Table of Contents

1 Studienplan 13

2 Actual Changes 31

3 Modules 32

3.1 All Modules 32

Compulsory optional subject UMM- MSc-Modul UMM, WPF UMM 32
Compulsory optional subject E+U- MSc-Modul E+U, WPF E+U 34
Compulsory optional subject FzgT- MSc-Modul FzgT, WPF FzgT 35
Compulsory optional subject M+M- MSc-Modul M+M, WPF M+M 37
Compulsory optional subject PEK- MSc-Modul PEK, WPF PEK 39
Compulsory optional subject PT- MSc-Modul PT, WPF PT 41
Compulsory optional subject ThM- MSc-Modul ThM, WPF ThM 42
Compulsory optional subject W+S- MSc-Modul W+S, WPF W+S 44
Optional subject- MSc-Modul 04, WF 45
Modeling and Simulation- MSc-Modul 05, MS 46
Product Development- MSc-Modul 06, PE 47
- MSc-Modul 07, FP 48
- MSc-Modul 08, MM 49
Major Field 1- MSc-Modul 09, SP 1 50
Major Field 2- MSc-Modul 10, SP 2 51
- MSc-Modul 11, WF NIE 52
- MSc-Modul 12, WF WR 53

4 Courses 54

4.1 All Courses 54

Aerothermodynamics- 2154436 54
Work Science (Lecture and Excercises; in German)- 2109026 55
CAE-Workshop- 2147175 57
Dezentral gesteuerte Intralogistiksysteme- 2117049 58
Introduction into Mechatronics- 2105011 59
Introduction into the multi-body dynamics- 2162235 60
??- 23224 61
??- 2581963 62
Fluid Technology- 2114093 63
Introduction to Microsystem Technology I- 2141861 64
Introduction to Microsystem Technology II- 2142874 65
Grundlagen der Statistik und Wahrscheinlichkeitstheorie- 1335 66
Fundamentals of Combustion I- 2165515 67
??- 23620 68
Advanced Methods in Strength of Materials- 2161252 69
??- 2209121 70
Leadership and Product Development- 2145184 71
Magnetohydrodynamics- 2153429 72
Leadership and Conflict Management (in German)- 2110017 73
Machine Dynamics- 2161224 74
Mathematical Methods in Dynamics- 2161206 75
Mathematical Methods in Strength of Materials- 2161254 76
Mathematical methods of vibration theory- 2162241 77
Mathematical Methods in Fluid Mechanics- 2154432 78
Mathematical Methods in Structural Mechanics- 2162280 79
Laboratory mechatronics- 2105014 80
Measurement Instrumentation Lab- 2138328 81
??- 23113 82
5 Major Fields

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Module Code</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelling of Microstructures</td>
<td>2183702</td>
<td>84</td>
</tr>
<tr>
<td>Modelling and Simulation</td>
<td>2185227</td>
<td>85</td>
</tr>
<tr>
<td>Modelling and Simulation</td>
<td>2183703</td>
<td>86</td>
</tr>
<tr>
<td>Modern Physics for Engineers</td>
<td>2400451</td>
<td>87</td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams</td>
<td>2143876</td>
<td>88</td>
</tr>
<tr>
<td>Numerical Mathematics for Engineers</td>
<td>1874</td>
<td>89</td>
</tr>
<tr>
<td>Physical basics of laser technology</td>
<td>2181612</td>
<td>94</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>2121350</td>
<td>95</td>
</tr>
<tr>
<td>Product Development - Methods of Product Development</td>
<td>2146176</td>
<td>97</td>
</tr>
<tr>
<td>Product Development - Manufacturing and Material Technology</td>
<td>2150679</td>
<td>98</td>
</tr>
<tr>
<td>Quality Management</td>
<td>2149667</td>
<td>99</td>
</tr>
<tr>
<td>Simulation of production systems and processes</td>
<td>2149605</td>
<td>101</td>
</tr>
<tr>
<td>Vibration Theory</td>
<td>2161210</td>
<td>103</td>
</tr>
<tr>
<td>Flows with chemical reactions</td>
<td>2153406</td>
<td>104</td>
</tr>
<tr>
<td>Systematic Materials Selection</td>
<td>2174576</td>
<td>105</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>2106002</td>
<td>107</td>
</tr>
<tr>
<td>Integrated Information Systems for engineers</td>
<td>2121001</td>
<td>108</td>
</tr>
<tr>
<td>Vibration Theory</td>
<td>2161212</td>
<td>109</td>
</tr>
<tr>
<td>Mathematical methods of vibration theory (Tutorial)</td>
<td>2162242</td>
<td>110</td>
</tr>
<tr>
<td>Tutorial in Mathematical Methods of Fluid Mechanics</td>
<td>2154433</td>
<td>111</td>
</tr>
<tr>
<td>Flows with chemical reactions</td>
<td>2181613</td>
<td>112</td>
</tr>
<tr>
<td>Heat and mass transfer</td>
<td>22512</td>
<td>113</td>
</tr>
<tr>
<td>Scientific computing for Engineers</td>
<td>2181738</td>
<td>115</td>
</tr>
</tbody>
</table>

5.1 SP 01: Advanced Mechatronics

- Modelling of Microstructures: 2183702
- Modelling and Simulation: 2185227
- Modelling and Simulation: 2183703
- Modern Physics for Engineers: 2400451
- Nanotechnology with Clusterbeams: 2143876
- Numerical Mathematics for Engineers: 1874
- Physical basics of laser technology: 2181612
- Product Lifecycle Management: 2121350
- Product Development - Methods of Product Development: 2146176
- Product Development - Manufacturing and Material Technology: 2150679
- Quality Management: 2149667
- Simulation of production systems and processes: 2149605
- Vibration Theory: 2161210
- Flows with chemical reactions: 2153406
- Systematic Materials Selection: 2174576
- Computer Engineering: 2106002
- Integrated Information Systems for engineers: 2121001
- Vibration Theory: 2161212
- Mathematical methods of vibration theory (Tutorial): 2162242
- Tutorial in Mathematical Methods of Fluid Mechanics: 2154433
- Flows with chemical reactions: 2181613
- Heat and mass transfer: 22512
- Scientific computing for Engineers: 2181738
Courses of the Major Fields

6 Courses of the Major Fields 176

6.1 All Courses 176

- 2134150 176
- Adaptive Finite Element Methods - 1606 176
- Adaptive Control Systems - 2105012 176
- Aerothermodynamics - 2154436 177
- Analysis and Design of Multisensor Systems - 2138001 177
- Analytical methods in material flow methodology (mach and wiwi) - 2117060 178
- Applied Fluid Mechanics - 2154434 178
- Low Temperature Technology - 2158112 179
- Applied Tribology in Industrial Product Development - 2145181 179
- Drive Train of Mobile Machines - 2113077 180
- Powertrain Systems Technology A: Automotive Systems - 2146180 180
- Powertrain Systems Technology B: Stationary Machinery - 2145150 181
- Application of technical logistics in modern crane systems - 2117064 181
- Application of technical logistics in sorting- and distribution technology - 2118089 182
- Application of advanced programming languages in mechanical engineering - 2182735 182
- Computer-Supported Operations Planning (in German) - 2110038 183
- Occupational Safety and Labour Legislation (in German) - 2109024 183
- Occupational Health and Safety Management (in German) - 2109030 184
- Work Science (Lecture and Exercises; in German) - 2109026 184
- Work Science Laboratory Course (in German) - 2109033 185
- Atomistic simulations and molecular dynamics - 2181740 185
- Constitution and Properties of Wear resistant materials - 2178643 186
- Constitution and Properties of Protective Coatings - 2177601 186
- Supercharging of Combustion Engines - 2134112 186
- Selected Problems of Applied Reactor Physics and Exercises - 2190411 187
- Selected Applications of Technical Logistics - 2118087 187
- Selected Applications of Technical Logistics and Project - 2118088 188
- Selected Topics in Aeronautics and Astronautics I - 2170454 188
- Selected Topics in Aeronautics and Astronautics II - 2169486 189
- Selected Topics on Optics and Microoptics for Mechanical Engineers - 2143892 189

Module Handbook, Date: 29.06.2011
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected chapters of the combustion fundamentals</td>
<td>211</td>
</tr>
<tr>
<td>Topics in turbulent flows for power and fluids engineering</td>
<td>212</td>
</tr>
<tr>
<td>Design of combustion chamber in gas turbines (Project)</td>
<td>213</td>
</tr>
<tr>
<td>Design of highly stresses components</td>
<td>214</td>
</tr>
<tr>
<td>Design and Development of Mobile Machines</td>
<td>215</td>
</tr>
<tr>
<td>Automated Production Line</td>
<td>216</td>
</tr>
<tr>
<td>Automation Systems</td>
<td>217</td>
</tr>
<tr>
<td>Automobile and Environment</td>
<td>218</td>
</tr>
<tr>
<td>Rail System Technology</td>
<td>219</td>
</tr>
<tr>
<td>Fuels and Lubricants for Combustion Engines and their Testing</td>
<td>220</td>
</tr>
<tr>
<td>Biogas - Prospects and possibilities</td>
<td>221</td>
</tr>
<tr>
<td>Biomechanics: design in nature and inspired by nature</td>
<td>222</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>223</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>224</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>225</td>
</tr>
<tr>
<td>Boundary and Eigenvalue Problems</td>
<td>226</td>
</tr>
<tr>
<td>BUS-Controls</td>
<td>227</td>
</tr>
<tr>
<td>CATIA V5 CAD training course</td>
<td>228</td>
</tr>
<tr>
<td>CAD-NX5 training course</td>
<td>229</td>
</tr>
<tr>
<td>CAE-Workshop</td>
<td>230</td>
</tr>
<tr>
<td>CFD in Power Engineering</td>
<td>231</td>
</tr>
<tr>
<td>CFD-Lab using Open Foam</td>
<td>232</td>
</tr>
<tr>
<td>Basic Chemistry of the Nuclear Fuel Cycle</td>
<td>233</td>
</tr>
<tr>
<td>Chemical, physical and material scientific aspects of polymers</td>
<td>234</td>
</tr>
<tr>
<td>Computational Intelligence I</td>
<td>235</td>
</tr>
<tr>
<td>Computational Intelligence II</td>
<td>236</td>
</tr>
<tr>
<td>Controlling and Simulation of Production Systems</td>
<td>237</td>
</tr>
<tr>
<td>Finite Difference Methods for numerical solution of thermal and fluid</td>
<td>238</td>
</tr>
<tr>
<td>Digital Control</td>
<td>239</td>
</tr>
<tr>
<td>Designing with numerical methods in product development</td>
<td>240</td>
</tr>
<tr>
<td>Designing with composites</td>
<td>241</td>
</tr>
<tr>
<td>Dynamics of mechanical Systems with tribological Contacts</td>
<td>242</td>
</tr>
<tr>
<td>Efficient creativity - Processes and Methods within the automotive industry</td>
<td>243</td>
</tr>
<tr>
<td>Introduction to Industrial Engineering</td>
<td>244</td>
</tr>
<tr>
<td>Introduction to Automotive Lightweight Technology</td>
<td>245</td>
</tr>
<tr>
<td>Introduction to Ergonomics</td>
<td>246</td>
</tr>
<tr>
<td>Introduction to the Finite Element Method</td>
<td>247</td>
</tr>
<tr>
<td>Introduction to Ceramics</td>
<td>248</td>
</tr>
<tr>
<td>Introduction to Theory of Materials</td>
<td>249</td>
</tr>
<tr>
<td>Introduction to the Mechanics of Composite Materials</td>
<td>250</td>
</tr>
<tr>
<td>Introduction into Mechatronics</td>
<td>251</td>
</tr>
<tr>
<td>Introduction into the multi-body dynamics</td>
<td>252</td>
</tr>
<tr>
<td>Numerical Methods in Mechanics I</td>
<td>253</td>
</tr>
<tr>
<td>Wave propagation</td>
<td>254</td>
</tr>
<tr>
<td>Basics Operation Systems of Ground Born Guided Systems</td>
<td>255</td>
</tr>
<tr>
<td>Operation Systems of Ground Born Guided Systems</td>
<td>256</td>
</tr>
<tr>
<td>Electronic Business for industrial Companies</td>
<td>257</td>
</tr>
<tr>
<td>Electric Rail Vehicles</td>
<td>258</td>
</tr>
<tr>
<td>Module Title</td>
<td>Module Code</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Elements of Technical Logistics</td>
<td>2117096</td>
</tr>
<tr>
<td>Energy efficient intralogistic systems</td>
<td>2117500</td>
</tr>
<tr>
<td>Energy Systems I: Renewable Energy</td>
<td>2129901</td>
</tr>
<tr>
<td>Energy systems II: Nuclear Energy Fundamentals</td>
<td>2130929</td>
</tr>
<tr>
<td>Development Project for Machine Tools and Industrial Handling</td>
<td>2149903</td>
</tr>
<tr>
<td>Ergonomics and Work Economics (in German)</td>
<td>2109029</td>
</tr>
<tr>
<td>Experimental Modelling</td>
<td>2106008</td>
</tr>
<tr>
<td>Metallographic Lab Class, Metallographic Lab Class, Ferrous Materials</td>
<td>2175588</td>
</tr>
<tr>
<td>Metallographic Lab Class, Non-Ferrous Materials</td>
<td>2175589</td>
</tr>
<tr>
<td>Welding Lab Course, in groupes</td>
<td>2173560</td>
</tr>
<tr>
<td>Factory Planning Laboratory</td>
<td>2150652</td>
</tr>
<tr>
<td>Driving Dynamics Evaluation within the Global Vehicle Simulation</td>
<td>2114850</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>2113807</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>2114838</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics I</td>
<td>2113806</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics II</td>
<td>2114825</td>
</tr>
<tr>
<td>Vehicle Mechatronics I</td>
<td>2113816</td>
</tr>
<tr>
<td>Automotive Vision</td>
<td>2138340</td>
</tr>
<tr>
<td>Industrial Management Case Study</td>
<td>3109033</td>
</tr>
<tr>
<td>Composites for Lightweight Design</td>
<td>2114052</td>
</tr>
<tr>
<td>FEM Workshop – constitutive laws</td>
<td>2183716</td>
</tr>
<tr>
<td>Fabrication Processes in Microsystem Technology</td>
<td>2143882</td>
</tr>
<tr>
<td>manufacturing technology</td>
<td>2149657</td>
</tr>
<tr>
<td>Finite Elements for Field- and Time Dependent Problems</td>
<td>19110</td>
</tr>
<tr>
<td>Finite Element Workshop</td>
<td>2182731</td>
</tr>
<tr>
<td>Finite Volume Methods for Fluid Flow</td>
<td>2154431</td>
</tr>
<tr>
<td>Fluid-Structure-Interaction</td>
<td>2154401</td>
</tr>
<tr>
<td>Fluid Technology</td>
<td>2114099</td>
</tr>
<tr>
<td>Fusion Technology A</td>
<td>2169483</td>
</tr>
<tr>
<td>Fusion Technology B</td>
<td>2170492</td>
</tr>
<tr>
<td>Building- and Environmental Aerodynamics</td>
<td>19228</td>
</tr>
<tr>
<td>Foundry Technology</td>
<td>2174575</td>
</tr>
<tr>
<td>Global Production and Logistics - Part 1: Global Production</td>
<td>2149610</td>
</tr>
<tr>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>2149600</td>
</tr>
<tr>
<td>Size effects in micro and nanostructures materials</td>
<td>2181744</td>
</tr>
<tr>
<td>Fundamentals of Energy Technology</td>
<td>2130927</td>
</tr>
<tr>
<td>Automotive Engineering I</td>
<td>2113805</td>
</tr>
<tr>
<td>Automotive Engineering II</td>
<td>2114835</td>
</tr>
<tr>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</td>
<td>2193010</td>
</tr>
<tr>
<td>Fundamentals of refrigeration</td>
<td>22012</td>
</tr>
<tr>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>2134138</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology I</td>
<td>2141861</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology II</td>
<td>2142874</td>
</tr>
<tr>
<td>Foundations of nonlinear continuum mechanics</td>
<td>2181720</td>
</tr>
<tr>
<td>Basics of Technical Logistics</td>
<td>2117095</td>
</tr>
<tr>
<td>Fundamentals of Combustion I</td>
<td>2165515</td>
</tr>
<tr>
<td>Fundamentals of combustion II</td>
<td>2166538</td>
</tr>
<tr>
<td>Basics of Ground Born Guided Systems</td>
<td>19066</td>
</tr>
<tr>
<td>Optical Flow Measurement: Fundamentals and Applications</td>
<td>2153410</td>
</tr>
<tr>
<td>Basics and Methods for Integration of Tires and Vehicles</td>
<td>2114843</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicles Bodies I</td>
<td>2113814</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicles Bodies II</td>
<td>2114840</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>2113812</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>2114844</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development I</td>
<td>2113810</td>
</tr>
<tr>
<td>Title</td>
<td>Module Code</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development II</td>
<td>2114842</td>
</tr>
<tr>
<td>High Performance Computing</td>
<td>2183721</td>
</tr>
<tr>
<td>Advanced Methods in Strength of Materials</td>
<td>2161252</td>
</tr>
<tr>
<td>- 23321</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Fluid Machinery I (Basics)</td>
<td>2157432</td>
</tr>
<tr>
<td>Hydraulic Fluid Machinery II</td>
<td>2158105</td>
</tr>
<tr>
<td>Hydrodynamic Stability: From Order to Chaos</td>
<td>2154437</td>
</tr>
<tr>
<td>Industrial aerodynamics</td>
<td>2153425</td>
</tr>
<tr>
<td>Industrial Automation Technology</td>
<td>-056</td>
</tr>
<tr>
<td>Introduction to Industrial Production Economics</td>
<td>2109042</td>
</tr>
<tr>
<td>Occupational Safety and Environmental Protection (in German)</td>
<td>2110037</td>
</tr>
<tr>
<td>Information Systems in Logistics and Supply Chain Management</td>
<td>2118094</td>
</tr>
<tr>
<td>Informationstechnik in der industriellen Automation</td>
<td>23144</td>
</tr>
<tr>
<td>Informationsverarbeitung in mechatronischen Systemen</td>
<td>2105022</td>
</tr>
<tr>
<td>Information Processing in Sensor Networks</td>
<td>24102</td>
</tr>
<tr>
<td>Innovative Nuclear Systems</td>
<td>2130973</td>
</tr>
<tr>
<td>Integrated measurement systems for fluid mechanics applications</td>
<td>2171486</td>
</tr>
<tr>
<td>Integrated Product Development</td>
<td>2145156</td>
</tr>
<tr>
<td>Integrated production planning</td>
<td>2150660</td>
</tr>
<tr>
<td>IT for facility logistics</td>
<td>2118083</td>
</tr>
<tr>
<td>Nuclear Energy</td>
<td>2130921</td>
</tr>
<tr>
<td>Nuclear Power Plant Technology</td>
<td>2170460</td>
</tr>
<tr>
<td>Nuclear Reactor Kinetics and Dynamics</td>
<td>2190510</td>
</tr>
<tr>
<td>Cognitive Automobiles - Laboratory</td>
<td>2138341</td>
</tr>
<tr>
<td>Cognitive Systems</td>
<td>24572</td>
</tr>
<tr>
<td>Coal fired power plants</td>
<td>2169461</td>
</tr>
<tr>
<td>Design with Plastics</td>
<td>2174571</td>
</tr>
<tr>
<td>Design Principles and Materials for High-Temperature Components</td>
<td>2185578</td>
</tr>
<tr>
<td>Lightweight Engineering Design</td>
<td>2146190</td>
</tr>
<tr>
<td>Vibration of continuous systems</td>
<td>2161214</td>
</tr>
<tr>
<td>Correlation Methods in Measurement and Control</td>
<td>2137304</td>
</tr>
<tr>
<td>Power and Heat economics</td>
<td>2169452</td>
</tr>
<tr>
<td>Motor Vehicle Laboratory</td>
<td>2115808</td>
</tr>
<tr>
<td>Cooling of thermally high loaded gas turbine components</td>
<td>2170463</td>
</tr>
<tr>
<td>??- 2106007</td>
<td></td>
</tr>
<tr>
<td>Micro manufacturing laboratory</td>
<td>2149670</td>
</tr>
<tr>
<td>Warehousing and distribution systems</td>
<td>2118097</td>
</tr>
<tr>
<td>Laser in automotive engineering</td>
<td>2182642</td>
</tr>
<tr>
<td>Leadership and Product Development</td>
<td>2145184</td>
</tr>
<tr>
<td>Laboratory Exercise in Energy Technology</td>
<td>2171487</td>
</tr>
<tr>
<td>Logistics - organisation, design and control of logistic systems</td>
<td>2118078</td>
</tr>
<tr>
<td>Automotive Logistics</td>
<td>2118085</td>
</tr>
<tr>
<td>Airport logistics</td>
<td>2117056</td>
</tr>
<tr>
<td>Localization of Mobile Agents</td>
<td>24613</td>
</tr>
<tr>
<td>Machine Vision</td>
<td>2137308</td>
</tr>
<tr>
<td>Magnetohydrodynamics</td>
<td>2153429</td>
</tr>
<tr>
<td>Magnet Technology of Fusion Reactors</td>
<td>2190496</td>
</tr>
<tr>
<td>Service Operations Management</td>
<td>2110031</td>
</tr>
<tr>
<td>Leadership and Conflict Management (in German)</td>
<td>2110017</td>
</tr>
<tr>
<td>Machine Dynamics</td>
<td>2161224</td>
</tr>
<tr>
<td>Machine Dynamics II</td>
<td>2162220</td>
</tr>
<tr>
<td>Material flow in logistic systems</td>
<td>2117051</td>
</tr>
<tr>
<td>Materials and processes for the lightweight production of car bodies</td>
<td>2149669</td>
</tr>
<tr>
<td>Mathematical Foundation for Computational Mechanics</td>
<td>2162240</td>
</tr>
<tr>
<td>Mathematical Methods in Dynamics</td>
<td>2161206</td>
</tr>
<tr>
<td>Mathematical Methods in Strength of Materials</td>
<td>2161254</td>
</tr>
<tr>
<td>Mathematical methods of vibration theory</td>
<td>2162241</td>
</tr>
<tr>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>2154432</td>
</tr>
<tr>
<td>Course Title</td>
<td>Module Code</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Mathematical Methods in Structural Mechanics</td>
<td>2162280</td>
</tr>
<tr>
<td>Mathematical models in Mechanics - F095</td>
<td></td>
</tr>
<tr>
<td>Mathematical models and methods in combustion theory- 2165525</td>
<td></td>
</tr>
<tr>
<td>Mechanics of laminated composites- 2161983</td>
<td></td>
</tr>
<tr>
<td>Mechanics and Strengths of Polymers- 2173580</td>
<td></td>
</tr>
<tr>
<td>Mechanics in Microtechnology- 2181710</td>
<td></td>
</tr>
<tr>
<td>Laboratory mechatronics- 2105014</td>
<td></td>
</tr>
<tr>
<td>Men-Machine-Systems in Automation Technology - 24648</td>
<td></td>
</tr>
<tr>
<td>Human Robot Cooperation- 24154</td>
<td></td>
</tr>
<tr>
<td>Measurement II- 2138326</td>
<td></td>
</tr>
<tr>
<td>Analysis tools for combustion diagnostics- 2134134</td>
<td></td>
</tr>
<tr>
<td>Methodic Development of Mechatronic systems- 2145180</td>
<td></td>
</tr>
<tr>
<td>Microoptics and Lithography- 2142884</td>
<td></td>
</tr>
<tr>
<td>Microactuators- 2142881</td>
<td></td>
</tr>
<tr>
<td>Modelling of Microstructures- 2183702</td>
<td></td>
</tr>
<tr>
<td>Mobile Machines- 2113073</td>
<td></td>
</tr>
<tr>
<td>Mobility Concepts of Rail Transportation in 2030- 2115915</td>
<td></td>
</tr>
<tr>
<td>Modeling of Thermodynamical Processes- 2167523</td>
<td></td>
</tr>
<tr>
<td>Modelling and Simulation- 2183703</td>
<td></td>
</tr>
<tr>
<td>Modern Concepts of Control- 2105024</td>
<td></td>
</tr>
<tr>
<td>Engine laboratory (block course)- 2134001</td>
<td></td>
</tr>
<tr>
<td>Engine measurement techniques- 2134137</td>
<td></td>
</tr>
<tr>
<td>Nanoanalytics- 2125762</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams- 2143876</td>
<td></td>
</tr>
<tr>
<td>Nanotribology and -Mechanics- 2181712</td>
<td></td>
</tr>
<tr>
<td>Novel actuators and sensors- 2141865</td>
<td></td>
</tr>
<tr>
<td>Neutron physics of fusion reactors- 2169471</td>
<td></td>
</tr>
<tr>
<td>Neutron Physics for Fission Reactors- 2189510</td>
<td></td>
</tr>
<tr>
<td>Nonlinear vibrations- 2162247</td>
<td></td>
</tr>
<tr>
<td>Nuclear Thermal-Hydraulics- 2129010</td>
<td></td>
</tr>
<tr>
<td>Engine laboratory (block course)- 2134001</td>
<td></td>
</tr>
<tr>
<td>Nanoanalytics- 2125762</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams- 2143876</td>
<td></td>
</tr>
<tr>
<td>Nanotribology and -Mechanics- 2181712</td>
<td></td>
</tr>
<tr>
<td>Novel actuators and sensors- 2141865</td>
<td></td>
</tr>
<tr>
<td>Neutron physics of fusion reactors- 2169471</td>
<td></td>
</tr>
<tr>
<td>Neutron Physics for Fission Reactors- 2189510</td>
<td></td>
</tr>
<tr>
<td>Nonlinear vibrations- 2162247</td>
<td></td>
</tr>
<tr>
<td>Nuclear Thermal-Hydraulics- 2129010</td>
<td></td>
</tr>
<tr>
<td>Engine laboratory (block course)- 2134001</td>
<td></td>
</tr>
<tr>
<td>Nanoanalytics- 2125762</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams- 2143876</td>
<td></td>
</tr>
<tr>
<td>Nanotribology and -Mechanics- 2181712</td>
<td></td>
</tr>
<tr>
<td>Novel actuators and sensors- 2141865</td>
<td></td>
</tr>
<tr>
<td>Neutron physics of fusion reactors- 2169471</td>
<td></td>
</tr>
<tr>
<td>Neutron Physics for Fission Reactors- 2189510</td>
<td></td>
</tr>
<tr>
<td>Nonlinear vibrations- 2162247</td>
<td></td>
</tr>
<tr>
<td>Nuclear Thermal-Hydraulics- 2129010</td>
<td></td>
</tr>
<tr>
<td>Engine laboratory (block course)- 2134001</td>
<td></td>
</tr>
<tr>
<td>Nanoanalytics- 2125762</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams- 2143876</td>
<td></td>
</tr>
<tr>
<td>Nanotribology and -Mechanics- 2181712</td>
<td></td>
</tr>
<tr>
<td>Novel actuators and sensors- 2141865</td>
<td></td>
</tr>
<tr>
<td>Neutron physics of fusion reactors- 2169471</td>
<td></td>
</tr>
<tr>
<td>Neutron Physics for Fission Reactors- 2189510</td>
<td></td>
</tr>
<tr>
<td>Nonlinear vibrations- 2162247</td>
<td></td>
</tr>
<tr>
<td>Nuclear Thermal-Hydraulics- 2129010</td>
<td></td>
</tr>
<tr>
<td>Engine laboratory (block course)- 2134001</td>
<td></td>
</tr>
<tr>
<td>Nanoanalytics- 2125762</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams- 2143876</td>
<td></td>
</tr>
<tr>
<td>Nanotribology and -Mechanics- 2181712</td>
<td></td>
</tr>
<tr>
<td>Novel actuators and sensors- 2141865</td>
<td></td>
</tr>
<tr>
<td>Neutron physics of fusion reactors- 2169471</td>
<td></td>
</tr>
<tr>
<td>Neutron Physics for Fission Reactors- 2189510</td>
<td></td>
</tr>
<tr>
<td>Nonlinear vibrations- 2162247</td>
<td></td>
</tr>
<tr>
<td>Nuclear Thermal-Hydraulics- 2129010</td>
<td></td>
</tr>
<tr>
<td>Engine laboratory (block course)- 2134001</td>
<td></td>
</tr>
<tr>
<td>Nanoanalytics- 2125762</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams- 2143876</td>
<td></td>
</tr>
<tr>
<td>Nanotribology and -Mechanics- 2181712</td>
<td></td>
</tr>
<tr>
<td>Novel actuators and sensors- 2141865</td>
<td></td>
</tr>
<tr>
<td>Neutron physics of fusion reactors- 2169471</td>
<td></td>
</tr>
<tr>
<td>Neutron Physics for Fission Reactors- 2189510</td>
<td></td>
</tr>
<tr>
<td>Nonlinear vibrations- 2162247</td>
<td></td>
</tr>
<tr>
<td>Nuclear Thermal-Hydraulics- 2129010</td>
<td></td>
</tr>
<tr>
<td>Engine laboratory (block course)- 2134001</td>
<td></td>
</tr>
<tr>
<td>Nanoanalytics- 2125762</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams- 2143876</td>
<td></td>
</tr>
<tr>
<td>Nanotribology and -Mechanics- 2181712</td>
<td></td>
</tr>
<tr>
<td>Novel actuators and sensors- 2141865</td>
<td></td>
</tr>
<tr>
<td>Neutron physics of fusion reactors- 2169471</td>
<td></td>
</tr>
<tr>
<td>Neutron Physics for Fission Reactors- 2189510</td>
<td></td>
</tr>
<tr>
<td>Nonlinear vibrations- 2162247</td>
<td></td>
</tr>
<tr>
<td>Nuclear Thermal-Hydraulics- 2129010</td>
<td></td>
</tr>
<tr>
<td>Engine laboratory (block course)- 2134001</td>
<td></td>
</tr>
<tr>
<td>Nanoanalytics- 2125762</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams- 2143876</td>
<td></td>
</tr>
<tr>
<td>Nanotribology and -Mechanics- 2181712</td>
<td></td>
</tr>
<tr>
<td>Novel actuators and sensors- 2141865</td>
<td></td>
</tr>
<tr>
<td>Module Name</td>
<td>Module Code</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Electrical Powertrains in Practice</td>
<td>23311</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>2121350</td>
</tr>
<tr>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>2123364</td>
</tr>
<tr>
<td>Project Work in Product Development</td>
<td>2145300</td>
</tr>
<tr>
<td>Product Ergonomics (in German)</td>
<td>2109025</td>
</tr>
<tr>
<td>Industrial Engineering I (in German)</td>
<td>2109028</td>
</tr>
<tr>
<td>Industrial Engineering II</td>
<td>2110028</td>
</tr>
<tr>
<td>Production Planning and Control (Planning Game of a Bicycle Factory; in German)</td>
<td>2110032</td>
</tr>
<tr>
<td>Production Systems and Production Technology in Major Assembly Production</td>
<td>2150690</td>
</tr>
<tr>
<td>Production Techniques Laboratory</td>
<td>2110678</td>
</tr>
<tr>
<td>Controlling of Production Economics (in German)</td>
<td>2110029</td>
</tr>
<tr>
<td>Project Workshop: Automotive Engineering</td>
<td>2115817</td>
</tr>
<tr>
<td>Development of Mobile Hydraulic Systems</td>
<td>2113071</td>
</tr>
<tr>
<td>Project Management in Rail Industry</td>
<td>2115995</td>
</tr>
<tr>
<td>Project management in Global Product Engineering Structures</td>
<td>2145182</td>
</tr>
<tr>
<td>Process Design and Industrial Engineering</td>
<td>2110036</td>
</tr>
<tr>
<td>Process simulation in forming operations</td>
<td>2161501</td>
</tr>
<tr>
<td>Process simulation in cutting</td>
<td>2149668</td>
</tr>
<tr>
<td>Advanced powder metals</td>
<td>2126749</td>
</tr>
<tr>
<td>Quality Management</td>
<td>2149967</td>
</tr>
<tr>
<td>Quantitative Methods for Supply Chain Risk Management</td>
<td>2118090</td>
</tr>
<tr>
<td>Scanning probe microscopy</td>
<td>2142860</td>
</tr>
<tr>
<td>Reactor Design and Safety Evaluation using Modern Analysis Measures</td>
<td>2189410</td>
</tr>
<tr>
<td>Reactor Safety: Safety Assessment of Nuclear Power Plants</td>
<td>2190464</td>
</tr>
<tr>
<td>Computational Dynamics</td>
<td>2162246</td>
</tr>
<tr>
<td>Computational Vehicle Dynamics</td>
<td>2162256</td>
</tr>
<tr>
<td>Computerized Multibody Dynamics</td>
<td>2162216</td>
</tr>
<tr>
<td>Computer Integrated Planning of New Products</td>
<td>2122387</td>
</tr>
<tr>
<td>Computational Mechanics I</td>
<td>2161250</td>
</tr>
<tr>
<td>Computational Mechanics II</td>
<td>2162296</td>
</tr>
<tr>
<td>Reduction methods for the modeling and the simulation of combustion processes</td>
<td>2166543</td>
</tr>
<tr>
<td>Replication Technologies in Microsystem Technology</td>
<td>2143893</td>
</tr>
<tr>
<td>Robotic I</td>
<td>24152</td>
</tr>
<tr>
<td>??- 24712</td>
<td>496</td>
</tr>
<tr>
<td>??- 24635</td>
<td>497</td>
</tr>
<tr>
<td>??- 24681</td>
<td>498</td>
</tr>
<tr>
<td>Decommissioning of Nuclear Facilities I</td>
<td>19435</td>
</tr>
<tr>
<td>Failure Analysis</td>
<td>2173562</td>
</tr>
<tr>
<td>Rail Vehicle Technology</td>
<td>2115996</td>
</tr>
<tr>
<td>Fast Reactor Physics</td>
<td>2189520</td>
</tr>
<tr>
<td>Welding Technology I</td>
<td>2173565</td>
</tr>
<tr>
<td>Welding Technology II</td>
<td>2174570</td>
</tr>
<tr>
<td>Fatigue of Metallic Materials</td>
<td>2173585</td>
</tr>
<tr>
<td>Schwingungstechnisches Praktikum</td>
<td>2161241</td>
</tr>
<tr>
<td>Failure Analysis Seminar</td>
<td>2173577</td>
</tr>
<tr>
<td>Safety engineering</td>
<td>2117061</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td>23109</td>
</tr>
<tr>
<td>Simulation of Coupled Systems</td>
<td>2114095</td>
</tr>
<tr>
<td>Simulation in product development process</td>
<td>2185264</td>
</tr>
<tr>
<td>Simulation of turbulent flow and heat transfer using statistical models</td>
<td>2169988</td>
</tr>
<tr>
<td>Simulation of production systems and processes</td>
<td>2149605</td>
</tr>
<tr>
<td>Simulation of spray and mixture formation processes in combustion engines</td>
<td>2133114</td>
</tr>
<tr>
<td>Scaling in fluid dynamics</td>
<td>2154044</td>
</tr>
<tr>
<td>Mechatronic Software tools</td>
<td>2161217</td>
</tr>
<tr>
<td>- 2163113</td>
<td>517</td>
</tr>
<tr>
<td>Control engineering</td>
<td>2150683</td>
</tr>
<tr>
<td>Radiation protection I</td>
<td>23271</td>
</tr>
<tr>
<td>Strategic Product Planning</td>
<td>2146193</td>
</tr>
<tr>
<td>Course Title</td>
<td>Module Code</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Flows in rotating systems</td>
<td>2154407</td>
</tr>
<tr>
<td>Flows with chemical reactions</td>
<td>2153406</td>
</tr>
<tr>
<td>Structural and Functional Ceramics</td>
<td>2126775</td>
</tr>
<tr>
<td>Structural and functional materials of fusion and nuclear reactors</td>
<td>2190499</td>
</tr>
<tr>
<td>Structural and phase analysis</td>
<td>2125763</td>
</tr>
<tr>
<td>Superhard Thin Film Materials</td>
<td>2177618</td>
</tr>
<tr>
<td>Supply chain management</td>
<td>2117062</td>
</tr>
<tr>
<td>Sustainable Product Engineering</td>
<td>2146192</td>
</tr>
<tr>
<td>Theoretical description of mechatronic systems</td>
<td>2161219</td>
</tr>
<tr>
<td>Technical Acoustics</td>
<td>2158107</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>2106002</td>
</tr>
<tr>
<td>Vibration Theory</td>
<td>2161212</td>
</tr>
<tr>
<td>Technical Design in Product Development</td>
<td>2146179</td>
</tr>
<tr>
<td>Technology of steel components</td>
<td>2174579</td>
</tr>
<tr>
<td>Technologies for energy efficient buildings</td>
<td>2158106</td>
</tr>
<tr>
<td>Thermal Solar Energy</td>
<td>2169472</td>
</tr>
<tr>
<td>Thermal Turbomachines I</td>
<td>2169453</td>
</tr>
<tr>
<td>Thermal Turbomachines II</td>
<td>2170476</td>
</tr>
<tr>
<td>Thermodynamics of dispersed systems</td>
<td>22010</td>
</tr>
<tr>
<td>- 2193002</td>
<td></td>
</tr>
<tr>
<td>Seminar: Introduction to numerical fluid mechanics</td>
<td>2153409</td>
</tr>
<tr>
<td>Tractors</td>
<td>2113080</td>
</tr>
<tr>
<td>Tribology A</td>
<td>2181113</td>
</tr>
<tr>
<td>Tribology B</td>
<td>2182139</td>
</tr>
<tr>
<td>Turbine and compressor Design</td>
<td>2169462</td>
</tr>
<tr>
<td>Turbo Jet Engines</td>
<td>2170478</td>
</tr>
<tr>
<td>manufacturing technology exercises</td>
<td>2149658</td>
</tr>
<tr>
<td>Übungen zu Integrierte Produktionsplanung</td>
<td>2150661</td>
</tr>
<tr>
<td>Mathematical methods of vibration theory (Tutorial)</td>
<td>2162242</td>
</tr>
<tr>
<td>Tutorial in Mathematical Methods of Fluid Mechanics</td>
<td>2154433</td>
</tr>
<tr>
<td>Introduction into the nonlinear vibrations (Tutorial)</td>
<td>2162248</td>
</tr>
<tr>
<td>Exercises Product Lifecycle Management</td>
<td>2121351</td>
</tr>
<tr>
<td>Exercises Virtual Engineering I</td>
<td>2121353</td>
</tr>
<tr>
<td>Exercises Virtual Engineering II</td>
<td>2122379</td>
</tr>
<tr>
<td>metal forming</td>
<td>2150681</td>
</tr>
<tr>
<td>Environmentally compatible energy generation / wind turbines</td>
<td>23381</td>
</tr>
<tr>
<td>Vacuum Technology and Fuel Cycle of Fusion Reactors</td>
<td>22035</td>
</tr>
<tr>
<td>Variational methods and applications to PDEs</td>
<td>1054</td>
</tr>
<tr>
<td>Combustion diagnostics</td>
<td>2167048</td>
</tr>
<tr>
<td>Combustion Engines A with tutorial</td>
<td>2133101</td>
</tr>
<tr>
<td>Combustion Engines B with Tutorial</td>
<td>2134135</td>
</tr>
<tr>
<td>Behaviour Generation for Vehicles</td>
<td>2138336</td>
</tr>
<tr>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>2181715</td>
</tr>
<tr>
<td>Failure of structural materials: deformation and fracture</td>
<td>2181711</td>
</tr>
<tr>
<td>Gear Cutting Technology</td>
<td>2149655</td>
</tr>
<tr>
<td>Virtual Engineering for Mechatronic Products</td>
<td>2121370</td>
</tr>
<tr>
<td>Virtual Engineering I</td>
<td>2121352</td>
</tr>
<tr>
<td>Virtual Engineering II</td>
<td>2122378</td>
</tr>
<tr>
<td>Virtual Reality Laboratory</td>
<td>2123375</td>
</tr>
<tr>
<td>Heatpumps</td>
<td>2166534</td>
</tr>
<tr>
<td>Hydrogen Technologies</td>
<td>2170495</td>
</tr>
<tr>
<td>Material Analysis</td>
<td>2174586</td>
</tr>
<tr>
<td>Materials and mechanical loads in the power train</td>
<td>2173570</td>
</tr>
<tr>
<td>Materials for Lightweight Construction</td>
<td>2174574</td>
</tr>
<tr>
<td>Material Science III</td>
<td>2173553</td>
</tr>
<tr>
<td>Materials modelling: dislocation based plasticy</td>
<td>2182740</td>
</tr>
<tr>
<td>Machine Tools and Industrial Handling</td>
<td>2149902</td>
</tr>
<tr>
<td>Scientific computing for Engineers</td>
<td>2181738</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Workshop Product Development- 2145157</th>
<th>580</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Phase Flow and Heat Transfer- 2169470</td>
<td>581</td>
</tr>
</tbody>
</table>

7 Appendix: Examination regulation 582

Index 597
Inhaltsverzeichnis

0 Abkürzungsverzeichnis ... 3
1 Studienpläne, Module und Prüfungen .. 4
1.1 Prüfungsmodalitäten .. 4
1.2 Module des Bachelorstudiums „B.Sc.“ .. 4
1.3 Studienplan des 1. Abschnitts des Bachelorstudiums „B.Sc.“ .. 6
1.4 Studienplan des 2. Abschnitts des Bachelorstudiums „B.Sc.“ .. 6
1.5 Masterstudium mit Vertiefungsrichtungen ... 7
2 Zugelassene Wahl- und Wahlpflichtfächer ... 8
2.1 Wahlpflichtfächer im Bachelor- und Masterstudiengang ... 8
2.2 Mathematische Methoden im Masterstudiengang .. 9
2.3 Wahlfach aus dem Bereich Naturwissenschaften/Informatik/Elektrotechnik im Masterstudiengang .. 10
2.4 Wahlfach aus dem Bereich Wirtschaft/Recht im Masterstudiengang ... 11
2.5 Wahlfach im Masterstudiengang ... 11
3 Fachpraktikum im Masterstudiengang ... 11
3.1 Fachpraktikum .. 11
4 Berufspraktikum .. 12
4.1 Inhalt und Durchführung des Berufspraktikums ... 12
4.2 Anerkennung des Berufspraktikums ... 13
4.3 Sonderbestimmungen zur Anerkennung .. 13
5 Bachelor- und Masterarbeit .. 13
6 Schwerpunkte im Bachelor- und im Masterstudiengang... 14
6.1 Zuordnung der Schwerpunkte zum Bachelor- und den Vertiefungsrichtungen des Masterstudiengangs .. 14
6.2 Wahlmöglichkeiten für den Schwerpunkt im „Bachelor of Science“ .. 16
6.3 Wahlmöglichkeiten in den einzelnen Schwerpunkten im „Master of Science Studiengang“ 16
6.4 Veranstaltungen der Schwerpunkte zum Bachelor- und den Vertiefungsrichtungen des Masterstudiengangs .. 17
Änderungshistorie (ab 29.10.2008)

29.10.2008 Änderungen im Abschnitt 1.2 Module des Bachelorstudiums „B.Sc.“:
- Prüfungen im Modul 1 - Höhere Mathematik: Getrennte Prüfungen zu HM I und HM II
- Prüfungen im Modul 3 - Technische Mechanik: Getrennte Prüfungen zu TM I und TM II
- Modul "Schwerpunkt": Umfang des Kernbereichs: BLP, Umfang des Ergänzungsbereichs: 4 LP

- Informatik: V, Ü und P finden im ersten Semester statt
- Änderungen im Abschnitt 1.5 Masterstudium mit Vertiefungsrichtungen:
 - „Es stehen folgende Vertiefungsmöglichkeiten zur Auswahl“
 - Änderungen im Abschnitt 2.1 Wahlpflichtfächer im Bachelor- und Masterstudiengang:
 - Aufnahme von „Informationssysteme“ als Wahlpflichtfach für BSc, MSc, FzgT, M+M, PEK, PT
- Änderungen im Abschnitt 2.5:
 - Umbenennung des „Allgemeinen Wahlfachs“ in „Wahlfach“
- Änderungen im Abschnitt 3.1 Fachpraktikum:
 - Tabelle wurde durch Fließtext ersetzt
- Änderungen im Abschnitt 4 Berufspraktikum:
 - Die Abschnitte der Fachpraktika sollen in einem geschlossenen Zeitraum durchgeführt werden
- Änderungen im Abschnitt 4.3 Sonderbestimmungen zur Anerkennung:
 - Auf Erwerb gerichtete, berufspraktische Tätigkeiten werden nicht mehr erwähnt
- Änderungen im Abschnitt 6.1 Zuordnung der Schwerpunkte zum Bachelor- und den Vertiefungsrichtungen des Masterstudiums:
 - „Informationsmanagement“ als Schwerpunkt für BSc und FzgT zugelassen
 - „Lifecycle Engineering“ als Schwerpunkt für BSc zugelassen
- Änderungen im Abschnitt 6.3 Wahlpflichtfächer im Master of Science:
 - Aktualisierung des gesamten Schwerpunkt- Angebotes

03.02.2010 Änderungen von Veranstaltungen in den Abschnitten 2.1 bis 2.4
- Änderung im Punkt 6.1:
- Änderung im Punkt 6.2:
 - 2. Absatz ergänzt um den Satz: „Stehen mehrere Wahlpflichtfächer (WP) als Auswahlmöglichkeit zur Verfügung, muss nur ein Wahlpflichtfach belegt werden.“
- Änderungen im Punkt 6.4:
 - Schwerpunktstabelle ergänzt um die Spalten „Veranstaltungsnummer (VNr)“ und „Leistungspunkte (LP)“. Aktuell vorhandene Daten wurden eingefügt.
 - Einfügungen und Streichungen von Veranstaltungen in den Schwerpunkten
 - Schwerpunkt 50 „Bahnsystemtechnik“ eingefügt

07.07.2010 Änderungen im Abschnitt 1.1:
- Ergänzung der Prüfungsmodalitäten
- Änderungen im Abschnitt 1.2:
 - Umbenennung des „Workshops Teamkonstruktion“ in „Konstruieren im Team“;
 - Bemerkung zu Erfolgskontrollen in Zusatzmodulen im Bachelorstudium
- Änderungen im Abschnitt 1.4:
 - Die Bachelorarbeit ist im Anschluss an den ersten Abschnitt zu absolvieren.
- Änderungen im Abschnitt 1.5:
 - Bemerkung zu Erfolgskontrollen in Zusatzmodulen im Masterstudium
- Änderungen im Abschnitt 2.1:
 - Für manche Schwerpunkte kann die Wahl eines Wahlpflichtfaches empfohlen sein.
 - Aktualisierung der wählbaren Wahlpflichtfächer
- Änderungen im Abschnitt 2.3 und 2.4:
 - Aktualisierung der wählbaren Wahlfächer
- Änderungen im Abschnitt 4.1:
 - Grundpraktikum auch an Universitäten und vergleichbaren Einrichtungen möglich
 - Änderungen im Abschnitt 6.1 und 6.2:
 - Zusätzliche Erläuterung zur vertiefungsrichtungsspezifischen Schwerpunktwahl;
 - Maximaler Umfang des Schwerpunkts im Bachelorstudium: 16 statt 14 LP
- Änderungen im Abschnitt 6.3 und 6.4:
 - Überarbeitung der Formulierungen und Anpassung von SWS an LP
 - Aktualisierung der wählbaren Wahlpflichtfächer
- Änderungen im Abschnitt 6.4:
 - Aktualisierung des Schwerpunktangebotes

29.06.2011 Änderungen im Abschnitt 1.4.1: Ergänzung zu Durchführung
- Änderungen im Abschnitt 1.5.1: Anpassung der Module
- Änderungen im Abschnitt 2.1.1: Aktualisierung der Wahlpflichtfächer
- Änderungen im Abschnitt 2.3.1: Aktualisierung der wählbaren Wahlpflichtfächer
- Änderungen im Abschnitt 4.4: Inhaltliche Anpassungen
- Änderungen im Abschnitt 4.1.1: Inhaltliche Anpassung
- Änderungen im Abschnitt 4.2.2: Inhaltliche Anpassung
- Änderungen im Abschnitt 6.4: Aktualisierung des Schwerpunktangebotes
0 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Vertiefungsrichtungen</th>
<th>MSc</th>
<th>Master Maschinenbau (ohne Vertiefung)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E+U</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td></td>
<td>Fzt</td>
<td>Fahrzeugtechnik</td>
</tr>
<tr>
<td></td>
<td>M+M</td>
<td>Mechatronik und Mikrosystemtechnik</td>
</tr>
<tr>
<td></td>
<td>PEK</td>
<td>Produktentwicklung und Konstruktion</td>
</tr>
<tr>
<td></td>
<td>PT</td>
<td>Produktionstechnik</td>
</tr>
<tr>
<td></td>
<td>ThM</td>
<td>Theoretischer Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>W+S</td>
<td>Werkstoffe und Strukturen für Hochleistungssysteme</td>
</tr>
</tbody>
</table>

Fakultäten:	mach	Fakultät für Maschinenbau
	inf	Fakultät für Informatik
	eit	Fakultät für Elektrotechnik und Informationstechnik
	ciw	Fakultät für Chemieingenieurwesen und Verfahrenstechnik
	phys	Fakultät für Physik
	wwi	Fakultät für Wirtschaftsingenieurwesen

Semester:	WS	Wintersemester
	SS	Sommersemester
	wW	wahlweise (Angebot im Sommer- und Wintersemester)

Schwerpunkte:	Kat	Kategorie der Fächer im Schwerpunkt
	K, KP	Kernmodulfach, ggf. Pflicht im Schwerpunkt
	E	Ergänzungsfach im Schwerpunkt
	EM	Ergänzungsfach ist nur im Masterstudiengang wählbar

Leistungen:	V	Vorlesung
	Ü	Übung
	P	Praktikum
	LP	Leistungspunkte
	mPr	mündliche Prüfung
	sPr	schriftliche Prüfung
	Gew	Gewichtung einer Prüfungsleistung im Modul
		bzw. in der Gesamtnote

Sonstiges:	B.Sc.	Studiengang Bachelor of Science
	M.Sc.	Studiengang Master of Science
	SPO	Studien- und Prüfungsordnung
	SWS	Semesterwochenstunden
	WPF	Wahlpflichtfach
	w	wählbar
	p	verpflichtend
1 Studienpläne, Module und Prüfungen

Die Angabe der Leistungspunkte (LP) erfolgt gemäß dem „European Credit Transfer and Accumulation System“ (ECTS) und basiert auf dem von den Studierenden zu absolvierenden Arbeitspensum.

1.1 Prüfungsmodalitäten

Für die Erfolgskontrollen in den Schwerpunkt-Modulen gelten folgende Regeln:

1.2 Module des Bachelorstudiums „B.Sc.“

<table>
<thead>
<tr>
<th>Module</th>
<th>Veranstaltung</th>
<th>Koordinator</th>
<th>Studienleistung</th>
<th>LP</th>
<th>Erfolgskontrolle</th>
<th>Pr (h)</th>
<th>Gew</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Höhere Mathematik</td>
<td>Höhere Mathematik I</td>
<td>Kirsch</td>
<td>ÜSchein</td>
<td>7</td>
<td>sPr</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Höhere Mathematik II</td>
<td></td>
<td>ÜSchein</td>
<td>7</td>
<td>sPr</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Höhere Mathematik III</td>
<td></td>
<td>ÜSchein</td>
<td>7</td>
<td>sPr</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>2 Naturwissenschaftliche Grundlagen</td>
<td>Grundlagen der Chemie</td>
<td>Deutschmann</td>
<td>ÜSchein</td>
<td>3</td>
<td>sPr</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Wellenphänomene in der klassischen Physik</td>
<td>Weiss</td>
<td>ÜSchein</td>
<td>4</td>
<td>sPr</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3 Technische Mechanik</td>
<td>Technische Mechanik I</td>
<td>Böhlke</td>
<td>ÜSchein</td>
<td>6</td>
<td>sPr</td>
<td>1,5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik II</td>
<td>Böhlke</td>
<td>ÜSchein</td>
<td>5</td>
<td>sPr</td>
<td>1,5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik III</td>
<td>Seemann</td>
<td>ÜSchein</td>
<td>5</td>
<td>sPr</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik IV</td>
<td>Seemann</td>
<td>ÜSchein</td>
<td>5</td>
<td>sPr</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4 Werkstoffkunde</td>
<td>Werkstoffkunde I</td>
<td>Wanner</td>
<td>PSchein</td>
<td>3</td>
<td>mPr</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Werkstoffkunde II</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Werkstoffkunde-Praktikum</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studienplan der Fakultät für Maschinenbau für den Bachelor- und Masterstudiengang Maschinenbau (Beschlossen auf der Fakultätsratssitzung am 29. Juni 2011, redaktionell überarbeitet am 04.07.2011) Seite 4 von 18
<table>
<thead>
<tr>
<th>Module</th>
<th>Veranstaltung</th>
<th>Koordinator</th>
<th>Studienleistung</th>
<th>LP</th>
<th>Erfolgskontrolle</th>
<th>Pr (h)</th>
<th>Gew</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Technische Thermodynamik</td>
<td>Maas</td>
<td>ÜSchein</td>
<td>6,5</td>
<td>sPr</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>Maas</td>
<td>ÜSchein</td>
<td>6,5</td>
<td>sPr</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Maschinenkonstruktionslehre</td>
<td>Albers</td>
<td>ÜSchein</td>
<td>4</td>
<td>sPr</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Maschinenkonstruktionslehre I mit CAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maschinenkonstruktionslehre II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maschinenkonstruktionslehre III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MKL – Konstruieren im Team (mkl III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maschinenkonstruktionslehre IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MKL – Konstruieren im Team (mkl IV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Schlüsselqualifikationen</td>
<td>Wanner</td>
<td>Schein</td>
<td>4</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MKL III – Konstruieren im Team</td>
<td>Albers</td>
<td>Schein</td>
<td>1</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MKL IV – Konstruieren im Team</td>
<td>Albers</td>
<td>Schein</td>
<td>1</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Betriebliche Produktionswirtschaft</td>
<td>Furmans</td>
<td>sPr</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Informatik</td>
<td>Ovtcharchova</td>
<td>PSchein</td>
<td>8</td>
<td>sPr</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Elektrotechnik</td>
<td></td>
<td></td>
<td>8</td>
<td>sPr</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>Mess- und Regelungstechnik</td>
<td>Stiller</td>
<td></td>
<td>7</td>
<td>sPr</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>Strömungslehre</td>
<td>Oertel</td>
<td></td>
<td>7</td>
<td>sPr</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>Maschinen und Prozesse</td>
<td>Spicher</td>
<td>PSchein</td>
<td>7</td>
<td>sPr</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>Wahlpflichtfach</td>
<td>siehe Kapitel 2.1</td>
<td></td>
<td>5</td>
<td>sPr/mPr</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Schwerpunkt</td>
<td>siehe Kapitel 6</td>
<td>SP-Verantwortlicher</td>
<td>8</td>
<td>mPr</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schwerpunkt-Kern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schwerpunkt-Ergänzung</td>
<td>SP-Verantwortlicher</td>
<td>4</td>
<td>mPr</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrollen in Zusatzmodulen können schriftliche Prüfungen, mündliche Prüfungen oder Erfolgskontrollen anderer Art sein.

Zusätzlich ist ein Berufs-Fachpraktikum im Umfang von 6 Wochen zu absolvieren (8 LP).
1.3 Studienplan des 1. Abschnitts des Bachelorstudiums „B.Sc.“

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhere Mathematik I-III</td>
<td>4 2</td>
<td>4 2</td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Chemie</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellenphänomene in der Physik</td>
<td></td>
<td>2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Mechanik I-IV</td>
<td>3 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
<tr>
<td>Werkstoffkunde I, II</td>
<td>4 1</td>
<td>3 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werkstoffkunde-Praktikum</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Technische Thermodynamik und Wärmeübertragung I, II</td>
<td></td>
<td>3 2</td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>Maschinenkonstruktionslehre I-IV</td>
<td>2 1</td>
<td>2 2</td>
<td>2 2</td>
<td>2 1</td>
</tr>
<tr>
<td>MKL – Konstruieren im Team</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Betriebliche Produktionswirtschaft</td>
<td></td>
<td></td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Informatik im Maschinenbau</td>
<td>2 2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik</td>
<td></td>
<td></td>
<td>4 2</td>
<td></td>
</tr>
<tr>
<td>Arbeitstechniken Maschinenbau</td>
<td>1 1</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Berufliches Grundpraktikum (6 Wochen vor Studienbeginn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Mess- und Regelungstechnik</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Strömungslehre</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Maschinen und Prozesse</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>Wahlpflichtfach (2+1 bzw. 3 SWS)</td>
<td>2 1</td>
<td>(2)</td>
</tr>
</tbody>
</table>
| Schwerpunkt (6 SWS variabel) | 3 | () | () |()
| Berufs-Fachpraktikum (6 Wochen) | | | | |

1.4 Studienplan des 2. Abschnitts des Bachelorstudiums „B.Sc.“

1 Das Werkstoffkunde-Praktikum findet in der vorlesungsfreien Zeit zwischen SS und WS statt und beansprucht eine Woche.
1.5 Masterstudium mit Vertiefungsrichtungen

Es stehen folgende Vertiefungsrichtungen zur Auswahl:

<table>
<thead>
<tr>
<th>Vertiefungsrichtung</th>
<th>Abk.</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspezifischer Master Maschinenbau</td>
<td>MSc</td>
<td>Furmans</td>
</tr>
<tr>
<td>Energie- und Umwelttechnik</td>
<td>E+U</td>
<td>Maas</td>
</tr>
<tr>
<td>Fahrzeugtechnik</td>
<td>FzgT</td>
<td>Gautezin</td>
</tr>
<tr>
<td>Mechatronik und Mikrosystemtechnik</td>
<td>M+M</td>
<td>Bretthauer</td>
</tr>
<tr>
<td>Produktentwicklung und Konstruktion</td>
<td>PEK</td>
<td>Albers</td>
</tr>
<tr>
<td>Produktionstechnik</td>
<td>PT</td>
<td>Lanza</td>
</tr>
<tr>
<td>Theoretischer Maschinenbau</td>
<td>ThM</td>
<td>Böhlke</td>
</tr>
<tr>
<td>Werkstoffe und Strukturen für Hochleistungssysteme</td>
<td>W+S</td>
<td>Wanner</td>
</tr>
</tbody>
</table>

Folgende Module sind im Masterstudiengang zu belegen:

<table>
<thead>
<tr>
<th>Module</th>
<th>Veranstaltung</th>
<th>LP</th>
<th>Erfolgskontrolle</th>
<th>Pr. (h)</th>
<th>Gew</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wahlpflichtfach 1</td>
<td>siehe Kapitel 2.1</td>
<td>5</td>
<td>sPr/mPr</td>
<td>3/5</td>
<td>5</td>
</tr>
<tr>
<td>2. Wahlpflichtfach 2</td>
<td>siehe Kapitel 2.1</td>
<td>5</td>
<td>sPr/mPr</td>
<td>3/5</td>
<td>5</td>
</tr>
<tr>
<td>3. Wahlpflichtfach 3</td>
<td>siehe Kapitel 2.1</td>
<td>5</td>
<td>sPr/mPr</td>
<td>3/5</td>
<td>5</td>
</tr>
<tr>
<td>4. Wahlfach</td>
<td>siehe Kapitel 2.5</td>
<td>4</td>
<td>mPr</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5. Modellbildung und Simulation</td>
<td>Modellbildung und Simulation</td>
<td>7</td>
<td>sPr</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>6. Produktentstehung</td>
<td>Produktentstehung – Entwicklungsmethodik</td>
<td>6</td>
<td>sPr</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Produktentstehung – Fertigungs- und Werkstofftechnik</td>
<td>9</td>
<td>sPr</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7. Fachpraktikum</td>
<td>Siehe Kapitel 3</td>
<td>3</td>
<td>Schein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Mathematische Methoden</td>
<td>siehe Kapitel 2.2</td>
<td>6</td>
<td>sPr</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>9. Schwerpunkt 1 – Kern und Ergänzung</td>
<td>siehe Kapitel 6</td>
<td>16</td>
<td>mPr</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>10. Schwerpunkt 2 – Kern und Ergänzung</td>
<td>siehe Kapitel 6</td>
<td>16</td>
<td>mPr</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>11. Wahlfach Nat/inf/etit</td>
<td>siehe Kapitel 2.3</td>
<td>6</td>
<td>Schein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Wahlfach Wirtschaft/Recht</td>
<td>siehe Kapitel 2.4</td>
<td>4</td>
<td>Schein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrollen in Zusatzmodulen können schriftliche Prüfungen, mündliche Prüfungen oder Erfolgskontrollen anderer Art sein.
Zusätzlich ist ein Berufspraktikum im Umfang von 6 Wochen zu absolvieren (8 LP).
Im Anschluss an die Modulprüfungen ist eine Masterarbeit (20 LP) zu erstellen.
2 Zugelassene Wahl- und Wahlpflichtfächer

Jedes Fach bzw. jedes Modul kann nur einmal im Rahmen des Bachelorstudienganges und des konsekutiven Masterstudiengangs Maschinenbau gewählt werden.

