeldet haben, gilt die Selbstverbuchung einer Leistung in diesem Modul als Antrag im Sinne von §20 Absatz 2 der Satzung für das Begleitstudium Angewandte Kulturwissenschaft. Dies bedeutet, dass sich Ihre Gesamtnote im Begleitstudium als Durchschnitt der Noten der Prüfungsleistungen (und nicht als Durchschnitt der Modulnoten) berechnet.

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112653</td>
<td>Grundlagenmodul - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112654</td>
<td>Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112655</td>
<td>Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112656</td>
<td>Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112657</td>
<td>Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
<tr>
<td>T-ZAK-112658</td>
<td>Vertiefungsmodul - Global Cultures - Selbstverbuchung</td>
<td>3 LP</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

Vertiefungsmodul (Wahl: 3 Bestandteile)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112659</td>
<td>Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft</td>
<td>4 LP</td>
<td>Mielke, Myglas</td>
</tr>
</tbody>
</table>

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
Erfolgskontrolle(n)
Die Erfolgskontrollen sind in der jeweiligen Teilleistung erläutert. Sie setzen sich zusammen aus:

- Protokollen
- Referaten
- einer Seminararbeit
- einem Praktikumsbericht
- einer mündlichen Prüfung

Nach erfolgreichem Abschluss des Begleitstudiums erhalten die Absolvierenden ein benotetes Zeugnis und ein Zertifikat des KIT.

Voraussetzungen

Vorlesungsverzeichnis, Satzung (Studienordnung), Anmeldeformular zur mündlichen Abschlussprüfung und Leitfäden zum Erstellen der verschiedenen schriftlichen Leistungsanforderungen sind als Download auf der Homepage des ZAK unter www.zak.kit.edu/begleitstudium-bak zu finden.

Qualifikationsziele

Sie können die aus dem Vertiefungsmodul gewählten Inhalte in den Grundlagenkontext einordnen sowie die Inhalte der gewählten Lehrveranstaltungen selbständig und exemplarisch analysieren, bewerten und darüber in schriftlicher und mündlicher Form wissenschaftlich kommunizieren. Absolventinnen und Absolventen können gesellschaftliche Themen- und Problemfelder analysieren und in einer gesellschaftlich verantwortungsvollen und nachhaltigen Perspektive kritisch reflektieren.

Inhalt

Die thematischen Wahlfelder des Begleitstudiums gliedern sich in folgende 5 Bausteine und deren Unterthemen:

Baustein 1 Technik & Verantwortung
Wertewandel / Verantwortungsethik, Technikentwicklung / Technikgeschichte, Allge meine Ökologie, Nachhaltigkeit

Baustein 2 Doing Culture
Kulturwissenschaft, Kulturmanagement, Kreativwirtschaft, Kulturinstitutionen, Kulturpolitik

Baustein 3 Medien & Ästhetik
Medienkommunikation, Kulturästhetik

Baustein 4 Lebenswelten
Kultursoziologie, Kulturerbe, Architektur und Stadtplanung, Arbeitswissenschaft

Baustein 5 Global Cultures
Multikulturalität / Interkulturalität / Transkulturalität, Wissenschaft und Kultur

Zusammensetzung der Modulnote
Die Gesamtnote des Begleitstudiums errechnet sich als ein mit Leistungspunkten gewichteter Durchschnitt der Noten der Prüfungsleistungen.

Vertiefungsmodul

- Referat 1 (3 LP)
- Referat 2 (3 LP)
- Seminararbeit inkl. Referat (5 LP)
- mündliche Prüfung (4 LP)
Anmerkungen
Mit dem Begleitstudium Angewandte Kulturwissenschaft stellt das KIT ein überfachliches Studienangebot als Zusatzqualifikation zur Verfügung, mit dem das jeweilige Fachstudium um interdisziplinäres Grundlagenwissen und fachübergreifendes Orientierungswissen im kulturwissenschaftlichen Bereich ergänzt wird, welches für sämtliche Berufe zunehmend an Bedeutung gewinnt.

Arbeitsaufwand
Der Arbeitsaufwand setzt sich aus der empfohlenen Stundenanzahl der einzelnen Module zusammen:

- Grundlagenmodul ca. 90 h
- Vertiefungsmodul ca. 340 h
- Praxismodul ca. 120 h

Summe: ca. 550 h

Lehr- und Lernformen

- Vorlesungen
- Seminare
- Workshops
- Praktikum

Literatur
Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell festgelegt.
4.2 Modul: Begleitstudium - Nachhaltige Entwicklung [M-ZAK-106099]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: Zusatzleistungen (EV ab 01.04.2023)

Leistungspunkte: 19
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 3 Semester
Sprache: Deutsch
Level: 4
Version: 1

Wahlinformationen

Sofern Sie Leistungen des ZAK für die Überfachlichen Qualifikationen und das Begleitstudium nutzen wollen, ordnen Sie diese unbedingt zuerst den Überfachlichen Qualifikationen zu und wenden sich für eine Verbuchung im Begleitstudium an das Sekretariat Lehre des ZAK (stg@zak.kit.edu).

Im Wahlmodul müssen Leistungen im Umfang von 6 LP in zwei der vier Bausteine erbracht werden:

- Nachhaltige Stadt- und Quartiersentwicklung
- Nachhaltigkeitsbewertung von Technik
- Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit
- Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft

In der Regel sind zwei Leistungen mit je 3 LP zu erbringen. Für die Selbstverbuchung im Wahlmodul ist zunächst die passende Teilleistung auszuwählen.

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Wahlmodul (Wahl: mind. 6 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112345 Grundlagenmodul - Selbstverbuchung BeNe</td>
<td>3 LP Myglas</td>
</tr>
<tr>
<td>T-ZAK-112347 Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-ZAK-112348 Wahlmodul - Nachhaltigkeitsbewertung von Technik - Selbstverbuchung BeNe</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-ZAK-112349 Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-ZAK-112350 Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe</td>
<td>3 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112346 Vertiefungsmodul - Selbstverbuchung BeNe</td>
</tr>
<tr>
<td>T-ZAK-112351 Mündliche Prüfung - Begleitstudium Nachhaltige Entwicklung</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
Die Erfolgskontrollen sind im Rahmen der jeweiligen Teilleistung erläutert.
Sie setzen sich zusammen aus:

- Protokollen
- einem Reflexionsbericht
- Referaten
- Präsentationen
- die Ausarbeitung einer Projektarbeit
- einer individuellen Hausarbeit

Nach erfolgreichem Abschluss des Begleitstudiums erhalten die Absolvierenden ein benotetes Zeugnis und ein Zertifikat, die vom ZAK ausgestellt werden.

Voraussetzungen
Das Angebot ist studienbegleitend und muss nicht innerhalb eines definierten Zeitraums abgeschlossen werden. Für alle Erfolgskontrollen der Module des Begleitstudiums ist eine Immatrikulation erforderlich. Die Teilnahme am Begleitstudium wird durch § 3 der Satzung geregelt.
Vorlesungsverzeichnis, Satzung (Studienordnung), Anmeldeformular zur mündlichen Abschlussprüfung und Leitfäden zum Erstellen der verschiedenen schriftlichen Leistungsanforderungen sind als Download auf der Homepage des ZAK unter http://www.zak.kit.edu/begleitstudium-bene zu finden.

Qualifikationsziele

Inhalt
Die thematischen Wahlbereiche des Begleitstudiums gliedern sich in Modul 2 Wahlbereich in folgende 4 Bausteine und deren Untertemperaturen:

- **Baustein 1** Nachhaltige Stadt- & Quartiersentwicklung
 Die Lehrveranstaltungen bieten einen Überblick über das Ineinandergreifen von sozialen, ökologischen und ökonomischen Dynamiken im Mikrokosmos Stadt.

- **Baustein 2** Nachhaltigkeitsbewertung von Technik
 Meist anhand laufender Forschungsaktivitäten werden Methoden und Zugänge der Technikfolgenabschätzung erarbeitet.

- **Baustein 3** Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit
 Unterschiedliche Zugänge zum individuellen Wahrnehmen, Erleben, Gestalten und Verantworten von Beziehungen zur Mit- und Umwelt und zu sich selbst werden exemplarisch vorgestellt.

- **Baustein 4** Nachhaltigkeit in Kultur, Wirtschaft & Gesellschaft
 Die Lehrveranstaltungen haben i.d.R. einen interdisziplinären Ansatz, können aber auch einen der Bereiche Kultur, Wirtschaft oder Gesellschaft sowohl anwendungsbezogen als auch theoretisch fokussieren.

Kern des Begleitstudiums ist eine **Fallstudie im Vertiefungsbereich**. In diesem **Projektseminar** betreiben Studierende selbst Nachhaltigkeitsforschung mit praktischem Bezug. Ergänzt wird die Fallstudie durch eine mündliche Prüfung mit zwei Themen aus Modul 2 Wahlbereich und Modul 3 Vertiefung.
Zusammensetzung der Modulnote
Die Gesamtnote des Begleitstudiums errechnet sich als ein mit Leistungspunkten gewichteter Durchschnitt der Noten der Prüfungsleistungen.

Wahlmodul
- Referat 1 (3 LP)
- Referat 2 (3 LP)
- mündliche Prüfung (4 LP)

Vertiefungsmodul
- individuelle Hausarbeit (6 LP)
- mündliche Prüfung (4 LP)

Anmerkungen
Das Begleitstudium Nachhaltige Entwicklung am KIT basiert auf der Überzeugung, dass ein langfristig soziales und ökologisch verträgliches Zusammenleben in der globalen Welt nur möglich ist, wenn Wissen über notwendige Veränderungen in Wissenschaft, Wirtschaft und Gesellschaft erworben und angewandt wird.

Im Vordergrund stehen erfahrungs- und anwendungsorientiertes Wissen und Kompetenzen, aber auch Theorien und Methoden werden erlernt. Ziel ist es, das eigene Handeln als Studierende, Forschende und spätere Entscheidungstragende ebenso wie als Individuum und Teil der Gesellschaft unter dem Aspekt der Nachhaltigkeit vertreten zu können.

Das Begleitstudium vermittelt Grundlagen des Projektmanagements, schult Teamfähigkeit, Präsentationskompetenzen sowie Selbstreflexion. Es schafft komplementär zum Fachstudium am KIT ein grundlegendes Verständnis von Nachhaltigkeit, das für alle Berufsfelder von Bedeutung ist. Integrative Konzepte und Methoden sind dabei essenziell: Um natürliche Ressourcen langfristig zu nutzen und die globale Zukunft sozial gerecht zu gestalten, müssen nicht nur verschiedene Disziplinen, sondern auch Bürgerinnen und Bürger, Praktiker und Institutionen zusammearbeiten.

Arbeitsaufwand
Der Arbeitsaufwand setzt sich aus der Stundenanzahl der einzelnen Module zusammen:

- Grundlagenmodul ca. 180 h
- Wahlfachmodul ca. 150 h
- Vertiefungsmodul ca. 180 h

Summe: ca. 510 h

Lehr- und Lernformen
- Vorlesungen
- Seminare
- Workshops

Literatur
Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell festgelegt.
Modul: Berufspraktikum [M-MACH-103838]

Verantwortung: Dr. Patric Gruber
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Berufspraktikum

Leistungspunkte: 12
Notenskala: best./nicht best.
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-MACH-107764 | Berufspraktikum | 12 LP | Gruber |

Erfolgskontrolle(n)
Vorlage der Praktikumsdokumente (Ausbildungsvertrag, Tätigkeitsnachweis, Praktikumszeugnis) sowie Ablegen eines Praktikumsberichtes in Form einer Kurzpräsentation (ca. 10 min) und eines schriftlichen Berichtes (2-3 Seiten Text bzw. 6-8 Folien inklusive Text).

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Um eine ausreichende Breite der berufspraktischen Ausbildung zu gewährleisten, müssen Tätigkeiten aus mindestens zwei verschiedenen materialwissenschaftlichen Arbeitsgebieten nachgewiesen werden.

Die Tätigkeiten können aus folgenden Gebieten zusammengesetzt sein:

- Werkstoffentwicklung
- Werkstoffprüfung / Qualitätskontrolle
- Materialsynthese
- Werkstoffauswahl im Produktentstehungsprozess
- Metallurgie / Pulvermetallurgie
- Umformtechnik
- Umformtechnik
- Oberflächentechnik
- Wärmebehandlung
- andere werkstofftechnische Tätigkeitsgebiete (nach Rücksprache mit dem Prüfungsausschuss).

Anmerkungen
Im Rahmen des Masterstudiums ist ein Berufspraktikum gemäß SPO § 14a zu absolvieren. Die vorgeschriebene Mindestdauer beträgt 9 Wochen in Vollzeit. Ausgefallene Arbeitszeit muss in jedem Fall nachgeholt werden. Bei Ausfallzeiten sollte der Praktikant den auszubildenden Betrieb um eine Vertragsverlängerung ersuchen, um die berufspraktischen Tätigkeit im erforderlichen Umfang durchführen zu können.

Arbeitsaufwand
Präsenzzzeit im Betrieb: 9 Wochen x 40 h/Woche = 360 h

Lehr- und Lernformen
Berufspraktikum
4 MODUL

Modul: Computational Materials Science [M-MACH-103739]

4.4 Modul: Computational Materials Science [M-MACH-103739]

Verantwortung: Prof. Dr. Britta Nestler
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Schwerpunkt I
Schwerpunkt II

Leistungspunkte: 16
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 4
Version: 6

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Ersterichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-107660</td>
<td>Seminar Werkstoffsimulation</td>
<td>8 LP</td>
<td>Nestler, Schulz</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich (Wahl: mind. 8 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Ersterichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-113412</td>
<td>Atomistische Simulation und Partikeldynamik</td>
<td>4 LP</td>
<td>Gumbsch, Schneider, Weygand</td>
</tr>
<tr>
<td>T-MACH-105310</td>
<td>Auslegung hochbelasteter Bauteile</td>
<td>4 LP</td>
<td>Aktaa</td>
</tr>
<tr>
<td>T-BGU-100087</td>
<td>Bruch- und Schädigungsmechanik</td>
<td>6 LP</td>
<td>Seelig</td>
</tr>
<tr>
<td>T-PHYS-109895</td>
<td>Computational Condensed Matter Physics</td>
<td>12 LP</td>
<td>Wenzel</td>
</tr>
<tr>
<td>T-PHYS-106131</td>
<td>Computational Photonics, without ext. Exercises</td>
<td>6 LP</td>
<td>Rockstuhl</td>
</tr>
<tr>
<td>T-MACH-111588</td>
<td>Data Science and Scientific Workflows</td>
<td>3 LP</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>T-MACH-111603</td>
<td>Data Science and Scientific Workflows (Project)</td>
<td>1 LP</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>T-MACH-105320</td>
<td>Einführung in die Finite-Elemente-Methode</td>
<td>3 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-110330</td>
<td>Übungen zu Einführung in die Finite-Elemente-Methode</td>
<td>1 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-105321</td>
<td>Einführung in die Materialtheorie</td>
<td>4 LP</td>
<td>Kamlah</td>
</tr>
<tr>
<td>T-ETIT-100640</td>
<td>Electromagnetics and Numerical Calculation of Fields</td>
<td>4 LP</td>
<td>Zwick</td>
</tr>
<tr>
<td>T-MACH-105324</td>
<td>Grundlagen der nichtlinearen Kontinuumsmechanik</td>
<td>4 LP</td>
<td>Kamlah</td>
</tr>
<tr>
<td>T-MACH-105398</td>
<td>High Performance Computing</td>
<td>4 LP</td>
<td>Nestler, Selzer</td>
</tr>
<tr>
<td>T-MACH-110378</td>
<td>Mathematische Methoden der Mikroelemente</td>
<td>5 LP</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-110379</td>
<td>Übungen zu Mathematische Methoden der Mikroelemente</td>
<td>1 LP</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-108383</td>
<td>Mikrosystem Simulation</td>
<td>4 LP</td>
<td>Korvink</td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>4 LP</td>
<td>August, Nestler</td>
</tr>
<tr>
<td>T-MACH-111026</td>
<td>Nonlinear Continuum Mechanics</td>
<td>3 LP</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-111027</td>
<td>Tutorial Nonlinear Continuum Mechanics</td>
<td>1 LP</td>
<td>Böhlke</td>
</tr>
<tr>
<td>T-MACH-105351</td>
<td>Rechnerunterstützte Mechanik I</td>
<td>6 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-MACH-105352</td>
<td>Rechnerunterstützte Mechanik II</td>
<td>6 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>T-PHYS-102504</td>
<td>Simulation nanoskaliger Systeme, ohne Seminar</td>
<td>6 LP</td>
<td>Wenzel</td>
</tr>
<tr>
<td>T-PHYS-105960</td>
<td>The ABC of DFT</td>
<td>6 LP</td>
<td>Rockstuhl, Wenzel</td>
</tr>
<tr>
<td>T-MACH-105369</td>
<td>Werkstoffmodellierung: versetzungsbasierte Plastizität</td>
<td>4 LP</td>
<td>Weygand</td>
</tr>
<tr>
<td>T-MACH-100532</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>4 LP</td>
<td>Gumbsch, Weygand</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine
Qualifikationsziele
Der/die Studierende kann nach dem erfolgreichen Absolvieren des Schwerpunktes "Computational Materials Science"

- Fragestellungen aus dem Gebiet "Computational Materials Science" selbstständig und nach wissenschaftlichen Methoden bearbeiten.
- geeignete wissenschaftliche Methoden und Verfahren auswählen und diese zur Lösung einer Problemstellung einsetzen oder entsprechend weiterentwickeln.

Die individuellen Lernziele hängen sehr stark von den im Schwerpunkt "Computational Materials Science" gewählten Fächern ab und werden daher dort im Detail beschrieben.

Kenntnisse der dort hinterlegten Inhalte.

Inhalt
Im Schwerpunkt "Computational Materials Science" werden die Grundlagen verschiedener Modellierungs- und Simulationsverfahren vermittelt, mit deren Hilfe Fragestellungen aus dem Gebiet "Computational Materials Science" auf unterschiedlichen Längenskalen bearbeitet werden können.

Die Vorlesungsinhalte sind in den Modulhandbuchseinträgen zu den entsprechenden Vorlesungen detailliert beschrieben.

Arbeitsaufwand
Der Arbeitsaufwand beträgt in der Regel:
Präsenzzeit: 90 h
Vor- und Nachbereitungszeit: 390 h

Die Zusammensetzung des Arbeitsaufwandes kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Lehr- und Lernformen
Vorlesungen, Praktika, Seminare
Level 4
4.5 Modul: Eigenschaften [M-MACH-103713]

Verantwortung: Dr. Patric Gruber
 Prof. Dr. Christoph Kirchlechner

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Materialwissenschaftliche Vertiefung

Leistungspunkte 6
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 3

Wahlinformationen
Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung („Übung“) ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Beschreibung</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-107683</td>
<td>Übungen zu Gefüge-Eigenschafts-Beziehungen</td>
<td>2</td>
<td>Gruber, Kirchlechner</td>
</tr>
<tr>
<td>T-MACH-107604</td>
<td>Gefüge-Eigenschafts-Beziehungen</td>
<td>4</td>
<td>Gruber, Kirchlechner</td>
</tr>
<tr>
<td>T-MACH-110930</td>
<td>Exercises for Microstructure-Property-Relationships</td>
<td>2</td>
<td>Gruber, Kirchlechner</td>
</tr>
<tr>
<td>T-MACH-110931</td>
<td>Microstructure-Property-Relationships</td>
<td>4</td>
<td>Gruber, Kirchlechner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 30 Minuten).

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden verstehen grundlegend den Zusammenhang zwischen dem Gefüge und den Materialeigenschaften. Dieser Zusammenhang wird für die mechanischen Eigenschaften (Elastizität, Plastizität, Bruch, Ermüdung, Kriechen) sowie für die Funktionseigenschaften (Leitfähigkeit, magnetische Eigenschaften) und jeweils für alle Werkstoffhauptklassen erarbeitet. Die Studierenden können die Eigenschaften phänomenologisch beschreiben, die zugrundeliegenden materialphysikalischen Mechanismen erklären und verstehen wie die Eigenschaften über das Gefüge gezielt eingestellt werden können. Sie können umgekehrt auch auf Basis des Gefüges die mechanischen und funktionellen Eigenschaften des Werkstoffes ableiten.

Inhalt
Es werden folgende Gefüge-Eigenschafts-Beziehungen für die verschiedenen Materialklassen behandelt:
- Elastizität und Plastizität
- Bruchmechanik
- Ermüdung
- Kriechen
- Elektrische Leitfähigkeit: Metallische Leiter, Halbleiter, Supraleiter, leitfähige Polymere
- Magnetische Eigenschaften und Magnetwerkstoffe

Neben der phänomenologischen Beschreibung und physikalische Erklärung des Materialverhaltens wird auch ein Überblick zu den jeweiligen experimentellen Methoden gegeben.

Arbeitsaufwand
Der Arbeitsaufwand für das Modul „Eigenschaften“ beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (33 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (87 h) und für die Übungen (48 Stunden).

Lehr- und Lernformen
Vorlesungen (Pflicht)
Übungen (Pflicht)
4.6 Modul: Funktionswerkstoffe [M-MACH-103741]

Verantwortung: Prof. Dr. Helmut Ehrenberg
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Schwerpunkt I
Sprache: Deutsch
Level: 4
Version: 12

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

**Wahlpflichtbereich "X" (Wahl: mind. 8 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-107644</td>
<td>Adaptive Optics</td>
<td>3</td>
</tr>
<tr>
<td>T-ETIT-100983</td>
<td>Batterien und Brennstoffzellen</td>
<td>5</td>
</tr>
<tr>
<td>T-CHEMBIO-112316</td>
<td>Batteries and Fuel Cells</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-109292</td>
<td>Bauelemente der Elektrotechnik</td>
<td>6</td>
</tr>
<tr>
<td>T-PHYS-102578</td>
<td>Elektronische Eigenschaften von Festkörpern I, ohne Übungen</td>
<td>8</td>
</tr>
<tr>
<td>T-MACH-112691</td>
<td>Engineering Materials for the Energy Transition</td>
<td>4</td>
</tr>
<tr>
<td>T-CHEMBIO-112317</td>
<td>Hydrogen as Energy Carrier</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-100644</td>
<td>Light and Display Engineering</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-109082</td>
<td>Materialien und Werkstoffe für die Energiewende</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105334</td>
<td>Mechanik von Mikrosystemen</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Neue Aktoren und Sensoren</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-100639</td>
<td>Optical Transmitters and Receivers</td>
<td>6</td>
</tr>
<tr>
<td>T-ETIT-101945</td>
<td>Optical Waveguides and Fibers</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-101907</td>
<td>Optoelectronic Components</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-100767</td>
<td>Optoelektronik</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-102282</td>
<td>Nano-Optics</td>
<td>8</td>
</tr>
<tr>
<td>T-ETIT-101939</td>
<td>Photovoltaik</td>
<td>6</td>
</tr>
<tr>
<td>T-ETIT-100763</td>
<td>Plastic Electronics / Polymerelektronik</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-101911</td>
<td>Sensoren</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-100709</td>
<td>Sensorsysteme</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-108390</td>
<td>Single-Photon Detectors</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-100774</td>
<td>Solar Energy</td>
<td>6</td>
</tr>
<tr>
<td>T-PHYS-104773</td>
<td>Solid-State Optics, ohne Übungen</td>
<td>8</td>
</tr>
<tr>
<td>T-ETIT-113440</td>
<td>Superconducting Magnet Technology</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-111096</td>
<td>Superconducting Materials</td>
<td>6</td>
</tr>
<tr>
<td>T-ETIT-113439</td>
<td>Superconducting Power Systems</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-111239</td>
<td>Superconductivity for Engineers</td>
<td>5</td>
</tr>
<tr>
<td>T-PHYS-110303</td>
<td>Theoretical Quantum Optics</td>
<td>6</td>
</tr>
<tr>
<td>T-ETIT-106853</td>
<td>Thin Films: Technology, Physics and Applications I</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-108121</td>
<td>Thin Films: Technology, Physics, and Applications II</td>
<td>3</td>
</tr>
</tbody>
</table>

**Wahlpflichtbereich PL ohne "X" (Wahl:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105238</td>
<td>Aktoren und Sensoren in der Nanotechnik</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-104423</td>
<td>Elektronische Eigenschaften von Festkörpern II, ohne Übungen</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-105179</td>
<td>Funktionskeramiken</td>
<td>4</td>
</tr>
<tr>
<td>T-ETIT-100770</td>
<td>Grundlagen der Plasmatechnologie</td>
<td>4</td>
</tr>
<tr>
<td>T-MACH-106739</td>
<td>Lasergesteützte Methoden und deren Einsatz für Energiespeichermaterialien</td>
<td>4</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Inhalt

Siehe jeweilige Lehrveranstaltungen.

Arbeitsaufwand

Der Arbeitsaufwand beträgt in der Regel:
- Präsenzzeit: 90 h
- Vor- und Nachbereitungszeit: 390 h

Die Zusammensetzung des Arbeitsaufwandes kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Empfehlungen

Gute physikalische und elektrotechnische Grundkenntnisse

Lehr- und Lernformen

- Vorlesungen, Praktika, Seminare
- Level 4

<table>
<thead>
<tr>
<th>Modul: Funktionswerkstoffe [M-MACH-103741]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-107822</td>
</tr>
<tr>
<td>T-CHEMBIO-107821</td>
</tr>
</tbody>
</table>
4.7 Modul: Kinetik [M-MACH-103711]

Verantwortung: Prof. Dr. Hans Jürgen Seifert
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: Materialwissenschaftliche Vertiefung

Leistungspunkte 6
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 4

Wahlinformationen
Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung („Übung“) ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)

<table>
<thead>
<tr>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-107632 Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</td>
</tr>
<tr>
<td>T-MACH-107667 Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</td>
</tr>
<tr>
<td>T-MACH-110926 Exercises for Solid State Reactions and Kinetics of Phase Transformations</td>
</tr>
<tr>
<td>T-MACH-110927 Solid State Reactions and Kinetics of Phase Transformations</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 30 Minuten).

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden sollen nach der Teilnahme an den Lehrveranstaltungen fähig sein, • Diffusionsmechanismen zu beschreiben,
• die Fickschen Gesetze zu formulieren,
• einfache Lösungen der Diffusionsgleichung anzuzeigen,
• Diffusionsexperimente auszuwerten,
• Interdiffusionprozesse zu beschreiben,
• den thermodynamischen Faktor zu erklären,
• parabolisches Schichtwachstum zu beschreiben,
• die Perlitbildung zu erläutern,
• Gefügeumwandlungen gemäß den Modellen von Avrami und Johnson-Mehl darzulegen,
• ZTU-Schaubilder zu erklären und anzuwenden.

Inhalt
1. Kristallfehler und Diffusionsmechanismen
2. Mikroskopische Beschreibung der Diffusion
3. Phänomenologische Beschreibung
4. Diffusionskoeffizienten
5. Diffusionsprobleme; analytische Lösungen
6. Diffusion mit Phasenumwandlung
7. Gefügekinetik
8. Diffusion entlang Oberflächen, Korngrenzen, Versetzungen
9. Numerische Behandlung von diffusionskontrollierten Phasenumwandlungen

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen
Die Teilnahme an den Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion ist Pflicht.

Arbeitsaufwand
Der Arbeitsaufwand für das Modul „Kinetik“ beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (21 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (99 h) und für die Übungen (48 Stunden).
Empfehlungen
- Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
- Grundvorlesungen in Mathematik
- Vorlesung Physik oder Physikalische Chemie

Kenntnisse aus der Vorlesung „Heterogene Gleichgewichte“ (Seifert) sind zu empfehlen.

Lehr- und Lernformen
Vorlesungen (Pflicht)
Übungen (Pflicht)

Literatur
4.8 Modul: Konstruktionswerkstoffe [M-MACH-103738]

Verantwortung: Prof. Dr.-Ing. Martin Heilmayer

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Schwerpunkt I
Schwerpunkt II

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich "X" (Wahl: mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Kurzlehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102141</td>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>4 LP</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>4 LP</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-105459</td>
<td>High Temperature Materials</td>
<td>4 LP</td>
<td>Heilmayer</td>
</tr>
<tr>
<td>T-MACH-111458</td>
<td>Hochtemperaturkorrosion</td>
<td>4 LP</td>
<td>Gorr</td>
</tr>
<tr>
<td>T-MACH-110923</td>
<td>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</td>
<td>4 LP</td>
<td>Pundt</td>
</tr>
<tr>
<td>T-MACH-111826</td>
<td>Materialkunde der Nichteisenmetalle</td>
<td>4 LP</td>
<td>Gorr, Heilmayer</td>
</tr>
<tr>
<td>T-MACH-102167</td>
<td>Nanotribologie und -mechanik</td>
<td>4 LP</td>
<td>Dienwiebel, Hölscher</td>
</tr>
<tr>
<td>T-MACH-111391</td>
<td>Phase Transformations in Materials</td>
<td>4 LP</td>
<td>Heilmayer, Kauffmann</td>
</tr>
<tr>
<td>T-MACH-110818</td>
<td>Plasticity of Metals and Intermetallics</td>
<td>8 LP</td>
<td>Heilmayer, Kauffmann</td>
</tr>
<tr>
<td>T-MACH-102157</td>
<td>Pulvermetallurgische Hochleistungswerkstoffe</td>
<td>4 LP</td>
<td>Schell</td>
</tr>
<tr>
<td>T-MACH-105724</td>
<td>Schadenskunde</td>
<td>4 LP</td>
<td>Greiner, Schneider</td>
</tr>
<tr>
<td>T-MACH-112106</td>
<td>Schwingfestigkeit</td>
<td>4 LP</td>
<td>Guth</td>
</tr>
<tr>
<td>T-MACH-111257</td>
<td>Superhard Thin Film Materials</td>
<td>4 LP</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-102103</td>
<td>Superharte Dünnschichtmaterialien</td>
<td>4 LP</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-105362</td>
<td>Technologie der Stahlbauteile</td>
<td>4 LP</td>
<td>Schulze</td>
</tr>
<tr>
<td>T-MACH-111459</td>
<td>Thermophysics of Advanced Materials</td>
<td>4 LP</td>
<td>Sergeev</td>
</tr>
<tr>
<td>T-MACH-105554</td>
<td>Thin Film and Small-scale Mechanical Behavior</td>
<td>4 LP</td>
<td>Gruber, Kirchlechner, Weygand</td>
</tr>
<tr>
<td>T-MACH-112158</td>
<td>Thin Films – Preparation, Structure, Thermodynamics</td>
<td>4 LP</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-MACH-110957</td>
<td>Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung</td>
<td>4 LP</td>
<td>Pundt</td>
</tr>
<tr>
<td>T-MACH-105211</td>
<td>Werkstoffe für den Leichtbau</td>
<td>4 LP</td>
<td>Liebig</td>
</tr>
<tr>
<td>T-MACH-110165</td>
<td>Werkstoffe in der additiven Fertigung</td>
<td>4 LP</td>
<td>Dietrich, Schulze</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich PL ohne "X" (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Kurzlehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105310</td>
<td>Auslegung hochbelasteter Bauteile</td>
<td>4 LP</td>
<td>Aktaa</td>
</tr>
<tr>
<td>T-MACH-105237</td>
<td>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td>4 LP</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-105330</td>
<td>Konstruieren mit Polymerwerkstoffen</td>
<td>4 LP</td>
<td>Liedel</td>
</tr>
<tr>
<td>T-MACH-105333</td>
<td>Mechanik und Festigkeitslehre von Kunststoffen</td>
<td>4 LP</td>
<td>von Bernstorff</td>
</tr>
<tr>
<td>T-MACH-105516</td>
<td>Plastizität auf verschiedenen Skalen</td>
<td>4 LP</td>
<td>Greiner, Schulz</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich SL ohne "X" (Wahl: zwischen 0 und 4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Kurzlehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105651</td>
<td>Biomechanik: Design in der Natur und nach der Natur</td>
<td>4 LP</td>
<td>Mattheck</td>
</tr>
<tr>
<td>T-MACH-105447</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>4 LP</td>
<td>Heilmayer, Kauffmann</td>
</tr>
<tr>
<td>T-MACH-112159</td>
<td>Hydrogen in Materials – Exercises and Lab Course</td>
<td>4 LP</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-MACH-112942</td>
<td>Wasserstoff in Materialien - Übungen und Laborkurs</td>
<td>4 LP</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-MACH-105178</td>
<td>Praktikum 'Technische Keramik'</td>
<td>4 LP</td>
<td>Schell</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen die spezifischen Eigenschaften, Herstell-, Ver- und Bearbeitungsbedingungen von Konstruktionswerkstoffen und können diese vergleichend bewerten. Sie sind in der Lage, eine werkstoffbezogene Materialauswahl im Hinblick auf mögliche Anwendungen und Bauteilgeometrien abzuleiten.

Aufgrund der vielfältigen Wahlmöglichkeiten in diesem Modul sind die näheren Lernziele den einzelnen Lehrveranstaltungen zu entnehmen.

Inhalt
Aufgrund der vielfältigen Wahlmöglichkeiten in diesem Modul sind die Inhalte den einzelnen Lehrveranstaltungen zu entnehmen.

Arbeitsaufwand
Der Arbeitsaufwand beträgt in der Regel:
- Präsenzzeit: 90 h
- Vor- und Nachbereitungszeit: 390 h

Die Zusammensetzung des Arbeitsaufwandes kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Lehr- und Lernformen
Vorlesungen, Praktika, Seminare
Level 4
Erfolgskriterien

Das Modul Masterarbeit besteht aus einer schriftlichen Ausarbeitung (Masterarbeit) sowie einer mündlichen Präsentation eines selbst gewählten oder gegebenen wissenschaftlichen Themas. Die Studierenden sollen darin zeigen, dass sie in der Lage sind, ein Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten.

Der Zeitpunkt der Ausarbeitung des Themas der Masterarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden.

AUF begründeten Antrag des Studenten kann der Prüfungsausschuss die Bearbeitungszeit um maximal einen Monat verlängern. Wird die Masterarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

Die Bachelorarbeit wird von mindestens einem/einer Hochschullehrer/in, einem/einer leitenden Wissenschaftler/in gemäß § 14 abs. 3 Ziff. 1 KITG oder habilitierten Mitgliedern der KIT-Fakultät für Maschinenbau und einem/einer weiteren Prüfenden bewertet. In der Regel ist eine/r der Prüfenden die Person, die die Arbeit vergeben hat.

Bei nicht übereinstimmender Beurteilung dieser beiden Personen setzt der Prüfungsausschuss im Rahmen der Bewertung dieser beiden Personen die Note der Masterarbeit fest; er kann auch einen weiteren Gutachter bestellen. Die Bewertung hat innerhalb von acht Wochen nach Abgabe der Masterarbeit zu erfolgen.

Die Präsentation hat spätestens vier Wochen nach Abgabe der Masterarbeit zu erfolgen. Die Präsentation soll ca. 30 Minuten dauern und wird anschließend mit dem anwesenden Fachpublikum diskutiert.

Voraussetzungen

Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 75 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (vgl. §14 (1) der SPO).

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 75 Leistungspunkte erbracht worden sein:
 - Berufspraktikum
 - Interdisziplinäre Ergänzung
 - Materialwissenschaftliche Vertiefung
 - Schwerpunkt I
 - Schwerpunkt II
 - Überfachliche Qualifikationen

Qualifikationsziele

Die gewonnenen Ergebnisse kann er/sie tiefgehend interpretieren, evaluieren und bei Bedarf grafisch darstellen.

Er/sie ist in der Lage, eine wissenschaftliche Arbeit klar zu strukturieren und sie (a) in schriftlicher Form unter Verwendung der Fachterminologie zu kommunizieren, sowie (b) in mündlicher Form zu präsentieren und mit Fachleuten zu diskutieren.

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
Inhalt
Das Thema der Masterarbeit kann vom Studierenden selbst vorgeschlagen werden. Es wird vom Betreuer der Masterarbeit unter Beachtung von § 14 (3) der SPO festgelegt.

Arbeitsaufwand
Für die Ausarbeitung und Präsentation der Masterarbeit wird mit einem Gesamtaufwand von ca. 900 Stunden gerechnet.
4.10 Modul: Materialprozesstechnik [M-MACH-103740]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Schwerpunkt I
Schwerpunkt II

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich "X" (Wahl: mind. 8 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Erstsemesterlehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105150</td>
<td>Aufbau und Eigenschaften von Schutzschichten</td>
<td>4</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>8</td>
<td>Schulze</td>
</tr>
<tr>
<td>T-MACH-102111</td>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</td>
<td>4</td>
<td>Schell</td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Grundlagen der Mikrosystemtechnik I</td>
<td>4</td>
<td>Badilita, Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Grundlagen der Mikrosystemtechnik II</td>
<td>4</td>
<td>Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Lasereinsatz im Automobilbau</td>
<td>4</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-112763</td>
<td>Laser Material Processing</td>
<td>4</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-ETIT-100643</td>
<td>Laser Metrology</td>
<td>3</td>
<td>Eichhorn</td>
</tr>
<tr>
<td>T-MACH-110954</td>
<td>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</td>
<td>4</td>
<td>Kärger, Liebig</td>
</tr>
<tr>
<td>T-MACH-105782</td>
<td>Mikro NMR Technologie</td>
<td>4</td>
<td>Korvink, MacKinnon</td>
</tr>
<tr>
<td>T-ETIT-100676</td>
<td>Optical Engineering</td>
<td>4</td>
<td>Stork</td>
</tr>
<tr>
<td>T-MACH-102137</td>
<td>Polymerengineering I</td>
<td>4</td>
<td>Liebig</td>
</tr>
<tr>
<td>T-MACH-102138</td>
<td>Polymerengineering II</td>
<td>4</td>
<td>Liebig</td>
</tr>
<tr>
<td>T-MACH-105971</td>
<td>Simulation der Prozesskette kontinuierlich verstärkter Faserverbundbauteile</td>
<td>4</td>
<td>Kärger</td>
</tr>
<tr>
<td>T-MACH-110937</td>
<td>Werkstoffrecycling und Nachhaltigkeit</td>
<td>4</td>
<td>Liebig</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich PL ohne "X" (Wahl:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Erstsemesterlehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-110902</td>
<td>Additive Manufacturing for Process Engineering - Examination</td>
<td>5</td>
<td>Klahn</td>
</tr>
<tr>
<td>T-MACH-105157</td>
<td>Gießereikunde</td>
<td>4</td>
<td>Wilhelm</td>
</tr>
<tr>
<td>T-CIWVT-108146</td>
<td>Materialien für elektrochemische Speicher und Wander</td>
<td>4</td>
<td>Tübbe</td>
</tr>
<tr>
<td>T-CIWVT-110903</td>
<td>Practical in Additive Manufacturing for Process Engineering</td>
<td>1</td>
<td>Klahn</td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>4</td>
<td>Lanza, Stamer</td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils</td>
<td>4</td>
<td>Zanger</td>
</tr>
<tr>
<td>T-MACH-105170</td>
<td>Schweißtechnik</td>
<td>4</td>
<td>Farajian</td>
</tr>
<tr>
<td>T-MACH-105177</td>
<td>Umformtechnik</td>
<td>4</td>
<td>Herlan</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich SL ohne "X" (Wahl: max. 4 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Erstsemesterlehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102099</td>
<td>Experimentelles Schweißtechnisches Praktikum, in Gruppen</td>
<td>4</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine
Qualifikationsziele
Die Studierenden …

- können neue Situationen analysieren und auf Basis der Analysen Bearbeitungsprozesse zielgerichtet und materialspezifisch auswählen sowie ihre Auswahl begründen.
- sind in der Lage prozessbedingte Materialveränderungen modellhaft zu beschreiben und zu vergleichen.
- sind in der Lage für vorgegebene Probleme im Umfeld der Materialprozesstechnik unter Berücksichtigung wissenschaftlicher Theorien, Prinzipien und Methoden neue Lösungen zu generieren.
- sind befähigt Aufgabenstellungen im Umfeld der Materialprozesstechnik teamorientiert zu lösen und dabei verantwortungsvoll und situationsangemessen vorzugehen.
- können bei der Lösung vorgegebener Problemstellungen die Ergebnisse anderer integrieren.
- können Systeme und Prozesse identifizieren, zergliedern, weiterentwickeln und vorgegebene Bewertungsmaßstäbe unter Berücksichtigung technischer, ökonomischer und gesellschaftlicher Randbedingungen anlegen.

Inhalt
Siehe die verschiedenen Teilleistungen des Moduls.

Arbeitsaufwand
Der Arbeitsaufwand beträgt in der Regel:
Präsenzzeit: 90 h
Vor- und Nachbereitungszeit: 390 h
Die Zusammensetzung des Arbeitsaufwandes kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Lehr- und Lernformen
Vorlesungen, Praktika, Seminare
Level 4
4.11 Modul: Schlüsselqualifikationen [M-MACH-103721]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala best./nicht best.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Schlüsselqualifikationen (Wahl:)

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Kursname</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112686</td>
<td>Selbstverbuchung-MSc-HOC-SPZ-ZAK-unbenotet</td>
<td>1</td>
<td>Heilmaier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-112687</td>
<td>Selbstverbuchung-MSc-HOC-SPZ-ZAK-benotet</td>
<td>1</td>
<td>Heilmaier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-113321</td>
<td>Selbstverbuchung-MSc-HOC-SPZ-ZAK-unbenotet</td>
<td>1</td>
<td>Heilmaier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-113322</td>
<td>Selbstverbuchung-MSc-HOC-SPZ-ZAK-benotet</td>
<td>1</td>
<td>Heilmaier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-113323</td>
<td>Selbstverbuchung-MSc-HOC-SPZ-ZAK-unbenotet</td>
<td>1</td>
<td>Heilmaier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-113324</td>
<td>Selbstverbuchung-MSc-HOC-SPZ-ZAK-benotet</td>
<td>1</td>
<td>Heilmaier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können nach Abschluss des Moduls Schlüsselqualifikationen:

- Arbeitsschritte, Vorhaben und Ziele bestimmen und koordinieren, systematisch und zielgerichtet vorgehen, Prioritäten setzen, Unwesentliches erkennen sowie die Machbarkeit einer Aufgabe einschätzen
- die Grundsätze zur Sicherung guter wissenschaftlicher Praxis anwenden,
- Methoden zur Planung einer konkreten Aufgabe unter vorgegebenen Rahmenbedingungen ziel- und ressourcenorientiert beschreiben und anwenden,
- Methoden für die wissenschaftliche Recherche und Auswahl von Fachinformationen nach vorher festgelegten Kriterien der Qualität beschreiben und diese auf vorgegebene Probleme anwenden,
- die Qualität einer Literaturstelle fachgerecht bewerten,
- empirische Methoden erörtern und an ausgewählten Beispielen anwenden,
- Fachinformationen in klarer, lesbarer und überzeugend argumentierter Weise in verschiedenen Darstellungsformen (z. B. Poster, Exposé, Abstract) schriftlich darstellen und angemessen grafisch visualisieren (z. B. Konstruktionszeichnungen, Ablaufdiagramme),
- Fachinhalte überzeugend und ansprechend präsentieren und verteidigen,
- in einem heterogenen Team aufgabenorientiert arbeiten, etwaige Konflikte selbstständig bewältigen und lösen sowie Verantwortung übernehmen für sich und andere,
- im Team sachlich zielgerichtet und zwischenmenschlich konstruktiv kommunizieren, eigene Interessen vertreten, die Interessen anderer in eigenen Worten wiedergeben und berücksichtigen sowie den Gesprächsverlauf erfolgreich gestalten.

