

Werkstoffe und Strukturen für Hochleistungssysteme

Verantwortung: Prof. Martin Heilmaier

Vertiefungsrichtungen im Maschinenbau

Es stehen folgende Vertiefungsrichtungen zur Auswahl:

Vertiefungsrichtung	Abk.	Verantwortliche/r
Allgemeiner Maschinenbau	MB	Furmans
Energie- und Umwelttechnik	E+U	Maas
Fahrzeugtechnik	FzgT	Gauterin
Mechatronik und Mikrosystemtechnik	M+M	Korvink
Produktentwicklung und Konstruktion	PEK	Albers
Produktionstechnik	PT	Schulze
Theoretischer Maschinenbau	ThM	Böhlke
Werkstoffe und Strukturen für Hochleistungssysteme	W+S	Heilmaier

Die Wahlmöglichkeiten im Wahlpflichtmodul "Grundlagen und Methoden der Vertiefungsrichtung" und in den Schwerpunkten richten sich nach der gewählten Vertiefungsrichtung. Die zur Verfügung stehenden Module der Vertiefungsrichtungen werden im Modulhandbuch aufgeführt. Schriftliche Prüfungen werden als Klausuren mit der angegebenen Prüfungsdauer in Stunden abgenommen. Prüfungsleistungen gehen mit dem angegebenen Gewicht (Gew) in die Gesamtnote ein.

Vertiefungsrichtungen im Maschinenbau

Master of Science Maschinenbau

				Masterarbeit		
1. bis 4.	Wahlpflichtmodul	Labor-	Schlüssel-	Schwerpunkt 2	Wahlpflichtmodul Wahlpflichtmodul	
Fachsemester	Maschinenbau	praktikum	qualifika- tionen	Schwerpunkt 1	Wirtschaft/Recht	nat/inf/etit
	Mathematische Methoden	Grundlag Method Vertiefung	len der	Modellbildung und Simulation	Produktentstehung Entwicklungs- methodik	Produktentstehung Bauteil- dimensionierung

Bachelor of Science Maschinenbau

		Bachelo	rarbeit		Wahlpflichtmodul	
5. bis 6. Fachsemester	Mess- & Regelungs- technik	Schlüssel- qualifika-	Strömungs- lehre	Maschinen & Prozesse	Betriebliche Produktions- wirtschaft	Schwerpunkt
1. bis 4. Fachsemester	Physik	tionen	tionen		Technische	
	Elektrotechnik			Technische Mechanik	Maschinen- konstruktionslehre	Themodynamik
	Informatik	Höhere N	Mathematik (Werkstoffkunde
	Fertigungsprozesse					Womotomanao

Wahlmöglichkeiten

Pflichtmodul

Materialwissenschaft und Werkstofftechnik

5 gute Gründe für ein Studium der Materialwissenschaft und Werkstofftechnik

- universell da in vielen Branchen benötigt
- chancenreich durch vielfältige Aufgabenfelder nach dem Studium
- abwechslungsreich durch interessante Vertiefungsrichtungen. Praktika und Forschungtätigkeiten
- guter Kontakt zu Professoren und Mitstudenten da kein Massenstudium
- High-Tech-Studium da Ausbildung in einer Schlüsseldisziplin für den technischen und technologischen Fortschritt

Faszination Materialien und Werkstoffe

Snowboards, Handydisplays, Raketen, künstliche Hüftgelenke, aber auch Autos. Fahrräder oder Flugzeuge bestehen aus speziellen Hochleistungswerkstoffen, die z. T. extreme Belastungen aushalten müssen

Hochleistungswerkstoffe? - Hört sich interessant an?

Was hältst Du davon, selbst neue Hochleistungswerkstoffe zu entwickeln, mit denen Spitzensportler Olympiasieger werden, Raumfahrer in die Tiefen des Weltalls vordringen oder die einfach das Leben der Menschen sicherer und komfortabler gestalten? Wie wäre es, innovative Technologien und Verfahren zu erabeiten, die wirtschaftlichen und ökologischen Bedingungen gerecht werden?

Dann ist ein Studium der Materialwissenschaft und Werkstofftechnik das Richtige für Dich!

Dieser Flyer fasst für Dich grundlegende Informationen zu diesem Studienfach zusammen und gibt Dir einen ersten Einblick in die vielfältige Welt der Materialien und Werkstoffe. Ausführliche Informationen findest Du unter: www.StMW.de sowie auf den Internetseiten der jeweiligen Hochschulen.

Quelle: STMW e.V. (2011)

Möglichkeiten im Beruf

Forschungsingenieur m/w Bauteilauslegung Hochtemperatur

Im Zentralbereich Forschung und Vorausentwicklung entwerfen, prüfen und erforschen wir Systeme, Komponenten und Technologien. Unsere Innovationen zielen dabei stets auf eine Verbesserung der Lebensqualität.