2.1 Wahlpflichtfächer im Bachelor- und Masterstudiengang

Folgende Wahlpflichtfächer (WPF) sind derzeit vom Fakultätsrat für den Bachelorstudiengang und die Vertiefungsrichtungen des Masterstudiengangs genehmigt. Im Bachelorstudiengang muss 1 WPF gewählt werden. Im Masterstudiengang werden 3 WPF abhängig von der jeweiligen Vertiefungsrichtung belegt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Wahlpflichtfächer (WPF)</th>
<th>B.Sc.</th>
<th>M.Sc.</th>
<th>E+U</th>
<th>FzgT</th>
<th>M+M</th>
<th>PEK</th>
<th>PT</th>
<th>ThM</th>
<th>W+S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Arbeitswissenschaft</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>Einführung in die Mechatronik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Elektrotechnik II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Fluidtechnik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>Grundlagen der Statistik und Wahrscheinlichkeitstheorie</td>
<td>w</td>
<td></td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>Einführung in die Mehrkörperdynamik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>Mathematische Methoden der Dynamik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>Mathematische Methoden der Festigkeitslehre</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>Mathematische Methoden der Strömungslehre</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>Mathematische Methoden der Strukturmechanik</td>
<td>w</td>
<td></td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>Grundlagen der Mikrosystemtechnik I oder II</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>Numerische Mathematik für Informatiker und Ingenieure</td>
<td>w</td>
<td></td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15)</td>
<td>Einführung in die moderne Physik oder Physik für Ingenieure</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>Product Lifecycle Management</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17)</td>
<td>Simulation von Produktions- systemen und -prozessen</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18)</td>
<td>Stochastik im Maschinenbau/Mathematische Modelle von Produktionsystemen</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wahlpflichtfächer (WPF) und Erweiterungsfächer (E+U)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Wahlpflichtfächer (WPF)</th>
<th>B.Sc.</th>
<th>M.Sc.</th>
<th>E+U</th>
<th>FzgT</th>
<th>M+M</th>
<th>PEK</th>
<th>PT</th>
<th>ThM</th>
<th>W+S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(19)</td>
<td>Systematische Werkstoffauswahl</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>(20)</td>
<td>Wärme- und Stoffübertragung</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td>w</td>
</tr>
<tr>
<td>(21)</td>
<td>Technische Informationssysteme</td>
<td>w</td>
<td>w</td>
<td></td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22)</td>
<td>Modellierung und Simulation</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>(23)</td>
<td>Wissenschaftliches Programmieren für Ingenieure mit Übung</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>(24)</td>
<td>Mikrostruktursimulation</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
</tr>
<tr>
<td>(25)</td>
<td>CAE-Workshop</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td>w</td>
</tr>
<tr>
<td>(26)</td>
<td>Grundlagen der technischen Verbrennung I</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
</tr>
<tr>
<td>(27)</td>
<td>Grundlagen der technischen Logistik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>(28)</td>
<td>Virtual Engineering Specific Topics</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(29)</td>
<td>Service Operations Management</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(30)</td>
<td>Industrial Management Case Study</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(31)</td>
<td>Maschinendynamik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>(32)</td>
<td>Technische Schwingungslehre</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Mathematische Methoden im Masterstudiengang

Als Wahlmöglichkeiten für die Mathematischen Methoden im Masterstudiengang sind derzeit vom Fakultätsrat genehmigt:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorlesung</th>
<th>Dozent</th>
<th>Institut/Fak.</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Grundlagen der Statistik und Wahrscheinlichkeitstheorie</td>
<td>Kadelka</td>
<td>math</td>
<td>WS</td>
</tr>
<tr>
<td>(2)</td>
<td>Mathematische Methoden der Dynamik</td>
<td>Proppe</td>
<td>itm</td>
<td>WS</td>
</tr>
<tr>
<td>(3)</td>
<td>Mathematische Methoden der Festigkeitslehre</td>
<td>Böhlke</td>
<td>itm</td>
<td>WS</td>
</tr>
<tr>
<td>(4)</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>Seemann</td>
<td>itm</td>
<td>SS</td>
</tr>
<tr>
<td>(5)</td>
<td>Mathematische Methoden der Strömungslehre</td>
<td>N.N.</td>
<td>isl</td>
<td>SS</td>
</tr>
<tr>
<td>(6)</td>
<td>Mathematische Methoden der Strukturmechanik</td>
<td>Böhlke</td>
<td>itm</td>
<td>SS</td>
</tr>
<tr>
<td>(7)</td>
<td>Numerische Mathematik für Informatiker und Ingenieure</td>
<td>Neuß</td>
<td>math</td>
<td>SS</td>
</tr>
<tr>
<td>(8)</td>
<td>Mathematische Modelle von Produktionssystemen</td>
<td>Furmans/Proppe</td>
<td>ifl/itm</td>
<td>WS</td>
</tr>
</tbody>
</table>
2.3 Wahlfach aus dem Bereich Naturwissenschaften/Informatik/Elektrotechnik im Masterstudiengang

Für das Wahlfach aus dem Bereich der Naturwissenschaften, Informatik und Elektrotechnik sind vom Fakultätsrat derzeit folgende Wahlmöglichkeiten genehmigt:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorlesung</th>
<th>Dozent</th>
<th>Institut/Fak.</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Aerothermodynamik</td>
<td>Seiler</td>
<td>isl</td>
<td>SS</td>
</tr>
<tr>
<td>(2)</td>
<td>Hardware/Software Codesign</td>
<td>Hübner</td>
<td>etit</td>
<td>WS</td>
</tr>
<tr>
<td>(3)</td>
<td>Kernspintomographie</td>
<td>Kasten</td>
<td>phys</td>
<td>ww</td>
</tr>
<tr>
<td>(4)</td>
<td>Methoden in der Signalverarbeitung</td>
<td>Puente</td>
<td>iiit</td>
<td>WS</td>
</tr>
<tr>
<td>(5)</td>
<td>Nanotechnologie mit Clustern</td>
<td>Gspann</td>
<td>imt</td>
<td>ww</td>
</tr>
<tr>
<td>(6)</td>
<td>Photovoltaik</td>
<td>Powalla</td>
<td>ikr</td>
<td>SS</td>
</tr>
<tr>
<td>(7)</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>Schneider</td>
<td>izbs</td>
<td>WS</td>
</tr>
<tr>
<td>(8)</td>
<td>Rheologie und Struktur</td>
<td>Hochsein</td>
<td>ciw</td>
<td>WS</td>
</tr>
<tr>
<td>(9)</td>
<td>Strömungen mit chemischen Reaktionen</td>
<td>Class</td>
<td>isl</td>
<td>WS</td>
</tr>
<tr>
<td>(10)</td>
<td>Technische Informatik</td>
<td>Brethauer</td>
<td>ala</td>
<td>SS</td>
</tr>
<tr>
<td>(11)</td>
<td>Systems and Software Engineering</td>
<td>Müller-Glaser</td>
<td>itiv</td>
<td>WS</td>
</tr>
<tr>
<td>(12)</td>
<td>Magnetohydrodynamik</td>
<td>Bühler</td>
<td>isl</td>
<td>WS</td>
</tr>
</tbody>
</table>
2.4 Wahlfach aus dem Bereich Wirtschaft/Recht im Masterstudiengang

Für das Wahlfach aus dem Bereich Wirtschaft und Recht sind vom Fakultätsrat derzeit folgende Wahlmöglichkeiten genehmigt:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorlesung</th>
<th>Dozent</th>
<th>Institut/Fak.</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Arbeitswissenschaft</td>
<td>Zülch</td>
<td>ifab</td>
<td>WS</td>
</tr>
<tr>
<td>(2)</td>
<td>F&E Projektmanagement mit Fallstudien</td>
<td>Schmied</td>
<td>wiwi</td>
<td>ww</td>
</tr>
<tr>
<td>(3)</td>
<td>Management- und Führungstechniken</td>
<td>Hatzl</td>
<td>ifab</td>
<td>SS</td>
</tr>
<tr>
<td>(4)</td>
<td>Öffentliches Recht I</td>
<td>Spieker (Döhmann)</td>
<td>inf</td>
<td>SS</td>
</tr>
<tr>
<td>(5)</td>
<td>Leadership and Management Development</td>
<td>Ploch</td>
<td>ipek</td>
<td>WS</td>
</tr>
<tr>
<td>(6)</td>
<td>Patentrecht</td>
<td>Geissler</td>
<td>inf</td>
<td>SS</td>
</tr>
<tr>
<td>(7)</td>
<td>Qualitätsmanagement</td>
<td>Lanza</td>
<td>wbk</td>
<td>WS</td>
</tr>
<tr>
<td>(8)</td>
<td>Unternehmensführung und strategisches Management</td>
<td>Lindstädt, Wolff, Bünn</td>
<td>wiwi</td>
<td>SS</td>
</tr>
</tbody>
</table>

2.5 Wahlfach im Masterstudiengang

Für das zu belegende Wahlfach sind vom Fakultätsrat derzeit alle Vorlesungen des Fächerkataloges der Fakultät für Maschinenbau genehmigt. Fächer anderer Fakultäten müssen von der Prüfungskommission genehmigt werden.

3 Fachpraktikum im Masterstudiengang

3.1 Fachpraktikum

Für das Fachpraktikum (3 LP) bestehen folgende Wahlmöglichkeiten:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Praktikum</th>
<th>Dozent</th>
<th>Institut/Fak.</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Messtechnisches Praktikum</td>
<td>Stiller</td>
<td>MRT</td>
<td>SS</td>
</tr>
<tr>
<td>(2)</td>
<td>Dezentral gesteuerte Intralogistiksysteme</td>
<td>Furmans</td>
<td>IFL</td>
<td>WS</td>
</tr>
<tr>
<td>(3)</td>
<td>Schwingungstechnisches Praktikum</td>
<td>Fidlin</td>
<td>ITM</td>
<td>WS</td>
</tr>
<tr>
<td>(4)</td>
<td>Mechatronik-Praktikum</td>
<td>Albers et al.</td>
<td>IPEK et al.</td>
<td>WS</td>
</tr>
</tbody>
</table>
4 Berufspraktikum

Das Berufspraktikum (gemäß SPO § 13) besteht im Bachelorstudiengang aus Grund- und Fachpraktikum (je 6 Wochen) und im Masterstudiengang aus einem Fachpraktikum (6 Wochen). Das Grundpraktikum sollte möglichst in einem geschlossenen Zeitraum vor Beginn des Bachelorstudiums durchgeführt werden. Die Abschnitte der Fachpraktika (im Weiteren Berufs-Fachpraktikum genannt) im Rahmen des Bachelor- und des Masterstudiums sollen in geschlossenen Zeiträumen in beliebiger Reihenfolge durchgeführt werden.

4.1 Inhalt und Durchführung des Berufspraktikums

Um eine ausreichende Breite der berufspraktischen Ausbildung zu gewährleisten, sollen sowohl für das Grundpraktikum als auch für die Berufs-Fachpraktika Tätigkeiten aus verschiedenen Arbeitsgebieten nachgewiesen werden.

Die Tätigkeiten im Grundpraktikum können aus folgenden Gebieten gewählt werden:
- spanende Fertigungsverfahren,
- umformende Fertigungsverfahren,
- urformende Fertigungsverfahren und
- thermische Füge- und Trennverfahren.

Es sollen Tätigkeiten in mindestens drei der o.g. Gebiete nachgewiesen werden.

Die Tätigkeiten im Berufs-Fachpraktikum müssen inhaltlich denen eines Ingenieurs entsprechen und können aus folgenden Gebieten gewählt werden:
- Wärmebehandlung,
- Werkzeug- und Vorrichtungsbau,
- Instandhaltung, Wartung und Reparatur,
- Qualitätsmanagement,
- Oberflächentechnik,
- Entwicklung, Konstruktion und Arbeitsvorbereitung,
- Montage-/Demontage und
- andere fachrichtungsbezogene praktische Tätigkeiten entsprechend den gewählten Schwerpunkten (evtl. in Absprache mit dem Praktikantenamt).

Aus diesen acht Gebieten sollen im Bachelor mindestens drei, im Master mindestens zwei weitere unterschiedliche Gebiete nachgewiesen werden. Dabei wird empfohlen, dass die Tätigkeiten aus dem Gebiet des im Studium gewählten Schwerpunktes bzw. der im Master gewählten Vertiefungsrichtung sind oder damit in Zusammenhang stehen.

Tätigkeiten, die an Universitäten, gleichgestellten Hochschulen oder in vergleichbaren Forschungseinrichtungen durchgeführt wurden, werden grundsätzlich nicht als Berufs-Fachpraktikum anerkannt.

Die vorgeschriebenen 12 bzw. 6 Wochen des Berufspraktikums sind als Minimum zu betrachten. Es wird empfohlen, freiwillig weitere praktische Tätigkeiten in einschlägigen Betrieben durchzuführen.

Fragen der Versicherungspflicht regeln entsprechende Gesetze. Während des Praktikums im Inland sind die Studierenden weiterhin Angehörige der Universität und entsprechend versichert. Versicherungsschutz für Auslandspraktika gewährleistet eine Auslandsversicherung, die vom Praktikanten oder dem Ausbildungsbetrieb abgeschlossen wird.

Ausgefallene Arbeitszeit muss in jedem Falle nachgeholt werden. Bei Ausfallzeiten sollte der Praktikant den auszubildenden Betrieb um eine Vertragsverlängerung ersuchen, um den begonnenen Abschnitt seiner berufspraktischen Tätigkeit im erforderlichen Maße durchführen zu können.
4.2 Anerkennung des Berufspraktikums

Für das Grundpraktikum muss ein Bericht angefertigt werden, der eine geistige Auseinandersetzung mit dem bearbeiteten Thema erkennen lässt. Eine chronologische Auflistung der Tätigkeiten ist hierfür nicht ausreichend. Die Praktikanten berichten über ihre Tätigkeiten und die dabei gemachten Beobachtungen und holen dazu die Bestätigung des Ausbildungsbetriebes ein. Die Berichterstattung umfasst wöchentliche Arbeitsberichte (Umfang ca. 1 DIN A4-Seite pro Woche) für das Grundpraktikum. Dabei ist die Form frei wählbar (Handschrift, Textsystem, Computergraphik, etc.).

Das Praktikantenamt entscheidet, inwieweit die praktische Tätigkeit der Praktikantenordnung entspricht und daher als Praktikum anerkannt werden kann. Ein Praktikum, über das nur unzureichende (unvollständige oder nicht verständlich abgefasste) Berichte vorliegen, wird nur zu einem Teil der Dauer anerkannt.

Für Ausländer aus Ländern, die nicht zur europäischen Union gehören, gelten diese Richtlinien ebenfalls.

4.3 Sonderbestimmungen zur Anerkennung

Die praktische Ausbildung an Technischen Gymnasien wird entsprechend den nachgewiesenen Schulstunden als Grundpraktikum anerkannt. Hierbei können maximal 6 Wochen (entspricht 240 Vollzeitstunden) auf die berufspraktische Tätigkeit angerechnet werden.

Während des Bachelorstudiums erbrachte Berufspraktika können im Masterstudium anerkannt werden, sofern sie nicht bereits als Berufspraktikum für den Bachelorstudiengang anerkannt wurden.

5 Bachelor- und Masterarbeit

Die Bachelorarbeit darf an allen Instituten der Fakultät Maschinenbau absolviert werden. Für die Betreuung der Masterarbeit stehen je nach Vertiefungsrichtung folgende Institute (●) zur Wahl:

<table>
<thead>
<tr>
<th>Institut für</th>
<th>Abk.</th>
<th>MSc</th>
<th>E+UT</th>
<th>FzgT</th>
<th>M+M</th>
<th>PEK</th>
<th>PT</th>
<th>ThM</th>
<th>W+S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Informatik/ Automatisierungstechnik</td>
<td>AIA</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Angewandte Werkstoffphysik</td>
<td>IAM- AWP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Arbeitswissenschaft und Betriebsorganisation</td>
<td>ifab</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fahrzeugsystemtechnik</td>
<td>FAST</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fördertechnik und Logistiksysteme</td>
<td>IFL</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>–</td>
</tr>
</tbody>
</table>

Studienplan der Fakultät für Maschinenbau für den Bachelor- und Masterstudiengang Maschinenbau (Beschlossen auf der Fakultätsratssitzung am 29. Juni 2011, redaktionell überarbeitet am 04.07.2011) Seite 13 von 18
In interdisziplinär ausgerichteten Vertiefungsrichtungen ist die Beteiligung von Instituten anderer Fakultäten erwünscht. Mit Zustimmung der Vertiefungsrichtungsverantwortlichen kann die Prüfungskommission auch Masterarbeiten an anderen Instituten der Fakultät für Maschinenbau genehmigen. Zustimmung und Genehmigung sind vor Beginn der Arbeit einzuholen.

6 Schwerpunkte im Bachelor- und im Masterstudiengang

Generell gilt, dass jede Lehrveranstaltung und jeder Schwerpunkt nur einmal entweder im Rahmen des Bachelor- oder des Masterstudiengangs gewählt werden kann.

6.1 Zuordnung der Schwerpunkte zum Bachelor- und den Vertiefungsrichtungen des Masterstudiengangs

Folgende Schwerpunkte sind derzeit vom Fakultätsrat für den Bachelor- und den Masterstudiengang genehmigt. In einigen Vertiefungsrichtungen ist die Wahl des ersten Masterschwerpunkts eingeschränkt (einer der mit „p“ gekennzeichneten Schwerpunkte ist zu wählen). In einem konsekutiven Master-Studium kann ein solcher p-Schwerpunkt durch einen w-Schwerpunkt ersetzt werden, wenn der p-Schwerpunkt bereits im Bachelorstudium gewählt wurde.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Schwerpunkt</th>
<th>B.Sc.</th>
<th>M.Sc.</th>
<th>E+UT</th>
<th>FzgT</th>
<th>M+M</th>
<th>PEK</th>
<th>PT</th>
<th>ThM</th>
<th>W+S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Advanced Mechatronics</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>(2)</td>
<td>Antriebssysteme</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>(3)</td>
<td>Arbeitswissenschaft</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>(4)</td>
<td>Automatisierungstechnik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>(5)</td>
<td>Berechnungsmethoden im MB</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>(6)</td>
<td>Computational Mechanics</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
</tbody>
</table>

Studienplan der Fakultät für Maschinenbau für den Bachelor- und Masterstudiengang Maschinenbau (Beschlossen auf der Fakultätsratssitzung am 29. Juni 2011, redaktionell überarbeitet am 04.07.2011)
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Schwerpunkt</th>
<th>B.Sc.</th>
<th>M.Sc.</th>
<th>E+U</th>
<th>FzgT</th>
<th>M+M</th>
<th>PEK</th>
<th>PT</th>
<th>ThM</th>
<th>W+S</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Dimensionierung und Validierung mechanischer Konstruktionen</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Dynamik und Schwingungslehre</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dynamische Maschinenmodelle</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Entwicklung und Konstruktion</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fahrdynamik, Fahrzeugkomfort und –akustik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Kraftfahrzeugtechnik</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Festigkeitslehre/ Kontinuumsmechanik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Fluid-Festkörper-Wechselwirkung</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Grundlagen der Energietechnik</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Industrial Engineering (engl.)</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Informationsmanagement</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Informationstechnik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Informationstechnik für Logistiksysteme</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Integrierte Produktentwicklung</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Kerntechnik</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Kognitive Technische Systemen</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Kraftwerkstechnik</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Kraft- und Arbeitsmaschinen</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Leichtbau</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Materialwissenschaft und Werkstofftechnik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>27</td>
<td>Modellierung und Simulation in der Energie- und Strömungs-technik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Lifecycle Engineering</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Logistik und Materialflusslehre</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Mechanik und Angewandte Mathematik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Mechatronik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Medizintechnik</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Mikrosystemtechnik</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Mobile Arbeitsmaschinen</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Modellbildung und Simulation</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>36</td>
<td>Polymerengineering</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Produktionsmanagement</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Produktionssysteme</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Produktionstechnik</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Nr.</td>
<td>Schwerpunkt</td>
<td>B.Sc.</td>
<td>M.Sc.</td>
<td>E+U</td>
<td>FzgT</td>
<td>M+M</td>
<td>PEK</td>
<td>PT</td>
<td>ThM</td>
<td>W+S</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>40</td>
<td>Robotik</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>41</td>
<td>Strömungslehre</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Technische Akustik</td>
<td>w</td>
<td>w</td>
<td></td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Technische Keramik und Pulverwerkstoffe</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
</tr>
<tr>
<td>44</td>
<td>Technische Logistik</td>
<td>w</td>
<td>w</td>
<td></td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w</td>
</tr>
<tr>
<td>45</td>
<td>Technische Thermodynamik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>46</td>
<td>Thermische Turbosystemtechnik</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Tribologie</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>48</td>
<td>Verbrennungsmaschinen</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Zuverlässigkeit im Maschinenbau</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Bahnsystemtechnik</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Entwicklung innovativer Geräte</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Production Management</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Fusionstechnologie</td>
<td>w</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Im Masterstudiengang Maschinenbau ohne Vertiefungsschwerpunkt dürfen nur zwei Schwerpunkte kombiniert werden, die von zwei verschiedenen Instituten dominiert werden.

6.2 Wahlmöglichkeiten für den Schwerpunkt im „Bachelor of Science“

Für den Schwerpunkt werden mindestens 12 LP gewählt, davon müssen mindestens 8 LP Kernmodule (K) sein, die im Block geprüft werden. „KP“ bedeutet, dass das Fach im Kernmodulbereich Pflicht ist, sofern es nicht bereits belegt wurde. Die übrigen Leistungspunkte können auch aus dem Ergänzungsbereich (E) kommen. Dabei dürfen nicht mehr als 4 LP Praktika belegt werden, die auch mit einer unbenoteten Erfolgskontrolle abgeschlossen werden können. Die Bildung der Schwerpunktnote erfolgt dann anhand der mit einer Benotung abgeschlossenen Teilmodule.

6.3 Wahlmöglichkeiten in den einzelnen Schwerpunkten im „Master of Science Studiengang“

Für jeden Schwerpunkt werden mindestens 16 LP gewählt, davon müssen mindestens 8 LP Kernmodule (K) sein, die im Block geprüft werden. „KP“ bedeutet, dass das Fach im Kernmodulbereich Pflicht ist, sofern es nicht bereits belegt wurde. Die übrigen Leistungspunkte können auch aus dem Ergänzungsbereich (E) kommen. Dabei dürfen nicht mehr als 4 LP Praktika belegt werden, die auch mit einer unbenoteten Erfolgskontrolle abgeschlossen werden können. Die Bildung der Schwerpunktnote erfolgt dann anhand der mit einer Benotung abgeschlossenen Teilmodule.

6.4 Veranstaltungen der Schwerpunkte zum Bachelor- und den Vertiefungsrichtungen des Masterstudiengangs

Die Beschreibung der Schwerpunkte hinsichtlich der jeweils darin enthaltenen Lehrveranstaltungen sind in den aktuellen Modulhandbüchern des Bachelor- und Masterstudiengangs nachzulesen.

Schwerpunkte und Schwerpunkt-Verantwortliche:

SP 1: Advanced Mechatronics (Bretthauer)
SP 2: Antriebssysteme (Albers)
SP 3: Arbeitswissenschaft (Zülch)
SP 4: Automatisierungstechnik (Bretthauer)
SP 5: Berechnungsmethoden im MB (Seemann)
SP 6: Computational Mechanics (Proppe)
SP 7: Dimensionierung und Validierung mechanischer Konstruktionen (Böhlike)
SP 8: Dynamik und Schwingungslehre (Seemann)
SP 9: Dynamische Maschinenmodelle (Seemann)
SP 10: Entwicklung und Konstruktion (Albers)
SP 11: Fahrdynamik, Fahrzeugkomfort und -akustik (Gauterin)
SP 12: Kraftfahrzeugtechnik (Gauterin)
SP 13: Festigkeitslehre/ Kontinuumsmechanik (Böhlike)
SP 14: Fluid-Festkörper-Wechselwirkung (Gabi)
SP 15: Grundlagen der Energietechnik (Bauer)
SP 16: Industrial Engineering (engl.) (Zülch)
SP 17: Informationsmanagement (Ovtcharova)
SP 18: Informationstechnik (Stiller)
SP 19: Informationstechnik für Logistiksysteme (Furmans)
SP 20: Integrierte Produktentwicklung (Albers)
SP 21: Kerntechnik (Cheng)
SP 22: Kognitive Technische Systeme (Stiller)
SP 23: Kraftwerkstechnik (Bauer)
SP 24: Kraft- und Arbeitsmaschinen (Gabi)
SP 25: Leichtbau (Henning)
SP 26: Materialwissenschaft und Werkstofftechnik (Wanner)
SP 27: Modellierung und Simulation in der Energie- und Strömungstechnik (Maas)
SP 28: Lifecycle Engineering (Ovtcharova)
SP 29: Logistik und Materialflusslehre (Furmans)
SP 30: Mechanik und Angewandte Mathematik (Böhlike)
SP 31: Mechatronik (Bretthauer)
SP 32: Medizintechnik (Bretthauer)
SP 33: Mikrosystemtechnik (Saile)
SP 34: Mobile Arbeitsmaschinen (Geimer)
SP 35: Modellbildung und Simulation (Proppe)
SP 36: Polymerengineering (Elsner)
SP 37: Produktionsmanagement (Zülch)
SP 38: Produktionssysteme (Schulze)
SP 39: Produktionstechnik (Schulze)
SP 40: Robotik (Bretthauer)
SP 41: Strömungslehre (Gabi)
SP 42: Technische Akustik (Gabi)
SP 43: Technische Keramik und Pulverwerkstoffe (Hoffmann)
SP 44: Technische Logistik (Furmans)
SP 45: Technische Thermodynamik (Maas)
SP 46: Thermische Turbomaschinen (Bauer)
SP 47: Tribologie (Gumbsch)
SP 48: Verbrennungsmotoren (Spicher)
SP 49: Zuverlässigkeit im Maschinenbau (Gumbsch)
SP 50: Bahnsystemtechnik (Gratzfeld)
SP 51: Entwicklung innovativer Geräte (Matthiesen)
SP 52: Production Management (Zülch)
SP 53: Fusionstechnologie (Stieglitz)
2 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist.
Modules

All Modules

Module: Compulsory optional subject UMM [MSc-Modul UMM, WPF UMM]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject:

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2109026</td>
<td>Work Science (Lecture and Exercises; in German) (p. 55)</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>G. Zülch</td>
</tr>
<tr>
<td>2105011</td>
<td>Introduction into Mechatronics (p. 59)</td>
<td>3</td>
<td>W</td>
<td>6</td>
<td>G. Bretthauer, A. Albers</td>
</tr>
<tr>
<td>23224</td>
<td>?? (p. 61)</td>
<td>3</td>
<td>S</td>
<td></td>
<td>W. Menesklou, Menesklou</td>
</tr>
<tr>
<td>2114093</td>
<td>Fluid Technology (p. 63)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>1335</td>
<td>Grundlagen der Statistik und Wahrscheinlichkeitslehre (p. 66)</td>
<td>2</td>
<td>W</td>
<td>5</td>
<td>D. Kadelka</td>
</tr>
<tr>
<td>2162235</td>
<td>Introduction into the multi-body dynamics (p. 60)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161252</td>
<td>Advanced Methods in Strength of Materials (p. 69)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2161224</td>
<td>Machine Dynamics (p. 75)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161212</td>
<td>Vibration Theory (p. 109)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161206</td>
<td>Mathematical Methods in Dynamics (p. 76)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161254</td>
<td>Mathematical Methods in Strength of Materials (p. 77)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2162241</td>
<td>Mathematical methods of vibration theory (p. 78)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2154432</td>
<td>Mathematical Methods in Fluid Mechanics (p. 79)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Schenkel</td>
</tr>
<tr>
<td>2162280</td>
<td>Mathematical Methods in Structural Mechanics (p. 80)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2141861</td>
<td>Introduction to Microsystem Technology I (p. 64)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>A. Last</td>
</tr>
<tr>
<td>2142874</td>
<td>Introduction to Microsystem Technology II (p. 65)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>A. Last</td>
</tr>
<tr>
<td>1874</td>
<td>Numerical Mathematics for Engineers (p. 89)</td>
<td>3</td>
<td>S</td>
<td>6</td>
<td>N. Neuss, Neuß</td>
</tr>
<tr>
<td>2400451</td>
<td>Modern Physics for Engineers (p. 87)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>B. Pilawa</td>
</tr>
<tr>
<td>2121350</td>
<td>Product Lifecycle Management (p. 95)</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>J. Ovtcharova</td>
</tr>
<tr>
<td>2149605</td>
<td>Simulation of production systems and processes (p. 101)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>K. Furmans, V. Schulze, G. Zülch</td>
</tr>
<tr>
<td>2161210</td>
<td>?? (p. 103)</td>
<td>3</td>
<td>W</td>
<td>6</td>
<td>K. Furmans, C. Proppe</td>
</tr>
<tr>
<td>2174576</td>
<td>Systematic Materials Selection (p. 105)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>A. Wanner</td>
</tr>
<tr>
<td>22512</td>
<td>Heat and mass transfer (p. 114)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>H. Bockhorn</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>Type</td>
<td>Semester</td>
<td>Lecturers</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>2121001</td>
<td>Integrated Information Systems for engineers (p. 108)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>S. Rogalski, J. Ovtcharova</td>
</tr>
<tr>
<td>2183703</td>
<td>Modelling and Simulation (p. 86)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>B. Nestler</td>
</tr>
<tr>
<td>2181738</td>
<td>Scientific computing for Engineers (p. 115)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>D. Weygand, P. Gumbsch</td>
</tr>
<tr>
<td>2183702</td>
<td>Modelling of Microstructures (p. 84)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>B. Nestler</td>
</tr>
<tr>
<td>2105014</td>
<td>Laboratory mechatronics (p. 81)</td>
<td>3</td>
<td>W</td>
<td>4</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
</tr>
<tr>
<td>2147175</td>
<td>CAE-Workshop (p. 57)</td>
<td>3</td>
<td>W/S</td>
<td>3</td>
<td>A. Albers, Assistenten</td>
</tr>
<tr>
<td>2165515</td>
<td>Fundamentals of Combustion I (p. 67)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>U. Maas</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology (p. 94)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>J. Schneider</td>
</tr>
<tr>
<td>2142890</td>
<td>(p. 93)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>P. Gumbsch, A. Last, A. Nesterov-Müller</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the compulsory optional subject the basics of different aspects of mechanical engineering are taught.

Content
see chosen compulsory optional subject

Remarks
In total, four compulsory optional subjects have to be chosen, one in the bachelor’s program and three in the master’s program. For the master’s program, a reduced catalogue exists for every “Vertiefungsrichtung” (specialization) (see Studienplan).
Module: Compulsory optional subject E+U [MSc-Modul E+U, WPF E+U]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject:

ECTS Credits: 5
Cycle
Duration

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105011</td>
<td>Introduction into Mechatronics (p. 59)</td>
<td>2</td>
<td>W</td>
<td>6</td>
<td>G. Bretthauer, A. Albers</td>
</tr>
<tr>
<td>2114093</td>
<td>Fluid Technology (p. 63)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2162235</td>
<td>Introduction into the multi-body dynamics (p. 60)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161252</td>
<td>Advanced Methods in Strength of Materials (p. 69)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2161224</td>
<td>Machine Dynamics (p. 75)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>21611212</td>
<td>Vibration Theory (p. 109)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2154432</td>
<td>Mathematical Methods in Fluid Mechanics (p. 79)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Schenkel</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology (p. 94)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>J. Schneider</td>
</tr>
<tr>
<td>1874</td>
<td>Numerical Mathematics for Engineers (p. 89)</td>
<td>3</td>
<td>S</td>
<td>6</td>
<td>N. Neuss, Neuß</td>
</tr>
<tr>
<td>2400451</td>
<td>Modern Physics for Engineers (p. 87)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>B. Pilawa</td>
</tr>
<tr>
<td>2174576</td>
<td>Systematic Materials Selection (p. 105)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>A. Wanner</td>
</tr>
<tr>
<td>22512</td>
<td>Heat and mass transfer (p. 114)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>H. Bockhorn</td>
</tr>
<tr>
<td>2105014</td>
<td>Laboratory mechatronics (p. 81)</td>
<td>3</td>
<td>W</td>
<td>4</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
</tr>
<tr>
<td>2147175</td>
<td>CAE-Workshop (p. 57)</td>
<td>3</td>
<td>W/S</td>
<td>3</td>
<td>A. Albers, Assistenten</td>
</tr>
<tr>
<td>2165515</td>
<td>Fundamentals of Combustion I (p. 67)</td>
<td>3</td>
<td>W</td>
<td>4</td>
<td>U. Maas</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the compulsory optional subject the basics of different aspects of mechanical engineering are taught.

Content
see chosen compulsory optional subject

Remarks
In total, four compulsory optional subjects have to be chosen, one in the bachelor’s program and three in the master´s program. For the master’s program, a reduced catalogue exists for every “Vertiefungsrichtung” (specialization) (see Studienplan).
Module: Compulsory optional subject FzgT [MSc-Modul FzgT, WPF FzgT]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject:

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105011</td>
<td>Introduction into Mechatronics (p. 59)</td>
<td>3</td>
<td>W</td>
<td>6</td>
<td>G. Bretthauer, A. Albers</td>
</tr>
<tr>
<td>23224</td>
<td>?? (p. 61)</td>
<td>3</td>
<td>S</td>
<td></td>
<td>W. Menesklou, Menesklou</td>
</tr>
<tr>
<td>2114093</td>
<td>Fluid Technology (p. 63)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>1335</td>
<td>Grundlagen der Statistik und Wahrscheinlichkeits-theorie (p. 66)</td>
<td>2</td>
<td>W</td>
<td>5</td>
<td>D. Kadelka</td>
</tr>
<tr>
<td>2162235</td>
<td>Introduction into the multi-body dynamics (p. 60)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161252</td>
<td>Advanced Methods in Strength of Materials (p. 69)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhike</td>
</tr>
<tr>
<td>2161224</td>
<td>Machine Dynamics (p. 75)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161212</td>
<td>Vibration Theory (p. 109)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161206</td>
<td>Mathematical Methods in Dynamics (p. 76)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161254</td>
<td>Mathematical Methods in Strength of Materials (p. 77)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhike</td>
</tr>
<tr>
<td>2162241</td>
<td>Mathematical methods of vibration theory (p. 78)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2154432</td>
<td>Mathematical Methods in Fluid Mechanics (p. 79)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Schenkel</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology (p. 94)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>J. Schneider</td>
</tr>
<tr>
<td>1874</td>
<td>Numerical Mathematics for Engineers (p. 89)</td>
<td>3</td>
<td>S</td>
<td>6</td>
<td>N. Neuss, Neuß</td>
</tr>
<tr>
<td>2400451</td>
<td>Modern Physics for Engineers (p. 87)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>B. Pilawa</td>
</tr>
<tr>
<td>2121350</td>
<td>Product Lifecycle Management (p. 95)</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>J. Ovtcharova</td>
</tr>
<tr>
<td>2149605</td>
<td>Simulation of production systems and processes (p. 101)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>K. Furmans, V. Schulze, G. Zülich</td>
</tr>
<tr>
<td>2161210</td>
<td>?? (p. 103)</td>
<td>3</td>
<td>W</td>
<td>6</td>
<td>K. Furmans, C. Proppe</td>
</tr>
<tr>
<td>2174576</td>
<td>Systematic Materials Selection (p. 105)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>A. Wanner</td>
</tr>
<tr>
<td>22512</td>
<td>Heat and mass transfer (p. 114)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>H. Bockhorn</td>
</tr>
<tr>
<td>2121001</td>
<td>Integrated Information Systems for engineers (p. 108)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>S. Rogalski, J. Ovtcharova</td>
</tr>
<tr>
<td>2105014</td>
<td>Laboratory mechatronics (p. 81)</td>
<td>3</td>
<td>W</td>
<td>4</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
</tr>
<tr>
<td>2147175</td>
<td>CAE-Workshop (p. 57)</td>
<td>3</td>
<td>W/S</td>
<td>3</td>
<td>A. Albers, Assistenten</td>
</tr>
<tr>
<td>2165515</td>
<td>Fundamentals of Combustion I (p. 67)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>U. Maas</td>
</tr>
<tr>
<td>2142890</td>
<td>(p. 93)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>P. Gumbsch, A. Last, A. Nesterov-Müller</td>
</tr>
</tbody>
</table>
Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the compulsory optional subject the basics of different aspects of mechanical engineering are taught.

Content
see chosen compulsory optional subject

Remarks
In total, four compulsory optional subjects have to be chosen, one in the bachelor’s program and three in the master’s program. For the master’s program, a reduced catalogue exists for every “Vertiefungsrichtung” (specialization) (see Studienplan).
Module: Compulsory optional subject M+M [MSc-Modul M+M, WPF M+M]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)

Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105011</td>
<td>Introduction into Mechatronics (p. 59)</td>
<td>3 W</td>
<td>6</td>
<td></td>
<td>G. Bretthauer, A. Albers</td>
</tr>
<tr>
<td>1335</td>
<td>Grundlagen der Statistik und Wahrscheinlichkeitstheorie (p. 66)</td>
<td>2 W</td>
<td>5</td>
<td></td>
<td>D. Kadelka</td>
</tr>
<tr>
<td>2162235</td>
<td>Introduction into the multi-body dynamics (p. 60)</td>
<td>3 S</td>
<td>5</td>
<td></td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161252</td>
<td>Advanced Methods in Strength of Materials (p. 69)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2161224</td>
<td>Machine Dynamics (p. 75)</td>
<td>3 W</td>
<td>5</td>
<td></td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161212</td>
<td>Vibration Theory (p. 109)</td>
<td>3 W</td>
<td>5</td>
<td></td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161206</td>
<td>Mathematical Methods in Dynamics (p. 76)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161254</td>
<td>Mathematical Methods in Strength of Materials (p. 77)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2162241</td>
<td>Mathematical methods of vibration theory (p. 78)</td>
<td>3 S</td>
<td>5</td>
<td></td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2162280</td>
<td>Mathematical Methods in Structural Mechanics (p. 80)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2141861</td>
<td>Introduction to Microsystem Technology I (p. 64)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>A. Last</td>
</tr>
<tr>
<td>2142874</td>
<td>Introduction to Microsystem Technology II (p. 65)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>A. Last</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology (p. 94)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>J. Schneider</td>
</tr>
<tr>
<td>1874</td>
<td>Numerical Mathematics for Engineers (p. 89)</td>
<td>3 S</td>
<td>6</td>
<td></td>
<td>N. Neuss, Neuß</td>
</tr>
<tr>
<td>2400451</td>
<td>Modern Physics for Engineers (p. 87)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>B. Pilawa</td>
</tr>
<tr>
<td>2121350</td>
<td>Product Lifecycle Management (p. 95)</td>
<td>4 W</td>
<td>6</td>
<td></td>
<td>J. Ovtcharova</td>
</tr>
<tr>
<td>2174576</td>
<td>Systematic Materials Selection (p. 105)</td>
<td>3 S</td>
<td>5</td>
<td></td>
<td>A. Wanner</td>
</tr>
<tr>
<td>22512</td>
<td>Heat and mass transfer (p. 114)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>H. Bockhorn</td>
</tr>
<tr>
<td>2121001</td>
<td>Integrated Information Systems for engineers (p. 108)</td>
<td>3 W</td>
<td>5</td>
<td></td>
<td>S. Rogalski, J. Ovtcharova</td>
</tr>
<tr>
<td>2105014</td>
<td>Laboratory mechatronics (p. 81)</td>
<td>3 W</td>
<td>4</td>
<td></td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
</tr>
<tr>
<td>2147175</td>
<td>CAE-Workshop (p. 57)</td>
<td>3 W/S</td>
<td>3</td>
<td></td>
<td>A. Albers, Assistenten</td>
</tr>
<tr>
<td>2165515</td>
<td>Fundamentals of Combustion I (p. 67)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>U. Maas</td>
</tr>
</tbody>
</table>
Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the compulsory optional subject the basics of different aspects of mechanical engineering are taught.

Content
see chosen compulsory optional subject

Remarks
In total, four compulsory optional subjects have to be chosen, one in the bachelor’s program and three in the master’s program. For the master’s program, a reduced catalogue exists for every “Vertiefungsrichtung” (specialization) (see Studienplan).
Module: Compulsory optional subject PEK [MSc-Modul PEK, WPF PEK]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject: ECTS Credits 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Science (Lecture and Exercises; in German) (p. 55)</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>G. Zülch</td>
</tr>
<tr>
<td>Introduction into Mechatronics (p. 59)</td>
<td>3</td>
<td>W</td>
<td>6</td>
<td>G. Bretthauer, A. Albers</td>
</tr>
<tr>
<td>Fluid Technology (p. 63)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>Introduction into the multi-body dynamics (p. 60)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>Advanced Methods in Strength of Materials (p. 69)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>Machine Dynamics (p. 75)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>Vibration Theory (p. 109)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>Mathematical Methods in Dynamics (p. 76)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>Mathematical Methods in Strength of Materials (p. 77)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>Mathematical methods of vibration theory (p. 78)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>Mathematical Methods in Structural Mechanics (p. 80)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology I (p. 64)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>A. Last</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology II (p. 65)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>A. Last</td>
</tr>
<tr>
<td>Physical basics of laser technology (p. 94)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>J. Schneider</td>
</tr>
<tr>
<td>Product Lifecycle Management (p. 95)</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>J. Ovtcharova</td>
</tr>
<tr>
<td>Systematic Materials Selection (p. 105)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>A. Wanner</td>
</tr>
<tr>
<td>Heat and mass transfer (p. 114)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>H. Bockhorn</td>
</tr>
<tr>
<td>Integrated Information Systems for engineers (p. 108)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>S. Rogalski, J. Ovtcharova</td>
</tr>
<tr>
<td>Laboratory mechatronics (p. 81)</td>
<td>3</td>
<td>W</td>
<td>4</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
</tr>
<tr>
<td>CAE-Workshop (p. 57)</td>
<td>3</td>
<td>W/S</td>
<td>3</td>
<td>A. Albers, Assistenten</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the compulsory optional subject the basics of different aspects of mechanical engineering are taught.
Content
see chosen compulsory optional subject

Remarks
In total, four compulsory optional subjects have to be chosen, one in the bachelor’s program and three in the master’s program. For the master’s program, a reduced catalogue exists for every “Vertiefungsrichtung” (specialization) (see Studienplan).
Module: Compulsory optional subject PT [MSc-Modul PT, WPF PT]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject:

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2109026</td>
<td>Work Science (Lecture and Exercises; in German) (p. 55)</td>
<td>4 W</td>
<td>6</td>
<td></td>
<td>G. Zülch</td>
</tr>
<tr>
<td>2105011</td>
<td>Introduction into Mechatronics (p. 59)</td>
<td>3 W</td>
<td>6</td>
<td></td>
<td>G. Bretthauer, A. Albers</td>
</tr>
<tr>
<td>2114093</td>
<td>Fluid Technology (p. 63)</td>
<td>2/2 W</td>
<td>4</td>
<td></td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2162235</td>
<td>Introduction into the multi-body dynamics (p. 60)</td>
<td>3 S</td>
<td>5</td>
<td></td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161252</td>
<td>Advanced Methods in Strength of Materials (p. 69)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>T. Böhike</td>
</tr>
<tr>
<td>2161224</td>
<td>Machine Dynamics (p. 75)</td>
<td>3 W</td>
<td>5</td>
<td></td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161212</td>
<td>Vibration Theory (p. 109)</td>
<td>3 W</td>
<td>5</td>
<td></td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology (p. 94)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>J. Schneider</td>
</tr>
<tr>
<td>2121350</td>
<td>Product Lifecycle Management (p. 95)</td>
<td>4 W</td>
<td>6</td>
<td></td>
<td>J. Ovtcharova</td>
</tr>
<tr>
<td>2149605</td>
<td>Simulation of production systems and processes (p. 101)</td>
<td>3 W</td>
<td>5</td>
<td></td>
<td>K. Furmans, V. Schulze, G. Zülch</td>
</tr>
<tr>
<td>2121001</td>
<td>Integrated Information Systems for engineers (p. 108)</td>
<td>3 W</td>
<td>5</td>
<td></td>
<td>S. Rogalski, J. Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the compulsory optional subject the basics of different aspects of mechanical engineering are taught.

Content
see chosen compulsory optional subject

Remarks
In total, four compulsory optional subjects have to be chosen, one in the bachelor’s program and three in the master’s program. For the master’s program, a reduced catalogue exists for every “Vertiefungsrichtung” (specialization) (see Studienplan).
Module: Compulsory optional subject ThM [MSc-Modul ThM, WPF ThM]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)

Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2114033</td>
<td>Fluid Technology (p. 63)</td>
<td>2/2 W</td>
<td>4</td>
<td>M. Geimer</td>
<td></td>
</tr>
<tr>
<td>1335</td>
<td>Grundlagen der Statistik und Wahrscheinlichkeitstheorie (p. 66)</td>
<td>2 W</td>
<td>5</td>
<td>D. Kadelka</td>
<td></td>
</tr>
<tr>
<td>2162235</td>
<td>Introduction into the multi-body dynamics (p. 60)</td>
<td>3 S</td>
<td>5</td>
<td>W. Seemann</td>
<td></td>
</tr>
<tr>
<td>2161252</td>
<td>Advanced Methods in Strength of Materials (p. 69)</td>
<td>2 W</td>
<td>4</td>
<td>T. Böhlke</td>
<td></td>
</tr>
<tr>
<td>2161224</td>
<td>Machine Dynamics (p. 75)</td>
<td>3 W</td>
<td>5</td>
<td>C. Proppe</td>
<td></td>
</tr>
<tr>
<td>2161212</td>
<td>Vibration Theory (p. 109)</td>
<td>3 W</td>
<td>5</td>
<td>W. Seemann</td>
<td></td>
</tr>
<tr>
<td>2161206</td>
<td>Mathematical Methods in Dynamics (p. 76)</td>
<td>2 W</td>
<td>4</td>
<td>C. Proppe</td>
<td></td>
</tr>
<tr>
<td>2161254</td>
<td>Mathematical Methods in Strength of Materials (p. 77)</td>
<td>2 W</td>
<td>4</td>
<td>T. Böhlke</td>
<td></td>
</tr>
<tr>
<td>2162241</td>
<td>Mathematical methods of vibration theory (p. 78)</td>
<td>3 S</td>
<td>5</td>
<td>W. Seemann</td>
<td></td>
</tr>
<tr>
<td>2154432</td>
<td>Mathematical Methods in Fluid Mechanics (p. 79)</td>
<td>2 S</td>
<td>4</td>
<td>T. Schenkel</td>
<td></td>
</tr>
<tr>
<td>2162280</td>
<td>Mathematical Methods in Structural Mechanics (p. 80)</td>
<td>2 S</td>
<td>4</td>
<td>T. Böhlke</td>
<td></td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology (p. 94)</td>
<td>2 W</td>
<td>4</td>
<td>J. Schneider</td>
<td></td>
</tr>
<tr>
<td>1874</td>
<td>Numerical Mathematics for Engineers (p. 89)</td>
<td>3 S</td>
<td>6</td>
<td>N. Neuss, Neuß</td>
<td></td>
</tr>
<tr>
<td>2400451</td>
<td>Modern Physics for Engineers (p. 87)</td>
<td>2 S</td>
<td>4</td>
<td>B. Pilawa</td>
<td></td>
</tr>
<tr>
<td>2161210</td>
<td>?? (p. 103)</td>
<td>3 W</td>
<td>6</td>
<td>K. Furmans, C. Proppe</td>
<td></td>
</tr>
<tr>
<td>2174576</td>
<td>Systematic Materials Selection (p. 105)</td>
<td>3 S</td>
<td>5</td>
<td>A. Wanner</td>
<td></td>
</tr>
<tr>
<td>22512</td>
<td>Heat and mass transfer (p. 114)</td>
<td>2 W</td>
<td>4</td>
<td>H. Bockhorn</td>
<td></td>
</tr>
<tr>
<td>2183703</td>
<td>Modelling and Simulation (p. 86)</td>
<td>2 W/S</td>
<td>4</td>
<td>B. Nestler</td>
<td></td>
</tr>
<tr>
<td>2181738</td>
<td>Scientific computing for Engineers (p. 115)</td>
<td>2 W</td>
<td>4</td>
<td>D. Weygand, P. Gumbsch</td>
<td></td>
</tr>
<tr>
<td>2183702</td>
<td>Modelling of Microstructures (p. 84)</td>
<td>2 W/S</td>
<td>4</td>
<td>B. Nestler</td>
<td></td>
</tr>
<tr>
<td>2165515</td>
<td>Fundamentals of Combustion I (p. 67)</td>
<td>2 W</td>
<td>4</td>
<td>U. Maas</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the compulsory optional subject the basics of different aspects of mechanical engineering are taught.
Content
see chosen compulsory optional subject

Remarks
In total, four compulsory optional subjects have to be chosen, one in the bachelor´s program and three in the master´s program. For the master´s program, a reduced catalogue exists for every “Vertiefungsrichtung” (specialization) (see Studienplan).
Module: Compulsory optional subject W+S [MSc-Modul W+S, WPF W+S]

Coordination: Alexander Wanner

Degree programme: Masterstudienang Maschinenbau (M.Sc.)

Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162235</td>
<td>Introduction into the multi-body dynamics (p. 60)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2161252</td>
<td>Advanced Methods in Strength of Materials (p. 69)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2161224</td>
<td>Machine Dynamics (p. 75)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161254</td>
<td>Mathematical Methods in Strength of Materials (p. 77)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2162280</td>
<td>Mathematical Methods in Structural Mechanics (p. 80)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology (p. 94)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>J. Schneider</td>
</tr>
<tr>
<td>2400451</td>
<td>Modern Physics for Engineers (p. 87)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>B. Pilawa</td>
</tr>
<tr>
<td>2174576</td>
<td>Systematic Materials Selection (p. 105)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>A. Wanner</td>
</tr>
<tr>
<td>2183703</td>
<td>Modelling and Simulation (p. 86)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>B. Nestler</td>
</tr>
<tr>
<td>2181738</td>
<td>Scientific computing for Engineers (p. 115)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>D. Weygand, P. Gumbsch</td>
</tr>
<tr>
<td>2183702</td>
<td>Modelling of Microstructures (p. 84)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>B. Nestler</td>
</tr>
<tr>
<td>2147175</td>
<td>CAE-Workshop (p. 57)</td>
<td>3</td>
<td>W/S</td>
<td>3</td>
<td>A. Albers, Assistenten</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the compulsory optional subject the basics of different aspects of mechanical engineering are taught.

Content
see chosen compulsory optional subject

Remarks
In total, four compulsory optional subjects have to be chosen, one in the bachelor’s program and three in the master’s program. For the master’s program, a reduced catalogue exists for every “Vertiefungsrichtung” (specialization) (see Studienplan).
Module: Optional subject [MSc-Modul 04, WF]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)

ECTS Credits	Cycle	Duration
4 | |

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the optional subject the basics of a chosen aspect of mechanical engineering are taught.

Content
see chosen compulsory optional subject
Module: Modeling and Simulation [MSc-Modul 05, MS]

Coordination: Carsten Proppe
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)

Subject:

ECTS Credits: 7
Cycle: 7
Duration:

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2185227</td>
<td>Modelling and Simulation (p. 85)</td>
<td>4</td>
<td>W</td>
<td>7</td>
<td>C. Proppe, K. Furtmans, C. Stiller, B. Pritz</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written, auxiliary means: own manuscripts

Conditions
none

Recommendations
none

Learning Outcomes
Models and simulations are components of almost any field of mechanical engineering. In this course, in which a multiplicity of institutes cooperate, an overview of modelling and simulation techniques typical in mechanical engineering is to be given. Thereby, students obtain the ability to carry out simulation studies starting from the formulation of problems by concepts, implementation, verification and validation. The mathematical-numerical bases are presented and illustrated by examples. In the exercises complex simulation studies are compiled and tested.

Content
Introduction: Overview, concept formation, simulation studies, time/event-discrete models, event-oriented/process orientated/transaction-oriented view, typical model classes (operation/maintenance, storekeeping, loss-susceptible systems)
Time-continuous models with concentrated parameters, model characteristics and model analysis Numerical treatment of ordinary differential equations and differential-algebraic sets of equations coupled simulation of time-continuous models with concentrated parameters
Time-continuous models with distributed parameters, description of systems by means of partial differential equations, model reduction, numerical solution procedures for partial differential equations
Module: Product Development [MSc-Modul 06, PE]

Coordination: Sven Matthiesen
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject:

ECTS Credits	Cycle	Duration
15 | Every 2nd term, Summer Term | 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2146176</td>
<td>Product Development - Methods of Product Development (p. 97)</td>
<td>3</td>
<td>S</td>
<td>6</td>
<td>A. Albers, N. Burkardt, Dipl.-Ing. N. Burkardt</td>
</tr>
<tr>
<td>2150679</td>
<td>Product Development - Manufacturing and Material Technology (p. 98)</td>
<td>6</td>
<td>S</td>
<td>9</td>
<td>V. Schulze</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Two examn, see according lectures

Conditions
Bachelor Mechanical Engineering

Learning Outcomes
Holistic view on the Life Cycle of Machine Systems with focus on product development, production technology and material selection

Content
- life cycle of technical systems
- integration of product development, production technology and material sciences
- teaching of corresponding activities and supporting methods
Module: [MSc-Modul 07, FP]

Coordination: Christoophys Stiller, Kai Furmans
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)

Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Every 2nd term, Winter Term</td>
<td></td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2138328</td>
<td>Measurement Instrumentation Lab (p. 82)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>C. Stiller, P. Lenz</td>
</tr>
<tr>
<td>2117049</td>
<td>Dezentral gesteuerte Intralogistiksysteme (p. 58)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>K. Furmans, T. Baur</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Certificate by colloquium with presentation

Conditions
none

Recommendations
none

Learning Outcomes
The student is able to program object-oriented. Decentralized logistic systems for material handling are known and the student is able to design models out of complex cinematic systems.

Content

- Introduction to material handling systems
- Construction of a model for decentralized logistic systems
- object-oriented programming with LabView
- Implementation of the model with Mindstorms
- Presentation of the results

Remarks
none
Module: [MSc-Modul 08, MM]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)

Subject:

ECTS Credits: 6
Cycle
Duration

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1335</td>
<td>Grundlagen der Statistik und Wahrscheinlichkeitstheorie (p. 66)</td>
<td>2</td>
<td>W</td>
<td>5</td>
<td>D. Kadelka</td>
</tr>
<tr>
<td>2161206</td>
<td>Mathematical Methods in Dynamics (p. 76)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>2161254</td>
<td>Mathematical Methods in Strength of Materials (p. 77)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2162241</td>
<td>Mathematical methods of vibration theory (p. 78)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>W. Seemann</td>
</tr>
<tr>
<td>2162280</td>
<td>Mathematical Methods in Structural Mechanics (p. 80)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Böhlke</td>
</tr>
<tr>
<td>2154432</td>
<td>Mathematical Methods in Fluid Mechanics (p. 79)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Schenkel</td>
</tr>
<tr>
<td>1874</td>
<td>Numerical Mathematics for Engineers (p. 89)</td>
<td>3</td>
<td>S</td>
<td>6</td>
<td>N. Neuss, Neuß</td>
</tr>
<tr>
<td>2161210</td>
<td>?? (p. 103)</td>
<td>3</td>
<td>W</td>
<td>6</td>
<td>K. Furmans, C. Proppe</td>
</tr>
<tr>
<td>2154433</td>
<td>Tutorial in Mathematical Methods of Fluid Mechanics (p. 111)</td>
<td>1</td>
<td>S</td>
<td>0</td>
<td>T. Schenkel</td>
</tr>
<tr>
<td>2162242</td>
<td>Mathematical methods of vibration theory (Tutorial) (p. 110)</td>
<td>1</td>
<td>S</td>
<td>1</td>
<td>W. Seemann, N.N.</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the chosen subject mathematical methods for solving problems of engineering mechanics are taught.

Content
see chosen mathematical method
Module: Major Field 1 [MSc-Modul 09, SP 1]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)

Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
graded or not graded, oral or written exam, duration (depends on the lecture)

Learning Outcomes
Within the emphasis module a special aspect of the mechanical engineering are taught.

Content
see chosen emphasis modules

Remarks
In total, three emphasis modules have to be chosen, one in the bachelor´s program and two in the master´s program (see Studienplan).
Module: Major Field 2 [MSc-Modul 10, SP 2]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded or not graded, oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
Within the emphasis module a special aspect of the mechanical engineering are taught.

Content
see chosen emphasis modules

Remarks
In total, three emphasis modules have to be chosen, one in the bachelor’s program and two in the master’s program (see Studienplan).
Module: [MSc-Modul 11, WF NIE]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2154436</td>
<td>Aerothermodynamics (p. 54)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>F. Seiler</td>
</tr>
<tr>
<td>23620</td>
<td>?? (p. 68)</td>
<td>2</td>
<td>W</td>
<td></td>
<td>M. Hübner</td>
</tr>
<tr>
<td>2209121</td>
<td>?? (p. 70)</td>
<td>2</td>
<td>W/S</td>
<td></td>
<td>A. Kasten</td>
</tr>
<tr>
<td>23113</td>
<td>?? (p. 83)</td>
<td>3</td>
<td>W</td>
<td></td>
<td>F. Puente</td>
</tr>
<tr>
<td>2143876</td>
<td>Nanotechnology with Clusterbeams (p. 88)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>J. Gspann</td>
</tr>
<tr>
<td>2130935</td>
<td>Photovoltaics (p. 92)</td>
<td>3</td>
<td>S</td>
<td>6</td>
<td>M. Powalla</td>
</tr>
<tr>
<td>22938</td>
<td>?? (p. 100)</td>
<td>2</td>
<td>W</td>
<td></td>
<td>B. Hochstein</td>
</tr>
<tr>
<td>2153406</td>
<td>Flows with chemical reactions (p. 104)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>A. Class</td>
</tr>
<tr>
<td>2106002</td>
<td>Computer Engineering (p. 107)</td>
<td>3</td>
<td>S</td>
<td>4</td>
<td>G. Bretthauer</td>
</tr>
<tr>
<td>24139</td>
<td>?? (p. 102)</td>
<td>1</td>
<td>W</td>
<td></td>
<td>M. Al Faruque, J. Henkel, Henkel, Al Faruque</td>
</tr>
<tr>
<td>23605</td>
<td>?? (p. 106)</td>
<td>2</td>
<td>W</td>
<td></td>
<td>K. Müller-Glaser</td>
</tr>
<tr>
<td>2153429</td>
<td>Magnetohydrodynamics (p. 72)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>L. Bühler</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology (p. 94)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>J. Schneider</td>
</tr>
<tr>
<td>2181613</td>
<td>(p. 112)</td>
<td>1</td>
<td>W</td>
<td></td>
<td>J. Schneider</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the optional subject science/computer science/electrical engineering the basics of one aspects of science, computer science or electrical engineering are taught.

Content
see chosen subject
Module: [MSc-Modul 12, WF WR]

Coordination: Alexander Wanner
Degree programme: Masterstudiengang Maschinenbau (M.Sc.)
Subject:

ECTS Credits 4 Cycle Duration

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2109026</td>
<td>Work Science (Lecture and Exercises; in German) (p. 55)</td>
<td>4 W</td>
<td></td>
<td>6 G. Zülch</td>
<td></td>
</tr>
<tr>
<td>2581963</td>
<td>?? (p. 62)</td>
<td>2 W/S</td>
<td></td>
<td>H. Schmied</td>
<td></td>
</tr>
<tr>
<td>2110017</td>
<td>Leadership and Conflict Management (in German) (p. 73)</td>
<td>2 S</td>
<td></td>
<td>4 H. Hatzl</td>
<td></td>
</tr>
<tr>
<td>24631</td>
<td>?? (p. 90)</td>
<td>1 S</td>
<td></td>
<td>Spiecker, Döhmann</td>
<td></td>
</tr>
<tr>
<td>2145184</td>
<td>Leadership and Product Development (p. 71)</td>
<td>2 W</td>
<td></td>
<td>4 A. Ploch</td>
<td></td>
</tr>
<tr>
<td>24574</td>
<td>?? (p. 91)</td>
<td>2 S</td>
<td></td>
<td>4 Bittner</td>
<td></td>
</tr>
<tr>
<td>2149667</td>
<td>Quality Management (p. 99)</td>
<td>2 W</td>
<td></td>
<td>4 G. Lanza</td>
<td></td>
</tr>
<tr>
<td>2577900</td>
<td>?? (p. 113)</td>
<td>2 S</td>
<td></td>
<td>E. Bünn, H. Lindstädt, M. Wolff, Lindstädt, Wolff, Bün</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
graded oral or written exam, duration (depends on the lecture)

Conditions
None.