Inhalt

Arbeitsaufwand
Arbeitsaufwand ergibt sich aus der Summe der Arbeitsaufwände der gewählten Teilleistungen.
4.12 Modul: Simulation [M-MACH-103712]

Verantwortung: Prof. Dr. Peter Gumbsch
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Materialwissenschaftliche Vertiefung

Leistungspunkte: 6
Notenskala: Zehntelnoten
Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 3

Wahlinformationen
Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung ("Übung") ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Lehrer/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-107671</td>
<td>Übungen zu Angewandte Werkstoffsimulation</td>
<td>2</td>
<td>Gumbsch, Schneider</td>
</tr>
<tr>
<td>T-MACH-105527</td>
<td>Angewandte Werkstoffsimulation</td>
<td>4</td>
<td>Gumbsch, Schneider</td>
</tr>
<tr>
<td>T-MACH-110928</td>
<td>Exercises for Applied Materials Simulation</td>
<td>2</td>
<td>Gumbsch, Schneider</td>
</tr>
<tr>
<td>T-MACH-110929</td>
<td>Applied Materials Simulation</td>
<td>4</td>
<td>Gumbsch, Schneider</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 30 Minuten)

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende kann
- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern
- die Möglichkeiten und Herausforderungen von Simulationsansätzen auf verschiedenen Skalen benennen und diskutieren.

Inhalt

Arbeitsaufwand
Der Arbeitsaufwand für das Modul "Simulation" beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (33 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (87 h) und für die Übungen (48 Stunden).

Lehr- und Lernformen
Vorlesung, Übung
4.13 Modul: Technische Vertiefung [M-MACH-103715]

Verantwortung: Dr. Patric Gruber
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Interdisziplinäre Ergänzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtblock (Wahl:)

<table>
<thead>
<tr>
<th>Wahlpflichtblock</th>
<th>Lehrstoff</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105655</td>
<td>Alternative Antriebe für Automobile</td>
<td>4 LP</td>
<td>Noreikat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105215</td>
<td>Angewandte Tribologie in der industriellen Produktentwicklung</td>
<td>4 LP</td>
<td>Albers, Lorentz, Matthiesen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ott</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105216</td>
<td>Antriebssystemtechnik B: Stationäre Antriebssysteme</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ott</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>4 LP</td>
<td>Deml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>4 LP</td>
<td>Deml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8 LP</td>
<td>Fleischer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102203</td>
<td>Automotive Engineering I</td>
<td>8 LP</td>
<td>Gaueterin, Gießler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106424</td>
<td>Bahnsystemtechnik</td>
<td>4 LP</td>
<td>Chichon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CHEMBIO-105199</td>
<td>Basic Molecular Cell Biology</td>
<td>2 LP</td>
<td>Weth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105184</td>
<td>Betriebssstoffe für Verbrennungsmotoren</td>
<td>4 LP</td>
<td>Kehrwald, Kubach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100966</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I</td>
<td>4 LP</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II</td>
<td>4 LP</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100968</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III</td>
<td>4 LP</td>
<td>Guber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4 LP</td>
<td>Albers, Matthiesen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105694</td>
<td>Datenanalyse für Ingenieure</td>
<td>5 LP</td>
<td>Meisenbacher, Mikut, Reischl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111807</td>
<td>Einführung in die Bionik</td>
<td>4 LP</td>
<td>Hölscher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-111915</td>
<td>Elektronenmikroskopie I und II, mit Übungen</td>
<td>16 LP</td>
<td>Egelger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (macht und wwi)</td>
<td>4 LP</td>
<td>Kramer, Schöning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-103613</td>
<td>Fabrication and Characterisation of Optoelectronic Devices</td>
<td>3 LP</td>
<td>Richards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102166</td>
<td>Fertigungsprozesse der Mikrosystemtechnik</td>
<td>4 LP</td>
<td>Bade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103628</td>
<td>Fundamentals of Optics and Photonics</td>
<td>8 LP</td>
<td>Hunger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103630</td>
<td>Fundamentals of Optics and Photonics - Unit</td>
<td>0 LP</td>
<td>Hunger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100992</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>8 LP</td>
<td>Gaueterin, Gießler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Grundlagen der technischen Verbrennung I</td>
<td>4 LP</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105325</td>
<td>Grundlagen der technischen Verbrennung II</td>
<td>4 LP</td>
<td>Bykov, Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111389</td>
<td>Grundsätze der Zumfahrzeugentwicklung</td>
<td>4 LP</td>
<td>Weber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>4 LP</td>
<td>Doppelbauer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Konstruktiver Leichtbau</td>
<td>4 LP</td>
<td>Düser, Ott</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-103622</td>
<td>Measurement and Control Systems</td>
<td>6 LP</td>
<td>Stiller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105537</td>
<td>Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstorfälle und nukleare Entsorgung</td>
<td>4 LP</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102192</td>
<td>Polymers in MEMS A: Chemistry, Synthesis and Applications</td>
<td>4 LP</td>
<td>Rapp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102191</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications</td>
<td>4 LP</td>
<td>Worgull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102200</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics</td>
<td>4 LP</td>
<td>Rapp, Worgull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 LP</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung</td>
<td>4 LP</td>
<td>Mbang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110318</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>4 LP</td>
<td>Kienzle, Steegmüller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>4 LP</td>
<td>Lanza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
47
Erfolgskontrolle(n)

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Siehe Titel und Inhalte der wählbaren Teilleistungen und Lehrveranstaltungen.

Arbeitsaufwand

Der Arbeitsaufwand beträgt in der Regel:

- Präsenzzeit: 68 h
- Vor- und Nachbereitungszeit: 292 h

Die Zusammensetzung des Arbeitsaufwandes kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Lehr- und Lernformen

Vorlesungen
4.14 Modul: Thermodynamik [M-MACH-103710]

Verantwortung: Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: Materialwissenschaftliche Vertiefung

Leistungspunkte 6

Notenskala Zehntelnoten

Turnus Jedes Semester

Dauer 1 Semester

Sprache Deutsch/Englisch

Level 4

Version 4

Wahlinformationen

Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung („Übung“) ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-107669</td>
<td>Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte</td>
<td>2 LP</td>
<td>Seifert</td>
</tr>
<tr>
<td>T-MACH-107670</td>
<td>Thermodynamische Grundlagen / Heterogene Gleichgewichte</td>
<td>4 LP</td>
<td>Franke, Seifert</td>
</tr>
<tr>
<td>T-MACH-110924</td>
<td>Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria</td>
<td>2 LP</td>
<td>Seifert</td>
</tr>
<tr>
<td>T-MACH-110925</td>
<td>Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria</td>
<td>4 LP</td>
<td>Seifert</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 30 Minuten).

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die Konstitution (Lehre der heterogenen Gleichgewichte, Phasendiagramme/Zustandsdiagramme) von binären, ternären und mehrkomponentigen Werkstoffsystemen.

Sie können die thermodynamischen Eigenschaften von ein- und mehrphasigen Werkstoffen und deren Reaktionen mit Gas- und Schmelzphasen analysieren. Sie können die erlernten Zusammenhänge auf Fragen der Herstellung, des Fügens und der Anwendung der Werkstoffe (metallische Legierungen, technische Keramiken, Verbundwerkstoffe) anwenden.

Inhalt

1. Binäre Phasendiagramme
2. Ternäre Phasendiagramme
 - Vollständige Mischbarkeit
 - Eutektische Systeme
 - Peritektische Systeme
 - Übergangsreaktionen
 - Systeme mit intermetallischen Phasen
3. Thermodynamik der Lösungsphasen
4. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluß der Gasphase
5. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen
6. Thermodynamik von multikomponentigen, multiphasigen Werkstoffsystemen
7. Thermodynamische Berechnungen mit der CALPHAD-Methode

Zusammensetzung der Modulnote

- Die Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Teilnahme an den Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte ist Pflicht.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul „Thermodynamik“ beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (21 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (99 h) und für die Übungen (48 Stunden).
Empfehlungen
- Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
- Grundvorlesungen in Mathematik
- Vorlesung Physik oder Physikalische Chemie

Kenntnisse aus der Vorlesung „Festkörperreaktionen, Kinetik von Phasenumwandlungen, Korrosion“ (Dozent: P. Franke) sind zu empfehlen.

Lehr- und Lernformen
Vorlesungen (Pflicht)
Übungen (Pflicht)

Literatur
Modul: Werkstoffanalytik [M-MACH-103714]

Verantwortung: Prof. Dr. Astrid Pundt
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Materialwissenschaftliche Vertiefung

Leistungspunkte 6
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 4

Wahlinformationen
Das Modul kann entweder in Englisch oder Deutsch absolviert werden. Die Auswahl erfolgt durch die kombinierte Belegung der entsprechenden Teilleistungen in Englisch oder Deutsch inkl. der zugehörigen Erfolgskontrollen. Die Teilleistungen in Englisch und Deutsch schließen sich gegenseitig aus. Die Vorleistung („Übung“) ist verpflichtend und jeweils Voraussetzung für die übergeordnete Teilleistung in derselben Sprache.

Wahlpflichtbereich (Wahl: 2 Bestandteile sowie 6 LP)

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Modulname</th>
<th>Lehr- und Lernformen</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-107684</td>
<td>Werkstoffanalytik</td>
<td>4 LP Gibmeier, Schneider</td>
<td>180 h</td>
</tr>
<tr>
<td>T-MACH-107685</td>
<td>Übungen zu Werkstoffanalytik</td>
<td>2 LP Gibmeier, Schneider</td>
<td>108 h</td>
</tr>
<tr>
<td>T-MACH-110946</td>
<td>Materials Characterization</td>
<td>4 LP Gibmeier, Schneider</td>
<td>108 h</td>
</tr>
<tr>
<td>T-MACH-110945</td>
<td>Exercises for Materials Characterization</td>
<td>2 LP Gibmeier, Schneider</td>
<td>108 h</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung und einer mündlichen Prüfung (ca. 25 Minuten).

Voraussetzungen
keine

Qualifikationsziele

Inhalt
In diesem Modul werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Arbeitsaufwand
Der Arbeitsaufwand für das Modul „Werkstoffanalytik“ beträgt pro Semester 180 h und besteht aus Präsenz in den Vorlesungen (21 h) und Übungen (12 h) sowie Selbststudium für die Vorlesung (99 h) und für die Übungen (48 Stunden).

Lehr- und Lernformen
Vorlesungen (Pflicht)
Übungen (Pflicht)

Literatur
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
5 Teilleistungen

5.1 Teilleistung: Adaptive Optics [T-ETIT-107644]

Verantwortung: Prof. Dr. Ulrich Lemmer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Type of Examination: Oral examination
Duration of Examination: approx. 30 Minutes
Modality of Exam: The oral exam will be scheduled during the semester break.
The module grade is the grade of the oral exam.

Voraussetzungen
Keine

Empfehlungen
Basic knowledge of statistics.
5.2 Teilleistung: Additive Manufacturing for Process Engineering - Examination
[T-CIWVT-110902]

Verantwortung: TT-Prof. Dr. Christoph Klahn
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>Additive Manufacturing for Process Engineering</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Klahn</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Additive Manufacturing for Process Engineering - Examination</td>
<td>Klahn</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

5.3 Teilleistung: Aktoren und Sensoren in der Nanotechnik [T-MACH-105238]

Verantwortung: Prof. Dr. Manfred Kohl
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Ort</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2141866</td>
<td>Aktoren und Sensoren in der Nanotechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Kohl, Sommer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105238</td>
<td>Aktoren und Sensoren in der Nanotechnik</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105238</td>
<td>Aktoren und Sensoren in der Nanotechnik</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Aktoren und Sensoren in der Nanotechnik
2141866, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
5.4 Teilleistung: Alternative Antriebe für Automobile [T-MACH-105655]

Verantwortung: Prof. Dipl.-Ing. Karl Ernst Noreikat
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen
WS 23/24 2133132 Nachhaltige Fahrzeugantriebe 2 SWS Vorlesung (V) / 🗣️ Toedter

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-105655 Nachhaltige Fahrzeugantriebe Toedter

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrollen
schriftliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Nachhaltige Fahrzeugantriebe
2133132, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Nachhaltigkeit
Umweltbilanzierung
Gesetzgebung
Alternative Kraftstoffe
BEV
Brennstoffzelle
Hybridantriebe
5.5 Teilleistung: Angewandte Tribologie in der industriellen Produktentwicklung
[T-MACH-105215]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Benoit Lorentz
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
Keine
5.6 Teilleistung: Angewandte Werkstoffsimulation [T-MACH-105527]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103712 - Simulation

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2182614</th>
<th>Angewandte Werkstoffsimulation</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Gumbsch</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten
keine Hilfsmittel

Voraussetzungen
Die erfolgreiche Teilnahme an Übungen zu Angewandte Werkstoffsimulation ist Voraussetzung für die Zulassung zur mündlichen Prüfung Angewandte Werkstoffsimulation.
T-MACH-110928 – Exercises for Applied Materials Simulation darf nicht begonnen sein.
T-MACH-110929 – Applied Materials Modelling darf nicht begonnen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107671 - Übungen zu Angewandte Werkstoffsimulation muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-MACH-110929 - Applied Materials Simulation darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Angewandte Werkstoffsimulation
2182614, SS 2024, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Online
Inhalt

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

Präsenzzzeit: 34 Stunden
Übung: 11 Stunden
Selbststudium: 165 Stunden
Mündliche Prüfung ca. 35 Minuten
Hilfsmittel: keine
Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Organisatorisches
Die Vorlesung wir nur als Aufzeichnung angeboten!
Bitte besuchen Sie die englischsprachige Veranstaltung "Applied Materials Simulation" (2182616)!
Weitere Informationen finden Sie in ILIAS.
Kontakt: johannes.schneider@kit.edu

Literaturhinweise
5.7 Teilleistung: Antriebssystemtechnik A: Fahrzeugantriebstechnik [T-MACH-105233]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Sascha Ott

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2024 2146180 Antriebssystemtechnik A: Fahrzeugantriebstechnik 2 SWS Vorlesung (V)
Albers, Düser, Ott

Prüfungsveranstaltungen

WS 23/24 76-T-MACH-105233 Antriebssystemtechnik A: Fahrzeugantriebstechnik 2 SWS Vorlesung (V)
Albers, Ott

SS 2024 76-T-MACH-105233 Antriebssystemtechnik A: Fahrzeugantriebstechnik 2 SWS Vorlesung (V)
Albers, Ott

Legende: 🖥 Online, 🗓 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung: 60 min Prüfungsdauer

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Antriebssystemtechnik A: Fahrzeugantriebstechnik

2146180, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden erwerben die grundlegenden Kompetenzen, die benötigt werden, um zukünftige energieeffiziente und gleichzeitig komfortabel fahrbare Antriebstränge zu entwickeln. Hierbei werden ganzheitliche Entwicklungsmethoden und Bewertungen von Antriebsystemen betrachtet. Die Schwerpunkte lassen sich hierbei in folgende Kapitel gliedern:

- System Antriebsstrang
- System Fahrer
- System Umgebung
- Systemkomponenten
- Entwicklungsprozess

Empfehlungen für ergänzende Lehrveranstaltungen:

- Antriebssystemtechnik B: Stationäre Antriebssysteme

Literaturhinweise

Kirchner, E.; "Leistungsübertragung in Fahrzeuggetrieben: Grundlagen der Auslegung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten", Springer Verlag Berlin Heidelberg 2007

Naunheimer, H.; "Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion", Springer Verlag Berlin Heidelberg 2007
5.8 Teilleistung: Antriebssystemtechnik B: Stationäre Antriebssysteme [T-MACH-105216]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Sascha Ott

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Leistungspunkte

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2145150</th>
<th>Antriebssystemtechnik B: Stationäre Antriebssysteme</th>
<th>2 SWS</th>
<th>Vorlesung (V) / Albers, Düser, Ott</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-105216</th>
<th>Antriebssystemtechnik B: Stationäre Antriebssysteme</th>
<th>Albers, Ott</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105216</td>
<td>Antriebssystemtechnik B: Stationäre Antriebssysteme</td>
<td>Albers, Ott</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung: 60 min Prüfungsdauer

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Antriebssystemtechnik B: Stationäre Antriebssysteme

2145150, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden erwerben die grundlegenden Kompetenzen, die benötigt werden, um zukünftige energieeffiziente und sicherer Antriebssystemlösungen für den Einsatz im industriellen Umfeld zu entwickeln. Hierbei werden ganzheitliche Entwicklungsmethoden und Bewertungen von Antriebssystemen betrachtet. Die Schwerpunkte lassen sich hierbei in folgende Kapitel gliedern:

- System Antriebsstrang
- System Bediener
- System Umgebung
- Systemkomponenten
- Entwicklungsprozess

Empfehlungen für ergänzende Lehrveranstaltungen:

- Antriebssystemtechnik A: Fahrzeugantriebssysteme

Literaturhinweise

VDI-2241: "Schaltbare fremdbetätigte Reibkupplungen und -bremsen", VDI Verlag GmbH, Düsseldorf
5.9 Teilleistung: Applied Materials Simulation [T-MACH-110929]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103712 - Simulation

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2182616</th>
<th>Applied Materials Simulation</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ) /</th>
<th>Gumbsch</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🗣 Präsenz, ☐ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten
keine Hilfsmittel

Voraussetzungen
Die erfolgreiche Teilnahme an Exercises for Applied Materials Simulation ist Voraussetzung für die Zulassung zur mündlichen Prüfung Applied Materials Simulation.
T-MACH-107671 – Übungen zu Angewandte Werkstoffsimulation darf nicht begonnen sein.
T-MACH-105527 – Angewandte Werkstoffsimulation darf nicht begonnen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Die Teilleistung T-MACH-105527 - Angewandte Werkstoffsimulation darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Applied Materials Simulation
2182616, SS 2024, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz
Inhalt

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!
Präsenzzeit: 34 Stunden
Übung: 11 Stunden
Selbststudium: 165 Stunden
Mündliche Prüfung ca. 35 Minuten
Hilfsmittel: keine
Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

5.10 Teilleistung: Arbeitswissenschaft I: Ergonomie [T-MACH-105518]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitwissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstyp</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / ᴩAbsolutePath</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>2109035</td>
<td>2 SWS</td>
<td>Vorlesung (V) / ᴩAbsolutePath</td>
<td>Deml</td>
</tr>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>76-T-MACH-105518</td>
<td>2 SWS</td>
<td>Deml</td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>76-T-MACH-105518</td>
<td>2 SWS</td>
<td>Deml</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Arbeitswissenschaft I: Ergonomie
2109035, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)
Präsenz

Inhalt
1. Grundlagen menschlicher Arbeit
2. Verhaltenswissenschaftliche Datenerhebung
3. Arbeitsplatzgestaltung
4. Arbeitsumweltgestaltung
5. Arbeitswirtschaft
6. Arbeitsrecht und Interessensvertretung

Lernziele:
Die Studierenden erwerben vor allem grundlegendes Wissen im Bereich der Ergonomie:

- Sie können Arbeitsplätze hinsichtlich kognitiver, physiologischer, anthropometrischer und sicherheitstechnischer Aspekte ergonomisch gestalten.
- Ebenso kennen sie physikalische und psychophysische Grundlagen (z. B. Lärm, Beleuchtung, Klima) im Bereich der Arbeitsumweltgestaltung.
- Die Studierenden sind in der Lage, Arbeitsplätze arbeitswirtschaftlich zu bewerten, indem sie wesentliche Methoden des Zeitstudiums und der Entgeltfindung kennen und anwenden können.
- Schließlich erwerben sie auch einen ersten, überblickhaften Einblick in das deutsche Arbeitsrecht und die Organisation der überbetrieblichen Interessensvertretung.

Darüber hinaus lernen die Teilnehmer wesentliche Methoden der verhaltenswissenschaftlichen Datenerhebung (z. B. Eyetracking, EKG, Dual-Task-Paradigma) kennen.

Organisatorisches
- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.
Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
5.11 Teilleistung: Arbeitswissenschaft II: Arbeitsorganisation [T-MACH-105519]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen
WS 23/24 | 2109036 | Arbeitswissenschaft II: Arbeitsorganisation | 2 SWS | Vorlesung (V) / 🗣 | Deml

Prüfungsveranstaltungen
WS 23/24 | 76-T-MACH-105519 | Arbeitswissenschaft II: Arbeitsorganisation | Deml
SS 2024 | 76-T-MACH-105519 | Arbeitswissenschaft II: Arbeitsorganisation | Deml

Legende: 🖥 Online, 🔄 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung, 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Arbeitswissenschaft II: Arbeitsorganisation
2109036, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
Lehrinhalt:
1. Grundlagen der Arbeitsorganisation
2. Empirische Forschungsmethoden
3. Individualebene
 a) Personalauswahl
 b) Personalentwicklung
 c) Personalbeurteilung
 d) Arbeitszufriedenheit und Arbeitsmotivation
4. Gruppenebene
 a) Interaktion und Kommunikation
 b) Führung von Mitarbeitern
 c) Teambildung
5. Organisationsebene
 a) Aufbauorganisation
 b) Ablauforganisation
 c) Produktionsorganisation

Lernziele:
Die Studierenden erwerben einen ersten Einblick in empirische Forschungsmethoden (z. B. Experimentaldesign, statistische Datenauswertung). Darüber hinaus erwerben sie vor allem grundlegendes Wissen im Bereich der Arbeitsorganisation:

- **Organisationsebene.** Im Rahmen des Moduls erwerben die Studierenden auch grundlegendes Wissen im Bereich der Aufbau-, Ablauf- und Produktionsorganisation.
- **Gruppenebene.** Außerdem lernen sie wesentliche Aspekte der betrieblichen Teambildung kennen und kennen einschlägige Theorien aus dem Bereich der Interaktion und Kommunikation, der Führung von Mitarbeitern sowie der Arbeitszufriedenheit und -motivation.
- **Individualebene.** Schließlich lernen die Studierenden auch Methoden aus dem Bereich der Personalauswahl, -entwicklung und -beurteilung kennen.
Organisatorisches
Die Veranstaltung "Arbeitswissenschaft I: Ergonomie" findet in der ersten Hälfte des Semesters am Mittwoch und Donnerstag statt.
In der zweiten Hälfte, ab dem Donnerstag, dem 21.12.2023 findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.
- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
5.12 Teilleistung: Atomistische Simulation und Partikeldynamik [T-MACH-113412]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103739 - Computational Materials Science

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik und Werkstoffkunde
5.13 Teilleistung: Aufbau und Eigenschaften verschleißfester Werkstoffe [T-MACH-102141]

Verantwortung: Prof. Sven Ulrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2194643 | Aufbau und Eigenschaften verschleißfester Werkstoffe | 2 SWS | Vorlesung (V) / 🗣 Ulrich |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-102141 | Aufbau und Eigenschaften verschleißfester Werkstoffe | Ulrich |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrollen

mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102103 - Superharte Dünnschichtmaterialien darf nicht begonnen worden sein.
2. Die Teilleistung T-MACH-111257 - Superhard Thin Film Materials darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Aufbau und Eigenschaften verschleißfester Werkstoffe

2194643, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Die Blockveranstaltung findet in folgendem Zeitraum statt:
15.04.- 17.04.2024: jeweils von 8:00-16:00 Uhr;
Anmeldung verbindlich bis zum 13.04.2024 unter sven.ulrich@kit.edu.
Ort: KIT-Campus Nord, Geb. 681, SR 214, IAM-Angewandte Werkstoffphysik (IAM-AWP))
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 min.) zum vereinbarten Termin (nach §4(2), 2 SPO).
Die Wiederholungsprüfung findet nach Vereinbarung statt.
Lehrinhalt:
Einführung
Werkstoffe und Verschleiß
Unlegierte und legierte Werkzeugstähle
Schnellarbeitsstähle
Stellite und Hartlegierungen
Hartstoffe
Hartmetalle
Schneidkeramik
Superharte Materialien
Neueste Entwicklungen
Präsenzzzeit: 22 Stunden
Selbststudium: 98 Stunden
Lernziele: Vermittlung des grundlegenden Verständnisses des Aufbaus verschleißfester Werkstoffe, der Zusammenhänge
zwischen Konstitution, Eigenschaften und Verhalten, der Prinzipien zur Erhöhung von Härte und Zähigkeit sowie der
Charakteristiken der verschiedenen Gruppen der verschleißfesten Materialien.
Empfehlungen: keine

Organisatorisches
Die Blockveranstaltung findet in folgendem Zeitraum statt:
15.04.-17.04.2024: jeweils von 8:00-16:00 Uhr;
Ort: KIT-CN, Geb. 681, Raum 214
Anmeldung verbindlich bis zum 13.04.2024 unter sven.ulrich@kit.edu.
Nach der Anmeldung wird Ihnen im Falle einer Online-Veranstaltung der Link zur Vorlesung per E-Mail am 14.04.2024
mitgeteilt.

Literaturhinweise
Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995

Kopien der Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
5.14 Teilleistung: Aufbau und Eigenschaften von Schutzschichten [T-MACH-105150]

Verantwortung: Prof. Sven Ulrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2177601</th>
<th>Aufbau und Eigenschaften von Schutzschichten</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣 Ulrich</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-105150</th>
<th>Aufbau und Eigenschaften von Schutzschichten</th>
<th>Ulrich</th>
</tr>
</thead>
</table>

Legende:
🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Aufbau und Eigenschaften von Schutzschichten

2177601, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
mündliche Prüfung (ca. 30 min); keine Hilfsmittel

Lehrinhalt:
Einführung und Übersicht

Konzepte zur Oberflächenmodifizierung
Schichtkonzepte
Schichtmaterialien
Verfahren zur Oberflächenmodifizierung
Verfahren zur Schichtaufbringung
Methoden zur Charakterisierung der Schichten und Stoffverbunde
Stand der industriellen Werkzeug- und Bauteilbeschichtung
Neueste Entwicklungen der Beschichtungstechnologie
Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden

Lernziele:
Vermittlung des Basiswissens im Bereich des Oberflächen-Engineerings, des Verständnisses der Zusammenhänge zwischen Aufbau, Eigenschaften und Verhalten von Schutzschichten sowie des Verständnisses der vielfältigen Methoden zur Modifizierung, Beschichtung und Charakterisierung von Oberflächen
Empfehlungen: keine
Organisatorisches
Falls die Vorlesung online stattfinden muss, bitte um Anmeldung unter sven.ulrich@kit.edu bis zum 23.10.23.
Den entsprechenden MS Teams Link erhalten Sie dann per E-Mail am 25.10.23.

Literaturhinweise

Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
5.15 Teilleistung: Auslegung hochbelasteter Bauteile [T-MACH-105310]

Verantwortung: apl. Prof. Dr. Jarir Aktaa

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von:
- M-MACH-103738 - Konstruktionswerkstoffe
- M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2181745</td>
<td>Auslegung hochbelasteter Bauteile</td>
<td>2 SWS</td>
<td>Aktaa</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungsbezeichnung</th>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105310</td>
<td>Auslegung hochbelasteter Bauteile</td>
<td>Aktaa</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auslegung hochbelasteter Bauteile

2181745, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Inhalte der Vorlesung:
Regeln gängiger Auslegungsvorschriften
Klassische Stoffgesetze der Elasto-Plastizität und des Kriechens
Lebensdauerregeln für Kriechen, Ermüdung und Kriech-Ermüdung-Wechselwirkung
Fortgeschrittene Stoffgesetze der Thermo-Elasto-Viskoplastizität
Kontinuumsmechanische Stoffgesetze für die Schädigung bei hohen Temperaturen
Einsatz fortgeschrittener Stoffgesetze in FE-Programmen

Die Studierenden können die Regeln gängiger Auslegungsvorschriften für die Beurteilung von Bauteilen, die im Betrieb hohen thermo-mechanischen und/oder Bestrahlungsbelastungen unterliegen benennen. Sie verstehen, welche Stoffgesetze beim Stand der Technik sowie Stand der Forschung zur Abschätzung der unter diesen Belastungen auftretenden Verformung und Schädigung und zur Vorhersage der zu erwartenden Lebensdauer verwendet werden. Sie haben einen Einblick über den Einsatz dieser in der Regel nichtlinearen Stoffgesetze in Finite-Elemente-Programmen und können die wesentlichen Punkte, die dabei zu beachten sind, beurteilen.

Voraussetzungen: Werkstoffkunde, Technische Mechanik II

Selbststudium: 97,5 Stunden

Mündliche Prüfung ca. 30 Minuten

Organisatorisches
Die Vorlesung findet ab dem 31.10.2023 statt

Literaturhinweise

5.16 Teilleistung: Automatisierte Produktionsanlagen [T-MACH-108844]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2150904</th>
<th>Automatisierte Produktionsanlagen</th>
<th>6 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🗣</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-108844</th>
<th>Automatisierte Produktionsanlagen</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

| WS 23/24 | 76-T-MACH-108844 - Wdh. | Automatisierte Produktionsanlagen | Fleischer |

Legende: 🖥 Online, 🪜 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (40 Minuten)

Voraussetzungen

"T-MACH-102162 - Automatisierte Produktionsanlagen" darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Automatisierte Produktionsanlagen

2150904, SS 2024, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

<table>
<thead>
<tr>
<th>Vorlesung / Übung (VÜ)</th>
<th>Präsenz</th>
</tr>
</thead>
</table>
Inhalt
Die Vorlesung gibt einen Überblick über den Aufbau und die Funktionsweise von automatisierten Produktionsanlagen. In einem Grundlagenkapitel werden grundlegenden Elemente zur Realisierung automatisierter Produktionsanlagen vermittelt. Hierunter fallen:

- Antriebs- und Steuerungstechnik
- Handhabungstechnik zur Handhabung von Werkstücken und Werkzeugen
- Industrieroboterstechnik
- Qualitätssicherung in automatisierten Produktionsanlagen
- Automaten, Zellen, Zentren und Systeme zur Fertigung und Montage
- Strukturen von Mehrmaschinen-Systemen
- Projektierung von automatisierten Produktionsanlagen

Durch eine interdisziplinäre Betrachtung dieser Teilgebiete ergeben sich Schnittstellen zu Industrie 4.0 Ansätzen. Die Grundlagenkapitel werden durch praktische Anwendungsbeispiele und Live-Demonstrationen in der Karlsruher Forschungsfabrik ergänzt.

Im zweiten Teil der Vorlesung werden die vermittelten Grundlagen anhand praktisch ausgeführter Produktionsprozesse zur Herstellung und Demontage von Komponenten verdeutlicht und die automatisierten Produktionsanlagen zur Herstellung dieser Komponenten analysiert. Im Bereich der KFZ-Antriebstechnik wird der automatisierte Produktionsprozess sowohl zur Herstellung als auch zur Demontage von Batterien betrachtet. Im Bereich des Antriebsstranges werden automatisierte Produktionsanlagen zur Demontage von Elektromotoren betrachtet. Weiterhin werden automatisierte Produktionsanlagen für den Bereich des Additive Manufacturing betrachtet.

Innerhalb von Übungen werden die Inhalte aus der Vorlesung vertieft und auf konkrete Problem- und Aufgabenstellungen angewendet.

Lernziele:
Die Studierenden …

- sind fähig, ausgeführte automatisierte Produktionsanlagen zu analysieren und ihre Bestandteile zu beschreiben.
- können die an ausgeführten Beispielen umgesetzte Automatisierung von Produktionsanlagen beurteilen und auf neue Problemstellungen anwenden.
- sind in der Lage, die Automatisierungsaufgaben in Produktionsanlagen und die zur Umsetzung erforderlichen Komponenten zu nennen.
- sind fähig, bzgl. einer gegebenen Aufgabenstellung die Projektierung einer automatisierten Produktionsanlage durchzuführen sowie die zur Realisierung erforderlichen Komponenten zu ermitteln.
- sind in der Lage, unterschiedliche Konzepte für Mehrmaschinen-Systeme zu vergleichen und für einen gegebenen Anwendungsfall geeignet auszuwählen.

Arbeitsaufwand:

MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches
Vorlesungstermine dienstags 8:00 Uhr und donnerstags 8:00 Uhr, Übungstermine donnerstags 09:45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
5.17 Teilleistung: Automotive Engineering I [T-MACH-102203]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 8
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2113809</th>
<th>Automotive Engineering I</th>
<th>4 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Gauterin, Gießler</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-102203 | Automotive Engineering I | Gauterin |
| SS 2024 | 76-T-MACH-102203 | Automotive Engineering I | Gauterin |

Erfolgskontrolle(n) schriftlich
Dauer: 120 Minuten
Hilfsmittel: keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100092 - Grundlagen der Fahrzeugtechnik I darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Automotive Engineering I
2113809, WS 23/24, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanisches Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differentiale

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsräder sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches
You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/Passwoerterillas/, students from eucor universities send an e-mail to martina.kaiser@kit.edu

Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.
Literaturhinweise
5.18 Teilleistung: Bahnsystemtechnik [T-MACH-106424]

Verantwortung: Prof. Dr.-Ing. Martin Cichon
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
</tr>
</thead>
</table>
| WS 23/24 2115919 | Bahnsystemtechnik | 2 SWS | Vorlesung (V) / Cichon, Heckele
| SS 2024 2115919 | Bahnsystemtechnik | 2 SWS | Vorlesung (V) / Cichon |

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
</tr>
</thead>
</table>
| WS 23/24 76-T-MACH-106424 | Bahnsystemtechnik | | Cichon, Heckele, Reimann
| SS 2024 76-T-MACH-106424 | Bahnsystemtechnik | | Cichon, Berthold |

Erfolgskontrolle(n)
Prüfung: schriftlich
Dauer: 60 Minuten
Hilfsmittel: keine außer Taschenrechner und Wörterbuch

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bahnsystemtechnik
2115919, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klothoide, Längsneigung), Bahnhöfe (Bahnteilflächen, Bahnhöhe), Lichtraumprofil und Fahrzeugbegrenzung
5. Fahrdynamik: Zug- und Bremskraft, Fahrwiderstandsverlust, Tragheitskräfte, Typische Fahrzyklen (Nah-, Fernverkehr)

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (liias-platform).
Inhalt

1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klothoide, Längsneigung), Bahnhöfe, (Bahnsteiglängen, Bahnsteighöhen), Lichtraumprofil und Fahrzeugbegrenzung
5. Längsdynamik: Zug- und Bremskraft, Fahrwiderstandschaft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)

Organisatorisches
ab SS 2024 schriftliche Prüfung

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
5.19 Teilleistung: Basic Molecular Cell Biology [T-CHEMBIO-105199]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Franco Weth
Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024 7148</td>
<td>Basic Molecular Cell Biology KSOP</td>
</tr>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>WS 23/24 71KSOP-105199</td>
<td>Basic Molecular Cell Biology</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Basic Molecular Cell Biology KSOP
7148, SS 2024, 2 SWS, Im Studierendenportal anzeigen

Inhalt
nach Vereinbarung
5.20 Teilleistung: Batterien und Brennstoffzellen [T-ETIT-100983]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Übungsnummer</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung (V) / Ü</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2304207</td>
<td>Batterien und Brennstoffzellen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Krewer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2304213</td>
<td>Übungen zu 2304207 Batterien und Brennstoffzellen</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📋</td>
<td>Krewer, Lindner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7304207</td>
<td>Batterien und Brennstoffzellen</td>
<td>Krewer</td>
</tr>
<tr>
<td>SS 2024</td>
<td>7300006</td>
<td>Batterien und Brennstoffzellen</td>
<td>Krewer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 📋 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Batterien und Brennstoffzellen

2304207, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Die Vorlesung vermittelt einen praxisnahen Einblick in die aktuellen Anwendungsgebiete und Forschungsthemen von Brennstoffzellen und Batterien. Im Rahmen der Vorlesung werden Aufbau und Funktionsweise von elektrochemischen Energiewandlern und Energiespeichern behandelt sowie Kenntnisse über Werkstoffe, Baukonzepte, Messverfahren, Messdatenanalyse und Modellierung vermittelt.

Organisatorisches

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
5.21 Teilleistung: Batteries and Fuel Cells [T-CHEMBIO-112316]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Helmut Ehrenberg
Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>WV-Nummer</th>
<th>Dozent(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Batteries and Fuel Cells</td>
<td>5072</td>
<td>Ehrenberg, Scheiba</td>
</tr>
<tr>
<td>WS 24/25</td>
<td>Batteries and Fuel Cells</td>
<td>5072</td>
<td>Ehrenberg, Scheiba</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 23/24 | Batteries and Fuel Cells | Ehrenberg |

Legende: 🖥 Online, 📜 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten
5.22 Teilleistung: Bauelemente der Elektrotechnik [T-ETIT-109292]

Verantwortung: Prof. Dr. Sebastian Kempf
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung / Übung</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Vorlesung (V) / Übung (Ü)</td>
<td>3 SWS</td>
<td>Kempf, Lemmer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Übung zu Bauelemente der Elektrotechnik</td>
<td>1 SWS</td>
<td>Wünsch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung / Übung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Bauelemente der Elektrotechnik</td>
<td>Kempf, Lemmer</td>
</tr>
<tr>
<td>SS 2024</td>
<td>Bauelemente der Elektrotechnik</td>
<td>Kempf, Lemmer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑️ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine
5 TEILLEISTUNGEN

5.23 Teilleistung: Berufspraktikum [T-MACH-107764]

Verantwortung: Dr. Patric Gruber
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103838 - Berufspraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-107764 | Berufspraktikum | Gruber |

Erfolgskontrolle(n)
Vorlage der Praktikumsdokumente (Ausbildungsvertrag, Tätigkeitsnachweis, Praktikumszeugnis) sowie Ablegen eines Praktikumsberichtes in Form einer Kurzpräsentation (ca. 10 min) und eines schriftlichen Berichtes.

Voraussetzungen
keine

Anmerkungen
Im Rahmen des Masterstudiums ist ein Berufspraktikum gemäß SPO § 14a zu absolvieren. Die vorgeschriebene Mindestdauer beträgt 9 Wochen. Ausgefallene Arbeitszeit muss in jedem Falle nachgeholt werden. Bei Ausfallzeiten sollte der Praktikant den auszubildenden Betrieb um eine Vertragsverlängerung ersuchen, um die berufspraktischen Tätigkeit im erforderlichen Umfang durchführen zu können.

5.24 Teilleistung: Betriebsstoffe für Verbrennungsmotoren [T-MACH-105184]

Verantwortung: Hon.-Prof. Dr. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2133108</th>
<th>Betriebsstoffe für motorische Antriebe</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Kehrwald</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-105184</th>
<th>Betriebsstoffe für Verbrennungsmotoren</th>
<th>Kehrwald</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, Dauer ca. 25 min., keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebsstoffe für motorische Antriebe

2133108, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Präsenz

Inhalt

Vorgestellt werden auch elektrische Antriebe und Brennstoffzellen-Antrieb mit den zugehörigen Betriebsstoffen

- Einführung, Grundlagen, Primärenergie und Energieketten
- Anschauliche Chemie der Kohlenwasserstoffe
- Fossile Energieträger, Exploration, Verarbeitung, Normen
- Betriebsstoffe nicht fossil, regenerativ, alternativ
- Kraftstoffe, Schmierstoffe, Kühlmittel, AdBlue
- Laboranalytik, Testing, Prüfstände und Messtechnik
- Exkursion Prüffelder für motorische Antriebe 0,5 bis 3.500 kW

Literaturhinweise

Skript

Verantwortung: Prof. Dr. Claus Mattheck

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen
| SS 2024 | 2181708 | Biomechanik: Design in der Natur und nach der Natur | 3 SWS | Seminar / Praktikum (S/P) | Mattheck |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kolloquium, unbenotet.

Voraussetzungen
Die Anzahl Teilnehmer ist begrenzt. Eine vorherige Anmeldung über ILIAS ist erforderlich; bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten (gemäß SPO) statt.

Vor Anmeldung im SP 26 (MACH) oder SP 01 (MWT) muss die Teilnahme am Seminar bestätigt sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Biomechanik: Design in der Natur und nach der Natur
2181708, SS 2024, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Die Anzahl Teilnehmer ist begrenzt.

Die vorläufige Anmeldung erfolgt nicht über ILIAS sondern per Mail an Claus.Mattheck@kit.edu, u.a.mit Angabe von:
Studiengang
Matrikelnummer
SP 26(MACH) bzw. SP 01 (MWT) bzw. "Sonstiges"

Bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten (gemäß SPO) statt.

Vor der Anmeldung im SP 26 (MACH) bzw. SP 01 (MWT) über den SP-Planer bzw. direkt im Prüfungsaccount (QISPOS) muss durch das Institut die Teilnahme am Seminar bestätigt sein.

* Mechanik und Wuchsgesetze der Bäume
* Körpersprache der Bäume
* Versagenskriterien und Sicherheitsfaktoren
* Computersimulation adaptiven Wachstums
* Kerben und Schadensfälle
* Bauteiloptimierung nach dem Vorbild der Natur
* Computerfreie Bauteiloptimierung
* Universalformen der Natur
* Schubspannungsbomben in Faserverbunden
* Optimale Faserverläufe in Natur und Technik
* Bäume, Hänge, Deiche, Mauern und Rohrleitungen

Die Studierenden können die in der Natur verwirklichten mechanischen Optimierungen benennen und verstehen. Die Studierenden können die daraus abgeleiteten Denkwerkzeuge analysieren und diese für einfache technische Fragestellungen anwenden.

Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden
5.26 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I [T-MACH-100966]

Verantwortung: Prof. Dr. Andreas Guber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsblock</th>
<th>Vorlesung (V)</th>
<th>Präsenz/Online gemischt</th>
<th>Präsenz</th>
<th>Abgesagt</th>
<th>Vorlesung (V) /诡</th>
<th>Guber, Ahrens</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2141864</td>
<td>BioMEMS I - Mikrosystemtechnik für Life-Sciences und Medizin</td>
<td>2 SWS</td>
<td>Vorlesung (V) /诡</td>
<td>Guber, Ahrens</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungsblock</th>
<th>Prüfung (P)</th>
<th>Vorlesung (V) /诡</th>
<th>Guber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-100966</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I</td>
<td>Guber</td>
<td></td>
</tr>
</tbody>
</table>

Legende: handleClick

Erfolgskontrolle(n)

Schriftliche Prüfung (75 Min.)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BioMEMS I - Mikrosystemtechnik für Life-Sciences und Medizin

2141864, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches

Schriftliche Prüfung:
18.03.2024, 10:00 - 12:00; 30.46 Chemie, Neuer Hörsaal

Literaturhinweise

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
5.27 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II [T-MACH-100967]

Verantwortung: Prof. Dr. Andreas Guber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

| SS 2024 | 2142883 | BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin II | 2 SWS | Vorlesung (V) | Guber, Ahrens |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-100967 | BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II | Guber |

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (75 Min.)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin II
2142883, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Einsatzbeispiele aus den Life-Sciences und der Medizin: Mikrofluidische Systeme:
Lab-CD, Proteinkristallisation,
Microarray, BioChips
Tissue Engineering
Biohybride Zell-Chip-Systeme
Drug Delivery Systeme
Mikroverfahrenstechnik, Mikroreaktoren
Mikrofluidische Messzellen für FTIR-spektroskopische Untersuchungen
in der Mikroverfahrenstechnik und in der Biologie
Mikrosystemtechnik für Anästhesie, Intensivmedizin (Monitoring)
und Infusionstherapie
Atemgas-Analyse / Atemluft-Diagnostik
Neurobionik / Neuroprothetik
Nano-Chirurgie

Organisatorisches
Zu jedem Vorlesungssternin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.
Prüfung:

Literaturhinweise
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II;
Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
5.28 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III [T-MACH-100968]

Verantwortung: Prof. Dr. Andreas Guber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2142879 BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin III | 2 SWS | Vorlesung (V) / 🗣 | Guber, Ahrens |

Prüfungsveranstaltungen

| WS 23/24 76-T-MACH-100968 | BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III | Vorlesung (V) / 🗣 | Guber |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (75 Min.)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin III
2142879, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
Einsatzbeispiele aus dem Bereich der operativen Minimal Invasiven Therapie (MIT):
Minimal Invasive Chirurgie (MIC)
Neurochirurgie / Neuroendoskopie
Interventionelle Kardiologie / Interventionelle Gefäßtherapie
NOTES
Operationsroboter und Endosysteme
Zulassung von Medizinprodukten (Medizinproduktgesetz) und Qualitätsmanagement

Organisatorisches
Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.

Prüfung:

Literaturhinweise
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
5.29 Teilleistung: Bruch- und Schädigungsmechanik [T-BGU-100087]

Verantwortung: Prof. Dr.-Ing. Thomas Seelig
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsmethoden</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 8243100087 | Bruch- und Schädigungsmechanik | Seelig |

Erfolgskontrolle(n)

mündliche Prüfung, ca. 45 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.30 Teilleistung: CAE-Workshop [T-MACH-105212]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Block (B)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2147175</td>
<td>CAE-Workshop</td>
<td>3</td>
<td>Block (B)</td>
<td>Albers, Düser</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2147175</td>
<td>CAE-Workshop</td>
<td>3</td>
<td>Block (B)</td>
<td>Albers, Düser</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>Albers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (mit praktischem Teil am Computer), Dauer 60 min

Voraussetzungen

Keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Im Studierendenportal anzeigen

CAE-Workshop
2147175, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Inhalt:

- Einführung in die Finite Elemente Analyse (FEA)
- Spannungs- und Modalanalyse von FE-Modellen unter Nutzung von Abaqus CAE als Preprocessor und Abaqus als Solver
- Einführung in die Topologie- und Gestalloptimierung
- Erstellung und Berechnung verschiedener Optimierungsmodelle mit dem Abaqus Optimierungspaket

Die Studierenden sind fähig ...

- die Einsatzzwecke und Grenzen der numerischen Simulation und Optimierung bei der virtuellen Produktentwicklung zu nennen.
- einfache praxisnahe Aufgaben aus dem Bereich der Finiten Elemente Analyse und Strukturoptimierung in industrieüblichen Software zu lösen.
- Ergebnisse einer Simulation oder Optimierung zu hinterfragen und zu bewerten.
- Fehler in einer Simulation oder Optimierung zu identifizieren und zu verbessern.

Präsenzzzeit: 31,5 h
Selbststudium: 88,5 h
Prüfung: 1h schriftlich

Organisatorisches

Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht
5 TEILLEISTUNGEN

Teilleistung: CAE-Workshop [T-MACH-105212]

Literaturhinweise
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.

CAE-Workshop
2147175, SS 2024, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Inhalt:

- Einführung in die Finite Elemente Analyse (FEA)
- Spannungs- und Modalanalyse von FE-Modellen unter Nutzung von Abaqus CAE als Preprocessor und Abaqus als Solver
- Einführung in die Topologie- und Gestaltungoptimierung
- Erstellung und Berechnung verschiedener Optimierungsmodelle mit dem Abaqus Optimierungspaket

Die Studierenden sind fähig ...

- die Einsatzwecke und Grenzen der numerischen Simulation und Optimierung bei der virtuellen Produktentwicklung zu nennen.
- einfache praxisnahe Aufgaben aus dem Bereich der Finiten Elemente Analyse und Strukturoptimierung in industriegebrauchlicher Software zu lösen.
- Ergebnisse einer Simulation oder Optimierung zu hinterfragen und zu bewerten.
- Fehler in einer Simulation oder Optimierung zu identifizieren und zu verbessern.

Präsenzzeit: 31,5 h
Selbststudium: 88,5 h
Prüfung: 1h in der Regel schriftlich

Organisatorisches
Wir empfehlen den Workshop ab dem 5. Semester.
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.
Anwesenheitspflicht

Literaturhinweise
Kursunterlagen werden in Ilias bereitgestellt.
Content is provided on Ilias.
5.31 Teilleistung: Computational Condensed Matter Physics [T-PHYS-109895]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>12</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>4023161</td>
<td>Computational Condensed Matter Physics</td>
<td>4 SWS</td>
<td>Vorlesung (V) /🗣</td>
<td>Wenzel</td>
</tr>
<tr>
<td>SS 2024</td>
<td>4023162</td>
<td>Übungen zu Computational Condensed Matter Physics</td>
<td>2 SWS</td>
<td>Übung (Ü) /🗣</td>
<td>Wenzel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen

keine
5.32 Teilleistung: Computational Photonics, without ext. Exercises [T-PHYS-106131]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilnehmer:
Prüfungstermine:
- SS 2024 4023021 Computational Photonics 2 SWS Vorlesung (V) / 🗣 Rockstuhl, Nyman
- SS 2024 4023022 Übungen zu Computational Photonics 2/1 SWS Übung (Ü) / 🗣 Rockstuhl, Nyman

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt
5.33 Teilleistung: Data Science and Scientific Workflows [T-MACH-111588]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103739 - Computational Materials Science

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2182741</th>
<th>Data Science and Scientific Workflows</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Weygand, Gumbsch</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗺 Präsenz, X Abgesagt

Erfolgskontrolle(n)

schriftlich

Voraussetzungen

Teilleistung T-MACH-111603 muss bestanden sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-111603 - Data Science and Scientific Workflows (Project) muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Data Science and Scientific Workflows
2182741, SS 2024, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz
Inhalt

Ziel:
Die Studierenden können
- elektronisch Daten organisieren und dokumentieren
- mit Datenformaten umgehen: einfache, hierarchische
- mit Softwareverwaltungstools (git, gitlab) umgehen
- wissenschaftlichen Arbeitsablauf (workflows) umfassend protokollieren und die Nachvollziehbarkeit sicherstellen
- python basierte Bibliotheken zur Datenverarbeitung und Auswertung verwenden

Einzelne Vorlesungsinhalt:
1. Einführung: Notwendigkeit der Datenwissenschaften und Informatikgrundlagen
2. Programmieren und Programmierparadigmen anhand von Python
3. Software- und Datenverwaltung: lokale und zentrale Verwaltung (git, gitlab)
4. Automatisierung von Aufgaben: von Skripten zu Workflow (mit vielen Beispielen aus Simulation und Experiment)
5. Datenverarbeitung
6. Elektronisches Laborbuch
7. Anforderung an Datenmanagement in öffentlich geförderten Projekten

Übung:
Der Vorlesungsstoff wird in den Übungen vertieft (Übung 1SWS)

Prüfungsmodus:
- Bearbeitung eines Projekts: Projektthemen aus den Bereichen
 - Werkstoffsimulation und Workflow
 - Datenorganisation und Analyse: aus Experiment oder Simulation
 - Vorstellung des Projekts in einem 15 minütigen Vortrag + Fragen
- Prüfungsvorleistung: Erfolgreicher Beginn der Projektarbeit

Literaturhinweise
Literatur:
- Handbuch Data Science, Hanser Verlag
- Effective Computation in Physics, Scopatz & Huff, O'Reilly 2015
5.34 Teilleistung: Data Science and Scientific Workflows (Project) [T-MACH-111603]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala best./nicht best.</th>
<th>Turnus Jedes Sommersemester</th>
<th>Version 1</th>
</tr>
</thead>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2182741</th>
<th>Data Science and Scientific Workflows</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ) /</th>
<th>Weygand, Gumbsch</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgreiches Erstellen eines funktionsfähigen Programms/Workflows und dessen Dokumentation.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Data Science and Scientific Workflows

2182741, SS 2024, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

<table>
<thead>
<tr>
<th>Vorlesung / Übung (VÜ)</th>
<th>Präsenz</th>
</tr>
</thead>
</table>

Inhalt

Ziel:
Die Studierenden können
- elektronisch Daten organisieren und dokumentieren
- mit Datenformaten umgehen: einfache, hierarchische
- mit Softwareverwaltungstools (git, gitlab) umgehen
- wissenschaftlichen Arbeitsablauf (workflows) umfassend protokollieren und die Nachvollziehbarkeit sicherstellen
- python basierte Bibliotheken zur Datenverarbeitung und Auswertung verwenden

Einzelne Vorlesungsinhalt:
1. Einführung: Notwendigkeit der Datenwissenschaften und Informatikgrundlagen
2. Programmieren und Programmierparadigmen anhand von Python
3. Software- und Datenverwaltung: lokale und zentrale Verwaltung (git, gitlab)
4. Automatisierung von Aufgaben: von Skripten zu Workflow (mit vielen Beispielen aus Simulation und Experiment)
5. Datenverarbeitung
6. Elektronisches Laborbuch
7. Anforderung an Datenmanagement in öffentlich geförderten Projekten

Übung:
Der Vorlesungsstoff wird in den Übungen vertieft (Übung 1SWS)

Prüfungsmodus:
- Bearbeitung eines Projekts: Projektthemen aus den Bereichen
 ▪ Werkstoffsimulation und Workflow
 ▪ Datenorganisation und Analyse: aus Experiment oder Simulation
 ▪ Vorstellung des Projekts in einem 15 minütigen Vortrag + Fragen
- Prüfungsvorleistung: Erfolgreicher Beginn der Projektarbeit

Literaturhinweise

Literatur:
- Handbuch Data Science, Hanser Verlag
- Effective Computation in Physics, Scopatz & Huff, O'Reilly 2015
5.35 Teilleistung: Datenanalyse für Ingenieure [T-MACH-105694]

Verantwortung: Stefan Meisenbacher
apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>2106014</td>
<td>Datenanalyse für Ingenieure</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Mikut, Reischl, Meisenbacher</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105694</td>
<td>Datenanalyse für Ingenieure</td>
<td></td>
<td></td>
<td>Mikut</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105694</td>
<td>Datenanalyse für Ingenieure</td>
<td></td>
<td></td>
<td>Mikut, Reischl</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenanalyse für Ingenieure
2106014, SS 2024, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt

Inhalt

Lerninhalt:

- Einführung und Motivation
- Begriffe und Definitionen (Arten von mehrdimensionalen Merkmalen - Zeitreihen und Bilder, Einteilung Problemstellungen)
- Einsatzszenario: Problemformulierungen, Merkmalsextraktion, -bewertung, -selektion und -transformation, Distanzmaße, Bayes-Klassifikation, Support-Vektor-Maschinen, Entscheidungsbäume, Cluster-Verfahren, Regression, Validierung
- 2 SWS Vorlesungen, 1 SWS Übung

Lernziele:

Literaturhinweise
Vorlesungsunterlagen (ILIAS)
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe.
2008 (PDF frei im Internet)
5.36 Teilleistung: Einführung in die Bionik [T-MACH-111807]

Verantwortung: apl. Prof. Dr. Hendrik Hölscher
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 3

Lehrveranstaltungen
SS 2024 2142151 Einführung in die Bionik 2 SWS Vorlesung (V) / 🗣 Hölscher, Greiner

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-102172 Einführung in die Bionik Hölscher

Legende: 🖥 Online, 🔄 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung (Dauer: 60 Minuten)

Voraussetzungen
keine

Anmerkungen
Teilleistung T-MACH-102172 darf nicht begonnen sein

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Bionik
2142151, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Der/ die Studierende analysiert und beurteilt bionische Effekte und plant und entwickelt daraus biomimetische Anwendungen und Produkte.

Es sind Grundkenntnisse in Physik und Chemie notwendig.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Klausur.

Organisatorisches
Im ILIAS werden Materialien (Videos, Originalliteratur, Übungen) zur Vertiefung zur Verfügung gestellt.
Für die schriftliche Klausur werden zwei Termine angeboten (erste Woche nach Vorlesungsende im Sommersemester und eine Woche vor Vorlesungsbeginn im Wintersemester).

Literaturhinweise
Folien und Literatur werden in ILIAS zur Verfügung gestellt.
5.37 Teilleistung: Einführung in die Finite-Elemente-Methode [T-MACH-105320]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-103739 - Computational Materials Science

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 3
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 4

Lehrveranstaltungen
SS 2024 2162282 Einführung in die Finite-Elemente-Methode 2 SWS Vorlesung (V) / Sprachveranstaltung, Präsenz/Online gemischt, Langhoff, Böhlke

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min)
Klausurzulassung; bestandene Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330)

Voraussetzungen
Das Bestehen der Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330) ist Klausurvoraussetzung.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Anmerkungen
Ausz Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen.
Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Finite-Elemente-Methode
2162282, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
- Einführung und Motivation, Elemente der Tensorrechnung
- Diskrete FEM: Stab- und Federsysteme
- Formulierungen eines Randwertproblems (1D)
- Approximationsansätze in der FEM
- FEM für skalare und vektorwertige Feldprobleme
- Lösungsverfahren für lineare Gleichungssysteme

Literaturhinweise
- Fish, J., Belytschko, T.: A First Course in Finite Elements, Wiley 2007
5.38 Teilleistung: Einführung in die Materialtheorie [T-MACH-105321]

Verantwortung: apl. Prof. Marc Kamlah
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik
Bestandteil von: M-MACH-103739 - Computational Materials Science

Lehrveranstaltungen
SS 2024 2182732 Einführung in die Materialtheorie 2 SWS Vorlesung (V) / Präsenz Kamlah

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-105321 Einführung in die Materialtheorie Kamlah

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Materialtheorie 2182732, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden können für ein vorgelegtes Berechnungsproblem beurteilen, welches Materialmodell (Stoffgesetz) in Abhängigkeit von Materialauswahl und Belastung verwendet werden sollte. Bei Berechnungsprogrammen wie zum Beispiel kommerziellen Finite-Elemente-Programmen können die Studierenden die Dokumentation zu den implementierten Materialmodellen verstehen und die Auswahl auf der Basis ihres Wissens treffen. Die Studierenden besitzen grundlegende Kenntnisse zur Entwicklung von Materialmodellen.

Voraussetzungen: Technische Mechanik; Höhere Mathematik
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten

Literaturhinweise
[2] Skript
5.39 Teilleistung: Electromagnetics and Numerical Calculation of Fields [T-ETIT-100640]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungstitel</th>
<th>SWS</th>
<th>Vorlesung (V) / Übung (Ü)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/24</td>
<td>Electromagnetics and Numerical Calculation of Fields</td>
<td>2</td>
<td>Vorlesung (V) /</td>
<td>Pauli</td>
</tr>
<tr>
<td>23/24</td>
<td>Exercise for 2308263 Electromagnetics and Numerical Calculation of Fields</td>
<td>1</td>
<td>Übung (Ü) /</td>
<td>Pauli, Giroto de Oliveira</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungstitel</th>
<th>SWS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/24</td>
<td>Electromagnetics and Numerical Calculation of Fields</td>
<td>Pauli</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗉 Präsenz/Online gemischt, 🗺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Grundlagen der Elektromagnetischen Feldtheorie.
5.40 Teilleistung: Elektronenmikroskopie I und II, mit Übungen [T-PHYS-111915]

Verantwortung: TT-Prof. Dr. Yolita Eggeler
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>16</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>4027011</td>
<td>Elektronenmikroskopie I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Eggeler</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>4027012</td>
<td>Übungen zu Elektronenmikroskopie</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Eggeler</td>
</tr>
<tr>
<td>SS 2024</td>
<td>4027021</td>
<td>Electron Microscopy II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Eggeler</td>
</tr>
<tr>
<td>SS 2024</td>
<td>4027022</td>
<td>Exercises to Electron Microscopy II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Eggeler</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 60 Minuten.

Voraussetzungen
keine
5.41 Teilleistung: Elektronische Eigenschaften von Festkörpern I, ohne Übungen [T-PHYS-102578]

Verantwortung: Prof. Dr. Matthieu Le Tacon
 Prof. Dr. Wolfgang Wernsdorfer
 Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Teilleistungsart | Prüfungsleistung mündlich
Leistungspunkte | 8
Notenskala | Drittelnoten
Version | 1

Lehrveranstaltungen

| WS 23/24 | 4021011 | Elektronische Eigenschaften von Festkörpern I | 4 SWS | Vorlesung (V) / 🗣 | Le Tacon, Willke |

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
keine
5.42 Teilleistung: Elektronische Eigenschaften von Festkörpern II, ohne Übungen
[T-PHYS-104423]

Verantwortung: Prof. Dr. Matthieu Le Tacon
 Dr. Johannes Rotzinger
 Prof. Dr. Alexey Ustinov
 Prof. Dr. Wolfgang Wernsdorfer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Ustinov</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>2</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Ustinov</td>
</tr>
</tbody>
</table>

Legende: 🖥️ Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Voraussetzungen

keine
5.43 Teilleistung: Energieeffiziente Intralogistiksysteme (mach und wiwi) [T-MACH-105151]

Verantwortung: Dr.-Ing. Meike Kramer
Dr. Frank Schönung

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2117500</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Kramer, Schönung</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Code</th>
<th>Name</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme</td>
<td>Kramer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

keine

Empfehlungen

Der Besuch der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) wird empfohlen.

Anmerkungen

Bitte beachten Sie die Informationen auf der IFL Homepage der Lehrveranstaltung für evtl. Terminänderungen zu einer Blockveranstaltung und/oder einer Begrenzung der Teilnehmerzahl.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Energieeffiziente Intralogistiksysteme (mach und wiwi)

Vorlesung (V)

Vorlesung

Energieeffiziente Intralogistiksysteme (mach und wiwi) 2117500, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Der Besuch der Veranstaltung „Grundlagen der Technischen Logistik“ wird empfohlen.

Organisatorisches

Blockveranstaltung 2022/2023. Die Veranstaltung findet in Präsenz statt

Literaturhinweise

Keine.
5.44 Teilleistung: Engineering Materials for the Energy Transition [T-MACH-112691]

Verantwortung: Dr. Peter Franke
Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2193008 Engineering Materials for the Energy Transition 2 SWS Vorlesung (V) / Online terniert Seifert, Ziebert</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-112691 Engineering Materials for the Energy Transition Seifert</th>
</tr>
</thead>
</table>

Legende: 📚 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 Minuten

Voraussetzungen

T-MACH-108688 - Die Energetik von Werkstoffen der Energiewende darf nicht begonnen sein.

Empfehlungen

Kenntnisse der Werkstoffkunde.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Engineering Materials for the Energy Transition

2193008, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

mündliche Prüfung (ca. 30 min)

Empfehlungen: Kenntnisse der Werkstofftechnik

Arbeitsaufwand: 120 Stunden
5.45 Teilleistung: Exercises for Applied Materials Simulation [T-MACH-110928]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103712 - Simulation

Teilleistungsart: Studienleistung
Leistungspunkte: 2
Notenskala: best./nicht best.
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2182616</th>
<th>Applied Materials Simulation</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Gumbsch</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung aller Übungsaufgaben

Voraussetzungen

T-MACH-107671 – Übungen zu Angewandte Werkstoffsimulation darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107671 - Übungen zu Angewandte Werkstoffsimulation darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Applied Materials Simulation
2182616, SS 2024, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz

Inhalt

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

Präsenzzeit: 34 Stunden
Übung: 11 Stunden
Selbststudium: 165 Stunden
Mündliche Prüfung ca. 35 Minuten
Hilfsmittel: keine
Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen
Literaturhinweise

5.46 Teilleistung: Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria [T-MACH-110924]

Verantwortung: Prof. Dr. Hans Jürgen Seifert
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-103710 - Thermodynamik

Teilleistungsart: Studienleistung
Leistungspunkte: 2
Notenskala: best./nicht best.
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
| SS 2024 | 2194721 | Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria | 1 SWS | Übung (Ü) / 🗣 | Seifert, Franke, Dürrschnabel |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen
T-MACH-107669 Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107669 - Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria
2194721, SS 2024, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Ternäre Phasendiagramme
- Vollständige Mischbarkeit
- Eutektische Systeme
2. Thermodynamik der Lösungsphasen
3. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluss der Gasphase
4. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen

Empfehlungen:
- Vorlesung Thermodynamische Grundlagen / Heterogene Gleichgewichte
- Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
- Vorlesung Physikalische Chemie

Präsenzzeit: 14 Stunden
Selbststudium: 46 Stunden

Literaturhinweise
5.47 Teilleistung: Exercises for Materials Characterization [T-MACH-110945]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103714 - Werkstoffanalytik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Nummer</th>
<th>Kurs</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2173432</td>
<td>Tutorials and Lab Courses for "Materials Characterization"</td>
<td>Gibmeier, Peterlechner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Nummer</th>
<th>Kurs</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-110945</td>
<td>Exercises for Materials Characterization</td>
<td>Gibmeier</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ❌ Abgesagt

Voraussetzungen

Regelmäßige Teilnahme

T-MACH-107685 – Übungen zu Werkstoffanalytik darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107685 - Übungen zu Werkstoffanalytik darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Tutorials and Lab Courses for "Materials Characterization"

2173432, WS 23/24, 1 SWS, Sprache: Englisch,
Im Studierendenportal anzeigen

Inhalt

s. Vorlesung "Werkstoffanalytik" (V-Nr. 2174586)

Literaturhinweise

Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
5.48 Teilleistung: Exercises for Microstructure-Property-Relationships [T-MACH-110930]

Verantwortung: Dr. Patric Gruber, Prof. Dr. Christoph Kirchlechner

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103713 - Eigenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2177021 | Exercises in Microstructure-Property-Relationships | 1 SWS | Übung (Ü) / 🗣 Kirchlechner, Wagner, Gruber |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-110930 | Exercises for Microstructure-Property-Relationships | Kirchlechner, Gruber, Wagner |

Legende: 🖥 Online, 🤸 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Bestehen eines mündlichen Abschlusskolloquiums

Voraussetzungen
T-MACH-107683 – Übungen zu Gefüge-Eigenschafts-Beziehungen darf nicht begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107683 - Übungen zu Gefüge-Eigenschafts-Beziehungen darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Exercises in Microstructure-Property-Relationships
2177021, WS 23/24, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz

Inhalt
Übungen zur Vorlesung Gefüge-Eigenschafts-Beziehungen LV Nr. 2177020.
5.49 Teilleistung: Exercises for Solid State Reactions and Kinetics of Phase Transformations [T-MACH-110926]

Verantwortung: Prof. Dr.-Ing. Bronislava Gorr
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-103711 - Kinetik

Lehrveranstaltungen

| SS 2024 | 2194723 | Exercises for Solid State Reactions and Kinetics of Phase Transformations, Corrosion | 1 SWS | Übung (Ü) / 🗣️ | Gorr, Martini |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen

T-MACH-107632 – Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Exercises for Solid State Reactions and Kinetics of Phase Transformations, Corrosion
2194723, SS 2024, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

1. Ficksche Gesetze
2. Berechnung von Diffusionskoeffizienten
3. Diffusion und Erstarrungsvorgänge

Empfehlungen: Vorlesung Festkörperreaktionen/Kinetik von Phasenumwandlungen, Korrosion; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Vorlesung Physikalische Chemie

Vertiefung der Vorlesung anhand durchgerechneter Beispiele

Präsenzzzeit: 14 Stunden
Selbststudium: 46 Stunden

Literaturhinweise

Vorlesungsskript;
Lecture notes
50 Teilleistung: Experimentelles metallographisches Praktikum [T-MACH-105447]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Dr.-Ing. Alexander Kauffmann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Veranstaltungscode</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2175590</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>3 SWS</td>
<td>Kauffmann</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Veranstaltungscode</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105447</td>
<td>Experimentelles metallographisches Praktikum</td>
<td>Heilmaier, Kauffmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kolloquium zu jedem Versuch, ca. 60 Minuten, Protokoll

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt

Die Grundlagen eignet sich der Studierende vorab an - sie werden in einem Online-Kolloquium vor dem Beginn des Praktikums abgefragt und sind Voraussetzung für die Teilnahme. Zur Orientierung und Aneignung erster Grundlagen steht ein Skript zur Verfügung, die weiterführende Literatur ist zu beachten.

Lernziele:

Voraussetzungen:
Werkstoffkunde I und II oder Materialphysik und Metalle

Arbeitsaufwand:
Präsenzzzeit: 25 Stunden
Selbststudium: 95 Stunden
Literaturhinweise
Praktikumsskript
Weiterführende Informationen gibt es hier:

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
5.51 Teilleistung: Experimentelles Schweißtechnisches Praktikum, in Gruppen [T-MACH-102099]

Verantwortung: Dr.-Ing. Stefan Dietrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala best./nicht best.</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2173560 | Experimentelles Schweißtechnisches Praktikum, in Gruppen | 3 SWS | Praktikum (P) / 🗣 | Dietrich, Schulze |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-102099 | Experimentelles Schweißtechnisches Praktikum, in Gruppen | Dietrich |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Ausstellung eines Scheins nach Begutachtung des Praktikumsberichts.

Voraussetzungen

Hörerschein in Schweißtechnik (Die Teilnahme an der Veranstaltung Schweißtechnik I/II wird vorausgesetzt.).

Anmerkungen

Es ist festes Schuhwerk und lange Kleidung erforderlich!

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelles Schweißtechnisches Praktikum, in Gruppen

2173560, WS 23/24, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Lernziele:

Die Studierenden können gängige Schweißverfahren und deren Anwendbarkeit beim Fügen verschiedener metallischer Werkstoffe nennen. Die Studierenden können die verschiedenen Schweißverfahren hinsichtlich ihrer Vor- und Nachteile miteinander vergleichen. Die Studierenden haben selber mit verschiedenen Schweißverfahren geschweißt.

Voraussetzungen:

Es ist festes Schuhwerk und lange Kleidung erforderlich!

Arbeitsaufwand:

Präsenzzzeit: 31,5 Stunden
Vorbereitung: 8,5 Stunden
Praktikumsbericht: 80 Stunden
Organisatorisches
Die Lehrveranstaltung "Experimentelles schweißtechnisches Praktikum" findet dieses Jahr wieder in der Woche vom 12. – 16.2.2024 statt. Der Veranstaltungsort ist die Bildungsakademie Handwerkskammer Karlsruhe
Hertzstr. 177
76187 Karlsruhe

Die Gruppeneinteilung in die beiden Gruppen findet Anfang Februar statt!
- Gruppe 1. Montag 7.30 Uhr bis Mittwoch 12.00 Uhr
- Gruppe 2. Mittwoch 13.00 Uhr bis Freitag 15.00 Uhr

Sollte aufgrund anderer LV oder Prüfungen für Sie nur eine der beiden Gruppen in Frage kommen, melden Sie sich bitte rechtzeitig bis 4.2.24 unter iam-wk-lehre@iam.kit.edu

Bitte bringen Sie festes und geschlossenes Schuhwerk (optimalerweise Arbeitsschuhe) und lange und entbehrliche Hosen sowie Oberteile mit, da wir uns die Hände schmutzig machen und mit flüssigem, umherfliegendem Metall konfrontiert sein werden. Für die Mittagspause können Sie sich selbst versorgen oder auch in der Mensa der Bildungsakademie essen.

Literaturhinweise
wird im Praktikum ausgegeben
5.52 Teilleistung: Fabrication and Characterisation of Optoelectronic Devices [T-ETIT-103613]

Verantwortung: Prof. Dr. Bryce Sydney Richards
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2024 2313760 Fabrication and Characterization of Optoelectronic Devices 2 SWS Vorlesung (V) / Paetzold

Prüfungsveranstaltungen
WS 23/24 7313760 Fabrication and Characterisation of Optoelectronic Devices Paetzold

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Modulnote ist die Note dieser schriftlichen Prüfung.

Voraussetzungen
keine
5.53 Teilleistung: Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe [T-MACH-105237]

Verantwortung: Prof. Dr.-Ing. Frank Henning
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbau

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2113102, Vorlesung (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105237</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105237</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfung: schriftlich
Dauer: ca. 90 min

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe
2113102, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt
Leichtbaustrategien
- Stoffleichtbau
- Formleichtbau
- Konzeptleichtbau
- Multi-Material-Design

Ingenieurtechnische Bauweisen
- Differentialbauweise
- Integralbauweise
- Sandwichbauweise
- Modulbauweise
- Bionik

Karosseriebauweisen
- Schalenbauweise
- Space Frame
- Gitterrohrrahmen
- Monocoque

Metallische Leichtbauwerkstoffe
- Hoch- und Höchstfeste Stähle
- Aluminiumlegierungen
- Magnesiumlegierungen
- Titanlegierungen

Lernziele:

Sie können nachvollziehen, dass dies besonders bei anisotropen Werkstoffen, deren Eigenschaften maßgeblich vom Fertigungsprozess beeinflusst werden, für die industrielle Nutzung essentiell ist. Die Studierenden kennen die gängigen Leichtbaustategien, Ingenieurtechnische Leichtbauweisen sowie die gängigen Karosseriebauweisen. Sie lernen die im Fahrzeugleichtbau verwendeten metallischen Leichtbauwerkstoffe kennen und können die Zusammenhänge aus verwendetem Werkstoff zur anzuwendenden Karosseriebauweise bilden.

Literaturhinweise
5.54 Teilleistung: Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung [T-MACH-105535]

Verantwortung: Prof. Dr.-Ing. Frank Henning
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbau
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>2114053</th>
<th>Leistungspunkte</th>
<th>Vorlesung (V) / 🧩</th>
<th>Praesenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>2 SWS</td>
<td>Henning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>76-T-MACH-105535</th>
<th>Leistungspunkte</th>
<th>Vorlesung (V) / 🧩</th>
<th>Praesenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>Henning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>Henning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung 90 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>2114053</th>
<th>SS 2024</th>
<th>2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V)</td>
<td>🧩</td>
<td>Henning</td>
<td></td>
</tr>
</tbody>
</table>

Präsenz/Online gemischt
Inhalt
Physikalische Zusammenhänge der Faserverstärkung
- Paradoxa der FVW
Anwendungen und Beispiele
- Automobilbau
- Transportanlagen
- Energie- und Bauwesen
- Sportgeräte und Hobby
Matrixwerkstoffe
- Aufgaben der Matrix im Faserverbundwerkstoff
- Grundlagen Kunststoffe
- Duromere
- Thermoplaste
Verstärkungsfasern und ihre Eigenschaften
- Aufgaben im FVW, Einfluss der Fasern
- Glasfasern
- Kohlenstofffasern
- Aramidfasern
- Naturfasern
Halbzeuge/Prepregs
Verarbeitungsverfahren
Recycling von Verbundstoffen
Lernziele:
Organisatorisches
Die Lehrveranstaltung wird im SS 2024 als Hybridveranstaltung geplant.
Literaturhinweise
Literatur Leichtbau II
[1-7]
5.55 Teilleistung: Fertigungsprozesse der Mikrosystemtechnik [T-MACH-102166]

Verantwortung: Dr. Klaus Bade
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Lehrveranstaltung</th>
<th>Kreditpunkte</th>
<th>Art</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2143882</td>
<td>Fertigungsprozesse der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Bade</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2143882</td>
<td>Fertigungsprozesse der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Bade</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Lehrveranstaltung</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-102166</td>
<td>Fertigungsprozesse der Mikrosystemtechnik</td>
<td>Bade</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-102166</td>
<td>Fertigungsprozesse der Mikrosystemtechnik</td>
<td>Bade</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fertigungsprozesse der Mikrosystemtechnik
2143882, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise
M. Madou
Fundamentals of Microfabrication
CRC Press, Boca Raton, 1997
W. Menz, J. Mohr, O. Paul
Mikrosystemtechnik für Ingenieure
Dritte Auflage, Wiley-VCH, Weinheim 2005
L.F. Thompson, C.G. Willson, A.J. Bowden
Introduction to Microlithography

V Fertigungsprozesse der Mikrosystemtechnik
2143882, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz

Inhalt

1. Grundlagen der mikrotechnischen Fertigung
2. Allgemeine Fertigungsschritte
 2.1 Vorbehandlung / Reinigung / Spülen
 2.2 Beschichtungsverfahren (vom Spincoaten bis zur Selbstorganisation)
 2.3 Mikrostrukturierung: additiv und subtraktiv
 2.4 Entschichtung
3. Mikrotechnische Werkzeugherstellung: Masken und Formwerkzeuge
4. Interconnects (Damascene-Prozess), moderner Leiterbahnaufbau
5. Nassprozesse im LIGA-Verfahren
6. Gestaltung von Prozessabläufen
Literaturhinweise
M. Madou
Fundamentals of Microfabrication
CRC Press, Boca Raton, 1997
W. Menz, J. Mohr, O. Paul
Mikrosystemtechnik für Ingenieure
Dritte Auflage, Wiley-VCH, Weinheim 2005
L.F. Thompson, C.G. Willson, A.J. Bowden
Introduction to Microlithography
5.56 Teilleistung: Fertigungstechnik [T-MACH-102105]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp (VÜ)</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2149657</td>
<td>Fertigungstechnik</td>
<td>6</td>
<td>Vorlesung / Übung (VÜ) / 🧩</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnr.</th>
<th>Lehrveranstaltung</th>
<th>Veranstaltungstyp (VÜ)</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>Schulze</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (180 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fertigungstechnik
2149657, WS 23/24, 6 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt
Ziel der Vorlesung ist es, die Fertigungstechnik im Rahmen der Produktionstechnik einzuordnen, einen Überblick über die Verfahren der Fertigungstechnik zu geben und ein vertieftes Prozesswissen der gängigen Verfahren aufzubauen. Dazu werden im Rahmen der Vorlesung fertigungstechnische Grundlagen vermittelt und die Fertigungsverfahren entsprechend ihrer Hauptgruppen sowohl unter technischen als auch wirtschaftlichen Gesichtspunkten behandelt. Durch die Vermittlung von Themen wie Prozessketten in der Fertigung wird die Vorlesung abgerundet.

Die Themen im Einzelnen sind:

- Qualitätsregelung
- Uformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung, Kunststofftechnik)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung
- Prozessketten in der Fertigung

Eine Exkursion zu einem Industrieanbieter gehört zum Angebot dieser Vorlesung.

Lernziele:
Die Studierenden ...

- sind fähig, die verschiedenen Fertigungsverfahren anzugeben und deren Funktionen zu erläutern.
- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der Hauptgruppen klassifizieren.
- sind in der Lage, für vorgegebene Verfahren auf Basis deren Eigenschaften eine Prozessauswahl durchzuführen.
- sind befähigt, Zusammenhänge einzelner Verfahren zu identifizieren, und können diese hinsichtlich ihrer Einsatzmöglichkeiten auswählen.
- können die Verfahren für gegebene Anwendungen unter technischen und wirtschaftlichen Gesichtspunkten beurteilen und eine spezifische Auswahl treffen.
- sind in der Lage, die Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen und deren jeweiligen Einfluss im Kontext der gesamten Prozesskette auf die resultierenden Werkstückeigenschaften zu beurteilen.

Arbeitsaufwand:
Präsenzzzeit: 63 Stunden
Selbststudium: 177 Stunden

Organisatorisches
Vorlesungstermine montags und dienstags, Übungstermine mittwochs. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
5.57 Teilleistung: Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion [T-MACH-107667]

Verantwortung: Dr. Peter Franke
Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103711 - Kinetik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsthema</th>
<th>SWS</th>
<th>Vorlesung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2193003</td>
<td>Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Franke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Die erfolgreiche Teilnahme an Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion ist Voraussetzung für die Zulassung zur mündlichen Prüfung Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen

Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
Grundvorlesungen in Mathematik
Vorlesung Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V
Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion
2193003, WS 23/24, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen
Vorlesung (V)
Präsenz
5 TEILLEISTUNGEN

Teilleistung: Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion [T-MACH-107667]

Inhalt
Mündliche Prüfung (ca. 30 min)

Lehrinhalt:
1. Kristallfehler und Diffusionsmechanismen
2. Mikroskopische Beschreibung der Diffusion
3. Phänomenologische Beschreibung
4. Diffusionskoeffizienten
5. Diffusionsprobleme; analytische Lösungen
6. Diffusion mit Phasenumwandlung
7. Gefügekinetik
8. Diffusion entlang Oberflächen, Korngrenzen, Versetzungen
9. Numerische Behandlung von diffusionskontrollierten Phasenumwandlungen

Empfehlungen: Kenntnisse aus der Vorlesung "Heterogene Gleichgewichte" (Seifert) sind zu empfehlen; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Grundvorlesungen in Mathematik; Vorlesung Physikalische Chemie

Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden

Die Studierenden sollen nach der Teilnahme an den Lehrveranstaltungen fähig sein:

- Diffusionsmechanismen zu beschreiben
- die Fickschen Gesetze zu formulieren
- einfache Lösungen der Diffusionsgleichung anzugeben
- Diffusionsexperimente auszuwerten
- Interdiffusionprozesse zu beschreiben
- den thermodynamischen Faktor zu erklären
- parabolisches Schichtwachstum zu beschreiben
- die Perlitbildung zu erläutern
- Gefügeumwandlungen gemäß den Modellen von Avrami und Johnson-Mehl darzulegen
- ZTU-Schaubilder zu erklären und anzuwenden

Literaturhinweise
5.58 Teilleistung: Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria [T-MACH-110925]

Verantwortung: Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103710 - Thermodynamik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltungsname</th>
<th>Lehrstunden</th>
<th>Prüfungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>2194720</td>
<td>Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Seifert, Franke, Dürrschnabel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltungsname</th>
<th>Lehrstunden</th>
<th>Prüfungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-110925</td>
<td>Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria</td>
<td></td>
<td></td>
<td>Seifert</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-110940</td>
<td>Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria (Repeat Exam)</td>
<td></td>
<td></td>
<td>Seifert</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Die erfolgreiche Teilnahme an Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria ist Voraussetzung für die Zulassung zur mündlichen Prüfung Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria.

T-MACH-107669 – Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen sein.

T-MACH-107670 – Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107670 - Thermodynamische Grundlagen / Heterogene Gleichgewichte darf nicht begonnen worden sein.

Empfehlungen

Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
Grundvorlesungen in Mathematik
Vorlesung Physik oder Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria 2194720, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
Mündliche Prüfung (ca. 30 min)
Lehrinhalt:
1. Binäre Phasendiagramme
2. Ternäre Phasendiagramme
- Vollständige Mischbarkeit
- Eutektische Systeme
- Peritektische Systeme
- Übergangsreaktionen
- Systeme mit intermetallischen Phasen
3. Thermodynamik der Lösungsphasen
4. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluß der Gasphase
5. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen
6. Thermodynamik von multikomponentigen, multiphasigen Werkstoffsystemen
7. Thermodynamische Berechnungen mit der CALPHAD-Methode

Empfehlungen: Kenntnisse aus der Vorlesung "Festkörperreaktionen, Kinetik von Phasenumwandlungen, Korrosion" (Gorr) sind zu empfehlen; Grundvorlesungen Materialwissenschaft und Werkstofftechnik; Grundvorlesungen Mathematik; Vorlesung Physik oder Physikalische Chemie

Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden

Die Studierenden kennen die Konstitution (Lehre der heterogenen Gleichgewichte) von binären, ternären und multikomponentigen Werkstoffsystemen und können die thermodynamischen Eigenschaften von multiphasigen Werkstoffen und deren Reaktionen mit Gas- und Schmelzphasen analysieren.

Sie können die erlernten Zusammenhänge auf Fragen der Herstellung, des Fügens und der Anwendung der Werkstoffe (metallische Legierungen, technische Keramiken, Verbundwerkstoffe) anwenden.

Literaturhinweise
5.59 Teilleistung: Fundamentals of Optics and Photonics [T-PHYS-103628]

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V) / 🗣</th>
<th>Übung (Ü) / 🗣</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>KSOP - Fundamentals of Optics & Photonics</td>
<td>4 SWS</td>
<td>Kreysing</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>KSOP - Exercises to Fundamentals of Optics & Photonics</td>
<td>2 SWS</td>
<td>Hunger, Palkhivala</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Fundamentals of Optics and Photonics - Exam 2</td>
<td>Hunger, Lemmer, Kreysing</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Fundamentals of Optics and Photonics - Exam 1</td>
<td>Hunger, Lemmer, Kreysing</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🪙 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle findet für WMK-Studierende in Form einer mündlichen Prüfung statt.

Voraussetzungen
Erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103630 - Fundamentals of Optics and Photonics - Unit muss erfolgreich abgeschlossen worden sein.
5.60 Teilleistung: Fundamentals of Optics and Photonics - Unit [T-PHYS-103630]

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 4044021 | KSOP - Fundamentals of Optics & Photonics | 4 SWS | Vorlesung (V) / 📚 | Kreysing |
| WS 23/24 | 4044022 | KSOP - Exercises to Fundamentals of Optics & Photonics | 2 SWS | Übung (Ü) / 📚 | Hunger, Palkhivala |

Prüfungsveranstaltungen

| WS 23/24 | 7800057 | Fundamentals of Optics & Photonics - Exercises | | Hunger, Kreysing, Lemmer |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Voraussetzungen
keine
5.61 Teilleistung: Funktionskeramiken [T-MACH-105179]

Verantwortung:
Dr. Manuel Hinterstein
Dr.-Ing. Wolfgang Rheinheimer

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von:
M-MACH-103741 - Funktionswerkstoffe

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Sem.</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art der Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2126784</td>
<td>Funktionskeramiken</td>
<td>2</td>
<td>Vorlesung (V) / 🕒</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Sem.</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Art der Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7600054</td>
<td>Funktionskeramiken</td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105179</td>
<td>Funktionskeramiken</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) zum vereinbarten Termin.