In - dem größten
Entwicklungszentrum unseres Unternehmensbereichs
Kraftfahrzeugtechnik - arbeiten wir an Zukunftsthemen für
Kfz-Systeme, Gebrauchsgüter und Industrietechnik sowie
Produktionstechnik.

Ihre Aufgabe:

- Methodenentwicklung
 Betriebsfestigkeit/Werkstoffmechanik/Simulation sowie
 fachliche Koordinierung Prüftechnik und Prüfkonzepte
 mit Schwerpunkt hochbeanspruchte Metal-Injection Moulding-Komponenten in Abgasturboladern
- Entwicklungsschritte beurteilen, Ergebnisse bewerten und Entscheidungen über Einsatz von neuen Methoden herbeiführen
- Betreuung der Umsetzung in Geschäftsbereichen
- Koordinierung komplexer Entwicklungsaufgaben und Management von internen und -externen Forschungsprojekten
- Zusammenarbeit mit internen und -externen Forschungsstellen

Ihr Profil:

- Wissenschaftl. Erfahrungen im Bereich Festigkeitslehre/Werkstoffermüdung und Werkstoffmechanik, speziell thermomechanische Ermüdung, Werkstoff- und Bauteilprüfung sowie FE-Simulation und FE-Postprocessing
- Gute wiss. Kenntnisse zu Hochtemperatur-Werkstoffen und deren Versagensmechanismen
- Sicherheit in der Vermittlung komplexer technischwissenschaftlicher Sachverhalte
- Verbindliches Auftreten, Zielorientierung, Teamfähigkeit, Präsentationsfähigkeit
- · Sehr gute Englischkenntnisse

Quelle: <u>www.jobworld.de</u> (2010)

Möglichkeiten im Beruf

Ingenieur/in oder Naturwissenschaftler/in Bereich Werkstofftechnik und Korrosion

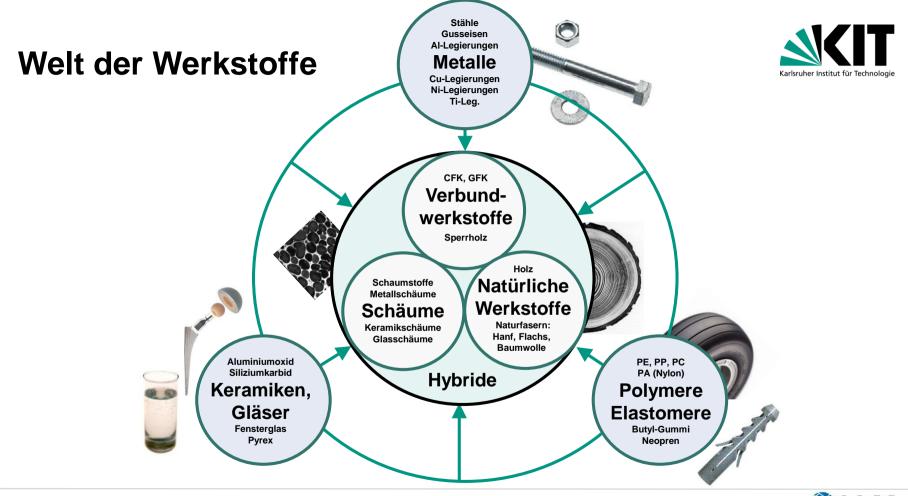
Was Sie erwartet:

- Werkstoffberatung unserer Betriebe und Planungseinheiten
- Werkstoffauswahl f
 ür unsere Produktionseinrichtungen
- Korrosionsuntersuchungen
- Schadensanalysen
- Integritätsbewertung von Anlagenkomponenten

Was wir erwarten:

- Überdurchschnittlich abgeschlossenes Studium (Master/TU, Promotion)
- Aufgeschlossenheit sowie Team- und Kommunikationsfähigkeit
- Berufserfahrung im Bereich der betriebsnahen Werkstoffforschung, der Werkstoffherstellung oder -verarbeitung sind Vorraussetzung
- Projekt- und Führungserfahrungen
- Fundierte Kenntnisse in den Standardanwendungen (MS-Office, SAP)