Learning Outcomes
In the optional subject economy/law the basics of one aspects of economy or law are taught.

Content
see chosen subject
4 Courses

4.1 All Courses

Course: Aerothermodynamics [2154436]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral

Duration: 30 minutes

no auxiliary means

Conditions

None.

Learning Outcomes

This lecture presents an insight into the aerodynamic problems occurring during re-entry of space vehicles into the earth's atmosphere. During the flight the air inflow is strongly heated by the bow wave formation in the high Mach number flow regime. Therefore, real gas effects and the behaviour of hot air at high temperatures need to be taken into account. The combination of thermodynamics of hot air and the flow development at hypersonic flow conditions coupled with extreme heat flux phenomena is usually summarised in the term Aerothermodynamics. Basic knowledge gained in the lecture on Fluid Mechanics is assumed. However, for understanding the contents of the aerothermodynamics lecture, all fundamentals are presented and discussed using the example of the re-entry flight trajectory of a space vehicle. Gaskinetic methods needed for flow prediction at high altitudes are explained in detail. At altitudes lower than 90 km, however, the air atmosphere can be treated as a continuum and the conservation equations are valid. The shock tube is described as ground facility for aerothermodynamic testing and the measuring techniques required for that purpose are explained using some recent applications as examples.

Content

Nature of a hypersonic flow
Fundamentals of aerothermodynamics
Problems during re-entry
Flow regimes during re-entry
Applied hypersonic research

Literature

H. Oertel jun.: Aerothermodynamik, Springer-Verlag, Berlin Heidelberg New York, 1994
F. Seiler: Skript zur Vorlesung über Aerothermodynamik
Course: Work Science (Lecture and Exercices; in German) [2109026]

Coordinators:
Gert Zülch

Part of the modules:
Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], (p. 53)[MSc-Modul 12, WF WR], Compulsory optional subject PT (p. 41)[MSc-Modul PT, WPF PT]

ECTS Credits 6
Hours per week 4
Term Winter term
Instruction language de

Learning Control / Examinations
Specialisation “Produktionstechnik”:
Written exam, length: 90 minutes
(only in German)
Allowed resource materials: non-programmable calculator

Other specialisations:
Oral exam, length: 30 minutes
(only in German)
Allowed resource materials: none

Conditions
• The exams “Arbeitswissenschaft (2109026)” and “Ergonomie und Arbeitswirtschaft (2109029)” are mutually exclusive.
• The exams “Arbeitswissenschaft (2109026)” and “Arbeitsschutz und Arbeitsrecht (2109024)” are mutually exclusive.

Recommendations
• Willingness to learn interdisciplinarily (Product design, Legal regulations Work physiology, Work psychology . . .)
• Basic knowledge of Production Management is usefull

Learning Outcomes
• Become proficient within the general terms of ergonomics, methods study and personnel planning
• Know elementary methods and procedures of applied work science
• Know relevant labour law and regulations
• Become proficient in applying ergonomic evaluation and judgement

Content
1. Introduction
2. Basics of human performance
3. Design of workplaces
4. Time study
5. Evaluation of workplaces and determination of wages
6. Work structuring
7. Personnel planning
8. Leadership
9. Labour legislation
10. Representation of interest groups

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: CAE-Workshop [2147175]

Coordinators: Albert Albers, Assistenten

Part of the modules:
- Compulsory optional subject FzgT (p. 35) [MSc-Modul FzgT, WPF FzgT]
- Compulsory optional subject E+U (p. 34) [MSc-Modul E+U, WPF E+U]
- Compulsory optional subject W+S (p. 44) [MSc-Modul W+S, WPF W+S]
- Compulsory optional subject PEK (p. 39) [MSc-Modul PEK, WPF PEK]
- Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM]
- Compulsory optional subject M+M (p. 37) [MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Depending on the manner in which the CAE-Workshop will be credited.

Conditions
compulsory attendance

Recommendations
We suggest this Workshop after 2 years of classes.

Learning Outcomes
In the CAE-Workshops computer-aided tools used in the industrial product development process will be presented and trained. The complete process chain is shown using concrete examples of typical mechanical components. The possibilities and limits of virtual product development will be shown during this course. Here, the students get practical insight into the world of multi-body systems, the finite element method and optimization research questions.

The students receive the theoretical basics and are trained on modern hardware in the use of commercial software. In order to support the students to discuss the calculation and optimization results, the participants of the workshop must discuss their results in small groups and finally present it to all students.

Content
Content in the summer semester:
- introduction to the finite element analysis (FEA)
- stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- introduction to topology and shape optimization
- creation and calculation of various optimization models with the optimization package TOSCA and the Abaqus solver

Content in the winter semester:
- introduction to the finite element analysis (FEA)
- stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- introduction to multi-body simulation (MBS)
- preparation and running of multi-body simulation models. Coupling of the MBS and FEA to calculate hybird multi-body simulation problems.

Literature
The workshop script will be allocated at Ilias.
Course: Dezentral gesteuerte Intralogistiksysteme [2117049]

Coordinators: Kai Furmans, Tobias Baur
Part of the modules: (p. 48)[MSc-Modul 07, FP]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Introduction into Mechatronics [2105011]

Coordinators: Georg Bretthauer, Albert Albers

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject PT (p. 41)[MSc-Modul PT, WPF PT], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written examination, oral examination or certification of participation depending on the “Studienplan” resp. “Prüfungs- und Studienordnung (SPO)”

Conditions
None.

Learning Outcomes
Mechatronics is an interdisciplinary field, based on classical mechanical and electrical engineering as well as automation science and technology and computer science. The main activities focus on integral system development with technical components connected via an intelligent control system. In this regard simulation of mechanical and electrical systems becomes important for rapid and efficient development. First part of the lecture provides a survey of mechatronics. Subsequently the architecture of mechatronic systems is described. Furthermore fundamentals of modeling of mechanical, pneumatic, hydraulic, electrical and electronic components are discussed. Finally optimization methods, e. g. adaptive controllers, are presented. In the second part of the lecture basics of development methods as well as the characteristics of the development of mechatronic products are described. A further important item is the presentation of the system concept of mechatronics in comparison to conventional mechanical systems. The contents of the course are explained using examples for mechatronic products in the area of automotive engineering.

Content
Part I: Modeling and optimization (Prof. Bretthauer)

- **Introduction**
- **Architecture of mechatronic systems**
- **Modeling of mechatronic systems**
- **Optimization of mechatronic systems**
- **Perspective**

Part II: Development and design (Prof. Albers)

- **Introduction**
- **Development method for mechatronic products**
- **Examples**

Literature

Course: Introduction into the multi-body dynamics [2162235]

Coordinators: Wolfgang Seemann

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject W+S (p. 44)[MSc-Modul W+S, WPF W+S], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject PT (p. 41)[MSc-Modul PT, WPF PT], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

ECTS Credits 5
Hours per week 3
Term Summer term
Instruction language de

Learning Control / Examinations
Written exam

Optional subject: oral, 30 min.
Major Subject: oral, 20 min.

Conditions None.

Learning Outcomes
Mechanisms, vehicles and industrial robots are examples of multibody systems. For dynamics simulations expressions for kinematical quantities and formulations of equations of motion are required which make it easy to switch from one system to another. Efficient methods are described.
The course is mainly divided in two parts: kinematics on the one hand and different possibilities to derive the equations of motion on the other hand.

Content
The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d'Alembert, principle of virtuel power, Lagrange's equations, Kane's equations, structure of the equations of motion

Literature
Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
de Jal'on, J. G., Bayo, E.: Kinematik and Dynamic Simulation of Multibody System.
Kane, T.: Dynamics of rigid bodies.
Course: ?? [23224]

Coordinators: Wolfgang Menesklou, Menesklou

Part of the modules: Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: ?? [2581963]

Coordinators: Helwig Schmied
Part of the modules: (p. 53)[MSc-Modul 12, WF WR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Fluid Technology [2114093]

Coordinators: Marcus Geimer

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject PT (p. 41)[MSc-Modul PT, WPF PT], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students will be able to

- know and understand physical principles of fluid power systems
- know the current components and their operating mode
- know the advantages and disadvantages of different components
- dimension the components for a given purpose
- calculate simple systems

Content
In the range of hydrostatics the following topics will be introduced:

- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:

- Compressors
- Motors
- Valves
- Pneumatic circuits.

Literature
Scritum for the lecture Fluidtechnik
Institute of Vehicle System Technology
downloadable
Course: Introduction to Microsystem Technology I [2141861]

Coordinators: Arndt Last
Part of the modules: Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM]

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The lecture gives an introduction into the basics of microsystems technology. In analogy to processes employed in fabrication of microelectronics circuits the core technologies as well as materials for producing microstructures and components are presented. Finally, various techniques for Silicon micromachining are explained and illustrated with examples for micro-components and micro-systems.

Content
- Introduction in Nano- and Microtechnologies
- Silicon and processes for fabricating microelectronics circuits
- Basic physics background and crystal structure
- Materials for micromachining
- Processing technologies for microfabrication
- Silicon micromachining
- Examples

Literature
Course: Introduction to Microsystem Technology II [2142874]

Coordinators: Arndt Last

Part of the modules: Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
The lecture gives an introduction into the basics of microsystems technology. In the first part, methods for lithographic pattern transfer are summarized. Then specific techniques such as the LIGA process, micro-machining, and laser-patterning are explained and examples are given. Finally assembly and packaging methods are presented leading into a discussion of entire microsystems.

Content
- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Literature
Course: Grundlagen der Statistik und Wahrscheinlichkeitstheorie [1335]

Coordinators: Dieter Kadelka

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M], (p. 49)[MSc-Modul 08, MM]

ECTS Credits	Hours per week	Term	Instruction language
5 | 2 | Winter term |

Conditions
None.

Learning Outcomes
Content
Course: Fundamentals of Combustion I [2165515]

Coordinators: Ulrich Maas

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral
Duration: 30 min.

Conditions
None

Recommendations
None

Learning Outcomes
Based on the explanation of the fundamental concepts and observed phenomena in combustion, this lecture studies the experimental analysis and the mathematical description of laminar and turbulent flames. The lecture aims at giving insights in the fundamental physico-chemical processes during combustion, in particular with regard to technical combustion systems e.g. engines, gas turbines, furnaces.

Content
Fundamental concepts ans phenomena
Experimental analysis of flames
Conservation equations for laminar flat flames
Thermodynamics of combustion processes
Transport phenomena
Chemical reactions
Chemical kinetics mechanisms
Laminar premixed flames
Laminar diffusion flames

Media
Blackboard and Powerpoint presentation

Literature
Lecture notes,
Course: ?? [23620]

Coordinators: Michael Hübner
Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Advanced Methods in Strength of Materials [2161252]

Coordinators: Thomas Böhlke

Part of the modules:
- Compulsory optional subject FzgT (p. 35) [MSc-Modul FzgT, WPF FzgT],
- Compulsory optional subject ThM (p. 42) [MSc-Modul ThM, WPF ThM],
- Compulsory optional subject W+S (p. 44) [MSc-Modul W+S, WPF W+S],
- Compulsory optional subject E+U (p. 34) [MSc-Modul E+U, WPF E+U],
- Compulsory optional subject PEK (p. 39) [MSc-Modul PEK, WPF PEK],
- Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM],
- Compulsory optional subject PT (p. 41) [MSc-Modul PT, WPF PT],
- Compulsory optional subject M+M (p. 37) [MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- depending on choice according to actual version of study regulations
- Additives as announced

Conditions
- None.

Recommendations
- None.

Learning Outcomes
The students can effectively apply the methods of advanced strength of materials. The students especially master the description of the strength characteristics of materials, the elastic, plastic and the hardening behaviour of metallic materials. The students can apply the failure description by deformation localization, damage or fracture. The students know the basics of bearing structures.

Content
- basics of tensor calculus
- elasticity theory
- application of elasticity: linear elastic fracture mechanics
- application of elasticity: bearing structures
- plasticity theory
- application of plasticity: stability of materials

Literature
Course: ?? [22091211]

Coordinators: Arne Kasten

Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Leadership and Product Development [2145184]

Coordinators: Andreas Ploch

Part of the modules: (p. 53)[MSc-Modul 12, WF WR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam

Conditions
None.

Learning Outcomes
The target of the lecture is to convey the main elements of leadership theories, methods and management development basics as well as the bordering topics of change management, intercultural competences, team work and corporate governance.

Content
- Leadership theories
- Management tools
- Communication as management tool
- Change management
- Management development and MD-Programs
- Assessment center and management audits
- Team work, team development und team roles
- Intercultural competences
- Leadership and ethics, Corporate Governance
- Executive Coaching

Lectures of industrial experts
- MD-program-concepts, Binder-Fröhlich, Daimler AG, ExecutiveManagement Development
- Executive Search, Grünewald, Grünewald-Consulting
Course: Magnetohydrodynamics [2153429]

Coordinators: Leo Bühler
Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral,
Duration: 30 minutes
No auxiliary means

Conditions
none

Learning Outcomes
The lecture gives an introduction to magnetohydrodynamics for students in mechanical engineering, physics or mathematics. Insight is provided into the interaction of electro- and fluid dynamics that is required for modeling of magnetohydrodynamic flows in engineering applications or for phenomena in geo and astrophysics.

Content
- Introduction
- Basics of electro and fluid dynamics
- Exact solutions, Hartmann flow, pump, generator, channel flows
- Inductionless approximation
- Developing flows, change of cross-section, variable magnetic fields
- Alfvén waves
- Stability, transition to turbulence
- Liquid dynamos

Literature
R. Moreau, 1990, Magnetohydrodynamics, Kluwer Academic Publisher
Course: Leadership and Conflict Management (in German) [2110017]

Coordinators: Hans Hatzl
Part of the modules: (p. 53)[MSc-Modul 12, WF WR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

Conditions

• Compact course
• Limited number of participants
• Students of the International Department will be preferred
• Registration in the ifab-office necessary
• Compulsory attendance during the whole lecture

Recommendations

• Knowledge of Work science and economics is useful

Learning Outcomes

• Knowledge about techniques for management and leadership
• Preparation for the management and leadership in the job

Content

1. Introduction to the course
2. Goal definition and goal achievement
3. Management techniques within planning
4. Communication and information
5. Decision-making
6. Leadership and co-operation
7. Self management
8. Conflict management
9. Case studies

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Machine Dynamics [2161224]

Coordinators: Carsten Proppe

Part of the modules:
- Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT],
- Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM],
- Compulsory optional subject W+S (p. 44)[MSc-Modul W+S, WPF W+S],
- Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U],
- Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK],
- Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM],
- Compulsory optional subject PT (p. 41)[MSc-Modul PT, WPF PT],
- Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Written examination (compulsory subject), auxiliary means: own manuscripts
- Oral examination (optional subject), no auxiliary means allowed

Conditions
- none

Recommendations
- none

Learning Outcomes
Application of engineering-oriented calculation methods in order to model and to understand dynamic effects in rotating machinery, e.g., runup, stationary operation of rigid rotors including balancing, transient and stationary behavior of flexible rotors, critical speeds, dynamics of slider-crank mechanisms, torsional oscillations.

Content
1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Literature
- Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
- Dresig, Vulfson: Dynamik der Mechanismen, 1989
Course: Mathematical Methods in Dynamics [2161206]

Coordinators: Carsten Proppe

Part of the modules:
- Compulsory optional subject FzgT (p. 35) [MSc-Modul FzgT, WPF FzgT], Compulsory optional subject ThM (p. 42) [MSc-Modul ThM, WPF ThM], Compulsory optional subject M+M (p. 37) [MSc-Modul M+M, WPF M+M], Compulsory optional subject PEK (p. 39) [MSc-Modul PEK, WPF PEK], Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM], (p. 49) [MSc-Modul 08, MM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- written examination (compulsory subject), auxiliary means: own manuscripts allowed
- oral examination (optional subject) no auxiliary means allowed

Conditions
none

Recommendations
none

Learning Outcomes
The students know the mathematical methods of dynamics precisely. They are able to use the basic mathematical methods for modelling the dynamical behaviour of elastic and rigid bodies.
The students have a basic understanding of the description of kinematics and kinetics of bodies. They also master the alternative formulations based on weak formulations and variational methods and the approximate solution methods for numerical calculations of the moving behaviour of elastic bodies.

Content
Dynamics of continua:
- Concept of continuum, geometry of continua, kinematics and kinetics of continua

Dynamics of rigid bodies:
- Kinematics and kinetics of rigid bodies

Variational principles:
- Principle of virtual work, variational calculations, Principle of Hamilton

Approximate solution methods:
- Methods of weighted residuals, method of Ritz

Applications

Literature

- Lecture notes (available online)
- J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994
- M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993
Course: Mathematical Methods in Strength of Materials [2161254]

Coordinators: Thomas Böhlke

Part of the modules:
- Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT],
- Compulsory optional subject W+S (p. 44)[MSc-Modul W+S, WPF W+S],
- Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM],
- Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK],
- Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM],
- (p. 49)[MSc-Modul 08, MM],
- Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
depending on choice according to actual version of study regulations
Additives as announced

Conditions
None.

Recommendations
None.

Learning Outcomes
The students can effectively and precisely apply the mathematical methods of strength of materials. They master the basic principles of tensor algebra and tensor analysis for a continuum mechanical modelling of materials. They know how to apply methods of continuum mechanics for dimensioning of work pieces.

Content

Tensor algebra
- vectors; basis transformation; dyadic product; tensors of 2nd order
- properties of 2nd order tensors: symmetry, anti-symmetry, orthogonality etc.
- eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order
- tensor algebra in curvilinear coordinate systems
- tensor analysis in curvilinear coordinate systems
- Differentiation of tensor functions

Application of tensor calculus in strength of materials
- kinematics of infinitesimal and finite deformations
- transport theorem, balance equations, stress tensor
- theory of elasticity
- thermo-elasticity
- theory of plasticity

Literature

lecture notes
Course: Mathematical methods of vibration theory [2162241]

Coordinators: Wolfgang Seemann

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], (p. 49)[MSc-Modul 08, MM], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written (compulsory subject), oral (optional subject)

Duration: 3 hours (compulsory subject), 30 minutes (optional subject), 20 minutes (major subject)

Allowed during exam: own scripts, literature (compulsory subject), none (optional subject or major subject)

Conditions
Technische Mechanik III, IV / Engineering Mechanics III, IV

Learning Outcomes
The course presents several mathematical methods to analyze dynamical systems in the time and the frequency domain. In the first part, methods to solve ordinary single differential equations are discussed where attention is focused to non-periodic excitation. Systems of ordinary differential equations are considered next. Also partial differential equations (including the derivation of boundary value problems by Hamilton's principle) are treated. Analytical methods are emphasized but some selected approximate methods are dealt with as well. An introduction into the dynamic stability theory is also given.

Content
Linear, time-invariant, ordinary single differential equations: homogeneous solution; harmonic, periodic and non-periodic excitations; Duhamel's integral; Fourier and Laplace transform; introduction into the theory of distributions; Systems of ordinary differential equations: matrix notation, eigenvalue theory, fundamental matrix, forced vibrations via modal expansion and transition matrix; Introduction into the dynamic stability theory; Partial differential equations: solution in product form, eigenvalue theory, modal expansion using Ritz series; Variational methods, Hamilton's principle, boundary value problems representing vibrating continua; Perturbation methods

Literature
Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
Course: Mathematical Methods in Fluid Mechanics [2154432]

Coordinators: Torsten Schenkel

Part of the modules: Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM], Compulsory optional subject FzgT (p. 35) [MSc-Modul FzgT, WPF FzgT], (p. 49) [MSc-Modul 08, MM], Compulsory optional subject E+U (p. 34) [MSc-Modul E+U, WPF E+U], Compulsory optional subject ThM (p. 42) [MSc-Modul ThM, WPF ThM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written

Duration: 3 hours

Aux. means: formules, pocket calculator

Conditions

None.

Learning Outcomes

The students can apply the mathematical methods of Dynamics effectively and precise. They're able to use the basic mathematical methods for analytical and numerical modelling of the non-linear behaviour moving fluids.

The students have a basic understanding of the procedures to describe, simplify and solve the Navier-Stokes equations by analytical integration, linearisation and important approximate solution methods (Finite Differences, Finite Volumes) for numerical calculations of the behaviour of flows.

In the accompanying tutorial 21433 the application of the methods can be trained.

Content

1.2 Regions of Flow

4.1.2 Linearisation

4.2.3 Finite Differences Method, Convergence, Stability

4.2.4 Finite Volume Method

5. Fluid Mechanical Applications

3.2.2 Reynolds Equations

3.2.3 Basic Turbulence Modelling

Numbering according to Lehrbuch Strömungsmechanik

Literature

Course: Mathematical Methods in Structural Mechanics [2162280]

Coordinators:
Thomas Böhlke

Part of the modules:
(p. 49) [MSc-Modul 08, MM], Compulsory optional subject W+S (p. 44) [MSc-Modul W+S, WPF W+S], Compulsory optional subject ThM (p. 42) [MSc-Modul ThM, WPF ThM], Compulsory optional subject PEK (p. 39) [MSc-Modul PEK, WPF PEK], Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM], Compulsory optional subject M+M (p. 37) [MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
depending on choice according to actual version of study regulations
Additives as announced

Conditions
None.

Recommendations
None.

Learning Outcomes
The students can effectively and precisely apply the mathematical methods of structural mechanics. They master the basic principles of variational calculus and the variational principles of mechanics. They know different homogenization methods in order to describe materials with microstructure.

Content
Basics of variational calculus
- functionals; Frechet-differential; Gateaux-differential; maximum or minimum problems
- lemma of variational calculus and Lagrange delta-process; Euler-

Lagrange-equations
Applications: Principals of continuaus mechanics
- variational principals in mechanics; variational formulierung of boundary value problem of elastostatic
- method of Ritz; finite element method

Applications: Homogenization methods for materials with microstructure
- mesoscopic and macroskopic stress and strain measures
- Homogenization of elastic properties I: elementary Voigt and Reuss bounds; Hashin-Shtrikman bounds
- Homogenization of elastic properties II: estimation of effective elastic properties

Literature
Vorlesungsskript
Klingbeil, E.: Variationsrechnung, BI Wissenschaftsverlag, 1977
Course: Laboratory mechatronics [2105014]

Coordinators: Albert Albers, Georg Bretthauer, Carsten Proppe, Christoph Stiller

Part of the modules:
- Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM]
- Compulsory optional subject FzgT (p. 35) [MSc-Modul FzgT, WPF FzgT]
- Compulsory optional subject E+U (p. 34) [MSc-Modul E+U, WPF E+U]
- Compulsory optional subject M+M (p. 37) [MSc-Modul M+M, WPF M+M]
- Compulsory optional subject PEK (p. 39) [MSc-Modul PEK, WPF PEK]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Certification of participation or oral examination depending on the “Studienplan” resp. “Prüfungs- und Studienordnung (SPO)” / IPEK: partial examination with grade

Conditions
None.

Learning Outcomes
A manipulator as an exemplary mechatronic system is used to practise the contents of the stage II - lectures on mechatronics. The laboratory course comprises simulation, bus communication, measurement instrumentation, control engineering and programming. Instead of separate experiments the laboratory course continuously handles with the several aspects of the manipulator system. The final aim is to integrate the different subsystems to a working compound system.

Content
- Part I
 - Control, programming and simulation of robots
 - CAN-Bus communication
 - Image processing / machine vision
 - Dynamic simulation of robots in ADAMS

- Part II
 - Solution of a complex problem in team work

Literature
- Manuals for the laboratory course on Mechatronics
Course: Measurement Instrumentation Lab [2138328]

Coordinators: Christoph Stiller, Philip Lenz

Part of the modules: (p. 48)[MSc-Modul 07, FP]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Colloquia

Conditions
Basic studies and preliminary examination; basic lectures in automatic control

Learning Outcomes
The laboratory complements the course “Introduction to Measurement and Control”. While the course is organized into principles and subsystems, the laboratory presents complete measurement systems and methods for the most relevant industrial measurands.

Content
A Signal recording:
- measurement of temperature
- measurement of lengths
B Signal pre-processing:
- bridge circuits and principles of measurement
- analog/digital transducers
C Signal processing:
- measuring stochastic signals
D Complete systems:
- system identification
- inverse pendulum
- path control of a robot

Literature
Instructions to the experiments are available on the institute's website
Course: ?? [23113]

Coordinators: Fernando Puente

Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Modelling of Microstructures [2183702]

Coordinators: Britta Nestler

Part of the modules: Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject W+S (p. 44)[MSc-Modul W+S, WPF W+S]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
We regularly hand out exercise sheets. The individual solutions will be corrected.
Exam: oral 30 minutes or written.

Conditions
None.

Learning Outcomes
The students are introduced into the fundamentals of liquid-solid and solid-solid phase transformations. We discuss microstructures such as dendrites, eutectics and peritectics and consider the specific physics of heat and mass transport combined with the particular phase transformation. We study polycrystalline grain structures and examine the motion of interfaces and the effect of various external fields. Next, we learn the method of phase-field modelling for simulation of microstructure formation processes. As an extension of the phase-field modelling for phase transitions, we get to know the coupling with other field variables. The course will be combined with practical exercises.

Content
The course consists of a lecture and exercise classes. The aim is an introduction to the simulation of phase transformations and microstructure formation under the influence of different physical quantities. Contents are:
- fundamentals of phase transformation and microstructure evolution
- polycrystalline grain structures
- heat and mass diffusion
- phase-field modelling and simulation
- extension of phase-field modelling to include other physical fields

Media
Black board and slides.

Literature
Fundamentals of Solidification, Kurz and Fisher
Theory of Solidification, Davis.
The science of crystallization: microscopic interfacial phenomena, W. A. Tiller -> Only special reading
Transport phenomena in metallurgy, G.H. Geiger and D. R. Poirier
Transport Phenomena, R. Bird, W. Stewart, E. Lightfoot
Kinetics of Materials , W. Craig Carter
Physical Metallurgy, Porter and Easterling
Construction of binary phase diagrams, R. Haansen
Introduction to the thermodynamics of materials, David. R. Gaskell
Numerical recipes in C
Course: Modelling and Simulation [2185227]

Coordinators: Carsten Proppe, Kai Furmans, Christoph Stiller, Balazs Pritz

Part of the modules: Modeling and Simulation (p. 46) [MSc-Modul 05, MS]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Master students: written exam
Seminar note by colloquium with presentation

Conditions
none

Recommendations
none

Learning Outcomes
The student:

- has an overview of modelling and simulation techniques typical in mechanical engineering,
- obtains the ability to carry out simulation studies starting from the formulation of problems by concepts, implementation, verification and validation,
- exercises complex simulation studies.

Content
Introduction: Overview, concept formation, simulation studies, time/event-discrete models, event-oriented/process orientated/transaction-oriented view, typical model classes (operation/maintenance, storekeeping, loss-susceptible systems)
Time-continuous models with concentrated parameters, model characteristics and model analysis Numerical treatment of ordinary differential equations and differential-algebraic sets of equations coupled simulations with concentrated parameters
Time-continuous models with distributed parameters, description of systems by means of partial differential equations, model reduction, numerical solution procedures for partial differential equations

Media
presentations

Literature
None.

Remarks
none
Course: Modelling and Simulation [2183703]

Coordinators: Britta Nestler

Part of the modules: Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject W+S (p. 44)[MSc-Modul W+S, WPF W+S]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

We regularly handout exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.

written examination: 90 minutes

Conditions

None.

Learning Outcomes

The students learn fundamental algorithms and numerical methods of particular importance for materials simulations. The course introduces solution techniques for dynamical systems and partial differential equations. The methods are applied to describe heat and mass diffusion processes and to model microstructure formation (e.g. phase-field method). The next aim is to learn adaptive and parallel algorithms. The students will get familiar with fundamental concepts of high performance computations. Practical experience is obtained by the integrated exercises.

Content

The course gives an introduction to modelling and simulation techniques.

The following topics are included:

- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises

Media

Slides and black board. The slides will be provided as a manuscript for the course.

Literature

Course: Modern Physics for Engineers [2400451]

Coordinators: Bernd Pilawa

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject W+S (p. 44)[MSc-Modul W+S, WPF W+S], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

ECTS Credits 4
Hours per week 2
Term Summer term
Instruction language de

Learning Control / Examinations
Conditions None.

Learning Outcomes
Content
Course: Nanotechnology with Clusterbeams [2143876]

Coordinators: Jürgen Gspann

Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- written examination
- presence in more than 70% of the lectures
- Duration: 1 h

Conditions None.

Learning Outcomes
Nanotechnology is presented on the basis of a technology for nano- and microstructuring by accelerated nanoparticles (clusters), mainly in view of nanomechanics.

Content
- Nanotechnology in biology
- Nanosystemstechnology
- Cluster beam generation, ionisation and acceleration; cluster properties
- Structure generation using accelerated metal clusters
- Structuring via gas cluster impact; reactive accelerated cluster erosion (RACE)
- Atomic force microscopy of impact structures; nanotribology
- Comparison with femtosecond laser machining (Winter term only)
- Simulations; Fullerene synthesis, impact structures, visionary nanomachinery

Literature
Foil copies with short commentaries are distributed during the lectures.
Course: Numerical Mathematics for Engineers [1874]

Coordinators: Nicolas Neuss, Neuß

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM] (p. 49)[MSc-Modul 08, MM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: ?? [24631]

Coordinators: Spiecker, Döhmann
Part of the modules: (p. 53)[MSc-Modul 12, WF WR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: ?? [24574]

Coordinators: Bittner
Part of the modules: (p. 53)[MSc-Modul 12, WF WR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Photovoltaics [2130935]

Coordinators: Michael Powalla
Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: [2142890]

Coordinators: Peter Gumbsch, Arndt Last, A. Nesterov-Müller
Part of the modules: Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM], Compulsory optional subject FzgT (p. 35) [MSc-Modul FzgT, WPF FzgT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Physical basics of laser technology [2181612]

Coordinators:
Johannes Schneider

Part of the modules:
(p. 52)[MSc-Modul 11, WF NIE], Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject W+S (p. 44)[MSc-Modul W+S, WPF W+S], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject PT (p. 41)[MSc-Modul PT, WPF PT], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

ECTS Credits
4

Hours per week
2

Term
Winter term

Instruction language

Learning Control / Examinations
oral examination (30 min)

no tools or reference materials

Conditions
None.

Recommendations
None.

Learning Outcomes
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focus on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned.

An excursion to the laser laboratory of the Institute for Applied Materials (IAM-AWP) at the KIT-campus north will be offered.

Content
physical basics of laser technology

laser beam sources (solid state, diode, gas, liquid and other lasers)

beam properties, guiding and shaping

lasers in materials processing

lasers in measurement technology

lasers for medical applications

safety aspects

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
Course: Product Lifecycle Management [2121350]

Coordinators: Jivka Ovtcharova

Part of the modules:
- Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM]
- Compulsory optional subject FzgT (p. 35) [MSc-Modul FzgT, WPF FzgT]
- Compulsory optional subject PT (p. 41) [MSc-Modul PT, WPF PT]
- Compulsory optional subject M+M (p. 37) [MSc-Modul M+M, WPF M+M]
- Compulsory optional subject PEK (p. 39) [MSc-Modul PEK, WPF PEK]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written examination
Duration: 1.5 hours

Auxiliary Means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The goal of PLM lecture is to provide an overview of management and organizational approach to product lifecycle management. The students:

- know the management concept of PLM, its objectives and are able to highlight the economic benefits of the PLM concept
- know provider of PLM solutions and can represent the current market situation
- Understand the need for an integrated and cross-departmental business process - from planning, portfolio construction and return of customer information, from the use phase to maintenance and recycling of products
- know the processes and functions needed to support the entire product life cycle
- become aware of the main operating software systems (PDM, ERP, SCM, CRM) and the mainstreaming of these systems
- develop techniques to successfully introduce the concept of Management PLM.

Content
Product Lifecycle Management (PLM) is an approach to the holistic and cross-company management and control of all product-related processes and data throughout the life cycle along the extended supply chain - from design and production to sales, to the dismantling and recycling.

Product Lifecycle Management is a comprehensive approach for effective and efficient design of the product life cycle. Based on all product information, which comes up across the entire value chain and across multiple partners, processes, methods and tools are made available to provide the right information at the right time, quality and the right place.

The course covers:

- A consistent description of all business processes that occur during the product life cycle (development, production, sales, dismantling, ...)
- the presentation of methods for the performance of the PLM business processes,
- explaining the most important corporate information systems to support the life cycle (PDM, ERP, SCM, CRM systems) to sample the software manufacturer SAP
Literature
Lecture slides.

Course: Product Development - Methods of Product Development [2146176]

Coordinators: Albert Albers, Norbert Burkardt, Dipl.-Ing. N. Burkardt
Part of the modules: Product Development (p. 47)[MSc-Modul 06, PE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written exam, each semester.
Duration: 150 minutes.
Auxiliary Means: German dictionary (books only), Calculator

Conditions
Authorisation by the Examination Office.

Recommendations

Learning Outcomes
The lecture mediates fundamental knowledge of systematic product development. It is the prime goal of the lecture to make all activities within the process chain transparent. This ranges from finding a concept all the way to the final product. Thus efficient applicable methods are discussed in the lecture for the support of solving these tasks. On the basis of practical examples creativity methods for finding a concept and a solution, concrete design guidelines for the draft and along with this applicable methods of quality assurance, are introduced. Questions of generation of costs and responsibility for costs are discussed within the design process.

Content
Basics of Product Development: Basic Terms, Classification of the Product Development into the industrial environment, generation of costs / responsibility for costs
Concept Development: List of demands / Abstraction of the Problem
Definition / Creativity Techniques / Evaluation and selection of solutions
Drafting: Prevailing basic rules of Design / Design Principles as a problem oriented accessory
Rationalization within the Product Development: Basics of Development Management/
Simultaneous Engineering and Integrated Product Development/Development of Product Lines and Modular Construction Systems
Quality Assurance in early Development Phases: Methods of Quality Assurance in an overview/QFD/FMEA

Media

Literature
Lecture documents
Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997
Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag, 1993

Remarks
This lecture is the basis for the main subject Integrated Product Development, which is offered as a specialisation.
Course: Product Development - Manufacturing and Material Technology [2150679]

Coordinators: Volker Schulze
Part of the modules: Product Development (p. 47)[MSc-Modul 06, PE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>6</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written exam
Conditions
None.

Learning Outcomes
Main goal of this lecture is merging the contents of teaching for the topics of: methods, conception, idea generation (IPEK), workpiece design and dimensioning (IWK1), production planning, manufacturing (WBK). This lecture is accordingly split into the lectures 'Development' by the IPEK, 'Material Science' by the IWK1 and 'Manufacturing' by the WBK. A focus is set on the interfaces between the separate lecture topics and especially the interaction between them is highlighted. Content of the lecture is the complete product development process. According to the institute's orientation the wbk covers the topic of production within the lecture 'Manufacturing'.

Content
1. Introduction
2. primary shaping
3. Forming
4. Cutting
5. Joining
6. Coating
7. Heat- and surface treatment
8. Quality and process engineering
9. Process selection
10. Process selection
11. Process selection
12. Process chains
13. Summary

Literature
Lecture notes
Course: Quality Management [2149667]

Coordinators: Gisela Lanza
Part of the modules: (p. 53) [MSc-Modul 12, WF WR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral exams: Mechanical Engineering (Maschinenbaudiplom); Erasmus and Industrial Engineering (Wi.-Ing.): written examination

Conditions

None.

Learning Outcomes

The student

• has knowledge of the content covered by the lecture,
• understands the quality philosophies covered by the lecture,
• is able to apply the QM tools and methods he/she has learned about in the lecture to new problems from the context of the lecture,
• is able to analyse and evaluate the suitability of the methods, procedures and techniques he/she has learned about in the lecture for a specific problem.

Content

Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service-related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

1. The term “quality”
2. Total Quality Management (TQM) and Six Sigma
3. Universal methods and tools
4. QM during early product stages – product definition
5. QM during product development and in procurement
6. QM in production – manufacturing metrology
7. QM in production – statistical methods
8. QM in service
9. Quality management systems
10. Legal aspects of QM

Literature

Lecture notes
Course: ?? [22938]

Coordinators: Bernhard Hochstein
Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Simulation of production systems and processes [2149605]

Coordinators: Kai Furmans, Volker Schulze, Gert Zülch

Part of the modules: Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject PT (p. 41)[MSc-Modul PT, WPF PT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Conditions
none

Recommendations
none

Learning Outcomes
The student knows different possibilities of simulation technology within the production technology and is able to use those methods. They range from the modeling of production and work systems down to simulation of single manufacturing processes.

Content
The lecture is focused on the various aspects and possibilities of the usage of simulation technologies within the production technology. First the definition of the terminology and the basic knowledge is pointed out. In the chapter “Design of experiments and validation” the procedure of a simulation study with the preparation work, the selection of the simulation tools, the validation and the analysis of the simulation runs will be discussed. The chapter “Statistical basics” deals with probability distribution and random numbers as well as the use of Monte-Carlo-simulations in practical exercises. The chapter “Simulation of plant, machinery and processes” addresses the simulative analysis of single manufacturing processes via the examination of machine tools down to the modeling of a digital plant with the focus on the production facility. The chapter “Simulation of work systems” in addition considers the personnel integrated and orientated simulation. Here the assembly systems and the enterprise orientated simulation is considered. Finally the specifications of the material flow simulation for production systems are examined.

Literature
none

Remarks
The lecture starts in winter term 2011/12
Course: ?? [24139]

Coordinators: Mohammad Abdullah Al Faruque, Jörg Henkel, Henkel, Al Faruque

Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: ?? [2161210]

Coordinators: Kai Furmans, Carsten Proppe

Part of the modules: Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], (p. 49)[MSc-Modul 08, MM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Flows with chemical reactions [2153406]

Coordinators: Andreas Class
Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

ECTS Credits	Hours per week	Term	Instruction language
4 | 2 | Winter term | de

Learning Control / Examinations
oral examination
Duration: 30 min
Lecture
Conditions
None.

Learning Outcomes
Chemical reactions of liquid or gaseous media are tightly coupled to the underlying fluid flow. Often they even drive the flow.

Some typical examples are combustion (laminar and turbulent gas premixed or diffusion flames), the processes within the industrial reactors of chemical industry, the directional polymerization of plastics, the burning of a cigar, the high temperature synthesis of new materials, and also the explosion of a star as a supernova.

Content
In the lecture we mainly consider problems, where chemical reaction is confined to a thin layer. The problems are solved analytically or they are at least simplified allowing for efficient numerical solution procedures. We apply simplified chemistry and focus on the fluid mechanic aspects of the problems.

Literature
Lecture
Buckmaster, J.D.; Ludford, G.S.S.: Lectures on Mathematical Combustion, SIAM 1983
Course: Systematic Materials Selection [2174576]

Coordinators: Alexander Wanner

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject W+S (p. 44)[MSc-Modul W+S, WPF W+S], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral; 20 - 30 Minutes

Conditions
Basic knowledge in materials science and engineering, mechanics and mechanical design

Learning Outcomes
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered: the status of materials selection in mechanical design and product development; the most important classes of materials and their property profiles;

Literature
Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.); Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
Course: ?? [23605]

Coordinators: KlausD. Müller-Glaser
Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Computer Engineering [2106002]

Coordinators: Georg Bretthauer

Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written examination

Duration: 2 hours (compulsory subject)

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students possess essential knowledge about information processing in digital computers. Based on information representation and calculations of complexity, students are capable to design algorithms efficiently. The students are able to apply the knowledge about efficient algorithm design to important numerical computation methods in mechanical engineering. Students understand the importance of software quality in mechanical engineering and know basic concepts and important measures of quality assurance.

Content

Introduction: definitions, basic concepts, introductory examples

Information coding on finite automata: numbers, characters, commands, examples

Algorithm design: definitions, complexity of algorithms, complexity classes P and NP, examples

Sorting algorithms: relevance, algorithms, simplifications, examples

Software quality assurance: terms and measures, errors, phases of quality assurance, constructive measures, analytical measures, certification

Lectures are complemented by an exercice course.

Literature

Vorlesungsskript (Internet)

Course: Integrated Information Systems for engineers [2121001]

Coordinators: Sven Rogalski, Jivka Ovtcharova

Part of the modules:
- Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM]
- Compulsory optional subject FzgT (p. 35) [MSc-Modul FzgT, WPF FzgT]
- Compulsory optional subject PT (p. 41) [MSc-Modul PT, WPF PT]
- Compulsory optional subject M+M (p. 37) [MSc-Modul M+M, WPF M+M]
- Compulsory optional subject PEK (p. 39) [MSc-Modul PEK, WPF PEK]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination, Duration: 25 min., Auxiliary Means: none

Conditions
None

Recommendations
None

Learning Outcomes
Students should gain deeper knowledge about structures and functions of IT-systems applied in product development (engineering and manufacturing). They achieve general knowledge about the relevance of IT-support in engineering tasks.

Students know general approaches for introducing IT systems in existing Enterprise structures and have detail knowledge about “evolutionary process models of PLM” for a successful of IT-Systems installation.

Content
- Information, information systems, information management
- CAP- and CAM-systems
- PPS- and ERP- systems
- PDM-Systems
- Virtual product configuration
- Installation of technical information systems in existing enterprise structures

Literature
Lecture slides
Course: Vibration Theory [2161212]

Coordinators: Wolfgang Seemann

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject PT (p. 41)[MSc-Modul PT, WPF PT], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written exam
If course is chosen as optional subject or part of major subject:
Oral exam, 30 minutes (optional subject), 20 minutes (major subject), no means

Conditions
EM III, EM IV

Learning Outcomes
The course gives an introduction into the vibration theory of linear systems. First, general vibration in form of harmonic signals is considered. One degree of freedom systems are treated in detail for free and forced vibration, especially for harmonic, periodic and arbitrary excitation. This is the foundation for systems with many degrees of freedom as these may be transformed with the help of modal coordinates. For multiple dof systems the eigenvalue problem is solved. Then forced vibration is treated. Finally, wave propagation problems and eigenvalue problems for systems with distributed parameters are discussed. As an application an introduction into rotor dynamics is given.

Goal of the course is to see the similarities for systems with one dof and with multiple dof. Besides typical phenomena like resonance a systematic mathematical approach to vibration problems and an interpretation of the mathematical results should be obtained.

Content
Concept of vibration, superposition of vibration with equal and with different frequencies, complex frequency response.

Vibration of systems with one dof: Free undamped and damped vibration, forced vibration for harmonic, periodic and arbitrary excitation. Excitation of undamped vibration in resonance.

Vibration of systems with distributed parameters: Partial differential equations as equations of motion, wave propagation, d’Alembert’s solution, Ansatz for separation of time and space, eigenvalue problem, infinite number of eigenvalues and eigenfunctions.

Introduction to rotor dynamics: Laval rotor in rigid and elastic bearings, inner damping, Laval rotor in anisotropic bearings, synchronous and asynchronous whirl, rotors with asymmetric shaft.

Literature
Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978
Hagedorn, Otterbein: Technische Schwingungslehre, Bd 1 and Bd 2, Berlin, 1987
Course: Mathematical methods of vibration theory (Tutorial) [2162242]

Coordinators: Wolfgang Seemann, N.N.
Part of the modules: (p. 49)[MSc-Modul 08, MM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
Technische Mechanik III, IV / Engineering Mechanics III, IV

Learning Outcomes

Deepen understanding of the course by solving corresponding problems

Content

Seven tutorials with examples of the contents of the course

Literature

Riener, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
Course: Tutorial in Mathematical Methods of Fluid Mechanics [2154433]

Coordinators: Torsten Schenkel

Part of the modules: (p. 49)[MSc-Modul 08, MM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
none (exam of 2154432)

Conditions
None.

Learning Outcomes
The tutorial to lecture 2154432 in which the application of the methods can be trained.

The students can apply the mathematical methods of Dynamics effectively and precise. They're able to use the basic mathematical methods for analytical and numerical modelling of the non linear behaviour moving fluids.

The students have a basic understanding of the procedures to describe, simplify and solve the Navier-Stokes equations by analytical integration, linearisation and important approximate solution methods (Finite Differences, Finite Volumes) for numerical calculations of the behaviour of flows.

In the accompanying tutorial 2154433 the application of the methods can be trained.

Content
1.2 Regions of Flow

4.1.2 Linearisation
4.2.3 Finite Differences Method, Convergence, Stability
4.2.4 Finite Volume Method
5. Fluid Mechanical Applications
3.2.2 Reynolds Equations
3.2.3 Basic Turbulence Modelling

Numbering according to Lehrbuch Strömungsmechanik

Literature

Course: [2181613]

Coordinators: Johannes Schneider
Part of the modules: (p. 52)[MSc-Modul 11, WF NIE]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination (30 min) with lecture
2181612 - Physical basics of laser technology

no tools or reference material

Conditions
lecture 2181612 - Physical basics of laser technology

Learning Outcomes
Deepening of the lecture by examplary calculations

Content
Examplary calculations
Course: ?? [2577900]

Coordinators: Emily Bünn, Hagen Lindstädt, Michael Wolff, Lindstädt, Wolff, Bün

Part of the modules: (p. 53)[MSc-Modul 12, WF WR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
Content
Course: Heat and mass transfer [22512]

Coordinators: Henning Bockhorn

Part of the modules: Compulsory optional subject FzgT (p. 35)[MSc-Modul FzgT, WPF FzgT], Compulsory optional subject ThM (p. 42)[MSc-Modul ThM, WPF ThM], Compulsory optional subject E+U (p. 34)[MSc-Modul E+U, WPF E+U], Compulsory optional subject PEK (p. 39)[MSc-Modul PEK, WPF PEK], Compulsory optional subject UMM (p. 32)[MSc-Modul UMM, WPF UMM], Compulsory optional subject M+M (p. 37)[MSc-Modul M+M, WPF M+M]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Scientific computing for Engineers [2181738]

Coordinators: Daniel Weygand, Peter Gumbsch

Part of the modules:
- Compulsory optional subject UMM (p. 32) [MSc-Modul UMM, WPF UMM]
- Compulsory optional subject ThM (p. 42) [MSc-Modul ThM, WPF ThM]
- Compulsory optional subject W+S (p. 44) [MSc-Modul W+S, WPF W+S]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
compulsory preconditions: none

Learning Outcomes
The student learns the programming language C++ used for computational material science on parallel platforms. Numerical methods for the solution of differential equations are learned and used.

Content
1. Introduction: why scientific computing
2. computer architectures
3. Introduction to Unix/Linux
4. Foundations of C++
 * programm organization
 * data types, operator, control structures
 * dynamic memory allocation
 * functions
 * class
 * OpenMP parallelization
5. numeric /algorithms
 * finite differences
 * MD simulations: 2nd order differential equations
 * algorithms for particle simulations
 * solver for linear systems of eqns.

Literature
[1] C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München

Literature Numerik:
[1] Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
5 Major Fields
SP 01: Advanced Mechatronics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105012</td>
<td>K</td>
<td>Adaptive Control Systems (p. 178)</td>
<td>G. Bretthauer</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106004</td>
<td>K</td>
<td>Computational Intelligence I (p. 241)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2106020</td>
<td>K</td>
<td>Computational Intelligence III (p. 243)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2138326</td>
<td>K</td>
<td>Measurement II (p. 407)</td>
<td>C. Stiller</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162216</td>
<td>K</td>
<td>Computerized Multibody Dynamics (p. 488)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161219</td>
<td>K</td>
<td>Theoretical description of mechatronic systems (p. 529)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147175</td>
<td>E</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2105015</td>
<td>E</td>
<td>Computational Intelligence II (p. 242)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2137309</td>
<td>E</td>
<td>Digital Control (p. 247)</td>
<td>M. Knoop</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2113816</td>
<td>E</td>
<td>Vehicle Mechatronics I (p. 290)</td>
<td>D. Ammon</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138340</td>
<td>E</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161252</td>
<td>E</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>23144</td>
<td>E</td>
<td>Informationstechnik in der industriellen Automatisierung (p. 347)</td>
<td>P. Bort, Bort</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2105022</td>
<td>E</td>
<td>Informationsverarbeitung in mechatronischen Systemen (p. 348)</td>
<td>M. Kaufmann</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2118083</td>
<td>E</td>
<td>IT for facility logistics (p. 354)</td>
<td>F. Thomas</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2138341</td>
<td>E</td>
<td>Cognitive Automobiles - Laboratory (p. 359)</td>
<td>C. Stiller, M. Lauer, B. Kitt</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2137304</td>
<td>E</td>
<td>Correlation Methods in Measurement and Control (p. 366)</td>
<td>F. Mesch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2137308</td>
<td>E</td>
<td>Machine Vision (p. 381)</td>
<td>C. Stiller, M. Lauer</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2161206</td>
<td>E</td>
<td>Mathematical Methods in Dynamics (p. 393)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181710</td>
<td>E</td>
<td>Mechanics in Microtechnology (p. 402)</td>
<td>C. Eberl, P. Gru-ber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>24154</td>
<td>E</td>
<td>Human Robot Cooperation (p. 406)</td>
<td>Burghart</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2142881</td>
<td>E</td>
<td>Microactuators (p. 411)</td>
<td>M. Kohl</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2141865</td>
<td>E</td>
<td>Novel actuators and sensors (p. 424)</td>
<td>M. Kohl, M. Sommer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2137306</td>
<td>E</td>
<td>Lab Computer-aided methods for measurement and control (p. 450)</td>
<td>C. Stiller, P. Lenz</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146194</td>
<td>E</td>
<td>Mobile Robot Systems Lab (p. 452)</td>
<td>A. Albers, M. Fri-etsch</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>24152</td>
<td>E</td>
<td>Robotic I (p. 495)</td>
<td>R. Dillmann, K. Welke, Dillmann, Welker, Do</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>23109</td>
<td>E</td>
<td>Signals and Systems (p. 509)</td>
<td>F. Puente</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2141864</td>
<td>E</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I (p. 228)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>ID</td>
<td>Cat</td>
<td>Course</td>
<td>Lecturer</td>
<td>h</td>
<td>CP</td>
<td>Term</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>----------</td>
<td>---</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>2142883</td>
<td>E</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II (p. 229)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2142879</td>
<td>E</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III (p. 230)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 02: Powertrain Systems

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113077</td>
<td>K</td>
<td>Drive Train of Mobile Machines (p. 186)</td>
<td>M. Geimer</td>
<td>21</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146180</td>
<td>K</td>
<td>Powertrain Systems Technology A: Automotive Systems (p. 187)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145150</td>
<td>K</td>
<td>Powertrain Systems Technology B: Stationary Machinery (p. 188)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2163111</td>
<td>K</td>
<td>Adaptive Control Systems (p. 178)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2105012</td>
<td>E</td>
<td>Applied Tribology in Industrial Product Development (p. 185)</td>
<td>G. Bretthauer, W. Burger</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2145181</td>
<td>E</td>
<td>Introduction into the multi-body dynamics (p. 265)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2117500</td>
<td>E</td>
<td>Energy efficient intralogistic systems (p. 273)</td>
<td>F. Schönung</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2187083</td>
<td>E</td>
<td>IT for facility logistics (p. 354)</td>
<td>F. Thomas</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2145184</td>
<td>E</td>
<td>Leadership and Product Development (p. 375)</td>
<td>A. Ploch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161244</td>
<td>E</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Proppe</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2141865</td>
<td>E</td>
<td>Novel actuators and sensors (p. 424)</td>
<td>M. Kohl, M. Sommer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2146194</td>
<td>E</td>
<td>Mobile Robot Systems Lab (p. 452)</td>
<td>A. Albers, M. Frietsch</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>23311</td>
<td>E</td>
<td>Electrical Powertrains in Practice (p. 457)</td>
<td>M. Braun, Braun</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173562</td>
<td>E</td>
<td>Failure Analysis (p. 500)</td>
<td>K. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2150683</td>
<td>E</td>
<td>Control engineering (p. 518)</td>
<td>C. Gönnheimer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146193</td>
<td>E</td>
<td>Strategic Product Planing (p. 520)</td>
<td>A. Siebe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146192</td>
<td>E</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181711</td>
<td>E</td>
<td>Failure of structural materials: deformation and fracture (p. 565)</td>
<td>P. Gumbsch, O. Kraft, D. Weygand</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173570</td>
<td>E</td>
<td>Materials and mechanical loads in the power train: engines, gearboxes and drive sections (p. 574)</td>
<td>J. Hoffmeister</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>23321</td>
<td>E</td>
<td>(p. 336)</td>
<td>M. Doppelbauer</td>
<td>2+1</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2133101</td>
<td>E</td>
<td>Combustion Engines A with tutorial (p. 561)</td>
<td>U. Spicher</td>
<td>6</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2134135</td>
<td>E</td>
<td>Combustion Engines B with Tutorial (p. 562)</td>
<td>U. Spicher</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2186126</td>
<td>E</td>
<td>Automobile and Environment (p. 218)</td>
<td>H. Kubach, U. Spicher, U. Maas, H. Wirbser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions: none

Recommendations: Recommended Courses:
- 2147175 CAE-Workshop

Remarks:
SP 03: Work Science

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2109026</td>
<td>KP</td>
<td>Work Science (Lecture and Exercises; in German) (p. 198)</td>
<td>G. Zülch</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2109033</td>
<td>K</td>
<td>Work Science Laboratory Course (in German) (p. 200)</td>
<td>G. Zülch, P. Stock</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2109025</td>
<td>K</td>
<td>Product Ergonomics (in German) (p. 462)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110038</td>
<td>E</td>
<td>Computer-Supported Operations Planning (in German) (p. 192)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109024</td>
<td>E</td>
<td>Occupational Safety and Labour Legislation (in German) (p. 194)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2109030</td>
<td>E</td>
<td>Occupational Health and Safety Management (in German) (p. 196)</td>
<td>G. Zülch</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2110037</td>
<td>E</td>
<td>Occupational Safety and Environmental Protection (in German) (p. 344)</td>
<td>R. von Kiparski</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145184</td>
<td>E</td>
<td>Leadership and Product Development (p. 375)</td>
<td>A. Ploch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110017</td>
<td>E</td>
<td>Leadership and Conflict Management (in German) (p. 386)</td>
<td>H. Hatzl</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109034</td>
<td>E</td>
<td>Planning of Assembly Systems (in German) (p. 441)</td>
<td>E. Haller</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2109028</td>
<td>E</td>
<td>Industrial Engineering I (in German) (p. 464)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110036</td>
<td>E</td>
<td>Process Design and Industrial Engineering (p. 476)</td>
<td>S. Stowasser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117061</td>
<td>E</td>
<td>Safety engineering (p. 508)</td>
<td>H. Kany</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146179</td>
<td>E</td>
<td>Technical Design in Product Development (p. 533)</td>
<td>M. Schmid, Dr. -Ing. Markus Schmid</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109042</td>
<td>E</td>
<td>Introduction to Industrial Production Economics (p. 343)</td>
<td>S. Dürrschnabel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 04: Automation Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105012</td>
<td>K</td>
<td>Adaptive Control Systems (p. 178)</td>
<td>G. Bretthauer</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106005</td>
<td>K</td>
<td>Automation Systems (p. 217)</td>
<td>M. Kaufmann</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2106004</td>
<td>K</td>
<td>Computational Intelligence I (p. 241)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2137309</td>
<td>K</td>
<td>Digital Control (p. 247)</td>
<td>M. Knoop</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2106031</td>
<td>K</td>
<td>Experimental Modelling (p. 280)</td>
<td>L. Gröll</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2105024</td>
<td>K</td>
<td>Modern Concepts of Control (p. 418)</td>
<td>L. Gröll, Groell</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2105015</td>
<td>E</td>
<td>Computational Intelligence II (p. 242)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106020</td>
<td>E</td>
<td>Computational Intelligence III (p. 243)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2113816</td>
<td>E</td>
<td>Vehicle Mechatronics I (p. 290)</td>
<td>D. Ammon</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>F056</td>
<td>E</td>
<td>Industrial Automation Technology (p. 342)</td>
<td>NN, Industrie</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2137304</td>
<td>E</td>
<td>Correlation Methods in Measurement and Control (p. 366)</td>
<td>F. Mesch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2137308</td>
<td>E</td>
<td>Machine Vision (p. 381)</td>
<td>C. Stiller, M. Lauer</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2105014</td>
<td>E (P)</td>
<td>Laboratory mechatronics (p. 403)</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>24648</td>
<td>E</td>
<td>Men-Machine-Systems in Automation Technology (p. 405)</td>
<td>E. Peinsipp-Byma, O. Sauer, Sauer, Peinsipp-Byma</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2138326</td>
<td>E</td>
<td>Measurement II (p. 407)</td>
<td>C. Stiller</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2137306</td>
<td>E (P)</td>
<td>Lab Computer-aided methods for measurement and control (p. 450)</td>
<td>C. Stiller, P. Lenz</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2150683</td>
<td>E</td>
<td>Control engineering (p. 518)</td>
<td>C. Gönnheimer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161219</td>
<td>E</td>
<td>Theoretical description of mechatronic systems (p. 529)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2123375</td>
<td>E (P)</td>
<td>Virtual Reality Laboratory (p. 570)</td>
<td>J. Ovtcharova, Jurica Katicic</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2149902</td>
<td>E</td>
<td>Machine Tools and Industrial Handling (p. 578)</td>
<td>J. Fleischers</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:
- **Recommendations:**
- **Remarks:**
SP 05: Calculation Methods in Mechanical Engineering

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2154434</td>
<td>K</td>
<td>Applied Fluid Mechanics (p. 183)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162235</td>
<td>K</td>
<td>Introduction into the multi-body dynamics (p. 265)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2161252</td>
<td>K</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181740</td>
<td>E</td>
<td>Atomistic simulations and molecular dynamics (p. 201)</td>
<td>P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenter</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2106004</td>
<td>E</td>
<td>Computational Intelligence I (p. 241)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2105015</td>
<td>E</td>
<td>Computational Intelligence II (p. 242)</td>
<td>G. Bretthauer, Mikut</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106020</td>
<td>E</td>
<td>Computational Intelligence III (p. 243)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2162282</td>
<td>E</td>
<td>Introduction to the Finite Element Method (p. 260)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2154401</td>
<td>E</td>
<td>Fluid-Structure-Interaction (p. 302)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkard</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161214</td>
<td>E</td>
<td>Vibration of continuous systems (p. 365)</td>
<td>H. Hetzler</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161224</td>
<td>E</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Proppe</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161206</td>
<td>E</td>
<td>Mathematical Methods in Dynamics (p. 393)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162241</td>
<td>E</td>
<td>Mathematical methods of vibration theory (p. 395)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2162242</td>
<td>E</td>
<td>Mathematical methods of vibration theory (Tutorial) (p. 550)</td>
<td>W. Seemann, N.N.</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>2162280</td>
<td>E</td>
<td>Mathematical Methods in Structural Mechanics (p. 397)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134134</td>
<td>E</td>
<td>Analysis tools for combustion diagnostics (p. 408)</td>
<td>U. Wagner</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2183702</td>
<td>E</td>
<td>Modelling of Microstructures (p. 412)</td>
<td>B. Nestler</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2183703</td>
<td>E</td>
<td>Modelling and Simulation (p. 417)</td>
<td>B. Nestler</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2153408</td>
<td>E</td>
<td>Numerical Fluid Mechanics (p. 437)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162244</td>
<td>E</td>
<td>Plasticity Theory (p. 444)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161250</td>
<td>E</td>
<td>Computational Mechanics I (p. 490)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162296</td>
<td>E</td>
<td>Computational Mechanics II (p. 491)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2114095</td>
<td>E</td>
<td>Simulation of Coupled Systems (p. 510)</td>
<td>M. Geimer</td>
<td>2/2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161217</td>
<td>E (P)</td>
<td>Mechatronic Softwaretools (p. 516)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117095</td>
<td>E</td>
<td>Basics of Technical Logistics (p. 322)</td>
<td>M. Mittwollen, Linsel</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2161212</td>
<td>E</td>
<td>Vibration Theory (p. 532)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2117060</td>
<td>E/P</td>
<td>Analytical methods in material flow methodology (mach and wiwi) (p. 181)</td>
<td>K. Furmans</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2133114</td>
<td>E</td>
<td>Simulation of spray and mixture formation processes in combustion engines (p. 514)</td>
<td>C. Baumgarten</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2163111</td>
<td>E</td>
<td>(p. 251)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2163113</td>
<td>E</td>
<td>(p. 517)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2162247</td>
<td>E</td>
<td>Nonlinear vibrations (p. 427)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2161241</td>
<td>E (P)</td>
<td>Schwingungstechnisches Praktikum (p. 506)</td>
<td>H. Hetzler, A. Fidlin</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
</tbody>
</table>
MAJOR FIELDS