Hilfsmittel:
keine

Die Wiederholungsprüfung findet nach Vereinbarung statt.

Voraussetzungen
keine

Inhalt
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Funktionskeramiken
2126784, WS 23/24, 2 SWS, [Im Studierendenportal anzeigen]

Inhalt
Ort/Zeit s. Institutshomepage
5.62 Teilleistung: Gefüge-Eigenschafts-Beziehungen [T-MACH-107604]

Verantwortung: Dr. Patric Gruber
Prof. Dr. Christoph Kirchlechner

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103713 - Eigenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 3

Lehrveranstaltungen

SS 2024 2178124 Gefüge-Eigenschafts-Beziehungen 3 SWS Vorlesung (V) / 🗣 Kirchlechner, Gruber

Prüfungsveranstaltungen

WS 23/24 76-T-MACH-107604 Gefüge-Eigenschafts-Beziehungen Kirchlechner, Gruber

Legende: Online, Präsenz/Online gemischt, Präsenz, × Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
Die erfolgreiche Teilnahme an Übungen zu Gefüge-Eigenschafts-Beziehungen ist Voraussetzung für die Zulassung zur mündlichen Prüfung Gefüge-Eigenschafts-Beziehungen.
T-MACH-110930 - Exercises for Microstructure-Properties-Relationships darf nicht begonnen sein.
T-MACH-110931 - Microstructure-Properties-Relationships darf nicht begonnen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Gehäuse-Eigenschafts-Beziehungen
2178124, SS 2024, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Es werden folgende Gefüge-Eigenschafts-Beziehungen für die verschiedenen Materialklassen behandelt:
- Elastizität und Plastizität
- Bruchmechanik
- Ermüdung
- Kriechen
- Elektrische Leitfähigkeit: Metallische Leiter, Halbleiter, Supraleiter, leitfähige Polymere
- Magnetische Eigenschaften und Magnetwerkstoffe

Neben der phänomenologischen Beschreibung und physikalische Erfassung des Materialverhaltens wird auch ein Überblick zu den jeweiligen experimentellen Methoden gegeben.

Die Studierenden verstehen grundlegend den Zusammenhang zwischen dem Gefüge und den Materialeigenschaften. Dieser Zusammenhang wird für die mechanischen Eigenschaften (Elastizität, Plastizität, Bruch, Ermüdung, Kriechen) sowie für die Funktionseigenschaften (Leitfähigkeit, magnetische Eigenschaften) und jeweils für alle Werkstoffhauptklassen erarbeitet. Die Studierenden können die Eigenschaften phänomenologisch beschreiben, die zugrundeliegenden materialphysikalischen Mechanismen erklären und verstehen wie die Eigenschaften über das Gefüge gezielt eingestellt werden können. Sie können umgekehrt auch auf Basis des Gefüges die mechanischen und funktionellen Eigenschaften des Werkstoffes ableiten.
Mündliche Prüfung ca. 30 Minuten
5.63 Teilleistung: Gießereikunde [T-MACH-105157]

Verantwortung: Dr.-Ing. Christian Wilhelm
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2024 2174575 Gießereikunde 2 SWS Vorlesung (V) / Schulze, Dietrich

Erfolgskontrolle(n)
mündliche Prüfung; ca. 25 Minuten
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Gießereikunde
2174575, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Inhalt
• Form- und Gießverfahren
• Fe-Metalllegierungen
• Ne-Metalllegierungen
• Gießbarkeit
• Gieß- und Erstarrungssimulation
• Arbeitsablauf in der Gießerei
• Form- und Hilfsstoffe
• Gießgerechtes Konstruieren
• Kernherstellung
• Formverfahren
• Additive Fertigung
• Sandregenerierung

Lernziele:
Die Studenten kennen die einzelnen Form- und Gießtechnischen Verfahren und können sie detailliert beschreiben. Sie kennen die Anwendungsgebiete der einzelnen Form- und Gießtechnischen Verfahren hinsichtlich Gussteilen und Metallen, deren Vor- und Nachteile sowie deren Anwendungsgrenzen und können diese detailliert beschreiben.
Die Studenten kennen die im Einsatz befindlichen Gusswerkstoffe und können die Vor- und Nachteile sowie das jeweilige Einsatzgebiet der Gussmaterialien detailliert beschreiben.
Die Studenten sind in der Lage, den Aufbau verloener Formen, die eingesetzten Form- und Hilfsstoffe, die notwendigen Fertigungsverfahren, deren Einsatzschwerpunkte sowie formstoffbedingte Gussfehler detailliert zu beschreiben.
Die Studenten kennen die Grundlagen der Herstellung beliebiger Gussteile hinsichtlich o.a. Kriterien und können sie konkret beschreiben.

Literaturhinweise
Literaturhinweise werden in der Vorlesung gegeben
Reference to literature, documentation and partial lecture notes given in lecture
5.64 Teilleistung: Grundlagen der Fahrzeugtechnik I [T-MACH-100092]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>schriftlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td></td>
<td>Jedes W.</td>
<td>1 Sem.</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / Prüfung (P)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2113805</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>4 SWS</td>
<td>Vorlesung (V) / Prüfung (P)</td>
<td>Gauterin, Gießler</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2113809</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Vorlesung (V) / Prüfung (P)</td>
<td>Gauterin, Gießler</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>Unrau, Gauterin</td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>Gauterin, Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗼 Präsenz/Online gemischt, 🗼 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

schriftlich

Dauer: 120 Minuten

Hilfsmittel: keine

Voraussetzungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik I
2113805, WS 23/24, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanische Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differentiale

Lernziele:

Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsräder sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.
Organisatorisches

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIlias/

Kann nicht mit der Veranstaltung [2113809] kombiniert werden.

Can not be combined with lecture [2113809].

Literaturhinweise

Automotive Engineering I

2113809, WS 23/24, 4 SWS, Sprache: Englisch,
Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanisches Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differential

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsräder sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches

You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/PasswoerterIlias/, students from eucor universities send an e-mail to martina.kaiser@kit.edu

Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literaturhinweise

T 5.65 Teilleistung: Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie [T-MACH-102111]

Verantwortung: apl. Prof. Dr. Günter Schell
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2193010</th>
<th>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩 Schell</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-102111</th>
<th>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</th>
<th>Schell, Wagner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-102111</td>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</td>
<td>Schell</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 20-30 min. mündlichen Prüfung zu einem vereinbarten Termin. Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie
2193010, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise

- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
5.66 Teilleistung: Grundlagen der Mikrosystemtechnik I [T-MACH-105182]

Verantwortung:
Dr. Vlad Badilita
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von:
M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungskennung</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2141861</td>
<td>Grundlagen der Mikrosystemtechnik I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Korvink, Badilita</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105182</td>
<td>Grundlagen der Mikrosystemtechnik I</td>
<td></td>
<td></td>
<td>Korvink, Badilita</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105182</td>
<td>Grundlagen der Mikrosystemtechnik I</td>
<td></td>
<td></td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (ca. 60 Min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mikrosystemtechnik I

2141861, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Literaturhinweise

Mikrosystemtechnik für Ingenieure, W. Menz und J. Mohr, VCH Verlagsgesellschaft, Weinheim 2005

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
5.67 Teilleistung: Grundlagen der Mikrosystemtechnik II [T-MACH-105183]

Verantwortung: Dr. Mazin Jouda
 Prof. Dr. Jan Gerrit Korvink
Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2142874</th>
<th>Grundlagen der Mikrosystemtechnik II</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Korvink, Badilita</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-105183 | Grundlagen der Mikrosystemtechnik II | Korvink, Badilita |
| SS 2024 | 76-T-MACH-105183 | Grundlagen der Mikrosystemtechnik II | Korvink, Badilita |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (60 Min.).

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mikrosystemtechnik II
2142874, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
- Einführung in Nano- und Mikrotechnologien
- Lithographie
- Das LIGA-Verfahren
- Mechanische Mikrofertigung
- Strukturierung mit Lasern
- Aufbau- und Verbindungstechnik
- Mikrosysteme

Organisatorisches
Topic: Grundlagen der Mikrosystemtechnik II (MST II) SS 21
Time: Thursdays 14:00 - 15:30
10.91 Redtenbacher-Hörsaal

Literaturhinweise
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage, 2011
5 TEILLEISTUNGEN

5.68 Teilleistung: Grundlagen der nichtlinearen Kontinuumsmechanik [T-MACH-105324]

Verantwortung: apl. Prof. Marc Kamlah
Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von: M-MACH-103739 - Computational Materials Science

Teilleistungsart
Prüfung: mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
WS 23/24 2181720 Grundlagen der nichtlinearen Kontinuumsmechanik 2 SWS Vorlesung (V) / 🗣️ Kamlah

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-105324 Grundlagen der nichtlinearen Kontinuumsmechanik Kamlah

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der nichtlinearen Kontinuumsmechanik
2181720, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Voraussetzungen: Technische Mechanik - Höhere Mathematik
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten

Organisatorisches
Die Vorlesung findet im WS 23/24 nicht statt.

Literaturhinweise
Vorlesungsskript
5.69 Teilleistung: Grundlagen der Plasmatechnologie [T-ETIT-100770]

Verantwortung: Dr.-Ing. Rainer Kling
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2313734</th>
<th>Grundlagen der Plasmatechnologie</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Kling</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>7313734</th>
<th>Grundlagen der Plasmatechnologie</th>
<th>Kling</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen
keine

Empfehlungen
Das vorherige Hören der Vorlesung -ETIT-100481 – Plasmastrahlungsquellen ist hilfreich.
5.70 Teilleistung: Grundlagen der technischen Verbrennung I [T-MACH-105213]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>Vorlesung (V) / ✓</th>
<th>Grundlagen der technischen Verbrennung I</th>
<th>2 SWS</th>
<th>Maas, Shrotriya, Zenk</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Übung (Ü) / ✓</td>
<td>Übungen zu Grundlagen der technischen Verbrennung I</td>
<td>1 SWS</td>
<td>Bykov</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Vorlesung (V) / ✓</td>
<td>Fundamentals of Combustion I</td>
<td>2 SWS</td>
<td>Maas</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Übung (Ü) / ✓</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>1 SWS</td>
<td>Bykov</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 23/24 | Grundlagen der technischen Verbrennung I, WPF | 76-T-MACH-105213 | Maas |
| WS 23/24 | Fundamentals of Combustion I - english exam | 76-T-MACH-105464 | Maas |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Verbrennung I

2165515, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
- Grundlegende Begriffe und Phänomene
- Experimentelle Untersuchung von Flammen
- Erhaltungsgleichungen für laminare flache Flammen
- Chemische Reaktionen
- Reaktionsmechanismen
- Laminare Vormischflammen
- Laminare nicht-vormischte Flammen
- Zündprozesse
- Stickoxid-Bildung
- Bildung von Kohlenwasserstoffen und Ruß

Organisatorisches
Bei zu wenigen Hörern wird die Lehrveranstaltung mit der englischen Lehrveranstaltung zusammengelegt.

Literaturhinweise
Vorlesungsskript,

Übungen zu Grundlagen der technischen Verbrennung I

2165517, WS 23/24, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz
Literaturhinweise

- Vorlesungsskript

Fundamentals of Combustion I

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>3165016, WS 23/24, 2 SWS, Sprache: Englisch, im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

- Grundlegende Begriffe und Phänomene
- Experimentelle Untersuchung von Flammen
- Erhaltungsgleichungen für laminare flache Flammen
- Chemische Reaktionen
- Reaktionsmechanismen
- Laminare Vormischflammen
- Laminare nicht-vorgemischte Flammen
- Zündprozesse
- Stickoxid-Bildung
- Bildung von Kohlenwasserstoffen und Ruß

Literaturhinweise

Vorlesungsskript,

Fundamentals of Combustion I (Tutorial)

<table>
<thead>
<tr>
<th>Übung (Ü)</th>
<th>3165017, WS 23/24, 1 SWS, Sprache: Englisch, im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Ort/Zeit siehe Institutshomepage
5.71 Teilleistung: Grundlagen der technischen Verbrennung II [T-MACH-105325]

Verantwortung: Dr. Viatcheslav Bykov
Prof. Dr. Ulrich Maas

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Leistungspunkt</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2024	2166538	Grundlagen der technischen Verbrennung II	2 SWS	Vorlesung (V) / Präsenz	Maas
SS 2024	2166539	Übung zu Grundlagen der technischen Verbrennung II	1 SWS	Übung (Ü) / Präsenz	Maas
SS 2024	3166550	Fundamentals of Combustion II	2 SWS	Vorlesung (V) / Präsenz	Maas, Bykov, Shrotriya

Legende: 🖥 Online, 📧 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung mündlich; Dauer ca. 20 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Verbrennung II
2166538, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Die dreidimensionalen Navier-Stokes-Gleichungen für reagierende Strömungen
- Turbulente reaktive Strömungen
- Turbulente nicht vorgemischte Flammen
- Turbulente Vormischflammen
- Verbrennung flüssiger und fester Brennstoffe
- Motorklopfen
- Thermodynamik von Verbrennungsvorgängen
- Transporterscheinungen
- Auswirkungen von Verbrennungsprozessen auf die Atmosphäre

Literaturhinweise
Vorlesungs-skript;

Übung zu Grundlagen der technischen Verbrennung II
2166539, SS 2024, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Berechnung und Simulation von Verbrennungsprozessen

Literaturhinweise
Skript Grundlagen der technischen Verbrennung (I+II) von Prof. Dr. rer. nat. habil. U. Maas
Fundamentals of Combustion II
3166550, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

- Die dreidimensionalen Navier-Stokes-Gleichungen für reagierende Strömungen
- Turbulente reative Strömungen
- Turbulente nicht vorgemischte Flammen
- Turbulente Vormischflammen
- Verbrennung flüssiger und fester Brennstoffe
- Motorklopfen
- Thermodynamik von Verbrennungsvorgängen
- Transporterscheinungen
- Auswirkungen von Verbrennungsprozessen auf die Atmosphäre

Organisatorisches

Time and location will be announced on the website and at the institute showcase.

Literaturhinweise

Vorlesungsskript;
5.72 Teilleistung: Grundlagenmodul - Selbstverbuchung BAK [T-ZAK-112653]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul umfasst eine Studienleistung nach § 5 Absatz 4 in Form von zwei Protokollen zu zwei frei wählbaren Sitzungen der Ringvorlesung „Einführung in die Angewandte Kulturwissenschaft“, Umfang jeweils ca. 6000 Zeichen (inkl. Leerzeichen).

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Das Grundlagenmodul besteht aus der Vorlesung „Einführung in die Angewandte Kulturwissenschaft“, die jeweils nur im Wintersemester angeboten wird. Empfohlen werden daher ein Studienbeginn im Wintersemester und ein Absolvieren vor Modul 2.
5.73 Teilleistung: Grundlagenmodul - Selbstverbuchung BeNe [T-ZAK-112345]

Verantwortung: Christine Myglas
Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Teilleistungsart Studienleistung Leistungspunkte 3 Notenskala best./nicht best. Version 1

Erfolgskontrolle(n)
Die Erfolgskontrolle in diesem Modul umfasst eine Studienleistung nach § 5 Absatz 4:

- **Projekttag Frühlingsakademie Nachhaltigkeit** in Form eines Reflexionsberichts über alle Bestandteile der Projekttag "Frühlingsakademie Nachhaltigkeit". Umfang ca. 12.000 Zeichen (inkl. Leerzeichen)

Die Erfolgskontrolle erfolgt studienbegleitend ohne Note.

Voraussetzungen
Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
5.74 Teilleistung: Grundsätze der Nutzfahrzeugentwicklung [T-MACH-111389]

Verantwortung: Christof Weber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>siehe Anmerkungen</td>
<td>2 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2113812 | Grundsätze der Nutzfahrzeugentwicklung I | 1 SWS | Vorlesung (V) / 📚 | Weber |
| SS 2024 | 2114844 | Grundsätze der Nutzfahrzeugentwicklung II | 1 SWS | Vorlesung (V) / 📚 | Weber |

Prüfungsveranstaltungen

| WS 23/24 | 76T-MACH-111389 | Grundsätze der Nutzfahrzeugentwicklung | Weber |
| SS 2024 | 76T-MACH-111389 | Grundsätze der Nutzfahrzeugentwicklung | Weber |

Legende: 📚 Online, 📚 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Gruppenprüfung
Dauer: ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Anmerkungen
Grundsätze der Nutzfahrzeugentwicklung I, WS
Grundsätze der Nutzfahrzeugentwicklung II, SoSe

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der Nutzfahrzeugentwicklung I
2113812, WS 23/24, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Einführung, Definitionen, Historik
2. Entwicklungswerkzeuge
3. Gesamtfahrzeug
4. Fahrerhaus, Rohbau
5. Fahrerhaus, Innenausbau
6. Alternative Antriebe
7. Antriebsstrang
8. Antriebsquelle Dieselmotor
9. Ladeluftgekühlte Dieselmotoren

Lernziele:
Die Studierenden kennen den Prozess der Nutzfahrzeugentwicklung von der Idee über die Konzeption bis hin zur Konstruktion. Sie wissen, dass bei der Umsetzung von Kundenwünschen neben der technischen Realisierbarkeit und der Funktionalität auch der Aspekt der Wirtschaftlichkeit beachtet werden muss.
Sie haben gute Kenntnisse in Bezug auf die Entwicklung von Einzelkomponenten und haben einen Überblick über die unterschiedlichen Fahrerhauskonzepte, einschließlich Innenraum und Innenraumgestaltung. Damit sind sie in der Lage, Nutzfahrzeugkonzepte zu analysieren und zu beurteilen und bei der Nutzfahrzeugentwicklung kompetent mitzuwirken.
Organisatorisches

Das Vorlesungsmaterial wird auf IILIAS bereitgestellt. Das IILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIlias/

Termine und Nähere Informationen: siehe IILIAS oder Institutshomepage

Dates and further information will be published on the homepage of the institute.

Literaturhinweise

Grundsätze der Nutzfahrzeugentwicklung II
2114844, SS 2024, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Nfz-Getriebe
2. Triebstrangzwischenelemente
3. Achssysteme
4. Vorderachsen und Fahrdynamik
5. Rahmen und Achsaufhängung
6. Bremsanlage
7. Systeme
8. Exkursion

Lernziele:

Organisatorisches

Genauere Termine sowie nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage.

Literaturhinweise

1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803
5.75 Teilleistung: High Performance Computing [T-MACH-105398]

Verantwortung: Prof. Dr. Britta Nestler
Dr.-Ing. Michael Selzer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesung / Übung (VÜ)</th>
<th>2 SWS</th>
<th>Nestler, Selzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance Computing</td>
<td>2183721, WS 23/24</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesung / Übung (VÜ)</th>
<th>Nestler, August, Selzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance Computing</td>
<td>76-T-MACH-105398</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Am Ende des Semesters findet eine schriftliche Klausur (90 min) statt.

Voraussetzungen

keine

Empfehlungen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

regelmäßige Teilnahme an den ergänzend angebotenen Computer-Übungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V High Performance Computing
2183721, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

ACHTUNG: Diese Veranstaltung wird nur im Wintersemester angeboten!

Die Inhalte der Vorlesung Hochleistungsrechnen sind:

- Architektur paralleler Plattformen
- Parallele Programmiermodelle
- Laufzeitanalyse paralleler Programme
- Parallelisierungskonzepte
- MPI und OpenMP
- Monte-Carlo Methode
- 1D & 2D Wärmeleitung
- Raycasting
- N-Körper Problem
- einfache Phasenfeldmodelle

Der/die Studierende

- kann die Grundlagen und Strategien der parallelen Programmierung erläutern.
- kann Hochleistungsrechner durch den Einsatz entsprechender Parallelisierungstechniken effizient für die Durchführung von Simulationen nutzen.
- besitzt einen Überblick über typische Anwendungen und ihre speziellen Anforderungen an die Parallelisierung.
- kennt Konzepte zur Parallelisierung und kann diese anwenden, um Hochleistungsrechner mit Mehrkernprozessoren für den Einsatz in Wissenschaft und Industrie effizient zu nutzen.
- besitzt Erfahrung in der Umsetzung paralleler Algorithmen durch ein begleitendes Rechnerpraktikum.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden

Es werden regelmäßig Übungen am Computer durchgeführt.

Am Ende des Semesters findet eine Klausur statt.

Literaturhinweise

1. Vorlesungsskript; Übungsaufgabenblätter; Programmgerüste
2. Parallele Programmierung, Thomas Rauber, Gudula Rügner; Springer 2007
5.76 Teilleistung: High Temperature Materials [T-MACH-105459]

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
2

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Thema</th>
<th>Sprache</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>High Temperature Materials</td>
<td>2</td>
<td>High Temperature Materials</td>
<td>Englisch</td>
<td>Heilmaier</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Thema</th>
<th>Sprache</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105459</td>
<td>High Temperature Materials</td>
<td>Englisch</td>
<td>Heilmaier</td>
</tr>
</tbody>
</table>

Legende: Online, Präsentation zu Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Inhalt

- Phänomenologie der Hochtemperaturverformung
- Verformungsmechanismen
- Hochtemperaturwerkstoffe

Qualifikationsziele:
Die Studierenden sind in der Lage

- Den Begriff "hohe Temperatur" zu definieren und einzuordnen
- Die Form der Kriechkurve auf Basis verschiedener Verformungsmechanismen zu erläutern
- den Einfluss von Parametern wie Temperatur, Spannung und Gefüge auf das Hochtemperaturverformungsverhalten zu begründen
- Strategien zur Erhöhung des Kriechwiderstandes mittels Legierungsmodifikation zu entwickeln
- In der Praxis wichtige Hochtemperaturwerkstoffe hinsichtlich ihrer Eignung für unterschiedliche Anwendungsgebiete auszuwählen

Literaturhinweise
B. Ilschner, Hochtemperaturplastizität, Springer-Verlag, Berlin
5.77 Teilleistung: Hochtemperaturkorrosion [T-MACH-111458]

Verantwortung: Prof. Dr.-Ing. Bronislava Gorr
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
| WS 23/24 | 2193050 | Hochtemperaturkorrosion | 2 SWS | Vorlesung (V) / 🗣 | Gorr |

Prüfungsveranstaltungen
| WS 23/24 | 76-T-MACH-111458 | Hochtemperaturkorrosion | Gorr |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
keine

Empfehlungen
Kenntnisse aus der Grundvorlesung Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Hochtemperaturkorrosion
2193050, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Mündliche Prüfung (ca. 30 min)

Lehrinhalt:

• Struktur- und Funktionswerkstoffe für moderne Energieumwandlungstechnologien
• Hochtemperaturkorrosion von Metallen und Legierungen
• Thermodynamik der Hochtemperaturkorrosionsprozesse
• Diffusion der Hochtemperaturkorrosionsprozesse
• Defektchemie
• Beschichtungen

Qualifikationsziele:

Empfehlungen: Kenntnisse aus der Grundvorlesung Werkstoffkunde und aus der Vorlesung "Werkstoffeinsatz bei hohen Temperaturen" (Gorr)

Organisatorisches
Anmeldung verbindlich bis zum 19.10.2023 unter sabine.deubig@kit.edu und bronislava.gorr@kit.edu
Literaturhinweise

5 TEILLEISTUNGEN

5.78 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Prof. Dr. Martin Doppelbauer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungs-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung (V) / 📚</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2306323</td>
<td>Übungen zu 2306321 Hybride und elektrische Fahrzeuge</td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung (Ü) / 📚</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungs-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>SS 2024</td>
<td>7306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Empfehlungen
Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbaumeister").
5.79 Teilleistung: Hydrogen as Energy Carrier [T-CHEMBIO-112317]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Sem.</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsvermerkungsnummer</th>
<th>Übungskursnummer</th>
<th>Betreuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7100039</td>
<td>Hydrogen as Energy Carrier</td>
<td>Ehrenberg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Mündliche Prüfung, ca. 25 Minuten
5.80 Teilleistung: Hydrogen in Materials – Exercises and Lab Course [T-MACH-112159]

Verantwortung: Dr. rer. nat. Stefan Wagner
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Regelmäßige Teilnahme und Teilnahme am Laborpraktikum inklusive Protokoll.

Voraussetzungen
keine

Verantwortung: Prof. Dr. Astrid Pundt
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>76-T-MACH-110923</th>
<th>Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement</th>
<th>Pundt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
T-MACH-108853 - Wasserstoff in Materialien darf nicht begonnen sein
T-MACH-110957 - Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung darf nicht begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110957 - Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung darf nicht begonnen worden sein.

Anmerkungen
auf Englisch
5.82 Teilleistung: Konstruieren mit Polymerwerkstoffen [T-MACH-105330]

Verantwortung: Dipl.-Ing. Markus Liedel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2174571 | Konstruieren mit Polymerwerkstoffen | 2 SWS | Block (B) / 👤 | Liedel |

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 minutes

Voraussetzungen
keine

Empfehlungen
Poly I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Konstruieren mit Polymerwerkstoffen
2174571, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Aufbau und Eigenschaften von Kunststoffen,
Verarbeitung von Thermoplasten,
Verhalten der Kunststoffe bei Umwelteinflüssen,
Klassische Festigkeitsdimensionierung,
Geometrische Dimensionierung,
Kunststoffgerechtes Konstruieren,
Fehlerbeispiele,
Fügen von Kunststoffbauteilen,
Unterstützende Simulationstools,
Strukturschäume,
Kunststofftechnische Trends.

Lernziele:
Studierende sind in der Lage,

- Polymercompounds von anderen Konstruktionswerkstoffen in ihren chemischen Grundlagen, Temperaturverhalten sowie Festkörper eigenschaften zu unterscheiden.
- wesentliche Verarbeitungstechniken hinsichtlich Möglichkeiten und Einschränkungen in Stoffauswahl und Bauteilgeometriegestaltung zu erörtern und geeignet auszuwählen.
- komplexe Applikationsanforderungen bzgl. festigkeitsverändernder Einflüsse zu analysieren und die klassische Festigkeitsdimensionierung applikationsspezifisch anzuwenden und die Lebensdauerfestigkeit zu bewerten.
- Bauteilgeometrien mit Berücksichtigung von Verarbeitungsschwindung, Herstelltoleranzen, Nachschwindung, Wärmeaushärtung, Quellen, elastische Verformung und Kriechen mit geeigneten Methoden zu bewerten und zu tolerieren.
- Fügegeometrien für Schnaphaken, Kunststoffdirektverschraubungen, Verschweißungen und Filmscharniere kunststoffgerecht zu konstruieren.
- klassische Spritzgussteilefehler zu erkennen, mögliche Ursachen zu finden und die Fehlerwahrscheinlichkeit durch konstruktive Maßnahmen zu reduzieren.
- Nutzen und Grenzen von ausgewählten Simulationstools der Kunststofftechnik (Festigkeit, Verformung, Füllung, Verzug) zu benennen.
- Polymerklassen und Kunststoffkonstruktionen bzgl. möglicher Recy clingkonzepte und möglicher ökologischer Auswirkungen einzuschätzen.

Voraussetzungen:
keine

Empfehlung: Polymerengineering I

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Konstruieren mit Polymerwerkstoffen beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).

Organisatorisches
Anmeldung unter Markus.Liedel@de.bosch.com

Literaturhinweise
Materialien werden in der Vorlesung ausgegeben.
Literaturhinweise werden in der Vorlesung gegeben.
5.83 Teilleistung: Konstruktiver Leichtbau [T-MACH-105221]

Verantwortung: Prof. Dr.-Ing. Tobias Düser
Sascha Ott

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

SS 2024 2146190 Konstruktiver Leichtbau 2 SWS Vorlesung (V) / 🗣 Düser, Ott

Prüfungsveranstaltungen

WS 23/24 76-T-MACH-105221 Konstruktiver Leichtbau Albers, Burkardt
SS 2024 76-T-MACH-105221 Konstruktiver Leichtbau Düser, Ott, Albers, Burkardt

Legende: 🖥 Online, 🏛 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min)

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Konstruktiver Leichtbau
2146190, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präszenz

Inhalt

Die Vorlesung wird durch Gastvorträge "Leichtbau aus Sicht der Praxis" aus der Industrie ergänzt.

Die Studierenden ...

- können zentrale Leichtbastrategien hinsichtlich ihres Potenzials bewerten und beim Konstruieren anwenden.
- sind fähig, unterschiedliche Versteifungsmethoden qualitativ anzuwenden und hinsichtlich ihrer Wirksamkeit zu bewerten.
- sind in der Lage, die Leistungsfähigkeit der rechnergestützten Gestaltung und der damit verbundenen Grenzen und Einflüsse auf die Fertigung zu bewerten.
- können Grundlagen des Leichtbaus aus Systemvisicht und in dessen Kontext zum Produktentstehungsprozess wiedergeben.
Organisatorisches
Vorlesungsfolien können über die eLearning-Plattform ILIAS bezogen werden.
Die Prüfungsart wird gemäß der Prüfungsordnung zu Vorlesungsbeginn angekündigt:

- Schriftliche Prüfung: 90 min Prüfungsdauer
- Mündliche Prüfung: 20 min Prüfungsdauer
- Erlaubte Hilfsmittel: keine

Medien: Beamer

Arbeitsbelastung:

- Präsenzzeit: 21 h
- Selbststudium: 99 h

Lecture slides are available via eLearning-Platform ILIAS.
The type of examination (written or oral) will be announced at the beginning of the lecture:

- written examination: 90 min duration
- oral examination: 20 min duration
- auxiliary means: None

Media: Beamer

Workload:

- regular attendance: 21 h
- self-study: 99 h

Literaturhinweise
Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
5.84 Teilleistung: Laser Material Processing [T-MACH-112763]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2024 2182642 Laser Material Processing 2 SWS Vorlesung (V) / Schneider

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-112763 Laser Material Processing Schneider
SS 2024 76-T-MACH-112763 Laser Material Processing Schneider

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (30 min)

keine Hilfsmittel

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105164 - Lasereinsatz im Automobilbau darf nicht begonnen worden sein.

Empfehlungen
Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Laser Material Processing
2182642, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Nd:YAG-, CO2-, Hochleistungs-Dioden-Laser)
- Strahleigenschaften, -führung, -formung
- Grundlagen der Materialbearbeitung mit Lasern
- Laseranwendungen in der Materialbearbeitung
- Lasersicherheit

Der/die Studierende
- kann die Grundlagen der Lichtentstehung, die Voraussetzungen für die Lichtverstärkung sowie den prinzipiellen Aufbau und die Funktionsweise von Nd:YAG-, CO2- und Hochleistungs-Dioden-Laserstrahlquellen erläutern.
- kann die wichtigsten lasergestützten Materialbearbeitungsprozesse für die Anwendung im Automobilbau benennen und für diese den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben
- kann Bearbeitungsaufgaben bzgl. ihrer Anforderungen analysieren und geeignete Laserstrahlquellen und Prozessparameter auswählen.
- kann die Gefahren beim Umgang mit Laserstrahlung beschreiben und geeignete Maßnahmen zur Gewährleistung der Arbeitssicherheit ableiten.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Die Veranstaltung kann nicht zusammen mit der Veranstaltung Physikalische Grundlagen der Lasertechnik [2181612] gewählt werden.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Organisatorisches
Die Vorlesung ersetzt die bisherige Vorlesung "Lasereinsatz im Automobilbau" und wird jetzt auf Englisch angeboten!
The lecture replaces the previous lecture "Laser Application in Automotive Engineering" and is now offered in English!

Literaturhinweise
P. Poprawe: Tailored Light 1, 2018, Springer
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
5.85 Teilleistung: Laser Metrology [T-ETIT-100643]

Verantwortung: Prof. Dr. Marc Eichhorn
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2303200 | Laser Metrology | 2 SWS | Vorlesung (V) / 🗣 | Eichhorn |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten). Die individuellen Termine für die mündliche Prüfung werden an zwei vorher festgelegten Terminen angeboten.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Laser Metrology

2303200, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Aktuelle Termine finden sich im ILIAS-Kurs

Organisatorisches

Beginn am Do. 20. April, 9:45 - 13:15
Seminarraum IRS, Raum 312 Geb. 30.33 (ggf. online per MS-Teams).
Weitere Details werden in ILIAS bekannt gegeben. Prüfungen werden ebenfalls über ILIAS organisiert
Starting on Thursday, 20.April, 9:45 - 13:15
Room 312, Building 30.33 (possibly online via MS Teams)
Further details are announced in ILIAS. Exam registration will also be organised via ILIAS.
5.86 Teilleistung: Lasereinsatz im Automobilbau [T-MACH-105164]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2182642 | Laser Material Processing | 2 SWS | Vorlesung (V) / 🗣 | Schneider |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-105164 | Lasereinsatz im Automobilbau | Schneider |
| SS 2024 | 76-T-MACH-105164 | Lasereinsatz im Automobilbau / Laser in der Materialbearbeitung | Schneider |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (30 min)
keine Hilfsmittel

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112763 - Laser Material Processing darf nicht begonnen worden sein.

Empfehlungen

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Laser Material Processing

2182642, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Nd:YAG-, CO2-, Hochleistungs-Dioden-Laser)
- Strahleigenschaften, -führung, -formung
- Grundlagen der Materialbearbeitung mit Lasern
- Laseranwendungen in der Materialbearbeitung
- Lasersicherheit

Der/die Studierende

- kann die Grundlagen der Lichtentstehung, die Voraussetzungen für die Lichtverstärkung sowie den prinzipiellen Aufbau und die Funktionsweise von Nd:YAG-, CO2- und Hochleistungs-Dioden-Laserstrahlquellen erläutern.
- kann die wichtigsten lasergestützten Materialbearbeitungsprozesse für die Anwendung im Automobilbau benennen und für diese den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben
- kann Bearbeitungsaufgaben bzgl. ihrer Anforderungen analysieren und geeignete Laserstrahlquellen und Prozessparameter auswählen.
- kann die Gefahren beim Umgang mit Laserstrahlung beschreiben und geeignete Maßnahmen zur Gewährleistung der Arbeitssicherheit ableiten.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Die Veranstaltung kann nicht zusammen mit der Veranstaltung Physikalische Grundlagen der Lasertechnik [2181612] gewählt werden.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Organisatorisches
Die Vorlesung ersetzt die bisherige Vorlesung "Lasereinsatz im Automobilbau" und wird jetzt auf Englisch angeboten!

The lecture replaces the previous lecture "Laser Application in Automotive Engineering" and is now offered in English!

Literaturhinweise
P. Poprawe: Tailored Light 1, 2018, Springer
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
5.87 Teilleistung: Lasergestützte Methoden und deren Einsatz für Energiespeichermaterialien [T-MACH-106739]

Verantwortung: Prof. Wilhelm Pfleging

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Sem.</th>
<th>Art.</th>
<th>LWS</th>
<th>Inhalt</th>
<th>ECTS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 2193013</td>
<td>2</td>
<td>Vorlesung/Praktikum</td>
<td>2 SWS</td>
<td>Lasergestützte Methoden und deren Einsatz für Energiespeichermaterialien</td>
<td>4</td>
<td>Pfleging</td>
</tr>
<tr>
<td>SS 2024 2193013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Sem.</th>
<th>Art.</th>
<th>LWS</th>
<th>Inhalt</th>
<th>ECTS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 76-T-MACH-106739</td>
<td>2</td>
<td>Vorlesung/Praktikum</td>
<td></td>
<td>Lasergestützte Methoden und deren Einsatz für Energiespeichermaterialien</td>
<td></td>
<td>Pfleging</td>
</tr>
<tr>
<td>SS 2024 76-T-MACH-106739</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

keine

Empfehlungen

Grundlagen der Festkörperphysik und Optik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Anmeldung per Email an pfleging@kit.edu
Sprechstunde: Mittwochs nach der Vorlesung, 16-17 Uhr; Wo: KIT-CS, 10.50, Raum 603.2
Mündliche Prüfung (ca. 30 min)
Inhalt:

- Optik und Strahlformung
- Laserinduzierte Plasmen
- Thermische Lasermaterialbearbeitung
- Funktionalisierung von Oberflächen
- Selbstorganisationsprozesse
- Grundlagen der Batterietechnik
- Laserprozesse in der Batteriefertigung
- Neue Konzepte für Hochenergie/Hochleistungs-Batterien
- Laser in der post-mortem Analytik

Empfehlungen: Grundlagen der Festkörperphysik und Optik

- Präsenzzeit: 18 Stunden
- Selbststudium: 98 Stunden

Literaturhinweise

Organisatorisches
The lecture will take place in building 30.28, room R220
The lecture can possibly take place online. Find out more on ILIAS.
Register if possible by April 14, 2024 by email to pfleging@kit.edu or via ILIAS.

Literaturhinweise
Teilleistung: Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis [T-MACH-110954]

Verantwortung: Prof. Dr.-Ing. Luise Kärger
Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
WS 23/24 2113110 Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis 4 SWS Vorlesung / Übung (VÜ) / 🗣️ Kärger, Liebig

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-110954 Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis Liebig, Kärger

Erfolgskontrolle(n)
mündliche Prüfung (ca. 25 Minuten)

Voraussetzungen
keine

Empfehlungen
- Werkstoffe für den Leichtbau
- Strukturberechnung von Faserverbundlaminaten
- Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzuge, Verarbeitung

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis
2113110, WS 23/24, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz
Inhalt

Die Studierenden erlangen fundiertes Wissen im Bereich der Faser-Verbund-Kunststoffe (Materialien, Fertigung, Fertigungseffekte, Restriktionen, etc.), der Struktursimulation (Modellauflauf, Vereinfachungen, Annahmen, Materialmodelle, etc.) sowie der Materialcharakterisierung und -prüfung. Aufbauend auf den einführenden Grundlagenveranstaltungen wird das Wissen größtenteils selbstständig, anhand von realen und praxisnahen Problemstellungen erarbeitet.

Die wesentlichen Inhalte sind:
- Grundlagen Leichtbaustrategien
- Grundlagen Faser-Verbund-Kunststoffe
- Grundlagen FEM-Simulation mit nicht-isotropen Multimaterialsystemen
- Selbstständige Erarbeitung geeigneter Bauteilkonzepte in 4er Teams
- Eigenständiger Aufbau von Simulationsmodellen zur Verifizierung und Auslegung eigener Bauteilkonzepte
- Berechnung anisotroper Steifigkeitskennwerte aus Charakterisierungsversuchen
- Fertigung von Faser-Verbund-Kunststoffen
- Mechanische Prüfung

Lernziele

Sie lernen eine offen gefasste Aufgabenstellung selbstständig in Teams zu erarbeiten, dabei notwendige Randbedingungen und Kennwerte herauszuarbeiten und sich zusätzliche Informationen einzuholen, wo erforderlich.
5.89 Teilleistung: Light and Display Engineering [T-ETIT-100644]

Verantwortung:
Dr.-Ing. Rainer Kling

Einrichtung:
KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von:
M-MACH-103741 - Funktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>WS 23/24</th>
<th>Vorlesung / Übung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2313747</td>
<td>Light and Display Engineering</td>
<td>2 SWS</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Übungen</td>
<td>2313749</td>
<td>Übungen zu 2313747 Light and Display Engineering</td>
<td>1 SWS</td>
<td>Drittelnoten</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>WS 23/24</th>
<th>Vorlesung / Übung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung</td>
<td>7313747</td>
<td>Light and Display Engineering</td>
<td>4</td>
<td>Drittelnoten</td>
</tr>
</tbody>
</table>

Legende:
- 🖥 Online
- 🧩 Präsenz/Online gemischt
- 🗣 Präsenz
- ☓ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (25 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen
keine
5.90 Teilleistung: Masterarbeit [T-MACH-107759]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103835 - Masterarbeit

Erfolgskontrolle(n)

Voraussetzungen
Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 75 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden (vgl. §14 (1) der SPO).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 75 Leistungspunkte erbracht worden sein:
 ◦ Berufspraktikum
 ◦ Interdisziplinäre Ergänzung
 ◦ Materialwissenschaftliche Vertiefung
 ◦ Schwerpunkt I
 ◦ Schwerpunkt II
 ◦ Überfachliche Qualifikationen

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

<table>
<thead>
<tr>
<th>Bearbeitungszeit</th>
<th>6 Monate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Verlängerungsfrist</td>
<td>1 Monate</td>
</tr>
<tr>
<td>Korrekturfrist</td>
<td>6 Wochen</td>
</tr>
</tbody>
</table>
5.91 Teilleistung: Materialien für elektrochemische Speicher und Wandler [T-CIWVT-108146]

Verantwortung: Prof. Dr. Jens Tübke
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 7291840</td>
<td>Materialien für elektrochemische Speicher</td>
<td>Tübke</td>
</tr>
<tr>
<td>SS 2024 7291990</td>
<td>Materialien für elektrochemische Speicher und Wandler</td>
<td>Tübke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO

Voraussetzungen
Keine
5.92 Teilleistung: Materialien und Werkstoffe für die Energiewende [T-MACH-109082]

Verantwortung: Dr. Peter Franke
Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummern</th>
<th>Lehrveranstaltungen</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Prüfung (P)</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2193007</td>
<td>Materialien und Werkstoffe für die Energiewende</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Seifert, Ziebert</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummern</th>
<th>Lehrveranstaltungen</th>
<th>SWS</th>
<th>Prüfung (P)</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-109082</td>
<td>Materialien und Werkstoffe für die Energiewende</td>
<td>Seifert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-109082</td>
<td>Materialien und Werkstoffe für die Energiewende</td>
<td>Seifert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
T-MACH-108688 - Die Energetik von Werkstoffen der Energiewende darf nicht begonnen sein.

Empfehlungen
Kenntnisse der Werkstoffkunde.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Materialien und Werkstoffe für die Energiewende
2193007, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
mündliche Prüfung (ca. 30 min)

Empfehlungen: Kenntnisse der Werkstofftechnik
Arbeitsaufwand: 120 Stunden
5.93 Teilleistung: Materialkunde der Nichteisenmetalle [T-MACH-111826]

Verantwortung: Prof. Dr.-Ing. Bronislava Gorr
Prof. Dr.-Ing. Martin Heilmaier

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Teilleistungsart: Prüfungsleistung mündlich

Leistungspunkte: 4

Notenskala: Drittelnoten

Turnus: Jedes Sommersemester

Version: 1

Erfolgskontrolle(n):
mündliche Prüfung (ca. 25 Min.)