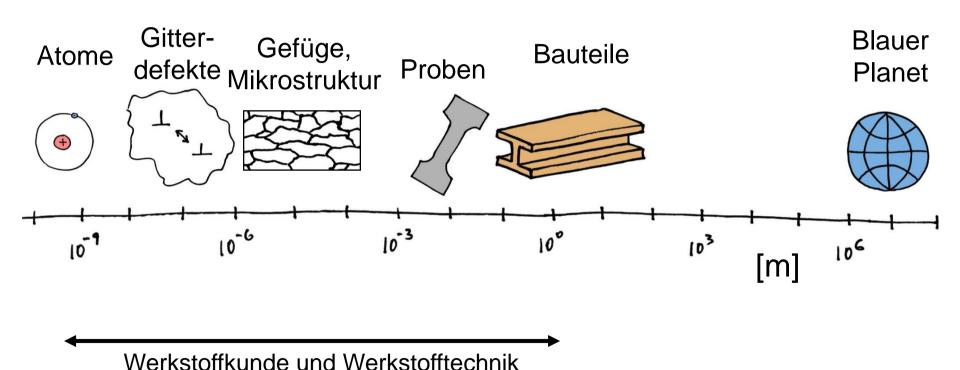
Wir bieten:


Ein anspruchsvolles Aufgabengebiet mit hoher Eigenverantwortung. Ihre Einarbeitung erfolgt "on the job" in einem engagierten, kompetenten Team.

Attraktive Vergütung einschließlich betrieblicher Sozialleistungen sowie hervorragende Entwicklungschancen in einem internationalen Unternehmen.

Erwarten Sie, überrascht zu sein und entdecken Sie berufliche Vielfalt bei

Quelle: www.jobworld.de (2010)



Welt der Werkstoffe

Vertiefungsrichtung Werkstoffe und Strukturen für Hochleistungssysteme

4.3.8 Vertiefungsrichtung: Werkstoffe und Strukturen für Hochleistungssysteme

Leistungspunkte 40

Bestandteil von: Vertiefungsrichtung

Pflichtbestandtei	le	
M-MACH-102744	Grundlagen und Methoden der Werkstoffe und Strukturen für Hochleistungssysteme	8 LP
Wahlpflichtblock:	Schwerpunkt (p) (zwischen 1 und 2 Bestandteilen)	
M-MACH-102611	Schwerpunkt: Materialwissenschaft und Werkstofftechnik	16 LP
M-MACH-102602	Schwerpunkt: Zuverlässigkeit im Maschinenbau	16 LP
Wahlpflichtblock:	Schwerpunkt (zwischen 0 und 1 Bestandteilen)	
M-MACH-102649	Schwerpunkt: Advanced Materials Modelling	16 LP
M-MACH-102646	Schwerpunkt: Angewandte Mechanik	16 LP
M-MACH-102628	Schwerpunkt: Leichtbau	16 LP
M-MACH-102632	Schwerpunkt: Polymerengineering	16 LP
M-MACH-102619	Schwerpunkt: Technische Keramik und Pulverwerkstoffe	16 LP
M-MACH-102635	Schwerpunkt: Technische Thermodynamik	16 LP
M-MACH-102636	Schwerpunkt: Thermische Turbomaschinen	16 LP
M-MACH-102637	Schwerpunkt: Tribologie	16 LP

Schwerpunkt Materialwissenschaft und Werkstofftechnik

5.41 Modul: Schwerpunkt: Materialwissenschaft und Werkstofftechnik (SP 26) [M-MACH-102611]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: Vertiefungsrichtung / Vertiefungsrichtung: Allgemeiner Maschinenbau (Schwerpunkte)

Vertiefungsrichtung / Vertiefungsrichtung: Energie- und Umwelttechnik (Schwerpunkt)

Vertiefungsrichtung / Vertiefungsrichtung: Fahrzeugtechnik (Schwerpunkt)

Vertiefungsrichtung / Vertiefungsrichtung: Mechatronik und Mikrosystemtechnik (Schwerpunkt) Vertiefungsrichtung / Vertiefungsrichtung: Produktentwicklung und Konstruktion (Schwerpunkt)

Vertiefungsrichtung / Vertiefungsrichtung: Produktionstechnik (Schwerpunkt)

Vertiefungsrichtung / Vertiefungsrichtung: Theoretischer Maschinenbau (Schwerpunkt)

Vertiefungsrichtung / Vertiefungsrichtung: Werkstoffe und Strukturen für Hochleistungssysteme

(Schwerpunkt (p))

Leistungspunkte

16

Turnus Jedes Semester **Dauer** 2 Semester

Sprache Deutsch/Englisch Level

Version 4

Kernbereich mit Wahlpflicht

Wahlinformationen

Im Kernbereich des Schwerpunktes sind mindestens 8 LP zu wählen.