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162248</td>
<td>E</td>
<td>Introduction into the nonlinear vibrations (Tutorial) (p. 552)</td>
<td>A. Fidlin, N.N.</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>2117096</td>
<td>E</td>
<td>Elements of Technical Logistics (p. 272)</td>
<td>M. Mittwollen</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2162207</td>
<td>E</td>
<td>Dynamics of mechanical Systems with tribological Contacts (p. 250)</td>
<td>H. Hetzler</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 06: Computational Mechanics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161226</td>
<td>K</td>
<td>Numerical Methods in Mechanics I (p. 266)</td>
<td>E. Schnack</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162216</td>
<td>K</td>
<td>Computerized Multibody Dynamics (p. 488)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161250</td>
<td>K</td>
<td>Computational Mechanics I (p. 490)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2182735</td>
<td>E</td>
<td>Application of advanced programming languages in mechanical engineering (p. 191)</td>
<td>D. Weygand</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181740</td>
<td>E</td>
<td>Atomistic simulations and molecular dynamics (p. 201)</td>
<td>P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>1246</td>
<td>E</td>
<td>Boundary and Eigenvalue Problems (p. 232)</td>
<td>M. Plum, W. Reichel, Plum, Reichel</td>
<td>6</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2153405</td>
<td>E</td>
<td>Finite Difference Methods for numerical solution of thermal and fluid dynamical problems (p. 246)</td>
<td>C. Günther</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162282</td>
<td>E</td>
<td>Introduction to the Finite Element Method (p. 260)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182732</td>
<td>E</td>
<td>Introduction to Theory of Materials (p. 262)</td>
<td>M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>19110</td>
<td>E</td>
<td>Finite Elements for Field- and Time Dependent Problems (p. 299)</td>
<td>R. Schießl, U. Maas</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2154431</td>
<td>E</td>
<td>Finite Volume Methods for Fluid Flow (p. 301)</td>
<td>C. Günther</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2154401</td>
<td>E</td>
<td>Fluid-Structure-Interaction (p. 302)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181720</td>
<td>E</td>
<td>Foundations of nonlinear continuum mechanics (p. 321)</td>
<td>M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162240</td>
<td>E</td>
<td>Mathematical Foundation for Computational Mechanics (p. 392)</td>
<td>E. Schnack</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161983</td>
<td>E</td>
<td>Mechanics of laminated composites (p. 400)</td>
<td>E. Schnack</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2167523</td>
<td>E</td>
<td>Modeling of Thermodynamical Processes (p. 416)</td>
<td>R. Schießl, U. Maas</td>
<td>3</td>
<td>6</td>
<td>W/S</td>
</tr>
<tr>
<td>2162298</td>
<td>E</td>
<td>Numerical Methods in Mechanics II (p. 432)</td>
<td>E. Schnack</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2157441</td>
<td>E</td>
<td>Computational Methods in Fluid Mechanics (p. 433)</td>
<td>F. Magagnato</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154449</td>
<td>E</td>
<td>Numerical Simulation of Turbulent Flows (p. 436)</td>
<td>G. Grötzbach</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153408</td>
<td>E</td>
<td>Numerical Fluid Mechanics (p. 437)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162244</td>
<td>E</td>
<td>Plasticity Theory (p. 444)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2157442</td>
<td>E (P)</td>
<td>Computational Methods in Fluid Mechanics (Exercise) (p. 456)</td>
<td>B. Pritz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162246</td>
<td>E</td>
<td>Computational Dynamics (p. 486)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162256</td>
<td>E</td>
<td>Computational Vehicle Dynamics (p. 487)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162296</td>
<td>E</td>
<td>Computational Mechanics II (p. 491)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2161217</td>
<td>E (P)</td>
<td>Mechatronic Softwaretools (p. 516)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>1054</td>
<td>E</td>
<td>Variational methods and applications to PDEs (p. 559)</td>
<td>M. Plum, W. Reichel, Plum, Reichel</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>1606</td>
<td>E</td>
<td>Adaptive Finite Element Methods (p. 177)</td>
<td>Dörfler</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2169458</td>
<td>E</td>
<td>Numerical simulation of reacting two phase flows (p. 435)</td>
<td>R. Koch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>ID</td>
<td>Cat</td>
<td>Course</td>
<td>Lecturer</td>
<td>h</td>
<td>CP</td>
<td>Term</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>2183721</td>
<td>E</td>
<td>High Performance Computing (p. 334)</td>
<td>B. Nestler</td>
<td>2</td>
<td>5</td>
<td>W/S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 07: Dimensioning and Validation of Mechanical Constructions

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161252</td>
<td>KP</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181745</td>
<td>K</td>
<td>Design of highly stresses components (p. 214)</td>
<td>J. Aktaa</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162282</td>
<td>K</td>
<td>Introduction to the Finite Element Method (p. 260)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2173585</td>
<td>K</td>
<td>Fatigue of Metallic Materials (p. 505)</td>
<td>K. Lang</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174574</td>
<td>K</td>
<td>Materials for Lightweight Construction (p. 575)</td>
<td>K. Weidenmann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2123356</td>
<td>E (P)</td>
<td>CATIA VS CAD training course (p. 234)</td>
<td>J. Ovtcharova, M. Hajdukovic</td>
<td>3</td>
<td>2</td>
<td>W/S</td>
</tr>
<tr>
<td>2123355</td>
<td>E (P)</td>
<td>CAD-NX5 training course (p. 235)</td>
<td>J. Ovtcharova, M. Hajdukovic</td>
<td>3</td>
<td>2</td>
<td>W/S</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assist tenent</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2161229</td>
<td>E</td>
<td>Designing with numerical methods in product development (p. 248)</td>
<td>E. Schnack</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2125755</td>
<td>E</td>
<td>Introduction to Ceramics (p. 261)</td>
<td>M. Hoffmann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2175588</td>
<td>E (P)</td>
<td>Metallographic Lab Class, Metallographic Lab Class, Ferrous Materials (p. 281)</td>
<td>K. Poser, A. Wann er</td>
<td>3</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2175589</td>
<td>E (P)</td>
<td>Metallographic Lab Class, Non-Ferrous Materials (p. 282)</td>
<td>K. Poser, A. Wann er</td>
<td>3</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2173560</td>
<td>E (P)</td>
<td>Welding Lab Course, in groups</td>
<td>V. Schulze</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161224</td>
<td>E</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Proppe</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161206</td>
<td>E</td>
<td>Mathematical Methods in Dynamics (p. 393)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162280</td>
<td>E</td>
<td>Mathematical Methods in Structural Mechanics (p. 397)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162244</td>
<td>E</td>
<td>Plasticity Theory (p. 444)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2173590</td>
<td>E</td>
<td>Polymer Engineering I (p. 447)</td>
<td>T. Böhlke, Mitarbeiter</td>
<td>2</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2162275</td>
<td>E (P)</td>
<td>Lab course experimental solid mechanics (p. 454)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2161250</td>
<td>E</td>
<td>Computational Mechanics I (p. 490)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2162296</td>
<td>E</td>
<td>Computational Mechanics II (p. 491)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2173562</td>
<td>E</td>
<td>Failure Analysis (p. 500)</td>
<td>K. Poser</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174579</td>
<td>E</td>
<td>Technology of steel components (p. 534)</td>
<td>V. Schulze</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:
Recommendations:
Remarks:
SP 08: Dynamics and Vibration Theory

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162235</td>
<td>K</td>
<td>Introduction into the multi-body dynamics (p. 265)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2161224</td>
<td>K</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Proppe</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2161212</td>
<td>K</td>
<td>Vibration Theory (p. 532)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2163113</td>
<td>K</td>
<td>(p. 517)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2162247</td>
<td>K</td>
<td>Nonlinear vibrations (p. 427)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2161216</td>
<td>E</td>
<td>Wave propagation (p. 267)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162246</td>
<td>E</td>
<td>Computational Dynamics (p. 486)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162256</td>
<td>E</td>
<td>Computational Vehicle Dynamics (p. 487)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162216</td>
<td>E</td>
<td>Computerized Multibody Dynamics (p. 488)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161241</td>
<td>E (P)</td>
<td>Schwingungstechnisches Praktikum (p. 506)</td>
<td>H. Hetzler, A. Fidlin</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlike, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161217</td>
<td>E (P)</td>
<td>Mechatronic Softwaretools (p. 516)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161219</td>
<td>E</td>
<td>Theoretical description of mechatronic systems (p. 529)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162248</td>
<td>E</td>
<td>Introduction into the nonlinear vibrations (Tutorial) (p. 552)</td>
<td>A. Fidlin, N.N.</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>2161214</td>
<td>E</td>
<td>Vibration of continuous systems (p. 365) (p. 251)</td>
<td>H. Hetzler</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2163111</td>
<td>E</td>
<td>Dynamics of mechanical Systems with tribological Contacts (p. 250)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2162207</td>
<td>E</td>
<td>Dynamics of mechanical Systems (p. 365) (p. 251)</td>
<td>H. Hetzler</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 09: Dynamic Machine Models

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162235</td>
<td>K</td>
<td>Introduction into the multi-body dynamics (p. 265)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2118078</td>
<td>K</td>
<td>Logistics - organisation, design and control of logistic systems (p. 377)</td>
<td>K. Furmans</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2105012</td>
<td>E</td>
<td>Adaptive Control Systems (p. 178)</td>
<td>G. Breithauer</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2146180</td>
<td>E</td>
<td>Powertrain Systems Technology A: Automotive Systems (p. 187)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2117500</td>
<td>E</td>
<td>Energy efficient intralogistic systems (p. 273)</td>
<td>F. Schöning</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2113807</td>
<td>E</td>
<td>Handling Characteristics of Motor Vehicles I (p. 286)</td>
<td>H. Unrau</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114838</td>
<td>E</td>
<td>Handling Characteristics of Motor Vehicles II (p. 287)</td>
<td>H. Unrau</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113806</td>
<td>E</td>
<td>Vehicle Comfort and Acoustics I (p. 288)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114825</td>
<td>E</td>
<td>Vehicle Comfort and Acoustics II (p. 289)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161206</td>
<td>E</td>
<td>Mathematical Methods in Dynamics (p. 393)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>24152</td>
<td>E</td>
<td>Robotic I (p. 495)</td>
<td>R. Dillmann, K. Welke, Dillmann, Welker, Do</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2114095</td>
<td>E</td>
<td>Simulation of Coupled Systems (p. 510)</td>
<td>M. Geimer</td>
<td>2/2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhike, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles I (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2122378</td>
<td>E</td>
<td>Virtual Engineering II (p. 569)</td>
<td>J. Ovtcharova</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118087</td>
<td>E/P</td>
<td>Selected Applications of Technical Logistics (p. 206)</td>
<td>M. Mittwollen, Linsel</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118089</td>
<td>E/P</td>
<td>Selected Applications of Technical Logistics and Project (p. 207)</td>
<td>M. Mittwollen, Linsel</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2122379</td>
<td>E</td>
<td>Exercises Virtual Engineering II (p. 555)</td>
<td>J. Ovtcharova</td>
<td>1</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>2163111</td>
<td>E</td>
<td>(p. 251)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2163113</td>
<td>E</td>
<td>(p. 517)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2162247</td>
<td>E</td>
<td>Nonlinear vibrations (p. 427)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2161241</td>
<td>E (P)</td>
<td>Schwingungstechnisches Praktikum (p. 506)</td>
<td>H. Hetzler, A. Fidlin</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2162248</td>
<td>E</td>
<td>Introduction into the nonlinear vibrations (Tutorial) (p. 552)</td>
<td>A. Fidlin, N.N.</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>2161212</td>
<td>E</td>
<td>Vibration Theory (p. 532)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162241</td>
<td>E</td>
<td>Mathematical methods of vibration theory (p. 395)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2161214</td>
<td>E</td>
<td>Vibration of continuous systems (p. 365)</td>
<td>H. Hetzler</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162207</td>
<td>E</td>
<td>Dynamics of mechanical Systems with tribological Contacts (p. 250)</td>
<td>H. Hetzler</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>
SP 10: Engineering Design

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2146180</td>
<td>K</td>
<td>Powertrain Systems Technology A: Automotive Systems (p. 187)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145150</td>
<td>K</td>
<td>Powertrain Systems Technology B: Stationary Machinery (p. 188)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146190</td>
<td>K</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113073</td>
<td>K</td>
<td>Mobile Machines (p. 413)</td>
<td>M. Geimer</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2145181</td>
<td>E</td>
<td>Applied Tribology in Industrial Product Development (p. 185)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117064</td>
<td>E</td>
<td>Application of technical logistics in modern crane systems (p. 189)</td>
<td>M. Golder</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2113079</td>
<td>E</td>
<td>Design and Development of Mobile Machines (p. 215)</td>
<td>M. Geimer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2149657</td>
<td>E</td>
<td>manufacturing technology (p. 297)</td>
<td>V. Schulze, H. Unrau</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2113805</td>
<td>E</td>
<td>Automotive Engineering I (p. 314)</td>
<td>F. Gauterin, H. Unrau</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2113814</td>
<td>E</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies I (p. 328)</td>
<td>H. Bardehle</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2114840</td>
<td>E</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies II (p. 329)</td>
<td>H. Bardehle</td>
<td>1</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2113812</td>
<td>E</td>
<td>Fundamentals in the Development of Commercial Vehicles I (p. 330)</td>
<td>J. Zürn</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2114844</td>
<td>E</td>
<td>Fundamentals in the Development of Commercial Vehicles II (p. 331)</td>
<td>J. Zürn</td>
<td>1</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2113810</td>
<td>E</td>
<td>Fundamentals of Automobile Development I (p. 332)</td>
<td>R. Frech</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2114842</td>
<td>E</td>
<td>Fundamentals of Automobile Development II (p. 333)</td>
<td>R. Frech</td>
<td>1</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2174571</td>
<td>E</td>
<td>Design with Plastics (p. 362)</td>
<td>C. Bonten</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145184</td>
<td>E</td>
<td>Leadership and Product Development (p. 375)</td>
<td>A. Ploch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110017</td>
<td>E</td>
<td>Leadership and Conflict Management (in German) (p. 386)</td>
<td>H. Hatzl</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2105014</td>
<td>E (P)</td>
<td>Laboratory mechatronics (p. 403)</td>
<td>A. Albers, G. Brethauer, C. Proppe, C. Stiller</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146194</td>
<td>E (P)</td>
<td>Mobile Robot Systems Lab (p. 452)</td>
<td>A. Albers, M. Frietsch</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2109025</td>
<td>E</td>
<td>Product Ergonomics (in German) (p. 462)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2109028</td>
<td>E</td>
<td>Industrial Engineering I (in German) (p. 464)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149667</td>
<td>E</td>
<td>Quality Management (p. 481)</td>
<td>G. Lanza</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117061</td>
<td>E</td>
<td>Safety engineering (p. 508)</td>
<td>H. Kany</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlike, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146193</td>
<td>E</td>
<td>Strategic Product Planing (p. 520)</td>
<td>A. Siebe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146192</td>
<td>E</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2158107</td>
<td>E</td>
<td>Technical Acoustics (p. 530)</td>
<td>M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146179</td>
<td>E</td>
<td>Technical Design in Product Development (p. 533)</td>
<td>M. Schmid, Dr. -Ing. Markus Schmid</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2174574</td>
<td>E</td>
<td>Materials for Lightweight Construction (p. 575)</td>
<td>K. Weidenmann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>
Conditions:
SP 10 as bachelor module selectable
SP10 as master module selection depends on individual specialisation of the master course

Recommendations:
- 2147175 CAE-Workshop
- 2105014 Mechatronik - Workshop

Remarks:
SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113806</td>
<td>K</td>
<td>Vehicle Comfort and Acoustics I (p. 288)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114825</td>
<td>K</td>
<td>Vehicle Comfort and Acoustics II (p. 289)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2158107</td>
<td>K</td>
<td>Technical Acoustics (p. 530)</td>
<td>M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2105012</td>
<td>E</td>
<td>Adaptive Control Systems (p. 178)</td>
<td>G. Bretthauer</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2146180</td>
<td>E</td>
<td>Powertrain Systems Technology A: Automotive Systems (p. 187)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161216</td>
<td>E</td>
<td>Wave propagation (p. 267)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114850</td>
<td>E</td>
<td>Driving Dynamics Evaluation within the Global Vehicle Simulation (p. 285)</td>
<td>B. Schick</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113807</td>
<td>E</td>
<td>Handling Characteristics of Motor Vehicles I (p. 286)</td>
<td>H. Unrau</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114838</td>
<td>E</td>
<td>Handling Characteristics of Motor Vehicles II (p. 287)</td>
<td>H. Unrau</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113816</td>
<td>E</td>
<td>Vehicle Mechatronics I (p. 290)</td>
<td>D. Ammon, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138340</td>
<td>E</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, H. Unrau</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2114835</td>
<td>E</td>
<td>Automotive Engineering II (p. 315)</td>
<td>F. Gauterin, H. Unrau</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153425</td>
<td>E</td>
<td>Industrial aerodynamics (p. 340)</td>
<td>T. Breitling</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2105024</td>
<td>E</td>
<td>Modern Concepts of Control (p. 418)</td>
<td>L. Gröll, Groell</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2162246</td>
<td>E</td>
<td>Computational Dynamics (p. 486)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162256</td>
<td>E</td>
<td>Computational Vehicle Dynamics (p. 487)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162216</td>
<td>E</td>
<td>Computerized Multibody Dynamics (p. 488)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 12: Automotive Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113805</td>
<td>KP</td>
<td>Automotive Engineering I (p. 314)</td>
<td>F. Gauterin, H. Unrau</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2146180</td>
<td>E</td>
<td>Powertrain Systems Technology A: Automotive Systems (p. 187)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2186126</td>
<td>E</td>
<td>Automobile and Environment (p. 218)</td>
<td>H. Kuch, U. Spicher, U. Maas, H. Wirbser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2114850</td>
<td>E</td>
<td>Driving Dynamics Evaluation within the Global Vehicle Simulation (p. 285)</td>
<td>B. Schick</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113807</td>
<td>E</td>
<td>Handling Characteristics of Motor Vehicles I (p. 286)</td>
<td>H. Unrau</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114838</td>
<td>E</td>
<td>Handling Characteristics of Motor Vehicles II (p. 287)</td>
<td>H. Unrau</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113806</td>
<td>E</td>
<td>Vehicle Comfort and Acoustics I (p. 288)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114825</td>
<td>E</td>
<td>Vehicle Comfort and Acoustics II (p. 289)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113816</td>
<td>E</td>
<td>Vehicle Mechatronics I (p. 290)</td>
<td>D. Ammon</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138340</td>
<td>E</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2114835</td>
<td>E</td>
<td>Automotive Engineering II (p. 315)</td>
<td>F. Gauterin, H. Unrau</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134138</td>
<td>E</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment (p. 318)</td>
<td>E. Lox</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2114843</td>
<td>E</td>
<td>Basics and Methods for Integration of Tires and Vehicles (p. 327)</td>
<td>G. Leister</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113814</td>
<td>E</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies I (p. 328)</td>
<td>H. Bardehle</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114840</td>
<td>E</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies II (p. 329)</td>
<td>H. Bardehle</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113812</td>
<td>E</td>
<td>Fundamentals in the Development of Commercial Vehicles I (p. 330)</td>
<td>J. Zürn</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114844</td>
<td>E</td>
<td>Fundamentals in the Development of Commercial Vehicles II (p. 331)</td>
<td>J. Zürn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113810</td>
<td>E</td>
<td>Fundamentals of Automobile Development I (p. 332)</td>
<td>R. Frech</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114842</td>
<td>E</td>
<td>Fundamentals of Automobile Development II (p. 333)</td>
<td>R. Frech</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2115808</td>
<td>E (P)</td>
<td>Motor Vehicle Laboratory (p. 368)</td>
<td>M. Frey, M. El-Haji</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2182642</td>
<td>E</td>
<td>Laser in automotive engineering (p. 374)</td>
<td>J. Schneider</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149669</td>
<td>E</td>
<td>Materials and processes for the lightweight production of car bodies (p. 391)</td>
<td>H. Haeppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2123364</td>
<td>E</td>
<td>Product, Process and Resource Integration in the Automotive Industry (p. 460)</td>
<td>S. Mbang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2150690</td>
<td>E</td>
<td>Production Systems and Production Technology in Major Assembly Production (p. 468)</td>
<td>V. Stau</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2115817</td>
<td>E</td>
<td>Project Workshop: Automotive Engineering (p. 472)</td>
<td>F. Gauterin</td>
<td>3</td>
<td>6</td>
<td>W/S</td>
</tr>
<tr>
<td>2113071</td>
<td>E</td>
<td>Development of Mobile Hydraulic Systems (p. 473)</td>
<td>G. Geerling</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>ID</td>
<td>Cat</td>
<td>Course</td>
<td>Lecturer</td>
<td>h</td>
<td>CP</td>
<td>Term</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>2162256</td>
<td>E</td>
<td>Computational Vehicle Dynamics (p. 487)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhike, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146193</td>
<td>E</td>
<td>Strategic Product Planing (p. 520)</td>
<td>A. Siebe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146192</td>
<td>E</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149655</td>
<td>E</td>
<td>Gear Cutting Technology (p. 566)</td>
<td>K. Felten</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173570</td>
<td>E</td>
<td>Materials and mechanical loads in the power train: engines, gearboxes and drive sections (p. 574)</td>
<td>J. Hoffmeister</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174574</td>
<td>E</td>
<td>Materials for Lightweight Construction (p. 575)</td>
<td>K. Weidenmann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153425</td>
<td>E</td>
<td>Industrial aerodynamics (p. 340)</td>
<td>T. Breitling</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2133101</td>
<td>E</td>
<td>Combustion Engines A with tutorial (p. 561)</td>
<td>U. Spicher</td>
<td>6</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2134135</td>
<td>E</td>
<td>Combustion Engines B with Tutorial (p. 562)</td>
<td>U. Spicher</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134112</td>
<td>E</td>
<td>Supercharging of Combustion Engines (p. 204)</td>
<td>R. Golloch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>23321</td>
<td>E</td>
<td>(p. 336)</td>
<td>M. Doppelbauer</td>
<td>2+1</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:
Recommendations:
Remarks:
SP 13: Strength of Materials/ Continuum Mechanics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161252</td>
<td>KP</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162282</td>
<td>K</td>
<td>Introduction to the Finite Element Method (p. 260)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162280</td>
<td>K</td>
<td>Mathematical Methods in Structural Mechanics (p. 397)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181711</td>
<td>K</td>
<td>Failure of structural materials: deformation and fracture (p. 565)</td>
<td>P. Gumbsch, O. Kraft, D. Weygand Dörfler</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>1606</td>
<td>E</td>
<td>Adaptive Finite Element Methods (p. 177)</td>
<td></td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2181740</td>
<td>E</td>
<td>Atomistic simulations and molecular dynamics (p. 201)</td>
<td>P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>1246</td>
<td>E</td>
<td>Boundary and Eigenvalue Problems (p. 232)</td>
<td>M. Plum, W. Reichel, Plum, Reichel</td>
<td>6</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2162255</td>
<td>E</td>
<td>Designing with composites (p. 249)</td>
<td>E. Schnack</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182732</td>
<td>E</td>
<td>Introduction to Theory of Materials (p. 262)</td>
<td>M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>19110</td>
<td>E</td>
<td>Finite Elements for Field- and Time Dependent Problems (p. 299)</td>
<td>K. Schweizerhof</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2181720</td>
<td>E</td>
<td>Foundations of nonlinear continuum mechanics (p. 321)</td>
<td>M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161206</td>
<td>E</td>
<td>Mathematical Methods in Dynamics (p. 393)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2183702</td>
<td>E</td>
<td>Modelling of Microstructures (p. 412)</td>
<td>B. Nestler</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2183703</td>
<td>E</td>
<td>Modelling and Simulation (p. 417)</td>
<td>B. Nestler</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2162244</td>
<td>E</td>
<td>Plasticity Theory (p. 444)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162275</td>
<td>E (P)</td>
<td>Lab course experimental solid mechanics (p. 454)</td>
<td>T. Böhlke, Mitarbeiter</td>
<td>2</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2161501</td>
<td>E</td>
<td>process simulation in forming operations (p. 478)</td>
<td>D. Helm</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162246</td>
<td>E</td>
<td>Computational Dynamics (p. 486)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161250</td>
<td>E</td>
<td>Computational Mechanics I (p. 490)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162296</td>
<td>E</td>
<td>Computational Mechanics II (p. 491)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova D. Weygand</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2182740</td>
<td>E</td>
<td>Materials modelling: dislocation based plasticity (p. 577)</td>
<td>D. Weygand</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 14: Fluid-Structure-Interaction

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162282</td>
<td>K</td>
<td>Introduction to the Finite Element Method (p. 260)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2154431</td>
<td>K</td>
<td>Finite Volume Methods for Fluid Flow (p. 301)</td>
<td>C. Günther</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2154401</td>
<td>K</td>
<td>Fluid-Structure-Interaction (p. 302)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161252</td>
<td>K</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2153408</td>
<td>K</td>
<td>Numerical Fluid Mechanics (p. 437)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161250</td>
<td>K</td>
<td>Computational Mechanics I (p. 490)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2154044</td>
<td>K</td>
<td>Scaling in fluid dynamics (p. 515)</td>
<td>L. Bühler</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2154434</td>
<td>E</td>
<td>Applied Fluid Mechanics (p. 183)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161216</td>
<td>E</td>
<td>Wave propagation (p. 267)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2153425</td>
<td>E</td>
<td>Industrial aerodynamics (p. 340)</td>
<td>T. Breitling</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154432</td>
<td>E</td>
<td>Mathematical Methods in Fluid Mechanics (p. 396)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162244</td>
<td>E</td>
<td>Plasticity Theory (p. 444)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162246</td>
<td>E</td>
<td>Computational Dynamics (p. 486)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162296</td>
<td>E</td>
<td>Computational Mechanics II (p. 491)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2153409</td>
<td>E (P)</td>
<td>Seminar: Introduction to numerical fluid mechanics (p. 542)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154433</td>
<td>E</td>
<td>Tutorial in Mathematical Methods of Fluid Mechanics (p. 551)</td>
<td>T. Schenkel</td>
<td>1</td>
<td>0</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 15: Fundamentals of Energy Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2130927</td>
<td>KP</td>
<td>Fundamentals of Energy Technology (p. 313)</td>
<td>D. Cacuci, F. Badea</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2166538</td>
<td>K</td>
<td>Fundamentals of combustion II (p. 324)</td>
<td>U. Maas</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2157432</td>
<td>K</td>
<td>Hydraulic Fluid Machinery I (Basics) (p. 337)</td>
<td>M. Gabi</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2130921</td>
<td>K</td>
<td>Nuclear Energy (p. 356)</td>
<td>D. Cacuci, F. Badea</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169453</td>
<td>K</td>
<td>Thermal Turbomachines I (p. 538)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2117500</td>
<td>E</td>
<td>Energy efficient intralogistic systems (p. 273)</td>
<td>F. Schönung</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2171486</td>
<td>E (P)</td>
<td>Integrated measurement systems for fluid mechanics applications (p. 351)</td>
<td>K. Dullenkopf, Mitarbeiter</td>
<td>5</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2171487</td>
<td>E (P)</td>
<td>Laboratory Exercise in Energy Technology (p. 376)</td>
<td>H. Bauer, U. Maas, K. Dullenkopf, H. Wirbser</td>
<td>4</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2130935</td>
<td>E</td>
<td>Photovoltaics (p. 440)</td>
<td>M. Powalla</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2169472</td>
<td>E</td>
<td>Thermal Solar Energy (p. 537)</td>
<td>R. Stieglitz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>23381</td>
<td>E</td>
<td>Environmentally compatible energy generation / wind turbines (p. 557)</td>
<td>N. Lewald, J. Volz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2133109</td>
<td>E/P</td>
<td>Fuels and Lubricants for Combustion Engines and their Testing (p. 220)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2169459</td>
<td>E/P (P)</td>
<td>CFD-Lab using Open Foam (p. 238)</td>
<td>R. Koch</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2158105</td>
<td>E/P</td>
<td>Hydraulic Fluid Machinery II (p. 338)</td>
<td>S. Caglar, M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134134</td>
<td>E/P</td>
<td>Analysis tools for combustion diagnostics (p. 408)</td>
<td>U. Wagner</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2157441</td>
<td>E/P</td>
<td>Computational Methods in Fluid Mechanics (p. 433)</td>
<td>F. Magagnato</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169458</td>
<td>E/P</td>
<td>Numerical simulation of reacting two phase flows (p. 435)</td>
<td>R. Koch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2157442</td>
<td>E/P (P)</td>
<td>Computational Methods in Fluid Mechanics (Exercise) (p. 456)</td>
<td>B. Pritz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146192</td>
<td>E/P</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2158107</td>
<td>E/P</td>
<td>Technical Acoustics (p. 530)</td>
<td>M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2158106</td>
<td>E/P</td>
<td>Technologies for energy efficient buildings (p. 535)</td>
<td>F. Schmidt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2133101</td>
<td>E/P</td>
<td>Combustion Engines A with tutorial (p. 561)</td>
<td>U. Spicher</td>
<td>6</td>
<td>8</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 16: Industrial Engineering

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2109041</td>
<td>KP</td>
<td>Introduction to Industrial Engineering</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p. 254)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2110033</td>
<td>KP</td>
<td>Introduction to Ergonomics (p. 258)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109040</td>
<td>E</td>
<td>Controlling and Simulation of Production Systems (p. 244)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>3109033</td>
<td>E</td>
<td>Industrial Management Case Study (p. 292)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110031</td>
<td>E</td>
<td>Service Operations Management (p. 384)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 18: Information Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2106004</td>
<td>K</td>
<td>Computational Intelligence I (p. 241)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2105015</td>
<td>K</td>
<td>Computational Intelligence II (p. 242)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2137309</td>
<td>K</td>
<td>Digital Control (p. 247)</td>
<td>M. Knoop</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2137308</td>
<td>K</td>
<td>Machine Vision (p. 381)</td>
<td>C. Stiller, M. Lauer</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2138326</td>
<td>K</td>
<td>Measurement II (p. 407)</td>
<td>C. Stiller</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2105012</td>
<td>E</td>
<td>Adaptive Control Systems (p. 178)</td>
<td>G. Bretthauer</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118089</td>
<td>E</td>
<td>Application of technical logistics in sorting- and distribution technology (p. 190)</td>
<td>J. Föller</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2114092</td>
<td>E</td>
<td>BUS-Controls (p. 233)</td>
<td>M. Geimer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2106020</td>
<td>E</td>
<td>Computational Intelligence III (p. 243)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2138340</td>
<td>E</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118094</td>
<td>E</td>
<td>Information Systems in Logistics and Supply Chain Management (p. 346)</td>
<td>C. Kilger</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2105022</td>
<td>E</td>
<td>Informationsverarbeitung in mechatronischen Systemen (p. 348)</td>
<td>M. Kaufmann</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>24102</td>
<td>E</td>
<td>Information Processing in Sensor Networks (p. 349)</td>
<td>U. Hanebeck, Hanebeck</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2118083</td>
<td>E</td>
<td>IT for facility logistics (p. 354)</td>
<td>F. Thomas</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2137304</td>
<td>E</td>
<td>Correlation Methods in Measurement and Control (p. 366)</td>
<td>F. Mesch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2105014</td>
<td>E (P)</td>
<td>Laboratory mechatronics (p. 403)</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller, S. Bernhardt</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2134137</td>
<td>E</td>
<td>Engine measurement techniques (p. 420)</td>
<td>C. Stiller, P. Lenz</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2137306</td>
<td>E (P)</td>
<td>Lab Computer-aided methods for measurement and control (p. 450)</td>
<td>C. Gönnheimer, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 19: Information Technology of Logistic Systems

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2118094</td>
<td>K</td>
<td>Information Systems in Logistics and Supply Chain Management</td>
<td>C. Kilger</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118083</td>
<td>K</td>
<td>IT for facility logistics (p. 354)</td>
<td>F. Thomas</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2118078</td>
<td>K</td>
<td>Logistics - organisation, design and control of logistic systems (p. 377)</td>
<td>K. Furmans</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2118089</td>
<td>E</td>
<td>Application of technical logistics in sorting- and distribution technology (p. 190)</td>
<td>J. Föller</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2138340</td>
<td>E</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118097</td>
<td>E</td>
<td>Warehousing and distribution systems (p. 372)</td>
<td>K. Furmans, C. Huber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117056</td>
<td>E</td>
<td>Airport logistics (p. 379)</td>
<td>A. Richter</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2118090</td>
<td>E</td>
<td>Quantitative Methods for Supply Chain Risk Management (p. 482)</td>
<td>A. Cardeneo</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2117062</td>
<td>E</td>
<td>Supply chain management (p. 527)</td>
<td>K. Alicke</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions: none

Recommendations: Recommended compulsory optional subjects:

- Basics of statistic and probability theory
- Simulation of production systems and processes
- Stochastics in Mecanical Engineering
- Integrated Information Systems for engineers
- Modelling and Simulation

Remarks: none
SP 20: Integrated Product Development

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145156</td>
<td>KP</td>
<td>Integrated Product Development (p. 352)</td>
<td>A. Albers</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2145300</td>
<td>KP</td>
<td>Project Work in Product Development (p. 461)</td>
<td>A. Albers</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145157</td>
<td>KP</td>
<td>Workshop Product Development (p. 580)</td>
<td>A. Albers</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145150</td>
<td>E</td>
<td>Powertrain Systems Technology B: Stationary Machinery (p. 188)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145184</td>
<td>E</td>
<td>Leadership and Product Development (p. 375)</td>
<td>A. Ploch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146193</td>
<td>E</td>
<td>Strategic Planing (p. 520)</td>
<td>A. Siebe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146192</td>
<td>E</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions: The participation in “Integrated Product Development” requires the concurrent participation in lectures (2145156), tutorials (2145157) and project work (2145300).

Due to organizational reasons, the number of participants is limited to 42 persons. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK homepage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Recommendations: Recommended Courses:

- 2147175 CAE-Workshop

Remarks:
SP 21: Nuclear Energy

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2130929</td>
<td>K</td>
<td>Energy systems II: Nuclear Energy Fundamentals (p. 275)</td>
<td>D. Cacuci, Aurelian F. Badea</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2170460</td>
<td>K</td>
<td>Nuclear Power Plant Technology (p. 357)</td>
<td>T. Schulenberg</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2129010</td>
<td>K</td>
<td>Nuclear Thermal-Hydraulics (p. 429)</td>
<td>X. Cheng</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169471</td>
<td>K</td>
<td>Neutron physics of fusion reactors (p. 425)</td>
<td>U. Fischer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>23271</td>
<td>K</td>
<td>Radiation protection I (p. 519)</td>
<td>M. Urban, Urban</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2130973</td>
<td>E</td>
<td>Innovative Nuclear Systems (p. 350)</td>
<td>X. Cheng</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2190464</td>
<td>E</td>
<td>Reactor Safety: Safety Assessment of Nuclear Power Plants (p. 485)</td>
<td>V. Sánchez-Espinosa</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2190510</td>
<td>E</td>
<td>Nuclear Reactor Kinetics and Dynamics (p. 358)</td>
<td>K. Ivanov</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2190411</td>
<td>E</td>
<td>Selected Problems of Applied Reactor Physics and Exercises (p. 205)</td>
<td>H. Dagan</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169470</td>
<td>E</td>
<td>Two-Phase Flow and Heat Transfer (p. 581)</td>
<td>T. Schulenberg, M. Wörner</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2130910</td>
<td>E</td>
<td>CFD in Power Engineering (p. 237)</td>
<td>I. Otic</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2129901</td>
<td>E</td>
<td>Energy Systems I: Renewable Energy (p. 274)</td>
<td>F. Badea</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2190499</td>
<td>E</td>
<td>Structural and functional materials of fusion and nuclear reactors (p. 524)</td>
<td>A. Möslang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>nb</td>
<td>E</td>
<td>Basic Chemistry of the Nuclear Fuel Cycle (p. 239)</td>
<td>H. Geckeis</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>19435</td>
<td>E</td>
<td>Decommissioning of Nuclear Facilities I (p. 499)</td>
<td>S. Gentes</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181745</td>
<td>E</td>
<td>Design of highly stresses components (p. 214)</td>
<td>J. Aktaa</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2189410</td>
<td>E</td>
<td>Reactor Design and Safety Evaluation using Modern Analysis Measures (p. 484)</td>
<td>M. Avramova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2189520</td>
<td>E</td>
<td>Fast Reactor Physics (p. 502)</td>
<td>K. Ivanov</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 22: Cognitive Technical Systems

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2106004</td>
<td>K</td>
<td>Computational Intelligence I (p. 241)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2138340</td>
<td>K</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>24152</td>
<td>K</td>
<td>Robotic I (p. 495)</td>
<td>R. Dillmann, K. Welke, Dillmann, Welker, Do</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>K</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2138001</td>
<td>E</td>
<td>Analysis and Design of Multisensor Systems (p. 180)</td>
<td>G. Trommer, Trommer</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2105015</td>
<td>E</td>
<td>Computational Intelligence II (p. 242)</td>
<td>G. Bretthauer, Mikut</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106020</td>
<td>E</td>
<td>Computational Intelligence III (p. 243)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2137309</td>
<td>E</td>
<td>Digital Control (p. 247)</td>
<td>M. Knoop</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2118094</td>
<td>E</td>
<td>Information Systems in Logistics and Supply Chain Management (p. 346)</td>
<td>C. Kilger</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>24102</td>
<td>E</td>
<td>Information Processing in Sensor Networks (p. 349)</td>
<td>U. Hanebeck, Hanebeck</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138341</td>
<td>E</td>
<td>Cognitive Automobiles - Laboratory (p. 359)</td>
<td>C. Stiller, M. Lauer, B. Kitt</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>24572</td>
<td>E</td>
<td>Cognitive Systems (p. 360)</td>
<td>R. Dillmann, Dillmann</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2137304</td>
<td>E</td>
<td>Correlation Methods in Measurement and Control (p. 366)</td>
<td>F. Mesch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2106007</td>
<td>E</td>
<td>?? (p. 370)</td>
<td>G. Bretthauer</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>24613</td>
<td>E</td>
<td>Localization of Mobile Agents (p. 380)</td>
<td>U. Hanebeck, Hanebeck</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2137308</td>
<td>E</td>
<td>Machine Vision (p. 381)</td>
<td>C. Stiller, M. Lauer</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2105014</td>
<td>E (P)</td>
<td>Laboratory mechatronics (p. 403)</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138326</td>
<td>E</td>
<td>Measurement II (p. 407)</td>
<td>G. Bretthauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2137306</td>
<td>E (P)</td>
<td>Lab Computer-aided methods for measurement and control (p. 450)</td>
<td>C. Stiller, P. Lenz</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162256</td>
<td>E</td>
<td>Computational Vehicle Dynamics (p. 487)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>24635</td>
<td>E</td>
<td>?? (p. 497)</td>
<td>M. Azad, R. Dillmann, Kasper, Dillmann, Kasper, Azad</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 23: Power Plant Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2157432</td>
<td>K</td>
<td>Hydraulic Fluid Machinery I (Basics) (p. 337)</td>
<td>M. Gabi</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2170460</td>
<td>K</td>
<td>Nuclear Power Plant Technology (p. 357)</td>
<td>T. Schulenberg</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169461</td>
<td>K</td>
<td>Coal fired power plants (p. 361)</td>
<td>P. Fritz, T. Schulenberg</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169453</td>
<td>K</td>
<td>Thermal Turbomachines I (p. 538)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2170476</td>
<td>K</td>
<td>Thermal Turbomachines II (p. 539)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2181745</td>
<td>E</td>
<td>Design of highly stresses components (p. 214)</td>
<td>J. Aktaa</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169483</td>
<td>E</td>
<td>Fusion Technology A (p. 304)</td>
<td>R. Stiegglitz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2165515</td>
<td>E</td>
<td>Fundamentals of Combustion I (p. 323)</td>
<td>U. Maas</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2158105</td>
<td>E</td>
<td>Hydraulic Fluid Machinery II (p. 338)</td>
<td>S. Caglar, M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2110037</td>
<td>E</td>
<td>Occupational Safety and Environmental Protection (in German) (p. 344)</td>
<td>R. von Kiparski</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2171486</td>
<td>E</td>
<td>Integrated measurement systems for fluid mechanics applications (p. 351)</td>
<td>K. Dullenkopf, Mitarbeiter</td>
<td>5</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2185578</td>
<td>E</td>
<td>Design Principles and Materials for High-Temperature Components (p. 363)</td>
<td>Wanner et al.</td>
<td>4</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169452</td>
<td>E</td>
<td>Power and Heat economics (p. 367)</td>
<td>H. Bauer, R. Schiele</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2170463</td>
<td>E</td>
<td>Cooling of thermally high loaded gas turbine components (p. 369)</td>
<td>H. Bauer, A. Schulz</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2171487</td>
<td>E</td>
<td>Laboratory Exercise in Energy Technology (p. 376)</td>
<td>H. Bauer, U. Maas, K. Dullenkopf, H. Wirbsper</td>
<td>4</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2157441</td>
<td>E</td>
<td>Computational Methods in Fluid Mechanics (p. 433)</td>
<td>F. Magagnato</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2157442</td>
<td>E</td>
<td>Computational Methods in Fluid Mechanics (Exercise) (p. 456)</td>
<td>B. Pritz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173562</td>
<td>E</td>
<td>Failure Analysis (p. 500)</td>
<td>K. Poser</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173585</td>
<td>E</td>
<td>Fatigue of Metallic Materials (p. 505)</td>
<td>K. Lang</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2158107</td>
<td>E</td>
<td>Technical Acoustics (p. 530)</td>
<td>M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169472</td>
<td>E</td>
<td>Thermal Solar Energy (p. 537)</td>
<td>R. Stiegglitz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169462</td>
<td>E</td>
<td>Turbine and compressor Design (p. 546)</td>
<td>H. Bauer, A. Schulz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2170495</td>
<td>E</td>
<td>Hydrogen Technologies (p. 572)</td>
<td>T. Jordan</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169470</td>
<td>E</td>
<td>Two-Phase Flow and Heat Transfer (p. 581)</td>
<td>T. Schulenberg, M. Wörner</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 24: Energy Converting Engines

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2157432</td>
<td>K</td>
<td>Hydraulic Fluid Machinery I (Basics) (p. 337)</td>
<td>M. Gabi</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2169453</td>
<td>K</td>
<td>Thermal Turbomachines I (p. 538)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2133101</td>
<td>K</td>
<td>Combustion Engines A with tutorial (p. 561)</td>
<td>U. Spicher</td>
<td>6</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2158112</td>
<td>E</td>
<td>Low Temperature Technology (p. 184)</td>
<td>F. Haug</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134112</td>
<td>E</td>
<td>Supercharging of Combustion Engines (p. 204)</td>
<td>R. Golloch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>22509</td>
<td>E</td>
<td>Design of combustion chamber in gas turbines (Project) (p. 213)</td>
<td>N. Zarzalis</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2133109</td>
<td>E</td>
<td>Fuels and Lubricants for Combustion Engines and their Testing (p. 220)</td>
<td>J. Volz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114093</td>
<td>E</td>
<td>Fluid Technology (p. 303)</td>
<td>M. Geimer</td>
<td>2/2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2134138</td>
<td>E</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment (p. 318)</td>
<td>E. Lox</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2165515</td>
<td>E</td>
<td>Fundamentals of Combustion I (p. 323)</td>
<td>U. Maas</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2166538</td>
<td>E</td>
<td>Fundamentals of combustion II (p. 324)</td>
<td>U. Maas</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2158105</td>
<td>E</td>
<td>Hydraulic Fluid Machinery II (p. 338)</td>
<td>S. Caglar, M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2157441</td>
<td>E</td>
<td>Computational Methods in Fluid Mechanics (p. 433)</td>
<td>F. Magagnato</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2157442</td>
<td>E (P)</td>
<td>Computational Methods in Fluid Mechanics (Exercise) (p. 456)</td>
<td>B. Pritz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2158107</td>
<td>E</td>
<td>Technical Acoustics (p. 530)</td>
<td>M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2170476</td>
<td>E</td>
<td>Thermal Turbomachines II (p. 539)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2169462</td>
<td>E</td>
<td>Turbine and compressor Design (p. 546)</td>
<td>H. Bauer, A. Schulz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2170478</td>
<td>E</td>
<td>Turbo Jet Engines (p. 547)</td>
<td>H. Bauer, A. Schulz</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134135</td>
<td>E</td>
<td>Combustion Engines B with Tutorial (p. 562)</td>
<td>U. Spicher</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2186126</td>
<td>E</td>
<td>Automobile and Environment (p. 218)</td>
<td>H. Kubach, U. Spicher, U. Maas, H. Wirbser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>
SP 25: Lightweight Construction

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113101</td>
<td>KP</td>
<td>Introduction to Automotive Lightweight Technology (p. 256)</td>
<td>F. Henning</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114052</td>
<td>KP</td>
<td>Composites for Lightweight Design (p. 294)</td>
<td>F. Henning</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146190</td>
<td>K</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2174574</td>
<td>K</td>
<td>Materials for Lightweight Construction (p. 575)</td>
<td>K. Weidenmann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181708</td>
<td>E (P)</td>
<td>Biomechanics: design in nature and inspired by nature (p. 225)</td>
<td>C. Mattheck</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2161229</td>
<td>E</td>
<td>Designing with numerical methods in product development (p. 248)</td>
<td>E. Schnack</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162255</td>
<td>E</td>
<td>Designing with composites (p. 249)</td>
<td>E. Schnack</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162282</td>
<td>E</td>
<td>Introduction to the Finite Element Method (p. 260)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182734</td>
<td>E</td>
<td>Introduction to the Mechanics of Composite Materials (p. 263)</td>
<td>Y. Yang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117500</td>
<td>E</td>
<td>Energy efficient intralogistic systems (p. 273)</td>
<td>F. Schönung</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2182731</td>
<td>E (P)</td>
<td>Finite Element Workshop (p. 300)</td>
<td>C. Mattheck</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2174575</td>
<td>E</td>
<td>Foundry Technology (p. 308)</td>
<td>C. Wilhelm</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161252</td>
<td>E</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174571</td>
<td>E</td>
<td>Design with Plastics (p. 362)</td>
<td>C. Bonten</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182642</td>
<td>E</td>
<td>Laser in automotive engineering (p. 374)</td>
<td>J. Schneider</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149669</td>
<td>E</td>
<td>Materials and processes for the lightweight production of car bodies (p. 391)</td>
<td>H. Haeppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173590</td>
<td>E</td>
<td>Polymer Engineering I (p. 447)</td>
<td>P. Elsner</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173565</td>
<td>E</td>
<td>Welding Technology I (p. 503)</td>
<td>B. Spies</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2174570</td>
<td>E</td>
<td>Welding Technology II (p. 504)</td>
<td>B. Spies</td>
<td>1</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181715</td>
<td>E</td>
<td>Failure of Structural Materials: Fatigue and Creep (p. 564)</td>
<td>O. Kraft, P. Gumbsch, P. Gruber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181711</td>
<td>E</td>
<td>Failure of structural materials: deformation and fracture (p. 565)</td>
<td>P. Gumbsch, O. Kraft, D. Weygand</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 26: Materials Science and Engineering

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2173553</td>
<td>K</td>
<td>Material Science III (p. 576)</td>
<td>A. Wanner</td>
<td>5</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2193002</td>
<td>K</td>
<td>(p. 541)</td>
<td>H. Seifert</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2193003</td>
<td>K</td>
<td>(p. 298)</td>
<td>D. Cupid, P. Franke</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181740</td>
<td>E</td>
<td>Atomistic simulations and molecular dynamics (p. 201)</td>
<td>P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2178643</td>
<td>E</td>
<td>Constitution and Properties of Wear resistant materials (p. 202)</td>
<td>S. Ulrich</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162255</td>
<td>E</td>
<td>Designing with composites (p. 249)</td>
<td>E. Schnack</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2125755</td>
<td>E</td>
<td>Introduction to Ceramics (p. 261)</td>
<td>M. Hoffmann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2182734</td>
<td>E</td>
<td>Introduction to the Mechanics of Composite Materials (p. 263)</td>
<td>Y. Yang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2175588</td>
<td>E (P)</td>
<td>Metallographic Lab Class, Metallographic Lab Class, Ferrous Materials (p. 281)</td>
<td>K. Poser, A. Wanner</td>
<td>3</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2175589</td>
<td>E (P)</td>
<td>Metallographic Lab Class, Non-Ferrous Materials (p. 282)</td>
<td>K. Poser, A. Wanner</td>
<td>3</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2174575</td>
<td>E</td>
<td>Foundry Technology (p. 308)</td>
<td>C. Wilhelm</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2193010</td>
<td>E</td>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie (p. 316)</td>
<td>R. Oberacker</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174571</td>
<td>E</td>
<td>Design with Plastics (p. 362)</td>
<td>C. Bonten</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182642</td>
<td>E</td>
<td>Laser in automotive engineering (p. 374)</td>
<td>J. Schneider</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161983</td>
<td>E</td>
<td>Mechanics of laminated composites (p. 400)</td>
<td>E. Schnack</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173580</td>
<td>E</td>
<td>Mechanics and Strengths of Polymers (p. 401)</td>
<td>B. von Bernstorf (Graf), von Bernstorf</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2183702</td>
<td>E</td>
<td>Modelling of Microstructures (p. 412)</td>
<td>B. Nestler</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2183703</td>
<td>E</td>
<td>Modelling and Simulation (p. 417)</td>
<td>B. Nestler</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2173590</td>
<td>E</td>
<td>Polymer Engineering I (p. 447)</td>
<td>P. Elsner</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2183640</td>
<td>E (P)</td>
<td>Laboratory “Laser Materials Processing” (p. 449)</td>
<td>J. Schneider, W. Pfleging</td>
<td>3</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2173562</td>
<td>E</td>
<td>Failure Analysis (p. 500)</td>
<td>K. Poser</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173565</td>
<td>E</td>
<td>Welding Technology I (p. 503)</td>
<td>B. Spies</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2174570</td>
<td>E</td>
<td>Welding Technology II (p. 504)</td>
<td>B. Spies</td>
<td>1</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2173565</td>
<td>E</td>
<td>Fatigue of Metallic Materials (p. 505)</td>
<td>K. Lang</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173577</td>
<td>E</td>
<td>Failure Analysis Seminar (p. 507)</td>
<td>K. Poser</td>
<td>2</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2174579</td>
<td>E</td>
<td>Technology of steel components (p. 534)</td>
<td>V. Schulze</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181715</td>
<td>E</td>
<td>Failure of Structural Materials: Fatigue and Creep (p. 564)</td>
<td>O. Kraft, P. Gumbsch, P. Gruber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181711</td>
<td>E</td>
<td>Failure of structural materials: deformation and fracture (p. 565)</td>
<td>P. Gumbsch, O. Kraft, D. Weygand</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174586</td>
<td>E</td>
<td>Material Analysis (p. 573)</td>
<td>J. Gibmeier</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2173570</td>
<td>E</td>
<td>Materials and mechanical loads in the power train: engines, gearboxes and drive sections (p. 574)</td>
<td>J. Hoffmeister</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174574</td>
<td>E</td>
<td>Materials for Lightweight Construction (p. 575)</td>
<td>K. Weidenmann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2177601</td>
<td>E/P</td>
<td>Constitution and Properties of Protective Coatings (p. 203)</td>
<td>S. Ulrich</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181744</td>
<td>E/P</td>
<td>Size effects in micro and nanostructures materials (p. 312)</td>
<td>P. Gumbsch, D. Weygand, C. Eberl, P. Gruber, M. Dienwiebel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2185578</td>
<td>E/P</td>
<td>Design Principles and Materials for High-Temperature Components (p. 363)</td>
<td>Wanner et al.</td>
<td>4</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>
MAJOR FIELDS

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162280</td>
<td>E/P</td>
<td>Mathematical Methods in Structural Mechanics (p. 397)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162244</td>
<td>E/P</td>
<td>Plasticity Theory (p. 444)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2126749</td>
<td>E/P</td>
<td>Advanced powder metals (p. 480)</td>
<td>R. Oberacker</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2126775</td>
<td>E/P</td>
<td>Structural and Functional Ceramics (p. 523)</td>
<td>M. Hoffmann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182740</td>
<td>E/P</td>
<td>Materials modelling: dislocation based plasticity (p. 577)</td>
<td>D. Weygand</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions: Basic knowledge in materials science and engineering (Werkstoffkunde I/II)

Recommendations: suggested optional compulsory subject:
- 2174576 Systematic Materials Selection

Remarks:
SP 27: Modeling and Simulation in Energy- and Fluid Engineering

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2167523</td>
<td>K</td>
<td>Modeling of Thermodynamical Processes (p. 416)</td>
<td>R. Schießl, U. Maas</td>
<td>3</td>
<td>6</td>
<td>W/S</td>
</tr>
<tr>
<td>2157441</td>
<td>K</td>
<td>Computational Methods in Fluid Mechanics (p. 433)</td>
<td>F. Magagnato</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169458</td>
<td>K</td>
<td>Numerical simulation of reacting two phase flows (p. 435)</td>
<td>R. Koch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2165525</td>
<td>E</td>
<td>Mathematical models and methods in combustion theory (p. 399)</td>
<td>V. Bykov, U. Maas</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2134134</td>
<td>E</td>
<td>Analysis tools for combustion diagnostics (p. 408)</td>
<td>U. Wagner</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2130934</td>
<td>E</td>
<td>Numerical Simulation of Multi-phase Flows (p. 434)</td>
<td>M. Wörner</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2154449</td>
<td>E</td>
<td>Numerical Simulation of Turbulent Flows (p. 436)</td>
<td>G. Grötzbach</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153408</td>
<td>E</td>
<td>Numerical Fluid Mechanics (p. 437)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2166543</td>
<td>E</td>
<td>Reduction methods for the modeling and the simulation of combustion processes (p. 492)</td>
<td>V. Bykov, U. Maas</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153406</td>
<td>E</td>
<td>Flows with chemical reactions (p. 522)</td>
<td>A. Class</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2123375</td>
<td>E</td>
<td>Virtual Reality Laboratory (p. 570)</td>
<td>J. Ovtcharova, Jurica Katicic</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2133114</td>
<td>E</td>
<td>Simulation of spray and mixture formation processes in combustion engines (p. 514)</td>
<td>C. Baumgarten</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 28: Lifecycle Engineering

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2121352</td>
<td>KP</td>
<td>Virtual Engineering I (p. 568)</td>
<td>J. Ovtcharova</td>
<td>5</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2121353</td>
<td>KP</td>
<td>Exercises Virtual Engineering I (p. 554)</td>
<td>J. Ovtcharova, Mitarbeiter</td>
<td>3</td>
<td>0</td>
<td>W</td>
</tr>
<tr>
<td>2122378</td>
<td>KP</td>
<td>Virtual Engineering II (p. 569)</td>
<td>J. Ovtcharova</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2122379</td>
<td>KP</td>
<td>Exercises Virtual Engineering II (p. 555)</td>
<td>J. Ovtcharova</td>
<td>1</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>2123355</td>
<td>E (P)</td>
<td>CAD-NX5 training course (p. 235)</td>
<td>J. Ovtcharova, M. Hajdukovic</td>
<td>3</td>
<td>2</td>
<td>W/S</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistent</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2122371</td>
<td>K</td>
<td>Efficient creativity - Processes and Methods within the automotive industrie (p. 252)</td>
<td>R. Lamberti</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2123357</td>
<td>E (P)</td>
<td>PLM-CAD workshop (p. 446)</td>
<td>J. Ovtcharova</td>
<td>4</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2121350</td>
<td>E</td>
<td>Product Lifecycle Management (p. 458)</td>
<td>J. Ovtcharova</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2121351</td>
<td>E</td>
<td>Exercises Product Lifecycle Management (p. 553)</td>
<td>J. Ovtcharova, Mitarbeiter</td>
<td>1</td>
<td>0</td>
<td>W</td>
</tr>
<tr>
<td>2118090</td>
<td>E</td>
<td>Quantitative Methods for Supply Chain Risk Management (p. 482)</td>
<td>A. Cardeneo</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2122387</td>
<td>K</td>
<td>Computer Integrated Planning of New Products (p. 489)</td>
<td>R. Kläger</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117061</td>
<td>E</td>
<td>Safety engineering (p. 508)</td>
<td>H. Kany</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlike, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117062</td>
<td>E</td>
<td>Supply chain management (p. 527)</td>
<td>K. Alicke</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2146192</td>
<td>E</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2121370</td>
<td>K</td>
<td>Virtual Engineering for Mechatronic Products (p. 567)</td>
<td>S. Rude</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2123375</td>
<td>E (P)</td>
<td>Virtual Reality Laboratory (p. 570)</td>
<td>J. Ovtcharova, Jurica Katicic</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2117060</td>
<td>E</td>
<td>Analytical methods in material flow methodology (mach and wiwi) (p. 181)</td>
<td>K. Furmans</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2110036</td>
<td>E</td>
<td>Process Design and Industrial Engineering (p. 476)</td>
<td>S. Stowasser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109042</td>
<td>E</td>
<td>Introduction to Industrial Production Economics (p. 343)</td>
<td>S. Dürrschnabel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>
SP 29: Logistics and Material Flow Theory