Voraussetzungen:
keine
5.94 Teilleistung: Materials Characterization [T-MACH-110946]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103714 - Werkstoffanalytik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 23/24 | 2173431 | Materials Characterization | 2 SWS | Vorlesung (V) / 🗣️ | Gibmeier, Peterlechner |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-110946 | Materials Characterization | Gibmeier |

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

T-MACH-107685 – Übungen zu Werkstoffanalytik darf nicht begonnen sein.

T-MACH-107684 – Werkstoffanalytik darf nicht begonnen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110945 - Exercises for Materials Characterization muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-MACH-107685 - Übungen zu Werkstoffanalytik darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Materials Characterization

2173431, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturanalytik mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Organisatorisches
Start am 31.10.2023

Literaturhinweise
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
5.95 Teilleistung: Mathematische Methoden der Mikromechanik [T-MACH-110378]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103739 - Computational Materials Science

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich | 5 | Drittelnoten | Jedes Sommersemester | 1 Sem. | 2

Lehrveranstaltungen
SS 2024 | 2162280 | Mathematische Methoden der Mikromechanik | 2 SWS | Vorlesung (V) / Böhlke

Erfolgskontrolle(n)
schriftliche Prüfung (180 min). Hilfsmittel gemäß Ankündigung.
Klausurzulassung: bestandene Studienleistung Übung zu Mathematische Methoden der Mikromechanik (T-MACH-110379)

Voraussetzungen
Bestehen der Übungen zu Mathematische Methoden der Mikromechanik (T-MACH-110379)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110379 - Übungen zu Mathematische Methoden der Mikromechanik muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Mikromechanik
2162280, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Grundlagen der linearen isotropen und anisotropen Thermoelastizitätstheorie,
Beschreibung von Mikrostrukturen,
Mikro-Makro-Relationen der linearen Thermoelastizitätstheorie,
Approximationen und Schranken für das effektive thermoelastische Materialverhalten,
Mikrostruktursensitives Design von Materialien,
Ausgewählte Probleme im Kontext der Homogenisierung nichtlinearer Materialeigenschaften

Organisatorisches
Nähere Informationen zu Zeit und Ort der Vorlesung im SS 2023: siehe ITM-KM Homepage

Literaturhinweise
- Vorlesungsskript
- Klingbeil, E.: Variationsrechnung, BI Wissenschaftsverlag, 1977
5.96 Teilleistung: Measurement and Control Systems [T-MACH-103622]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Measurement and Control Systems</td>
<td>3 SWS</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Measurement and Control Systems (Tutorial)</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Measurement and Control Systems</td>
</tr>
<tr>
<td>SS 2024</td>
<td>Measurement and Control Systems</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n):
Mündliche Prüfung (ca. 30 Min).

Voraussetzungen:
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Measurement and Control Systems
3137020, WS 23/24, 3 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Literaturhinweise

- Measurement and Control Systems:
 - R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley

- Regelungstechnische Bücher:
 - J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag
 - R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag
 - O. Föllinger: Regelungstechnik, Hüthig-Verlag
 - W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag

- Messtechnische Bücher:
 - W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999
 - Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980
Verantwortung: Hon.-Prof. Dr. Bernd-Steffen von Bernstorff
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen
| WS 23/24 | 2173580 | Mechanik und Festigkeitslehre von Kunststoffen | 2 SWS | Vorlesung (V) / ♦ | von Bernstorff |

Prüfungsveranstaltungen
| WS 23/24 | 76-T-MACH-105333 | Mechanik und Festigkeitslehre von Kunststoffen | von Bernstorff |

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Empfehlungen
Grundkenntnisse Werkstoffkunde (z. B. durch die Vorlesung Werkstoffkunde I und II)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt
Molekülstruktur und Morphologie von Kunststoffen, Temperatur- und Zeitabhängigkeit der mechanischen Eigenschaften, Viskoelastisches Materialverhalten, Zeit/Temperatur-Superpositionsprinzip, Fließen, Crazing und Bruch, Versagenskriterien, Stoßartige und schwingende Beanspruchung, Korrespondenzprinzip, Zäh/Spröd-Übergang, Grundlagen der Faserverstärkung und Mehrfachrissbildung

Lernziele:
Die Studierenden sind in der Lage,
- die Berechnung von Kunststoffbauteilen für komplexe Belastungszustände nachzuvollziehen,
- die Einflussgrößen Zeit und Temperatur auf die Festigkeit von Polymerwerkstoffen zu beurteilen,
- die Bauteilfestigkeit auf die Molekülstruktur und die Morphologie der Werkstoffe zurückzuführen und daraus Versagenskriterien für homogene Polymerwerkstoffe und für Verbundwerkstoffe abzuleiten.

Voraussetzungen:
Grundkenntnisse Werkstoffkunde (z.B. durch die Vorlesung Werkstoffkunde I und II)

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Mechanik und Festigkeitslehre von Kunststoffen beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (28 h) sowie Vor- und Nachbearbeitungszeit zuhause (92 h).

Organisatorisches
berndvonbernstorff@t-online.de

Literaturhinweise
Literaturliste, spezielle Unterlagen und ein Teilmanuskript werden in der Vorlesung ausgegeben.
5.98 Teilleistung: Mechanik von Mikrosystemen [T-MACH-105334]

Verantwortung: Prof. Dr. Christian Greiner
Dr. Patric Gruber

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Veranstaltungsschwerpunkt</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2181710</td>
<td>Mechanik von Mikrosystemen</td>
<td>2 SWS</td>
<td>Gruber, Greiner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Veranstaltungsschwerpunkt</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105334</td>
<td>Mechanik von Mikrosystemen</td>
<td></td>
<td>Gruber, Greiner</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mechanik von Mikrosystemen
2181710, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
1. Einleitung: Anwendungen und Herstellungsverfahren
2. Physikalische Skalierungseffekte
3. Grundlagen: Spannung und Dehnung, (anisotropes) Hookesches Gesetz
4. Grundlagen: Mechanik von Balken und Membranen
5. Dünnenschichtmechanik: Ursachen und Auswirkung mechanischer Spannungen
6. Charakterisierung der mechanischen Eigenschaften dünner Schichten und kleiner Strukturen: Eigenspannungen und Spannungsgradienten; mechanische Kenngrößen wie z.B. Fließgrenze, E-Modul oder Bruchzähigkeit; Haftfestigkeit der Schicht auf dem Substrat; Stiction
7. Elektro-mechanische Wandlung: piezo-resistiv, piezo-elektrisch, elektrostatisch,...
8. Aktorik: inverser Piezeffekt, Formgedächtnis, elektromagnetisch

Die Studierenden können Größen- und Skalierungseffekte in Mikro- und Nanosystemen benennen und verstehen. Sie verstehen die Bedeutung von mechanischen Phänomenen in kleinen Dimensionen und können dazu aufbauend beurteilen, wie diese die Werkstofftechnik sowie die Wirkprinzipien und das Design von Mikrosensoren und Mikroaktoren mitbestimmen.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Mündliche Prüfung ca. 30 Minuten

Literaturhinweise
Folien,
2. L.B. Freund und S. Suresh: "Thin Film Materials"
Teilleistung: Microstructure-Property-Relationships [T-MACH-110931]

Verantwortung: Dr. Patric Gruber
Prof. Dr. Christoph Kirchlechner

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103713 - Eigenschaften

Teilleistung: Microstructure-Property-Relationships [T-MACH-110931]

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))

Modulhandbuch mit Stand vom 13.03.2024

Erfolgskontrolle(n)
Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

T-MACH-107683 - Übungen zu Gefüge-Eigenschafts-Beziehungen darf nicht begonnen sein.

T-MACH-107604 - Gefüge-Eigenschafts-Beziehungen darf nicht begonnen worden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Die Teilleistung T-MACH-107683 - Übungen zu Gefüge-Eigenschafts-Beziehungen darf nicht begonnen worden sein.
3. Die Teilleistung T-MACH-107604 - Gefüge-Eigenschafts-Beziehungen darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt
Es werden folgende Gefüge-Eigenschafts-Beziehungen für die verschiedenen Materialklassen behandelt:
- Elastizität und Plastizität
- Bruchmechanik
- Ermudung
- Kriechen
- Elektrische Leitfähigkeit: Metallische Leiter, Halbleiter, Supraleiter, leitfähige Polymere
- Magnetische Eigenschaften und Magnetwerkstoffe

Neben der phänomenologischen Beschreibung und physikalische Erklärung des Materialverhaltens wird auch ein Überblick zu den jeweiligen experimentellen Methoden gegeben.

Die Studierenden verstehen grundlegend den Zusammenhang zwischen dem Gefüge und den Materialeigenschaften. Dieser Zusammenhang wird für die mechanischen Eigenschaften (Elastizität, Plastizität, Bruch, Ermudung, Kriechen) sowie für die Funktionseigenschaften (Leitfähigkeit, magnetische Eigenschaften) und jeweils für alle Werkstoffhauptklassen erarbeitet. Die Studierenden können die Eigenschaften phänomenologisch beschreiben, die zugrundeliegenden materialphysikalischen Mechanismen erklären und verstehen wie die Eigenschaften über das Gefüge gezielt eingestellt werden können. Sie können umgekehrt auch auf Basis des Gefüges die mechanischen und funktionellen Eigenschaften des Werkstoffes ableiten.

Mündliche Prüfung ca. 30 Minuten
5.100 Teilleistung: Mikro NMR Technologie [T-MACH-105782]

Verantwortung: Prof. Dr. Jan Gerrit Korvink
Dr. Neil MacKinnon

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2141501 | Mikro NMR Technologie | 2 SWS | Seminar (S) / 🧩 | MacKinnon, Badilita, Jouda, Korvink |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-105782 | Mikro NMR Technologie | | Korvink, MacKinnon |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☐ Abgesagt

Erfolgskontrolle(n)

Eigener Seminarvortrag und Beteiligung an der Diskussion.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mikro NMR Technologie

2141501, WS 23/24, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Seminar (S) Präsenz/Online gemischt
5.101 Teilleistung: Mikrostruktursimulation [T-MACH-105303]

Verantwortung: Dr. Anastasia August
Prof. Dr. Britta Nestler

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103739 - Computational Materials Science

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Vortrag / Übung (VÜ)</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Mikrostruktursimulation</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Vortrag / Übung (VÜ)</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>August, Weygand, Nestler</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>August, Nestler, Weygand</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung 30 min

Voraussetzungen

keine

Empfehlungen

Werkstoffkunde
mathematische Grundlagen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mikrostruktursimulation

2183702, WS 23/24, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Vorlesung / Übung (VÜ)
Präsenz

Inhalt

- Einige Grundlagen der Thermodynamik
- Gibbs'sche Freie Energie und Phasendiagramme
- Phasen-Feld-Gleichung
- Treibende Kräfte
- Großkannonisches-Potential-Funktional und die Evolutionsgleichungen
- Numerische Lösung der Phasen-Feld-Gleichung

Der/die Studierende

- kann die thermodynamischen und statistischen Grundlagen für flüssig-fest und fest-fest Phasenumwandlungsprozess erläutern und zur Konstruktion von Phasendiagrammen anwenden
- kann Mechanismen zur Bewegung von Phasengrenzen unter Wirkung der treibenden Kräfte erläutern
- kann mithilfe der Phasenfeldmodellierung die Entwicklung von Mikrostrukturen simulieren
- verfügt durch Rechnerübungen über Erfahrungen in der Implementierung von Phasenfeldmodellen und kann eigene Simulationen von Mikrostrukturausbildungen durchführen

Kenntnisse in Werkstoffkunde und mathematische Grundlagen empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden
Mündliche Prüfung ca. 30 min
Organisatorisches
Der erste Termin (am 27.10.2023) findet ausnahmsweise ohne die Dozentin statt. Bitte schauen Sie sich an diesem Termin die erste Aufzeichnung der Vorlesung an (s. das entsprechende Verzeichnis bei ILIAS).

Terminvereinbarung für die mündliche Prüfung: Sobald Sie wissen, wann Sie die Prüfung ablegen möchten, schreiben Sie bitte eine Mail an die Prüferin Anastasia August (anastasia.august2@kit.de) und schlagen Sie einen oder mehrere Termin/e vor. Die Prüfung dauert ca. 30 Minuten.

Literaturhinweise
4. Gaskell, D.R., Introduction to the thermodynamics of materials
5.102 Teilleistung: Mikrosystem Simulation [T-MACH-108383]

Verantwortung: Prof. Dr. Jan Gerrit Korvink

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung

Voraussetzungen
keine
5.103 Teilleistung: Moderne Charakterisierungsmethoden für Materialien und Katalysatoren [T-CHEMBIO-107822]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Voraussetzungen

keine
5.104 Teilleistung: Mündliche Prüfung - Begleitstudium Angewandte Kulturwissenschaft [T-ZAK-112659]

Verantwortung: Dr. Christine Mielke
 Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Erfolgskontrolle(n)
Mündliche Prüfung nach § 7, Abs. 6 im Umfang von ca. 45 Minuten über die Inhalte von zwei Lehrveranstaltungen aus dem Vertiefungsmodul 2 (4 LP)

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.
Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Erfolgskontrolle(n)
Eine mündliche Prüfung nach § 7 Abs. 6 im Umfang von ca. 40 Minuten über die Inhalte von zwei Lehrveranstaltungen aus dem Wahlmodul.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss des Grundlagenmoduls und des Vertiefungsmoduls, sowie der erforderlichen Wahlpflichtteilleistungen im Wahlmodul.
5.106 Teilleistung: Nano-Optics [T-PHYS-102282]

Verantwortung: PD Dr. Andreas Naber
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>4020021</td>
<td>Nano-Optics</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>4020022</td>
<td>Übungen zu Nano-Optics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7800099</td>
<td>Nano-Optics</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Voraussetzungen

keine
5.107 Teilleistung: Nanotribologie und -mechanik [T-MACH-102167]

Verantwortung: Prof. Dr. Martin Dienwiebel
apl. Prof. Dr. Hendrik Hölscher

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
5

Teilnehmer

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2182712</td>
<td>Nanotribologie und -mechanik</td>
<td>2</td>
<td>Block (B) / 🗣</td>
<td>Dienwiebel</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2182712</td>
<td>Nanotribologie und -mechanik</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Dienwiebel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-102167</td>
<td>Nanotribologie und -mechanik</td>
<td>Dienwiebel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑️ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 min

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik und Physik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nanotribologie und -mechanik
2182712, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Die Vorlesung wird im Sommersemester in deutscher Sprache und im Wintersemester in englischer Sprache angeboten!

Teil 1: Grundlagen:
- Allgemeine Tribologie / Nanotechnologie
- Kräfte und Dissipation auf der Nanometerskala
- Experimentelle Methoden (SFA, QCM, FFM)
- Prandtl-Tomlinson Modell
- Superlubricity
- Kohlenstoffbasierte Tribosysteme
- Elektronische Reibung
- Nanotribologie in Flüssigkeiten
- Atomarer Abrieb
- Nanoschmierstoffe

Teil 2: Aktuelle Veröffentlichungen
Der/die Studierende kann
- die physikalischen Grundlagen und einfachen Modelle erläutern, die im Bereich der Nanotribologie und -mechanik genutzt werden
- die wichtigsten experimentellen Methoden der Nanotribologie beschreiben
- wissenschaftliche Publikationen auf dem Gebiet der Nanotribologie hinsichtlich ihrer inhaltlichen Qualität kritisch bewerten.

Vorkenntnisse in Mathematik und Physik empfohlen
Präsenzzeit: 22,5 Stunden
Vorbereitung Referat: 22,5 Stunden
Selbststudium: 75 Stunden
Vortrag (40%) und mündliche Prüfung (30 min, 60%)
keine Hilfsmittel

Organisatorisches
Email registration to lecturer by 12/10/2023: martin.dienwiebel@kit.edu
Anmeldung per Email bis zum 12.10.2023 an den Dozenten: martin.dienwiebel@kit.edu

Literaturhinweise
Tafelbilder, Folien, Kopien von Artikeln

Nanotribologie und -mechanik
2182712, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Die Vorlesung wird im Sommersemester in deutscher Sprache und im Wintersemester in englischer Sprache angeboten!

Teil 1: Grundlagen:

- Allgemeine Tribologie / Nanotechnologie
- Kräfte und Dissipation auf der Nanometerskala
- Experimentelle Methoden (SFA, QCM, FFM)
- Prandtl-Tomlinson Modell
- Superlubricity
- Kohlenstoffbasierte Tribosysteme
- Elektronische Reibung
- Nanotribologie in Flüssigkeiten
- Atomarer Abrieb
- Nanoschmierstoffe

Teil 2: Aktuelle Veröffentlichungen

Der/die Studierende kann

- die physikalischen Grundlagen und einfachen Modelle erläutern, die im Bereich der Nanotribologie und -mechanik genutzt werden
- die wichtigsten experimentellen Methoden der Nanotribologie beschreiben
- wissenschaftliche Publikationen auf dem Gebiet der Nanotribologie hinsichtlich ihrer inhaltlichen Qualität kritisch bewerten.

Vorkenntnisse in Mathematik und Physik empfohlen

Präsenzzeit: 22,5 Stunden
Vorbereitung Referat: 22,5 Stunden
Selbststudium: 75 Stunden
Vortrag (40%) und mündliche Prüfung (30 min, 60%)
keine Hilfsmittel

Organisatorisches

Die Vorlesung wird auf Deutsch (SoSe) und auf Englisch (WiSe) angeboten!

Kontakt: martin.dienwiebel@kit.edu

Literaturhinweise

Edward L. Wolf
Nanophysics and Nanotechnology, Wiley-VCH, 2006

C. Mathew Mate

Tafelbilder, Folien, Kopien von Artikeln
5.108 Teilleistung: Neue Aktoren und Sensoren [T-MACH-102152]

Verantwortung: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Teilleistungart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2141865</th>
<th>Neue Aktoren und Sensoren</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Kohl, Sommer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-102152</th>
<th>Neue Aktoren und Sensoren</th>
<th>Kohl, Sommer</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 60 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Neue Aktoren und Sensoren

2141865, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Literaturhinweise

- Vorlesungsskript "Neue Aktoren" und Folienkript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
5.109 Teilleistung: Nonlinear Continuum Mechanics [T-MACH-111026]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-103739 - Computational Materials Science

Lehrveranstaltungen

| SS 2024 | 2162344 | Nichtlineare Kontinuumsmechanik | 2 SWS | Vorlesung (V) / 🗣 | Böhlke |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 25 min)

Voraussetzungen

Das Bestehen der Studienleistung "Übungen zu Nonlinear Continuum Mechanics" (T-MACH-111027) ist Prüfungsvorleistung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Nichtlineare Kontinuumsmechanik

2162344, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

- Tensorrechnung, Kinematik, Bilanzgleichungen
- Prinzipien der Materialtheorie
- Finite Elastizitätstheorie
- Infinitesimale Elasto(visko)plastizitätstheorie
- Exakte Lösungen der infinitesimalen Plastizitätstheorie
- Finite Elasto(visko)plastizitätstheorie
- Infinitesimale und finite Kristall(visko)plastizitätstheorie
- Verfestigung und Materialversagen
- Verformungslokalisierung

Organisatorisches

Vorbesprechung für interessierte Studierende mit Prof. Böhlke: Di, 16.04.2024, 13:15, Raum 308.1, Geb 10.2,3 3. OG

Literaturhinweise

- Vorlesungsskript
5.110 Teilleistung: Optical Engineering [T-ETIT-100676]

Verantwortung: Prof. Dr. Wilhelm Stork
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Unterrichtseinheit</th>
<th>Form</th>
<th>Wochentägliche Stunden</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2311629</td>
<td>Optical Engineering</td>
<td>Vorlesung (V) / 🤖</td>
<td>2 SWS</td>
<td>Stork</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2311631</td>
<td>Tutorial for 2311629 Optical Engineering</td>
<td>Übung (Ü) / 🤖</td>
<td>1 SWS</td>
<td>Fan</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Unterrichtseinheit</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7311629</td>
<td>Optical Engineering</td>
<td>Stork</td>
</tr>
<tr>
<td>SS 2024</td>
<td>7311730</td>
<td>Optical Engineering</td>
<td>Stork</td>
</tr>
</tbody>
</table>

Legende: 🤖 Online, 🤖 Präsenz/Online gemischt, 🗺️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (ca. 20 Minuten).

Voraussetzungen
keine
5.111 Teilleistung: Optical Transmitters and Receivers [T-ETIT-100639]

Verantwortung: Prof. Dr. Wolfgang Freude
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2309460</td>
<td>Optical Transmitters and Receivers</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Freude, Bremauer, Mahmud</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2309461</td>
<td>Tutorial for 2309460 Optical Transmitters and Receivers</td>
<td>2</td>
<td>Übung (Ü) / 🧩</td>
<td>Freude, N.N., Mahmud</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7300022</td>
<td>Optical Transmitters and Receivers - Wiederholungsprüfung</td>
<td>Freude</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7309460</td>
<td>Optical Transmitters and Receivers</td>
<td>Freude</td>
</tr>
<tr>
<td>SS 2024</td>
<td>7309460</td>
<td>Optical Transmitters and Receivers</td>
<td>Freude</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen
keine

Empfehlungen
Kenntnisse im Bereich Physik des pn-Übergangs.
5.112 Teilleistung: Optical Waveguides and Fibers [T-ETIT-101945]

Verantwortung: Prof. Dr.-Ing. Christian Koos
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
</tr>
<tr>
<td>WS 23/24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
</tr>
<tr>
<td>SS 2024</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen
keine

Empfehlungen
Kenntnisse in folgenden Bereichen: Elemente der Wellenausbreitung, Physik des pn-Übergangs.

Anmerkungen
Die Modulnote ist die Note der mündlichen Prüfung.
Allerdings gibt es ein Bonus-System, das auf den Problem-Sets basiert, die in den Tutorials gelöst werden: Im Laufe des Tutorials werden ohne vorherige Ankündigung 3 Problem-Sets gesammelt und benotet. Wenn für jeden dieser Problem-Sets mehr als 70% der Aufgaben richtig gelöst sind, wird ein Bonus von 0,3 Noten auf die Abschlussnote der mündlichen Prüfung gewährt.
5.113 Teilleistung: Optoelectronic Components [T-ETIT-101907]

Verantwortung: Prof. Dr. Wolfgang Freude
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2024 2309486 Optoelectronic Components 2 SWS Vorlesung (V) / Randel
SS 2024 2309487 Optoelectronic Components (Tutorial) 1 SWS Übung (Ü) / Randel

Prüfungsveranstaltungen
WS 23/24 7309486 Optoelectronic Components Freude
SS 2024 7309486 Optoelectronic Components Randel

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen
keine

Empfehlungen
Kenntnisse in folgenden Bereichen: Elemente der Wellenausbreitung, Physik des pn-Übergangs.
5.114 Teilleistung: Optoelektronik [T-ETIT-100767]

Verantwortung: Prof. Dr. Ulrich Lemmer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala Drittelnoten</th>
<th>Turnus Jedes Wintersemester</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Semesteraufwand</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2</td>
<td>Optoelektronik</td>
<td>2</td>
<td>Vorlesung (V) / ☑️</td>
<td>Lemmer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übungen zu 2313726</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Lemmer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7313726</td>
<td>Optoelektronik</td>
<td></td>
<td>Lemmer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, ☑️ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Prüfung (90 Minuten).

Voraussetzungen

deine

Empfehlungen

Kenntnisse der Festkörperelektronik
5.115 Teilleistung: Phase Transformations in Materials [T-MACH-111391]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Dr.-Ing. Alexander Kauffmann

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Dauer
1 Sem.

Version
1

Lehrveranstaltungen

| WS 23/24 | 2173421 | Phase Transformations in Materials | 3 SWS | Vorlesung (V) / Kauffmann, Heilmaier, Sen |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-111391 | Phase Transformations in Materials | Kauffmann |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 25 Min.)

Voraussetzungen

keine

Empfehlungen

Werkstoffkunde I/II mit Ergänzungen zu Thermodynamik und Diffusion bzw. Materialphysik/Metalle

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Phase Transformations in Materials

<table>
<thead>
<tr>
<th>Vorlesung (V) Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2173421, WS 23/24, 3 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]</td>
</tr>
</tbody>
</table>
Inhalt

Learning objectives:
Students are familiar with a generalized scheme of phase transformations important in materials science and engineering. This includes qualitative and quantitative description of thermodynamics and kinetics of phase transformations. The students are able to apply their fundamental knowledge in order to describe important phase transformations and to deduce properties of materials undergoing these transformations.

Content:
Ch. 0: General Information
Ch. 1: Thermodynamic and Kinetic Fundamentals
 • Thermodynamics
 • Kinetics
 • Overview About Phase Transformations/Schemes
Ch. 2: Experimental Techniques
 • General Terms
 • Structural Investigations
 • Physical Investigations
 • Chemical Investigations
 • Microstructural Investigations
Ch. 3: Single-Component Systems
 • Solidification and Allotropic Transformations
 ◦ Solidification of Elements
 • Nucleation
 • Homogeneous
 • Heterogeneous
 • Growth
 ◦ Temperature-Time-Dependence
 ◦ Facet Energies
 ◦ Facet Growth
 ◦ Heat Transfer (Thermal Dendrites)
 ◦ Allotropic Transformations
 • Nucleation
 • Impact of Elastic Strain Energy
 • Interface Types
 • Growth
 ◦ Temperature-Time-Dependence
 • Continuous Phase Transitions
Ch. 4: Multi-Component Systems
 • Reconstructive Transformation
 ◦ Solidification of Solid Solutions
 ◦ Spinodal Decomposition
 ◦ Eutectic and Eutectoid Reactions
 ◦ Peritectic and Peritectoid Reactions
 ◦ Precipitation and Ageing
 • Displacive Transformation
 ◦ Intermediate Transformations
 ◦ Order Transition
 ◦ Massive Transformation

Work Load
lectures: 36 h
private studies: 64 h

Organisatorisches
Details about the lecture are distributed via: https://www.iam.kit.edu/wk/english/studies.php
Literaturhinweise
Powerpoint slides will be distributed via the ILIAS system.
Detailed information are available for different sub topics of the lecture from:
https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X
https://doi.org/10.1016/0079-6425(85)90004-0 [currently not available from KIT network but maybe accessed by LEA]
https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC518051110 [free online access from within KIT network]
https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC030295610
http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656
https://www.ifw-dresden.de/institutes/imw/events/lectures/lecture-notes/physikalische-werkstoffeigenschaften/ [public domain]
5.116 Teilleistung: Photovoltaik [T-ETIT-101939]

Verantwortung: Prof. Dr.-Ing. Michael Powalla
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2313737 | Photovoltaik | 3 SWS | Vorlesung (V)/.Powalla, Lemmer |
| SS 2024 | 2313738 | Übungen zu 2313737 Photovoltaik | 1 SWS | Übung (Ü)/.Powalla, Lemmer |

Prüfungsveranstaltungen

| WS 23/24 | 7313737 | Photovoltaik | Powalla, Lemmer |

Legende: 🖥 Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Modulnote ist die Note dieser schriftlichen Prüfung.

Voraussetzungen
"M-ETIT-100524 - Solar Energy" darf nicht begonnen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

5.117 Teilleistung: Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung [T-MACH-105537]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

| WS 23/24 | 2189906 | Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung | 2 SWS | Vorlesung (V) / 🗣 | Dagan, Metz |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-105537 | Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung | Dagan |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlich, ca. 30 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung
2189906, WS 23/24, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

- Relevante physikalische Begriffe der Kernphysik
- Nachzerfallswärme-Borst-Wheeler-Gleichung
- Die Unfälle von Three Mile Island und Fukushima
- Kernspaltung, Kettenreaktion und Reaktor-Kontrollsysteme
- Grundbegriffe der Wirkungsquerschnitte
- Prinzipien der Reaktorkinetik.
- Reaktorvergiftung
- Die Unfälle von Idaho und Tschnobyl
- Grundlagen des Kernbrennstoffkreislaufs
- Wiederaufarbeitung ausgedienter Brennelemente und Verglasung von Spaltproduktlösungen
- Zwischenlagerung nuklearer Abfälle in Oberflächenlagern
- Multibarrierenkonzept für Endlagerung in tiefen geologischen Formationen
- Die Situation in den Endlagern Asse II, Konrad und Morsleben

Die Studierenden

- gewinnen das physikalische Verständnis für die bekanntesten nuklearen Unfälle
- können vereinfachte Rechnungen ausführen, um die Ereignisse nachzuvollziehen
- können Sicherheits-relevante Eigenschaften von schwach-, mittel- und hochradioaktiven Abfällen definieren
- sind in der Lage, die Vorgehensweise und Auswirkungen der Wiederaufarbeitung, Zwischenlagerung und Endlagerung nuklearer Abfälle zu bewerten

Präsenzzeit: 14 Stunden
Selbststudium: 46 Stunden
mündlich, ca. 20 min

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise

AEA öffentliche Dokumentation zu den nuklearen Ereignissen
K. Wirtz: Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt und L. Hamilton: Nuclear reactor Analysis, J. Wiley & Sons , Inc. 1975 (in Englisch)
5.118 Teilleistung: Plastic Electronics / Polymerelektronik [T-ETIT-100763]

Verantwortung: Prof. Dr. Ulrich Lemmer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2313709</td>
<td>Polymerelektronik/ Plastic Electronics</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Hernandez Sosa</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7313709</td>
<td>Plastic Electronics / Polymerelektronik</td>
<td>2</td>
<td>Lemmer, Hernandez Sosa</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten).

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Halbleiterbauelemente

Anmerkungen

Vorlesung und Prüfung werden, je nach Bedarf, auf deutsch oder englisch gehalten.
5.119 Teilleistung: Plasticity of Metals and Intermetallics [T-MACH-110818]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Dr.-Ing. Alexander Kauffmann

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2173648 | Plasticity of Metals and Intermetallics | 4 SWS | Vorlesung (V) / 🗣 | Kauffmann, Heilmaier |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-110818 | Plasticity of Metals and Intermetallics | Kauffmann, Heilmaier |

Legende: 🖥 Online, 🏬 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 25 Minuten)

Voraussetzungen

T-MACH-110268 – Plastizität von metallischen und intermetallischen Werkstoffen darf nicht begonnen sein

T-MACH-105301 - Werkstoffkunde III darf nicht begonnen sein

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| Plasticity of Metals and Intermetallics | Vorlesung (V) Präsenz |
| 2173648, SS 2024, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen |
Inhalt
Learning Objectives
Students are familiar with macroscopic, mesoscopic and microscopic mechanisms of plastic deformation in metals, alloys and intermetallics including the qualitative and quantitative descriptions. Furthermore, students can apply their knowledge in order to deduce and explain mechanism-property relationships in this kind of materials and their use in materials manufacturing.

Content
Chapter overview
Ch. 0: General Information
Ch. 1: Relevance of Plasticity in Industry and Research
Ch. 2: Macroscopic Features of Plastic Deformation
Ch. 3: Fundamentals and Interrelations to other Lectures
 • Fundamental Concepts of Elasticity
 • Macroscopic Strength and Strengthening/Hardening
 • Fundamentals of Crystallography
 • Fundamentals of Defects in Crystalline Solids
Ch. 4: Dislocations
 • Fundamental Concept
 • Observation of Dislocations
 • Properties of Dislocations
 • Dislocations in fcc Metals
 • Dislocations in bcc Metals
 • Dislocations in hcp Metals and Complex Intermetallics
Ch. 5: Single Crystal Plasticity
 • General Stages of Plastic Deformation and Fundamentals of the Stress-Strain curve (fcc Metals)
 • Influence of Temperature, Orientation, Strain Rate, etc. (fcc Metals)
 • Further Examples (Extension of the Results to bcc, hcp and Intermetallic Materials)
 • Deformation Twinning
Ch. 6: Plasticity of Polycrystalline Materials
 • Transition from Single Crystals to Polycrystals
 • Strength of Polycrystals
 ◦ Solute Atoms
 ◦ Dislocations (incl. Dislocation Patterning)
 ◦ Grain Boundaries (incl. Homogenization of Critical Stress)
 ◦ Precipitates and Dispersoids
Ch. 7: Other Mechanisms of Plastic Deformation

Work Load
lectures: 56 h
private studies: 187 h

Organisatorisches
Details about the lecture are distributed via: https://www.iam.kit.edu/wk/english/studies.php

Literaturhinweise
Powerpoint slides will be distributed via the ILIAS system.
Detailed information are available for different sub topics of the lecture:
http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC070938105
D. Hull, D. J. Bacon: „Introduction to Dislocations“, Elsevier (2011)
http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC383083990 (free vie KIT license)
http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656
https://www.ifiw-dresden.de/ifiw-institutes/ifm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften (public domain)
5.120 Teilleistung: Plastizität auf verschiedenen Skalen [T-MACH-105516]

Verantwortung: Prof. Dr. Christian Greiner
PD Dr.-Ing. Katrin Schulz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsstunden</th>
<th>Veranstaltung</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2181750</td>
<td>Plastizität auf verschiedenen Skalen</td>
<td>Greiner, Schulz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsstunden</th>
<th>Veranstaltung</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105516</td>
<td>Plastizität auf verschiedenen Skalen</td>
<td>Schulz, Greiner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 30 min

Voraussetzungen

keine

Empfehlungen

Vorkenntnisse in Mathematik, Physik, Mechanik und Werkstoffkunde

Anmerkungen

- beschränkte Teilnehmerzahl
- Voranmeldung erforderlich
- Anwesenheitspflicht

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Plastizität auf verschiedenen Skalen

WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Der/die Studierende kann

- die physikalischen Grundlagen der Plastizität erläutern sowie aktuelle Forschungsergebnisse aus dem Bereich der Plastizität wiedergeben.
- wissenschaftliche Veröffentlichungen selbstständig lesen und strukturiert auswerten.
- Fachinformationen in klarer, lesbarer und verständlicher Form präsentieren.
- auf Basis der erworbenen Kenntnisse für oder/und gegen einen Forschungsansatz oder eine Idee argumentieren.

Vorkenntnisse in Mathematik, Physik, Mechanik und Werkstoffkunde empfohlen

Präsenzzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Prüfung: Vortrag (40%), mündliche Prüfung (30 min, 60%)

An der Vorlesung können maximal 14 Studierende pro Semester teilnehmen.
Organisatorisches
Blockveranstaltung in 5 Blöcken, Termine und Ort werden bekannt gegeben.
Anmeldung per Email an katrin.schulz@kit.edu bis zum 24.09.2023
5.121 Teilleistung: Polymerengineering I [T-MACH-102137]

Verantwortung: Dr.-Ing. Wilfried Liebig
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
WS 23/24 2173590 Polymerengineering I 2 SWS Vorlesung (V) / Liebig

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-102137 Polymerengineering I Liebig

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Polymerengineering I 2173590, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Wirtschaftliche Bedeutung der Kunststoffe
2. Einführung in mechanische, chemische und elektrische Eigenschaften
3. Überblick der Verarbeitungsverfahren
4. Werkstoffkunde der Kunststoffe
5. Synthese

Lernziele:

Der/die Studierende
- kann Polymere beschreiben und klassifizieren sowie die grundsätzlichen Synthese und Herstellungsverfahren erklären
- kann praxisgerechte Anwendungen für die verschiedenen Verfahren und Materialien finden.
- sind fähig die Verarbeitung und Anwendungen von Polymeren und Verbundwerkstoffen auf Basis werkstoffkundlicher Grundlagen zu reflektieren
- kann die speziellen mechanischen, chemischen und elektrischen Eigenschaften von Polymeren bechreiben und mit den Bindungsverhältnissen korrelieren
- kann die Einsatzgebiete und Einsatzgrenzen polymerer Werkstoffe definieren

Voraussetzungen:
keine

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
5.122 Teilleistung: Polymerengineering II [T-MACH-102138]

Verantwortung: Dr.-Ing. Wilfried Liebig
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2024 2174596 Polymerengineering II 2 SWS Vorlesung (V) / Liebig

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-102138 Polymerengineering II Liebig

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Empfehlungen
Kenntnisse in Polymerengineering I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Polymerengineering II
2174596, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
1. Verarbeitungsverfahren con Polymeren
2. Bauteileigenschaften
Anhand von praktischen Beispielen und Bauteilen
2.1 Werkstoffauswahl
2.2 Bauteilgestaltung, Design
2.3 Werkzeugtechnik
2.4 Verarbeitungs- und Fertigungstechnik
2.5 Oberflächentechnik
2.6 Nachhaltigkeit, Recycling

Lernziele:

Der/ die Studierende
- kann Verarbeitungsverfahren von Polymeren beschreiben und klassifizieren, er/sie ist in der Lage, die Grundprinzipien der Werkzeugtechnik zur Herstellung von Kunststoffbauteilen anwendungsbezogen zu erläutern.
- kann diese bauteil- und fertigungsgerecht anwenden.
- ist in der Lage, Bauteile fertigungsgerecht zu gestalten.
- versteht es Polymere bauteilgerecht einzusetzen.
- hat die Fähigkeiten, den Werkstoff "Polymer" anforderungsgerecht, ökonomisch und ökologisch einzusetzen und die geeigneten Fertigungsverfahren festzulegen.

Voraussetzungen:
Polymerengineering I

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Polymerengineering II beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).
Literaturhinweise
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.

Recommended literature and selected official lecture notes are provided in the lecture.
5.123 Teilleistung: Polymers in MEMS A: Chemistry, Synthesis and Applications [T-MACH-102192]

Verantwortung: Dr.-Ing. Bastian Rapp
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2141853 | Polymers in MEMS A: Chemistry, Synthesis and Applications | 2 SWS | Block-Vorlesung (BV) / 🧩 | Worgull |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-102192 | Polymers in MEMS A: Chemistry, Synthesis and Applications | Rapp, Worgull |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)
mündlich

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Polymers in MEMS A: Chemistry, Synthesis and Applications
2141853, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)
Präsenz/Online gemischt

Organisatorisches
Findet als Blockveranstaltung am Semesterende statt.
5.124 Teilleistung: Polymers in MEMS B: Physics, Microstructuring and Applications [T-MACH-102191]

Verantwortung: Dr.-Ing. Matthias Worgull
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24 76-T-MACH-102191</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

WS 23/24 2141854 Polymers in MEMS B: Physics, Microstructuring and Applications 2 SWS Vorlesung (V) / 🧩 Worgull

Erfolgskontrolle(n)
mündlich

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Polymers in MEMS B: Physics, Microstructuring and Applications 2141854, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
5.125 Teilleistung: Polymers in MEMS C: Biopolymers and Bioplastics [T-MACH-102200]

Verantwortung: Dr.-Ing. Bastian Rapp
Dr.-Ing. Matthias Worgull

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

SS 2024 2142855 Polymers in MEMS C - Biopolymers and Bioplastics 2 SWS Block-Vorlesung (BV) / 🧩 Worgull

Prüfungsveranstaltungen

WS 23/24 76-T-MACH-102200 Polymers in MEMS C: Biopolymers and Bioplastics Worgull, Rapp

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlich

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Polymers in MEMS C - Biopolymers and Bioplastics
2142855, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV) Präsenz/Online gemischt
Inhalt

Diese Vorlesung beschreibt die wichtigsten Kategorien dieser sogenannten Biopolymere. Dabei wird unterschieden in Polymere, die chemisch analoge Rohstoffe auf natürlichem Wege (beispielsweise mittels Fermentation) erzeugen, wie diese Ausgangsstoffe chemisch aufbereitet und polymerisiert werden und wie die daraus gewonnenen Polymere technologisch verarbeitet werden. Dabei werden zahlreiche Beispiele aus der Mikrotechnik aber auch aus dem Alltag beleuchtet.

Einige der behandelten Fragestellung sind:

- Was sind Biopolyurethane und warum kann man sie aus Rizinusöl herstellen?
- Was genau sind eigentlich "natürliche Klebstoffe" und wie unterscheiden sie sich von chemischen Klebstoffen?
- Wie entstehen Autoreifen aus Naturgummi?
- Was sind die beiden wichtigsten Polymere für das Leben auf der Erde?
- Kann man aus Kartoffeln Polymere machen?
- Kann man Holz spritzgießen?
- Wie macht man Knöpfe aus Milch?
- Kann man mit Biopolymeren Musik hören?
- Wo und wie kann man Biopolymere beispielsweise für das tissue engineering einsetzen?
- Wie funktionieren LEGO-Bausteine aus DNA?

Für weitere Rückfragen, wenden Sie sich bitte an PD Dr.-Ing- Matthias Worgull (matthias.worgull@kit.edu). Eine Voranmeldung ist nicht notwendig.

Organisatorisches

Für weitere Rückfragen, wenden Sie sich bitte an PD Dr.-Ing- Matthias Worgull (matthias.worgull@kit.edu). Eine Voranmeldung ist nicht notwendig.

Literaturhinweise

Zusätzliche vorlesungsbegleitende Literatur ist nicht notwendig.
5.126 Teilleistung: Practical in Additive Manufacturing for Process Engineering [T-CIWVT-110903]

Verantwortung: TT-Prof. Dr. Christoph Klahn
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>1</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2241021 | Practical in Additive Manufacturing for Process Engineering | 1 SWS | Praktikum (P) / 🗣 | Klahn |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung nach § 4 Abs. 3 SPO: Teilnahme an 8 Praktikumsversuchen.
5.127 Teilleistung: Praktikum Produktionsintegrierte Messtechnik [T-MACH-108878]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Dr. Florian Stamer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2150550 | Praktikum Produktionsintegrierte Messtechnik | 3 SWS | Praktikum (P) / ☑ | Lanza, Stamer |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, ☑ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet): Kolloquium von 15 min zu Beginn und Bewertung der Mitarbeit während der Versuche und Mündliche Prüfung (15 min)

Voraussetzungen
keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Produktionsintegrierte Messtechnik
2150550, SS 2024, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz
Inhalt
Es werden die folgenden Themen behandelt:

- Klassifikation und Anwendungsfälle relevanter Mess- und Prüfverfahren in der Produktion
- Machine Vision mittels optischer Sensoren
- Informationsfusion am Beispiel optischer Sensoren
- Robotergestützte optische Messungen
- Zerstörungsfreie Prüftechnik am Beispiel von akustischer Sensorik
- Koordinatenmesstechnik
- Industrielle Computertomographie
- Messunsicherheitermittlung
- Analyse von Messdaten im Produktionsumfeld mittels Data-Mining

Lernziele:
Die Studierenden …

- können verschiedene für die Produktion relevante Mess- und Prüfverfahren nennen, beschreiben und voneinander abgrenzen.
- können grundlegende Messungen mit den behandelten in-line- und Labormessverfahren selbständig durchführen.
- können die Ergebnisse der Messungen analysieren und deren Messunsicherheit bewerten.
- sind in der Lage auf Basis der Messungen im Produktionsumfeld abzuleiten, ob die gemessenen Bauteile die spezifizierten Qualitätsanforderungen erfüllen.
- sind in der Lage, die vorgestellten Mess- und Prüfverfahren für neue Problemstellungen anzuwenden.