Wahlpflichtblock: Wahlpflichtbereich (1 Bestandteil)			
T-MACH-110818	Plasticity of Metals and Intermetallics	8 LP	Heilmaier, Kauffmann
T-MACH-105301	Werkstoffkunde III	8 LP	Heilmaier

Vorlesungen mit Wahlpflicht

Wahlpflichtblock: Materialwissenschaft und Werkstofftechnik (E) (max. 10 LP)					
T-MACH-105308	Atomistische Simulation und Molekulardynamik	4 LP	Gumbsch, Schneider, Weygand		
T-MACH-102141	Aufbau und Eigenschaften verschleißfester Werkstoffe	4 LP	Ulrich		
T-MACH-105150	Aufbau und Eigenschaften von Schutzschichten	4 LP	Ulrich		
T-MACH-105984	Ermüdungsverhalten geschweißter Bauteile und Strukturen	3 LP	Farajian, Gumbsch		
T-MACH-107667	Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion	4 LP	Franke, Seifert		
T-MACH-105157	Gießereikunde	4 LP	Wilhelm		
T-MACH-102111	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie	4 LP	Schell		
T-MACH-105459	High Temperature Materials	4 LP	Heilmaier		
T-MACH-110923	Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement	4 LP	Pundt		
T-MACH-100287	Keramik-Grundlagen	6 LP	Hoffmann		
T-MACH-105330	Konstruieren mit Polymerwerkstoffen	4 LP	Liedel		
T-MACH-105164	Lasereinsatz im Automobilbau	4 LP	Schneider		
T-MACH-110954	Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis	4 LP	Kärger, Liebig		
T-MACH-110378	Mathematische Methoden der Mikromechanik	5 LP	Böhlke		

Vorlesungen mit Wahlpflicht

T-MACH-108717	Mechanik laminierter Komposite	4 LP	Schnack
T-MACH-105333	Mechanik und Festigkeitslehre von Kunststoffen	4 LP	von Bernstorff
T-MACH-105303	Mikrostruktursimulation	5 LP	August, Nestler
T-MACH-111026	Nonlinear Continuum Mechanics	3 LP	Böhlke
T-MACH-105516	Plastizität auf verschiedenen Skalen	4 LP	Greiner, Schulz
T-MACH-102137	Polymerengineering I	4 LP	Elsner, Liebig
T-MACH-110960	Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils	4 LP	Zanger
T-MACH-102157	Pulvermetallurgische Hochleistungswerkstoffe	4 LP	Schell
T-MACH-105724	Schadenskunde	4 LP	Greiner, Schneider
T-MACH-105170	Schweißtechnik	4 LP	Farajian
T-MACH-105354	Schwingfestigkeit metallischer Werkstoffe	4 LP	Guth
T-MACH-105970	Strukturberechnung von Faserverbundlaminaten	4 LP	Kärger
T-MACH-102179	Strukturkeramiken	4 LP	Hoffmann
T-MACH-105362	Technologie der Stahlbauteile	4 LP	Schulze
T-MACH-107670	Thermodynamische Grundlagen / Heterogene Gleichgewichte	4 LP	Franke, Seifert

Vorlesungen mit Wahlpflicht (Fortsetzung)

T-MACH-102139	Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen	4 LP	Gruber, Gumbsch
T-MACH-102140	Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch	4 LP	Gumbsch, Weygand
T-MACH-110957	Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung	4 LP	Pundt
T-MACH-107684	Werkstoffanalytik	4 LP	Gibmeier, Schneider
T-MACH-105211	Werkstoffe für den Leichtbau	4 LP	Elsner, Liebig
T-MACH-110165	Werkstoffe in der additiven Fertigung	4 LP	Dietrich, Schulze
T-MACH-105369	Werkstoffmodellierung: versetzungsbasierte Plastizität	4 LP	Weygand
T-MACH-110937	Werkstoffrecycling und Nachhaltigkeit	4 LP	Elsner, Liebig

Praktika mit Wahlpflicht

Wahlpflichtblock: Materialwissenschaft und Werkstofftechnik (P) (max. 4 LP)				
T-MACH-105651	Biomechanik: Design in der Natur und nach der Natur	4 LP	Mattheck	
T-MACH-105447	Experimentelles metallographisches Praktikum	4 LP	Heilmaier, Mühl	
T-MACH-102154	Praktikum Lasermaterialbearbeitung	4 LP	Schneider	

Übungen mit Wahlpflicht

Wahlpflichtblock: Materialwissenschaft und Werkstofftechnik (Ü) (max. 1 LP)				
T-MACH-111027	Tutorial Nonlinear Continuum Mechanics	1 LP	Böhlke	
T-MACH-107685	Übungen zu Werkstoffanalytik	2 LP	Gibmeier, Schneider	
T-MACH-107632	Übungen zu Festkörperreaktionen / Kinetik von Phasenumwandlungen, Korrosion	2 LP	Franke, Seifert	
T-MACH-110379	Übungen zu Mathematische Methoden der Mikromechanik	1 LP	Böhlke	