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117051</td>
<td>KP</td>
<td>Material flow in logistic systems (p. 390)</td>
<td>K. Furmans</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2117060</td>
<td>K</td>
<td>Analytical methods in material flow methodology (mach and wiwi) (p. 181)</td>
<td>K. Furmans</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2118078</td>
<td>K</td>
<td>Logistics - organisation, design and control of logistic systems (p. 377)</td>
<td>K. Furmans</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2118090</td>
<td>K</td>
<td>Quantitative Methods for Supply Chain Risk Management (p. 482)</td>
<td>A. Cardeneo</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2137309</td>
<td>E</td>
<td>Digital Control (p. 247)</td>
<td>M. Knoop</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149610</td>
<td>E</td>
<td>Global Production and Logistics - Part 1: Global Production (p. 309)</td>
<td>G. Lanza</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149600</td>
<td>E</td>
<td>Global Production and Logistics - Part 2: Global Logistics (p. 310)</td>
<td>K. Furmans</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2118094</td>
<td>E</td>
<td>Information Systems in Logistics and Supply Chain Management (p. 346)</td>
<td>C. Kilger</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118097</td>
<td>E</td>
<td>Warehousing and distribution systems (p. 372)</td>
<td>K. Furmans, C. Huber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118085</td>
<td>E</td>
<td>Automotive Logistics (p. 378)</td>
<td>K. Furmans</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117056</td>
<td>E</td>
<td>Airport logistics (p. 379)</td>
<td>A. Richter</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110678</td>
<td>E (P)</td>
<td>Production Techniques Laboratory (p. 469)</td>
<td>K. Furmans, J. Ovtcharova, V. Schulze, G. Zülch, Research assistants of wbk, ifab und IFL</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149605</td>
<td>E</td>
<td>Simulation of production systems and processes (p. 513)</td>
<td>K. Furmans, V. Schulze, G. Zülch</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2117062</td>
<td>E</td>
<td>Supply chain management (p. 527)</td>
<td>K. Alicke</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2117095</td>
<td>E</td>
<td>Basics of Technical Logistics (p. 322)</td>
<td>M. Mittwollen, Linsel</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2117096</td>
<td>E</td>
<td>Elements of Technical Logistics (p. 272)</td>
<td>M. Mittwollen</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2110036</td>
<td>E</td>
<td>Process Design and Industrial Engineering (p. 476)</td>
<td>S. Stowasser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions: none
Recommendations: Recommended compulsory optional subjects:
- Basics of statistic and probability theory
- Simulation of production systems and processes
- Stochastics in Mechanical Engineering
- Modelling and Simulation
- Technical Logistics I
Remarks: none
SP 30: Engineering Mechanics and Applied Mathematics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161250</td>
<td>K</td>
<td>Computational Mechanics I (p. 490)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2161212</td>
<td>K</td>
<td>Vibration Theory (p. 532)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>1246</td>
<td>E</td>
<td>Boundary and Eigenvale Problems (p. 232)</td>
<td>M. Plum, W. Reichel, Plum, Reichel</td>
<td>6</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2162282</td>
<td>E</td>
<td>Introduction to the Finite Element Method (p. 280)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182732</td>
<td>E</td>
<td>Introduction to Theory of Materials (p. 262)</td>
<td>M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182734</td>
<td>E</td>
<td>Introduction to the Mechanics of Composite Materials (p. 263)</td>
<td>Y. Yang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161216</td>
<td>E</td>
<td>Wave propagation (p. 267)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162247</td>
<td>E</td>
<td>Nonlinear vibrations (p. 427)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2181720</td>
<td>E</td>
<td>Foundations of nonlinear continuum mechanics (p. 321)</td>
<td>M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161252</td>
<td>E</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161206</td>
<td>E</td>
<td>Mathematical Methods in Dynamics (p. 393)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162280</td>
<td>E</td>
<td>Mathematical Methods in Structural Mechanics (p. 397)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2154432</td>
<td>E</td>
<td>Mathematical Methods in Fluid Mechanics (p. 396)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>F095</td>
<td>E</td>
<td>Mathematical models in Mechanics (p. 398)</td>
<td>C. Wieners, Wieners</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2173580</td>
<td>E</td>
<td>Mechanics and Strengths of Polymers (p. 401)</td>
<td>B. von Bernstoff, von Bernstoff</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>1874</td>
<td>E</td>
<td>Numerical Mathematics for Engineers (p. 431)</td>
<td>N. Neuss, Neuß</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2161501</td>
<td>E</td>
<td>process simulation in forming operations (p. 478)</td>
<td>D. Helm</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162246</td>
<td>E</td>
<td>Computational Dynamics (p. 486)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162256</td>
<td>E</td>
<td>Computational Vehicle Dynamics (p. 487)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162216</td>
<td>E</td>
<td>Computerized Multibody Dynamics (p. 488)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162296</td>
<td>E</td>
<td>Computational Mechanics II (p. 491)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2161219</td>
<td>E</td>
<td>Theoretical description of mechatronic systems (p. 529)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>1054</td>
<td>E</td>
<td>Variational methods and applications to PDEs (p. 559)</td>
<td>M. Plum, W. Reichel, Plum, Reichel</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2181738</td>
<td>E</td>
<td>Scientific computing for Engineers (p. 579)</td>
<td>D. Weygand, P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162248</td>
<td>E</td>
<td>Introduction into the nonlinear vibrations (Tutorial) (p. 552)</td>
<td>A. Fidlin, N.N.</td>
<td>1</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>2161214</td>
<td>E</td>
<td>Vibration of continuous systems (p. 365)</td>
<td>H. Hetzler</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2163113</td>
<td>E</td>
<td>(p. 517)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 31: Mechatronics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105012</td>
<td>K</td>
<td>Adaptive Control Systems (p. 178)</td>
<td>G. Bretthauer</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106004</td>
<td>K</td>
<td>Computational Intelligence I (p. 241)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2162235</td>
<td>K</td>
<td>Introduction into the multi-body dynamics (p. 265)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2138340</td>
<td>K</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2105024</td>
<td>K</td>
<td>Modern Concepts of Control (p. 418)</td>
<td>L. Grüll, Groell</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2161217</td>
<td>K</td>
<td>Mechatronic Softwaretools (p. 516)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>K</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2106005</td>
<td>K</td>
<td>Automation Systems (p. 217)</td>
<td>M. Kaufmann</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2114092</td>
<td>K</td>
<td>BUS-Controls (p. 233)</td>
<td>M. Geimer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2147175</td>
<td>E</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2105015</td>
<td>E</td>
<td>Computational Intelligence II (p. 242)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2160620</td>
<td>E</td>
<td>Computational Intelligence III (p. 243)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2137309</td>
<td>E</td>
<td>Digital Control (p. 247)</td>
<td>M. Knoop</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2106031</td>
<td>E</td>
<td>Experimental Modelling (p. 280)</td>
<td>L. Gröll</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>23144</td>
<td>E</td>
<td>Informationstechnik in der industriellen Automation (p. 347)</td>
<td>P. Bort, Bort</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2118083</td>
<td>E</td>
<td>IT for facility logistics (p. 354)</td>
<td>F. Thomas</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2194970</td>
<td>E</td>
<td>Micro manufacturing laboratory (p. 371)</td>
<td>V. Schulze, C. Ruhs</td>
<td>5</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161224</td>
<td>E</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Proppe</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181710</td>
<td>E</td>
<td>Mechanics in Microtechnology (p. 402)</td>
<td>C. Eberl, P. Gruber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2105014</td>
<td>E</td>
<td>Laboratory mechatronics (p. 403)</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>24154</td>
<td>E</td>
<td>Human Robot Cooperation (p. 406)</td>
<td>Burghart</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2138326</td>
<td>E</td>
<td>Measurement II (p. 407)</td>
<td>C. Stiller</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2141865</td>
<td>E</td>
<td>Novel actuators and sensors (p. 424)</td>
<td>M. Kohl, M. Sommer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>24152</td>
<td>E</td>
<td>Robotic I (p. 495)</td>
<td>R. Dillmann, K. Welke, Dillmann, Welker, Do</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>23109</td>
<td>E</td>
<td>Signals and Systems (p. 509)</td>
<td>F. Puente</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhike, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146192</td>
<td>E</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2123375</td>
<td>E</td>
<td>Virtual Reality Laboratory (p. 570)</td>
<td>J. Ovtcharova, Jurica Katicic</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>23321</td>
<td>E</td>
<td>(p. 336)</td>
<td>M. Doppelbauer</td>
<td>2+1</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 32: Medical Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>23261</td>
<td>K</td>
<td>?? (p. 221)</td>
<td>Dössel</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>23269</td>
<td>K</td>
<td>?? (p. 226)</td>
<td>A. Bolz, Bolz</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2105021</td>
<td>K</td>
<td>?? (p. 253)</td>
<td>C. Pylatiuk</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106006</td>
<td>K</td>
<td>?? (p. 257)</td>
<td>H. Malberg</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>23262</td>
<td>E</td>
<td>?? (p. 222)</td>
<td>Dössel</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>23264</td>
<td>E</td>
<td>?? (p. 223)</td>
<td>G. Seemann</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>23270</td>
<td>E</td>
<td>?? (p. 227)</td>
<td>A. Bolz, Bolz</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2105020</td>
<td>E</td>
<td>?? (p. 231)</td>
<td>H. Malberg</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106020</td>
<td>E</td>
<td>Computational Intelligence III (p. 243)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2106008</td>
<td>E</td>
<td>?? (p. 279)</td>
<td>C. Pylatiuk</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181710</td>
<td>E</td>
<td>Mechanics in Microtechnology (p. 402)</td>
<td>C. Eberl, P. Guber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2105023</td>
<td>E</td>
<td>?? (p. 404)</td>
<td>U. Kühnapfel, Kühnapfel</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>23289</td>
<td>E</td>
<td>?? (p. 430)</td>
<td>H. Doerfel, F. Maul, Doerfel</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2105025</td>
<td>E (P)</td>
<td>?? (p. 453)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>24681</td>
<td>E</td>
<td>?? (p. 498)</td>
<td>J. Raczkowsky, Raczkowsky</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process</td>
<td>A. Albers, T. Böhlike, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2141864</td>
<td>E</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I (p. 228)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2142883</td>
<td>E</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II (p. 229)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2142879</td>
<td>E</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III (p. 230)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 33: Microsystem Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2141861</td>
<td>K</td>
<td>Introduction to Microsystem Technology I (p. 319)</td>
<td>A. Last</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2142874</td>
<td>K</td>
<td>Introduction to Microsystem Technology II (p. 320)</td>
<td>A. Last</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2143875</td>
<td>K</td>
<td>Introduction to Microsystem Technology - Practical Course (p. 455)</td>
<td>A. Last</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2143892</td>
<td>E</td>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers (p. 210)</td>
<td>T. Mappes</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2143882</td>
<td>E</td>
<td>Fabrication Processes in Microsystem Technology (p. 296)</td>
<td>K. Bade</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2149670</td>
<td>E</td>
<td>Micro manufacturing laboratory (p. 371)</td>
<td>V. Schulze, C. Ruhs</td>
<td>5</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181710</td>
<td>E</td>
<td>Mechanics in Microtechnology (p. 402)</td>
<td>C. Eberl, P. Gruber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2142881</td>
<td>E</td>
<td>Microactuators (p. 411)</td>
<td>M. Kohl</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2143876</td>
<td>E</td>
<td>Nanotechnology with Clusterbeams (p. 422)</td>
<td>J. Gspann</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2181712</td>
<td>E</td>
<td>Nanotribology and -Mechanics (p. 423)</td>
<td>M. Dienwiebel, H. Hölscher</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2141865</td>
<td>E</td>
<td>Novel actuators and sensors (p. 424)</td>
<td>M. Kohl, M. Sommer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2142885</td>
<td>E</td>
<td>Optofluidics (p. 438)</td>
<td>D. Rabus</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2142860</td>
<td>E</td>
<td>Scanning probe microscopy (p. 483)</td>
<td>H. Hölscher, M. Dienwiebel, Stefan Walheim</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2143893</td>
<td>E</td>
<td>Replication Technologies in Microsystem Technology (p. 493)</td>
<td>M. Worgull</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2149605</td>
<td>E</td>
<td>Simulation of production systems and processes (p. 513)</td>
<td>K. Furmans, V. Schulze, G. Zülch</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2142884</td>
<td>E/P</td>
<td>Microoptics and Lithography (p. 410)</td>
<td>T. Mappes</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2141864</td>
<td>E</td>
<td>BioMEMS · Microsystems Technologies for Life-Sciences and Medicine I (p. 228)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2142883</td>
<td>E</td>
<td>BioMEMS · Microsystems Technologies for Life-Sciences and Medicine II (p. 229)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2142879</td>
<td>E</td>
<td>BioMEMS · Microsystems Technologies for Life-Sciences and Medicine III (p. 230)</td>
<td>A. Guber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2143500</td>
<td>E</td>
<td>Chemical, physical and material scientific aspects of polymers in microsystem technologies (p. 240)</td>
<td>H. Moritz, M. Worgull, D. Häringer</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 34: Mobile Machines

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113073</td>
<td>KP</td>
<td>Mobile Machines (p. 413)</td>
<td>M. Geimer</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2113077</td>
<td>K</td>
<td>Drive Train of Mobile Machines (p. 186)</td>
<td>M. Geimer</td>
<td>2/1</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2113079</td>
<td>K</td>
<td>Design and Development of Mobile Machines (p. 215)</td>
<td>M. Geimer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114092</td>
<td>K</td>
<td>BUS-Controls (p. 233)</td>
<td>M. Geimer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117064</td>
<td>E</td>
<td>Application of technical logistics in modern crane systems (p. 189)</td>
<td>M. Geimer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117500</td>
<td>E</td>
<td>Energy efficient intralogistic systems (p. 273)</td>
<td>F. Schöning</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114093</td>
<td>E</td>
<td>Fluid Technology (p. 303)</td>
<td>M. Geimer</td>
<td>2/2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2113812</td>
<td>E</td>
<td>Fundamentals in the Development of Commercial Vehicles I (p. 330)</td>
<td>J. Zürn</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2114844</td>
<td>E</td>
<td>Fundamentals in the Development of Commercial Vehicles II (p. 331)</td>
<td>J. Zürn</td>
<td>1</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2113071</td>
<td>E</td>
<td>Development of Mobile Hydraulic Systems (p. 473)</td>
<td>G. Geerling</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114095</td>
<td>E</td>
<td>Simulation of Coupled Systems (p. 510)</td>
<td>M. Geimer</td>
<td>2/2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113080</td>
<td>E</td>
<td>Tractors (p. 543)</td>
<td>M. Kremmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2121370</td>
<td>E</td>
<td>Virtual Engineering for Mechatronic Products (p. 567)</td>
<td>S. Rude</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2134135</td>
<td>E</td>
<td>Combustion Engines B with Tutorial (p. 562)</td>
<td>U. Spicher</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2133101</td>
<td>E</td>
<td>Combustion Engines A with tutorial (p. 561)</td>
<td>U. Spicher</td>
<td>6</td>
<td>8</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:
Recommendations: Knowledge of Fluid Power Systems is helpful, otherwise it is recommended to take the course Fluid Power Systems [2114093].

Remarks:
SP 35: Modeling and Simulation

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162282</td>
<td>K</td>
<td>Introduction to the Finite Element Method (p. 260)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162235</td>
<td>K</td>
<td>Introduction into the multi-body dynamics (p. 265)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2161252</td>
<td>K</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161224</td>
<td>K</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Proppe</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2161212</td>
<td>K</td>
<td>Vibration Theory (p. 532)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2110038</td>
<td>E</td>
<td>Computer-Supported Operations Planning (in German) (p. 192)</td>
<td>G. Zülpch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181740</td>
<td>E</td>
<td>Atomistic simulations and molecular dynamics (p. 201)</td>
<td>P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>1246</td>
<td>E</td>
<td>Boundary and Eigenvalue Problems (p. 232)</td>
<td>M. Plum, W. Reichel, Plum, Reichel</td>
<td>6</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2123356</td>
<td>E (P)</td>
<td>CATIA V5 CAD training course (p. 234)</td>
<td>J. Ovtcharova, M. Hajdukovic</td>
<td>3</td>
<td>2</td>
<td>W/S</td>
</tr>
<tr>
<td>2123355</td>
<td>E (P)</td>
<td>CAD-NX5 training course (p. 235)</td>
<td>J. Ovtcharova, M. Hajdukovic</td>
<td>3</td>
<td>2</td>
<td>W/S</td>
</tr>
<tr>
<td>2147175</td>
<td>E (P)</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2169459</td>
<td>E (P)</td>
<td>CFD-Lab using Open Foam (p. 238)</td>
<td>R. Koch</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2106031</td>
<td>E</td>
<td>Experimental Modelling (p. 280)</td>
<td>L. Gröll</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2165525</td>
<td>E</td>
<td>Mathematical models and methods in combustion theory (p. 399)</td>
<td>V. Bykov, U. Maas</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2134134</td>
<td>E</td>
<td>Analysis tools for combustion diagnostics (p. 408)</td>
<td>U. Wagner</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162256</td>
<td>E</td>
<td>Computational Vehicle Dynamics (p. 487)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161250</td>
<td>E</td>
<td>Computational Mechanics I (p. 490)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162296</td>
<td>E</td>
<td>Computational Mechanics II (p. 491)</td>
<td>T. Böhlke, T. Langhoff</td>
<td>2</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2114095</td>
<td>E</td>
<td>Simulation of Coupled Systems (p. 510)</td>
<td>M. Geimer</td>
<td>2/2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2122378</td>
<td>E</td>
<td>Virtual Engineering II (p. 569)</td>
<td>J. Ovtcharova</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2123375</td>
<td>E (P)</td>
<td>Virtual Reality Laboratory (p. 570)</td>
<td>J. Ovtcharova, Jurica Katicic</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2182740</td>
<td>E</td>
<td>Materials modelling: dislocation based plasticity (p. 577)</td>
<td>D. Weygand</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181738</td>
<td>E</td>
<td>Scientific computing for Engineers (p. 579)</td>
<td>D. Weygand, P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117060</td>
<td>E/P</td>
<td>Analytical methods in material flow methodology (mach and wiwi) (p. 181)</td>
<td>K. Furmans</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2133114</td>
<td>E</td>
<td>Simulation of spray and mixture formation processes in combustion engines (p. 514)</td>
<td>C. Baumgarten</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2163111</td>
<td>E</td>
<td>(p. 251)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2163113</td>
<td>E</td>
<td>(p. 517)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2162247</td>
<td>E</td>
<td>Nonlinear vibrations (p. 427)</td>
<td>A. Fidlin</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2161241</td>
<td>E (P)</td>
<td>Schwingungstechnisches Praktikum (p. 506)</td>
<td>H. Hetzler, A. Fidlin</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2134139</td>
<td>E</td>
<td>(p. 415)</td>
<td>F. Kirschbaum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2161217</td>
<td>E (P)</td>
<td>Mechatronic Softwaretools (p. 516)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2183721</td>
<td>E</td>
<td>High Performance Computing (p. 334)</td>
<td>B. Nestler</td>
<td>2</td>
<td>5</td>
<td>W/S</td>
</tr>
</tbody>
</table>
Conditions:
Recommendations:
Remarks:
SP 36: Polymer Engineering

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2173590</td>
<td>K</td>
<td>Polymer Engineering I (p. 447)</td>
<td>P. Elsner</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174596</td>
<td>K</td>
<td>Polymer Engineering II (p. 448)</td>
<td>P. Elsner</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2113101</td>
<td>E</td>
<td>Introduction to Automotive Lightweight Technology (p. 256)</td>
<td>F. Henning</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114052</td>
<td>E</td>
<td>Composites for Lightweight Design (p. 294)</td>
<td>F. Henning</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2174571</td>
<td>E</td>
<td>Design with Plastics (p. 362)</td>
<td>C. Bonten</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2173580</td>
<td>E</td>
<td>Mechanics and Strengths of Polymers (p. 401)</td>
<td>B. von Bernstorff (Graf), von Bernstorff</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions: Basic knowledge in materials science and engineering (Werkstoffkunde I/II)

Recommendations: suggested optional compulsory subject:
- 2174576 Systematic Materials Selection

Remarks: Emphasis module in the master’s program only.
SP 37: Production Management

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2109028</td>
<td>KP</td>
<td>Industrial Engineering I (in German) (p. 464)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110028</td>
<td>KP</td>
<td>Industrial Engineering II (p. 465)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109029</td>
<td>K</td>
<td>Ergonomics and Work Economics (in German) (p. 277)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110038</td>
<td>E</td>
<td>Computer-Supported Operations Planning (in German) (p. 192)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109030</td>
<td>E</td>
<td>Occupational Health and Safety Management (in German) (p. 196)</td>
<td>G. Zülch</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2150652</td>
<td>E (P)</td>
<td>Factory Planning Laboratory (p. 284)</td>
<td>G. Lanza</td>
<td>1</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>2150660</td>
<td>E</td>
<td>Integrated production planning (p. 353)</td>
<td>G. Lanza</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2110017</td>
<td>E</td>
<td>Leadership and Conflict Management (in German) (p. 386)</td>
<td>H. Hatzl</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109034</td>
<td>E</td>
<td>Planning of Assembly Systems (in German) (p. 441)</td>
<td>E. Haller</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110032</td>
<td>E</td>
<td>Production Planning and Control (Planning Game of a Bicycle Factory; in German) (p. 466)</td>
<td>A. Rinn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2110678</td>
<td>E (P)</td>
<td>Production Techniques Laboratory (p. 469)</td>
<td>K. Furmans, J. Ovtcharo, V. Schulze, G. Zülch, Research assistants of wbk, ifab und IFL</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2110029</td>
<td>E</td>
<td>Controlling of Production Economics (in German) (p. 470)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149667</td>
<td>E</td>
<td>Quality Management (p. 481)</td>
<td>G. Lanza</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149605</td>
<td>E</td>
<td>Simulation of production systems and processes (p. 513)</td>
<td>K. Furmans, V. Schulze, G. Zülch</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2150661</td>
<td>E</td>
<td>Übungen zu Integrierte Produktionsplanung (p. 549)</td>
<td>G. Lanza</td>
<td>2</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2110036</td>
<td>E</td>
<td>Process Design and Industrial Engineering (p. 476)</td>
<td>S. Stowasser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109042</td>
<td>E</td>
<td>Introduction to Industrial Production Economics (p. 343)</td>
<td>S. Dürrschnabel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 39: Production Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149657</td>
<td>K</td>
<td>manufacturing technology (p. 297)</td>
<td>V. Schulze</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2149902</td>
<td>K</td>
<td>Machine Tools and Industrial Handling (p. 578)</td>
<td>J. Fleischer</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2150660</td>
<td>K</td>
<td>Integrated production planning (p. 353)</td>
<td>G. Lanza</td>
<td>4</td>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>2149610</td>
<td>K</td>
<td>Global Production and Logistics - Part 1: Global Production (p. 309)</td>
<td>G. Lanza</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149600</td>
<td>K</td>
<td>Global Production and Logistics - Part 2: Global Logistics (p. 310)</td>
<td>K. Furmans</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149658</td>
<td>E</td>
<td>manufacturing technology exercises (p. 548)</td>
<td>V. Schulze</td>
<td>1</td>
<td>1</td>
<td>W</td>
</tr>
<tr>
<td>2150661</td>
<td>E</td>
<td>Übungen zu Integrierte Produktionsplanung (p. 549)</td>
<td>G. Lanza</td>
<td>2</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2149669</td>
<td>E</td>
<td>Materials and processes for the lightweight production of car bodies (p. 391)</td>
<td>H. Haeppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2150690</td>
<td>E</td>
<td>Production Systems and Production Technology in Major Assembly Production (p. 468)</td>
<td>V. Staupe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149904</td>
<td>E</td>
<td>Automated Production Line (p. 216)</td>
<td>J. Fleischer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149668</td>
<td>E</td>
<td>process simulation in cutting (p. 479)</td>
<td>A. Zabel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2150681</td>
<td>E</td>
<td>metal forming (p. 556)</td>
<td>R. Geiger, Dr. Herlan</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149655</td>
<td>E</td>
<td>Gear Cutting Technology (p. 566)</td>
<td>K. Felten</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2150683</td>
<td>E</td>
<td>Control engineering (p. 518)</td>
<td>C. Gönnheimer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149667</td>
<td>E</td>
<td>Quality Management (p. 481)</td>
<td>G. Lanza</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2149650</td>
<td>E</td>
<td>Electronic Business for industrial Companies (p. 270)</td>
<td>A. Weisbecker</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2150652</td>
<td>E</td>
<td>Factory Planning Laboratory (p. 284)</td>
<td>G. Lanza</td>
<td>1</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>2149670</td>
<td>E</td>
<td>Micro manufacturing laboratory (p. 371)</td>
<td>V. Schulze, C. Ruhs</td>
<td>5</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173560</td>
<td>E</td>
<td>Welding Lab Course, in groupes (p. 283)</td>
<td>V. Schulze</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173565</td>
<td>E</td>
<td>Welding Technology I (p. 503)</td>
<td>B. Spies</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2174570</td>
<td>E</td>
<td>Welding Technology II (p. 504)</td>
<td>B. Spies</td>
<td>1</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>2174575</td>
<td>E</td>
<td>Foundry Technology (p. 308)</td>
<td>C. Wilhelm</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2174579</td>
<td>E</td>
<td>Technology of steel components (p. 534)</td>
<td>V. Schulze</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2110678</td>
<td>E</td>
<td>Production Techniques Laboratory (p. 469)</td>
<td>K. Furmans, J. Ovcharova, V. Schulze, G. Zülich, Research assistants of wbk, ifab und IFL</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2110038</td>
<td>E</td>
<td>Computer-Supported Operations Planning (in German) (p. 192)</td>
<td>G. Zülich</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117500</td>
<td>E</td>
<td>Energy efficient intralogistic systems (p. 273)</td>
<td>F. Schöning</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2118097</td>
<td>E</td>
<td>Warehousing and distribution systems (p. 372)</td>
<td>K. Furmans, C. Huber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145184</td>
<td>E</td>
<td>Leadership and Product Development (p. 375)</td>
<td>A. Ploch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2118085</td>
<td>E</td>
<td>Automotive Logistics (p. 378)</td>
<td>K. Furmans</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2109034</td>
<td>E</td>
<td>Planning of Assembly Systems (in German) (p. 441)</td>
<td>E. Haller</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2121366</td>
<td>E</td>
<td>PLM in the Manufacturing Industry (p. 445)</td>
<td>G. Meier</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2110032</td>
<td>E</td>
<td>Production Planning and Control (Planning Game of a Bicycle Factory; in German) (p. 466)</td>
<td>A. Rinn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>ID</td>
<td>Cat</td>
<td>Course</td>
<td>Lecturer</td>
<td>h</td>
<td>CP</td>
<td>Term</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>2110029</td>
<td>E</td>
<td>Controlling of Production Economics (in German) (p. 470)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149605</td>
<td>E</td>
<td>Simulation of production systems and processes (p. 513)</td>
<td>K. Furmans, V. Schulze, G. Zülch</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2117095</td>
<td>E</td>
<td>Basics of Technical Logistics (p. 322)</td>
<td>M. Mittwollen, Linsel</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2117060</td>
<td>E/P</td>
<td>Analytical methods in material flow methodology (mach and wiwi) (p. 181)</td>
<td>K. Furmans</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2110036</td>
<td>E</td>
<td>Process Design and Industrial Engineering (p. 476)</td>
<td>S. Stowasser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2109042</td>
<td>E</td>
<td>Introduction to Industrial Production Economics (p. 343)</td>
<td>S. Dürrschnabel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117096</td>
<td>E</td>
<td>Elements of Technical Logistics (p. 272)</td>
<td>M. Mittwollen</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2183640</td>
<td>E/P</td>
<td>Laboratory “Laser Materials Processing” (p. 449)</td>
<td>J. Schneider, W. Pfleging</td>
<td>3</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2149903</td>
<td>E</td>
<td>Development Project for Machine Tools and Industrial Handling (p. 276)</td>
<td>J. Fleischer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:
Recommendations:
Remarks:
SP 40: Robotics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105012</td>
<td>K</td>
<td>Adaptive Control Systems (p. 178)</td>
<td>G. Bretthauer</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2138340</td>
<td>K</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>24152</td>
<td>K</td>
<td>Robotic I (p. 495)</td>
<td>R. Dillmann, K. Welke, Dillmann, Welker, Do</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>24712</td>
<td>K</td>
<td>?? (p. 496)</td>
<td>R. Dillmann, S. Schmidt-Rohr, Dillmann, Gindele, Schmidt-Rohr</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2138336</td>
<td>K</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145150</td>
<td>E</td>
<td>Powertrain Systems Technology B: Stationary Machinery (p. 188)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2106004</td>
<td>E</td>
<td>Computational Intelligence I (p. 241)</td>
<td>G. Bretthauer, R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2105015</td>
<td>E</td>
<td>Computational Intelligence II (p. 242)</td>
<td>G. Bretthauer, Mikut</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2106020</td>
<td>E</td>
<td>Computational Intelligence III (p. 243)</td>
<td>R. Mikut</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2137309</td>
<td>E</td>
<td>Digital Control (p. 247)</td>
<td>M. Knoop</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138341</td>
<td>E</td>
<td>Cognitive Automobiles - Laboratory (p. 359)</td>
<td>C. Stiller, M. Lauer, B. Kitt</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>24613</td>
<td>E</td>
<td>Localization of Mobile Agents (p. 380)</td>
<td>U. Hanebeck, Hanebeck</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2137308</td>
<td>E</td>
<td>Machine Vision (p. 381)</td>
<td>C. Stiller, M. Lauer</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2105014</td>
<td>E (P)</td>
<td>Laboratory mechatronics (p. 403)</td>
<td>A. Albers, G. Bretthauer, C. Proppe, C. Stiller</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138326</td>
<td>E</td>
<td>Measurement II (p. 407)</td>
<td>C. Stiller</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2105024</td>
<td>E</td>
<td>Modern Concepts of Control (p. 418)</td>
<td>L. Gröll, Groell</td>
<td>2</td>
<td>3</td>
<td>W</td>
</tr>
<tr>
<td>2141855</td>
<td>E</td>
<td>Novel actuators and sensors (p. 424)</td>
<td>M. Kohl, M. Sommer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2137306</td>
<td>E (P)</td>
<td>Lab Computer-aided methods for measurement and control (p. 450)</td>
<td></td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146194</td>
<td>E (P)</td>
<td>Mobile Robot Systems Lab (p. 452)</td>
<td>A. Albers, M. Friesch</td>
<td>3</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2162216</td>
<td>E</td>
<td>Computerized Multibody Dynamics (p. 488)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2150683</td>
<td>E</td>
<td>Control engineering (p. 518)</td>
<td>C. Gönneheimer, K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2146192</td>
<td>E</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>G. Bretthauer, J. Ovtcharova, Jurica Katicic</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2106002</td>
<td>E</td>
<td>Computer Engineering (p. 531)</td>
<td>G. Bretthauer</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2123375</td>
<td>E (P)</td>
<td>Virtual Reality Laboratory (p. 570)</td>
<td>J. Ovtcharova, Jurica Katicic</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2117060</td>
<td>E/P</td>
<td>Analytical methods in material flow methodology (macht und wiwi) (p. 181)</td>
<td></td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Master Course Mechanical Engineering (M.Sc.)
Module Handbook, Date: 29.06.2011
5 MAJOR FIELDS

Recommendations:
Remarks:
SP 41: Fluid Mechanics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2154436</td>
<td>K</td>
<td>Aerothermodynamics (p. 179)</td>
<td>F. Seiler</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2154434</td>
<td>K</td>
<td>Applied Fluid Mechanics (p. 183)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153405</td>
<td>K</td>
<td>Finite Difference Methods for numerical solution of thermal and fluid dynamical problems (p. 246)</td>
<td>C. Günther</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154431</td>
<td>K</td>
<td>Finite Volume Methods for Fluid Flow (p. 301)</td>
<td>C. Günther</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153410</td>
<td>K</td>
<td>Optical Flow Measurement: Fundamentals and Applications (p. 326)</td>
<td>F. Seiler</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154437</td>
<td>K</td>
<td>Hydrodynamic Stability: From Order to Chaos (p. 339)</td>
<td>A. Class</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2157441</td>
<td>K</td>
<td>Computational Methods in Fluid Mechanics (p. 433)</td>
<td>F. Magagnato</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154449</td>
<td>K</td>
<td>Numerical Simulation of Turbulent Flows (p. 436)</td>
<td>G. Grützbach</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153408</td>
<td>K</td>
<td>Numerical Fluid Mechanics (p. 437)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154044</td>
<td>K</td>
<td>Scaling in fluid dynamics (p. 515)</td>
<td>L. Bühler</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2170462</td>
<td>E</td>
<td>Topics in turbulent flows for power and fluids engineering (p. 212)</td>
<td>D. von Terzi, v. Terzi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169459</td>
<td>E (P)</td>
<td>CFD-Lab using Open Foam (p. 238)</td>
<td>R. Koch</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154401</td>
<td>E</td>
<td>Fluid-Structure-Interaction (p. 302)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>19228</td>
<td>E</td>
<td>Building- and Environmental Aerodynamics (p. 306)</td>
<td>B. Ruck, Ruck</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153425</td>
<td>E</td>
<td>Industrial aerodynamics (p. 340)</td>
<td>T. Breitling</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2153429</td>
<td>E</td>
<td>Magnetohydrodynamics (p. 382)</td>
<td>L. Bühler</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154432</td>
<td>E</td>
<td>Mathematical Methods in Fluid Mechanics (p. 396)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169458</td>
<td>E</td>
<td>Numerical simulation of reacting two phase flows (p. 435)</td>
<td>R. Koch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2157442</td>
<td>E (P)</td>
<td>Computational Methods in Fluid Mechanics (Exercise) (p. 456)</td>
<td>B. Pritz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169988</td>
<td>E</td>
<td>Simulation of turbulent flow and heat transfer using statistical models (p. 512)</td>
<td>D. von Terzi, v. Terzi</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154407</td>
<td>E</td>
<td>Flows in rotating systems (p. 521)</td>
<td>R. Bohning</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153406</td>
<td>E</td>
<td>Flows with chemical reactions (p. 522)</td>
<td>A. Class</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2153409</td>
<td>E (P)</td>
<td>Seminar: Introduction to numerical fluid mechanics (p. 542)</td>
<td>T. Schenkel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154433</td>
<td>E</td>
<td>Tutorial in Mathematical Methods of Fluid Mechanics (p. 551)</td>
<td>T. Schenkel</td>
<td>1</td>
<td>0</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 42: Technical Acoustics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2158107</td>
<td>KP</td>
<td>Technical Acoustics (p. 530)</td>
<td>M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161224</td>
<td>K</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Proppe</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2161212</td>
<td>K</td>
<td>Vibration Theory (p. 532)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2161216</td>
<td>E</td>
<td>Wave propagation (p. 267)</td>
<td>W. Seemann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2113806</td>
<td>E</td>
<td>Vehicle Comfort and Acoustics I (p. 288)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114825</td>
<td>E</td>
<td>Vehicle Comfort and Acoustics II (p. 289)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162246</td>
<td>E</td>
<td>Computational Dynamics (p. 486)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 43: Technical Ceramics and Powder Materials

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125755</td>
<td>K</td>
<td>Introduction to Ceramics (p. 261)</td>
<td>M. Hoffmann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2126775</td>
<td>K</td>
<td>Structural and Functional Ceramics (p. 523)</td>
<td>M. Hoffmann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2193010</td>
<td>E</td>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie (p. 316)</td>
<td>R. Oberacker</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2125762</td>
<td>E</td>
<td>Nanoanalytics (p. 421)</td>
<td>M. Bäurer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2125751</td>
<td>E (P)</td>
<td>Practical Course Technical Ceramics (p. 451)</td>
<td>F. Porz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2126749</td>
<td>E</td>
<td>Advanced powder metals (p. 480)</td>
<td>R. Oberacker</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2125763</td>
<td>E</td>
<td>Structural and phase analysis (p. 525)</td>
<td>S. Wagner</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181711</td>
<td>E</td>
<td>Failure of structural materials: deformation and fracture (p. 565)</td>
<td>P. Gumbsch, O. Kraft, D. Weygand</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 44: Technical Logistics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117095</td>
<td>KP</td>
<td>Basics of Technical Logistics (p. 322)</td>
<td>M. Mittwollen, Linsel</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2117096</td>
<td>K</td>
<td>Elements of Technical Logistics (p. 272)</td>
<td>M. Mittwollen</td>
<td>4</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2118087</td>
<td>K</td>
<td>Selected Applications of Technical Logistics (p. 206)</td>
<td>M. Mittwollen, Linsel</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118088</td>
<td>K</td>
<td>Selected Applications of Technical Logistics and Project (p. 207)</td>
<td>M. Mittwollen, Linsel</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2117064</td>
<td>E</td>
<td>Application of technical logistics in modern crane systems (p. 189)</td>
<td>M. Golder</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2118089</td>
<td>E</td>
<td>Application of technical logistics in sorting- and distribution technology (p. 190)</td>
<td>J. Föller</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117500</td>
<td>E</td>
<td>Energy efficient intralogistic systems (p. 273)</td>
<td>F. Schönung</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138341</td>
<td>E</td>
<td>Cogitive Automobiles - Laboratory (p. 359)</td>
<td>C. Stiller, M. Lauer, B. Kitt</td>
<td>2</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2118097</td>
<td>E</td>
<td>Warehousing and distribution systems (p. 372)</td>
<td>K. Fürmans, C. Huber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2117051</td>
<td>E</td>
<td>Material flow in logistic systems (p. 390)</td>
<td>K. Fürmans</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2149667</td>
<td>E</td>
<td>Quality Management (p. 481)</td>
<td>G. Lanza</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117061</td>
<td>E</td>
<td>Safety engineering (p. 508)</td>
<td>H. Kany</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2138336</td>
<td>E</td>
<td>Behaviour Generation for Vehicles (p. 563)</td>
<td>C. Stiller, T. Dang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2118083</td>
<td>E/P</td>
<td>IT for facility logistics (p. 354)</td>
<td>F. Thomas</td>
<td>4</td>
<td>6</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions: none
Recommendations: Recommended compulsory optional subjects:
- Mathematical Methods in Dynamics
- Simulation of production systems and processes
- Stochastics in Mechnical Engineering
- Modelling and Simulation
- Technical Logistics I

Remarks:
SP: Engineering Thermodynamics

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2165515</td>
<td>K</td>
<td>Fundamentals of combustion I (p. 323)</td>
<td>U. Maas</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2166538</td>
<td>K</td>
<td>Fundamentals of combustion II (p. 324)</td>
<td>U. Maas</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2167523</td>
<td>K</td>
<td>Modeling of Thermodynamical Processes (p. 416)</td>
<td>U. Maas</td>
<td>3</td>
<td>6</td>
<td>W/S</td>
</tr>
<tr>
<td>2134112</td>
<td>E</td>
<td>Supercharging of Combustion Engines (p. 204)</td>
<td>R. Golloch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2167541</td>
<td>E</td>
<td>Selected chapters of the combustion fundamentals (p. 211)</td>
<td>U. Maas</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2186126</td>
<td>E</td>
<td>Automobile and Environment (p. 218)</td>
<td>H. Kubach, U. Spicher, U. Maas,</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H. Wirbser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2165514</td>
<td>E</td>
<td>Biogas - Prospects and possibilities (p. 224)</td>
<td>P. Drausnigg</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>22012</td>
<td>E</td>
<td>Fundamentals of refrigeration (p. 317)</td>
<td>L. Oellrich, Oellrich</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2165525</td>
<td>E</td>
<td>Mathematical models and methods in combustion theory (p. 399)</td>
<td>V. Bykov, U. Maas</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2134134</td>
<td>E</td>
<td>Analysis tools for combustion diagnostics (p. 408)</td>
<td>U. Wagner</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2166543</td>
<td>E</td>
<td>Reduction methods for the modeling and the simulation of combustion processes (p. 492)</td>
<td>V. Bykov, U. Maas</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2153406</td>
<td>E</td>
<td>Flows with chemical reactions (p. 522)</td>
<td>A. Class</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169453</td>
<td>E</td>
<td>Thermal Turbomachines I (p. 538)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2170476</td>
<td>E</td>
<td>Thermal Turbomachines II (p. 539)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>22010</td>
<td>E</td>
<td>Thermodynamics of dispersed systems (p. 540)</td>
<td>K. Schaber, Schaber</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2167048</td>
<td>E</td>
<td>Combustion diagnostics (p. 560)</td>
<td>R. Schießl, U. Maas</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2133101</td>
<td>E</td>
<td>Combustion Engines A with tutorial (p. 561)</td>
<td>U. Spicher</td>
<td>6</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2166534</td>
<td>E</td>
<td>Heatpumps (p. 571)</td>
<td>H. Wirbser, U. Maas</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2133114</td>
<td>E</td>
<td>Simulation of spray and mixture formation processes in combustion engines (p. 514)</td>
<td>C. Baumgarten</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
Conditions:

Recommendations:

Remarks:

SP 46: Thermal Turbomachines

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2169453</td>
<td>KP</td>
<td>Thermal Turbomachines I (p. 538)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2170476</td>
<td>K</td>
<td>Thermal Turbomachines II (p. 539)</td>
<td>H. Bauer</td>
<td>3</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>2134112</td>
<td>E</td>
<td>Supercharging of Combustion Engines (p. 204)</td>
<td>R. Golloch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2170454</td>
<td>E</td>
<td>Selected Topics in Aeronautics and Astronautics I (p. 208)</td>
<td>S. Wittig</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169486</td>
<td>E</td>
<td>Selected Topics in Aeronautics and Astronautics II (p. 209)</td>
<td>S. Wittig</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181745</td>
<td>E</td>
<td>Design of highly stresses components (p. 214)</td>
<td>J. Aktaa</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2125755</td>
<td>E</td>
<td>Introduction to Ceramics (p. 261)</td>
<td>M. Hoffmann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161252</td>
<td>E</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2171486</td>
<td>E (P)</td>
<td>Integrated measurement systems for fluid mechanics applications (p. 351)</td>
<td>K. Dullenkopf, Mitarbeiter</td>
<td>5</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2170463</td>
<td>E</td>
<td>Cooling of thermally high loaded gas turbine components (p. 369)</td>
<td>H. Bauer, A. Schulz</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161224</td>
<td>E</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Propp</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Propp</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2169458</td>
<td>E</td>
<td>Numerical simulation of reacting two phase flows (p. 435)</td>
<td>R. Koch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2173562</td>
<td>E</td>
<td>Failure Analysis (p. 500)</td>
<td>K. Poser</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173585</td>
<td>E</td>
<td>Fatigue of Metallic Materials (p. 505)</td>
<td>K. Lang</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2117061</td>
<td>E</td>
<td>Safety engineering (p. 508)</td>
<td>H. Kany</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2154407</td>
<td>E</td>
<td>Flows in rotating systems (p. 521)</td>
<td>R. Bohning</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161212</td>
<td>E</td>
<td>Vibration Theory (p. 532)</td>
<td>W. Seemann</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2169462</td>
<td>E</td>
<td>Turbo and compressor Design (p. 546)</td>
<td>H. Bauer, A. Schulz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2170478</td>
<td>E</td>
<td>Turbo Jet Engines (p. 547)</td>
<td>H. Bauer, A. Schulz</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181715</td>
<td>E</td>
<td>Failure of Structural Materials: Fatigue and Creep (p. 564)</td>
<td>O. Kraft, P. Gumbisch, P. Gruber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181711</td>
<td>E</td>
<td>Failure of structural materials: deformation and fracture (p. 565)</td>
<td>P. Gumbisch, O. Kraft, D. Weygand</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2174574</td>
<td>E</td>
<td>Materials for Lightweight Construction (p. 575)</td>
<td>K. Weidenmann</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2185578</td>
<td>E/P</td>
<td>Design Principles and Materials for High-Temperature Components (p. 363)</td>
<td>Wanner et al.</td>
<td>4</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>
SP 47: Tribology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181113</td>
<td>K</td>
<td>Tribology A (p. 544)</td>
<td>M. Scherge, M. Dienwiebel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2182139</td>
<td>K</td>
<td>Tribology B (p. 545)</td>
<td>M. Scherge, M. Dienwiebel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145181</td>
<td>E</td>
<td>Applied Tribology in Industrial Product Development (p. 185)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146180</td>
<td>E</td>
<td>Powertrain Systems Technology A: Automotive Systems (p. 187)</td>
<td>A. Albers, S. Ott</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181740</td>
<td>E</td>
<td>Atomistic simulations and molecular dynamics (p. 201)</td>
<td>P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2178643</td>
<td>E</td>
<td>Constitution and Properties of Wear resistant materials (p. 202)</td>
<td>S. Ulrich</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181712</td>
<td>E</td>
<td>Nanotribology and -Mechanics (p. 423)</td>
<td>M. Dienwiebel, H. Hölscher</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173590</td>
<td>E</td>
<td>Polymer Engineering I (p. 447)</td>
<td>P. Elsner</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2142860</td>
<td>E</td>
<td>Scanning probe microscopy (p. 483)</td>
<td>H. Hölscher, M. Dienwiebel, Stefan Walheim</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2177618</td>
<td>E</td>
<td>Superhard Thin Film Materials (p. 526)</td>
<td>S. Ulrich</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:
Recommendations:
Remarks:
SP 48: Internal Combustion Engines

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2133101</td>
<td>KP</td>
<td>Combustion Engines A with tutorial (p. 561)</td>
<td>U. Spicher</td>
<td>6</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2134135</td>
<td>K</td>
<td>Combustion Engines B with Tutorial (p. 562)</td>
<td>U. Spicher</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134112</td>
<td>K</td>
<td>Supercharging of Combustion Engines (p. 204)</td>
<td>R. Golloch</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134138</td>
<td>K</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment (p. 318)</td>
<td>E. Lox</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134134</td>
<td>K</td>
<td>Analysis tools for combustion diagnostics (p. 408)</td>
<td>U. Wagner</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134137</td>
<td>K</td>
<td>Engine measurement techniques (p. 420)</td>
<td>S. Bernhardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2133109</td>
<td>E</td>
<td>Fuels and Lubricants for Combustion Engines and their Testing (p. 220)</td>
<td>J. Volz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2133114</td>
<td>E</td>
<td>Simulation of spray and mixture formation processes in combustion engines (p. 514)</td>
<td>C. Baumgarten</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2186126</td>
<td>E</td>
<td>Automobile and Environment (p. 218)</td>
<td>H. Kubach, U. Spicher, U. Maas, H. Wirbser</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2134001</td>
<td>E</td>
<td>Engine laboratory (block course) (p. 419)</td>
<td>U. Spicher</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181745</td>
<td>E</td>
<td>Design of highly stresses components (p. 214)</td>
<td>J. Aktaa</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2113806</td>
<td>E</td>
<td>Vehicle Comfort and Acoustics I (p. 289)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2114825</td>
<td>E</td>
<td>Vehicle Comfort and Acoustics II (p. 289)</td>
<td>F. Gauterin</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2166538</td>
<td>E</td>
<td>Fundamentals of combustion II (p. 324)</td>
<td>U. Maas</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161224</td>
<td>E</td>
<td>Machine Dynamics (p. 388)</td>
<td>C. Proppe</td>
<td>3</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>2162220</td>
<td>E</td>
<td>Machine Dynamics II (p. 389)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146192</td>
<td>E</td>
<td>Sustainable Product Engineering (p. 528)</td>
<td>K. Ziegahn</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2158107</td>
<td>E</td>
<td>Technical Acoustics (p. 530)</td>
<td>M. Gabi</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181113</td>
<td>E</td>
<td>Tribology A (p. 544)</td>
<td>M. Scherge, M. Dienwiebel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2182139</td>
<td>E</td>
<td>Tribology B (p. 545)</td>
<td>M. Scherge, M. Dienwiebel</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2185578</td>
<td>E/P</td>
<td>Design Principles and Materials for High-Temperature Components (p. 363)</td>
<td>Wanner et al.</td>
<td>4</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2134139</td>
<td>E</td>
<td>(p. 415)</td>
<td>F. Kirschbaum</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>2134150</td>
<td>E</td>
<td>(p. 176)</td>
<td>M. Gohl</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>2113805</td>
<td>E</td>
<td>Automotive Engineering I (p. 314)</td>
<td>F. Gauterin, H. Unrau</td>
<td>4</td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>2114835</td>
<td>E</td>
<td>Automotive Engineering II (p. 315)</td>
<td>F. Gauterin, H. Unrau</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
SP 49: Reliability in Mechanical Engineering

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181715</td>
<td>K</td>
<td>Failure of Structural Materials: Fatigue and Creep (p. 564)</td>
<td>O. Kraft, P. Gumbsch, P. Gruber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181711</td>
<td>K</td>
<td>Failure of structural materials: deformation and fracture (p. 565)</td>
<td>P. Gumbsch, O. Kraft, D. Weygand</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2182735</td>
<td>E</td>
<td>Application of advanced programming languages in mechanical engineering (p. 191)</td>
<td>D. Weygand</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181740</td>
<td>E</td>
<td>Atomistic simulations and molecular dynamics (p. 201)</td>
<td>P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181745</td>
<td>E</td>
<td>Design of highly stresses components (p. 214)</td>
<td>J. Aktaa</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181708</td>
<td>E (P)</td>
<td>Biomechanics: design in nature and inspired by nature (p. 225)</td>
<td>C. Mattheck</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162282</td>
<td>E</td>
<td>Introduction to the Finite Element Method (p. 260)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2125755</td>
<td>E</td>
<td>Introduction to Ceramics (p. 261)</td>
<td>M. Hoffmann</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2182732</td>
<td>E</td>
<td>Introduction to Theory of Materials (p. 262)</td>
<td>M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182734</td>
<td>E</td>
<td>Introduction to the Mechanics of Composite Materials (p. 263)</td>
<td>Y. Yang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2182731</td>
<td>E (P)</td>
<td>Finite Element Workshop (p. 300)</td>
<td>C. Mattheck, M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181720</td>
<td>E</td>
<td>Foundations of nonlinear continuum mechanics (p. 321)</td>
<td>M. Kamlah</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181744</td>
<td>E</td>
<td>Size effects in micro and nanostructures materials (p. 312)</td>
<td>P. Gumbsch, D. Weygand, C. Eberl, P. Gruber, M. Dienwiebel</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2161252</td>
<td>E</td>
<td>Advanced Methods in Strength of Materials (p. 335)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146190</td>
<td>E</td>
<td>Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2162280</td>
<td>E</td>
<td>Mathematical Methods in Structural Mechanics (p. 397)</td>
<td>T. Böhlke</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181710</td>
<td>E</td>
<td>Mechanics in Microtechnology (p. 402)</td>
<td>C. Eberl, P. Gruber</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2183702</td>
<td>E</td>
<td>Modelling of Microstructures (p. 412)</td>
<td>B. Nestler</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2183703</td>
<td>E</td>
<td>Modelling and Simulation (p. 417)</td>
<td>B. Nestler</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2149667</td>
<td>E</td>
<td>Quality Management (p. 481)</td>
<td>G. Lanza</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173562</td>
<td>E</td>
<td>Failure Analysis (p. 500)</td>
<td>K. Poser</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173585</td>
<td>E</td>
<td>Fatigue of Metallic Materials (p. 505)</td>
<td>K. Lang</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2173577</td>
<td>E</td>
<td>Failure Analysis Seminar (p. 507)</td>
<td>K. Poser</td>
<td>2</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>2117061</td>
<td>E</td>
<td>Safety engineering (p. 508)</td>
<td>H. Kany</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2185264</td>
<td>E</td>
<td>Simulation in product development process (p. 511)</td>
<td>A. Albers, T. Böhlke, J. Ovtcharova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2182740</td>
<td>E</td>
<td>Materials modelling: dislocation based plasticity (p. 577)</td>
<td>D. Weygand</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2181738</td>
<td>E</td>
<td>Scientific computing for Engineers (p. 579)</td>
<td>D. Weygand, P. Gumbsch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:

Master Course Mechanical Engineering (M.Sc.)
Module Handbook, Date: 29.06.2011
SP 50: Rail System Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2115919</td>
<td>KP</td>
<td>Rail System Technology (p. 219)</td>
<td>P. Gratzfeld</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2115996</td>
<td>KP</td>
<td>Rail Vehicle Technology (p. 501)</td>
<td>P. Gratzfeld</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2113101</td>
<td>E</td>
<td>Introduction to Automotive Lightweight Technology (p. 256)</td>
<td>F. Henning</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2105011</td>
<td>E</td>
<td>Introduction into Mechatronics (p. 264)</td>
<td>G. Brethauer, A. Albers</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2114346</td>
<td>E</td>
<td>Electric Rail Vehicles (p. 271)</td>
<td>P. Gratzfeld</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2138340</td>
<td>E</td>
<td>Automotive Vision (p. 291)</td>
<td>C. Stiller, M. Lauer</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2114052</td>
<td>E</td>
<td>Composites for Lightweight Design (p. 294)</td>
<td>F. Henning</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>19066</td>
<td>E</td>
<td>Basics of Ground Born Guided Systems (p. 325)</td>
<td>E. Hohnecker, P. Gratzfeld, Hohnecker</td>
<td>3</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2115915</td>
<td>E</td>
<td>Mobility Concepts of Rail Transportation in 2030 (p. 414)</td>
<td>P. Gratzfeld</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2115995</td>
<td>E</td>
<td>Project Management in Rail Industry (p. 474)</td>
<td>P. Gratzfeld</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2162256</td>
<td>E</td>
<td>Computational Vehicle Dynamics (p. 487)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2161217</td>
<td>E (P)</td>
<td>Mechatronic Softwaretools (p. 516)</td>
<td>C. Proppe</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions: The lectures “Rail System Technology” and “Rail Vehicle Technology” are mandatory. They can be attended in the same term.

Recommendations: none

Remarks:
<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145164</td>
<td>KP</td>
<td>(p. 307) Lightweight Engineering Design (p. 364)</td>
<td>S. Matthiesen</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2146190</td>
<td>KP</td>
<td>(p. 364) Lightweight Engineering Design (p. 364)</td>
<td>A. Albers, N. Burkhardt</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2145180</td>
<td>E</td>
<td>Methodic Development of Mechatronic systems (p. 409)</td>
<td>A. Albers, W. Burger</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147160</td>
<td>E</td>
<td>Patents and Patent Strategies (p. 439)</td>
<td>R. Einsele</td>
<td>2</td>
<td>4</td>
<td>W/S</td>
</tr>
<tr>
<td>2141865</td>
<td>E</td>
<td>Novel actuators and sensors (p. 424)</td>
<td>M. Kohl, M. Sommer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2109025</td>
<td>E</td>
<td>Product Ergonomics (in German) (p. 462)</td>
<td>G. Zülch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145182</td>
<td>E</td>
<td>Project management in Global Product Engineering Structures (p. 475)</td>
<td>P. Gutzmer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2145184</td>
<td>E</td>
<td>Leadership and Product Development (p. 375)</td>
<td>A. Ploch</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2146193</td>
<td>E</td>
<td>Strategic Product Planing (p. 520)</td>
<td>A. Siebe</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2174571</td>
<td>E</td>
<td>Design with Plastics (p. 362)</td>
<td>C. Bonten</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2149667</td>
<td>E</td>
<td>Quality Management (p. 481)</td>
<td>G. Lanza</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2147175</td>
<td>E</td>
<td>CAE-Workshop (p. 236)</td>
<td>A. Albers, Assistenten</td>
<td>3</td>
<td>3</td>
<td>W/S</td>
</tr>
<tr>
<td>2105014</td>
<td>E</td>
<td>Laboratory mechatronics (p. 403)</td>
<td>A. Albers, G. Brethauer, C. Proppe, C. Stiller</td>
<td>3</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions: SP 51 is not selectable in bachelor degree course. It is selectable in masters course, depending on specialization. Due to organizational reasons, the number of participants in WS 11/12 is limited to 16 students. At the beginning of august, a registration form will be available at the IPEK website. In the case of too many applicants, a selection process will be taking place. An early application is advantageous.

Recommendations: CAE Workshop is recommended as elective course or complementary subject.

Remarks:
SP 53: Fusion Technology

<table>
<thead>
<tr>
<th>ID</th>
<th>Cat</th>
<th>Course</th>
<th>Lecturer</th>
<th>h</th>
<th>CP</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2169483</td>
<td>K</td>
<td>Fusion Technology A (p. 304)</td>
<td>R. Stieglitz</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2170492</td>
<td>K</td>
<td>Fusion Technology B (p. 305)</td>
<td>R. Stieglitz</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>23271</td>
<td>K</td>
<td>Radiation protection I (p. 519)</td>
<td>M. Urban, Urban</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2169471</td>
<td>E</td>
<td>Neutron physics of fusion reactors (p. 425)</td>
<td>U. Fischer</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2153429</td>
<td>E</td>
<td>Magnetohydrodynamics (p. 382)</td>
<td>L. Bühler</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2190496</td>
<td>E</td>
<td>Magnet Technology of Fusion Reactors (p. 383)</td>
<td>W. Fietz, K. Weiss, Dr. Klaus Peter Weis</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>F105</td>
<td>E</td>
<td>Plasma Heating of Fusion Reactors (p. 443)</td>
<td>Thumm</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2169470</td>
<td>E</td>
<td>Two-Phase Flow and Heat Transfer (p. 581)</td>
<td>T. Schulenberg, M. Wörner</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2181745</td>
<td>E</td>
<td>Design of highly stresses components (p. 214)</td>
<td>J. Aktaa</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2190499</td>
<td>E</td>
<td>Structural and functional materials of fusion and nuclear reactors (p. 524)</td>
<td>A. Möslang</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2130910</td>
<td>E</td>
<td>CFD in Power Engineering (p. 237)</td>
<td>I. Otic</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2129901</td>
<td>E</td>
<td>Energy Systems I: Renewable Energy (p. 274)</td>
<td>F. Badea</td>
<td>3</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>2189410</td>
<td>E</td>
<td>Reactor Design and Safety Evaluation using Modern Analysis Measures (p. 484)</td>
<td>M. Avramova</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>2189520</td>
<td>E</td>
<td>Fast Reactor Physics (p. 502)</td>
<td>K. Ivanov</td>
<td>2</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>2189510</td>
<td>E</td>
<td>Neutron Physics for Fission Reactors (p. 426)</td>
<td>K. Ivanov</td>
<td>2</td>
<td>4</td>
<td>W</td>
</tr>
</tbody>
</table>

Conditions:

Recommendations:

Remarks:
6 Courses of the Major Fields

6.1 All Courses

Course: [2134150]

Coordinators: Marcus Gohl
Part of the modules: SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Adaptive Finite Element Methods [1606]

Coordinators: Dörfler

Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Adaptive Control Systems [2105012]

Coordinators: Georg Bretthauer

Part of the modules: SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination (1 hour)

Duration: 1 hours, also possible as an optional or part of a major subject

Auxiliary means: none

Conditions

Measuring and Automatic Control

Learning Outcomes

The students know different types, structures and operation of adaptive control systems. They are capable of setting up system equations theoretically and experimentally. By experimenting with examples students are prepared to apply adaptive control systems in practice.

Content

Introduction: definitions, classification of adaptive control systems, objectives

Structures of adaptive control systems: overview, parameter-, structure- and signal-adaptive control systems, open-loop and closed loop ARS, ARS with reference/identification model, application

Modeling: methods, experimental conditions, experimental modeling, identification methods for single input single output systems and multi input multi output systems

Parameter adaptive control systems: definitions, design methods

Literature

Course: Aerothermodynamics [2154436]

Coordinators: Friedrich Seiler
Part of the modules: SP 41: Fluid Mechanics (p. 164)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: 30 minutes
no auxiliary means

Conditions
None.

Learning Outcomes
This lecture presents an insight into the aerodynamic problems occurring during re-entry of space vehicles into the earth's atmosphere. During the flight the air inflow is strongly heated by the bow wave formation in the high Mach number flow regime. Therefore, real gas effects and the behaviour of hot air at high temperatures need to be taken into account. The combination of thermodynamics of hot air and the flow development at hypersonic flow conditions coupled with extreme heat flux phenomena is usually summarised in the term Aerothermodynamics. Basic knowledge gained in the lecture on Fluid Mechanics is assumed. However, for understanding the contents of the aerothermodynamics lecture, all fundamentals are presented and discussed using the example of the re-entry flight trajectory of a space vehicle. Gaskinetic methods needed for flow prediction at high altitudes are explained in detail. At altitudes lower than 90 km, however, the air atmosphere can be treated as a continuum and the conservation equations are valid. The shock tube is described as ground facility for aerothermodynamic testing and the measuring techniques required for that purpose are explained using some recent applications as examples.

Content
Nature of a hypersonic flow
Fundamentals of aerothermodynamics
Problems during re-entry
Flow regimes during re-entry
Applied hypersonic research

Literature
H. Oertel jun.: Aerothermodynamik, Springer-Verlag, Berlin Heidelberg New York, 1994
F. Seiler: Skript zur Vorlesung über Aerothermodynamik
Course: Analysis and Design of Multisensor Systems [2138001]

Coordinators: Gert F. Trommer, Trommer
Part of the modules: SP 22: Cognitive Technical Systems (p. 142)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Analytical methods in material flow methodology (mach and wiwi) [2117060]

Coordinators: Kai Furmans

Part of the modules:
- SP 35: Modeling and Simulation (p. 156)[SP_35_mach],
- SP 28: Lifecycle Engineering (p. 149)[SP_28_mach],
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach],
- SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach],
- SP 40: Robotics (p. 162)[SP_40_mach],
- SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral

30min (electives), 60min (main subject)

Examination aids: none

Conditions
none

Recommendations

- Basic knowledge of statistic
- recommended compulsory optional subject:
 - Stochastics in Mechanical Engineering

- recommended lecture:
 - Material flow in logistic systems (also parallel)

Learning Outcomes

The student:

- has basis knowledge necessary to understand analytical solvable stochastic models of material flow systems,
- Based on easy models of queueing theory the student is able to model material flow networks and knows how control methods like Kanban can be implemented,
- executes practical computer experiments and
- uses simulation and exakt methods.

Content

- single server systems: M/M/1, M/G/1: priority rules, model of failures
- networks: open and closed approximations, exact solutions and approximations
- application to flexible manufacturing systems, AGV (automated guided vehicles) - systems
- modeling of control approaches like constant work in process (ConWIP) or kanban
- discrete-time modeling of queuing systems

Media
black board, lecture notes, presentations
Literature
Shanthikumar, Buzacott: Stochastic Models of Manufacturing Systems
Remarks
none
Course: Applied Fluid Mechanics [2154434]

Coordinators: Torsten Schenkel

Part of the modules:
- SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach]
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]
- SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral

Duration: 30 minutes

no auxiliary means

Conditions

None.

Learning Outcomes

The lecture supplements the fundamentals of fluid mechanics as taught in the fundamental lecture ‘Fluid Mechanics’. The student enhances his understanding of fluid mechanical phenomena. The lecture is therefore the basis for a focus on fluid mechanics.

Content

- Introduction
- Aerodynamics
- Fundamentals of Aerodynamics
- Prandtl's Theory of Airfoils
- Boundary Layers
- Transsonic Airfoils
- Flows with Heat Transfer
- Fundamentals of Heat Transfer
- Konvection on a heated plate
- Rayleigh Benard Konvection
- Pipe Flow

Content will vary.

Not all content will be taught in every semester!

Literature

Oertel, H. (Hrsg.): Prandtl-Führer durch die Strömungslehre, Vieweg-Verlag 2002

Course: Low Temperature Technology [2158112]

Coordinators: Friedrich Haug
Part of the modules: SP 24: Energy Converting Engines (p. 144)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination
duration: 30 minutes
no tools or reference materials may be used during the exam

Conditions
none

Recommendations
Knowledge in Thermodynamics I is of advantage (however, no prerequisite)

Learning Outcomes
The lecture gives an introduction to the interdisciplinary field of low temperature technology (cryogenics) with emphasis on thermodynamics and process engineering. Fundamentals are explained followed by exercises and practical examples comprising industrial cryoplants. Where useful reference is made to cryogenic systems at CERN, the European Organization for high energy physics. Low temperature technology is a comparatively young engineering branch with future potential and is indispensible for basic research, space technology, some medical technologies, industry, superconductivity, research centres.