Arbeitsaufwand:
Präsenzzzeit: 31,5 Stunden
Selbststudium: 88,5 Stunden

Organisatorisches

For organizational reasons the number of participants for the course is limited. Hence a selection process will take place. Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

Literaturhinweise

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/). Additional reference to literature will be provided, as well.
5.128 Teilleistung: Praktikum 'Technische Keramik' [T-MACH-105178]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: apl. Prof. Dr. Günter Schell
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen

| WS 23/24 | 2125751 | Praktikum 'Technische Keramik' | 2 SWS | Praktikum (P) / 🗣 | Schell |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-105178 | Praktikum 'Technische Keramik' | Schell |

Legende: 🖥 Online, 📬 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kolloquium und Abschlussbericht zu den jeweiligen Versuchen.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum 'Technische Keramik'

2125751, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz

Inhalt
Mindestens 4 Teilnehmende, maximal 8 Teilnehmer/innen!
Das Laborpraktikum erstreckt sich über eine Woche, voraussichtlich KW8 oder KW9 in 2024
Anmeldung über ILIAS ab Dezember 2023

Organisatorisches
Elektronisch über das ILIAS-Portal

Literaturhinweise
Richerson, D. R.: Modern Ceramic Engineering, CRC Taylor & Francis, 2006
5.129 Teilleistung: Praxismodul [T-ZAK-112660]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Praktikum (3 LP)
Studienleistung ‚Praktikumsbericht‘ (im Umfang ca. 18.000 Zeichen inkl. Leerzeichen) (1 LP)

Voraussetzungen
keine

Anmerkungen
Kenntnisse aus Grundlagenmodul und Vertiefungsmodul sind hilfreich.
5.130 Teilleistung: Product Lifecycle Management [T-MACH-105147]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2121350</th>
<th>Product Lifecycle Management</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Ovtcharova, Elstermann</th>
</tr>
</thead>
</table>

| WS 23/24 | 76-T-MACH-105147 | Product Lifecycle Management | Ovtcharova, Elstermann |
| SS 2024 | 76-T-MACH-105147 | Product Lifecycle Management | Ovtcharova, Elstermann |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung 90 Min.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung: Product Lifecycle Management

Vorlesung (V) Präsenz

<table>
<thead>
<tr>
<th>Product Lifecycle Management</th>
<th>2121350, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
</table>

Inhalt

Die Lehrveranstaltung beinhaltet:

- Grundlagen für das Produktdatenmanagement und den Datenaustausch
- IT-Systemlösungen für Product Lifecycle Management (PLM)
- Wirtschaftlichkeitsbetrachtung und Einführungsproblematik
- Anschauungsszenario für PLM am Beispiel des Institutseigenen I4.0Lab

Nach erfolgreichem Besuch der Lehrveranstaltung können Studierende:

- die Herausforderungen beim Datenmanagement und -austausch benennen und Lösungskonzepte hierfür beschreiben.
- das Managementkonzept PLM und seine Ziele verdeutlichen und den wirtschaftlichen Nutzen herausstellen.
- die Prozesse die zur Unterstützung des Produktlebenszyklus benötigt werden erläutern und die wichtigsten betrieblichen Softwaresysteme (PDM, ERP, ...) und deren Funktionen beschreiben.

Literaturhinweise

5.131 Teilleistung: Produkt- und Produktionskonzepte für moderne Automobile [T-MACH-110318]

Verantwortung: Dr. Stefan Kienzle
Dr. Dieter Steegmüller

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart	**Leistungspunkte**	**Notenskala**	**Turnus**	**Version**
Prüfungsleistung mündlich | 4 | Drittelnoten | Jedes Wintersemester | 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 23/24</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-110318</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>2 SWS</td>
<td>Steegmüller, Kienzle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 23/24</th>
<th>Veranstaltung</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-110318</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>Steegmüller, Kienzle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung (20 min)

Voraussetzungen

Die Teilleistung T-MACH-105166 – Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Produkt- und Produktionskonzepte für moderne Automobile</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149670, WS 23/24, 2 SWS, Sprache: Deutsch</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🗣 Präsenz, ⚠ Abgesagt
Inhalt
Die Vorlesung beleuchtet die praktischen Herausforderungen des modernen Automobilbaus. Die Dozenten nehmen als ehemalige FührungsPersönlichkeiten der Automobilindustrie Bezug auf aktuelle Gesichtspunkte der automobilen Produktentwicklung und Produktion.

Die behandelten Themen sind im Einzelnen:

- Rahmenbedingungen der Fahrzeug- und Karosserieentwicklung
- Integration neuer Antriebstechnologien
- Funktionale Anforderungen (Crashsicherheit etc.), auch an Elektrofahrzeuge
- Entwicklungsprozess an der Schnittstelle Produkt & Produktion, CAE/ Simulation
- Energiespeicher und Versorgungsinfrastruktur
- Aluminium- und Stahlleichtbau
- FVK und Hybride Bauteile
- Batterie- Brennstoffzellen- und Elektromotorenproduktion
- Fügetechnik im modernen Karosseriebau
- Moderne Fabriken und Fertigungsverfahren, Industrie 4.0

Lernziele:
Die Studierenden …

- können die vorgestellten Rahmenbedingungen der Fahrzeugentwicklung nennen und können die Einflüsse dieser auf das Produkt Anhand von Beispielen verdeutlichen.
- können die unterschiedlichen Leichtbausätze benennen und mögliche Anwendungsfelder aufzeigen.
- sind fähig, die verschiedenen Fertigungsverfahren für die Herstellung von Fahrzeugkomponenten anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, mittels der kennengelernten Verfahren und deren Eigenschaften eine Prozessauswahl durchzuführen.

Arbeitsaufwand:
Präsenzzzeit: 25 Stunden
Selbststudium: 95 Stunden

Organisatorisches
Termine werden über Ilias bekannt gegeben.

Bei der Vorlesung handelt es sich um eine Blockveranstaltung. Eine Anmeldung über Ilias ist erforderlich.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The lecture is a block course. An application in Ilias is mandatory.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literaturhinweise

Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
5.132 Teilleistung: Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung [T-MACH-102155]

Verantwortung: Prof. Dr.-Ing. Sama Mbang
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>2123364</td>
<td>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Mbang</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 13.03.2024</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)

<table>
<thead>
<tr>
<th>Vorlesung / Übung (VÜ)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2123364, SS 2024</td>
<td>2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

- Überblick zur Fahrzeugentstehung (Prozess- und Arbeitsabläufe, IT-Systeme)
- Integrierte Produktmodelle in der Fahrzeugindustrie (Produkt, Prozess und Ressource Sichten)
- Neue CAx-Modellierungsmethoden (intelligente Feature-Technologie, Template- & Skelett-Methodik, funktionale Modellierung)
- Automatisierung und wissensbasierte Mechanismen in der Konstruktion und Produktionsplanung
- Anforderungs- und Prozessgerechte Fahrzeugentstehung (3D-Master Prinzip, Toleranzmodelle)
- Concurrent Engineering, verteiltes Arbeiten
- Erweiterte Konzepte: Prinzip der digitalen und virtuellen Fabrik (Einsatz virtueller Techniken und Methoden in der Fahrzeugentstehung)

Organisatorisches
Blockveranstaltung

Literaturhinweise
Vorlesungsfolien
5.133 Teilleistung: Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils [T-MACH-110960]

Verantwortung: Prof. Dr.-Ing. Frederik Zanger
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungskennung</th>
<th>Leistungspunkte</th>
<th>Leistung</th>
<th>Turnus</th>
<th>Notenberechnungsmodus</th>
<th>Vorlesungsleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2149700</td>
<td>Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils</td>
<td>2 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Zanger, Frey</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungskennung</th>
<th>Leistungspunkte</th>
<th>Leistung</th>
<th>Vorlesungsleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-110960</td>
<td>Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils</td>
<td></td>
<td></td>
<td>Zanger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet)

Die Erfolgskontrolle ist eine Projektarbeit; Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 der SPO. Hier gehen die Projektarbeit, die meilensteinbasierten Vorstellungen der Ergebnisse in Präsentationsform (jeweils 10 min) und eine mündliche Abschlussprüfung (15 min) in die Bewertung ein.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils

2149700, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Prüfung (P)

Präsenz
Inhalt
Die Lehrveranstaltung „Projekterischum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils“ verbindet die Grundlagen des metallischen pulverbettbasierten Laserschmelzens (engl. LPBF) mit einem Entwicklungsprozess im Zusammenarbeit mit einem Industrieunternehmen.

Die Studierenden lernen dabei in der projektbegleitenden Lehrveranstaltung die Grundlagen zu folgenden Themen:

- Einfluss verschiedener Prozessstelallenges auf die Bauteilqualität im LPBF-Prozess gefertigter Teile
- Vorbereitung und Simulation des LPBF-Prozesses
- Herstellung additiver metallischer Bauteile
- Prozessüberwachung und Qualitätssicherung in der additiven Fertigung
- Topologieoptimierung
- CAM für die subtraktive Nacharbeit

Die in der Lehrveranstaltung angeschnittenen Themen werden in verschiedenen Workshops zu den einzelnen Themen praktisch angewandt und in Eigenarbeit auf die Entwicklungsaufgabe übertragen.

Abschließend werden die Ergebnisse der Ausarbeitungen additiv hergestellt und subtraktiv nachbearbeitet.

Lernziele:
Die Studierenden …

- können die Charakteristika und Einsatzgebiete der additiven Herstellverfahren pulverbettbasiertes Laserschmelzen (engl. LPBF) beschreiben.
- sind in der Lage, das passende Fertigungsverfahren für eine technische Anwendung auszuwählen.
- können die Entstehung eines Produkts entlang der vollständigen additiven Prozesskette (CAD, Simulation, Baujob Vorbereitung, CAM) von der ersten Idee bis zur Fertigung beschreiben und umsetzen.
- sind in der Lage, zu erörtern, wie der Entwicklungsprozess für Bauteile aussieht, die für die additive Fertigung optimiert sind.
- sind in der Lage, eine Topologieoptimierung durchzuführen.
- sind in der Lage, den additiven Prozess zu simulieren, den prozessbedingten Verzug zu kompensieren und die ideale Ausrichtung auf der Bauplattform festzulegen.
- sind in der Lage, notwendige Stützstrukturen für den additiven Prozess zu erstellen und eine Baujobdatei abzuleiten.
- sind in der Lage, ein CAM-Modell für die subtraktive Nacharbeit additiver Bauteile zu erstellen.

Arbeitsaufwand:
Präsenzzeit: 12 Stunden
Selbststudium: 108 Stunden

Organisatorisches

Aus organisatorischen Gründen ist die Teilnehmerzahl für die Lehrveranstaltung begrenzt. Infolgedessen wird ein Auswahlprozess stattfinden. Der Link zur Bewerbung wird in der Vorlesungsankündigung über die Homepage des wbk (http://www.wbk.kit.edu/studium-und-lehre.php) zur Verfügung gestellt.

Literaturhinweise
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.
5.134 Teilleistung: Pulvermetallurgische Hochleistungswerkstoffe [T-MACH-102157]

Verantwortung: apl. Prof. Dr. Günter Schell
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2024 2126749 Pulvermetallurgische Hochleistungswerkstoffe 2 SWS Vorlesung (V) / 🧩 Schell

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-102157 Pulvermetallurgische Hochleistungswerkstoffe Schell, Wagner
SS 2024 76-T-MACH-102157 Pulvermetallurgische Hochleistungswerkstoffe Schell

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlichen Prüfung, 20-30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Pulvermetallurgische Hochleistungswerkstoffe 2126749, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise
• R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
5.135 Teilleistung: Qualitätsmanagement [T-MACH-102107]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
WS 23/24 2149667 Qualitätsmanagement 2 SWS Vorlesung (V) / 🧩 Lanza

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-102107 Qualitätsmanagement Lanza

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☠ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (60 min)

Voraussetzungen
Die Teilleistung kann nicht zusammen mit der Teilleistung Qualitätsmanagement [T-MACH-112586] gewählt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Qualitätsmanagement 2149667, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Auf Basis der Qualitätsphilosophien Total Quality Management (TQM) und Six-Sigma wird in der Vorlesung speziell auf die Bedürfnisse eines modernen Qualitätsmanagements eingegangen. In diesem Rahmen werden intensiv der Prozessgedanke in einer modernen Unternehmung und die prozessspezifischen Einsatzgebiete von Qualitätssicherungsmöglichkeiten vorgestellt. Präventive sowie nicht-präventive Qualitätsmanagementmethoden, die heute in der betrieblichen Praxis Stand der Technik sind, sind neben Fertigungsmesstechnik, statistischer Methoden und servicebezogenem Qualitätsmanagement Inhalt der Vorlesung. Abgerundet werden die Inhalte durch die Vorstellung von Zertifizierungsmöglichkeiten und rechtlichen Aspekten im Qualitätsbereich.

Inhaltliche Schwerpunkte der Vorlesung:

- Der Begriff "Qualität"
- Total Quality Management (TQM) und Six-Sigma
- Universelle Methoden und Werkzeuge
- QM in frühen Produktphasen - Produktdenition
- QM in Produktentwicklung und Beschaffung
- QM in der Produktion - Fertigungsmesstechnik
- QM in der Produktion - Statistische Methoden
- QM im Service
- Qualitätsmanagementsysteme
- Rechtliche Aspekte im QM

Lernziele:
Die Studierenden …

- sind fähig, die vorgestellten Inhalte zu erläutern.
- sind in der Lage, die wesentlichen Qualitätsphilosophien zu erläutern und voneinander abzugrenzen.
- können die in der Vorlesung erlernten Werkzeuge und Methoden des QM auf neue Problemstellungen aus dem Kontext der Vorlesung anwenden.
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Vorlesungstermine montags 09:45 Uhr
Übung erfolgt während der Vorlesung

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt:

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
5.136 Teilleistung: Rechnerunterstützte Mechanik I [T-MACH-105351]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Ort</th>
<th>Vorlesung (V) / Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Rechnerunterstützte Mechanik I</td>
<td></td>
<td>2</td>
<td>Deutsch</td>
<td>KIT</td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Rechnerunterstützte Mechanik I</td>
<td></td>
<td>KIT</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ⬪ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Min.

Voraussetzungen
keine

Empfehlungen
Die Inhalte der Vorlesungen "Mathematische Methoden der Kontinuumsmechanik" und "Einführung in die Finite Elemente Methode" werden als bekannt vorausgesetzt

Diese Lehrveranstaltung richtet sich an Studierende im MSc-Studiengang Maschinenbau

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnerunterstützte Mechanik I

Vorlesung (V) Präsenz

Literaturhinweise
5.137 Teilleistung: Rechnerunterstützte Mechanik II [T-MACH-105352]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2162296 | Rechnerunterstützte Mechanik II | 2 SWS | Vorlesung (V) / 📚 | Böhlke, Langhoff |
| SS 2024 | 2162297 | Übungen zu Rechnerunterstützte Mechanik II | 2 SWS | Übung (Ü) / 📚 | Krause, Keursten, Böhlke |

Legende: 🖥 Online, 🕒 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca.30 Min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnerunterstützte Mechanik II

2162296, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Überblick über quasistatische nichtlineare Phänomene; Numerik nichtlinearer Gleichungssysteme: Bilanzgleichungen der geometrisch nichtlinearen Festkörpermechanik; Infinitesimale Plastizität; Lineare und geometrisch nichtlineare Thermoelastizität

Literaturhinweise

Übungen zu Rechnerunterstützte Mechanik II

2162297, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz

Inhalt

siehe Vorlesung "Rechnerunterstützte Mechanik II"

Organisatorisches

weitere Informationen siehe Homepage bzw in der ersten Vorlesung

Literaturhinweise

siehe Vorlesung "Rechnerunterstützte Mechanik II"
5.138 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Lehrveranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>3/1 SWS</th>
<th>Prüfung (V) /</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2424152</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>3/1 SWS</td>
<td>Vorlesung (V) /</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Lehrveranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7500106</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>Asfour</td>
</tr>
<tr>
<td>SS 2024</td>
<td>7500218</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen
Keine.

Anmerkungen
Dieses Modul darf nicht geprüft werden, wenn im Bachelor-Studiengang Informatik SPO 2008 die Lehrveranstaltung Robotik I mit 3 LP im Rahmen des Moduls Grundlagen der Robotik geprüft wurde.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotik I - Einführung in die Robotik</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

2424152, WS 23/24, 3/1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Empfehlungen:

Arbeitsaufwand:
Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
ca. 45 Std. Vorlesungsbetreuung,
ca. 15 Std. Übungsbetreuung,
ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsklausuren
ca. 30 Std. Prüfungsvorbereitung

Lernziele:
Studierende sind in der Lage die vorgestellten Konzepte auf einfache und realistische Aufgaben aus dem Bereich der Robotik anzuwenden. Dazu zählt die Beherrschung und Herleitung der für die Robotermodellierung relevanten mathematischen Modelle.

Die Studierenden kennen die algorithmischen Grundlagen der Pfad-, Bewegungs- und Greifplanung und können diese Algorithmen auf Problemstellungen im Bereich der Robotik anwenden.

Sie kennen Algorithmen aus dem Bereich der maschinenen Bildverarbeitung und sind in der Lage, diese auf einfache Problemstellungen der Bildverarbeitung anzuwenden.

Die Studierenden besitzen Kenntnisse über den Entwurf passender Datenverarbeitungsarchitekturen und können gegebene, einfache Aufgabenstellungen als symbolisches Planungsproblem modellieren und lösen.

Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik,
Elektrotechnik und Informationstechnik

Literaturhinweise
Weiterführende Literatur
Fu, Gonzalez,Lee: Robotics - Control, Sensing, Vision, and Intelligence
5.139 Teilleistung: Schadenskunde [T-MACH-105724]

Verantwortung: Prof. Dr. Christian Greiner
Dr.-Ing. Johannes Schneider

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2182572</th>
<th>Schadenskunde</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Greiner, Schneider</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-105724 | Schadenskunde | 2 SWS | | Schneider, Greiner |

Legende: 🛥️ Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- mündliche Prüfung, ca. 30 min

Voraussetzungen

keine

Empfehlungen

Grundkenntnisse Werkstoffkunde (z.B. durch die Vorlesung Werkstoffkunde I und II)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schadenskunde

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2182572, WS 23/24, 2 SWS, Im Studierenendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Ziel, Ablauf und Inhalt von Schadensanalysen
Untersuchungsmethoden
Schadensarten
Schäden durch mechanische Beanspruchung
Versagen durch Korrosion in Elektrolyten
Versagen durch thermische Beanspruchung
Versagen durch tribologische Beanspruchung
Grundzüge der Versagensbetrachtung

Grundkenntnisse Werkstoffkunde (z.B. durch die Vorlesung Werkstoffkunde I und II) empfohlen

- Präsenzzeit: 21 Stunden
- Selbststudium: 99 Stunden

- mündliche Prüfung, Dauer: ca.30 Minuten
- Hilfsmittel: keine

Literaturhinweise

5.140 Teilleistung: Schienenfahrzeugtechnik [T-MACH-105353]

Verantwortung: Prof. Dr.-Ing. Martin Cichon
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistung: Schienenfahrzeugtechnik [T-MACH-105353]

Verantwortung: Prof. Dr.-Ing. Martin Cichon
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursname</th>
<th>SWS</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2115996</td>
<td>Schienenfahrzeugtechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Cichon, Reimann</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2115996</td>
<td>Schienenfahrzeugtechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Cichon</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursname</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105353</td>
<td>Schienenfahrzeugtechnik</td>
<td>Cichon, Reimann, Heckele</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105353</td>
<td>Schienenfahrzeugtechnik</td>
<td>Cichon, Berthold</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Prüfung: schriftlich
Dauer: 60 Minuten
Hilfsmittel: keine außer Taschenrechner und Wörterbuch

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schienenfahrzeugtechnik

2115996, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V)

Präsenz

Inhalt

1. Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystemtechnik
2. Wagenkasten: Funktionen, Anforderungen, Bauprinzipien, Bauweisen, Energieverzehrelemente, Kupplungen und Übergänge, Türen und Fenster
3. Fahrwerke: Kräfte am Rad, Radsatzführung, Lenkachslenkwerk, Jakobsdrehgestell, Aktive Fahrwerkssystemkomponenten, Längskraftübertragung auf den Wagenkasten, Radsatzfolge
5. Bremsen: Grundlagen, Wirkprinzipien von Bremsen (Radbremsen, Schienenbremsen, Blending), Bremssteuerung (Anforderungen und Betriebsarten, Druckluftbremse, Elektropneumatische Bremse, Notbremse, Parkbremse)
6. Fahrzeugleittechnik: Definition Fahrzeugleittechnik, Bussysteme & Komponenten, Netzwerkarchitekturen, Beispiele Steuerungen, zukünftige Entwicklungen

Literaturhinweise

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
Inhalt

1. Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystemtechnik
2. Wagenkasten: Funktionen, Anforderungen, Bauprinzipien, Bauweisen, Energieverzehrelemente, Schnittstellen
3. Fahrräder: Kräfte am Rad, Achsanordnungen, Laufwerke
4. Antrieb: Fahrzeuge am Fahrdraht, Fahrzeuge ohne Fahrdraht, Zweikraftfahrzeuge
5. Bremsen: Aufgaben, Grundlagen, Wirkeprinzipien, Blending, Bremssteuerung
6. Fahrzeugleittechnik: Definitionen, Netzwerkstrukturen, Bussysteme, Komponenten, Beispiele

Organisatorisches
ab SS 2024 schriftliche Prüfung

Literaturhinweise
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
5.141 Teilleistung: Schweißtechnik [T-MACH-105170]

Verantwortung: Dr. Majid Farajian

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte 4

Notenskala Drittelnoten

Turnus Jedes Wintersemester

Version 1

Lehrveranstaltungen

| WS 23/24 | 2173571 | Schweißtechnik | 2 SWS | Block (B) / 🗣 | Farajian |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-105170 | Schweißtechnik | Farajian |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☝ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 Minuten

Voraussetzungen
keine

Empfehlungen
Grundlagen der Werkstoffkunde (Eisen und NE-Legierungen), Werkstoffe, Verfahren und Fertigung, Konstruktive Gestaltung der Bauteile.
Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schweißtechnik
2173571, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block (B) Präsenz
Inhalt
Definition, Anwendung und Abgrenzung: Schweißen, Schweißverfahren, alternative Fügeverfahren.
Geschichte der Schweißtechnik
Energiequellen der Schweißverfahren
Übersicht: Schmelzschweiß- und Pressschweißverfahren.
Nahtvorbereitung / Nahtformen
Schweißpositionen
Schweißbarkeit
Gasschmelzschweißen, Thermisches Trennen
Lichtbogenhandschweißen
Unterpulverschweißen
Metallschutzgasschweißen
Rührreibschweißen/Laserstrahlschweißen
Elektronenstrahlschweißen
Sonstige Schmelz- und Pressschweißverfahren
Statische und zyklische Festigkeit von Schweißverbindungen
Maßnahmen zur Steigerung der Lebensdauer von Schweißverbindungen

Lernziele:
Die Studierenden können die wichtigsten Schweißverfahren und deren Einsatz/Anwendung in Industrie und Handwerk nennen, beschreiben und miteinander vergleichen.
Sie kennen, verstehen und beherrschen wesentliche Probleme bei Anwendung der verschiedenen Schweißtechnologien in Bezug auf Konstruktion, Werkstoffe und Fertigung.
Sie verstehen die Einordnung und Bedeutung der Schweißtechnik im Rahmen der Fügetechnik und können Vorteile/Nachteile und Alternativen nennen, analysieren und beurteilen.
Die Studierenden bekommen auch einen Einblick in die Schweißnahtqualität und deren Einfluss auf die Performance und Verhalten von Schweißverbindungen unter statischer und zyklischer Beanspruchung.
Wie die Lebensdauer von Schweißverbindungen erhöht werden kann, ist auch ein Bestandteil dieser Lehrveranstaltung.

Voraussetzungen:
Grundlagen der Werkstoffkunde (Eisen und NE-Legierungen), der Elektrotechnik, der Produktions-/Fertigungstechnologien

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Schweißtechnik beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (18 h) sowie Vor- und Nachbearbeitungszeit zuhause (102 h).

Prüfung:
mündlich, ca 20 Minuten, keine Hilfsmittel

Organisatorisches
Blockveranstaltung im Januar und Februar. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich: Vorlesungstermine und Hörsaal werden den angemeldeten Teilnehmern Anfang des Jahres mitgeteilt.

Literaturhinweise
Für ergänzende, vertiefende Studien gibt das Handbook der Schweißtechnik von J. Ruge, Springer Verlag Berlin, mit seinen vier Bänden
Band I: Werkstoffe
Band II: Verfahren und Fertigung
Band III: Konstruktive Gestaltung der Bauteile
Band IV: Berechnung der Verbindungen

 einen umfassenden Überblick. Der Stoff der Vorlesung Schweißtechnik findet sich in den Bänden I und II. Einen kompakten Einblick in die Lichtbogenschweißverfahren bietet das Bändchen
Nies: Lichtbogenschweißtechnik, Bibliothek der Technik Band 57, Verlag moderne Industrie AG und Co., Landsberg / Lech
Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.
5.142 Teilleistung: Schwingfestigkeit [T-MACH-112106]

Verantwortung: Dr.-Ing. Stefan Guth
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2173586 | Schwingfestigkeit | 2 SWS | Vorlesung (V) / 🗣 | Guth |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-112106 | Schwingfestigkeit | Guth |

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 20 Minuten

Voraussetzungen

keine

Empfehlungen

Grundkenntnisse in Werkstoffkunde sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schwingfestigkeit

2173586, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Einleitung: historischer Rückblick sowie einige Ermüdungsschadenfälle und deren Ursachen
- Zykliches Spannungs-Dehnungs-Verhalten
- Rissbildung
- Rissausbreitung
- Lebensdauer bei zyklischer Beanspruchung
- Kerbermüdung
- Betriebsfestigkeit
- Ermüdung von Verbundwerkstoffen und Werkstoffverbunden

Lernziele:

Die Studierenden können das Ermüdungsverhalten von Materialien und Bauteilen sowohl qualitativ als auch quantitativ beurteilen und kennen die Vorgehensweisen bei der Bewertung von einstufigen, mehrstufigen und stochastischen zyklischen Beanspruchungen.

Voraussetzungen:

keine, Grundkenntnisse in Werkstoffkunde sind hilfreich

Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise

Ein Manuskript, das auch aktuelle Literaturhinweise enthält, wird in der Vorlesung verteilt.
5.143 Teilleistung: Selbstverbuchung-MSc-HOC-SPZ-ZAK-benotet [T-MACH-112687]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von:
- M-MACH-103721 - Schlüsselqualifikationen

Erfolgskontrolle(n)
- Studienleistung

Voraussetzungen
- Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.
5.144 Teilleistung: Selbstverbuchung-MSc-HOC-SPZ-ZAK-benotet [T-MACH-113324]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103721 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung

Voraussetzungen
Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungssteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen“ eine ÜQ-Leistung zu.
5.145 Teilleistung: Selbstverbuchung-MSc-HOC-SPZ-ZAK-benotet [T-MACH-113322]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103721 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung

Voraussetzungen
Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungssteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.
5.146 Teilleistung: Selbstverbuchung-MSc-HOC-SPZ-ZAK-unbenotet [T-MACH-112686]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103721 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung

Voraussetzungen
Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungssteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.
5.147 Teilleistung: Selbstverbuchung-MSc-HOC-SPZ-ZAK-unbenotet [T-MACH-113321]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103721 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung

Voraussetzungen
Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungssteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-103721 - Schlüsselqualifikationen

Erfolgskontrolle(n)
- Studienleistung

Voraussetzungen
- Keine

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:
- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen
Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung und ordnen Sie dann über den Reiter "ÜQ-Leistungen“ eine ÜQ-Leistung zu.
5.149 Teilleistung: Seminar Werkstoffsimulation [T-MACH-107660]

Verantwortung: Prof. Dr. Britta Nestler
PD Dr.-Ing. Katrin Schulz

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103739 - Computational Materials Science

Teilleistungsart	Prüfungsleistung anderer Art	Leistungspunkte	Notenskala	Turnus	Version
Teilleistung: Seminar Werkstoffsimulation [T-MACH-107660] | | 8 | Drittelnoten | Jedes Semester | 2

Erfolgskontrolle(n)
Die Erfolgskontrolle ist eine Projektarbeit; Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 der SPO. Hier gehen die Projektarbeit (30-40 Seiten) und die Abschlusspräsentation (ca. 30 min) in die Bewertung ein.

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar "Werkstoffsimulation"
2183717, WS 23/24, 4 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Die Seminararbeit muss fachlich-inhaltlich dem Schwerpunkt "Computational Materials Science" zugeordnet sein und fachspezifische oder –übergreifende Fragestellungen aus den aktuellen Forschungsarbeiten der am Schwerpunkt beteiligten Institute behandeln.

Der/die Studierende kann
- eine aktuelle Fragestellung aus dem Gebiet "Computational Materials Science" selbstständig und nach wissenschaftlichen Methoden bearbeiten.
- eine Literaturrecherche nach wissenschaftlichen Quellen durchführen und auswerten.
- geeignete wissenschaftliche Methoden und Verfahren auswählen und diese zur Lösung seiner/ihrer Problemstellung einsetzen oder entsprechend weiterentwickeln
- seine/ihre Ergebnisse kritisch mit dem neuesten Stand der Forschung vergleichen und evaluieren.
- seine/ihre Ergebnisse in schriftlicher als auch mündlicher Form kommunizieren und präsentieren.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden

Die Erfolgskontrolle erfolgt durch das Abfassen einer Seminararbeit (Gewichtung 60%) im Umfang von 30-40 Seiten sowie einem Vortrag (Gewichtung 40%) von 30 min mit anschließender Diskussion.

Organisatorisches
Weitere Informationen in den Vorlesungen und Sprechstunden der Dozenten/in!
Inhalt
Die Seminararbeit muss fachlich-inhaltlich dem Schwerpunkt "Computational Materials Science" zugeordnet sein und fachspezifische oder –übergreifende Fragestellungen aus den aktuellen Forschungsarbeiten der am Schwerpunkt beteiligten Institute behandeln.

Der/die Studierende kann

- eine aktuelle Fragestellung aus dem Gebiet "Computational Materials Science" selbstständig und nach wissenschaftlichen Methoden bearbeiten.
- eine Literaturrecherche nach wissenschaftlichen Quellen durchführen und auswerten.
- geeignete wissenschaftliche Methoden und Verfahren auswählen und diese zur Lösung seiner/ihrer Problemstellung einsetzen oder entsprechend weiterentwickeln.
- seine/ihrer Ergebnisse kritisch mit dem neuesten Stand der Forschung vergleichen und evaluieren.
- seine/ihre Ergebnisse in schriftlicher als auch mündlicher Form kommunizieren und präsentieren.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden

Die Erfolgskontrolle erfolgt durch das Abfassen einer Seminararbeit (Gewichtung 60%) im Umfang von 30-40 Seiten sowie einem Vortrag (Gewichtung 40%) von 30 min mit anschließender Diskussion.

Organisatorisches
Weitere Informationen in den Vorlesungen und Sprechstunden der Dozenten/innnen!
5.150 Teilleistung: Sensoren [T-ETIT-101911]

Verantwortung: Dr. Wolfgang Menesklou
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2304231 | Sensoren | 2 SWS | Vorlesung (V) / 🗣 | Menesklou |

Prüfungsveranstaltungen

| WS 23/24 | 7304231 | Sensoren | Menesklou |
| SS 2024 | 7304231 | Sensoren | Menesklou |

Legende: 🖥 Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 2 Stunden.

Voraussetzungen
keine

Empfehlungen
Grundlagen in Werkstoffkunde (z.B. Vorlesung „Passive Bauelemente“) sind hilfreich.

Anmerkungen
Inhalte und Qualifikationsziele unter: Modul: M-ETIT-100378 – Sensoren
5.151 Teilleistung: Sensorsysteme [T-ETIT-100709]

Verantwortung: Dr. Wolfgang Menesklou
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
keine

Empfehlungen
Grundlagen in Werkstoffkunde (z.B. Vorlesung „Passive Bauelemente”) sind hilfreich.
5.152 Teilleistung: Simulation der Prozesskette kontinuierlich verstärkter Faserverbundbauteile [T-MACH-105971]

Verantwortung: Prof. Dr.-Ing. Luise Kärger
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbau
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2114107</th>
<th>Simulation der Prozesskette kontinuierlich verstärkter Faserverbundbauteile</th>
<th>2 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Kärger</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2024 | 76-T-MACH-105971 | Simulation der Prozesskette kontinuierlich verstärkter Faserverbundbauteile | Kärger |

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Simulation der Prozesskette kontinuierlich verstärkter Faserverbundbauteile
2114107, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung beschäftigt sich mit Methoden zur Berechnung von FVK-Bauteilen mit kontinuierlicher Faserverstärkung und vermittelt das dafür nötige Werkstoff- und Prozessverständnis. Das Werkstoffverhalten der Faserverbunde wird maßgeblich durch die Faserstruktur vorgegeben. Diese muss in der Einzelschicht und im Mehrschichtverbund geeignet modelliert werden, um das Verformungs- und Schädigungsverhalten von FVK-Bauteilen zuverlässig vorherzusagen zu können. Bei gekrümmten Bauteilen entsteht die Faserstruktur erst im Herstellprozess, konkret bei der Umformung (Drapierung) der zweidimensionalen Halbzeuge in eine dreidimensionale Struktur (Preform). Hinzu kommt der Formfüllprozess, in dem die Form mit einem reaktiven Harzsystem infiltriert wird, sowie der Aushärtprozess, der zu Verzug und Eigenspannungen führen kann. Neben der Simulation des Strukturverhaltens ist somit die Prozesssimulation ein wesentlicher Baustein für die ganzheitliche Entwicklung von Faserverbundbauteilen. Die wesentlichen Inhalte sind:

- Virtuelle Prozesskette (CAE-Kette)
- Drapiersimulation: Drapierverhalten der Halbzeuge, Drapierprozess, kinematische Drapiersimulation, FE-Drapiersimulation
- Formfüllsimulation: Grundlagen der Strömungsmechanik, Viskosität und Permeabilität, Formfüllsimulation in der CAE-Kette
- Aushärtesimulation und Verzug: Vernetzungsreaktion, Harzkinetik, Thermomechanik, Eigenspannungen, Bauteilverzug
- Struktursimulation: Modellierung des Mehrschichtverbundes, Einfluss von Fertigungseffekten auf das Bauteilverhalten

Lernziele:

Arbeitsaufwand:
Präsenzzeit: 21h, Selbststudium: 63h
Literaturhinweise
5.153 Teilleistung: Simulation nanoskaliger Systeme, ohne Seminar [T-PHYS-102504]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.154 Teilleistung: Single-Photon Detectors [T-ETIT-108390]

Verantwortung: Dr. Konstantin Ilin
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2312680</td>
<td>Single-Photon Detectors</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣 Ilin</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2312694</td>
<td>Übungen zu 2312680 Single-Photon Detectors</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣 Ilin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7312680</td>
<td>Single-Photon Detectors</td>
<td>Ilin</td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>7312680</td>
<td>Single-Photon Detectors</td>
<td>Kempf, Ilin</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle findet im Rahmen einer mündlichen Gesamtprüfung von ca. 20 Minuten statt.

Voraussetzungen
keine
5.155 Teilleistung: Solar Energy [T-ETIT-100774]

Verantwortung
Prof. Dr. Bryce Sydney Richards

Einrichtung
KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von
M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsanforderungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2313745</td>
<td>Solar Energy</td>
<td>3 SWS</td>
<td>Richards, Paetzold</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2313750</td>
<td>Übungen zu 2313745 Solar Energy</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Richards, Paetzold</td>
</tr>
</tbody>
</table>

| Prüfungsveranstaltungen | | | |
| WS 23/24 | 7313745 | Solar Energy | Richards |

Legende: Online, Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
"M-ETIT-100513 - Photovoltaik" oder "M-ETIT-100476 - Solarenergie" wurden nicht geprüft. Alledrei Prüfungen schließen sich gegenseitig aus.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-101939 - Photovoltaik darf nicht begonnen worden sein.

Empfehlungen
Kenntnisse zu Grundlagen aus M-ETIT-100480 - Optoelektronik sind hilfreich.
5.156 Teilleistung: Solid State Reactions and Kinetics of Phase Transformations [T-MACH-110927]

Verantwortung: Prof. Dr.-Ing. Bronislava Gorr
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-103711 - Kinetik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2194722 | Solid State Reactions and Kinetics of Phase Transformations, Corrosion | 2 SWS | Vorlesung (V) / 🗣 | Gorr |

Erfolgskontrolle(n)
Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
T-MACH-107667 – Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen sein.
T-MACH-107668 – Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107667 - Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion darf nicht begonnen worden sein.

Empfehlungen
Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
Grundvorlesungen in Mathematik
Vorlesung Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| Solid State Reactions and Kinetics of Phase Transformations, Corrosion | Vorlesung (V) |
| 2194722, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen | Präsenz |
Inhalt
Mündliche Prüfung (ca. 30 min)
Lehrinhalt:
1. Kristallfehler und Diffusionsmechanismen
2. Mikroskopische Beschreibung der Diffusion
3. Phänomenologische Beschreibung
4. Diffusionskoeffizienten
5. Diffusionsprobleme; analytische Lösungen
6. Diffusion mit Phasenumwandlung
7. Gefügekinetik
8. Diffusion entlang Oberflächen, Korngrenzen, Versetzungen
9. Numerische Behandlung von diffusionskontrollierten Phasenumwandlungen
Empfehlungen: Kenntnisse aus der Vorlesung "Heterogene Gleichgewichte" (Seifert) sind zu empfehlen; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Grundvorlesungen in Mathematik; Vorlesung Physikalische Chemie
Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden
Die Studierenden sollen nach der Teilnahme an den Lehrveranstaltungen fähig sein:

- Diffusionsmechanismen zu beschreiben
- die Fickschen Gesetze zu formulieren
- einfache Lösungen der Diffusionsgleichung anzugeben
- Diffusionsexperimente auszuwerten
- Interdiffusionprozesse zu beschreiben
- den thermodynamischen Faktor zu erklären
- parabolisches Schichtwachstum zu beschreiben
- die Perlitbildung zu erläutern
- Gefügeumwandlungen gemäß den Modellen von Avrami und Johnson-Mehl darzulegen
- ZTU-Schaubilder zu erklären und anzuwenden

Organisatorisches
The lecture will take place in building 10.91, room 228.

Literaturhinweise
5.157 Teilleistung: Solid-State Optics, ohne Übungen [T-PHYS-104773]

Verantwortung: PD Dr. Michael Hetterich
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
WS 23/24 4020011 Solid-State-Optics 4 SWS Vorlesung (V) / 🗣 Hetterich

Prüfungsveranstaltungen
WS 23/24 7800104 Solid-State Optics, ohne Übungen Kalt, Hetterich

Legende: 🖥 Online, 🗼 Präsentation/Online gemischt, 🗣 Präsentation, ☑️ Abgesagt

Voraussetzungen
keine
5.158 Teilleistung: Spektroskopie mit Elektronen und weichen Röntgenstrahlen [T-CHEMBIO-107821]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Voraussetzungen
keine
5.159 Teilleistung: Struktur- und Phasenanalyse [T-MACH-102170]

Verantwortung: Dr.-Ing. Susanne Wagner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurs</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>Vorlesende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-102170</td>
<td>Struktur- und Phasenanalyse</td>
<td>Wagner, Hinterstein</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-102170</td>
<td>Struktur- und Phasenanalyse</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine
5.160 Teilleistung: Superconducting Magnet Technology [T-ETIT-113440]

Verantwortung: Prof. Dr. Tabea Arndt
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilnehmer:

| SS 2024 | 2312698 | Superconducting Magnet Technology | 3 SWS | Vorlesung / Übung (VÜ) | Arndt |

Legende: 🖥 Online, 🧮 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
The examination takes place in form of an oral exam (abt. 30 minutes).

Two timeslots (weeks) for examination dates will be announced (usually near end of lecture period & end of semester).

The module grade is the grade of the oral exam.

Voraussetzungen
none

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-111096 - Superconducting Materials darf nicht begonnen worden sein.
2. Die Teilleistung T-ETIT-111239 - Superconductivity for Engineers darf nicht begonnen worden sein.
5.161 Teilleistung: Superconducting Materials [T-ETIT-111096]

Verantwortung: Prof. Dr. Bernhard Holzapfel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Semester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Form</th>
<th>SWS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2312717</td>
<td>Superconducting Materials Part I</td>
<td>Vorlesung (V) / 🗣</td>
<td>2</td>
<td>Holzapfel</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2312696</td>
<td>Superconducting Materials Part II</td>
<td>Vorlesung (V) / 🗣</td>
<td>2</td>
<td>Holzapfel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
The assessment of success takes place in the form of an oral examination lasting 40 minutes.
The oral examination includes the contents of Superconducting Materials Part I (offered every winter term) and Superconducting Materials Part II (offered every summer term).

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-111239 - Superconductivity for Engineers darf nicht begonnen worden sein.

Empfehlungen
Knowledge of the basic course “Superconductivity for Engineers” is required.
5.162 Teilleistung: Superconducting Power Systems [T-ETIT-113439]

Verantwortung: Prof. Dr. Mathias Noe
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung / Übung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2314011 Superconducting Power Systems</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Noe</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗾 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
The examination takes place in form of an oral exam (abt. 45 minutes).
The module grade is the grade of the oral exam.