Content
1. Introduction to low temperature technology
2. The research centre CERN
3. Fundamentals (thermo-physical)
4. Low temperature properties of materials
5. Cryogens
6. Thermal insulation, storage, transfer of cryogenic fluids
7. Fundamentals (laws of thermodynamics)
8. Cycles and processes
9. Refrigerators and components
10. Instrumentation, automation
11. Examples of cryoplants (among others at CERN)
12. Cryocoolers
13. Production of extremely low temperatures

Literature
1. Technische Thermodynamik, beliebig
Course: Applied Tribology in Industrial Product Development [2145181]

Coordinators: Albert Albers, Wolfgang Burger

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 47: Tribology (p. 170)[SP_47_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam

Conditions
None.

Learning Outcomes
Combustion engines, injection systems, auxiliaries and transmissions have one in common: Highly stressed lubricated working surface pairs.
The trend in automotive engineering tends to higher power density and extended service intervals and at the same time reduced weight and constructed space, leading to new challenges to the lubricants and contact partners such as journal bearing, roller bearings, cam-shaft-systems and gears.
Focus of this lecture is to show the range of tribology and elaborate the characteristics of lubricated working surface pairs by using examples from automobile industry.

Content
- Friction, Wear, Wear Measurement
- Lubricant (Oil, Grease, etc.)
- Hydrodynamic and elastohydrodynamic Lubrication
- Design of Tribologic Working Surface Pairs
- Technique of Measurement in Lubricated Contacts
- Prevention of Machine Failure
- Protective Surface Layers
- Journal Bearings, Roller Bearings
- Gear Wheels and Transmissions
Course: Drive Train of Mobile Machines [2113077]

Coordinators: Marcus Geimer

Part of the modules: SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

ECTS Credits: 4
Hours per week: 2/1
Term: Winter term
Instruction language: de

Learning Control / Examinations
oral examination

Conditions
None.

Recommendations
- general basics of mechanical engineering
- basic knowledge in hydraulics
- interest in mobile machines

Learning Outcomes
Get to know all relevant aspects and components of a drive train of a mobile machine and also the construction of various drive trains.

Content
In this course will be discussed the different drive train of mobile machinerys. The focus of this course is:
- improve the fundamentals
- mechanical gears
- torque converter
- hydrostatic drives
- continuous variable transmission
- electrical drives
- axial
- terra mechanic

Media
presentation

Literature
scritum for the lecture downloadable
Course: Powertrain Systems Technology A: Automotive Systems [2146180]

Coordinators: Albert Albers, Sascha Ott

Part of the modules:
- SP 09: Dynamic Machine Models (p. 128)[SP_09_mach]
- SP 47: Tribology (p. 170)[SP_47_mach]
- SP 12: Automotive Technology (p. 132)[SP_12_mach]
- SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach]
- SP 10: Engineering Design (p. 129)[SP_10_mach]
- SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- oral examination

Conditions
- None

Recommendations
- Power Train Systems Technology B: Stationary Machinery

Learning Outcomes
The student should know the basic skills which are necessary to design energy-efficient and comfortable automotive powertrain solutions.

Content
- Powertrain System, Driver System, Environment System, System Components, Development Process

Literature
Course: Powertrain Systems Technology B: Stationary Machinery [2145150]

Coordinators: Albert Albers, Sascha Ott

Part of the modules: SP 20: Integrated Product Development (p. 140)[SP_20_mach], SP 10: Engineering Design (p. 129)[SP_10_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 40: Robotics (p. 162)[SP_40_mach]

ECTS Credits	Hours per week	Term	Instruction language
4 | 2 | Winter term | de

Learning Control / Examinations
oral examination

Conditions
None

Recommendations
Powertrain Systems Technology A: Automotive Systems

Learning Outcomes
The student should know the basic skills which are necessary to design energy-efficient and secure solutions for the design of stationary powertrain applications.

Content
Powertrain System, Operator System, Environment System, System Components, Development Process

Literature
1. VDI-2241: “Schaltare fremdbetätigte Reibkupplungen und -bremsen”, VDI Verlag GmbH, Düsseldorf
Course: Application of technical logistics in modern crane systems [2117064]

Coordinators: Markus Golder

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral, approx. 20min, appointment after acknowledgement

Conditions
none

Recommendations
technical interest; Beneficial: Knowledge of the lecture 'Technical logistics I, basics'

Learning Outcomes
The student:
- knows the proceeding during the dimensioning of a modern crane installation,
- is able to transfer the aproach for the dimensioning of other material handling systems.

Content
- Basics of modern crane construction
- Characteristics of application, classification
- Configuration, dimensioning, consideration of costs
- Relevant rules and standards
- Modern concepts of crane control and drives

Media
presentations, black board

Literature
None.

Remarks
none
Course: Application of technical logistics in sorting- and distribution technology [2118089]

Coordinators: Jörg Föller
Part of the modules: SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach], SP 18: Information Technology (p. 138)[SP_18_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral 30 min

Conditions
None.

Recommendations
None.

Learning Outcomes
The course provides basics of sorting techniques.

Content
Basics of goods sorting and distribution technology, employment characteristics, classification, interpretation, dimensioning, costs considerations. Relevant control, modern sets of rules and propulsion principles

Media
presentations, black board

Literature
None.

Remarks
none
Course: Application of advanced programming languages in mechanical engineering [2182735]

Coordinators: Daniel Weygand
Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
None.

Learning Outcomes
The student will learn to program in Fortran 95/2003, to use script languages (e.g. awk or python) and to implement simple simulations.

Content
This lecture gives an introduction to advances programming and scripting languages and numerical methods under UNIX/Linux:

* Fortran 95/2003
 - structure of source code
 - programming
 - compiling
 - debugging
 - parallelization with OpenMP
* numerical methods
* script languages: Python, awk
* visualisation

Literature
Course: Computer-Supported Operations Planning (in German) [2110038]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>Gert Zülch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>SP 03: Work Science (p. 120)[SP_03_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 37: Production Management (p. 159)[SP_37_mach]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes (only in German)

Allowed resource materials: none

Conditions
None.

Recommendations
- Knowledge in Production Management (resp. Industrial Engineering) is necessary
- Knowledge of Work Science and Economics is useful
- Knowledge of Informatics is not required, but useful

Learning Outcomes
- Get deeper insights within production management
- Increase knowledge of the planning of working and production systems
- Understanding of methods for modelling and simulation of production systems
- Understand the importance and the benefit of informatics within mechanical engineering

Content
1. Introduction to the course
2. Terminology of operations planning
3. Operations planning
4. Development of a machining plan
5. Development of an operation sheet
6. Workplace design
7. Basics of the simulation of production systems
8. Material-oriented simulation
9. Personnel-oriented simulation
10. Planning and simulation of assembly systems
11. Enterprise-oriented simulation
12. Digital Factory as a planning tool
Literature
Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Occupational Safety and Labour Legislation (in German) [2109024]

Coordinators: Gert Zülch

Part of the modules: SP 03: Work Science (p. 120)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

Conditions

- Module course: Combination of the lectures “Arbeitsschutz und Arbeitsschutzmanagement (2109030)” and the last part of “Arbeitswissenschaft (2109026)” (i.e. combination with one of those lectures is not possible)

- The exams “Arbeitsschutz und Arbeitsrecht (2109024)” and “Arbeitswissenschaft (2109026)” are mutually exclusive.

- The exams “Arbeitsschutz und Arbeitsrecht (2109024)” and “Arbeitsschutz und Arbeitsschutzmanagement (2109030)” are mutually exclusive.

Recommendations

- Willingness to learn interdisciplinarily (Technology, Economy, Legal regulations, Informatics . . .)

- Knowledge of Work Science is useful

Learning Outcomes

- Know relevant laws and regulations of occupational safety and labour legislation as well as elementary methods

- Ability to integrate the occupational safety within the operational processes

- Awareness of the interrelation to other management systems and techniques

Content

1. Introduction to the course
2. Terminology and legal regulations
3. Structural organisation of occupational safety
4. Processes in occupational safety
5. Office workplaces and visual display units
6. Computer-supported risk analysis
7. Risk evaluation within the occupational safety
8. Occupational safety management systems
9. Integrated management systems
10. Individual labour legislation
11. Collective labour legislation
12. Representation of interests groups

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Occupational Health and Safety Management (in German) [2109030]

Coordinators: Gert Zülch

Part of the modules: SP 03: Work Science (p. 120) [SP_03_mach], SP 37: Production Management (p. 159) [SP_37_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

Conditions

The exams "Arbeitsschutz und Arbeitsschutzmanagement (2109030)" and "Arbeitsschutz und Arbeitsrecht (2109024)" are mutually exclusive.

Recommendations

- Willingness to learn interdisciplinarily (Technology, Economy, Legal regulations, Informatics . . .)
- Knowledge of Work Science is useful

Learning Outcomes

- Know relevant laws and regulations of occupational safety
- Ability to integrate the occupational safety within operational processes
- Awareness of the interrelation to other management systems and techniques

Content

1. Introduction to the course
2. Terminology and legal regulations
3. Structural organisation of occupational safety
4. Processes in occupational safety
5. Office workplaces and visual display units
6. Computer-supported risk analysis
7. Risk evaluation within the occupational safety
8. Occupational safety management systems
9. Integrated management systems

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Work Science (Lecture and Exercises; in German) [2109026]

Coordinators: Gert Zülch
Part of the modules: SP 03: Work Science (p. 120)[SP_03_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Specialisation “Produktionstechnik”:
Written exam, length: 90 minutes
(only in German)
Allowed resource materials: non-programmable calculator

Other specialisations:
Oral exam, length: 30 minutes
(only in German)
Allowed resource materials: none

Conditions

- The exams “Arbeitswissenschaft (2109026)” and “Ergonomie und Arbeitswirtschaft (2109029)” are mutually exclusive.
- The exams “Arbeitswissenschaft (2109026)” and “Arbeitsschutz und Arbeitsrecht (2109024)” are mutually exclusive.

Recommendations

- Willingness to learn interdisciplinarily (Product design, Legal regulations Work physiology, Work psychology ...)
- Basic knowledge of Production Management is usefull

Learning Outcomes

- Become proficient within the general terms of ergonomics, methods study and personnel planning
- Know elementary methods and procedures of applied work science
- Know relevant labour law and regulations
- Become proficient in applying ergonomic evaluation and judgement

Content

1. Introduction
2. Basics of human performance
3. Design of workplaces
4. Time study
5. Evaluation of workplaces and determination of wages
6. Work structuring
7. Personnel planning
8. Leadership
9. Labour legislation
10. Representation of interest groups

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

• REFA - Verband für Arbeitsstudien, Betriebsorganisation und Unternehmensentwicklung (Hrsg.): Datenermittlung. München: Carl Hanser Verlag, 1997. (Methodenlehre der Betriebsorganisation)

• REFA - Verband für Arbeitsstudien und Betriebsorganisation (Hrsg.): Grundlagen der Arbeitsgestaltung. München: Carl Hanser Verlag, 1991. (Methodenlehre der Betriebsorganisation)

• REFA - Verband für Arbeitsstudien und Betriebsorganisation (Hrsg.): Entgeltdifferenzierung. München: Carl Hanser Verlag, 1991. (Methodenlehre der Betriebsorganisation)

• SCHLICK, Christopher; BRUDER, Ralph; LUCZAK, Holger: Arbeitwissenschaft. Heidelberg u.a.: Springer, 3rd edition 2010.

Please refer to the latest edition.
Course: Work Science Laboratory Course (in German) [2109033]

Coordinators: Gert Zülch, Patricia Stock
Part of the modules: SP 03: Work Science (p. 120)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Compulsory attendance during the whole lecture
- Colloquium in the beginning of each laboratory
- No exam

Conditions
- Compulsory attendance during the whole lecture
- Limited number of participants

Recommendations
- Willingness to learn interdisciplinarily (Technology, Economy, Legal regulations, Informatics . . .)
- Knowledge of Work Science is necessary

Learning Outcomes
- Know elementary methods and procedures of work science
- Become proficient in applying ergonomic evaluation and judgement

Content
1. Statical and dynamical muscle work
2. Measurement of mental stress and strain
3. Measurement and evaluation of noise
4. Measurement and evaluation of illumination
5. Measurement and evaluation of room climate
6. Measurement and evaluation of air pollution
7. Work studies following REFA
8. Time and movement studies following MTM
9. Ergonomic design of workplaces
10. Working with visual display units

Literature
Learning material:
The handout will be distributed within the first lecture. Additional information may be found on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:
Course: Atomistic simulations and molecular dynamics [2181740]

Coordinators: Peter Gumbsch

Part of the modules: SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 156)[SP_13_mach], SP 47: Tribology (p. 170)[SP_47_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
compulsory preconditions: none

Learning Outcomes
The student learns the physical foundation of particle base simulation methods (e.g. molecular dynamics) and its application to problems in material science.

Content
The lecture introduces the foundation of particle based simulation methods focussing on molecular dynamics:

1. Introduction
2. Physics of Materials
3. MD Basics, Atom-Billard
 * particle, position, energy, forces, pair potentials
 * initial and boundary conditions
 * time integration
4. algorithms
5. static, dynamic, thermodynamic
6. MD output
7. interaction between particles
 * pair potential – many body potentials
 * principles of quantum mechanics
 * tight binding methods
 * dissipative particle dynamics
8. application of particle based methods

Literature

Course: Constitution and Properties of Wear resistant materials [2178643]

Coordinators: Sven Ulrich

Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 47: Tribology (p. 170)[SP_47_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination (30 min)

no tools or reference materials

Conditions
None.

Recommendations
None.

Learning Outcomes
Basic understanding of constitution of wear-resistant materials, of the relations between constitution, properties and performance, of principles of increasing of hardness and toughness of materials as well as of the characteristics of the various groups of wear-resistant materials.

Content

- introduction
- materials and wear
- unalloyed and alloyed tool steels
- high speed steels
- stellites and hard alloys
- hard materials
- hard metals
- ceramic tool materials
- superhard materials
- new developments

Literature

Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995

Copies with figures and tables will be distributed
Course: Constitution and Properties of Protective Coatings [2177601]

Coordinators: Sven Ulrich
Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

ECTS Credits: 4
Hours per week: 2
Term: Winter term
Instruction language: de

Learning Control / Examinations
oral examination (30 min)
no tools or reference materials

Conditions
None.

Recommendations
None.

Learning Outcomes
Transfer of the basic knowledge of surface engineering, of the relations between constitution, properties and performance, of the manifold methods of modification, coating and characterization of surfaces.

Content
introduction and overview

corcepts of surface modification

coating concepts

coating materials

methods of surface modification

coating methods

characterization methods

state of the art of industrial coating of tools and components

new developments of coating technology

Literature

Copies with figures and tables will be distributed
Course: Supercharging of Combustion Engines [2134112]

Coordinators: Rainer Golloch

Part of the modules:
- SP: Engineering Thermodynamics (p. 168)[SP_45_mach]
- SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]
- SP 12: Automotive Technology (p. 132)[SP_12_mach]
- SP 24: Energy Converting Engines (p. 144)[SP_24_mach]
- SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

ECTS Credits: 4

Hours per week: 2

Instruction language: de

Term: Summer term

Learning Control / Examinations
1. part: written, ca. 45 min.
2. part: oral group examination, ca. 45 min.

Conditions: none

Recommendations: Combustion Engines A helpful

Learning Outcomes
The students get to know the increasing field of supercharging fourstroke gasoline, Diesel and gas engines as a measure to increase power and decrease emissions and fuel consumption. After describing the fundamentals of supercharging including intercooling the most common superchargers and their field of application is shown. Another focus are different supercharging methods whereas new and complex methods such as controlled two-stage supercharging are covered. Furthermore the difference in the combustion process of naturally aspirated and supercharged engines is described.

Content
Fundamentals of supercharging

Supercharger

Combination of engine and supercharger

Mechanical supercharging

Turbocharger

Complexe supercharging methods

Special fields of supercharged engines

Literature
Lecture notes available in the lectures
Course: Selected Problems of Applied Reactor Physics and Exercises [2190411]

Coordinators: Habil Ron Dagan

Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content

Course: Selected Applications of Technical Logistics [2118087]

Coordinators: Martin Mittwollen, Linsel

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

after each lesson period; oral / written (if necessary) => (look at “Studienplan Maschinenbau”, version of 7.7.2010)

Conditions

look at Empfehlungen (en)

Recommendations

TL-I should be visited in advance, knowledge out of TL-I preconditioned

Learning Outcomes

Based on the knowledge from TL-I to be able to work on specific tasks of conveyor machines (e.g. crane, s/r machines, fork lifts, elevators).

practice calculation on applying knowledge from lessons

Guest lectures give an idea of industrial solutions.

Content

design and dimension of machines from intralogistics // static and dynamic behaviour // operation properties and specifics // visit of real intralogistic system

Inside practical lectures: sample applications and calculations in addition to the lectures

Media

supplementary sheets, projector, blackboard

Literature

Recommendations during lessons

Remarks

-
Course: Selected Applications of Technical Logistics and Project [2118088]

Coordinators: Martin Mittwollen, Linsel

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

after each lesson period; oral / written (if necessary) => (look at “Studienplan Maschinenbau”); (counts two-thirds); project report, marked (counts one third)

Conditions

none

Recommendations

TL-I should be visited in advance, knowledge out of TL-I preconditioned

Learning Outcomes

The student

- is able to work on specific tasks of conveyor machines, based on the knowledge from TL-I (e.g. crane, s/r machines, fork lifts, elevators),
- practices calculation on applying knowledge from lessons
- reports on a project topic

Content

design and dimension of machines from intralogistics // static and dynamic behaviour // operation properties and specifics // visit of real intralogistic system // self manufactured project report

Inside practical lectures: sample applications and calculations in addition to the lectures Self manufacturing of a project report to recesses the topic.

Media

supplementary sheets, projector, blackboard

Literature

Recommendations during lessons
Course: Selected Topics in Aeronautics and Astronautics I [2170454]

Coordinators: Sigmar Wittig
Part of the modules: SP 46: Thermal Turbomachines (p. 169)

ECTS Credits	4	**Hours per week**	2	**Term**	Summer term	**Instruction language**	de

Learning Control / Examinations
oral
Duration: approximately 30 minutes

Supporting material: none

Conditions
Basic Principles of Mathematics, Thermodynamics, Fluid Mechanics, Mechanics

Learning Outcomes
Central topics are the analysis of space systems and of the air traffic with its impact on modern mobility requirements. The understanding of the fundamentals - physical and technological - is essential for the design and application of space vehicles as well as of an economically and ecologically efficient air transport. Based on recent developments the main components of the various systems and their design principles are introduced. In the fall/winter-semester an additional lecture-course is offered.

Content

I. Space Systems
Applications
Space Programms

Economical Aspects
Main Components
Influence Parameters
Space Missions
Launches
Satellites

II. Air Transport
Development: State of the art
Economical Aspects
Aircraft Design and Development
Aerodynamics
New Materials
Future Developments

Literature
Messerschmidt, Ernst: Raumfahrt-systeme, Springer-Verlag 2005

Griffin, Michael D.: Space Vehicle Design; AIAA Education Series 2004

Hüenecke, Klaus: Die Technik des modernen Verkehrslugzeuges, Motorbuch-Verlag 2004
Course: Selected Topics in Aeronautics and Astronautics II [2169486]

Coordinators: Sigmar Wittig

Part of the modules: SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

Supporting material: none

Conditions
Basic Principles of Mathematics, Fluid Mechanics, Thermodynamics, Mechanics

Learning Outcomes
The main topics in the first half of the course is the civil aircraft design. Based on the analysis of the general requirements, design principles for aircraft fuselage and the engines are introduced. Various - including insteady - loads during operation are discussed. The second part is directed towards the basic principles of orbital mechanic and maneu-verability of satellites in space. Launcher design and re-entry problems with ground and space-segments are introduced. In the spring/summer semester an additional lecture-course is offered.

Content
I. Aircraft Design
Mission Envelope
Aircraft Engines
Design Concepts
Aerodynamic Loads

II. Space Systems and
Satellites
Orbital Mechanics
Orbital Transfer
Rocket Systems
Ground- and Space Segements
Re-entry
Future Missions

Literature
Hünecke, Klaus: Die Technik des modernen Verkehrsflugzeuges, Motorbuch-Verlag, 2004

Messerschmid, Ernst: Raumfahrt-systeme, Springer-Verlag 2005

Griffin, Michael D.: Space Vehicle Design, AIAA Education Series 2004
Course: Selected Topics on Optics and Microoptics for Mechanical Engineers [2143892]

Coordinators: Timo Mappes

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral

duration: 20 minutes

aids: none

Conditions

None.

Learning Outcomes

The lecture introduces to the basics of optics and presents optical effects and methods used research and industry. Optical elements, optical effects, and optical instruments are introduced by discussing selected examples of each field. Fabrication processes for optical devices in macroscopic and microscopic scales are presented.

Content

The first part of the lecture deals with:

- laws of optics
- linear optics
- aberrations of opt. systems
- wave optics & polarization

Based on the introduction to the basics in the first part, the second half of the lecture deals with the discussion of

- optical instruments
- contrast enhancement
- optical position control

Different fabrication methods for macroscopic and microscopic optical elements are discussed

Literature

Hecht Eugene: Optik; 4., überarb. Aufl.; Oldenbourg Verlag, München und Wien, 2005

Lecture script as *.pdf
Course: Selected chapters of the combustion fundamentals [2167541]

Coordinators: Ulrich Maas

Part of the modules: SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral
- Duration: 30 min

Conditions
None

Recommendations
None

Learning Outcomes
Cycle lecture: Consolidation of different topics in the field of combustion. Examples: Chemistry of combustion, Statististical modeling of turbulent flames, Droplet and spray combustion.

Content
Depending on the lecture: Fundamentals of chemical kinetics, of statistical modeling of turbulent flames or of droplet and spray combustion.

Media
Blackboard and Powerpoint presentation

Literature
Lecture notes on fundamentals of combustion (Prof. U. Maas)
Course: Topics in turbulent flows for power and fluids engineering [2170462]

Coordinators: Dominic von Terzi, v. Terzi

Part of the modules: SP 41: Fluid Mechanics (p. 164) [SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral

Duration: 30 minutes

no tools or reference materials may be used during the exam

Conditions

None.

Learning Outcomes

- Introduction to turbulent flow physics
- Statistical and deterministic description of turbulent flows
- Simulation and identification of turbulent coherent structures
- Knowledge of canonical turbulent flows (similarity laws) as basic elements for the description of complex flows
- Origin of turbulence: physics, modelling and simulation of transition

Content

- Introduction (turbulent flows)
- Identification of turbulent coherent structures
- Statistical description
- Canonical turbulent flows
- Flow Separation
- Turbulent heat transfer
- Laminar-turbulent transition
- Transition modelling
- Direct Numerical Simulation (DNS)

Literature

- Tennekes, H., Lumley, J.; A First Course in Turbulence, MIT Press, 1972
Course: Design of combustion chamber in gas turbines (Project) [22509]

Coordinators: Nikolaos Zarzalis
Part of the modules: SP 24: Energy Converting Engines (p. 144)[SP_24_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>English</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
Engineering Thermodynamics, Fluid Mechanics, Heat and Mass Transfer, Construction

Recommendations
None.

Learning Outcomes

Content

Remarks
None.
Course: Design of highly stresses components [2181745]

Coordinators: Jarir Aktaa

Part of the modules: SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 53: Fusion Technology (p. 175)[SP_53_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam: 30 minutes

Conditions
material science
solid mechanics II

Learning Outcomes
The students know the rules of established design codes for the assessment of components which under operation are subjected to high thermo-mechanical and/or irradiation loadings. They know which constitutive equations are used according to state-of-the-art of technology and research to estimate deformation and damage appearing under these loadings and to predict expected lifetime. They gained insight into the application of these generally non-linear constitutive equations in finite element codes and know the major issues which shall be thereby taken into account.

Content
Contents of the lecture:

- rules of common design codes
- classical models for elasto-plasticity and creep
- lifetime rules for creep, fatigue and creep-fatigue interaction
- unified constitutive models for thermo-elasto-viscoplasticity
- continuum mechanical models for damage at high temperatures
- application of advanced material models in FE-codes

Literature

Course: Design and Development of Mobile Machines [2113079]

Coordinators: Marcus Geimer

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

homework in small groups during the semester + oral examination

Conditions

None.

Recommendations

Knowledge in Fluid Technology (SoSe, LV 21093)

Learning Outcomes

Students will learn:

1. How to develop a mobile working machine
2. How to apply existing knowledge on a specific problem
3. How to break down and structure a complex task
4. How knowledge of different courses can be brought together

Content

Wheel loaders and excavators are highly specialized mobile machines. Their function is to detach, pick up and deposit materials near by. Significant size for dimensioning of the machines is the content of their standard shovel. In this lecture the main steps in dimensioning a wheel loader or excavator are being thought. This includes among others:

- Defining the size and dimensions,
- the dimensioning of the drive train,
- Determining the kinematics of the equipment,
- the dimension of the working hydraulics and
- Calculations of strength

The entire design process of these machines is strongly influenced by the use of standards and guidelines (ISO/DIN-EN). Even this aspect is dealt with.

The lecture is based on the knowledge from the fields of mechanics, strength of materials, machine elements, propulsion and fluid technique. The lecture requires active participation and continued collaboration.

Literature

None.
Course: Automated Production Line [2149904]

Coordinators: Jürgen Fleischer

Part of the modules: SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Automation Systems [2106005]

Coordinators: Michael Kaufmann

Part of the modules: SP 04: Automation Technology (p. 121)[SP_04_mach], SP 31: Mechatronics (p. 152)[SP_31_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Automobile and Environment [2186126]

Coordinators: Heiko Kubach, Ulrich Spicher, Ulrich Maas, Heiner Wirbser

Part of the modules:
- SP: Engineering Thermodynamics (p. 168)[SP_45_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Presentation with written documentation

Conditions
None.

Recommendations
None.

Learning Outcomes
Thermodynamics:
The student shall understand the fundamental principles of combustion processes in engines including pollutant formation

Combustion Engines:
The student shall understand the fundamental principle modes of operation of combustion engines. Especially emission formation, fuel consumption and impact on the environment are discussed.

Content
Principles of combustion processes, chemical reaction, reaction mechanisms, NO-formation, NO-reduction, soot formation, unburnt hydrocarbons, flame extinction, combustion in Otto-engines (ignition, flame propagation, engine knock), combustion in Diesel engines (spray formation, spray combustion)

Literature
Course: Rail System Technology [2115919]

Coordinators: Peter Gratzfeld

Part of the modules: SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- Oral examination
- Duration: 20 minutes
- No tools or reference materials may be used during the exam.

Conditions
none

Recommendations
none

Learning Outcomes

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- They can assess the suitability of existing elements in the overall system.
- They deduct the fundamental requirements for rail vehicles out of it.

Content

- Overview about fundamental components of a modern rail system (vehicles, infrastructure, operation)
- History and economic impact of rail systems
- Vehicle dynamics
- Wheel-rail-contact
- Train protection
- Traction power supply
- Vehicles

Media
All slides are available for download (Ilias-platform).

Literature
A bibliography is available for download (Ilias-platform).

Remarks
none
Course: Fuels and Lubricants for Combustion Engines and their Testing [2133109]

Coordinators: Jürgen Volz

Part of the modules: SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: ca. 30 min., no auxiliary means

Conditions
None.

Recommendations
None.

Learning Outcomes
The students get basic knowledge about composition and meaning of fuels, lubricants and coolants as important components in the system of today's Otto and Diesel engines. Content of this lecture are definition and chemical composition of fuels and lubricants, the meaning of crude oil as basic primary product, production processes, major properties, standards and specifications, testing methods. Furthermore future worldwide trend in the field of conventional and alternative fuels are discussed regarding emission standards and energy conservation.

Content
Introduction and basics

Fuels for Gasoline and Diesel engines

Hydrogen

Lubricants for Gasoline and Diesel engines

Coolants for combustion engines

Literature
Lecturer notes
Course: ?? [23261]

Coordinators: Dössel
Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: ?? [23262]

Coordinators: Dössel

Part of the modules: SP 32: Medical Technology (p. 153)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: ?? [23264]

Coordinators: Gunnar Seemann
Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Biogas - Prospects and possibilities [2165514]

Coordinators:
Peter Drausnigg

Part of the modules:
SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral
Duration: 30 min.

Conditions
None

Recommendations
None

Learning Outcomes
Imparting of macroeconomic aspects considering legal, political and energy economic boundary conditions.

Content
Conventional production and use of biogas
Recent applicability of biogas
Conditioning processes
Economic aspects
Legal boundary conditions

Literature
Course notes
Course: Biomechanics: design in nature and inspired by nature [2181708]

Coordinates: Claus Mattheck

Part of the modules: SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- participation at excursion

Conditions
- None.

Learning Outcomes
The student learns to recognize mechanical optimization schemes in nature and its application to the design in mechanical engineering.

Content
- mechanics and growth laws of trees
- failure criteria and safety factors
- computer simulation of adaptive growth
- notches and damage case studies
- optimization inspired by nature
- structural shape optimization without computers
- universal shapes of nature
- fibre reinforces materials
- failure of trees, hillsides, dikes, walls and pipes
Course: ?? [23269]

Coordinators: Armin Bolz, Bolz

Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: ?? [23270]

Coordinators: Armin Bolz, Bolz

Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I [2141864]

Coordinators: Andreas Guber

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination: Elective Course (Duration: 30 minutes) or Main Course in combination with other lectures (Duration: 60 minutes)

Aids: none

Conditions
None.

Learning Outcomes
The lecture will first address relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Introduction into various microtechnical manufacturing methods: LiGA, Micro milling, Silicon Micromachining, Laser Microstructuring, µEDM, Metal-Etching Biomaterials, Sterilisation.
Examples of use in the life science sector: basic micro fluidic structures: micro channels, micro filters, micromixers, micropumps, microvalves, Micro and nanotiter plates, Microanalysis systems (µTAS), Lab-on-chip applications.

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2001

Lecture script
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II [2142883]

Coordinators: Andreas Guber

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral: Elective Course (Duration: 30 minutes) or Main Course in combination with other lectures (Duration: 60 minutes)
Aids: none

Conditions
None.

Learning Outcomes
The lecture will first address relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences und in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
LabCD, Protein Cristallisation
Microarrays
Tissue Engineering
Cell Chip Systems
Drug Delivery Systems
Micro reaction technology
Microfluidic Cells for FTIR-Spectroscopy
Microsystem Technology for Anesthesia, Intensive Care and Infusion
Analysis Systems of Person’s Breath
Neurobionics and Neuroprosthesis
Nano Surgery

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2001
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

Lecture script
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [2142879]

Coordinators: Andreas Guber

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral: Elective Course (Duration: 30 minutes) or Main Course in combination with other lectures (Duration: 60 minutes)

Aids: None

Conditions
None.

Learning Outcomes
The lecture will first address relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology

NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2001

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

Lecture script
Course: ?? [2105020]

Coordinators: Hagen Malberg
Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Boundary and Eigenvalue Problems [1246]

Coordinators: Michael Plum, Wolfgang Reichel, Plum, Reichel

Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: BUS-Controls [2114092]

Coordinators: Marcus Geimer
Part of the modules: SP 18: Information Technology (p. 138)[SP_18_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach], SP 31: Mechatronics (p. 152)[SP_31_mach]

ECTS Credits 4 Hours per week 2 Term Summer term Instruction language de

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

Learning Outcomes
The students will get an overview of the theoretic and practical functioning of different bus systems.

After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system.

Content

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Literature

Elective literature:

Remarks
The course will be replenished by interesting lectures of professionals.
Course: CATIA V5 CAD training course [2123356]

Coordinators: Jivka Ovtcharova, Mrkonjic Hajdukovic

Part of the modules: SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Practical examination, duration: 60 min., auxiliary means: script

Conditions
None

Recommendations
Dealing with technical drawings is required.

Learning Outcomes
Students are able to create their own 3D geometric models in the CAD system, to generate drawings due to the created geometry and then carry out FE-studies and kinematic simulations using the integrated CAE tools. With advanced, knowledge-based functionalities of CATIA the participants will learn to automate the creation of geometry and thus to ensure the reusability of the models.

Content
The participant will learn the following knowledge:

- Basics of CATIA V5 such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

Literature
practical course skript

Remarks
For the practical course attendance is compulsory.
Course: CAD-NX5 training course [2123355]

Coordinators: Jivka Ovtcharova, Mrkonjic Hajdukovic

Part of the modules: SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Practical examination, duration: 60 min., auxiliary means: script

Conditions
None

Recommendations
Dealing with technical drawings is required.

Learning Outcomes
Students are able to create their own 3D geometric models in the CAD system, to generate drawings due to the created geometry and then carry out FE-studies and kinematic simulations using the integrated CAE tools. With advanced, knowledge-based functionalities of NX5 the participants will learn to automate the creation of geometry and thus to ensure the reusability of the models.

Content
The participant will learn the following knowledge:

- Overview of the functional range
- Introduction to the work environment of UG NX5
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with UG NX5

Literature
Practical course skript

Remarks
For the practical course compulsory attendance exists.
Course: CAE-Workshop [2147175]

Coordinators: Albert Albers, Assistenten

Part of the modules:
- SP 28: Lifecycle Engineering (p. 149)[SP_28_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 10: Engineering Design (p. 129)[SP_10_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach]

ECTS Credits	Hours per week	Term	Instruction language
3 | 3 | Winter / Summer Term | de |

Learning Control / Examinations
Depending on the manner in which the CAE-Workshop will be credited.

Conditions
compulsory attendance

Recommendations
We suggest this Workshop after 2 years of classes.

Learning Outcomes
In the CAE - Workshops computer-aided tools used in the industrial product development process will be presented and trained. The complete process chain is shown using concrete examples of typical mechanical components. The possibilities and limits of virtual product development will be shown during this course. Here, the students get practical insight into the world of multi-body systems, the finite element method and optimization research questions.

The students receive the theoretical basics and are trained on modern hardware in the use of commercial software. In order to support the students to discuss the calculation and optimization results, the participants of the workshop must discuss their results in small groups and finally present it to all students.

Content
Content in the summer semester:
- introduction to the finite element analysis (FEA)
- stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- introduction to topology and shape optimization
- creation and calculation of various optimization models with the optimization package TOSCA and the Abaqus solver

Content in the winter semester:
- introduction to the finite element analysis (FEA)
- stress and modal analysis of finite element models using Abaqus/CAE as a preprocessor and Abaqus solver
- introduction to multi-body simulation (MBS)
- preparation and running of multi-body simulation models. Coupling of the MBS and FEA to calculate hybrid multi-body simulation problems.

Literature
The workshop script will be allocated at Ilias.
Course: CFD in Power Engineering [2130910]

Coordinators: Ivan Otic
Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Master Course Mechanical Engineering (M.Sc.)
Module Handbook, Date: 29.06.2011

237
Course: CFD-Lab using Open Foam [2169459]

Coordinators: Rainer Koch

Part of the modules: SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Successful solution of problems

Conditions
- Fluid Dynamics
- Course on numerical fluid mechanics

Recommendations
- Basic knowledge in LINUX

Learning Outcomes
- Application of Open Foam modules
- Grid generation
- Proper definition of boundary conditions
- Numerical errors

Content
- Introduction to using Open Foam
- Grid generation
- Discretization schemes
- Turbulence models
- Two phase flow - spray
- Two Phase flow - Volume of Fluid method

Media
- A CD containing the course material will be handed out to the students

Literature
- Documentation of Open Foam
- www.openfoam.com/docs

Remarks
- Number of participants is limited
- Priority for students of the lecture “Numerische Simulation reagierender Zweiphasenströmungen” (Vorl.-Nr. 2169458)
Course: Basic Chemistry of the Nuclear Fuel Cycle [nb]

Coordinators: Horst Geckeis
Part of the modules: SP 21: Nuclear Energy (p. 141)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Chemical, physical and material scientific aspects of polymers in microsystem technologies [2143500]

Coordinators: Holger Moritz, Matthias Worgull, Daniel Häringr
Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

ECTS Credits	Hours per week	Term	Instruction language
4 | 2 | Winter / Summer Term | de

Learning Control / Examinations
Oral examination, 30 minutes

Conditions
Intermediate examination or bachelor degree of mach/wing necessary.

Recommendations
Basic knowledge of the micro-system technology (but not a requirement) and interdisciplinary interest are favourable.

Learning Outcomes
The lecture is to obtain an overview of the increasing meaning of plastics in the micro-system technology. The interdisciplinary aspect of the polymer science is the centre of attention concerning chemistry, physics and the micro-system technology. The plastics are described regarding their synthesis, their chemical and physical characteristics. Base on the fundamentals the variety of the polymers and their characteristics are introduced and the processing methods of the micro technology are described. The importance of the polymers in the micro-system technology as construction material and as photoresist are described and finally current polymere-based applications like e.g. semi conducting organic plastics are introduced.

Content
- Introduction to the world of the plastics
- Chemistry of the polymers - synthesis and chemical characteristics
- Tailor-made composite / polymer blends
- Physical characteristics of plastics and their description
 - Morphologic structure
 - Thermal behaviour
 - Time temperature - equivalence
 - Rheology of polymer melts
 - Thermo analysis
- Plastics processing in the micro technology
- Application of polymers as construction material in the micro-system technology
 - Composites / Compounds
 - MID – injection moulding of circuit carriers
 - Assembling and welding of plastics
 - Engineering with plastics
 - Environmental problems - biological degradable polymers
- Meaning of the plastics in the micro technology explained by examples of current developments of polymer-based applications
 - Semi conducting organic plastics
 - Nano-structured polymer surfaces
 - Polymer sensors (biologically, chemically, optically)

Media
Printouts of the lecture presentation, if applicable further scientific articles.
Course: Computational Intelligence I [2106004]

Coordinators: Georg Bretthauer, Ralf Mikut

Part of the modules:
- SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]
- SP 31: Mechatronics (p. 152)[SP_31_mach]
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]
- SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]
- SP 04: Automation Technology (p. 121)[SP_04_mach]
- SP 40: Robotics (p. 162)[SP_40_mach]
- SP 18: Information Technology (p. 138)[SP_18_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination (1 hour)

Duration: 1 hours, also possible as an optional or part of a major subject

Auxiliary means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The students are able to apply the methods of fuzzy logic and fuzzy control efficiently. They know the basic mathematical foundations for the model design using fuzzy logic (membership functions, inference methods, defuzzification). In addition, they are able to design fuzzy controllers (Mamdani controllers and hybrid controllers with fuzzy-adaptive components) for practical applications.

Content
Terms and definitions Computational Intelligence, application fields and examples

- Fuzzy logic and fuzzy sets
- Fuzzification and membership functions
- Inference: T-norms and -conorms, operators, aggregation, activation, accumulation
- Defuzzification methods
- Structures for fuzzy control
- Software practice (fuzzyTECH) and applications (crane control)

Literature
- Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe, Kapitel 5.5; 2008 (Internet)
- Software: FuzzyTech (für die Übung)
Course: Computational Intelligence II [2105015]

Coordinators: Georg Bretthauer, Mikut

Part of the modules:
- SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]
- SP 31: Mechatronics (p. 152)[SP_31_mach]
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]
- SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]
- SP 04: Automation Technology (p. 121)[SP_04_mach]
- SP 40: Robotics (p. 162)[SP_40_mach]
- SP 18: Information Technology (p. 138)[SP_18_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- Oral examination (1 hour)
- Duration: 1 hours, also possible as an optional or part of a major subject
- Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students are able to apply the methods of Artificial Neural Networks and Evolutionary Algorithms efficiently. They know the basic mathematical foundations and the goal-oriented design and the problem formulation for technical applications (selection of net structures for Artificial Neural Networks, optimization using Evolutionary Algorithms with coding of potential solutions for real-world applications as individuals).

Content

- Terms and definitions, application fields and examples
- Biological foundations of neural nets
- Artificial Neural Nets: neurons, Multi-Layer-Perceptrons, Radial-Basis-Function nets, Kohonen maps, training strategies (Backpropagation, Levenberg-Marquardt)
- Evolutionary Algorithms: Genetic Algorithms and Evolution Strategies, mutation, recombination, evaluation, selection, integration of local search strategies
- Software practice (Gait-CAD, GLEAMKIT) and applications

Literature

- W. Jakob: Eine neue Methodik zur Erhöhung der Leistungsfähigkeit Evolutionärer Algorithmen durch die Integration lokaler Suchverfahren. Forschungszentrum Karlsruhe, 2004
- R. Mikut: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe, 2008 (Internet, Kapitel 5.6)
Course: Computational Intelligence III [2106020]

Coordinators: Ralf Mikut

Part of the modules: SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination (1 hour)

Duration: 1 hours, also possible as an optional or part of a major subject

Auxiliary means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The students are able to apply the methods of data analysis efficiently. They know the basic mathematical foundations for the analysis of single features and time series using classifiers, clustering and regression approaches. They are able to use various relevant methods as Bayes classifiers, Support Vector Machines, decision trees, fuzzy rulebases and they can adapt application scenarios (with data preprocessing and validation techniques) to real-world applications.

Content
Introduction and motivation

Terms and definitions (types of multidimensional features - time series and images, problem classes)

Application scenario: Problem formulation, feature extraction, evaluation, selection and transformation, distance measures, Bayes classifiers, Support-Vector-Machines, decision trees, clustering, regression, validation

Application (Software practice with Gait-CAD): Control of hand prostheses, energy prediction

Literature
Lecture notes (Internet)

Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe. 2008 (Internet)

Course: Controlling and Simulation of Production Systems [2109040]

Coordinators: Gert Zülch
Part of the modules: SP 16: Industrial Engineering (p. 137)[SP_16_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in English)

Allowed resource materials: none

Conditions
None.

Recommendations
- Knowledge of Industrial Engineering / Production Management
- Basics of mathematical statistics

Learning Outcomes
- Insights into controlling approaches or production enterprises
- Knowledge about controlling aspects of resources, structural organisation and processes
- Initial knowledge about evaluation and judgment procedures in production logistics
- Basic insights into the possibilities of simulation tools for the prognosis of production performance

Content
1. Introduction to the course
2. Basic terms of production controlling
3. Production management controlling
4. Controlling of materials and products
5. Controlling of machinery resources
6. Controlling of human resources
7. Basics of simulation technique
8. Simulation of manufacturing systems
9. Simulation of human resources and assembly systems
10. Controlling of process structures
11. Controlling and simulation of departmental structures
12. Management systems

Literature
Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Finite Difference Methods for numerical solution of thermal and fluid dynamical problems [2153405]

Coordinators: Claus Günther

Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Digital Control [2137309]

Coordinators: Michael Knoop

Part of the modules: SP 04: Automation Technology (p. 121)[SP_04_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 40: Robotics (p. 162)[SP_40_mach]

ECTS Credits 4
Hours per week 2
Term Winter term
Instruction language de

Learning Control / Examinations
Oral examination; duration: 30 minutes; no tools or reference materials may be used during the exam.

Conditions
Basic studies and preliminary examination; basic lectures in automatic control

Learning Outcomes
The lecture introduces key methods for the analysis and design of digital feedback control systems. Starting point is the discretisation of linear, continuous-time models. State space based and z-transform based controller design techniques are presented for discrete-time, single-input single-output systems. Furthermore, plants with dead-time and deadbeat design are covered.

Content
1. Introduction into digital control:
 Motivation for digital implementation of controllers Structure of digital feedback control loops Sample and hold units
2. State space analysis and design:
 Discretisation of continuous-time systems Discrete-time state space equations Stability - definition and criteria State feedback design by eigenvalue assignment PI state feedback controller Luenberger observer, separation theorem Systems with dead-time Deadbeat design
3. Analysis and design based on z-transform: z-transform - definition and theorems Control loop description in the z domain Stability criteria Root locus controller design Transfer of continuous-time controllers into discrete-time controllers

Literature
- Föllinger, O.: Lineare Abtastsysteme. 4. Auflage, R. Oldenbourg Verlag, München Wien 1990
Course: Designing with numerical methods in product development [2161229]

Coordinators: Eckart Schnack
Part of the modules: SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination. Duration: 30 minutes.

Conditions
None.

Recommendations
None.

Learning Outcomes
The students are provided with a detailed overview of the numerical methods for product development in mechanical engineering. Account is taken of the fact that a modern development of products in mechanical engineering generally involves a multi-field approach: knowledge of thermodynamics, fluid mechanics, solid mechanics, electronics / electrics and magnetism are required. In addition, problems can be steady but are very often unsteady, i.e. time-dependent. All these aspects are incorporated into modern industrial software. In the lectures the fundamental methods used in the development of the software are introduced and discussed in detail. Students are provided with the tools to carry out the design process on a computer using existing industrial software. It is also worth noting that beside the finite element and the boundary element methods, structural optimisation with shape and topological optimisation must be taken into account. Structural optimisation will play an increasingly important role in the future.

Content

Literature
Lecture notes (available in the administration office, building 10.91, rm. 310)
Course: Designing with composites [2162255]

Coordinators: Eckart Schnack

Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination. Duration: 30 minutes.

Conditions
None.

Recommendations
None.

Learning Outcomes
The aim is to gain understanding of laminated composite materials with a wide variety of applications in the aerospace and automotive industries. The terminology used for modern composites will be introduced and the students will gain an understanding of lamina, laminae and laminate. In addition they will gain understanding of the transformation properties between a single-layer and a multi-layer coordinate system. They will understand new aspects of composites such as the piezo-electric monitoring of composite materials.

Content
Short overview of the definition of modern composite materials. Fundamental structure of industrial composites. Definition of the mixture rules for fibre and matrix materials. Calculation of a wide variety of transformations between lamina, laminae and laminate for different coordinate systems. Derivation of the relevant differential equations for composites.

Literature
Lecture notes available in the administration office, building 10.91, rm. 310
Course: Dynamics of mechanical Systems with tribological Contacts [2162207]

Coordinators: Hartmut Hetzler

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam., 30min

Conditions
None.

Learning Outcomes
This lectures gives an introduction in to basic aspects of mechanical systems with contacts. Here, the tribological contact properties must be respected as well, since it affects the contact behaviour. The course begins with the physical-mathematical description and addresses common solution strategies. By several example problems typical dynamic phenomena are discussed.

Content
* Introduction into contact kinematics
* kinetics of mechanical systems with frictional unilateral contacts
* mathematical solution strategies
* introduction into contact mechanics
* normal contact (Hertzian contact, rough surfaces, constitutive contact laws)
* impacts (Newton’s Impact law, wave effects)
* friction induced vibrations (stick-slip, squeal, ...)
* lubricated contacts: Reynold’s Equation, rotors in fluid film bearings, EHD-contacts

Literature
list of literature will be handed out
Course: [2163111]

Coordinators: Alexander Fidlin

Part of the modules:
- SP 09: Dynamic Machine Models (p. 128)[SP_09_mach]
- SP 02: Powertrain Systems (p. 119)[SP_02_mach]
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]
- SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]
- SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 min (optional subject)
20 min (major subject)

Means are not allowed

Conditions
None.

Recommendations
Powertrain Systems Technology A: Automotive Systems
Machine Dynamics
Vibration theory

Learning Outcomes

- To obtain the basic skills in dynamic modelling of the vehicle powertrain including the most important components, driving situations and requirements

Content

- Main components of the vehicle powertrain and their modelling
- Typical driving situations
- Problem-oriented models for particular driving situations
- System analysis and optimization with respect to dynamic behavior

Literature

- Pfeiffer F., Mechanical System Dynamics, Springer, 2008
Course: Efficient creativity - Processes and Methods within the automotive industrie [2122371]

Coordinators: Ralf Lamberti
Part of the modules: SP 28: Lifecycle Engineering (p. 149) [SP_28_mach]

Learning Control / Examinations
Oral examination, Durations: 25 min, Auxiliary Means: none

Conditions
None.

Learning Outcomes
Students know the market-related and technical challenges of developing innovative products and they know the characteristics of the product development process and reasons for the need of standardization. Students understand the concepts, methods and approaches to process design and have exemplary knowledge of the methods, processes and systems: for project management, design and designing, requirements management, change management, cost management and controlling, the design, calculation and protection, production planning, data management, integration platforms, version control mechanisms, quality management, knowledge management, visualization technologies, and are able to put them in relation to each other and understand about their interaction.

Content
In this module, the teaching of processes and methods in the systematic development of innovative, complex and more varied products is focused. Tasks, design, interaction and coordination of these processes and methods are illustrated using the example of the automotive industry. Students are introduced to the systematic variations of the product development process based on historical, current and foreseeable technological and market-related developments in the automotive sector. Based on the standardized product development process, the specific and comprehensive processes and methods and their IT-page illustrations are closely examined.

Media
Lecture slides
Course: ?? [2105021]

Coordinators: Christian Pylatiuk
Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Introduction to Industrial Engineering [2109041]

Coordinators: Gert Zülch

Part of the modules: SP 16: Industrial Engineering (p. 137)[SP_16_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in English)

Allowed resource materials: none

Conditions
None.

Recommendations
- Willingness to learn interdisciplinarily (Technique, Economy, Legal regulations, Informatics . . .)
- Basic understanding of technical products
- Some knowledge about manufacturing techniques
- Basics of mathematical statistics

Learning Outcomes
- Knowledge about organisational structures of production enterprises
- Insights into order processing
- Initial knowledge about planning processes

Content
1. Introduction to the course
2. Objectives and process models
3. Market analysis, product design, and production programme
4. Analysis of processes
5. Production planning and control
6. Planning of resources
7. Quality management
8. Product utilisation and recycling
9. Principles of project management
10. Management systems

Literature
Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Introduction to Automotive Lightweight Technology [2113101]

Coordinators: Frank Henning
Part of the modules: SP 36: Polymer Engineering (p. 158)[SP_36_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
verbally
duration: 30 - 60 min
auxiliary means: none

Conditions
one

Recommendations
one

Learning Outcomes
Introduction to automotive lightweight design. Becoming acquainted with established strategies and construction methods as well as materials for automotive lightweight design.

Content
Strategies for lightweight design, construction methods, metallic materials for lightweight design, introduction to polymers
Course: ?? [2106006]

Coordinators: Hagen Malberg

Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Introduction to Ergonomics [2110033]

Coordinators: Gert Zülch
Part of the modules: SP 16: Industrial Engineering (p. 137)[SP_16_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral exam, length: 30 minutes
(only in English)

Allowed resource materials: none

Conditions

None.

Recommendations

- Basic understanding of human physiology
- Some knowledge about manufacturing processes
- Basics of mathematical statistics

Learning Outcomes

- Knowledge about prerequisites of human performance
- Stress and strain
- Initial knowledge about human-centered work organisation
- Basic knowledge about the management of occupational health and safety

Content

1. Introduction to the course
2. Basic concepts
3. Physiological issues of humans at work
4. Psychological issues of work design
5. Environmental conditions
6. Methods of work analysis
7. Workplace design and man models
8. Work structuring and personnel-oriented simulation
9. Ergonomic product design and virtual reality
10. Occupational health and safety

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Introduction to the Finite Element Method [2162282]

Coordinators:
Thomas Böhlke

Part of the modules:
SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Depending on choice according to actual version of study regulations
Additives as announced

Conditions
None.

Recommendations
None.

Learning Outcomes
The students can effectively apply the finite element method (FEM) for structural and temperature analysis. They know the mathematical and mechanical foundations of FEM. The students can set up the weak formulation of boundary value problems and the linear system of the FEM as well. They know different numerical solution methods for linear systems. The students are thus well prepared for a job in construction or computing divisions.

Content
- introduction and motivation
- elements of tensor calculus
- the initial-boundary-value-problem of linear thermoconductivity
- the boundary-value-problem of linear elastostatic
- spatial discretization for 3D problems
- solution of the boundary-value-problem of elastostatic
- numerical solution of linear systems
- element types
- error estimation

Literature
lecture notes
Fish, J., Belytschko, T.: A First Course in Finite Elements, Wiley 2007 (*enthält eine Einführung in ABAQUS*)
Course: Introduction to Ceramics [2125755]

Coordinators: Michael Hoffmann

Part of the modules: SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 43: Technical Ceramics and Powder Materials (p. 166)[SP_43_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- oral
- 20 min
- Auxiliary means: none

Conditions
None.

Learning Outcomes
The lecture gives an overview of the relationship among processing, microstructure and properties of ceramics. Important processing routes and characterization methods will be discussed on various examples. The course is arranged in the following units:

Content
- Atomic bonding in solids
- Crystal structures and structural imperfections
- Surfaces, interfaces and grain boundaries
- Binary and ternary phase diagrams
- Structure of glass
- Characterization and processing of ceramic powders
- Shaping methods (pressing, slip casting, injection molding)
- Densification and grain growth (sintering)
- Introduction to fracture mechanics, strength and failure probability of brittle materials
- Materials behavior at high temperatures (creep, oxidation)
- Toughening mechanisms
- Methods for microstructural characterization

Literature
Course: Introduction to Theory of Materials [2182732]

Coordinators: Marc Kamlah

Part of the modules: SP 06: Computational Mechanics (p. 124) [SP_06_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151) [SP_30_mach], SP 13: Strength of Materials/ Continuum Mechanics (p. 134) [SP_13_mach], SP 49: Reliability in Mechanical Engineering (p. 172) [SP_49_mach]

ECTS Credits 4 Hours per week 2 Term Summer term Instruction language de

Learning Control / Examinations
oral exam 30 minutes

Conditions
Engineering Mechanics; Advanced Mathematics

Learning Outcomes
Classes of constitutive material behaviour and its mathematical representation

Content
Following a brief introduction into continuum mechanics at small deformations, the classification into elastic, viscoelastic, plastic and viscoplastic material behaviour is discussed. Then, the corresponding constitutive models are motivated and mathematically formulated. As far as possible, their properties are demonstrated by means of elementary analytical solutions.

In the lab, the behavior of the discussed constitutive material laws are investigated for simple geometries and loading situations with the finite element program ABAQUS.

Literature
Course: Introduction to the Mechanics of Composite Materials [2182734]

COORDINATORS: Yingyuan Yang

PART OF THE MODULES:
- SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach],
- SP 26: Materials Science and Engineering (p. 146)[SP_26_mach],
- SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach],
- SP 25: Lightweight Construction (p. 145)[SP_25_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

LEARNING CONTROL / EXAMINATIONS
oral exam 30 minutes

CONDITIONS
Solid Mechanics

LEARNING OUTCOMES
The students could analyze the stresses and strength of a structure with composite materials. Using the advantages of composite materials, the students could make optimization and design in a light structure.

CONTENT
- Introduction to composite materials, applied examples in the industry
- Micromechanical behaviour of a lamina
- Macromechanical behaviour of a lamina
- Macromechanical behaviour of a laminate (I): classical lamination theory
- Macromechanical behaviour of a laminate (II): stiffness / stress analysis
- Strength of laminates, failure criteria in laminates
- Optimization and Design of fiber reinforced composite materials

LITERATURE
Course: Introduction into Mechatronics [2105011]

Coordinators: Georg Bretthauer, Albert Albers
Part of the modules: SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written examination, oral examination or certification of participation depending on the “Studienplan” resp. “Prüfungs- und Studienordnung (SPO)”

Conditions
None.

Learning Outcomes
Mechatronics is an interdisciplinary field, based on classical mechanical and electrical engineering as well as automation science and technology and computer science. The main activities focus on integral system development with technical components connected via an intelligent control system. In this regard simulation of mechanical and electrical systems becomes important for rapid and efficient development. First part of the lecture provides a survey of mechatronics. Subsequently the architecture of mechatronic systems is described. Furthermore fundamentals of modeling of mechanical, pneumatic, hydraulic, electrical and electronic components are discussed. Finally optimization methods, e. g. adaptive controllers, are presented. In the second part of the lecture basics of development methods as well as the characteristics of the development of mechatronic products are described. A further important item is the presentation of the system concept of mechatronics in comparison to conventional mechanical systems. The contents of the course are explained using examples for mechatronic products in the area of automotive engineering.

Content
Part I: Modeling and optimization (Prof. Bretthauer)
- Introduction
- Architecture of mechatronic systems
- Modeling of mechatronic systems
- Optimization of mechatronic systems
- Perspective

Part II: Development and design (Prof. Albers)
- Introduction
- Development method for mechatronic products
- Examples

Literature
Course: Introduction into the multi-body dynamics [2162235]

Coordinators: Wolfgang Seemann

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

ECTS Credits 5
Hours per week 3
Term Summer term
Instruction language de

Learning Control / Examinations
Written exam
Optional subject: oral, 30 min.
Major Subject: oral, 20 min.

Conditions
None.

Learning Outcomes
Mechanisms, vehicles and industrial robots are examples of multibody systems. For dynamics simulations expressions for kinematical quantities and formulations of equations of motion are required which make it easy to switch from one system to another. Efficient methods are described.
The course is mainly divided in two parts: kinematics on the one hand and different possibilities to derive the equations of motion on the other hand.

Content
The role of multibody systems in engineering, kinematics of a single rigid body, Kinematics of multibody systems, rotation matrix, angular velocity, derivatives in different reference systems, holonomic and non-holonomic constraints, Newton-Euler's equations, principle of d'Alembert, principle of virtuel power, Lagrange's equations, Kane's equations, structure of the equations of motion

Literature
Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
de Jal’on, J. G., Bayo, E.: Kinematik and Dynamic Simulation of Multibody System.
Kane, T.: Dynamics of rigid bodies.
Course: Numerical Methods in Mechanics I [2161226]

Coordinators: Eckart Schnack
Part of the modules: SP 06: Computational Mechanics (p. 124)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination. Duration: 30 minutes.

Conditions
None.

Recommendations
None.

Learning Outcomes
Introduction to the numerical treatment of mechanical problems with finite element methods (FEM) based on technical mechanics. Derivation of spring, rod and beam systems. Development of simple elements of continuum mechanics, more advanced finite element techniques such as hybrid methods and boundary element methods. Through detailed deductions in the lectures, the students are then able to develop their own codes for engineering software. The specific aim of this course is a deeper understanding of the construction of numerical processes, so that the students are able to develop software independently. The aim is not to learn how to work with existing software, as this is an area which is continually developing. The emphasis will therefore be placed on the detailed theoretical calculations behind the methods.

Content

Literature
Script (available in administration office, building 10.91, rm. 310).
Course: Wave propagation [2161216]

Coordinators: Wolfgang Seemann

Part of the modules: SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 42: Technical Acoustics (p. 165)[SP_42_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Optional subject: oral exam, 30 min.
Major subject: oral exam, 20 min.

Conditions
Vibration theory

Learning Outcomes
The course gives an introduction into wave propagation phenomena. This contains both onedimensional continua (beams, rods, strings) as well as two- and threedimensional continua. Initial condition problems are treated. Fundamental effects like phase velocity, group velocity or dispersion are explained. Wave propagation is used to show the limits of structural models like beams. In addition surface waves and acoustic waves are covered.

Content
Wave propagation in strings and rods, d'Alembert's solution, initial value problem, boundary conditions, excitation at the boundary, energy transport, wave propagation in beams, Bernoulli-Euler beams, group velocity, beams with changing cross-section, reflexion and transmission, Timoshenko beam theory, wave propagation in membranes and plates, acoustic waves, reflexion and refraction, spherical waves, s- and p-waves in elastic media, reflexion and transmission at bounding surfaces, surface waves

Literature
Course: Basics Operation Systems of Ground Born Guided Systems [19306]

Coordinators: Eberhard Hohnecker, Peter Gratzfeld, Hohnecker

Part of the modules: SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- Oral examination
- Duration: 20 minutes
- No tools or reference materials may be used during the exam.

Conditions
none

Recommendations
none

Learning Outcomes
The students have a fundamental knowledge about logistics and operation in railway systems.

Content
- Operating basics
- Train control
- Capacity and operation quality of lines and stations

Media
All slides can be bought.

Literature
1. Fiedler: Grundlagen der Bahntechnik, Werner Verlag Düsseldorf
2. Pachl: Systemtechnik des Schienenverkehrs; Teubner-Verlag Stuttgart
Course: Operation Systems of Ground Born Guided Systems [19321]

Coordinators: Eberhard Hohnecker, Peter Gratzfeld, Hohnecker

Part of the modules: SP 50: Rail System Technology (p. 173)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- Oral examination
- Duration: 20 minutes
- No tools or reference materials may be used during the exam.

Conditions

none

Recommendations

none

Learning Outcomes
The students have a deepened knowledge about national and international operating and signalling systems.

Content

- National and international operating systems
- National and international signalling systems
- Driverless operation
- Safety case of new operating systems

Media
All slides can be bought.

Literature
Pachl: Systemtechnik des Schienenverkehrs; Teubner-Verlag Stuttgart
Course: Electronic Business for industrial Companies [2149650]

Coordinators: Anette Weisbecker

Part of the modules: SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam, 30 min

Conditions
None.

Learning Outcomes

Content
This lecture leads to the technical bases and a general survey for applications of electronic business in industrial enterprises. Students get acquainted with the technical bases of electronic business and will be able to develop new applications in practice. Furthermore they will learn the ability to evaluate the benefit of new applications of information technologies referring electronic business in industrial enterprises.

1. Electronic Business
2. Product Information Management (PIM)
3. Portals for Business Clients and Employees
4. Supply Chain Management (SCM)
5. Customer Relationship Management (CRM)
6. Mobile Computing
7. Production Networks
8. E-Collaboration / E-Engineering
9. Service Engineering
10. Teleservice
Course: Electric Rail Vehicles [2114346]

Coordinators: Peter Gratzfeld
Part of the modules: SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- Oral examination
- Duration: 20 minutes
- No tools or reference materials may be used during the exam.

Conditions

none

Recommendations

none

Learning Outcomes

- The students know the history of electric traction in railway transportation from the very beginning to the modern locomotives with three-phase induction motors.
- They know the basics of railway transportation, the different kinds of traction and the basic concepts of rail cars.
- They understand the design and the mode of operation of classic and modern rail cars, know the components of the main power circuit and the different kinds of drives.
- They are informed about new developments in the field of electric railway vehicles.

Content

- History of electric traction with railway vehicles
- Basics of railway transportation, kinds of traction and concepts of rail cars
- Mode of operation and design of electric locomotives
- Axle drives and transmission of the tractive effort to the rails
- Modern developments of electric traction

Media

All slides are available for download.

Literature

A bibliography is available for download.
Course: Elements of Technical Logistics [2117096]

Coordinators: Martin Mittwollen

Part of the modules: SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
after each lesson period; oral / written (if necessary) => (look at “Studienplan Maschinenbau”, version of xx.xx.2011)

Conditions
LV 2117095 must be passed successfully - examination dates are sequenced accordingly

Learning Outcomes
The student:

- knows about elements and systems of technical logistics
- knows about structures and function of special conveying machines
- knows about material flow systems
- and is able to equip material flow systems with applicable machines

Content
material flow systems and their (conveying) technical components
mechanical behaviour of conveyors;
structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
sample applications and calculations in addition to the lectures inside practical lectures

Media
supplementary sheets, projector, blackboard

Literature
recommendations during lectures
Course: Energy efficient intralogistic systems [2117500]

Coordinators: Frank Schönung

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral, 30 min, examination dates after the end of each lesson period

Conditions
None.

Recommendations
None.

Learning Outcomes
The student has basics for the analysis and the design of energy and resource efficient intralogistic systems for production and distribution.

Content
The main focuses of the course are:

- green supply chain
- processes in Intralogistic systems
- evaluation of energy consumption of conveyors
- modeling of conveying systems
- methods for energy savings
- approaches for energy efficiency increasing of continuous and discontinuous conveyors
- dimensioning energy efficient drives
- new approaches for resource efficient conveying systems.

Media
presentations, black board

Literature
None.

Remarks
none
Course: Energy Systems I: Renewable Energy [2129901]

Coordinators: Florin Badea

Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Energy systems II: Nuclear Energy Fundamentals [2130929]

Coordinators: DanGabriel Cacuci, Aurelian F. Badea
Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Development Project for Machine Tools and Industrial Handling [2149903]

Coordinators: Jürgen Fleischer

Part of the modules: SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Performance is assessed in the form of one oral examination (30 min) during the lecture-free period. The examination will take place once every semester and can be retaken at every official examination date.

Conditions
Can only be taken with the lecture machine tools and industrial handling. Only five students are able to take part.

Learning Outcomes
The student

- has knowledge about the application of machine tools.
- comprehends the assembly and the operation purpose of the major components of a machine tool.
- is able to apply methods of selection and assessment of production machines to new tasks.
- is able to assess the dimensioning of a machine tool.

Content
As part of this lecture, a development project in the field of machine tools and handling equipment is carried out by students under supervision. It covers current problems of an involved industrial partner.
Course: Ergonomics and Work Economics (in German) [2109029]

Course:
Ergonomics and Work Economics (in German) [2109029]

Coordinators:
Gert Zülch

Part of the modules:
SP 37: Production Management (p. 159) [SP_37_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes (only in German)

Allowed resource materials: none

Conditions
- Module course: first part of the lecture “Arbeitswissenschaft (2109026)”
- The exams "Ergonomie und Arbeitswirtschaft (2109029)” and “Arbeitswissenschaft (2109026)” are mutually exclusive.

Recommendations
- Willingness to learn interdisciplinarily (Technology, Legal regulations Work physiology, Work psychology . . .)
- Knowledge of Production Management is useful

Learning Outcomes
- Become proficient within the general terms of ergonomics and time study
- Know elementary methods and procedures of work science
- Become proficient in applying ergonomic evaluation and judgment

Content
1. Introduction
2. Basics of human performance
3. Design of workplaces
4. Time study
5. Evaluation of workplaces and determination of wages
6. Work psychology (first part of “Work structuring”)

Literature
Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:
• REFA - Verband für Arbeitsstudien und Betriebsorganisation (Hrsg.): Grundlagen der Arbeitsgestaltung. München: Carl Hanser Verlag, 1991. (Methodenlehre der Betriebsorganisation)

• REFA - Verband für Arbeitsstudien und Betriebsorganisation (Hrsg.): Entgeltdifferenzierung. München: Carl Hanser Verlag, 1991. (Methodenlehre der Betriebsorganisation)

• SCHLICK, Christopher; BRUDER, Ralph; LUCZAK, Holger: Arbeitswissenschaft. Heidelberg u.a.: Springer, 3rd edition 2010.

Please refer to the latest edition.
Course: ?? [2106008]

Coordinators: Christian Pylatiuk
Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Experimental Modelling [2106031]

Coordinators: Lutz Gröll
Part of the modules:
SP 04: Automation Technology (p. 121)[SP_04_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Metallographic Lab Class, Metallographic Lab Class, Ferrous Materials [2175588]

Coordinators: Katja Poser, Alexander Wanner

Part of the modules: SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Colloquium with every experiment, Laborjournal

Conditions
basic knowledge in materials science (e.g. lecture materials science I and II)

Learning Outcomes
The students in this lab class gain access to metallography and is working methods as well as insights into the possibilities, correlations and results of light-microscopic testing of metallic materials at an elementary basis. They learn in several experiments about the correlations between structure and mechanical properties by using light-microscopic evaluation, the preparation of samples and microstructural development.

Content
Light microscope in metallography

metallographic sections of metallic materials

Investigation of the microstructure of unalloyed steels and cast iron

Structure development of steels with accelerated cooling from the austenite area

Investigation of structures of alloyed steels

Investigation of failures Qualitative structural analysis

Structural testing of copper-based alloys

Structural testing of technically relevant non-ferrous metals (aluminium-based, nickel-based, titanium-based and tin-based alloys)

Literature
E. Macherauch: Praktikum in Werkstoffkunde, 10th edition, 1992

Literature List will be handed out with each experiment
Course: Metallographic Lab Class, Non-Ferrous Materials [2175589]

Coordinators: Katja Poser, Alexander Wanner

Part of the modules:
- SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]
- SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Colloquium with every experiment, Laborjournal

Conditions
- basic knowledge in materials science (e.g. lecture materials science I and II)

Learning Outcomes
The students in this lab class gain access to metallography and is working methods as well as insights into the possibilities, correlations and results of light-microscopic testing of metallic materials at an elementary basis. They learn in several experiments about the correlations between structure and mechanical properties by using light-microscopic evaluation, the preparation of samples and microstructural development.

Content
- Light microscope in metallography
- metallographic sections of metallic materials
- Investigation of the microstructure of unalloyed steels and cast iron
- Structure development of steels with accelerated cooling from the austenite area
- Investigation of structures of alloyed steels
- Investigation of failures Qualitative structural analysis
- Structural testing of copper-based alloys
- Structural testing of technically relevant non-ferrous metals (aluminium-based, nickel-based, titanium-based and tin-based alloys)

Literature

Literature List will be handed out with each experiment
Course: Welding Lab Course, in groupes [2173560]

Coordinators: Volker Schulze
Part of the modules: SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Certificate to be issued after evaluation of the lab class report

Conditions
certificate of attendance for Welding technique I

Learning Outcomes
During the lab class a survey of current welding processes and their suitability for joining different materials is given. An important goal of the lab class is to understand and to evaluate the advantages and disadvantages of the individual procedures.

Content
- Gas welding of steels with different weld geometries
- Gas welding of cast iron, nonferrous metals
- Brazing of aluminum
- Electric arc welding with different weld geometries
- Gas welding according to the TIG, MIG and MAG procedures

Literature
distributed during the lab attendance
Course: Factory Planning Laboratory [2150652]

Coordinators: Gisela Lanza

Part of the modules: SP 37: Production Management (p. 159)[SP_37_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Driving Dynamics Evaluation within the Global Vehicle Simulation [2114850]

Coordinators: Bernhard Schick

Part of the modules: SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: CarMaker Simulation Environment

Conditions

none

Learning Outcomes

The students have an overview of the vehicle dynamics simulation, the model parametrization and the related data sources. They have good knowledge about vehicle dynamics test methods and related execution of virtual test driving (open loop, closed loop). They are able to evaluate driving behavior based on self-created results. They have achieved knowledge about influences and interactions of components such as tires, suspension, kinematics and compliance, roll bars, steering, brakes, mass distribution and powertrain and they have the qualification to design components with regard to global vehicle behavior.

Content

1. Testing and evaluation methods
2. Fundamentals of vehicle dynamics simulation
3. Execution of virtual test driving and evaluation of the results
4. Influence of several components and optimization of global driving behavior

Literature

2. Unrau, H.-J.: Scriptum zur Vorlesung “Fahreigenschaften I”
4. IPG: User Guide CarMaker
Course: Handling Characteristics of Motor Vehicles I [2113807]

Coordinators: Hans-Joachim Unrau

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach]

ECTS Credits

- **Hours per week:** 4
- **Term:** Winter term
- **Instruction language:** de

Learning Control / Examinations

Verbally

- **Duration:** 30 up to 40 minutes
- **Auxiliary means:** none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation.

Content

1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Literature

Course: Handling Characteristics of Motor Vehicles II [2114838]

Coordinators: Hans-Joachim Unrau

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students have an overview of common test methods, with which the handling of vehicles is gauged. They are able to interpret results of different stationary and transient testing methods. Apart from the methods, with which e.g. the driveability in curves or the transient behaviour from vehicles can be registered, also the influences from cross-wind and from uneven roadways on the handling characteristics are well known. They are familiar with the stability behavior from single vehicles and from vehicles with trailer.

Content

1. Vehicle handling: Bases, steady state cornering, steering input step, single sine, double track switching, slalom, cross-wind behavior, uneven roadway

2. Stability behavior: Basics, stability conditions for single vehicles and for vehicles with trailer

Literature

Course: Vehicle Comfort and Acoustics I [2113806]

Coordinators: Frank Gauterin

Part of the modules:
- SP 09: Dynamic Machine Models (p. 128)[SP_09_mach]
- SP 12: Automotive Technology (p. 132)[SP_12_mach]
- SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach]
- SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]
- SP 42: Technical Acoustics (p. 165)[SP_42_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students know what are noise and vibration, how they are generated, and how they are perceived by human beings.

They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved.

Content

1. Perception of noise and vibrations

2. Fundamentals of acoustics and vibrations

3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations

4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Literature

2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

The script will be supplied in the lectures.
Course: Vehicle Comfort and Acoustics II [2114825]

Coordinators: Frank Gauterin

Part of the modules:
- SP 09: Dynamic Machine Models (p. 128)[SP_09_mach]
- SP 12: Automotive Technology (p. 132)[SP_12_mach]
- SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach]
- SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]
- SP 42: Technical Acoustics (p. 165)[SP_42_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods.

Content

1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development
3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Literature
The script will be supplied in the lectures.
Course: Vehicle Mechatronics I [2113816]

Course: Vehicle Mechatronics I [2113816]

Coordinators:
- Dieter Ammon

Part of the modules:
- SP 04: Automation Technology (p. 121)[SP_04_mach], SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students have an overview of the system science field of mechatronics and its application in the area of vehicle conception, especially in the context of vehicle system dynamics. They know the tools and methods for a systematical analysis, conception, and design of mechatronic systems, focusing on mechatronically extended suspension systems.

Content

1. Introduction: Mechatronics in vehicle technology
2. Vehicle Control systems
 - Brake- and traction controls (ABS, ASR, automated power train controls)
 - Active and semiactive suspension systems, active stabilizer bars
 - Vehicle dynamics controls, driver assistance systems
3. Modelling technology
 - Mechanics - multi body dynamics
 - Electrical and electronic systems, control systems
 - Hydraulics
 - Interdisciplinary coupled systems
4. Computer simulation technology
 - Numerical integration methods
 - Quality (validation, operating areas, accuracy, performance)
 - Simulator-coupling (hardware-in-the-loop, software-in-the-loop)
5. System design (example: brake control)
 - Demands, requirements (function, safety, robustness)
 - Problem setup (analysis - modelling - model reduction)
 - Solution approaches
 - Evaluation (quality, efficiency, validation area, concept ripeness)

Literature

1. Ammon, D., Modellbildung und Systementwicklung in der Fahrzeugdynamik, Teubner, Stuttgart, 1997
5. Roddeck, W., Einführung in die Mechatronik, Teubner, Stuttgart, 1997
Course: Automotive Vision [2138340]

Coordinators: Christoph Stiller, Martin Lauer

Part of the modules:
- SP 50: Rail System Technology (p. 173)[SP_50_mach]
- SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach]
- SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]
- SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]
- SP 12: Automotive Technology (p. 132)[SP_12_mach]
- SP 31: Mechatronics (p. 152)[SP_31_mach]
- SP 18: Information Technology (p. 138)[SP_18_mach]
- SP 40: Robotics (p. 162)[SP_40_mach]
- SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 minutes

no reference materials

Conditions

Fundamentals in measurement, system and control theory, e.g. from the lecture “Measurement and Control Systems”

Learning Outcomes

Machine perception and interpretation of the environment for the basis for the generation of intelligent behaviour. Especially visual perception opens the door to novel automotive applications. First driver assistance systems can already improve safety, comfort and efficiency in vehicles. Yet, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator. The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on seeing vehicles. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

Content

1. Driver assistance systems
2. Image acquisition and discretization
3. Image signal processing
4. Stochastic image models
5. Stereo vision and image sequence processing
6. Tracking
7. Lane recognition
8. Obstacle recognition

Literature

TBA
Course: Industrial Management Case Study [3109033]

Coordinators: Gert Zülch
Part of the modules: SP 16: Industrial Engineering (p. 137)[SP_16_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in English)

Allowed resource materials: none

Conditions
- Compact course (one week full-time)
- Limited number of participants
- Registration in the ifab-office necessary
- Compulsory attendance during the whole lecture

Recommendations
- Knowledge in Production Management (resp. Industrial Engineering) is necessary
- Knowledge of Informatics is not required, but useful

Learning Outcomes
Within the week-long compact seminar the participants are required to solve various production management scenarios in a group format. They will thereby have the opportunity to influence the solution process from various perspectives and to recognize the effects of individual actions on the entire relationship.
The seminar contains a planning game based on the re-arrangement of a production company and thereby gives the participants the chance to put the studied methods into practice. With the simulation, the solution is quantitatively assessed and the effects of decisions will be highlighted.

Content
1. Introductory lecture
2. Organisational issues
3. Planning scenario of a bicycle factory
4. Basics of operations planning and control (OPC)
5. Basics of operations structuring (OST)
6. Introduction of the simulation package
7. Instructions for OPC
8. Instructions for OST
9. Instructions for the final presentation
10. Final presentation

Literature
Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Composites for Lightweight Design [2114052]

Coordinators: Frank Henning

Part of the modules: SP 36: Polymer Engineering (p. 158)[SP_36_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
verbally
duration: 30 - 60 min
auxiliary means: none

Conditions
none

Recommendations
none

Learning Outcomes
Becoming acquainted with composite materials and their application in automotive lightweight design.

Content
Textile reinforcements; processing, finishing and joining of composites; design guidelines; test methods and repair; recycling
Course: FEM Workshop – constitutive laws [2183716]

Coordinators: Matthias Weber, Anja Haug, Daniel Weygand, K. Schulz
Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach]

ECTS Credits: 4
Hours per week: 2
Term: Winter / Summer Term
Instruction language: de

Learning Control / Examinations
Conditions
None.
Recommendations
Engineering Mechanics; Advanced Mathematics; Introduction to Theory of Materials

Learning Outcomes
Deepening of experience and knowledge of the fundamental theory of materials; classification of characteristic material behavior; students learn how to generate own numerical models as well as how to choose and to apply adequate constitutive equations. Acquisition of basic knowledge of ABAQUS

Content
The course repeats the fundamentals of the theory of materials. It leads to the characterization and classification of material behavior as well as the specification by adequate material models. Here we focus on elastic, viscoelastic, plastic, and viscoplastic deformation behavior. Introducing the finite element program ABAQUS, the students learn how to analyze the material models numerically. Therefore ABAQUS-own and continuative constitutive equations are chosen.

Literature
Peter Haupt: Continuum Mechanics and Theory of Materials, Springer; ABAQUS Manual; Lecture notes
Course: Fabrication Processes in Microsystem Technology [2143882]

Coordinators: Klaus Bade
Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination

Conditions
Bachelor mach., wing.

Learning Outcomes

Content

Literature
Course: manufacturing technology [2149657]

Coordinators: Volker Schulze
Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Performance is assessed in the form of one written examination (180 min) during the lecture-free period. The examination will take place once every semester and can be retaken at every official examination date.

Conditions
None.

Learning Outcomes
The student
• is able to name the different manufacturing methods and to explain their functions
• is able to classify the manufacturing methods by their general structure and functionality according to specific main groups
• is able to perform a process selection based on the methods he/she has learned about and their characteristics
• is able to identify the correlation between different methods
• is able to evaluate the different methods against specific applications on the basis of technical and economical aspects

Content
The objective of the lecture is to look at manufacturing engineering within the wider context of production engineering, to provide an overview over the different manufacturing methods and to impart detailed process knowledge of the common methods. The lecture covers the basic principles of manufacturing engineering and deals with the manufacturing methods according to their classification into main groups on the basis of technical and economical aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:
• Introduction
• Quality control
• Primary processing (casting, plastics engineering, sintering, generative manufacturing processes),
• Forming (sheet-metal forming, massive forming, plastics engineering),
• Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
• Joining
• Coating
• Heat treatment and surface treatment
• Process chains in manufacturing
• Work preparation

Media
Slides and lecture notes for the manufacturing technology lecture will be made available through ilias.

Literature
lecture notes
Course: [2193003]

Coordinates: Damian Cupid, Peter Franke
Part of the modules: SP 26: Materials Science and Engineering (p. 146)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Finite Elements for Field- and Time Dependent Problems [19110]

Coordinators: Karl Schweizerhof, Schweizerhof
Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Finite Element Workshop [2182731]

Coordinators: Claus Mattheck

Part of the modules: SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
certificate of attendance

Conditions
Continuum Mechanics

Learning Outcomes
The student will learn to use a commercial finite element software package and to perform stress analysis.

Content
The students will learn the foundations of the FEM stress analysis and the optimization methodе ‘Zugdreiecke’.
Course: Finite Volume Methods for Fluid Flow [2154431]

Coordinators: Claus Günther

Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral

Duration: 30 minutes

no auxiliary means

Conditions

None.

Learning Outcomes

Content
Course: Fluid-Structure-Interaction [2154401]

Coordinators: Torsten Schenkel
Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Remarks
Lecture will be given starting summer semester 2012
Course: Fluid Technology [2114093]

Coordinators: Marcus Geimer

Part of the modules: SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students will be able to

- know and understand physical principles of fluid power systems
- know the current components and their operating mode
- know the advantages and disadvantages of different components
- dimension the components for a given purpose
- calculate simple systems

Content
In the range of hydrostatics the following topics will be introduced:

- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:

- Compressors
- Motors
- Valves
- Pneumatic circuits.

Literature
Scritum for the lecture *Fluidtechnik*
Institute of Vehicle System Technology
downloadable
Course: Fusion Technology A [2169483]

Coordinators: Robert Stieglitz

Part of the modules: SP 23: Power Plant Technology (p. 143) [SP_23_mach], SP 53: Fusion Technology (p. 175) [SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral: Acceptance for the oral test only by certification of attendance of exercises

Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Conditions
Basic knowledge in fluid mechanics, material sciences and physics

Learning Outcomes
The lecture describes the functional principle of a fusion reactor, starting from the plasma, the magnets and the core components as the blankets and divertors with the associated material sciences. The physical principles are discussed and scaling laws are formulated. One major emphasis is directed towards the interface between the individual fields of disciplines which to a large extend determines the technological scaling of a fusion facility.

Content

Literature
Within each subblock an adequate selection of literature is given. At the end of the lecture the lecture content will be distributed by a CD containing all relevant information of the given lecture.
Course: Fusion Technology B [2170492]

Coordinators: Robert Stieglitz
Part of the modules: SP 53: Fusion Technology (p. 175) [SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Completed set of practical courses within lecture
Duration: approximately 30 minutes
no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
The lecture comprising two semesters is addressing students of engineering science and physics after a successful intermediate diploma. It intends to give an introduction to current fusion research and development and to the long term target of fusion as a promising energy source. After a short insight into fusion physics the lecture concentrates on key technologies for future fusion reactors. The lectures will be complemented by exercises in the Forschungszentrum Karlsruhe (two to three afternoons per subject).

Content
Introduction to basics of fusion and fusion technologies
Superconducting magnets
Breeding blanket/divertor integration in a fusion reactor
Development of high duty and low activating structural materials
Neutronics and activation analysis
Fuel cycle (cryo pumps and tritium plant)
Plasma heating techniques (ECRH, ICRH, NBI, LH)

Literature
Lecture notes
Course: Building- and Environmental Aerodynamics [19228]

Coordinators: Bodo Ruck, Ruck
Part of the modules: SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: [2145164]

Coordinators: Sven Matthiesen
Part of the modules: (p. 174) [SP_51_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination
duration: 30 min.
auxiliary means: none

Conditions
in masters course
Due to organizational reasons, the number of participants in WS 11/12 is limited to 16 students. At the beginning of august, a registration form will be available at the IPEK website. In the case of too many applicants, a selection process will be taking place. An early application is advantageous.

Recommendations
CAE Workshop is recommended as elective course or complementary subject.

Learning Outcomes
The superior learning objective is to prepare for the tasks of a design engineer. Therefore the central activities of design are imparted. The theory and foreknowledge will be transferred into real technical appliances and power tools. The technical design of technical appliances and power tools will be analyzed in student teams and based on this analysis further developments will be synthesized.

Content
Operation system, system of objects and system of objectives of mechatronic appliances and power tool designs.
Mode of operation as enabler of design, components of mechatronic systems, application oriented design, guidelines for appliance and power tool design.
Part of the lecture are exercises, in which theory will be reprocessed and presented in a practical way. In such exercises the students also will present their results developed in project teams. The interaction of analysis and synthesis will be acquired in student teams at the example of different appliances and power tools.
Course: Foundry Technology [2174575]

Coordinators: Christian Wilhelm

Part of the modules:
- SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]
- SP 39: Production Technology (p. 160)[SP_39_mach]
- SP 25: Lightweight Construction (p. 145)[SP_25_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral

duration: 20 - 30 minutes

no notes

Conditions

Required: WK 1+2

Learning Outcomes

Basic knowledge from the field of casting technology for mechanical engineers; the focus is placed on moulding materials, moulding processes, casting materials and metallurgy. Special notes of virtual casting development.

Content

- Moulding and casting processes
- Solidifying of melts
- Castability
- Fe-Alloys
- Non-Fe-Alloys
- Moulding and additive materials
- Core production
- Sand reclamation
- Feeding technology
- Design in casting technology
- Casting simulation
- Foundry Processes

Literature

Reference to literature, documentation and partial lecture notes given in lecture
Course: Global Production and Logistics - Part 1: Global Production [2149610]

Coordinators: Gisela Lanza

Part of the modules: SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

ECTS Credits 4 Hours per week 2 Term Winter term Instruction language de

Learning Control / Examinations
oral exam

Conditions
None.

Recommendations
Basic knowledge of production planning

Learning Outcomes
The student
• understands the challenges and fields of action of companies operating at the global level
• is able to apply the methods for the structuring and design of global networks he/she has learned about to new problems
• is able to analyse opportunities and risks and give a thorough evaluation.

Content
The lecture explains the challenges and the fields of action companies operating at the global level are faced with as well as the most important aspects of global production networks. Firstly, the economic and legal background is discussed along with opportunities and risks. The focus of the lecture is on a methodical approach to the structuring and design of global networks and also includes a strategy for the selection of production sites. Site-specific adjustments to product design and to production technology are also covered. The special characteristics and requirements of global procurement, research & development and sales and marketing are dealt with in detail.

Main topics of the lecture:
1. Introduction: history, motivation and goals, risks
2. General conditions
3. Global distribution
4. Site selection
5. Site-specific production adjustments
6. Development of a new production site
7. Global procurement
8. Structuring global production networks
9. Managing global production networks
10. Global research and development
11. Outlook

Literature
Course: Global Production and Logistics - Part 2: Global Logistics [2149600]

Coordinators: Kai Furmans

Part of the modules: SP 29: Logistics and Material Flow Theory (p. 150) [SP_29_mach], SP 39: Production Technology (p. 160) [SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral / written (if necessary) => (see “Studienplan Maschinenbau”, version of 7.7.2010)

Conditions
Prerequisites: “Logistics – Organisation, Design and Control of Logistics Systems”.

Recommendations
none

Learning Outcomes
The student

- will have sound knowledge about planning and operations of global supply chains and will be able to use simple models for planning,
- will be familiar with the requirements and characteristics of global trade and transport.

Content
Characteristics of global trade

- Incoterms
- Customs clearance, documents and export control

Global transport and shipping

- Maritime transport, esp. container handling
- Air transport

Modeling of supply chains

- SCOR model
- Value stream analysis

Location planning in cross-border-networks

- Application of the Warehouse Location Problem
- Transport Planning

Inventory Management in global supply chains

- Stock keeping policies

Inventory management considering lead time and shipping costs

Media
presentations, black board

Literature

Elective literature:
- Arnold/Isermann/Kuhn/Tempelmeier. HandbuchLogistik, Springer Verlag, 2002 (Neuauflage in Arbeit)
• Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
• Domschke/Drexl. Logistik, Standorte, Oldenbourg Verlag, 1996
• Gudehus. Logistik, Springer Verlag, 2007
• Neumann-Morlock. Operations-Research, Hanser-Verlag, 1993
• Tempelmeier. Bestandsmanagement in SupplyChains, Books on Demand 2006

Remarks
none
Course: Size effects in micro and nanostructures materials [2181744]

Coordinators: Peter Gumbsch, Daniel Weygand, Christoph Eberl, Patric Gruber, Martin Dienwiebel
Part of the modules: SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
compulsory preconditions: none

Learning Outcomes
The student will be confronted to the limits of classical material behaviour, observed in nano and micrometer sized structured materials. New processing routes, experimental testing methods and modelling tools will be presented.

Content
Modern topics in the mechanics of materials are presented.

1. Nanotubes
 * production routes, properties
 * application
2. Ceramics
 * defect statistics
3. Size effect in metallic structures
 * thin film mechanics
 * micro pillar
 * modelling:
 discrete dislocation dynamic
4. Nanocontact:
 * gecko
 * hierarchical structures
5. Nanotribology
 * contact, friction: simple and multiple contacts
 * radio nucleid technique

Literature
Folien
Course: Fundamentals of Energy Technology [2130927]

Coordinators: DanGabriel Cacuci, Florin Badea
Part of the modules: SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Automotive Engineering I [2113805]

Coordinator: Frank Gauterin, Hans-Joachim Unrau

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Verbally

Duration: 45 up to 60 minutes

Auxiliary means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The students know the movements and the forces at the vehicle and are familiar with active and passive security. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and the calculation methods for sizing. They are able to lay out the appropriate modules of a vehicle.

Content
1. Driving mechanics: Driving resistances and driving performances, mechanics of the longitudinal and transverse forces, collision mechanics

2. Engine: Classification, comparison processes, real processes, waste gas emission, alternative drives

3. Transmission: Clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)

4. Power transmission and distribution: drive shafts, cardon joints, differentials

Literature

Course: Automotive Engineering II [2114835]

Coordinators: Frank Gauterin, Hans-Joachim Unrau

Part of the modules: SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students have an overview of the modules, which are necessary for the road holding of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, the tyres, the steering elements and the brakes. They know different execution forms, the function and the influence on the driving or brake behavior. They are able to construct the appropriate components correctly.

Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Steering elements of single vehicles and of trailers
3. Brakes: Disc brake, drum brake, retarder, comparison of the designs

Literature

Course: Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie [2193010]

Coordinators: Rainer Oberacker
Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 43: Technical Ceramics and Powder Materials (p. 166)[SP_43_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral;
duration: 30 minutes
KeineHilfe;

Conditions
None.

Learning Outcomes
The lecture is focused on basic aspects of powder technology used in ceramic and powder metallurgy (PM) processing. Learning target: Detailed skills of system- and process parameters which control shaping of
- dry powders
- pasts
- suspensions

Content
Overview on the ceramic/PM fabrication process
Materials produced by powder based technologies
Powder characteristics and powder characterization
Shaping by dry pressing
Control and shaping of powder suspensions and pasts

Literature
Brook, R. J.: Processing of Ceramics I+II, VCH Weinheim, 1996
Course: Fundamentals of Refrigeration [22012]

Coordinators: Lothar Oellrich, Oellrich

Part of the modules: SP: Engineering Thermodynamics (p. 168) [SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Fundamentals of catalytic exhaust gas aftertreatment [2134138]

Coordinators: Egbert Lox
Part of the modules:
SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: 40 min., no auxiliary means

Conditions
none

Recommendations
Combustion Engines A or B helpful

Learning Outcomes
The student get an overview over the scientific fundamentals of the catalytic exhaust gas aftertreatment, as well as the technical, political and economical parameters of its application in engines for passenger cars and HD vehicles.

At first the students find out which emissions are formed in combustion engines, why these emissions are health-related critical and which measures the legislator has established to reduce the emissions.

In the following the assembly of an exhaust gas aftertreatment system is explained.

The economic conditions of this technology are discussed regarding prices and treatment of noble metals.

Content
1. kind and source of emissions
2. emission legislation
3. principal of catalytic exhaust gas aftertreatment (EGA)
4. EGA at stoichiometric gasoline engines
5. EGA at gasoline engines with lean mixtures
6. EGA at diesel engines
7. economical basic conditions for catalytic EGA

Literature
Lecture notes available in the lectures

Course: Introduction to Microsystem Technology I [2141861]

Coordinators: Arndt Last
Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
The lecture gives an introduction into the basics of microsystems technology. In analogy to processes employed in fabrication of microelectronics circuits the core technologies as well as materials for producing microstructures and components are presented. Finally, various techniques for Silicon micromachining are explained and illustrated with examples for micro-components and micro-systems.

Content
- Introduction in Nano- and Microtechnologies
- Silicon and processes for fabricating microelectronics circuits
- Basic physics background and crystal structure
- Materials for micromachining
- Processing technologies for microfabrication
- Silicon micromachining
- Examples

Literature
Course: Introduction to Microsystem Technology II [2142874]

Coordinators: Arndt Last
Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The lecture gives an introduction into the basics of microsystems technology. In the first part, methods for lithographic pattern transfer are summarized. Then specific techniques such as the LIGA process, micro-machining, and laser-patterning are explained and examples are given. Finally assembly and packaging methods are presented leading into a discussion of entire microsystems.

Content
- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Literature
Course: Foundations of nonlinear continuum mechanics [2181720]

Coordinators: Marc Kamlah
Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
Engineering Mechanics - Advanced Mathematics

Learning Outcomes
General kinematics of large deformations, general structure of continuum theories

Content
* Mathematical foundations: tensor algebra, tensor analysis
* Kinematics: motion, deformation and strains at large deformations, geometrical linearization
* Balance laws: general structure of balance laws, balance laws of continuum mechanics
* Special theories of continuum mechanics

Literature
lecture notes
Course: Basics of Technical Logistics [2117095]

Coordinators: Martin Mittwollen, Linsel

Part of the modules:
- SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
after each lesson period; oral / written (if necessary) => (look at “Studienplan Maschinenbau”, version of 7.7.2010)

Conditions
None.

Recommendations
None.

Learning Outcomes
The student:

- knows about processes and machines of technical logistics
- is able to handle fundamental structures and the impacts
- is able to refer to industrially used machines and
- practices the calculation on applying knowledge from lessons.

Content
Bases effect model of conveyor machines made for the change of position and orientation; conveyor processes; identification systems; drives; mechanical behaviour of conveyors; structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation) sample applications and calculations in addition to the lectures inside practical lectures

Media
supplementary sheets, projector, blackboard

Literature
Recommendations during lessons
Course: Fundamentals of Combustion I [2165515]

Coordinators: Ulrich Maas

Part of the modules: SP: Engineering Thermodynamics (p. 168)[SP_45_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral
Duration: 30 min.

Conditions
None

Recommendations
None

Learning Outcomes
Based on the explanation of the fundamental concepts and observed phenomena in combustion, this lecture studies the experimental analysis and the mathematical description of laminar and turbulent flames. The lecture aims at giving insights in the fundamental physico-chemical processes during combustion, in particular with regard to technical combustion systems e.g. engines, gas turbines, furnaces.

Content
- Fundamental concepts and phenomena
- Experimental analysis of flames
- Conservation equations for laminar flat flames
- Thermodynamics of combustion processes
- Transport phenomena
- Chemical reactions
- Chemical kinetics mechanisms
- Laminar premixed flames
- Laminar diffusion flames

Media
- Blackboard and Powerpoint presentation

Literature
- Lecture notes,
Course: Fundamentals of combustion II [2166538]

Coordinators: Ulrich Maas

Part of the modules:
SP: Engineering Thermodynamics (p. 168)[SP_45_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral
Duration: 30 min.

Conditions
None

Recommendations
None

Learning Outcomes
Based on the contents of the lecture “Fundamentals of Combustion I”, this lecture studies particular issues such as ignition processes, engine knock and pollutant formation.

Content
Ignition processes
Three dimensional Navier-Stokes equations for reacting flows
Turbulent reactive flows
Turbulent non-premixed flames
Turbulent premixed flames
Combustion of liquid and solid fuels
Engine knock
NOx formation
Formation of hydrocarbons and soot

Media
Blackboard and Powerpoint presentation

Literature
Lecture notes;
Course: Basics of Ground Born Guided Systems [19066]

Coordinators: Eberhard Hohnecker, Peter Gratzfeld, Hohnecker
Part of the modules: SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- Oral examination
- Duration: 20 minutes
- No tools or reference materials may be used during the exam.

Conditions

none

Recommendations

none

Learning Outcomes

The students know the complexity of “Ground Borne Guided Systems”.

Content

- Definitions
- Track guidance and vehicle dynamics
- Vehicles
- Alignment and layout of lines
- Track construction

Media

All slides can be bought.

Literature

Zilch, Diederichs, Katzenbach (Hrsg.): Handbuch für Bauingenieure, Springer-Verlage 2001
Course: Optical Flow Measurement: Fundamentals and Applications [2153410]

Coordinators: Friedrich Seiler
Part of the modules: SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral

Duration: 30 minutes

no auxiliary means

Conditions
None.

Learning Outcomes
Optical measurement techniques are both in science and technology, for example in wind tunnels, a non-negligible tool for experimental determination of the behaviour of fluid flows. The fundamentals necessary for understanding the working mechanisms of the optical techniques presented are explained in detail in this lecture. Classical as well as modern developments are discussed by means of newest experiments carried out with the shock tunnels of ISL. The methods include tracer scattering on the one hand and information obtained with light passing directly the measuring regime on the other. The light scattering techniques are explained by means of the classical single-beam and cross-beam anemometry as well as by interference velocimetry used for flow velocity measurement. Also the classical tools for flow density measurement, i.e. the Mach/Zehnder and the Differential Interferometer are discussed by means of visualisations of density fields as well as by recent examples of density records. Finally, the CARS-method and the current laser-induced fluorescence (LIF) method are presented.

Content
Visualisations techniques
Techniques for local point-wise measurement
Techniques using light scattering methods
Laser-induced fluorescence

Literature
H. Oertel sen., H. Oertel jun.: Optische Strömungsmeßtechnik, G. Braun, Karlsruhe

F. Seiler: Skript zur Vorlesung über Optische Strömungsmeßtechnik
Course: Basics and Methods for Integration of Tires and Vehicles [2114843]

Coordinators: Günter Leister
Part of the modules: SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions
Knowledge in automotive engineering

Learning Outcomes
The students are informed about the interactions of tires, chassis and road. They have an overview of the processes regarding the tire development. They have knowledge of the physical relationships.

Content
1. The role of the tire in a vehicle
2. Tire geometrie, Package and load capacity, Book of requirement
3. Mobility strategy, Minispare, runflat systems and repair kit.
4. Project management: Costs, weight, planning, documentation
5. Tire testing and tire properties: Forces and Moments
6. Tire modes and sound
7. Tire pressure: Indirect and direct measuring systems
8. Tire testing subjective and objective

Literature
Manuscript to the lecture
Course: Fundamentals for Design of Motor-Vehicles Bodies I [2113814]

Coordinators: Horst Dietmar Bardehle

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students have an overview of the fundamental possibilities for design and manufacture of motor-vehicle bodies. They know the complete process, from the first idea, through the concept to the dimensioned drawings (e.g. with FE-methods). They have knowledge about the fundamentals and their correlations, so that the design of relevant assemblies can be performed to the required demands.

Content

1. History and design
2. Aerodynamics
3. Design methods (CAD/CAM, FEM)
4. Manufacturing methods of body parts
5. Fastening technology
6. Body in white / body production, body surface

Literature

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
Course: Fundamentals for Design of Motor-Vehicles Bodies II [2114840]

Coordinators: Horst Dietmar Bardehle

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

ECTS Credits 2
Hours per week 1
Term Summer term
Instruction language de

Learning Control / Examinations
Oral examination

Duration: 30 minutes
Auxiliary means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The students know that, often the design of seemingly simple detail components can result in the solution of complex problems. They have knowledge in testing procedures of body properties. They have an overview of body parts such as bumpers, window lift mechanism and seats. They understand, as well as, parallel to the normal electrical system, about the electronic side of a motor vehicle. They have knowledge in project management.

Content
1. Body properties/testing procedures
2. External body-parts
3. Interior trim
4. Compartment air conditioning
5. Electric and electronic features
6. Crash tests
7. Project management aspects, future prospects

Literature
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
Course: Fundamentals in the Development of Commercial Vehicles I [2113812]

Coordinators: Jörg Zürn

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

The students are able to develop parts and components. Furthermore they have knowledge about different cap concepts, the interior and the interior design process.

Content

1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodyshell work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Literature

Course: Fundamentals in the Development of Commercial Vehicles II [2114844]

Coordinators: Jörg Zürn

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students are able to create general vehicle concepts tailored for different areas of application. They know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered frontaxle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known.

Content

1. Gear boxes of commercial vehicles
2. Intermediate elements of the drive train
3. Axle systems
4. Front axles and driving dynamics
5. Chassis and axle suspension
6. Braking System
7. Systems
8. Excursion

Literature

Course: Fundamentals of Automobile Development I [2113810]

Coordinators: Rolf Frech

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written examination

Duration: 90 minutes

Auxiliary means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile.

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Literature
The scriptum will be provided during the first lessons
Course: Fundamentals of Automobile Development II [2114842]

Coordinators: Rolf Frech

Part of the modules: SP 10: Engineering Design (p. 129) [SP_10_mach], SP 12: Automotive Technology (p. 132) [SP_12_mach]

ECTS Credits: 2

Hours per week: 1

Term: Summer term

Instruction language: de

Learning Control / Examinations

Written examination

Duration: 90 minutes

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile.

Content

1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile
7. Excursion

Literature

The scriptum will be provided during the first lessons.
Course: High Performance Computing [2183721]

Coordinators: Britta Nestler

Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
We regularly discuss excercises at the computer.
At the end of the semester, there will be a written exam.

Conditions
None.

Learning Outcomes
The students should develop abilities and expertise in the field of concurrent programming, they should be able to use high performance computing resources and the growing performance of multi core processors efficiently. Additionally, they should know different high performance computer architectures and be able to use different parallelization models. Applications from different scientific fields with different requirements are going to be developed to build a base of strategies for problem solving and of thought patterns. The aim is to prepare the students for scientific and industrial tasks in the field of concurrent programming and high performance computing.

Content
Topics of the high performance computing course are:
- architectures of parallel platforms
- parallel programming models
- performance analysis of concurrent programs
- parallelization models
- MPI and OpenMP
- Monte-Carlo method
- 1D & 2D heat diffusion
- raycasting
- n-body problem
- simple phase-field models

Media
Slides of the lecture, exercise sheets, solution files of the computer exercises.

Literature
Lecture Notes; Problem Sheets;
Program templates; Foundations of Multithreaded, Parallel, and Distributed Programming, Gregory R. Andrews; Addison Wesley 2000
Course: Advanced Methods in Strength of Materials [2161252]

Coordinators: Thomas Böhlke

Part of the modules:
- SP 46: Thermal Turbomachines (p. 169)[SP_46_mach],
- SP 35: Modeling and Simulation (p. 156)[SP_35_mach],
- SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach],
- SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach],
- SP 01: Advanced Mechatronics (p. 117)[SP_01_mach],
- SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach],
- SP 25: Lightweight Construction (p. 145)[SP_25_mach],
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach],
- SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach],
- SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]

ECTS Credits: 4
Hours per week: 2
Term: Winter term
Instruction language: de

Learning Control / Examinations
depending on choice according to actual version of study regulations
Additives as announced

Conditions
None.

Recommendations
None.

Learning Outcomes
The students can effectively apply the methods of advanced strength of materials. The students especially master the description of the strength characteristics of materials, the elastic, plastic and the hardening behaviour of metallic materials. The students can apply the failure description by deformation localization, damage or fracture. The students know the basics of bearing structures.

Content
- basics of tensor calculus
- elasticity theory
- application of elasticity: linear elastic fracture mechanics
- application of elasticity: bearing structures
- plasticity theory
- application of plasticity: stability of materials

Literature
Course: [23321]

Coordinators: Martin Doppelbauer

Part of the modules:
SP 31: Mechatronics (p. 152)[SP_31_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2+1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Hydraulic Fluid Machinery I (Basics) [2157432]

Coordinators: Martin Gabi

Part of the modules: SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach]

ECTS Credits	Hours per week	Term	Instruction language
8 | 4 | Winter term | de

Learning Control / Examinations
Oral examination
Duration: 30 minutes
No tools or reference materials may be used during the exam.

Conditions
none

Recommendations
none

Learning Outcomes
The lecture introduces the basics of Hydraulic Fluid Machinery (pumps, fans, water- and wind-turbines, hydrodynamic transmissions). The different types and shapes are presented. The basic equations for the preservation of mass, momentum and energy are discussed. Velocity schemes in typical cascades are shown, the Euler equation of fluid machinery and performance characteristics are deduced. Similarities and dimensionless parameters are discussed. Fundamental aspects of operation and cavitation are shown.

Content
1. Introduction
2. Basic equations
3. System analysis
4. Elementary Theory (Euler’s equation of Fluid Machinery)
5. Operation and Performance Characteristics
6. Similarities, Specific Values
7. Control technics
8. Wind Turbines, Propellers
9. Cavitation
10. Hydrodynamic transmissions and converters

Literature
1. Fister, W.: Fluidenergiemaschinen I & II, Springer-Verlag
2. Bohl, W.: Strömungsmaschinen I & II . Vogel-Verlag
6. Kreiselpumpenlexikon. KSB Aktiengesellschaft
Course: Hydraulic Fluid Machinery II [2158105]

Coordinators: Saban Caglar, Martin Gabi

Part of the modules:
- SP 15: Fundamentals of Energy Technology (p. 136)
- SP 23: Power Plant Technology (p. 143)
- SP 24: Energy Converting Engines (p. 144)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral examination
- Duration: 30 minutes
- No tools or reference materials may be used during the exam.

Conditions
- Hydraulic Fluid Machinery I (Basics)

Recommendations
- none

Learning Outcomes
Based on the lecture Fluid Machinery I (Basics, Prof. Gabi) aspects of operation characteristics and design of pumps, fans and turbines are discussed.

Content
- Rotodynamic pumps and fans of different types of construction
- Water turbines
- Wind turbines
- Hydrodynamic drives

Literature
1. Fister, W.: Fluidenergiemaschinen I & II, Springer-Verlag
2. Sieglboch, H.: Strömungsmaschinen, Hanser-Verlag
3. Pfleiderer, C.: Kreiselpumpen, Springer-Verlag
4. Carolus, T.: Ventilatoren, Teubner-Verlag
5. Bohl, W.: Ventilatoren, Vogel-Verlag
Course: Hydrodynamic Stability: From Order to Chaos [2154437]

Coordinators: Andreas Class
Part of the modules: SP 41: Fluid Mechanics (p. 164)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content

Literature
Lecture
Course: Industrial aerodynamics [2153425]

Coordinators: Thomas Breitling

Part of the modules: SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral

Duration: 30 minutes

no auxiliary means

Conditions
None.

Learning Outcomes
This compact lecture deals with flow, mixing and combustion phenomena with significance in vehicle development. A special focus is set on the optimization of external car and truck aerodynamics, thermal comfort in passenger compartments, analyses of cooling flows and improvement of charge motion, mixing and combustion in piston engines. These fields are explained in their phenomenology, the corresponding theories are discussed and the tools for measurement and simulation are introduced and demonstrated. The focus of this lecture is on industry relevant methods for analyses and description of forces, flow structures, turbulence, flows with heat transfer and phase transition and reactive flows. In addition an introduction to modern methods in accuracy control and efficiency improvement of numerical methods for industrial use is given. The integration and interconnection of the methods in the development processes are discussed examplary. An excursion to the DaimlerChrysler wind tunnel and the research and development centers is planned.

Content
Einführung

Industriell eingesetzte Strömungsmeßtechnik

Strömungssimulation in der Industrie, Kontrolle des numerischen Fehlers und verwendete Turbulenzmodelle

Kühlströmungen

Strömung, Gemischbildung und Verbrennung bei direkteinspritzenden Dieselmotoren

Strömung, Gemischbildung und Verbrennung bei Ottomotoren

Fahrzeugumströmung

Klimatisierung/Thermischer Komfort

Aeroakustik

Aerodynamik und Höchstleistungsrechnen
6 COURSES OF THE MAJOR FIELDS

6.1 All Courses

Literature
keine Angabe
Course: Industrial Automation Technology [F056]

Coordinators: NN, Industrie
Part of the modules: SP 04: Automation Technology (p. 121)[SP_04_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Introduction to Industrial Production Economics [2109042]

Coordinators: Simone Dürrschnabel

Part of the modules: SP 03: Work Science (p. 120)[SP_03_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 37: Production Management (p. 159)[SP_37_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes (only in German)

Allowed resource materials: none
There is the possibility to acquire the so-called “REFA-Grundschein” (non-academic certificat).

Conditions
Recommendations for the non-academic certificat “REFA-Grundschein”:
- Compulsory attendance during the whole lecture
- Passing the lecture “Arbeitswissenschaft [2109026] at least with the grade 3.0

Learning Outcomes
- The students know the possible organisational structures for enterprises.
- The students learn about the importance of process data as basis for efficient work structuring.
- The students are able to execute and evaluate time studies in industry (e.g. REFA).
- The students know different methods for the evaluation of working places.
- The students know basic techniques for the determination of wages.
- The students are able to make a cost calculation for a specific product.

Content
- Configuration of the departmental organisation and the process organisation
- Execution and evaluation of time studies
- Actual tools for time studies, e.g. Work Sampling, Methods-Time Measurement, Planned times,
- Evaluation of workplaces and determination of wages
- Cost accounting (including Process costs)

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Occupational Safety and Environmental Protection (in German) [2110037]

Coordinators: Rainer von Kiparski

Part of the modules: SP 03: Work Science (p. 120)[SP_03_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach]

ECTS Credits: 4
Hours per week: 2
Term: Summer term
Instruction language: de

Learning Control / Examinations
Mündliche Prüfung, Dauer: 30 Minuten
(nur in Deutsch)

Hilfsmittel: keine

Conditions

• Compact course (one week full-time)
• Limited number of participants
• Registration in the ifab-office necessary
• Compulsory attendance during the whole lecture

Recommendations

• Knowledge of Work Science and Economics is usefull

Learning Outcomes
The participant can

• explain the importance of occupational safety and environmental protection as well as their connection to each other.
• describe the influence of human behaviour.
• explain the possibilities and limits for an engineer to influence.
• realise if professional help of an expert of other faculties is needed.
• evaluate and present the results of his work.

Content
The participants have to solve a specific case study within the field of occupational safety and environmental protection. Therefore, the work in a team. The tasks covers the information research as well as the presentation of the results.

Content:

• Occupational Safety and Safety Engineering
• Environmental Protection within a Production Enterprise
• Health Management

Structure:

• Terminology
• Basics of Occupational Safety and Environmental Protection
• Case Study
• Moderated Processing of a Case Study within a Small Group

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

- o.V.: Arbeitsschutzgesetz 1996.

Please refer to the latest edition.
Course: Information Systems in Logistics and Supply Chain Management [2118094]

Coordinators: Christoph Kilger

Part of the modules: SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral / written (if necessary) => (see “Studienplan Maschinenbau”, version of 7.7.2010)
examination aids: none

Conditions
none

Recommendations
none

Learning Outcomes
The student:

- knows information systems for logistics processes
- is able to identify the requirements of a supply chain and choose an appropriate information system.

Content
1) Overview of logistics systems and processes
2) Basic concepts of information systems and information technology
3) Introduction to IS in logistics: Overview and applications
4) Detailed discussion of selected SAP modules for logistics support

Media
presentations

Literature

Remarks
none
Course: Informationstechnik in der industriellen Automation [23144]

Coordinators: Peter Bort, Bort
Part of the modules: SP 31: Mechatronics (p. 152)[SP_31_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Informationsverarbeitung in mechatronischen Systemen [2105022]

Coordinators: Michael Kaufmann

Part of the modules: SP 18: Information Technology (p. 138)[SP_18_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Information Processing in Sensor Networks [24102]

Coordinators: Uwe Hanebeck, Hanebeck

Part of the modules: SP 18: Information Technology (p. 138)[SP_18_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Innovative Nuclear Systems [2130973]

Coordinators: Xu Cheng
Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- oral examination
- duration 20min (dependent on type of examination)

Conditions
None.

Learning Outcomes

Content
Course: Integrated measurement systems for fluid mechanics applications [2171486]

Coordinators: Klaus Dullenkopf, Mitarbeiter

Part of the modules:
- SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]
- SP 23: Power Plant Technology (p. 143)[SP_23_mach]
- SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Group colloquia for each topic

Duration: approximately 10 minutes

no tools or reference materials may be used

Conditions
none

Learning Outcomes
This course provides the opportunity to gain both a theoretical and practical understanding of the fundamentals of computer aided measurements. Each section includes a PC exercise.

Content
The laboratory course offers an introduction into the acquisition of basic test data in fluid mechanics applications as well as a basic hands-on training for the application of modern PC based data acquisition methods. The combination of lectures about measurement techniques, sensors, signal converters, I/O systems, bus systems, data acquisition, handling and control routines and tutorials for typical fluid mechanics applications allows the participant to get a comprehensive insight and a sound knowledge in this field. The graphical programming environment LabView from National Instruments is used in this course as it is one of the standard software tools for data acquisition worldwide.

Basic design of measurements systems

- Logging devices and sensors
- Analog to digital conversion
- Program design and programming methods using LabView
- Data handling
- Bus systems
- Design of a computer aided data acquisition system for pressure, temperature and derived parameters
- Frequency analysis

Literature
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011

Remarks
Registration during the lecture period via the website.
Course: Integrated Product Development [2145156]

Coordinators: Albert Albers

Part of the modules: SP 20: Integrated Product Development (p. 140)[SP_20_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination (60 minutes)
combined examination of lectures, tutorials and project work

Conditions
The participation in “Integrated Product Development” requires the concurrent participation in lectures (2145156), tutorials (2145157) and project work (2145300).

Due to organizational reasons, the number of participants is limited to 42 persons. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK homepage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Recommendations
none

Learning Outcomes
The lecture mediates on the basis of practical experiences and by means of examples from the Industry, the theory of systematic planning, verification and controlling of development and innovation processes as well as the team oriented employment of effective methods for their efficient support. Strategies of development- and innovation management of the technical system analysis and team leadership will be discussed and trained in workshops. Thus the participants are specifically made familiar with the product development process of medium sized companies.

Content
organizational integration: integrated product engineering model, core team management and simultaneous engineering
informational integration: innovation management, cost management, quality management and knowledge management
personal integration: team coaching and leadership management
invited lectures

Literature
none

Remarks
The lecture starts in first week of October.
Course: Integrated production planning [2150660]

Coordinators: Gisela Lanza

Part of the modules: SP 37: Production Management (p. 159)[SP_37_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Performance is assessed in the form of one written examination during the lecture-free period. The examination will take place once every semester and can be retaken at every official examination date.

Conditions
None.

Learning Outcomes
The student
- has knowledge of the content covered by this lecture and understands the challenges and the fields of action of integrated production planning,
- is able to apply the methods of integrated production planning he/she has learned about to new problems,
- is able to analyse and evaluate the suitability of the methods, procedures and techniques he/she has learned about for a specific problem.

Content
Planning factories within the context of value networks and integrated production systems (Toyota etc.) requires an integrated perspective for the consideration of all functions included in the “factory” system. This includes the planning of manufacturing systems including the product, the value network and factory production, and the examination of SOPs, the running of a factory and maintenance. Content and theory covered by this lecture are completed with many examples from industry and exercises based on real-life situations and conditions.

Main topics covered by the lecture:
1. The basic principles of production planning
2. Links between product planning and production planning
3. Integrating a production site into a production network
4. Steps and methods of factory planning
5. Approach to the integrated planning of manufacturing and assembly plants
6. Layout of production sites
7. Maintenance
8. Material flow
9. Digital factory
10. Process simulation for material flow optimisation
11. Start-up
Course: IT for facility logistics [2118083]

Coordinators: Frank Thomas

Part of the modules:
- SP 31: Mechatronics (p. 152)[SP_31_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach], SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral / written (if necessary) => (see “Studienplan Maschinenbau”, version of 7.7.2010)

examination aids: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The student:

- knows automation technology for material flow and the information technology necessary,
- knows how to handle risks of failure,
- knows practical implementations and is able to use his knowledge for exercises.

Content
This lecture, with exercises, treats automation technology in material flow as well as the information technology that has a direct relationship with it. In the first few chapters, an overview is given of the motors and conveying technology elements used in materials handling, and the sensors required for the purpose are explained. The target control types as well as the topic of coding techniques (barcodes etc) are treated in detail. Material flow controls are defined based on these chapters. Among other things, the functions of a stored-memory controller are explained in this section. Hierarchically classified control structures and their integration in network structures are considered in detail. The principles of communications systems (bus systems etc.) are supplemented with information on the use of the Internet as well as data warehousing strategies. An overview of modern logistics systems, especially in stores administration, illustrates new problem solution strategies in the area of information technology for logistics systems. After an analysis of the causes for system failures, measures are worked out for reducing the risks of failure. Furthermore, the objectives, task areas as well as various scheduling strategies in the area of transport management and control are presented. Worthwhile information on Europe-wide logistics concepts round off this practice-oriented lecture series.

The presentation of the lectures will be multimedia-based. Exercises repeat and extend the knowledge principles imparted in the lectures and illustrate the subject with practical examples.

- Electrical drives (DC, AC asynchronous, EC, linear motors)
- Contact-less proximity switches (inductive, capacitive, optical, acoustic)
- Coding technology (target controllers, codes, laser, CCD sensors, reading techniques, mobile data media)
- Material flow control (stored-program controllers, material flow controllers, flexible information systems)
• Communications systems (principles, bus systems, Internet, Data Warehouse)
• Material flow control and administration systems (stores administration, failure safety and data storage)
• Transport management (objectives, components, tasks, task areas, scheduling strategies, stacking management systems)
• Euro-logistics

Literature
Detailed script available from Script Sales, updated and enhanced annually.
CD-ROM with PowerPoint presentation of the lectures and exercises at the end of the semester available from the lecturer, updated and enhanced annually.

Remarks
none
Course: Nuclear Energy [2130921]

Coordinators: DanGabriel Cacuci, Florin Badea
Part of the modules: SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Nuclear Power Plant Technology [2170460]

Coordinators: Thomas Schulenberg

Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
This lecture is addressed to students of mechanical engineering. It is complementary to other lectures about power plant technologies as well as steam and gas turbines. The objective is to introduce into design and analysis of pressurized water reactors and boiling water reactors. Included are exercises and a visit of a nuclear power plant.

Content
Physics of nuclear fission and radioactive decay

Basics of the neutron physics for nuclear reactor design

Thermal-hydraulic analysis of pressurized water reactors and boiling water reactors

Design of main components of the power plant

Dynamics of nuclear power plants

Safety systems

Literature
lecture notes
Course: Nuclear Reactor Kinetics and Dynamics [2190510]

Coordinators: Kostadin Ivanov

Part of the modules: SP 21: Nuclear Energy (p. 141)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Cognitive Automobiles - Laboratory [2138341]

Coordinators: Christoph Stiller, Martin Lauer, Bernd Kitt

Part of the modules:
- SP 40: Robotics (p. 162) [SP_40_mach]
- SP 22: Cognitive Technical Systems (p. 142) [SP_22_mach]
- SP 44: Technical Logistics (p. 167) [SP_44_mach]
- SP 01: Advanced Mechatronics (p. 117) [SP_01_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Colloquia, final race

Conditions
Lectures “Automotive Vision” and “Behaviour Generation for Vehicles” have to be attended in parallel. Basic knowledge of a programming language is a plus.

Learning Outcomes
The laboratory accompanies the lectures “Automotive Vision” and “Behaviour Generation for Vehicles”. It will provide the opportunity of turning theoretical skills taught in the lecture to practice. The laboratory is divided into four groups with a maximum number of five students in each group. During the lessons you will be supervised by scientific staff.

The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Machine vision, vehicle kinematics and advanced information processing techniques are presented to provide a broad overview on “seeing vehicles”. Each group is given the task to extract lane markings from video images and generate a suitable trajectory which the vehicle should follow. Apart from technical aspects in a highly innovative field of automotive technology, participants have the opportunity of gathering important qualifications as i.e. implementation skills, acquisition and comprehension of suitable literature, project and team work.

Content
1. Lane recognition
2. Object detection
3. Vehicle lateral control
4. Vehicle longitudinal control
5. Collision avoidance

Literature
TBA
Course: Cognitive Systems [24572]

Coordinators: Rüdiger Dillmann, Dillmann
Part of the modules: SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Coal fired power plants [2169461]

Coordinators: Peter Fritz, Thomas Schulenberg

Part of the modules: SP 23: Power Plant Technology (p. 143)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Conditions
None.

Recommendations
None.

Learning Outcomes
The lecture presents the technology of coal fired power plants, which are conventional steam turbine plants as well as advanced combined cycle power plants with integrated coal gasification. It includes combustion systems, steam generators, a short overview over steam turbine technologies, the cooling system and the water supply system as well as the off gas treatment. Coal gasification will be explained with fixed bed, fluidized bed and entrained flow gasifiers. The integrated coal gasification combined cycle includes also the raw gas purification system. In addition, a visit to a coal fired power plant will be offered.

Content
Steam turbine plants

Integrated gasification combined cycle power plants

Literature
Course: Design with Plastics [2174571]

Coordinators: Christian Bonten

Part of the modules: SP 36: Polymer Engineering (p. 158)[SP_36_mach], (p. 174)[SP_51_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 10: Engineering Design (p. 129)[SP_10_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral duration: 20 - 30 min. aids: none

Conditions
none, recomm. ‘Polymer Engineering I’

Learning Outcomes
In a first step, the students will be enabled to distinguish plastics from other ‘classic’ materials, like metal, wood and ceramics. They will understand the chemical differences, differences in melt behaviour as well as in solid condition. The students will understand the main plastics processes (injection moulding, extrusion, blow moulding, compression moulding), the main joining techniques (welding, glueing, screws, snapfits) as well as the main rapid prototyping techniques. In the main part of the lecture, the students will get the chance to apply this theoretic background on real plastics parts. The students will be able to discuss plastics parts’ economical production with the variety of plastics processing technologies. Also technological risks and counter measures will be discussed. Additionally, the students will be able to decide the right plastics material, the right manufacturing process as well as the right joining technology. Finally, the students will be able to distinguish between good and bad design of plastics parts.