Voraussetzungen
none

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-111096 - Superconducting Materials darf nicht begonnen worden sein.
2. Die Teilleistung T-ETIT-111239 - Superconductivity for Engineers darf nicht begonnen worden sein.
5.163 Teilleistung: Superconductivity for Engineers [T-ETIT-111239]

Verantwortung: Prof. Dr. Bernhard Holzapfel
Prof. Dr. Sebastian Kempf

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

Teilleistung: Teilleistung: Superconductivity for Engineers [T-ETIT-111239]

Leistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Sem.
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Wochenstunden</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2312708</td>
<td>Superconductivity for Engineers</td>
<td>2 SVS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Kempf, Holzapfel</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2312709</td>
<td>Exercise for 2312708 Superconductivity for Engineers</td>
<td>1 SVS</td>
<td>Übung (Ü) / 🗣</td>
<td>Ilin, Hänisch</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2312691</td>
<td>Superconductivity for Engineers</td>
<td>2 SVS</td>
<td>Vorlesung (V) / ✖</td>
<td>Kempf, Holzapfel</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2312692</td>
<td>Tutorial for 2312691 Superconductivity for Engineers</td>
<td>1 SVS</td>
<td>Übung (Ü) / ✖</td>
<td>Ilin, Hänisch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7312708</td>
<td>Superconductivity for Engineers</td>
<td>Kempf</td>
</tr>
<tr>
<td>SS 2024</td>
<td>7312691</td>
<td>Superconductivity for Engineers</td>
<td>Kempf, Holzapfel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✖ Abgesagt

Erfolgskontrolle(n)
The assessment of success takes place in the form of a written examination lasting 120min. The grade corresponds to the result of the written examination.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-111096 - Superconducting Materials darf nicht begonnen worden sein.
5.164 Teilleistung: Superhard Thin Film Materials [T-MACH-111257]

Verantwortung: Prof. Sven Ulrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2024 2194729 Superhard Thin Film Materials 2 SWS Vorlesung (V) / 🗣 Ulrich

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-111257 Superhard Thin Film Materials Ulrich

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102103 - Superharte Dünnschichtmaterialien darf nicht begonnen worden sein.
2. Die Teilleistung T-MACH-102141 - Aufbau und Eigenschaften verschleißfester Werkstoffe darf nicht begonnen worden sein.

Empfehlungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Superhard Thin Film Materials
2194729, SS 2024, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
mündliche Prüfung (ca. 30 min), keine Hilfsmittel
Lehrinhalt:
Einführung
Grundlagen
Plasmadiagnostik
Teilchenflußanalyse
Sputter- und Implantationstheorie
Computersimulationen
Materialeigenschaften, Beschichtungsverfahren, Schichtanalyse und Modellierung superharter Materialien
Amorpher, hydrogenisierter Kohlenstoff
Diamantartiger, amorpher Kohlenstoff
Diamant
Kubisches Bornitrid
Materialien aus dem System Übergangsmetall-Bor-Kohlenstoff-Stickstoff-Silizium
Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden
Lernziele:
Superharte Materialien sind Festkörper mit einer Härte größer als 4000 HV 0,05. In dieser Vorlesung wird die Modellierung, Herstellung, Charakterisierung und Anwendung dieser Materialien als Dünnssichten behandelt.
Empfehlungen: keine

Organisatorisches
Die Vorlesung beginnt am Donnerstag, 18.04.2024
Ort: in Präsenz bzw. kurzfristig per MS Teams
Zeit: donnerstags, 8:00-9:30 Uhr
Anmeldung verbindlich bis zum 16.04.2024 unter sven.ulrich@kit.edu.
Nach der Anmeldung wird Ihnen im Falle einer Online-Veranstaltung der Link zur Vorlesung per E-Mail am 17.04.2024 um 19 Uhr mitgeteilt.
The first lecture will begin on Thu, 18/04/2024 at 8:00 am in presence or online with a MS Teams invitation which will not be sent out until Wed, 17/04/2024 at 7 pm.

Literaturhinweise
G. Kienel (Herausgeber): Vakuumbeschichtung 1 - 5, VDI Verlag, Düsseldorf, 1994
Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
5.165 Teilleistung: Superharte Dünnschichtmaterialien [T-MACH-102103]

Verantwortung: Prof. Sven Ulrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2177618</th>
<th>Superharte Dünnschichtmaterialien</th>
<th>2 SWS</th>
<th>Vorlesung (V) /</th>
<th>Ulrich</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-102103</th>
<th>Superharte Dünnschichtmaterialien</th>
<th>Ulrich</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 📦 Präsenz/Online gemischt, 🗃 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102141 - Aufbau und Eigenschaften verschleißfester Werkstoffe darf nicht begonnen worden sein.
2. Die Teilleistung T-MACH-111257 - Superhard Thin Film Materials darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superharte Dünnschichtmaterialien</td>
<td>2177618, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
mündliche Prüfung (ca. 30 min), keine Hilfsmittel
Lehrinhalt:
Einführung
Grundlagen
Plasmadiagnostik
Teilchenflußanalyse
Sputter- und Implantationstheorie
Computersimulationen
Materialeigenschaften, Beschichtungsverfahren, Schichtanalyse und Modellierung superharter Materialien
Amorpher, hydrogenisierter Kohlenstoff
Diamantartiger, amorpher Kohlenstoff
Diamant
Kubisches Bornitrid
Materialien aus dem System Übergangsmetall-Bor-Kohlenstoff-Stickstoff-Silizium
Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden
Lernziele:
Superharte Materialien sind Festkörper mit einer Härte größer als 4000 HV 0.05. In dieser Vorlesung wird die Modellierung, Herstellung, Charakterisierung und Anwendung dieser Materialien als Dünnschichten behandelt.
Empfehlungen: keine

Organisatorisches
Falls die Vorlesung online stattfinden muss, bitte um Anmeldung unter sven.ulrich@kit.edu bis zum 23.10.23.
Den entsprechenden MS Teams Link erhalten Sie dann per E-Mail am 25.10.23.

Literaturhinweise
G. Kienel (Herausgeber): Vakuumbeschichtung 1-5, VDI Verlag, Düsseldorf, 1994

Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
5.166 Teilleistung: Technische Informationssysteme [T-MACH-102083]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Elstermann, Meyer</td>
</tr>
</tbody>
</table>

prüfung
<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td></td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Informationssysteme
2121001, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Informationssysteme und Informationsmanagement
- Datenbanken
- Wissensmanagement und Ontologie
- Prozess Modellierung
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme

Studierende können:

- den Aufbau und die Funktionsweise von Informationssystemen erläutern
- die Struktur von relationalen Datenbanken beschreiben
- die Grundlagen des Wissensmanagements und deren Einsatz im Ingenieurwesen beschreiben und Ontologie als Wissensrepräsentation anwenden
- unterschiedliche Prozessmodellierungsarten und deren Verwendung beschreiben und mit ausgewählten Werkzeugen exemplarisch einfache Workflows und Prozesse abbilden und zur Ausführung bringen
- die unterschiedlichen Ziele spezifischer IT-Systemen in der Produktentstehung (CAD, CAP, CAM, PPS, ERP, PDM) verdeutlichen und dem Produktentstehungsprozess zuordnen

Literaturhinweise
Vorlesungsfolien / lecture slides

Technische Informationssysteme
2121001, SS 2024, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

- Informationssysteme und Informationsmanagement
- Datenbanken
- Wissensmanagement und Ontologie
- Prozess Modellierung
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme

Studierende können:

- den Aufbau und die Funktionsweise von Informationssystemen erläutern
- die Struktur von relationalen Datenbanken beschreiben
- die Grundlagen des Wissensmanagements und deren Einsatz im Ingenieurwesen beschreiben und Ontologie als Wissensrepräsentation anwenden
- unterschiedliche Prozessmodellierungsarten und deren Verwendung beschreiben und mit ausgewählten Werkzeugen exemplarisch einfache Workflows und Prozesse abbilden und zur Ausführung bringen
- die unterschiedlichen Ziele spezifischer IT-Systemen in der Produktentstehung (CAD, CAP, CAM, PPS, ERP, PDM) verdeutlichen und dem Produktentstehungsprozess zuordnen

Literaturhinweise
Vorlesungsfolien / lecture slides
5.167 Teilleistung: Technische Schwingungslehre [T-MACH-105290]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungstrajektorium</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>Vorlesende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2161212 Technische Schwingungslehre</td>
<td>2 SWS Vorlesung (V)</td>
<td>Übung (Ü)</td>
<td>Römer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2161213 Übungen zu Technische Schwingungslehre</td>
<td>2 SWS</td>
<td></td>
<td>Römer, Keller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungstrajektorium</th>
<th>Vorlesung</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>7600055 Technische Schwingungslehre</td>
<td></td>
<td>Fidlin, Römer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungstrajektorium</th>
<th>Vorlesung</th>
<th>Prüfende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105290 Technische Schwingungslehre</td>
<td></td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Schwingungslehre

Inhalt
Grundbegriffe bei Schwingungen, Überlagerung von Schwingungen, komplexe Frequenzgangrechnung.

Einführung in die Rotordynamik: Lavalrotor in starren und elastischen Lagern, Berücksichtigung innerer Dämpfung, Lavalrotor in anisotroper Lagerung, Gleich- und Gegenlauf, Rotoren mit unrunder Welle.

Literaturhinweise
Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978
Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Übungen zu Technische Schwingungslehre

Inhalt
Übung des Vorlesungsstoffs
5.168 Teilleistung: Technologie der Stahlbauteile [T-MACH-105362]

Verantwortung: Prof. Dr.-Ing. Volker Schulze

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Produktionstechnik

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2174579 | Technologie der Stahlbauteile | 2 SWS | Vorlesung (V) / Schulze |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 minutes

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technologie der Stahlbauteile
2174579, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Bedeutung, Entstehung und Charakterisierung von Bauteilzuständen
Beschreibung der Auswirkungen von Bauteilzuständen
Stabilität von Bauteilzuständen
Stahlgruppen
Bauteilzustände nach Umformprozessen
Bauteilzustände nach durchgreifenden Wärmebehandlungen
Bauteilzustände nach Randschichthärtungen
Bauteilzustände nach Zerspanprozessen
Bauteilzustände nach Oberflächenbehandlungen
Bauteilzustände nach Fügeprozessen
Zusammenfassende Bewertung

Lernziele:

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
Literaturhinweise
Skript wird in der Vorlesung ausgegeben

VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984

V. Schulze: Modern Mechanical Surface Treatments, Wiley, Weinheim, 2005
5.169 Teilleistung: The ABC of DFT [T-PHYS-105960]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-MACH-103739 - Computational Materials Science

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Unregelmäßig
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modul</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>4023151</td>
<td>The ABC of DFT</td>
<td>2</td>
<td>Vorlesung</td>
<td>Wenzel, Krstic</td>
</tr>
<tr>
<td>SS 2024</td>
<td>4023152</td>
<td>Übungen zu The ABC of DFT</td>
<td>1</td>
<td>Übung</td>
<td>Wenzel, Holzer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Voraussetzungen
keine
5.170 Teilleistung: Theoretical Quantum Optics [T-PHYS-110303]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung
Prof. Dr. Anja Metelmann
Prof. Dr. Carsten Rockstuhl

Einrichtung
KIT-Fakultät für Physik

Bestandteil von
M-MACH-103741 - Funktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>4023011</th>
<th>Theoretical Quantum Optics</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Metelmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>4023012</td>
<td>Exercises to Theoretical Quantum Optics</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Metelmann, Orr</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 7800096 | Quantum Optics | | Rockstuhl, Metelmann |

Legende: 🖥 Online, 🛡 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt
5.171 Teilleistung: Thermische Solarenergie [T-MACH-105225]

Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung/Vortrag</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2169472</td>
<td>Thermische Solarenergie</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Stieglitz, Dagan</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105225</td>
<td>Thermische Solarenergie</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗼 Präsenz/Online gemischt, 🗼 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Solarenergie

2169472, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt
Grundlagen der thermischen Solarenergie (Strahlung, Leitung, Speicherung, Wirkungsgrad). Aktive und passive Nutzung der Solarenergie, Solarkollektoren (Bauformen, Wirkungsgrad, Systemtechnik), Solarkraftwerke (Heliostate, Parabolrinnen, Aufwindtypen), Solare Klimatisierung.

Im Detail:
1. **Einführung** in den Energiebedarf und Evaluation des Einsatzpotenzials der Solarthermie.
2. **Primärenergieträger SONNE**: Sonne, Solarkonstante, Strahlung (direkte-diffuse Streuung, Absorption, Winkeleinflüsse, Strahlungsbilanz).
3. **Solarkollektoren**: prinzipieller Aufbau eines Kollektors, grundlegendes zum Wirkungsgrad, Bedeutung der Konzentration und ihre Begrenzungen.
4. **Passive Mechanismen der Solarthermie**: Wärmeleitung in Festkörpern und Gasen, Strahlungswärmetransport in transparenten und opaken Körpern, selektive Absorber - typische Materialien- und Herstellungsverfahren.
5. **Impuls- und Wärmetransport**: Grundgleichungen des ein- u. mehrphasigen Transports, Berechnungsverfahren, Stabilitätsgrößen.
 Optional
7. **Solarthermische Hochtemperatursysteme**: Solartürme- u. Solarfarm-Konzept, Verlustmechanismen, Aufwindkraftwerke und Energieerzeugungsprozesse

Am Ende
Speicher: Energieinhalte, Speichertypen, Speichermaterialien, Kosteneinsparungen
Solare Klimatisierung: Kühleistungsbestimmung, Raumklima, solare Kühlverfahren und Bewertung der Klimatisierung.

Empfehlung Vorkenntnisse:
Grundlagen der Wärme-Stoffübertragung, der Werkstoffkunde und Strömungsmechanik, wünschenswert sind sichere Grundkenntnisse der Physik in Optik sowie Thermodynamik

Mündliche Prüfung, Dauer: ca. 25 Minuten, Hilfsmittel: keine

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise
Bereitstellung des Sudienmaterials in gedruckter und elektronischer Form.

Stieglitz & Heinzel; Thermische Solarenergie -Grundlagen-Technologie- Anwendungen. Springer Vieweg Verlag, 711 Seiten. ISBN 978-3-642-29474-7
Teilleistung: Thermische Turbomaschinen I [T-MACH-105363]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2169453</td>
<td>Thermische Turbomaschinen I</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2169454</td>
<td>Übungen zu Thermische Turbomaschinen I</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2169553</td>
<td>Thermische Turbomaschinen I (auf Englisch)</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105363-Wdh</td>
<td>Thermische Turbomaschinen I (für Wiederholer)</td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-Mach-105363-Wdh</td>
<td>Thermische Turbomaschinen I (für Wiederholer)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Prüfung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermische Turbomaschinen I</td>
<td>Vorlesung (V) / Präsenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Sprache: Englisch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2169453</td>
<td>Thermische Turbomaschinen I</td>
<td>3 SWS</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
Inhalt
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Ener-getiefertransfer in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine und radiales Gleichgewicht
Verdichterstufen und Ausblick

Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.

Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h

Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.
Prüfung:
mündlich
Dauer: 30 min

Hilfsmittel: keine

Organisatorisches
Vorlesung wird nur noch in Englisch gehalten ab WS 2023/24.
Aufzeichnungen in Deutsch aus früheren Vorlesungen werden weiter zur Verfügung gestellt.

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993

V Thermische Turbomaschinen I (auf Englisch)
2169553, WS 23/24, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Energie transfer in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine
und radiales Gleichgewicht
Verdichterstufen und Ausblick

Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.

Lernziele:
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.

Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h
Prüfung:
müdlıch
Dauer: 30 min
Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
5.173 Teilleistung: Thermische Turbomaschinen II [T-MACH-105364]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2170477</th>
<th>Tutorial - Thermal Turbomachines II (Übung - Thermische Turbomaschinen II)</th>
<th>2 SWS</th>
<th>Übung (Ü) / 🗣</th>
<th>Bauer, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>2170553</td>
<td>Thermische Turbomaschinen II (auf Englisch)</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-105364</th>
<th>Thermische Turbomaschinen II</th>
<th>Bauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105364-Wdh</td>
<td>Thermische Turbomaschinen II (für Wiederholer)</td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105364</td>
<td>Thermische Turbomaschinen II</td>
<td>Bauer</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76T-Mach-105364-Wdh</td>
<td>Thermische Turbomaschinen II (für Wiederholer)</td>
<td>Bauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Turbomaschinen II (auf Englisch)

2170553, SS 2024, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Lehrinhalt:
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Energie-transfer in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine und radiales Gleichgewicht
Verdichterstufen und Ausblick
Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.
Arbeitsaufwand:
Präsenzzzeit: 31,50 h
Selbststudium: 64,40 h
Lernziele:
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.
Prüfung:
müdlisch
Dauer: 30 min
Hilfsmittel: keine

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Teilleistung: Thermodynamische Grundlagen / Heterogene Gleichgewichte [T-MACH-107670]

Verantwortung: Dr. Peter Franke
Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103710 - Thermodynamik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wohnungsnummer</th>
<th>Stunde</th>
<th>Thema</th>
<th>Semester</th>
<th>Veranstaltungsform</th>
<th>Prüfung</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2193002</td>
<td>Thermodynamische Grundlagen / Heterogene Gleichgewichte</td>
<td>2 SWS</td>
<td>Vorlesung (V) /</td>
<td>Seifert, Dürrschnabel</td>
<td></td>
</tr>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-107670</td>
<td>Thermodynamische Grundlagen / Heterogene Gleichgewichte</td>
<td>2 SWS</td>
<td>Vorlesung (V) /</td>
<td>Seifert</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
Die erfolgreiche Teilnahme an Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte ist Voraussetzung für die Zulassung zur mündlichen Prüfung Thermodynamische Grundlagen / Heterogene Gleichgewichte.

T-MACH-110924 – Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen werden.

T-MACH-110925 – Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen werden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Die Teilleistung T-MACH-110925 - Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen worden sein.

Empfehlungen
Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
Grundvorlesungen in Mathematik
Vorlesung Physik oder Physikalische Chemie

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamische Grundlagen / Heterogene Gleichgewichte</td>
<td>2193002, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
Mündliche Prüfung (ca. 30 min)
Lehrinhalt:
1. Binäre Phasendiagramme
2. Ternäre Phasendiagramme
- Vollständige Mischbarkeit
- Eutektische Systeme
- Peritektische Systeme
- Übergangsreaktionen
- Systeme mit intermetallischen Phasen
3. Thermodynamik der Lösungsphasen
4. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluß der Gasphase
5. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen
6. Thermodynamik von multikomponentigen, multiphasigen Werkstoffsystemen
7. Thermodynamische Berechnungen mit der CALPHAD-Methode

Empfehlungen: Kenntnisse aus der Vorlesung "Festkörperreaktionen, Kinetik von Phasenumwandlungen, Korrosion" (Franke) sind zu empfehlen; Grundvorlesungen Materialwissenschaft und Werkstofftechnik; Grundvorlesungen Mathematik; Vorlesung Physik oder Physikalische Chemie

Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden

Die Studierenden kennen die Konstitution (Lehre der heterogenen Gleichgewichte) von binären, ternären und multikomponentigen Werkstoffsystemen und können die thermodynamischen Eigenschaften von multiphasigen Werkstoffen und deren Reaktionen mit Gas- und Schmelzphasen analysieren.
Sie können die erlernten Zusammenhänge auf Fragen der Herstellung, des Fügens und der Anwendung der Werkstoffe (metallische Legierungen, technische Keramiken, Verbundwerkstoffe) anwenden.

Literaturhinweise
5 TEILLEISTUNGEN

5.175 Teilleistung: Thermophysics of Advanced Materials [T-MACH-111459]

Verantwortung: Dr. Dmitry Sergeev
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 23/24</th>
<th>Wintersemester 23/24 2193051 Thermophysics of Advanced Materials 2 SWS Vorlesung (V) / Präsenz Sergeev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommersemester 24</td>
<td>Sommersemester 2024 2193051 Thermophysics of Advanced Materials 2 SWS Vorlesung (V) / Präsenz Sergeev</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 23/24</th>
<th>WS 23/24 76-T-MACH-111459 Thermophysics of Advanced Materials Vorlesung (V) / Präsenz Sergeev</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen

keine

Empfehlungen

- Thermodynamische Grundlagen / Heterogene Gleichgewichte (mit Übungen)
- Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion (mit Übungen)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Thermophysics of Advanced Materials</th>
<th>Vorlesung (V) Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2193051, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>
Inhalt

- Einführung in Thermophysik
- Thermophysikalische Eigenschaften von thermischen Speichermaterialien
- Eigenschaften reiner Verbindungen (Feste-, Flüssige- und Gasphase)
- Binäre-, ternäre- und mehrkomponentige Systeme und deren Phasendiagrammen
- Experimentelle Methoden für Bestimmung der thermophysikalischen Eigenschaften
 - Thermische Stabilität, Verdampfungs- und Sublimationsprozesse, und thermodynamische Eigenschaften der Gasphase (Thermogravimetrie und Knudsen Effusionsmassenspektrometrie)
 - Phasenumwandlungstemperaturen und Phasendiagrammen (Differenzthermoanalyse und Hochtemperatur Röntgendiffraktion)
 - Wärmekapazität, Phasenumwandlungsenthalpien, Bildungsenthalpien, Mischungsenthalpien (Dynamische Differenz- und Einwurfkalorimetrie)
 - Thermische Ausdehnung (Dilatometerie und Hochtemperatur Röntgendiffraktion)
- Thermische Ausdehnung (Dilatometerie und Hochtemperatur Röntgendiffraktion)
- Wärmekapazität, Phasenumwandlungsenthalpien, Bildungsenthalpien, Mischungsenthalpien (Dynamische Differenz- und Einwurfkalorimetrie)
- Thermische Ausdehnung (Dilatometerie und Hochtemperatur Röntgendiffraktion)
- Thermodynamische Datenbanken und Software
- Thermodynamische Modellierung und Berechnungen nach Calphad-Methode mithilfe von FactSage

Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden
Empfehlungen:

- Thermodynamische Grundlagen / Heterogene Gleichgewichte (mit Übungen)
- Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion (mit Übungen)

Mündliche Prüfung (ca. 30 Min)

Organisatorisches
The lecture will take place in presence or online as follows:
27.10.23
03.11.23
10.11.23
17.11.23
24.11.23
01.12.23
08.12.23
15.12.23
You will be informed about the lecture link (Zoom) in ILIAS.

Literaturhinweise
Stølen S., Grande T., Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects, John Wiley & Sons, Chichester, 2004
Tong C., Introduction to Materials for Advanced Energy Systems, Springer, Cham, 2019
Sorai M., Comprehensive Handbook of Calorimetry and Thermal Analysis, John Wiley & Sons, Chichester, 2004
Inhalt

- Einführung in Thermophysik
- Thermophysikalische Eigenschaften von thermischen Speichermaterialien
- Eigenschaften reiner Verbindungen (Feste-, Flüssige- und Gasphase)
- Binäre-, ternäre- und mehrkomponentige Systeme und deren Phasendiagrammen
- Experimentelle Methoden für Bestimmung der thermophysikalischen Eigenschaften
 - Thermische Stabilität, Verdampfung- und Sublimationsprozesse, und thermodynamische Eigenschaften der Gasphase (Thermogravimetrie und Knudsen Effusionsmassenspektrometrie)
 - Phasenumwandlungstemperaturen und Phasendiagrammen (Differenz thermoanalyse und Hochtemperatur Röntgendiffraction)
 - Wärmekapazität, Phasenumwandlungsenthalpien, Bildungsenthalpien, Mischungsenthalpien (Dynamische Differenz- und Einwurmkalorimetrie)
 - Thermische Ausdehnung (Dilatometerie und Hochtemperatur Röntgendiffraction)
- Thermische Ausdehnung (Dilatometerie und Hochtemperatur Röntgendiffraction)
- Wärmekapazität, Phasenumwandlungsenthalpien, Bildungsenthalpien, Mischungsenthalpien (Dynamische Differenz- und Einwurmkalorimetrie)
- Thermische Ausdehnung (Dilatometerie und Hochtemperatur Röntgendiffraction)

- Thermodynamische Datenbanken und Software
- Thermodynamische Modellierung und Berechnungen nach Calphad-Methode mithilfe von FactSage

Vermittlung eines grundlegenden Verständnisses für experimentelle Messmethoden zur Untersuchung von binären und ternären Phasendiagrammen sowie zur Bestimmung von thermophysikalischen Eigenschaften. Des Weiteren sollen die TeilnehmerInnen verschiedene Arten thermischer Siecher und deren Anwendungsbereiche lernen, auch die thermodynamischen Berechnungen für Optimierung und Auswahl der Speichermaterialien mithilfe von FactSage durchzuführen.

Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden
Empfehlungen:

- Thermodynamische Grundlagen / Heterogene Gleichgewichte (mit Übungen)
- Festkorperreaktionen / Kinetik von Phasenumwandlungen, Korrosion (mit Übungen)

Mündliche Prüfung (ca. 30 Min)

Organisatorisches
The lecture will take place in presence or online as follows:
1) 19.04.2024: Presence
2) 26.04.2024: Online
3) 03.05.2024: Online
4) 10.05.2024: Presence
5) 17.05.2024: Online
6) 31.05.2024: Online
7) 07.06.2024: Presence

You will be informed about the lecture link (Zoom) in ILIAS.

Literaturhinweise
Stølen S., Grande T., Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects, John Wiley & Sons, Chichester, 2004
Tong C., Introduction to Materials for Advanced Energy Systems, Springer, Cham, 2019
Sorai M., Comprehensive Handbook of Calorimetry and Thermal Analysis, John Wiley & Sons, Chichester, 2004
Teilleistung: Thin Film and Small-scale Mechanical Behavior [T-MACH-105554]

Verantwortung:
Dr. Patric Gruber
Prof. Dr. Christoph Kirchlechner
Dr. Daniel Weygand

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Grenzflächenmechanik

Bestandteil von:
M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2178123</th>
<th>Thin film and small-scale mechanical behavior</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Kirchlechner, Gruber, Weygand</th>
</tr>
</thead>
</table>

| WS 23/24 | 76-T-MACH-105554 | Thin Film and Small-scale Mechanical Behavior | Kirchlechner, Gruber, Weygand |

Legende: 🖥 Online, 🔄 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung 30 Minuten

Voraussetzungen

keine

Empfehlungen

Grundlagen in Werkstoffkunde, Physik und Mathematik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt

2. Grundlagen: Versetzungsplastizität (Definition Versetzung, Versetzungsdichte, Versetzungsmobilität, Versetzungssprungmechanismen, statistische Betrachtung inkl. SSD und GND).

Die Studierenden können Größen- und Skalierungseffekte in Materialien benennen und verstehen diese Effekte auf Basis der zugrundeliegenden Mechanismen. Sie können das mechanische Verhalten von nano- und mikrostrukturierten Materialien beschreiben und die Ursachen für die Unterschiede im Vergleich zum klassischen Materialverhalten analysieren und erklären.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 min
Literaturhinweise
2. L.B. Freund and S. Suresh: „Thin Film Materials“
5.177 Teilleistung: Thin Films – Preparation, Structure, Thermodynamics [T-MACH-112158]

Verantwortung: Dr. rer. nat. Stefan Wagner
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungszeitraum</th>
<th>Vorlesungs-ID</th>
<th>Vorlesungsname</th>
<th>Modul</th>
<th>Kurs</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2173573</td>
<td>Thin Films – Preparation, Structure, Thermodynamics</td>
<td>Vorlesung (V)</td>
<td>Wagner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungszeitraum</th>
<th>Prüfung-ID</th>
<th>Prüfungstitel</th>
<th>Modul</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-112158</td>
<td>Thin Films – Preparation, Structure, Thermodynamics</td>
<td>Wagner</td>
<td></td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-112158</td>
<td>Thin Films – Preparation, Structure, Thermodynamics</td>
<td>Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, 🎫 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thin Films – Preparation, Structure, Thermodynamics
2173573, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Verantwortung: Dr. Konstantin Ilin
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 7312670 | Thin films: technology, physics and applications I | Ilin |
| SS 2024 | 7312670 | Thin Films: Technology, Physics and Applications I | Kempf, Ilin |

Erfolgskontrolle(n)
Die Erfolgskontrolle findet im Rahmen einer mündlichen Gesamtprüfung von ca. 20 Minuten statt.

Voraussetzungen
Das Modul "M-ETIT-102332 - Thin films: technology, physics and applications" darf weder begonnen noch abgeschlossen sein.
5.179 Teilleistung: Thin Films: Technology, Physics, and Applications II [T-ETIT-108121]

Verantwortung: Dr. Konstantin Ilin
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-MACH-103741 - Funktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024</td>
<td>2312671</td>
<td>Superconducting Nanowire Detectors</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Ilin</td>
</tr>
<tr>
<td>SS 2024</td>
<td>2312673</td>
<td>Übungen zu 2312671 Superconducting Nanowire Detectors</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Ilin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7312671</td>
<td>Thin films: technology, physics and applications II</td>
<td></td>
<td></td>
<td>Ilin</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🏦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle findet im Rahmen einer mündlichen Gesamtprüfung von ca. 20 Minuten statt.

Voraussetzungen
Das Modul "M-ETIT-102332 - Thin films: technology, physics and applications" darf nicht begonnen sein.

Empfehlungen
Die vorherige Teilnahme an der VL „Thin films: technology, physics and applications I“ wird empfohlen.
5.180 Teilleistung: Tribologie [T-MACH-105531]

Verantwortung: Prof. Dr. Martin Dienwiebel
 Prof. Dr.-Ing. Matthias Scherge

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
8

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2181114</th>
<th>Tribologie</th>
<th>5 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🗣</th>
<th>Dienwiebel, Scherge</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 40 min)
keine Hilfsmittel

Voraussetzungen
Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen [T-MACH-109303]

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-109303 - Übungen - Tribologie muss erfolgreich abgeschlossen worden sein.

Empfehlungen
Vorkenntnisse in Mathematik, Mechanik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Tribologie
2181114, WS 23/24, 5 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz
Inhalt

- Kapitel 1: Reibung
 Adhäsion, Geometrischer und realer Kontakt, Reibungsexperiment, Reibung und Kontaktfläche, Reibleistung, Tribologische Beanspruchung, Umwelteinflüsse, Tribologisches Lebensalter, Reibleistungsdichte, Kontaktmodelle, Simulation realer Kontakte, Rauheit
- Kapitel 2: Verschleiß
 plastisches Fließen, Fließen von Mikrorauheiten, Dissipationspfade, Mechanische Vermischung, Dynamik dritter Körper, Einlauf, Einlaufdynamik, Tangentiale Scherung
- Kapitel 3: Schmierung
 Striebeckkurve, Reibungsregimes (HD, EHD, Mischreibung), ÖIarten, Additive, Ölanalytik, Feststoffschmierung
- Kapitel 4: Messtechnik
 Reibungsmessung, Tribometer, Leistungsumsatz, konventionelle Verschleißmessung, kontinuierliche Verschleißmessung (RNT)
- Kapitel 5: Rauheit
 Profilometrie, Profilkenngrößen, Messstrecken und -filter, Traganteilkurve, Messfehler
- Kapitel 6: Begleitende Analytik
 skalenübergreifende Topographiemessung, chemische Analytik, Strukturanalyse, mechanische Analyse

Übungen dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für die Beantwortung weitergehender Rückfragen der Studierenden.

Der/die Studierende kann

- die grundlegenden Reibungs- und Verschleißmechanismen beschreiben, die in tribologisch beanspruchten Systemen auftreten
- das Reibungs- und Verschleißverhalten von mechanischen Systemen beurteilen
- die Wirkung von Schmierstoffen sowie der wichtigsten Additive erläutern
- Lösungsansätze für die Optimierung von tribologisch beanspruchten Systemen identifizieren
- die wichtigsten Messmethoden zur Bestimmung tribologischen Kenngrößen beschreiben und zur Charakterisierung von Reibpaarungen anwenden
- geeignete Messmethoden für die skalenübergreifende Ermittlung von Oberflächenrauheit und -topographie auswählen und die ermittelten Kennwerte hinsichtlich ihre Wirkung auf das tribologische Verhalten interpretieren
- die wichtigsten Verfahren und deren physikalische Messprinzipien zur oberflächenanalytischen Charakterisierung tribologisch belasteter Wirkflächen erläutern

Voraussetzungen in Mathematik, Mechanik und Werkstoffkunde empfohlen

Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden
mündliche Prüfung (ca. 40 min)
keine Hilfsmittel

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

5.181 Teilleistung: Turbinen-Luftstrahl-Triebwerke [T-MACH-105366]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-103715 - Technische Vertiefung

Lehrveranstaltungen
SS 2024 2170478 Turbinen-Luftstrahl-Triebwerke 2 SWS Vorlesung (V) /🗣 Bauer

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-105366 Turbinen-Luftstrahl-Triebwerke Bauer
SS 2024 76-T-MACH-105366 Turbinen-Luftstrahl-Triebwerke Bauer

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer 20 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt
Einführung, Flugantriebe und ihre Komponenten
Forderungen an Flugantriebe, Vortriebswirkungsgrad
Thermodynamische und gasdynamische Grundlagen, Aus-legungsrechnung, Schubtriebwerk
Komponenten von luftsaugenden Triebwerken
Auslegung und Projektierung von Flugtriebwerken
Konstruktive Gestaltung des Trieb-erwerkes und seine Komponenten, ausgewählte Kapitel und aktuelle Entwicklung

Lernziele:
Die Studenten können:
• den Aufbau moderner Strahltriebwerke vergleichen
• den Betrieb moderner Strahltriebwerke analysieren
• die thermodynamischen und strömungsmechanischen Grundlagen von Flugtriebwerken anwenden
• die Hauptkomponenten Einlauf, Verdichter, Brennkammer, Turbine und Schubdüse erläutern und nach entsprechenden Kriterien auswählen
• Lösungsansätze zur Reduzierung von Schadstoffemissionen, Lärm und Brennstoffverbrauch beurteilen

Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium: 42 h
Prüfung: mündlich
Dauer: 30 Minuten

Hilfsmittel: keine
Literaturhinweise
Hagen, H.: Fluggasturbinen und ihre Leistungen, G. Braun Verlag, 1982
Hünnecke, K.: Flugtriebwerke, ihre Technik und Funktion, Motorbuch Verlag, 1993
5.182 Teilleistung: Tutorial Nonlinear Continuum Mechanics [T-MACH-111027]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-103739 - Computational Materials Science

Erfolgskontrolle(n)
Schriftliche Hausaufgaben

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Prüfung Nonlinear Continuum Mechanics* (siehe Teilleistung 76-T-MACH-111026)

Voraussetzungen
keine
5.183 Teilleistung: Übungen - Tribologie [T-MACH-109303]

Verantwortung: Prof. Dr. Martin Dienwiebel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modus</th>
<th>Lehrer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2181114</td>
<td>Tribologie</td>
<td>5</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Dienwiebel, Scherge</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

erfolgreiches Bearbeiten aller Übungsaufgaben

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Im Studierendenportal anzeigen

V Tribologie

2181114, WS 23/24, 5 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz
Inhalt

• Kapitel 1: Reibung
 Adhäsion, Geometrischer und realer Kontakt, Reibungsexperiment, Reibung und Kontaktfläche, Reibleistung,
 Tribologische Beanspruchung, Umwelteinflüsse, Tribologisches Lebensalter, Reibleistungsdichte, Kontaktmodelle,
 Simulation realer Kontakte, Rauheit
• Kapitel 2: Verschleiß
 plastisches Fließen, Fließen von Mikrorauheiten, Dissipationspfade, Mechanische Vermischung, Dynamik dritter Körper,
 Einlauf, Einlaufdynamik, Tangentiale Scherung
• Kapitel 3: Schmierung
 Striebeckkurve, Reibungsregimes (HD, EHD, Mischreibung), Ölarten, Additive, Ölanalytik, Feststoffschmierung
• Kapitel 4: Messtechnik
 Reibungsmessung, Tribometer, Leistungsumsatz, konventionelle Verschleißmessung, kontinuierliche
 Verschleißmessung (RNT)
• Kapitel 5: Rauheit
 Profilometrie, Profilkenngrößen, Messstrecken und -filter, Traganteilkurve, Messfehler
• Kapitel 6: Begleitende Analytik
 skalennübergreifende Topographiemessung, chemische Analytik, Strukturanalyse, mechanische Analyse

Übungen dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für die Beantwortung
weitergehender Rückfragen der Studierenden.

Durch die Studierende kann

• die grundlegenden Reibungs- und Verschleißmechanismen beschreiben, die in tribologisch beanspruchten Systemen
 auftreten
• das Reibungs- und Verschleißverhalten von mechanischen Systemen beurteilen
• die Wirkung von Schmierstoffen sowie der wichtigsten Additive erläutern
• Lösungsansätze für die Optimierung von tribologisch beanspruchten Systemen identifizieren
• die wichtigsten Messmethoden zur Bestimmung tribologischen Kenngrößen beschreiben und zur Charakterisierung von
 Reibpaaarungen anwenden
• geeignete Messmethoden für die skalennübergreifende Ermittlung von Oberflächenrauheit und –topographie
 auswählen und die ermittelten Kennwerte hinsichtlich ihre Wirkung auf das tribologische Verhalten interpretieren
• die wichtigsten Verfahren und deren physikalische Messprinzipien zur oberflächenanalytischen Charakterisierung
 tribologisch belasteter Wirkächen erläutern

Vorkenntnisse in Mathematik, Mechanik und Werkstoffkunde empfohlen

Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden
mündliche Prüfung (ca. 40 min)
keine Hilfsmittel

Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen

Literaturhinweise

3. M. Dienwiebel, and M. Scherge, Nanotribology in automotive industry, In:Fundamentals of Friction and Wear on the
5. Shakhvorostov, D., Pöhlmann, K., Scherge, M.: An energetic approach to friction, wear and temperature. Wear 257,
5.184 Teilleistung: Übungen zu Angewandte Werkstoffsimulation [T-MACH-107671]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103712 - Simulation

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2182614</th>
<th>Angewandte Werkstoffsimulation</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Gumbsch</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
erfolgreiche Bearbeitung aller Übungsaufgaben

Voraussetzungen
T-MACH-110928 – Exercises for Applied Materials Simulation darf nicht begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110928 - Exercises for Applied Materials Simulation darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Angewandte Werkstoffsimulation
2182614, SS 2024, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Der/die Studierende kann

- verschiedene numerische Methoden beschreiben und deren Einsatzbereiche abgrenzen
- sich mithilfe der Finite Elemente Methode selbstständig Fragestellungen nähern sowie einfache Geometrien analysieren und diskutieren
- komplexe Prozesse der Umformtechnik und Crashsimulation nachvollziehen und das Struktur- und Materialverhalten diskutieren.
- die physikalischen Grundlagen partikelbasierter Simulationsmethoden erläutern und anwenden, um Fragestellungen aus der Werkstoffwissenschaft zu lösen
- die Anwendungsbereiche atomistischer Simulationsmethoden erläutern und unterschiedliche Modelle gegeneinander abgrenzen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen!

- Präsenzzeit: 34 Stunden
- Übung: 11 Stunden
- Selbstitudium: 165 Stunden
- Mündliche Prüfung ca. 35 Minuten

- Hilfsmittel: keine
- Zulassung zur Prüfung nur bei erfolgreicher Teilnahme an den Übungen
Organisatorisches
Die Vorlesung wir nur als Aufzeichnung angeboten!
Bitte besuchen Sie die englischsprachige Veranstaltung "Applied Materials Simulation" (2182616)!
Weitere Informationen finden Sie in ILIAS.
Kontakt: johannes.schneider@kit.edu

Literaturhinweise
5 TEILLEISTUNGEN

5.185 Teilleistung: Übungen zu Einführung in die Finite-Elemente-Methode [T-MACH-110330]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2162257 | Übungen zu Einführung in die Finite-Elemente-Methode | 1 SWS | Übung (Ü) / 🗣 | Lauff, Langhoff, Böhlke, Klein |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Einführung in die Finite-Elemente-Methode" (siehe Teilleistung 76-T-MACH-105320)

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, bestehen die Klausurvorleistungen in der erfolgreichen Bearbeitung der schriftlichen Übungsaufgaben und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, und für Studierende anderer Fachrichtungen bestehen die Klausurvorleistungen in der Bearbeitung der schriftlichen Übungsaufgaben.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen.

Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Einführung in die Finite-Elemente-Methode
2162257, SS 2024, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz

Inhalt
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"

Literaturhinweise
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"
5.186 Teilleistung: Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion [T-MACH-107632]

Verantwortung: Dr. Peter Franke
 Prof. Dr. Hans Jürgen Seifert

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik

Bestandteil von: M-MACH-103711 - Kinetik

Teilleistungsart Studienleistung
Leistungspunkte 2
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Version 4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</th>
<th>SWS</th>
<th>Übung (Ü) / 🗣</th>
<th>Vorleser</th>
</tr>
</thead>
</table>
| WS 23/24 | 2193004 | Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion | 1 | 🗣 | Franke, Ziebert

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion</th>
<th>SWS</th>
<th>Vorleser</th>
</tr>
</thead>
</table>
| WS 23/24 | 76-T-MACH-107632 | Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion | 1 | Seifert, Franke

Erfolgskontrolle(n)

erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen

T-MACH-110926 – Exercises for Solid State Reactions and Kinetics of Phase Transformations darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion

2193004, WS 23/24, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Ficksche Gesetze
2. Berechnung von Diffusionskoeffizienten
3. Diffusion und Erstarrungsvorgänge

Empfehlungen: Vorlesung Festkörperreaktionen/Kinetik von Phasenumwandlungen, Korrosion; Grundvorlesungen in Materialwissenschaft und Werkstofftechnik; Vorlesung Physikalische Chemie

Vertiefung der Vorlesung anhand durchgerechneter Beispiele

Präsenzzeit: 14 Stunden
Selbststudium: 46 Stunden

Literaturhinweise

Vorlesungsskript;
Lecture notes
Teilleistung: Übungen zu Gefüge-Eigenschafts-Beziehungen [T-MACH-107683]

Verantwortung: Dr. Patric Gruber
Prof. Dr. Christoph Kirchlechner

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103713 - Eigenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilleistung</td>
<td>Übungen zu Gefüge-Eigenschafts-Beziehungen</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2024 | 2178125 | Übungen zu Gefüge-Eigenschafts-Beziehungen | 1 SWS | Übung (Ü) | Kirchlechner, Wagner, Gruber |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Bestehen eines mündlichen Abschlusskolloquiums

Voraussetzungen
T-MACH-110930 – Exercises for Microstructure-Properties-Relationships darf nicht begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110930 - Exercises for Microstructure-Property-Relationships darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Gefüge-Eigenschafts-Beziehungen
2178125, SS 2024, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Übungen zur Vorlesung Gefüge-Eigenschafts-Beziehungen LV Nr. 2178124.
5.188 Teilleistung: Übungen zu Mathematische Methoden der Mikromechanik [T-MACH-110379]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103739 - Computational Materials Science

Erfolgskontrolle(n)
Erfolgreiche Bearbeitung der Übungsblätter. Details dazu werden in der ersten Vorlesung bekanntgegeben.
Teilleistung: Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte [T-MACH-107669]

Verantwortung: Prof. Dr. Hans Jürgen Seifert
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-103710 - Thermodynamik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Seifert</td>
<td>Jedes Wintersemester</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung der Übungsaufgaben

Voraussetzungen

T-MACH-110924 – Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110924 - Exercises for Fundamentals in Materials Thermodynamics and Heterogeneous Equilibria darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Thermodynamische Grundlagen / Heterogene Gleichgewichte

<table>
<thead>
<tr>
<th>Übung (Ü)</th>
<th>2193005, WS 23/24, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
</table>

Inhalt

1. Ternäre Phasendiagramme
 - Vollständige Mischbarkeit
 - Eutektische Systeme
2. Thermodynamik der Lösungsphasen
3. Werkstoffreaktionen von reinen kondensierten Phasen unter Einfluss der Gasphase
4. Reaktionsgleichgewichte in Werkstoffsystemen mit Komponenten in kondensierten Lösungen

Empfehlungen:

- Vorlesung Thermodynamische Grundlagen / Heterogene Gleichgewichte
- Grundvorlesungen in Materialwissenschaft und Werkstofftechnik
- Vorlesung Physikalische Chemie

Präsenzzeit: 14 Stunden
Selbststudium: 46 Stunden
Organisatorisches
Die genauen Termine werden in der Vorlesung (25.10.23) bekannt gegeben.
Die Übungen finden montags, 09:45-11:15 Uhr in Geb. 10.50, HS 102 statt.

Literaturhinweise
5.190 Teilleistung: Übungen zu Werkstoffanalytik [T-MACH-107685]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103714 - Werkstoffanalytik

Teilleistungsart Studienleistung
Leistungspunkte 2
Notenskala best./nicht best.
Turnus Jedes Sommersemester
Version 4

Lehrveranstaltungen

| SS 2024 | 2174586 | Werkstoffanalytik | 2 SWS | Vorlesung (V) / 🗣 | Gibmeier, Peterlechner |
| SS 2024 | 2174988 | Übungen und Laborbesuche zu "Werkstoffanalytik" | 1 SWS | Übung (Ü) / 🗣 | Gibmeier, Peterlechner |

Legende: 🖥 Online, 🕰 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Regelmäßige Teilnahme

Voraussetzungen
T-MACH-110945 – Exercises for Materials Characterization darf nicht begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110945 - Exercises for Materials Characterization darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkstoffanalytik
2174586, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Literaturhinweise
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.

V Übungen und Laborbesuche zu "Werkstoffanalytik"
2174988, SS 2024, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
s. Vorlesung "Werkstoffanalytik" (V-Nr. 2174586)
Organisatorisches
Die Termine und der Ort zu den Übungen und Laborbesuche zur Vorlesung Werkstoffanalytik (V-Nr. 2174586) werden in der Vorlesung bekanntgegeben.

The dates and locations of the tutorials and lab courses for the lecture materials characterization (V-No. 2174586) will be announced in one of the first lectures.

Literaturhinweise
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).

Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
5.191 Teilleistung: Umformtechnik [T-MACH-105177]

Verantwortung: Prof. Dr.-Ing. Thomas Herlan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte
4
Notenskala
Drittelnoten
Turnus
Jedes Sommersemester
Version
2

Lehrveranstaltungen
SS 2024 2150681 Umformtechnik 2 SWS Vorlesung (V) / Herlan

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Umformtechnik
2150681, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

Die Themen im Einzelnen sind:

- Einführung und Grundlagen
- Warmumformung
- Umformmaschinen
- Werkzeuge
- Metallkunde
- Plastizitätslehre
- Tribologie
- Blechumformung
- Fließpressen
- Numerische Simulation

Lernziele:
Die Studierenden …

- können die Grundlagen, Verfahren, Werkzeuge, Maschinen und Einrichtungen der Umformtechnik in einer ganzheitlichen und systematischen Darstellung wiedergeben.
- können die Unterschiede der Verfahren, Werkzeuge, Maschinen und Einrichtungen anhand konkreter Beispiele verdeutlichen sowie diese hinsichtlich ihrer Eignung für den jeweiligen Anwendungsfall analysieren und beurteilen.
- sind darüber hinaus in der Lage, das erarbeitete Wissen auf andere umformtechnische Fragestellungen zu übertragen und anzuwenden.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Vorlesungstermine freitags, wöchentlich.
Die konkreten Termine werden in der ersten Vorlesung bekannt gegeben und auf der Institutshomepage und ILIAS veröffentlicht.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I

2133113, WS 23/24, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
- Einleitung, Institutsvorstellung
- Prinzip des Verbrennungsmotors
- Charakteristische Kenngrößen
- Bauteile
- Kurbeltrieb
- Brennstoffe
- Ottomotorische Betriebsarten
- Dieselmotorische Betriebsarten
- Wasserstoffmotoren
- Abgasemissionen

Organisatorisches
- Übungstermine Donnerstags nach Bekanntgabe in der Vorlesung
5.193 Teilleistung: Verbrennungsmotoren II [T-MACH-104609]

Verantwortung: Dr.-Ing. Rainer Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-103715 - Technische Vertiefung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2024 2134151 CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II 3 SWS Vorlesung / Übung (VÜ) / Koch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 76-T-MACH-104609 CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II Kubach, Koch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 Minuten, keine Hilfsmittel

Voraussetzungen
keine

Empfehlungen
Grundlagen des Verbrennungsmotors I hilfreich

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II 2134151, SS 2024, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen Vorlesung / Übung (VÜ) Präsenz |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt
5.194 Teilleistung: Vertiefungsmodul - Doing Culture - Selbstverbuchung BAK [T-ZAK-112655]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
3

Notenskala
Drittelnoten

Version
1

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten.
In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen.
Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
5.195 Teilleistung: Vertiefungsmodul - Global Cultures - Selbstverbuchung [T-ZAK-112658]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten. In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen. Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden. Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
5.196 Teilleistung: Vertiefungsmodul - Lebenswelten - Selbstverbuchung BAK [T-ZAK-112657]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten. In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen. Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden. Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung "Mündliche Prüfung" ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
5.197 Teilleistung: Vertiefungsmodul - Medien & Ästhetik - Selbstverbuchung BAK [T-ZAK-112656]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten.
In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen.
Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
5.198 Teilleistung: Vertiefungsmodul - Selbstverbuchung BeNe [T-ZAK-112346]

Verantwortung: Christine Myglas
Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form mehrerer Teilleistungen, die in der Regel eine Präsentation der (Gruppen-)Projektarbeit, eine schriftliche Ausarbeitung der (Gruppen-)Projektarbeit sowie eine individuelle Hausarbeit, ggf. mit Anhängen umfassen (Prüfungsleistungen anderer Art gemäß Satzung § 5 Absatz 3 Nr. 3 bzw. § 7 Absatz 7).

Voraussetzungen
Die aktive Teilnahme in allen drei Pflichtbestandteilen.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

• Zentrum für Angewandte Kulturwissenschaft und Studium Generale
• ZAK Begleitstudium

Empfehlungen
Kenntnisse aus 'Grundlagenmodul' und 'Wahlmodul' sind hilfreich.
Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Projektseminar festgelegt.
5.199 Teilleistung: Vertiefungsmodul - Technik & Verantwortung - Selbstverbuchung BAK [T-ZAK-112654]

Verantwortung: Dr. Christine Mielke
Christine Myglas

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106235 - Begleitstudium - Angewandte Kulturwissenschaft

Erfolgskontrolle(n)
In zwei Seminaren wird jeweils ein Referat (Prüfungsleistung anderer Art) gehalten. In einem dritten Seminar ist entweder a) ein Referat zu halten (vorausgehende Studienleistung), das unbenotet bleibt, und darauf basierend eine Hausarbeit anzufertigen oder b) eine schriftliche Prüfung abzulegen. Die 3 Seminare können entweder aus 3 verschiedenen der 5 Themen-Bausteine gewählt werden oder können – in Ausnahmefällen und nach Absprache mit den Modulverantwortlichen – im Sinne einer Spezialisierung aus einem Baustein gewählt werden. Zusätzlich wird im Modul Vertiefung eine mündliche Prüfung abgelegt, die sich inhaltlich auf zwei der drei belegten Seminare bezieht.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen

Anmerkungen
Die Inhalte des Grundlagenmoduls werden benötigt.
5.200 Teilleistung: Wahlmodul - Nachhaltige Stadt- und Quartiersentwicklung - Selbstverbuchung BeNe [T-ZAK-112347]

Einrichtung: Universität gesamt
Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

Erfolgskontrolle(n)
Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen
Die Inhalte des Grundlagenmoduls sind hilfreich.
Teilleistung: Wahlmodul - Nachhaltigkeit in Kultur, Wirtschaft und Gesellschaft - Selbstverbuchung BeNe [T-ZAK-112350]

Einrichtung: Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale
Bestandteil von: M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen
Die Inhalte des Grundlagenmoduls sind hilfreich.

5.202 Teilleistung: Wahlmodul - Nachhaltigkeitsbewertung von Technik - Selbstverbuchung BeNe [T-ZAK-112348]

Erfolgskontrolle(n)
Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen
Die Inhalte des Grundlagenmoduls sind hilfreich.

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Vertiefungsbaukasten festgelegt.
5.203 Teilleistung: Wahlmodul - Subjekt, Leib, Individuum: die andere Seite der Nachhaltigkeit - Selbstverbuchung BeNe [T-ZAK-112349]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Zentrale Einrichtungen/Zentrum für Angewandte Kulturwissenschaft und Studium Generale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-ZAK-106099 - Begleitstudium - Nachhaltige Entwicklung</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art nach § 7 Abs. 7 in Form eines Referats in der gewählten Lehrveranstaltung.

Voraussetzungen
Voraussetzung für die Teilleistung 'Mündliche Prüfung' ist der erfolgreiche Abschluss der Module 1 und 3 und der erforderlichen Wahlpflichtteilleistungen in Modul 2.

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Empfehlungen
Die Inhalte des Grundlagenmoduls sind hilfreich.

Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Vertiefungsbaukasten festgelegt.
5.204 Teilleistung: Wasserstoff in Materialien - Übungen und Laborkurs [T-MACH-112942]

Verantwortung: Dr. rer. nat. Stefan Wagner
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2174573 | Wasserstoff in Materialien - Übungen und Laborkurs | 2 SWS | Übung (Ü) / 🗣 Wagner |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-112942 | Wasserstoff in Materialien - Übungen und Laborkurs | Wagner |

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Regelmäßige Teilnahme und Teilnahme am Laborpraktikum inklusive Protokoll.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wasserstoff in Materialien - Übungen und Laborkurs
2174573, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

In dieser Übung mit Laborkurs vertiefen die Studierenden die in der Vorlesung „Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung“ vermittelten Lehrinhalte. Die Studierenden kennen Unterschiede der Thermodynamik und der Kinetik der Wasserstoff-Wechselwirkung mit Speichermaterialien und mit Konstruktionswerkstoffen. Die Studierenden können die Wechselwirkung von Wasserstoff mit mikrostrukturellen Defekten in Materialien beschreiben, und sie kennen sich daraus ergebende Auswirkungen auf die mechanische Integrität der Materialien. Davon ausgehend können sie die Anforderungen an die jeweiligen Materialklassen formulieren und diese auf ingenieurtechnische Fragestellungen übertragen.

Mit geeigneten Versuchsaufbauten können die Studierenden Wasserstoff-induzierte Spannungen in Materialien sowie die Diffusionsgeschwindigkeit und das chemische Potential des Wasserstoffs messen. Die Studierenden sind in der Lage, aus den Messergebnissen Metall-Wasserstoff-Phasendiagramme zu konstruieren und die Defektdichte im Metall qualitativ abzuschätzen.
5.205 Teilleistung: Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung [T-MACH-110957]

Verantwortung: Prof. Dr. Astrid Pundt
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2174572</th>
<th>Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Pundt, Wagner</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>76-T-MACH-110957</th>
<th>Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung</th>
<th>Pundt</th>
</tr>
</thead>
</table>

Legende: 🖤 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

T-MACH-110923 - Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung darf nicht begonnen sein

T-MACH-108853 - Wasserstoff in Materialien darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Anmerkungen

auf Deutsch

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
</tr>
</tbody>
</table>

2174572, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Details über die Vorlesung finden Sie unter: www.iam.kit.edu/wk/lehrveranstaltungen.php

Lehrinhalte:
- Wasserstoff-Aufnahmeverhalten verschiedener Elemente in der festen Lösung, Sievert's Gesetz
- interstitielle Plätze und Gitterdehnung
- Bewegung von Wasserstoff in Materialien, interstitielle Diffusion und quantenmechanisches Tunneln
- Hydride, van’t Hoff Plot, Phasenübergänge, Phasendiagramme
- Einfluss von ternären Legierungspartnern
- Wechselwirkung von Wasserstoff mit Defekten
- Wasserstoffversprödung von Stählen, Versprüedungsmodelle
- Verhalten von Wasserstoff in nanoskaligen Systemen
- Methoden zur Untersuchung des Verhaltens von Wasserstoff in Materialien.

Organisatorisches
Teilnahme nach Anmeldung.

Literaturhinweise
Literaturhinweise und Unterlagen in der Vorlesung
5.206 Teilleistung: Werkstoffanalytik [T-MACH-107684]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr. Reinhard Schneider

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-103714 - Werkstoffanalytik

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2174586</th>
<th>Werkstoffanalytik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Gibmeier, Peterlechner</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen
| WS 23/24 | 76-T-MACH-107684 | Werkstoffanalytik | Gibmeier |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrollen
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
Die erfolgreiche Teilnahme an Übungen zu Werkstoffanalytik ist Voraussetzung für die Zulassung zur mündlichen Prüfung Werkstoffanalytik.

Die Teilleistung T-MACH-110945 – Exercises for Materials Characterization darf nicht begonnen sein.

Die Teilleistung T-MACH-110946 – Materials Characterization darf nicht begonnen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-107685 - Übungen zu Werkstoffanalytik muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-MACH-110945 - Exercises for Materials Characterization darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffanalytik
2174586, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
In dieser Veranstaltung werden folgende Methoden vorgestellt:

- Mikroskopische Methoden: Lichtmikroskopie, Elektronenmikroskopie (REM/TEM), Rasterkraftmikroskopie (AFM)
- Material-, Gefüge- und Strukturuntersuchungen mittels Röntgen-, Neutronen- und Elektronenstrahlen
- Analytik im REM/TEM (z.B. EELS)
- Spektroskopische Methoden (z.B. EDX/WDX)

Qualifikationsziele:

Literaturhinweise
Vorlesungsskript (wird zu Beginn der Veranstaltung ausgegeben).
Literatur wird zu Beginn der Veranstaltung bekanntgegeben.
5.207 Teilleistung: Werkstoffe für den Leichtbau [T-MACH-105211]

Verantwortung:
Dr.-Ing. Wilfried Liebig

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von:
M-MACH-103738 - Konstruktionswerkstoffe

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2174574</th>
<th>Werkstoffe für den Leichtbau</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Liebig</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-105211 | Werkstoffe für den Leichtbau | Liebig |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Empfehlungen
Werkstoffkunde I/II

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffe für den Leichtbau

| 2174574, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen |

Vorlesung (V) Präsenz
5 TEILLEISTUNGEN

Teilleistung: Werkstoffe für den Leichtbau [T-MACH-105211]

Inhalt

Einführung

Konstruktive, fertigungstechnische und werkstoffkundliche Aspekte des Leichtbaus

Aluminiumbasislegierungen

Aluminiumknetlegierungen

Aluminiumgusslegierungen

Magnesiumbasislegierungen

Magnesiumknetlegierungen

Magnesiumgusslegierungen

Titanbasislegierungen

Titanknetlegierungen

Titan gusslegierungen

Hochfeste Stähle

Hochfeste Baustähle

Vergütungsstähle, pressgehartete Stähle

Aushärtbare Stähle

Verbundwerkstoffe, insbesondere mit polymerer Matrix

Matrixsysteme

Verstärkungswerkstoffe

Grundlagen der Verbundmechanik

Hybride Werkstoffsysteme

Sonderwerkstoffe des Leichtbaus

Beryllium legierungen

Metallische Gläser

Anwendungen

Lernziele:

Voraussetzungen:

Werkstoffkunde I/Ii (empfohlen)

Arbeitsaufwand:

Der Arbeitsaufwand für die Vorlesung „Werkstoffe für den Leichtbau“ beträgt pro Semester 120 h und besteht aus Präsenz in den Vorlesungen (24 h), Vor- und Nachbearbeitungszeit zuhause (48 h) und Prüfungsvorbereitungszeit (48 h)

Nachweis:

Mündliche Prüfung, Dauer ca. 25 min

Literaturhinweise

Literaturhinweise, Unterlagen und Teilmanuskript in der Vorlesung
5.208 Teilleistung: Werkstoffe in der additiven Fertigung [T-MACH-110165]

Verantwortung: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-103738 - Konstruktionswerkstoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2173600 | Werkstoffe in der additiven Fertigung | 2 SWS | Vorlesung (V) / 🗣 | Dietrich |

Prüfungsveranstaltungen

| WS 23/24 | 76-T-MACH-110165 | Werkstoffe in der additiven Fertigung | Dietrich |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz; ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkstoffe in der additiven Fertigung
2173600, WS 23/24, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen
Inhalt
Bedeutung, Entstehung und Charakterisierung von Werkstoffen in additive Fertigungsprozessen
Vorstellung und Erklärung des Funktionsprinzips der gängigen additiven Fertigungsprozesse:

- Pulverbettbasierter Laserschmelzen
- Pulverbettbasierter Elektronenstrahlschmelzen
- Pulver- und Drahtauftragsschweißen
- Fused Filament Fabrication
- Lithographische Verfahren

Werkstoffauswahl und Werkstoffentwicklung für additive Fertigungsprozesse

- Betrachtung der Werkstoffänderung im Fertigungsprozess
- Bewertung der Mechanismen als Kriterium für eine "Werkstoffdruckbarkeit"

Entwicklung und Charakterisierung der mikrostrukturellen Werkstoffzustände

- Mikrostrukturausbildung im Erstarrungsprozess aus dem Schmelzbad
- Anisotrope Werkstoffeigenschaften aufgrund gerichteter Erstarrungsprozesse

Bauteilzustände nach der additive Fertigung und mechanische Werkstoffeigenschaften

- Poren- und Defektarchitekturen
- Oberflächenzustände und Eigenspannungen
- Mechanische Eigenschaften und Ermüdungsverhalten

Lernziele:
Die Studierenden lernen die Grundlagen der additive Fertigung zu verstehen und sind in der Lage den Einfluss auf den Bauteilzustand durch die Werkstoffanisotropie und die Werkstoffzustände darzustellen. Die Studierenden können die Auswirkungen von Prozessparametern auf die Mikrostruktur und die Bauteilzustände darlegen und diese hinsichtlich ihres Einflusses auf mechanische Belastungen beurteilen.

Voraussetzungen:
keine

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
5.209 Teilleistung: Werkstoffmodellierung: versetzungsbasierte Plastizität [T-MACH-105369]

Verantwortung: Dr. Daniel Weygand
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103739 - Computational Materials Science

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2024 2182740 Werkstoffmodellierung: versetzungsbasierte Plastizität 2 SWS Vorlesung (V) / 🗣 Weygand

Prüfungsveranstaltungen
WS 23/24 76-T-MACH-105369 Werkstoffmodellierung: versetzungsbasierte Plastizität Weygand
SS 2024 76-T-MACH-105369 Werkstoffmodellierung: versetzungsbasierte Plastizität Weygand

Legende: 🕒 Online, 🛑 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffmodellierung: versetzungsbasierte Plastizität
2182740, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz

Inhalt
1. Einführung
2. Elastische Felder von Versetzungen
3. Abgleiten, Kristallographie
4. Bewegungsgesetze von Versetzungen
 a. kubisch flächenzentriert
 b. kubisch raumzentriert
5. Wechselwirkung zwischen Versetzungen
6. Molekulardynamik
7. Diskrete Versetzungsdynamik
8. Kontinuumsbeschreibung von Versetzungen

Der/die Studierende
- besitzt das Verständnis der physikalischen Grundlagen, um Versetzungen sowie die Wechselwirkungen zwischen Versetzungen und Punkt-, Linien- und Flächendefekten zu beschreiben
- kann Modellierungsansätze zur Beschreibung von Plastizität auf Versetzungsebene anwenden
- kann diskrete Methoden zur Modellierung der Mikrostrukturrentwicklung erläutern

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Mündliche Prüfung ca. 30 Minuten
Literaturhinweise

5.210 Teilleistung: Werkstoffrecycling und Nachhaltigkeit [T-MACH-110937]

Verantwortung: Dr.-Ing. Wilfried Liebig
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-103740 - Materialprozesstechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>SS 2024</th>
<th>2173520</th>
<th>Werkstoffrecycling und Nachhaltigkeit</th>
<th>2 SWS</th>
<th>Vorlesung (V) / Liebig</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen
| WS 23/24 | 76-T-MACH-110937 | Werkstoffrecycling und Nachhaltigkeit | Liebig |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 25 Min.)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkstoffrecycling und Nachhaltigkeit
2173520, SS 2024, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
1. Rechtliche und Geschichtliche Grundlagen
2. Klimawandel, Ökologie und Stoffströme
3. Nachhaltigkeit im Allgemeinen
4. Produktverantwortung, recyclinggerechte Konstruktion und geplante Obsoleszenz
5. Allgemeine und rechtliche Grundlagen des Recyclings und Materialkreisläufe
6. Materialtrennung, Sortierung und Aufbereitung
7. Recycling von Metallen
8. Recycling von Polymeren und Verbundwerkstoffen
9. Recycling von Alltagsmaterialien
10. Alternative Materialien und Konstruktionen
11. Materialien für erneuerbare Energien
12. ggf. Fallstudien

Literaturhinweise
Skript wird in der Vorlesung ausgegeben
5.211 Teilleistung: Windkraft [T-MACH-105234]

Verantwortung: Norbert Lewald

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-103715 - Technische Vertiefung

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2157381</td>
<td>Windkraft</td>
<td>2</td>
<td>Lewald</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-105234</td>
<td>Windkraft</td>
<td>Lewald</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-105234</td>
<td>Windkraft</td>
<td>Lewald</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 120 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Windkraft

2157381, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Veranstaltung (Veranst.)

Präsenz
5.212 Teilleistung: Wissenschaftliches Programmieren für Ingenieure [T-MACH-100532]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-103739 - Computational Materials Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfung (V/Ü)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2181738</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Übung (Ü)</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2181739</td>
<td>Übungen zu Wissenschaftliches Programmieren für Ingenieure</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Weygand</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>76-T-MACH-100532</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>SS 2024</td>
<td>76-T-MACH-100532</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>Weygand, Gumbsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, 90 Minuten

Voraussetzungen
Die Teilleistung kann nicht mit der Teilleistung "Anwendung höherer Programmiersprachen im Maschinenbau" (T-MACH-105390) kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Wissenschaftliches Programmieren für Ingenieure
2181738, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
1. Einführung: warum wissenschaftliches Rechnen
2. Rechnerarchitekturen
3. Einführung in Unix/Linux
4. Grundlagen der Programmiersprache C++
 * Programmstruktur
 * Datentypen, Operatoren, Steuerstrukturen
 * dynamische Speicherverwaltung
 * Funktionen
 * Klassen, Vererbung
 * OpenMP Parallelisierung
5. Numerik / Algorithmen
 * finite Differenzen
 * MD Simulation: Lösung von Differenzialgleichungen 2ter Ordnung
 * Partikelsimulation
 * lineare Gleichungslöser

Der/die Studierende kann
• die Programmiersprache C++ anwenden, um Programme für das wissenschaftliche Rechnen zu erstellen
• Programme zur Nutzung auf Parallelrechnern anpassen
• geeignete numerische Methoden zur Lösung von Differentialgleichungen auswählen.

Die Vorlesung kann nicht mit der Vorlesung "Anwendung höherer Programmiersprachen im Maschinenbau" (2182735) kombiniert werden.

Präsenzzeit: 22,5 Stunden
Übung: 22,5 Stunden (freiwillig)
Selbststudium: 75 Stunden

Schriftliche Prüfung 90 Minuten

Literaturhinweise
1. C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München
2. C++ and object-oriented numeric computing for Scientists and Engineers, Daoqui Yang, Springer Verlag.
3. The C++ Programming Language, Bjarne Stroustrup, Addison-Wesley
4. Die C++ Standardbibliothek, S. Kühfins und M. Schader, Springer Verlag

Numerik:
1. Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
2. Numerische Mathematik, H.R. Schwarz, Teubner Stuttgart
3. Numerische Simulation in der Moleküldynamik, Griebel, Knaepk, Zumbusch, Caglar, Springer Verlag

Übungen zu Wissenschaftliches Programmieren für Ingenieure
2181739, WS 23/24, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt
Übungen zu den Themen der Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)

Präsenzzeit: 22,5 Stunden

Organisatorisches
Veranstaltungsort (RZ Pool Raum) wird in Vorlesung bekannt gegeben

Literaturhinweise
Skript zur Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)
Inhalt

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik 405
Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik

vom 26. Juni 2017

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 26. Juni 2017 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
 § 1 Geltungsbereich
 § 2 Ziele des Studiums, akademischer Grad
 § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
 § 4 Modulprüfungen, Studien- und Prüfungsleistungen
 § 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
 § 6 Durchführung von Erfolgskontrollen
 § 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
 § 6 b Computergestützte Erfolgskontrollen
 § 7 Bewertung von Studien- und Prüfungsleistungen
 § 8 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
 § 9 Verlust des Prüfungsanspruchs
 § 10 Abmeldung; Versäumnis, Rücktritt
 § 11 Täuschung, Ordnungsverstoß
 § 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
 § 13 Studierende mit Behinderung oder chronischer Erkrankung
 § 14 Modul Masterarbeit
 § 14 a Berufspraktikum
 § 15 Zusatzleistungen
 § 15 a Überfachliche Qualifikationen
 § 16 Prüfungsausschuss
 § 17 Prüfende und Beisitzende
§ 18 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Masterprüfung
§ 19 Umfang und Art der Masterprüfung
§ 19 a Leistungsnachweise für die Masterprüfung
§ 20 Bestehen der Masterprüfung, Bildung der Gesamtnote
§ 21 Masterzeugnis, Masterurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 22 Bescheinigung von Prüfungsleistungen
§ 23 Aberkennung des Mastergrades
§ 24 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich

Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Materialwissenschaft und Werkstofftechnik am KIT.

§ 2 Ziel des Studiums, akademischer Grad

(1) Im konsekutiven Masterstudium sollen die im Bachelorstudium erworbenen wissenschaftlichen Qualifikationen weiter vertieft, verbreitert, erweitert oder ergänzt werden. Ziel des Studiums ist die Fähigkeit, die wissenschaftlichen Erkenntnisse und Methoden selbstständig anzuwenden und ihre Bedeutung und Reichweite für die Lösung komplexer wissenschaftlicher und gesellschaftlicher Problemstellungen zu bewerten.

(2) Aufgrund der bestandenen Masterprüfung wird der akademische Grad „Master of Science (M.Sc.)“ für den Masterstudiengang Materialwissenschaft und Werkstofftechnik verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Die Regelstudienzeit beträgt vier Semester.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studien- und Prüfungsleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.

(5) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.

(2) Prüfungsleistungen sind:

1. schriftliche Prüfungen,
2. mündliche Prüfungen oder
3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden. Die Masterprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Masterarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer

1. in den Masterstudiengang Materialwissenschaft und Werkstofftechnik am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
3. nachweist, dass er in dem Masterstudiengang Materialwissenschaft und Werkstofftechnik den Prüfungsanspruch nicht verloren hat und
4. die in § 19 a genannte Voraussetzung erfüllt.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.

§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und...
Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 4 zu beachten. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgs kontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

(5) Schriftliche Prüfungen (§ 4 Abs. 2 Nr. 1) sind in der Regel von einer/einem Prüfenden nach § 18 Abs. 2 oder 3 zu bewerten. Sofern eine Bewertung durch mehrere Prüfende erfolgt, ergibt sich die Note aus dem arithmetischen Mittel der Einzelbewertungen. Entspricht das arithmetische Mittel keiner der in § 7 Abs. 2 Satz 2 definierten Notenstufen, so ist auf die nächstliegende Notenstufe auf- oder abzurunden. Bei gleichem Abstand ist auf die nächstbessere Notenstufe zu runden. Schriftliche Prüfungen dauern mindestens 60 und höchstens 300 Minuten.

(6) Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/einem Prüfenden in Gegenwart einer oder eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studierenden.

Die wesentlichen Gegenstände und Ergebnisse der mündlichen Prüfung sind in einem Protokoll festzuhalten. Das Ergebnis der Prüfung ist den Studierenden im Anschluss an die mündliche Prüfung bekannt zu geben.

Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüfings als Zuhörerinnen und Zuhörer bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuhalten und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/den Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse der Erfolgs kontrolle sind in einem Protokoll festzuhalten.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet. Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgs kontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgs kontrollen im Antwort-Wahl-Verfahren

Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgs kontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können.
§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische Betreuung zu gewährleisten, insbesondere ist die Erfolgskontrolle in Anwesenheit einer fachlich sachkundigen Person durchzuführen. Alle Prüfungs- aufgaben müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung ste- hen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen

(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

- sehr gut (very good) : hervorragende Leistung,
- gut (good) : eine Leistung, die erheblich über den durch- schnittlichen Anforderungen liegt,
- befriedigend (satisfactory) : eine Leistung, die durchschnittlichen Anforde- rungen entspricht,
- ausreichend (sufficient) : eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
- nicht ausreichend (failed) : eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

<table>
<thead>
<tr>
<th>Note</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0; 1,3</td>
<td>sehr gut</td>
</tr>
<tr>
<td>1,7; 2,0; 2,3</td>
<td>Gut</td>
</tr>
<tr>
<td>2,7; 3,0; 3,3</td>
<td>Befriedigend</td>
</tr>
<tr>
<td>3,7; 4,0</td>
<td>Ausreichend</td>
</tr>
<tr>
<td>5,0</td>
<td>nicht ausreichend</td>
</tr>
</tbody>
</table>

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Ge- samtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stel- len werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

(7) Die Modulprüfung ist bestanden, wenn alle erforderlichen Erfolgskontrollen bestanden sind. Die Modulprüfung und die Bildung der Modulnote sollen im Modulhandbuch geregelt werden.
Sofern das Modulhandbuch keine Regelung über die Bildung der Modulnote enthält, errechnet sich die Modulnote aus einem nach den Leistungspunkten der einzelnen Teilmodule gewichteter Notendurchschnitt. Die differenzierten Noten (Absatz 2) sind bei der Berechnung der Modulnoten als Ausgangsdaten zu verwenden.

(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Gesamtnote der Masterprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Noten</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5 = sehr gut</td>
<td></td>
</tr>
<tr>
<td>von 1,6 bis 2,5 = gut</td>
<td></td>
</tr>
<tr>
<td>von 2,6 bis 3,5 = befriedigend</td>
<td></td>
</tr>
<tr>
<td>von 3,6 bis 4,0 = ausreichend</td>
<td></td>
</tr>
</tbody>
</table>

§ 8 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(7) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(8) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(9) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

(10) Die Masterarbeit kann bei einer Bewertung mit „nicht ausreichend“ (5,0) einmal wiederholt werden. Eine zweite Wiederholung der Masterarbeit ist ausgeschlossen.
§ 9 Verlust des Prüfungsanspruchs

§ 10 Abmeldung; Versäumnis, Rücktritt
(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß
(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 19 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Masterarbeit

(1) Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/des Studierende Modulprüfungen im Umfang von 75 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

(3) Thema, Aufgabenstellung und Umfang der Masterarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

(5) Bei der Abgabe der Masterarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung gehalten haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.“ Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit „nicht ausreichend“ (5,0) bewertet.

(6) Der Zeitpunkt der Ausgabe des Themas der Masterarbeit ist durch die Betreuerin/ den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Der Zeitpunkt der Abgabe der Masterarbeit ist durch den/die Prüfende/n beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Macht der oder die Studierende einen triftigen Grund geltend, kann der Prüfungsausschuss die in Absatz 4 festgelegte Bearbeitungszeit um höchstens drei Monate verlängern. Wird die Masterarbeit nicht fristgerecht abgeliefert, gilt sie als „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

(7) Die Masterarbeit wird von mindestens einem/einer Hochschullehrer/in, einem/einer leitenden Wissenschaftler/in gemäß § 14 Abs. 3 Ziff. 1 KITG oder einem habilitierten Mitglied der KIT-Fakultät und einem/einer weiteren Prüfenden bewertet. In der Regel ist eine/r der Prüfenden die Person, die die Arbeit gemäß Absatz 2 vergeben hat. Bei nicht übereinstimmender Beurteilung dieser beiden Personen setzt der Prüfungsausschuss im Rahmen der Bewertung dieser beiden
§ 14 a Berufspraktikum

(2) Die Studierenden setzen sich in eigener Verantwortung mit geeigneten privaten oder öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Das Nähere regelt das Modulhandbuch.

§ 15 Zusatzleistungen

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren. Auf Antrag der Studierenden kann die Zuordnung des Moduls später geändert werden.

§ 15 a Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen legt das KIT Wert auf überfachliche Qualifikationen. Diese sind im Umfang von vier LP Bestandteil des Masterstudiengangs Materialwissenschaft und Werkstofftechnik. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 16 Prüfungsausschuss

(2) Die/der Vorsitzende, ihre/sein Stellvertreter/in, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter/innen werden von dem KIT-Fakultätsrat bestellt, die akademischen Mitarbeiter/innen nach § 52 LHG, die wissenschaftlichen Mitarbeiter gemäß § 14 Abs. 3 Ziff. 2 KITG und die Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Die/der Vorsitzende und deren/dessen Stellvertreter/in müssen Hochschullehrer/innen oder leitende Wissenschaftler/innen § 14 Abs. 3 Ziff. 1 KITG sein. Die/der Vor-
sitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch das jeweilige Prüfungssekretariat unterstützt.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsberechtigte Person hinzuzuziehen.

§ 17 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrer/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät angehören und denen die Prüfungs befugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungs befugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegen stand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern die KIT-Fakultät eine Prüfungs befugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem Masterstudiengang der Mathematik, der Naturwissenschaften, der Ingenieurwissenschaften oder einen gleichwertigen akademischen Abschluss erworben hat.
§ 18 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studien- und Prüfungsleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Masterstudiengang Materialwissenschaft und Werkstofftechnik immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems erworbene Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

II. Masterprüfung

§ 19 Umfang und Art der Masterprüfung

(1) Die Masterprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Masterarbeit (§ 14) und dem Berufspraktikum (§ 14 a).

(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:

- Materialwissenschaftliche Vertiefung: Modul(e) im Umfang von 30 LP,
- Schwerpunkt I: Modul(e) im Umfang von 16 LP,
- Schwerpunkt II: Modul(e) im Umfang von 16 LP,
- Interdisziplinäre Ergänzung: Modul(e) im Umfang von 12 LP,
- Überfachliche Qualifikationen: Modul(e) im Umfang von 4 LP gemäß § 15 a. Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.
§ 19 a Leistungsnachweise für die Masterprüfung
Voraussetzung für die Anmeldung zur letzten Modulprüfung der Masterprüfung ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 14 a. In Ausnahmefällen, die die Studierenden nicht zu vertreten haben, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.

§ 20 Bestehen der Masterprüfung, Bildung der Gesamtnote
(1) Die Masterprüfung ist bestanden, wenn alle in § 19 genannten Modulprüfungen mindestens mit „ausreichend” bewertet und alle in § 19 genannten Studienleistungen bestanden wurden.

(2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten und dem Modul Masterarbeit.

(3) Haben Studierende die Masterarbeit mit der Note 1,0 und die Masterprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 21 Masterzeugnis, Masterurkunde, Diploma Supplement und Transcript of Records

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.

III. Schlussbestimmungen

§ 22 Bescheinigung von Prüfungsleistungen
Haben Studierende die Masterprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch ersessen ist.

§ 23 Aberkennung des Mastergrades
(1) Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die/der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Masterurkunde einzuziehen, wenn die Masterprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.

§ 24 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Masterprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 25 Inkrafttreten, Übergangsvorschriften
(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2017 in Kraft und gilt für

1. Studierende, die ihr Studium im Masterstudiengang Materialwissenschaft und Werkstofftechnik am KIT im ersten Fachsemester aufnehmen, sowie für

2. Studierende, die ihr Studium im Masterstudiengang Materialwissenschaft und Werkstofftechnik am KIT in einem höheren Fachsemester aufnehmen, sofern dieses Fachsemester nicht über dem Fachsemester liegt, das der erste Jahrgang nach Ziff. 1 erreicht.

1. Studierende, die ihr Studium im Masterstudiengang Materialwissenschaft und Werkstofftechnik am KIT zuletzt im Sommersemester 2017 aufgenommen haben, sowie für

2. Studierende, die ihr Studium im Masterstudiengang Materialwissenschaft und Werkstofftechnik am KIT ab dem Wintersemester 2017/18 in einem höheren Fachsemester aufnehmen, sofern das Fachsemester über dem liegt, das der erste Jahrgang nach Absatz 1 Ziff. 1 erreicht hat.

Im Übrigen tritt sie außer Kraft.

Karlsruhe, den 26. Juni 2017

Professor Dr.-Ing. Holger Hanselka
(Präsident)
Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Master-Studiengang Materialwirtschaft und Werkstofftechnik 32
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwirtschaft und Werkstofftechnik

vom 21. Februar 2019

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 21. Februar 2019 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 12 Absatz 1 wird wie folgt geändert:

 a) Satz 1 wird wie folgt gefasst:

 „Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung.“

 b) Satz 2 wird aufgehoben.

 c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

2. § 14 wird wie folgt geändert:

 a) In Absatz 2 Satz 1 werden nach der Angabe „§ 14 Abs. 3 Ziff. 1 KITG das Wort „oder“ durch das Wort „und“ ersetzt und nach dem Wort „KIT-Fakultät“ die Wörter „für Maschinenbau“ eingefügt.

 b) In Absatz 7 Satz 1 werden nach dem Wort „KIT-Fakultät“ die Wörter „für Maschinenbau“ eingefügt.

3. § 16 wird wie folgt geändert:

 a) In Absatz 1 Satz 3 wird das Wort „stammt“ durch die Wörter „stammen soll“ ersetzt.

 b) In Absatz 7 Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.
4. § 17 Absatz 3 wird wie folgt geändert:
Nach dem Wort „sofern“ werden die Wörter „die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und“ gestrichen.

Artikel 2 – Inkrafttreten

Diese Änderungssatzung tritt zum 01. April 2019 in Kraft.

Karlsruhe, den 21. Februar 2019

gez. Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Inhalt

<table>
<thead>
<tr>
<th>Berichtigung der Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwirtschaft und Werkstofftechnik</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>
Berichtigung der Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik

vom 27. Februar 2019

Die in den Amtlichen Bekanntmachungen des Karlsruher Instituts für Technologie (KIT) veröffentlichte Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwirtschaft und Werkstofftechnik vom 21. Februar 2019 (Amtliche Bekanntmachungen Nr. 06, Seite 32) wird wie folgt berichtigt:

1. Der Titel der Satzung wird in „Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik“ berichtigt.

Karlsruhe, den 27. Februar 2019

gez. Prof. Dr. Ing. Holger Hanselka
(Präsident)
Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Master-studiengang Materialwirtschaft und Werkstofftechnik...
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwirtschaft und Werkstofftechnik

vom 21. Februar 2019

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 21. Februar 2019 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 12 Absatz 1 wird wie folgt geändert:
 a) Satz 1 wird wie folgt gefasst:
 „Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung."
 b) Satz 2 wird aufgehoben.
 c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3

2. § 14 wird wie folgt geändert:
 a) In Absatz 2 Satz 1 werden nach der Angabe „§ 14 Abs. 3 Ziff. 1 KITG das Wort „oder“ durch das Wort „und“ ersetzt und nach dem Wort „KIT-Fakultät“ die Wörter „für Maschinenbau“ eingefügt.
 b) In Absatz 7 Satz 1 werden nach dem Wort „KIT-Fakultät“ die Wörter „für Maschinenbau“ eingefügt.

3. § 16 wird wie folgt geändert:
 a) In Absatz 1 Satz 3 wird das Wort „stammt“ durch die Wörter „stammen soll“ ersetzt.
 b) In Absatz 7 Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.
4. § 17 Absatz 3 wird wie folgt geändert:
Nach dem Wort „sofern“ werden die Wörter „die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und“ gestrichen.

Artikel 2 – Inkrafttreten

Diese Änderungssatzung tritt zum 01. April 2019 in Kraft.

Karlsruhe, den 21. Februar 2019

gez. Prof. Dr.-Ing. Holger Hanselka
(Präsident)
Inhalt

Berichtigung der Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwirtschaft und Werkstofftechnik 39
Berichtigung der Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik

vom 27. Februar 2019

Die in den Amtlichen Bekanntmachungen des Karlsruher Instituts für Technologie (KIT) veröffentlichte Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwirtschaft und Werkstofftechnik vom 21. Februar 2019 (Amtliche Bekanntmachungen Nr. 06, Seite 32) wird wie folgt berichtigt:

1. Der Titel der Satzung wird in „Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik“ berichtigt.

Karlsruhe, den 27. Februar 2019

gez. Prof. Dr. Ing. Holger Hanselka (Präsident)
Zweite Satzung zur Änderung der Studien- und Prüfungs-Ordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik

Seite 06
Zweite Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik

vom 24.02.2020

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 24.02.2020 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. In § 3 Absatz 5 werden die Wörter „nach vorheriger Ankündigung auch“ durch die Worte „in deutscher und“ ersetzt.

2. In § 6 Absatz 4 Satz 1 werden die Wörter „(§ 3 Abs. 6) können“ durch das Wort „(§ 3 Abs. 5) sollen“ ersetzt.

4. § 17 Absatz 3 wird folgender Satz 2 eingefügt:
 „Als Prüfende einer Masterarbeit können auch Externe bestellt werden, sofern sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können."

Artikel 2 – Inkrafttreten

Diese Änderungssatzung tritt zum 01. Oktober 2020 in Kraft.

Karlsruhe, den 24.02.2020

gez. Professor Dr.-Ing. Holger Hanselka
(Präsident)
Inhalt

Vierte Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik

Seite

251
Vierte Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Materialwissenschaft und Werkstofftechnik

vom 20. Oktober 2021

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 20. Oktober 2021 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 15 Absatz 2 Satz 2 wird aufgehoben.

2. § 25 wird wie folgt geändert:

a) In Absatz 3 wird die Angabe „2021“ durch die Angabe „2022“ ersetzt.

b) Folgender Absatz 4 wird angefügt:

Materialwissenschaft und Werkstofftechnik Master 2017 (Master of Science (M.Sc.))
Modulhandbuch mit Stand vom 13.03.2024
Artikel 2 – Inkrafttreten

Diese Änderungssatzung tritt zum 01. Oktober 2021 in Kraft.

Karlsruhe, den 20. Oktober 2021

gez. Prof. Dr.-Ing. Holger Hanselka
(Präsident)