Content
Structure and properties of polymeric materials, Properties of the solid body and influences on these, Processing of plastics, Design under consideration of load, manufacturing process, material, Calculation of plastic parts, Integration of function and process steps

Literature
Scriptum will be handed out during the lecture. Additional recommendations Bonten: „Kunststofftechnik für Designer“, Bonten: „Produktentwicklung“, Michaeli: „Introduction into plastics processing“, Gebhardt: „Rapid Prototyping“ (all published at Carl Hanser Publishers)
Course: Design Principles and Materials for High-Temperature Components [2185578]

Coordinators: Wanner et al.

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Lightweight Engineering Design [2146190]

Coordinators: Albert Albers, Norbert Burkardt

Part of the modules:
- SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], (p. 174)[SP_51_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 10: Engineering Design (p. 129)[SP_10_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 32: Medical Technology (p. 153)[SP_32_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours per week</td>
<td>2</td>
</tr>
<tr>
<td>Term</td>
<td>Summer term</td>
</tr>
<tr>
<td>Instruction language</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral examination

Duration:
20 minutes (Bachelor/Master)

Auxiliary means: none

Conditions
None.

Recommendations
None.

Learning Outcomes

Lightweight design is one of the key technologies in material and energy efficiency as well as environmental and climate protection. The lecture covers diversified fundamentals of lightweight design and their context to the product development process and the associated complex interrelations. Moreover, this lecture is intended to give students a profound understanding in classical and modern lightweight design. Additionally, guest speakers from industry will present lightweight design from an practical point of view.

Content
General aspects of lightweight design, lightweight strategies, construction methods, design principles, lightweight construction, stiffening techniques, lightweight materials, virtual product engineering, bionics, joining techniques, validation, recycling

Media
Beamer

Literature

Remarks
Lecture slides are available via eLearning-Platform ILIAS.
Course: Vibration of continuous systems [2161214]

Coordinators: Hartmut Hetzler

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam., 30min

Conditions
None.

Learning Outcomes

Content
This lecture is on vibrations of continuous systems. After an introduction into the topic and a definition of basic concepts and calculation approaches, 1-parametric continua (strings, bars) and 2-parametric continua (membranes, plates) are discussed into detailed. Based on these basic models, a brief outlook to more complex geometries is given. Beyond these basis issues more advanced topics (like elastic rotors) are discussed as well.

Literature
Literature recommendations are given in the lecture.
Course: Correlation Methods in Measurement and Control [2137304]

Coordinates:
Franz Mesch

Part of the modules:
SP 04: Automation Technology (p. 121)[SP_04_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]

ECTS Credits
4

Hours per week
2

Term
Winter term

Instruction language
de

Learning Control / Examinations
Oral examination

Duration: 30 minutes

no reference materials

Conditions

• Fundamentals of the lecture “Measurement and Control Systems”

• Basic background in probability and statistics

Learning Outcomes
Description of temporal stochastic processes, correlation and spectral analysis and corresponding estimation methods.

Content
1. Introduction
2. Stochastic processes
3. Correlation functions and power density spectra of stationary processes
4. Stochastic processes in linear systems
5. Sampling and smoothing
6. Stochastic processes in non-linear systems
7. Estimation of stochastic parameters
8. Optimal linear systems
9. Signal detection
10. Applications in measurement

Literature

• Umdruck ‘Zusammenstellung der wichtigsten Formeln’
Course: Power and Heat economics [2169452]

Coordinators: Hans-Jörg Bauer, Ralf Schiele

Part of the modules: SP 23: Power Plant Technology (p. 143)[SP_23_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Conditions
None.

Recommendations
None.

Learning Outcomes
The goal of this lecture is to get in sight into the structure and practice of the power market and to learn about the economic and political aspects of electricity and heat production. Especially engineering students are going to learn not only the technical but the economical issues related to the international power business.

Content
Introduction

Overview of the power market in Germany and Europe

Costs of electricity generation

Costs of heat generation

Financing: Analysis of profit, liquidity, balance and return on investment

Cost of power production of different power plants and sensitivities

District heating (Example: Aerea Rhein/Ruhr)

Structure of rates and pricing in the German power market
Course: Motor Vehicle Laboratory [2115808]

Course: Motor Vehicle Laboratory [2115808]

Coordinators: Michael Frey, Mohanad El-Haji
Part of the modules: SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Colloquium before each experiment
After completion of the experiments: written examination
Duration: 90 minutes
Auxiliary means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The students have deepen their knowledge on motor vehicles acquired in lectures and can apply it practically. They have an overview of the applied measuring technique and can execute and analyse measurements for the handling of given problem definitions.

Content
1. Determination of the driving resistances of a passenger vehicle on a roller dynamometer; measurement of the engine performance of the test vehicle
2. Investigation of a twin-tube and a single-tube shock absorber
3. Behavior of car tyres under longitudinal forces and lateral forces
4. Behavior of car tires on wet road surface
5. Rolling resistance, energy dissipation and high-speed strength of car tires
6. Investigation of the moment transient characteristic of a Visco clutch

Literature
3. Gnader, R.: Documents to the Motor Vehicle Laboratory
Course: Cooling of thermally high loaded gas turbine components [2170463]

Coordinators: Hans-Jörg Bauer, Achmed Schulz

Part of the modules: SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

Auxiliary: no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
Hot gas temperatures of modern gas turbine engines exceed the maximum tolerable material temperatures by several hundreds of K. To ensure reliability of lifetime, complex cooling technology must be applied. Various cooling methods will be introduced in this lesson. Specific pros and cons will be identified and new concepts for further improvement of cooling will be discussed. Furthermore, the fundamentals of forced convection heat transfer and film cooling will be imparted and a simplified design process of a cooled gas turbine components will be demonstrated. Finally, experimental and numerical methods for the characterization of heat transfer will be presented.

Content
Course: ?? [2106007]

Coordinators: Georg Bretthauer

Part of the modules: SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Micro manufacturing laboratory [2149670]

Coordinators: Volker Schulze, Christoph Ruhs

Part of the modules: SP 31: Mechatronics (p. 152)[SP_31_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Participate the practical tests and complete the colloquia successfully.

Conditions
None.

Recommendations
Knowledge in CAD and machining technologies are useful.

Learning Outcomes
The microproduction technique laboratory teaches basic knowledge in the subject of micro production and of the whole process chain for the manufacturing of smallest parts using molding processes.

Content
Following manufacturing technologies will be taught:
- Micromilling
- Micro-EDM
- Microlaserablation
- LIGA
- Micromolding
- Micrometrology

As an example for the process chain, a demonstrator will be designed, developed and produced.

Literature
None.
Course: Warehousing and distribution systems [2118097]

Coordinators: Kai Furmans, Christian Huber

Part of the modules:
- SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach]
- SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach]
- SP 44: Technical Logistics (p. 167)[SP_44_mach]
- SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral / written (if necessary) => (see “Studienplan Maschinenbau”, version of 7.7.2010)

Conditions
- none

Recommendations
- logistics lecture

Learning Outcomes
The student:
- understands material and information processes in warehouse and distribution systems
- he is able to evaluate them quantitatively.

Content
- Control and organisation of distribution centers
- Analytical models for analysing and dimensioning of warehouse systems
- Distribution Center Reference Model (DCRM)
- Lean Distribution
- The processes from receiving to shipping
- Planning and controlling
- Distribution networks

Media
- presentations, black board

Literature
- **ARNOLD, Dieter, FURMANS, Kai (2005)**
 Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag
- **ARNOLD, Dieter (Hrsg.) et al. (2008)**
 Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag
 Warehouse Science
- **GUDEHUS, Timm (2005)**
 Logistik, 3. Auflage, Berlin: Springer-Verlag
- **FRAZELLE, Edward (2002)**
 World-class warehousing and material handling, McGraw-Hill
- **MARTIN, Heinrich (1999)**
 Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg
- **WISSE, Jens (2009)**
 Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag
A comprehensive overview of scientific papers can be found at:
ROODBERGEN, Kees Jan (2007)
Warehouse Literature

Remarks
none
Course: Laser in automotive engineering [2182642]

Coordinators: Johannes Schneider

Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination (30 min)

no tools or reference materials

Conditions
None.

Recommendations
None.

Learning Outcomes
Based on a short description of the physical basics of laser technology the lecture reviews the most important high power lasers and their various applications in automotive engineering.

Content
physical basics of laser technology

laser beam sources (Nd:YAG-, CO2-, diode-laser)

beam properties, guiding and shaping

basics of materials processing with lasers

laser applications in automotive engineering

economical aspects

safety aspects

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
J. Schneider: Skript zur Vorlesung „Physikalische Grundlagen der Lasertechnik“
Course: Leadership and Product Development [2145184]

Coordinators: Andreas Ploch

Part of the modules:
- SP 02: Powertrain Systems (p. 119)
- SP 03: Work Science (p. 120)
- SP 20: Integrated Product Development (p. 140)
- SP 10: Engineering Design (p. 129)
- SP 39: Production Technology (p. 160)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- oral exam

Conditions
- None.

Learning Outcomes
The target of the lecture is to convey the main elements of leadership theories, methods and management development basics as well as the bordering topics of change management, intercultural competences, team work and corporate governance.

Content
- Leadership theories
- Management tools
- Communication as management tool
- Change management
- Management development and MD-Programs
- Assessment center and management audits
- Team work, team development und team roles
- Intercultural competences
- Leadership and ethics, Corporate Governance
- Executive Coaching

Lectures of industrial experts
- MD-program-concepts, Binder-Fröhlich, Daimler AG, ExecutiveManagement Development
- Executive Search, Grünewald, Grünewald-Consulting
Course: Laboratory Exercise in Energy Technology [2171487]

Coordinators: Hans-Jörg Bauer, Ulrich Maas, Klaus Dullenkopf, Heiner Wirbser

Part of the modules: SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Discussion of the documented results with the assistants

Duration: 30 minutes

no tools or reference materials may be used

Conditions
none

Recommendations
none

Learning Outcomes
This lab class on energy technology provides all interested students the opportunity to learn about scientific research. Students participate in selected current projects. Experimental, design and theoretical tasks are offered. The lab class is concluded with an evaluation and written documentation of the results.

Content

- Micro gas turbine
- Several test rigs for the investigation of heat transfer at thermally high loaded components
- Optimization of components of the internal air and oil system
- Characterization of spray diffusors
- Investigation of pollutant and noise emission as well as reliability and material deterioration
- Exhaust gas treatment
- Exhaust gas turbocharger

Remarks
Registration within the first two weeks of the lecture period.
Course: Logistics - organisation, design and control of logistic systems [2118078]

Coordinators: Kai Furmans

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach], SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral / written (if necessary) => (see “Studienplan Maschinenbau”, version of 7.7.2010)

-examination aids: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The student:

- has the basis knowledge necessary to understand logistic systems,
- he knows algorithms and is able to apply them to logistic problems.

Content
multistage logistic process chains
transport chain in logistic networks
distribution processes
distribution centers
logistics of production systems
dependencies between production and road traffic
information flow
cooperative strategies (like kanban, just-in-time, supply chain management)

Media
presentations, black board

Literature
None.

Remarks
none
Course: Automotive Logistics [2118085]

Coordinators: Kai Furmans

Part of the modules: SP 29: Logistics and Material Flow Theory (p. 150) [SP_29_mach], SP 39: Production Technology (p. 160) [SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral / written (if necessary) => (see “Studienplan Maschinenbau”, version of 7.7.2010)

Conditions
None.

Recommendations
None.

Learning Outcomes
The student:

- knows about essential logistic questions, in a complex production network. As an example the automobile industry is used.
- is able to apply practical solutions for logistic problems in this area.

Content
- Logistic questions within the automobile industry
- basic model of automobile production and distribution
- relation with the suppliers
- Disposition and physical execution
- Vehicle production in the interaction of shell, paint shop and assembly
- Sequence planning
- Assembly supply
- vehicle distribution and linkage with selling processes
- Physical execution, planning and control

Media
presentations, black board

Literature
None.

Remarks
none
Course: Airport logistics [2117056]

Coordinators: André Richter

Part of the modules: SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach], SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral / written (if necessary) => (see “Studienplan Maschinenbau”, version of 7.7.2010)

Conditions
None.

Recommendations
None.

Learning Outcomes
The student:

- knows material handling and information technology activities on airports
- has an overview of air traffic and the legal situation.

Content
Introduction
airport installations
luggage transport
passenger transport
security on the airport
legal bases of the air traffic
freight on the airport

Media
presentations

Literature
None.

Remarks
none
Course: Localization of Mobile Agents [24613]

Coordinators: Uwe Hanebeck, Hanebeck

Part of the modules: SP 40: Robotics (p. 162)[SP_40_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Machine Vision [2137308]

Coordinators: Christoph Stiller, Martin Lauer

Part of the modules: SP 04: Automation Technology (p. 121)[SP_04_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 40: Robotics (p. 162)[SP_40_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 minutes

no reference materials

Conditions

Basic studies and preliminary examination; fundamentals in measurement, system and control theory, e.g. from the lecture "Measurement and Control Systems"

Learning Outcomes

Machine vision (or computer vision) describes the computer supported solution of visual tasks similar to a human. The technical domain machine vision incorporates numerous research areas like optics, digital image processing, 3D measurement technology and pattern recognition. One main focus is image understanding having the goal to gather the meaning of an image and draw conclusions from this semantic meaning. The subjects in the course machine vision are similar to the standard image processing procedure. The students shall acquire an overview on major Machine Vision methods and gather practical experience from computer exercises and experiments.

Content

1. Illumination
2. Image acquisition
3. Image preprocessing
4. Feature extraction
5. Stereo Vision
6. Robust parameter estimation
7. Classification and interpretation

Literature

Main results are summarized in pdf-file. Further recommendations will be presented in the lecture.
Course: Magnetohydrodynamics [2153429]

Coordinators: Leo Bühler

Part of the modules: SP 41: Fluid Mechanics (p. 164), SP 53: Fusion Technology (p. 175)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral, Duration: 30 minutes
- No auxiliary means

Conditions
- none

Learning Outcomes
The lecture gives an introduction to magnetohydrodynamics for students in mechanical engineering, physics or mathematics. Insight is provided into the interaction of electro- and fluid dynamics that is required for modeling of magnetohydrodynamic flows in engineering applications or for phenomena in geo and astrophysics.

Content
- Introduction
- Basics of electro and fluid dynamics
- Exact solutions, Hartmann flow, pump, generator, channel flows
- Inductionless approximation
- Developing flows, change of cross-section, variable magnetic fields
- Alfvén waves
- Stability, transition to turbulence
- Liquid dynamos

Literature
- R. Moreau, 1990, Magnetohydrodynamics, Kluwer Academic Publisher
Course: Magnet Technology of Fusion Reactors [2190496]

Coordinators: Walter Fietz, Klaus Peter Weiss, Dr. Klaus Peter Weis
Part of the modules: SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Service Operations Management [2110031]

Coordinators: Gert Zülch

Part of the modules: SP 16: Industrial Engineering (p. 137)[SP_16_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in English)

Allowed resource materials: none

Conditions
None.

Recommendations
- Deepened understanding of industrial engineering
- Some knowledge about service organisations
- Basics of mathematical statistics

Learning Outcomes
The lecture focuses on aspects on how to analyse, control and plan operations in service and administration. Operations Management is concerned with the design, planning control and improvement of an organisation’s resources and processes to produce goods or services for customers. Service engineering is occupied with development and design of services using adequate process models methodologies and tools. Administration covers the necessary task of steering, maintaining and controlling in order to organize human life and society with respect to individual performance and all liabilities derived from them. It includes also the definition and realization of common goals and objectives.

Learning objectives:
- Insights into significance, objectives, and roles of service enterprises
- Knowledge about analysis, design control, and assessment of service operations
- Initial knowledge about approaches to perpetual improvement

Content
1. Significance of services and administration
2. Definition and general model
3. Strategic roles and objectives
4. Analysis of service operations
5. Design of service operations
6. Control of service workload
7. Quality planning and control
8. Assessing and improving services
Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Leadership and Conflict Management (in German) [2110017]

Coordinators: Hans Hatzl

Part of the modules: SP 03: Work Science (p. 120)[SP_03_mach], SP 37: Production Management (p. 159)[SP_37_mach], SP 10: Engineering Design (p. 129)[SP_10_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes (only in German)

Allowed resource materials: none

Conditions
- Compact course
- Limited number of participants
- Students of the International Department will be preferred
- Registration in the ifab-office necessary
- Compulsory attendance during the whole lecture

Recommendations
- Knowledge of Work science and economics is useful

Learning Outcomes
- Knowledge about techniques for management and leadership
- Preparation for the management and leadership in the job

Content
1. Introduction to the course
2. Goal definition and goal achievement
3. Management techniques within planning
4. Communication and information
5. Decision-making
6. Leadership and co-operation
7. Self management
8. Conflict management
9. Case studies

Literature
Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Machine Dynamics [2161224]

Coordinators: Carsten Proppe

Part of the modules: SP 42: Technical Acoustics (p. 165)[SP_42_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written examination (compulsory subject), auxiliary means: own manuscripts
Oral examination (optional subject), no auxiliary means allowed

Conditions
none

Recommendations
none

Learning Outcomes
Application of engineering-oriented calculation methods in order to model and to understand dynamic effects in rotating machinery, e.g., runup, stationary operation of rigid rotors including balancing, transient and stationary behavior of flexible rotors, critical speeds, dynamics of slider-crank mechanisms, torsional oscillations.

Content
1. Introduction
2. Machine as mechatronic system
3. Rigid rotors: equations of motion, transient and stationary motion, balancing
4. Flexible rotors: Laval rotor (equations of motion, transient and stationary behavior, critical speed, secondary effects), refined models
5. Slider-crank mechanisms: kinematics, equations of motion, mass and power balancing

Literature

Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979

Dresig, Vulfson: Dynamik der Mechanismen, 1989
Course: Machine Dynamics II [2162220]

Coordinators: Carsten Proppe

Part of the modules: SP 42: Technical Acoustics (p. 165)[SP_42_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam, no auxiliary means allowed

Conditions
none

Recommendations
Machine Dynamics

Learning Outcomes
Ability to build detailed models in the machine dynamics: Continuum models, fluid structure interaction, stability analyses

Content
- hydrodynamic bearings
- rotating shafts in hydrodynamic bearings
- belt drives
- vibration of turbine blades

Literature
Course: Material flow in logistic systems [2117051]

Coordinators: Kai Furmans

Part of the modules: SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral / written (if necessary) => (see “Studienplan Maschinenbau”, version of 7.7.2010)

Conditions
none

Recommendations
Recommended compulsory optional subject:
Stochastics in mechanical engineering

Learning Outcomes
The student:

• understands material flow processes and knows how to plan material flow systems,
• is able to model material flow systems in simple models,
• he knows how to determine essential performance indicators like throughput, utilization, etc.

Content

• elements of material flow systems (conveyor elements, fork, join elements)
• models of material flow networks using graph theory and matrices
• queueing theory, calculation of waiting time, utilization
• warehousing and order-picking

Media
presentations, black board, book

Literature
Arnold, Dieter; Furmans, Kai : Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 2009

Remarks
none
Course: Materials and processes for the lightweight production of car bodies [2149669]

Coordinators: HansJosef Haep

Part of the modules: SP 39: Production Technology (p. 160)[SP_39_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral Examination

Conditions
None.

Learning Outcomes
Teaching of practical experience in the manufacture for automotive lightweight construction, with special consideration of metallic lightweight materials and innovative manufacturing processes.

Content
1. Introduction
 - Motivation / Goals for the weight reduction of car body constructions
2. Options to reduce vehicle weight
 - Lightweight with materials, lightweight production, lightweight construction, concept lightweight and form lightweight
3. Lightweight Materials
 - Requirements for lightweight construction materials from the perspective of vehicle development
 - Requirements for lightweight construction materials from the viewpoint of production
 - Development of materials for steel, aluminum and magnesium
 - Plastics for the vehicle structure and the outer body
4. Production Lightweight
 - Joining in the body with special reference to composite construction
 - Quality assurance of joining
5. Corrosion protection components for body weight reduction
 - Corrosion protection on the substrate production
 - Corrosion protection materials / procedures in vehicle painting
6. Summary / Outlook

Literature
lecture notes (download)
Course: Mathematical Foundation for Computational Mechanics [2162240]

Coordinators: Eckart Schnack
Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination. Duration: 30 minutes.

Conditions
None.

Recommendations
None.

Learning Outcomes
The aim is the efficient and targeted application of mathematical methods for modern numerics in mechanical engineering. Students will gain fundamental knowledge of mathematical methods for variational calculus for elastic, dynamic and multi-field continuum calculations. They will gain knowledge of functional analysis which will enable them to understand error estimations in the finite element method (FEM) and the boundary element method (BEM).

Content
Variational formulations. Functional analysis. Lagrange d process. Various function space definitions relating to the elasticity and dynamics of the mechanics. Measurements which enable the field calculation to be defined in applications.

Literature
Script (available in administration office, building 10.91, rm. 310).
Course: Mathematical Methods in Dynamics [2161206]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>Carsten Proppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]</td>
</tr>
</tbody>
</table>

ECTS Credits	4
Hours per week	2
Term	Winter term
Instruction language	de

Learning Control / Examinations
- written examination (compulsory subject), auxiliary means: own manuscripts allowed
- oral examination (optional subject) no auxiliary means allowed

Conditions
- none

Recommendations
- none

Learning Outcomes
The students know the mathematical methods of dynamics precisely. They are able to use the basic mathematical methods for modelling the dynamical behaviour of elastic and rigid bodies.

The students have a basic understanding of the description of kinematics and kinetics of bodies. They also master the alternative formulations based on weak formulations and variational methods and the approximate solution methods for numerical calculations of the moving behaviour of elastic bodies.

Content
- Dynamics of continua:
 - Concept of continuum, geometry of continua, kinematics and kinetics of continua

- Dynamics of rigid bodies:
 - Kinematics and kinetics of rigid bodies

- Variational principles:
 - Principle of virtual work, variational calculations, Principle of Hamilton

- Approximate solution methods:
 - Methods of weighted residuals, method of Ritz

Applications

Literature
- Lecture notes (available online)
- J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994
- M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993
Course: Mathematical Methods in Strength of Materials [2161254]

Coordinators: Thomas Böhlke

Part of the modules: SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

ECTS Credits 4
Hours per week 2
Term Winter term
Instruction language de

Learning Control / Examinations
depending on choice according to actual version of study regulations
Additives as announced

Conditions
None.

Recommendations
None.

Learning Outcomes
The students can effectively and precisely apply the mathematical methods of strength of materials. They master the basic principles of tensor algebra and tensor analysis for a continuum mechanical modelling of materials. They know how to apply methods of continuum mechanics for dimensioning of work pieces.

Content
Tensor algebra

• vectors; basis transformation; dyadic product; tensors of 2nd order

• properties of 2nd order tensors: symmetry, anti-symmetry, orthogonality etc.

• eigenvalue problem, theorem of Cayley-Hamilton, invariants; tensors of higher order

• tensor algebra in curvilinear coordinate systems

• tensor analysis in curvilinear coordinate systems

• Differentiation of tensor functions

Application of tensor calculus in strength of materials

• kinematics of infinitesimal and finite deformations

• transport theorem, balance equations, stress tensor

• theory of elasticity

• thermo-elasticity

• theory of plasticity

Literature
lecture notes
Course: Mathematical methods of vibration theory [2162241]

Coordinators: Wolfgang Seemann

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written (compulsory subject), oral (optional subject)

Duration: 3 hours (compulsory subject), 30 minutes (optional subject), 20 minutes (major subject)

Allowed during exam: own scripts, literature (compulsory subject), none (optional subject or major subject)

Conditions
Technische Mechanik III, IV / Engineering Mechanics III, IV

Learning Outcomes
The course presents several mathematical methods to analyze dynamical systems in the time and the frequency domain. In the first part, methods to solve ordinary single differential equations are discussed where attention is focused to non-periodic excitation. Systems of ordinary differential equations are considered next. Also partial differential equations (including the derivation of boundary value problems by Hamilton's principle) are treated. Analytical methods are emphasized but some selected approximate methods are dealt with as well. An introduction into the dynamic stability theory is also given.

Content
Linear, time-invariant, ordinary single differential equations: homogeneous solution; harmonic, periodic and non-periodic excitations; Duhamel's integral; Fourier and Laplace transform; introduction into the theory of distributions; Systems of ordinary differential equations: matrix notation, eigenvalue theory, fundamental matrix, forced vibrations via modal expansion and transition matrix; Introduction into the dynamic stability theory; Partial differential equations: solution in product form, eigenvalue theory, modal expansion using Ritz series; Variational methods, Hamilton's principle, boundary value problems representing vibrating continua; Perturbation methods

Literature
Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
Course: Mathematical Methods in Fluid Mechanics [2154432]

Coordinators: Torsten Schenkel

Part of the modules: SP 14: Fluid-Structure-Interaction (p. 135) [SP_14_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151) [SP_30_mach], SP 41: Fluid Mechanics (p. 164) [SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written

Duration: 3 hours

Aux. means: Formules, pocket calculator

Conditions
None.

Learning Outcomes
The students can apply the mathematical methods of Dynamics effectively and precise. They're able to use the basic mathematical methods for analytical and numerical modelling of the non linear behaviour moving fluids.

The students have a basic understanding of the procedures to describe, simplify and solve the Navier-Stokes equations by analytical integration, linearisation and important approximate solution methods (Finite Differences, Finite Volumes) for numerical calculations of the behaviour of flows.

In the accompanying tutorial 21433 the application of the methods can be trained.

Content
1.2 Regions of Flow

4.1.2 Linearisation
4.2.3 Finite Differences Method, Convergence, Stability
4.2.4 Finite Volume Method

5. Fluid Mechanical Applications
3.2.2 Reynolds Equations
3.2.3 Basic Turbulence Modelling

Numbering according to Lehrbuch Strömungsmechanik

Literature

Course: Mathematical Methods in Structural Mechanics [2162280]

Coordinators: Thomas Böhlke
Part of the modules:
SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
depending on choice according to actual version of study regulations
Additives as announced

Conditions
None.

Recommendations
None.

Learning Outcomes
Ther students can effectively and precisely apply the mathematical methods of structural mechanics. They master the basic principles of variational calculus and the variational principles of mechanics. They know different homogenization methods in order to describe materials with microstructure.

Content
Basics of variational calculus

• functionals; Frechet-differential; Gateaux-differential; maximum or minimum problems
• lemma of variational calculus and Lagrange delta-process; Euler-

Lagrange-equations
Applications: Principals of continuums mechanics

• variational principals in mechanics; variational formulierung of boundary value problem of elastostatic
• method of Ritz; finite element method

Applications: Homogenization methods for materials with microstructure

• mesoscopic and macroscopic stress and strain measures
• Homogenization of elastic properties I: elementary Voigt and Reuss bounds; Hashin-Shtrikman bounds
• Homogenization of elastic properties II: estimation of effectiv elastic properties

Literature
Vorlesungsskript
Klingbeil, E.: Variationsrechnung, BI Wissenschaftsverlag, 1977
Course: Mathematical models in Mechanics [F095]

Coordinators: Christian Wieners, Wieners
Part of the modules: SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Mathematical models and methods in combustion theory [2165525]

Coordinators: Viatcheslav Bykov, Ulrich Maas

Part of the modules:
- SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach]
- SP 35: Modeling and Simulation (p. 156)[SP_35_mach]
- SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral
- Duration: 30 min.

Conditions
- None

Recommendations
- None

Learning Outcomes
The aim of this lecture consists in giving insights in the fundamental concepts of the modeling of reacting flows. Moreover an introduction to the mathematical methods of the analysis of those models as well as the analysis of the properties of their solution will be given.

Content
The lecture shall introduce the basics of the mathematical modeling and the analysis of reacting flows. The fundamental methods of the modeling of combustion processes are outlined and asymptotical methods, which deliver reasonable approximations for numerous combustion processes will be applied. Further more examples of simplified models for the description of autoignition, explosions, flame quenching and detonations will be discussed. Furthermore the main analytical methods will be illustrated using simple examples.

Literature
Course: Mechanics of laminated composites [2161983]

Coordinators: Eckart Schnack

Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination. Duration: 30 minutes.

Conditions

none

Recommendations

none

Learning Outcomes

In the first part of the course the students are introduced to the definition of modern composites. The terms 'lamina', 'laminae' and 'laminate' are explained in detail with reference to examples. The students are then able to classify modern composites, particularly when they use these materials to design machine structures. As by definition the material data are directionally dependent, different transformations are discussed so that the students can understand the structural behaviour and participate in the design of the materials.

Content

Definition of composites, definition of static and kinematic groups. Definition of material laws. Transformation of the state values of composites and transformation of the material properties for the coordinate systems in the design of machine structures.

Literature

Lecture notes (available in the administration office, building 10.91, rm. 310)
Course: Mechanics and Strengths of Polymers [2173580]

Coordinators: Bernd-Steffen von Bernstorff (Graf), von Bernstorff

Part of the modules: SP 36: Polymer Engineering (p. 158)[SP_36_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Duration: 20 - 30 minutes

Conditions
basic knowledge in materials science (e.g. lecture materials science I and II)

Learning Outcomes
Introduction to molecular structure, morphology and process parameters and their influence on the mechanics, strength and failure mechanisms of polymeric materials and composites. The strength and design of engineering parts exposed to complex loadings and loading histories will be derived.

Content
Molecular structure and morphology of polymers, temperature- and time dependency of mechanical behavior, viscoelasticity, time/temperature- superposition principle, yielding, crazing and fracture of polymers, failure criterions, impact and dynamic loading, corresponding principle, tough/brittle-transition, introduction to the principles of fiber reinforcement and multiple cracking in composites

Literature
A literature list, specific documents and partial lecture notes shall be handed out during the lecture.
Course: Mechanics in Microtechnology [2181710]

Coordinators: Christoph Eberl, Patric Gruber

Part of the modules: SP 32: Medical Technology (p. 153), SP 31: Mechatronics (p. 152), SP 01: Advanced Mechatronics (p. 117), SP 33: Microsystem Technology (p. 154), SP 49: Reliability in Mechanical Engineering (p. 172)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
compulsory preconditions: none

Learning Outcomes
Understanding of:

- Mechanical phenomena in Small dimensions
- Material science and engineering for microsystems
- Mechanical micro-sensors
- Micro-actuators

Content
1. Introduction: Application and Processing of Microsystems
2. Scaling Effects
3. Fundamentals: Stress and Strain, (anisotropic) Hooke’s Law
4. Fundamentals: Mechanics of Beams and Membranes
5. Thin Film Mechanics: Origin and Role of Mechanical Stresses
6. Characterization of Mechanical Properties of Thin Films and Small Structures: Measurement of Stresses and Mechanical Parameters such as Young’s Modulus and Yield Strength; Thin Film Adhesion and Stiction
7. Transduction: Piezo-resistivity, Piezo-electric Effect, Electrostatics,...
8. Aktuation: Inverse Piezo-electric Effect, Shape Memory, Electromagnetic Actuation, ...

Literature
Foliens,
2. L.B. Freund and S. Suresh: „Thin Film Materials“
Course: Laboratory mechatronics [2105014]

Coordinator(s): Albert Albers, Georg Bretthauer, Carsten Proppe, Christoph Stiller

Part of the modules:
SP 31: Mechatronics (p. 152)[SP_31_mach], (p. 174)[SP_51_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 10: Engineering Design (p. 129)[SP_10_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Certification of participation or oral examination depending on the “Studienplan” resp. “Prüfungs- und Studienordnung (SPO)” / IPEK: partial examination with grade

Conditions
None.

Learning Outcomes
A manipulator as an exemplary mechatronic system is used to practise the contents of the stage II - lectures on mechatronics. The laboratory course comprises simulation, bus communication, measurement instrumentation, control engineering and programming. Instead of separate experiments the laboratory course continuously handles with the several aspects of the manipulator system. The final aim is to integrate the different subsystems to a working compound system.

Content
Part I
Control, programming and simulation of robots
CAN-Bus communication
Image processing / machine vision
Dynamic simulation of robots in ADAMS

Part II
Solution of a complex problem in team work

Literature
Manuals for the laboratory course on Mechatronics
Course: ?? [2105023]

Coordinators: Uwe Kühnapfel, Kühnapfel
Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Men-Machine-Systems in Automation Technology [24648]

Coordinators: Elisabeth Peinsipp-Byma, Olaf Sauer, Sauer, Peinsipp-Byma

Part of the modules: SP 04: Automation Technology (p. 121)[SP_04_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Human Robot Cooperation [24154]

Coordinators: Burghart

Part of the modules: SP 31: Mechatronics (p. 152)[SP_31_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Measurement II [2138326]

Coordinators: Christoph Stiller
Part of the modules: SP 31: Mechatronics (p. 152)[SP_31_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 40: Robotics (p. 162)[SP_40_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Duration: 30 minutes
no reference material

Conditions
Fundamentals in measurement, system and control theory, e.g. from the lecture “Measurement and Control Systems”

Learning Outcomes
The capabilities of modern sensor technology pave the way for novel applications in engineering. Especially digital measurement techniques may be used even in very complex environments and thus have strong impact on technological progress. Stochastic models of measurement processes form the basis for meaningful information processing and provide a valuable tool for engineering. This interdisciplinary lecture addresses students in mechanical engineering and related subjects. The lecture gives an overview of digital technology and stochastics. These areas form the basics of estimation methods that can be embedded elegantly in the theory of state observers. Applications in signal processing for modern environmental perception (video, Lidar, Radar) illustrate the discussed subjects.

Content
1. Amplifiers
2. Digital technology
3. Stochastic modeling for measurement applications
4. Estimation
5. Kalman Filter
6. Environmental perception

Literature
Various Scripts
Course: Analysis tools for combustion diagnostics [2134134]

Coordinators: Uwe Wagner

Part of the modules:
- SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral examination, Duration: 0,5 hours, no auxiliary means

Conditions
- None

Recommendations
- Combustion Engines A helpful

Learning Outcomes
The students get to know state-of-the-art methods to analyse the process in combustion engines. Both, special measuring techniques such as optical and laser analysis and thermodynamical modelling of the engine process is covered.

Content
- Energy balance at the engine
- Energy conversion in the combustion chamber
- Thermodynamics of the combustion process
- Flow velocities
- Flame propagation
- Special measurement techniques

Literature
- Lecture notes available in the lectures
Course: Methodic Development of Mechatronic systems [2145180]

Coordinators: Albert Albers, Wolfgang Burger

Part of the modules:
- SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach], (p. 174)[SP_51_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 10: Engineering Design (p. 129)[SP_10_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

ECTS Credits: 4

Hours per week: 2

Term: Winter term

Instruction language: de

Learning Control / Examinations
Oral examination

Conditions
none

Learning Outcomes
The development of mechatronic systems implies interdisciplinary work in teams. Often there are typical problems and misunderstandings due to different ways of working and thinking of mechanical engineers, electronics engineers and computer scientists. In order to avoid these problems and to cross the boarders between different disciplines, one has to build up an at least basic understanding of the methods and problems of other co-workers. Especially the team leader has to be able to understand the problems of his team members and to moderate in case of misunderstandings. This lecture aims at students with their concentration on mechatronics. It provides insights into the mindsets and problem solving strategies of electronics engineers and computer scientists and explains the basic terms and tools of future colleagues. Also typical problems arising from diverse interdependencies of social and technical systems are discussed. Additionally issues like quality assurance in mechatronics products, safety and reliability and team-management are covered.

Content
- Introduction - from market to product
- Typical activities during the development of electronic components, traps and problems
- Interfaces between mechanics / electronics / software / human user
- Typical activities during the development of software, traps and problems
- Failure modes and mechanisms of electronic circuits
- Failure modes and verification of software
- Quality assurance of mechatronic systems
- Human interfacing problems, team-management

Literature
Manuals for the lecture available
Course: Microoptics and Lithography [2142884]

Coordinators: Timo Mappes

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral

duration: 20 minutes

aids: none

Conditions

Basics in optics

Learning Outcomes

The course serves as an introduction for master students in optics and photonics to micro and nano components and systems including their fabrication. Microoptical devices are indispensable for a variety of applications ranging from data handling, transmission and processing of light to optical detection and analysis. Lithography is a key technology for semiconductor manufacturing but also for patterning of any small structure by UV-light, X-rays and electron or ion beams.

Content

- Concepts in micro and nano fabrication and applications in optics and photonics
- Electron lithography
- Optical lithography
- X-ray lithography
- EUV-, immersion and interference lithography
- Microoptical devices and systems

Literature

Course: Microactuators [2142881]

Coordinators: Manfred Kohl
Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content

Literature

Course: Modelling of Microstructures [2183702]

Coordinators: Britta Nestler

Part of the modules:
- SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
We regularly hand out exercise sheets. The individual solutions will be corrected.
Exam: oral 30 minutes or written.

Conditions
None.

Learning Outcomes
The students are introduced into the fundamentals of liquid-solid and solid-solid phase transformations. We discuss microstructures such as dendrites, eutectics and peritectics and consider the specific physics of heat and mass transport combined with the particular phase transformation. We study polycrystalline grain structures and examine the motion of interfaces and the effect of various external fields. Next, we learn the method of phase-field modelling for simulation of microstructure formation processes. As an extension of the phase-field modelling for phase transitions, we get to know the coupling with other field variables. The course will be combined with practical exercises.

Content
The course consists of a lecture and exercise classes. The aim is an introduction to the simulation of phase transformations and microstructure formation under the influence of different physical quantities. Contents are:
- fundamentals of phase transformation and microstructure evolution
- polycrystalline grain structures
- heat and mass diffusion
- phase-field modelling and simulation
- extension of phase-field modelling to include other physical fields

Media
Black board and slides.

Literature
Fundamentals of Solidification, Kurz and Fisher
Theory of Solidification, Davis.
The science of crystallization: microscopic interfacial phenomena, W. A. Tiller -> Only special reading
Transport phenomena in metallurgy, G.H. Geiger and D. R. Poirier
Transport Phenomena, R. Bird, W. Stewart, E. Lightfoot
Kinetics of Materials, W. Craig Carter
Physical Metallurgy, Porter and Easterling
Construction of binary phase diagrams, R. Haansen
Introduction to the thermodynamics of materials, David. R. Gaskell
Numerical recipes in C
Course: Mobile Machines [2113073]

Coordinators: Marcus Geimer

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

ECTS Credits 8
Hours per week 4
Term Summer term
Instruction language de

Learning Control / Examinations
oral examination.

Conditions
Knowledge in Fluid Power is required.

Recommendations
It is recommended to attend the course Fluid Power Systems [2114093] beforehand.

Learning Outcomes
The students will learn the basic structure and construction of mobile machines. The basis will be practically introduced by consultants from industry area. Thereby, the typical working process will be described.

Content
- Introduction of the required components and machines
- Basics of the structure of the whole system
- Practical insight in the development techniques

Media
Lecture notes.
Course: Mobility Concepts of Rail Transportation in 2030 [2115915]

Coordinators: Peter Gratzfeld

Part of the modules: SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written report and oral exam

Conditions
Attendance is mandatory during the whole seminar.

Recommendations
none

Learning Outcomes

- The students learn about the innovation process of an international company in rail industry.
- They exercise advanced creativity techniques.
- They learn and deepen key qualifications like communication skills, presentation skills, moderation techniques and team work.

Content

- Company presentation
- Long term development of society and environment (megatrends), impact on railways and rail industry
- Creating, elaborating and discussing innovative ideas by using the tool "Zukunftswerkstatt"
- Final presentations

Media
All material is available for download (Ilias-platform).

Literature
Literatur will be provided during the course.

Remarks

- This seminar is a 5-day block course.
- Number of participants is limited.
- A registration is necessary.
- For further information please look at the website.
Course: [2134139]

Coordinators: Frank Kirschbaum

Part of the modules: SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Modeling of Thermodynamical Processes [2167523]

Coordinators: Robert Schießl, Ulrich Maas
Part of the modules: SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral
Duration: 30 min.

Conditions
None

Recommendations
None

Learning Outcomes
The course provides an insight into the modeling and simulation of thermodynamical processes. First an overview of the required thermodynamical basics and numerical methods is given. The numerical methods are implemented and applied to the simulation of thermodynamical processes.

Content
Thermodynamical basics
Numerical solver strategies for algebraic equations
Optimization issues
Ordinary and partial differential equations
Application to various problems in thermodynamics (engine processes, determination of equilibrium states, unsteady processes in inhomogeneous systems)

Literature
Lecture notes
Numerical Recipes {C, FORTRAN}; Cambridge University Press
R.W. Hamming; Numerical Methods for scientists and engineers; Dover Books On Engineering; 2nd edition; 1973
J. Kopitz, W. Polifke; Wärmeübertragung; Pearson Studium; 1. Auflage
Course: Modelling and Simulation [2183703]

Coordinators: Britta Nestler
Part of the modules: SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
We regularly hand out exercise sheets. In addition, the course will be accompanied by practical exercises at the computer.
written examination: 90 minutes

Conditions
None.

Learning Outcomes
The students learn fundamental algorithms and numerical methods of particular importance for materials simulations. The course introduces solution techniques for dynamical systems and partial differential equations. The methods are applied to describe heat and mass diffusion processes and to model microstructure formation (e.g. phase-field method). The next aim is to learn adaptive and parallel algorithms. The students will get familiar with fundamental concepts of high performance computations. Practical experience is obtained by the integrated exercises.

Content
The course gives an introduction to modelling and simulation techniques.
The following topics are included:
- splines, interpolation methods, Taylor series
- finite difference method
- dynamical systems
- numerics of partial differential equations
- mass and heat diffusion
- microstructure simulation
- parallel and adaptive algorithms
- high performance computing
- practical exercises

Media
Slides and black board. The slides will be provided as a manuscript for the course.

Literature
Course: Modern Concepts of Control [2105024]

Coordinators: Lutz Gröll, Groell
Part of the modules: SP 04: Automation Technology (p. 121)[SP_04_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 40: Robotics (p. 162)[SP_40_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Engine laboratory (block course) [2134001]

Coordinators: Ulrich Spicher
Part of the modules: SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written documentation of every experiment, certificate of successful attendance, no grading

Conditions
Combustion Engines A

Learning Outcomes
The students learn to apply their theoretically acquired knowledge of the lectures by means of 5 practical engine experiments on modern test benches.

Content
5 engine experiments in up-to-date development projects

Literature
Description of experiments
Course: Engine measurement techniques [2134137]

Coordinators: Sören Bernhardt

Part of the modules: SP 18: Information Technology (p. 138)[SP_18_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: 0.5 hours, no auxiliary means

Conditions
None.

Recommendations
Combustion Engines A helpful

Learning Outcomes
Students get to know state-of-the-art measurement techniques for combustion engines. In particular basic techniques for measuring engine operating parameters such as torque, speed, power and temperature.

Possible measurement errors and aberrations are discussed.

Furthermore techniques for measuring exhaust emissions, air/fuel ratio, fuel consumption as well as pressure indication for thermodynamic analysis are covered.

Content
Energy balance and conversion in combustion engines

test bench assembly

Measurement of basic engine parameters

Measurement of special engine parameters

Exhaust gas analysis

Literature
Lecture notes available in the lectures or in the 'Studentenhaus'

1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C
Course: Nanoanalytics [2125762]

Coordinators: Michael Bäuerer

Part of the modules: SP 43: Technical Ceramics and Powder Materials (p. 166)[SP_43_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
20 min
Auxiliary means: none

Conditions
None.

Learning Outcomes
1. Understanding of the use of modern means of analytics with high special resolution
2. Background in physics needed for understanding the analytical methods used
3. Areas where the analytical methods are used and the limits of the methods used

The main aim of the course is that the students are able to select an analytical method appropriate for the material under investigation and that they are able to interpret results from measurements.

Content

Literature
Course: Nanotechnology with Clusterbeams [2143876]

Coordinators: Jürgen Gspann
Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written examination
presence in more than 70% of the lectures
Duration: 1 h

aids: none

Conditions
None.

Learning Outcomes
Nanotechnology is presented on the basis of a technology for nano- and microstructuring by accelerated nanoparticles (clusters), mainly in view of nanomechanics.

Content
Nanotechnology in biology
Nanosystemstechnology
Cluster beam generation, ionisation and acceleration; cluster properties
Structure generation using accelerated metal clusters
Structuring via gas cluster impact; reactive accelerated cluster erosion (RACE)
Atomic force microscopy of impact structures; nanotribology
Comparison with femtosecond laser machining (Winter term only)
Simulations; Fullerene synthesis, impact structures, visionary nanomachinery

Literature
Foil copies with short commentaries are distributed during the lectures.
Course: Nanotribology and -Mechanics [2181712]

Coordinators: Martin Dienwiebel, Hendrik Hölscher
Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 47: Tribology (p. 170)[SP_47_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
80% attendance, oral examination

Conditions
Physics
fundamental mathematics

Learning Outcomes
The course gives an introduction into the modern field of Nanotribology and -mechanics. Students learn the physical basics and simple models used in Nanotribology. In the second part of the lecture students learn to discuss scientific results using recent exemplary publications.

Content
Part 1: Basics:

- Nanotechnology
- Forces at nanometer scale
- contact mechanics models (Hertz, JKR, DMT)
- Experimental methods (SFA, QCM, FFM)
- Prandtl-Tomlinson model
- Superlubricity
- Atomic-Scale Wear

Part 2: Topical papers

Literature
Lecture notes, slides and copies of articles
Course: Novel actuators and sensors [2141865]

Coordinators: Manfred Kohl, Martin Sommer

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], (p. 174)[SP_51_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions None.

Learning Outcomes

Content

Literature

Course: Neutron physics of fusion reactors [2169471]

Coordinators: Ulrich Fischer

Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
The aim of this lecture is to provide the neutron physics principles required for analysis of nuclear fission and fusion reactors. First of all, the basic nuclear interaction processes are presented which are important for the physical behaviour of the reactors. Next the neutron transport phenomenon in matter is described by means of the Boltzmann transport equation. Suitable mathematical solution methods are presented such as the diffusion approximation for nuclear fission reactors and the Monte Carlo method for fusion reactors. The knowledge acquired will eventually be used to solve neutron physics problems related to the design and optimization of the reactors.

Content
Nuclear interaction processes and energy release

Chain reaction and criticality

Neutron transport, Boltzmann equation

Diffusion approximation, Monte Carlo method

Neutronic reactor design

Literature
K. H. Beckurts, K. Wirtz, Neutron Physics, Springer Verlag, Berlin, Germany (1964)

Course: Neutron Physics for Fission Reactors [2189510]

Coordinators: Kostadin Ivanov
Part of the modules: SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Nonlinear vibrations [2162247]

Coordinators: Alexander Fidlin
Part of the modules: SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination
Duration: 30 min (optional subject)
20 min (major subject)

Means are not allowed

Conditions
None.

Recommendations
Vibration theory, mathematical methods of vibration theory, dynamic stability

Learning Outcomes
- to learn the most usual nonlinear effects
- to learn the minimal models for these effects
- to be able to apply perturbation methods for the analysis of nonlinear systems
- to learn basics of the bifurcation theory
- to be able to identify dynamic chaos

Content
- dynamic systems
- basic ideas of asymptotic methods
- perturbation methods: Linstedt-Poincare, averaging, multiple scales
- limit cycles
- nonlinear resonance
- basics of the bifurcation analysis, bifurcation diagrams
- types of bifurcations
- discontinuous systems
- dynamic chaos

Literature
Course: Nuclear Thermal-Hydraulics [2129010]

Coordinators: Xu Cheng
Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination
duration: 20min (dependent on type of examination)

Conditions
None.

Learning Outcomes

Content
Course: ?? [23289]

Coordinators: Hans-Richard Doerfel, Frank Dieter Maul, Maul, Doerfel

Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Numerical Mathematics for Engineers [1874]

Coordinators: Nicolas Neuss, Neuß

Part of the modules: SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Numerical Methods in Mechanics II [2162298]

Coordinators: Eckart Schnack
Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination. Duration: 30 minutes.

Conditions
None.

Recommendations
None.

Learning Outcomes
Variation principles are derived in detail on the basis of the principles of virtual work. This provides students with the fundamental knowledge necessary to construct calculus of variations as a basis for numerical mechanics, and consequently derive fundamental equations for finite element methods (FEM) and boundary element methods (BEM). In the lectures, the algorithms for higher-grade finite element processes are deduced, and the numerics for boundary element methods (BEM) are derived in detail. Students will develop an understanding for Cauchy principle values, and the integration of singular integrals will be carried out. In addition, derived methods will be extended to tasks such as plasticity. Numerical mechanics I is not a requirement for Numerical mechanics II. At the end of the course students will be able to derive algorithms for FEM and BEM independently, and evaluate short codes, so that they are better able to manage industrial software.

Content

Literature
Script (available in administration office, building 10.91, rm. 310).
Course: Computational Methods in Fluid Mechanics [2157441]

Coordinators: Franco Magagnato

Part of the modules:
- SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach]

ECTS Credits: 4
Hours per week: 2
Term: Winter term
Instruction language: de

Learning Control / Examinations
Oral examination
Duration: 30 minutes
No tools or reference materials may be used during the exam.

Conditions
none

Learning Outcomes
The lecture deals with up-to-date computational methods for the simulation of fluid flows for industrial applications. The selection of appropriate boundary and initial condition as well as the turbulence models will be discussed. With the help of test cases the mesh generation process will be explained. We discuss the convergence acceleration techniques like multigrid, implicit methods etc. as well as the applicability of these methods to parallel and vector processors. Problems of the mesh generation process occurring during the application of these methods will be shown. The lecture introduces some commercial codes like Fluent, Star-CD etc. as well as the research code SPARC. New aspects of the numerical simulations of fluid flows in the future like Large Eddy Simulation and Direct Numerical Simulation will be discussed.

Content
1. Governing Equations of Fluid Dynamics
2. Discretization
3. Boundary and Initial conditions
4. Turbulence Modelling
5. Mesh Generation
6. Numerical Methods
7. LES, DNS and Lattice Gas Methods
8. Pre- and Postprocessing
9. Examples of Numerical Methods for Industrial Applications

Media
Powerpoint presentation can be downloaded from https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_crs_84185.html

Literature
Course: Numerical Simulation of Multi-phase Flows [2130934]

Coordinators: Martin Wörner

Part of the modules: SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148) [SP_27_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Numerical simulation of reacting two phase flows [2169458]

Coordinators: Rainer Koch

Part of the modules: SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam
Duration: approximately 30 minutes

no tools or reference materials are allowed

Conditions
None.

Recommendations
None.

Learning Outcomes
The course is devoted to diploma/master students and doctoral candidates of mechanical and chemical engineering. It gives an overview of the numerical methods used for CFD of single and two phase flows. The course introduces methods for reacting single and two phase flows, as they are typically found in gas turbines and piston engines operated by liquid fuel.

Content

2. Two phase flows: Basics of atomisation, Characterisation of sprays, Numerical prediction of droplet movement, Numerical methods for predicting of liquid disintegration (VoF, SPH), Numerical methods for secondary atomisation; Droplet evaporation

3. Reacting flows: Combustion models; Single droplet combustion, Spray combustion.

Literature
Lecture notes
Course: Numerical Simulation of Turbulent Flows [2154449]

Course: Numerical Simulation of Turbulent Flows [2154449]

Coordinators: Günther Grötzbach

Part of the modules:
- SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach],
- SP 06: Computational Mechanics (p. 124)[SP_06_mach],
- SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

ECTS Credits 4
Hours per week 3
Term Summer term
Instruction language de

Learning Control / Examinations
oral;

Duration: 30 minutes

Conditions
None.

Learning Outcomes
The lecture gives an introduction into the methods of direct numerical simulation and large eddy simulation (LES) of turbulent flows. The promising methods are intensively used for basic research in turbulence. Now, LES is increasingly applied also for those engineering tasks in which e.g. the consequences of large scale velocity or temperature fluctuations have to be investigated on solid structures. The differences between common statistical turbulence models basing on the Reynolds-equations and subgrid scale models is elaborated and powerful subgrid scale models are discussed. The requirements of suitable numerical solution schemes are formulated. The extraordinary features of the methods are demonstrated by examples. Thus, the knowledge will be provided which is re-quired to decide which of the mentioned methods, which all are available in modern CFD codes, is adequate for which task.

Content
Appearance of turbulence, requirements for and limits of the simulation method
Conservation equations for flows with heat transfer, filtering in time and space
Some subgrid scale models and their physical justification
Boundary and initial conditions
Numerical schemes for integration in space and time
Statistical and graphical methods to analyse the simulation results
Examples for turbulence in convection (see e.g. http://www.iket.fzk.de/turbit and http://hikww4.fzk.de/irs/turbit) and in engineering applications

Literature
G. Grötzbach, Script in English (2006)
Course: Numerical Fluid Mechanics [2153408]

Coordinators: Torsten Schenkel
Part of the modules: SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: 30 minutes
no auxiliary means

Conditions
None.

Learning Outcomes
The lecture is a guide to the fundamentals of numerical solution methods for the basic equations of fluid dynamics with the help of selected applications. Following the industrial technology programs, the numerical solution methods are presented in the fields of airfoil flows, aerodynamics of motor vehicles, fluid flow machinery and heat transfer problems. In detail the lecture deals with algorithms for geometry definition and grid generation as well as different numerical solution methods on various computer architectures.

The student knows the fundamental approaches to plan and perform a numerical simulation of fluid mechanical problems. He can analyse a simple fluid mechanical problem and transform it into a well posed mathematical-numerical model. Although the lecture can only cover the most important models and methods, the student is enabled to understand advanced texts and use them purposefully.

Content
Fluid flow problems: Aeronautics, automotive industry, fluid flow machinery, heat transfer.
Basic equations of fluid mechanics: Navier-Stokes equations, Reynolds equations, perturbation-differential equation.
Discretisation: Geometry definition, grid generation, discretisation in space and time, behavior of errors, convergence, consistency and stability.
Computer architectures and techniques: Computers and data network, programming of vector and parallel computers.
Examples of numerical solutions: Flow around an airfoil, convective flow.

Literature
Oertel, H.: Strömungsmechanik, Vieweg-Verlag, 1999
Course: Optofluidics [2142885]

Coordinators: Dominik Rabus

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Patents and Patent Strategies [2147160]

Coordinators: Rolf Einsele

Part of the modules:
- SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 20: Integrated Product Development (p. 140)[SP_20_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], (p. 174)[SP_51_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 32: Medical Technology (p. 153)[SP_32_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral Examen

Conditions
- None.

Learning Outcomes
- The goal of the lecture is to convey the basics of intellectual property rights and the industrial property right strategies at the Porsche AG.

Content
- After basic explanation of the different types of intellectual property rights and the conditions and procedure for the granting of an intellectual property right, the importance of intellectual property is identified. Using examples and influence of Porsche AG project integrated strategies concerning intellectual property are deduced that meet the importance of these expectations.
Course: Photovoltaics [2130935]

Coordinators: Michael Powalla

Part of the modules: SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Planning of Assembly Systems (in German) [2109034]

Coordinators: Eberhardt Haller

Part of the modules: SP 03: Work Science (p. 120)[SP_03_mach], SP 37: Production Management (p. 159)[SP_37_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

Conditions
- Compact course (one week full-time)
- Limited number of participants
- Registration in the ifab-office necessary
- Compulsory attendance during the whole lecture

Recommendations
- Knowledge of Work Science or Production Management / Industrial Engineering usefull

Learning Outcomes
- Know planning guidelines
- Know vulnerability analysis
- Become able to plan work systems (e.g. technical or organisational structuring principles, capacity planning, proceedence diagram, wages system . . .)
- Become able to evaluate a planning solution
- Become able to present results

Content
1. Planning guidelines
2. Vulnerability analysis
3. Planning of work systems (technical and organisational structuring principles, capacity planning, proceedence diagram, wages system . . .)
4. Evaluation
5. Presentation

Literature
Learning material:
The handout will be distributed within the first lecture.

Literature:

Course: Plasma Heating of Fusion Reactors [F105]

Coordinators: Thumm
Part of the modules: SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Plasticity Theory [2162244]

Coordinators:
Thomas Böhlke

Part of the modules:
- SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach]
- SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach]
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]
- SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]
- SP 06: Computational Mechanics (p. 124)[SP_06_mach]
- SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

ECTS Credits
- Hours per week: 2
- Term: Summer term
- Instruction language: de

Learning Control / Examinations
- oral examination

Conditions
- None.

Recommendations
- None.

Learning Outcomes
The students know the basics of elasticity and plasticity of large deformations. They master tensor algebra and tensor analysis as well as the kinematics of large deformations. The students can set up the balance equations in regular and irregular points. They can apply the principles of material theory. They know the fundamental equations of finite elasticity and finite plasticity. In the framework of plasticity the students know the theory of crystal plasticity.

Content
- tensor calculus, kinematics, balance equations
- principles of material theory
- finite elasticity
- infinitesimal elasto(visco)plasticity
- exact solutions of infinitesimal Plasticity
- finite elasto(visco)plasticity
- infinitesimal and finite crystal(visco)plasticity
- hardening and failure

Literature
Course: PLM in the Manufacturing Industry [2121366]

Coordinators: Gunter Meier
Part of the modules: SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral group examination, Duration 1 hour, Auxiliary Means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
Students know essential aspects of PLM Processes which are exemplarily introduced with examples form Heidelberg Druckmaschinen.
Students know objects of the PLM Process and know the interconnection between CAD and PLM.
Students understand the procedure of PLM-installation in an industrial enterprise and occurring challenges concerning strategy, vendor selection and psychology.
They are able to create installation concepts for PLM systems in the scope of team exercises and explain the approaches in presentations.

Content
A description of systematic requirement engineering is given, based on the introduction of PLM-Processes and (Multi-) Project management in the product development process. By the introduction of a PLM-Project, Objects of the PLM Process like material master, bill of material, documents and classifications are explained. Furthermore a 3D-Process chain is introduced to show the implementation of technical modifications. Finally, specific aspects of the mechatronic development are introduced.

Literature
Lecture slides
Course: PLM-CAD workshop [2123357]

Coordinators: Jivka Ovtcharova
Part of the modules: SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Evaluation of Project Management, presentation of final results and demonstration of the vehicle in practice

Conditions
None

Recommendations
None

Learning Outcomes
The overall objective is to depict usage of collaborative product development in terms of product lifecycle management (PLM) and to accent additional benefit contrary to classic CAD driven development processes as well as comprehensive management of product and variant structures. Students will be presented in detail how product specific data like e.g. bill-of-materials or sketches can transparently and holistically managed by the use of PLM and moreover, they will be taught how to automatize workflow management in product development.

Content
In the Workshop a LEGO vehicle will be conceived and developed within a project order through usage of modern PLM and CAD systems in the field of lifecycle engineering.

Main topics are:
- Autonomous design in development teams with LEGO Mindstorms NXT
- 3D-CAD conceptual design of the vehicle using Siemens UGS NX
- Simulation of realistic product development by forming disjunct project teams extending cross locations
- Solving communication problems, inconsistencies of product models, unregulated data access a.s.o.
- Product Lifecycle oriented development using market-leading Siemens UGS Teamcenter Engineering PLM system

Literature
Script on-site only in german

Remarks
Conditions for participation are a short letter of motivation and a short CV covering information of previously performed studies resp. education as well as practical experience
Course: Polymer Engineering I [2173590]

Coordinators: Peter Elsner

Part of the modules: SP 36: Polymer Engineering (p. 158)[SP_36_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 47: Tribology (p. 170)[SP_47_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination

Duration: 20-30 Minutes

Conditions
None.

Learning Outcomes
The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material “polymer” meeting its requirements in an economical and ecological way.

Content
1. Economical aspects of polymers
2. Introduction of mechanical, chemical and electrical properties
3. Processing of polymers (introduction)
4. Material science of polymers
5. Synthesis

Literature
Recommended literature and selected official lecture notes are provided in the lecture
Course: Polymer Engineering II [2174596]

Coordinators: Peter Elsner
Part of the modules: SP 36: Polymer Engineering (p. 158)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination
Duration: 20-30 Minutes

Conditions
None.

Learning Outcomes
The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material “polymer” meeting its requirements in an economical and ecological way.

Content
1. Processing of polymers
2. Properties of polymer components
 Based on practical examples and components
 2.1 Selection of material
 2.2 Component design
 2.3 Tool engineering
 2.4 Production technology
 2.5 Surface engineering
 2.6 Sustainability, recycling

Literature
Recommended literature and selected official lecture notes are provided in the lecture.
Course: Laboratory “Laser Materials Processing” [2183640]

Coordinators: Johannes Schneider, Wilhelm Pfleging

Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
presentation (15 min) and oral examination

Conditions
None.

Recommendations
None.

Learning Outcomes
The laboratory covers 8 half-day experiments on various aspects of laser materials processing.

Content
safety aspects in laser processing

laser systems, beam shaping, beam characterization

hardening and remelting of cast iron, steel, aluminium

cutting of steel

surface refinement of ceramics by alloying and dispersing

welding of steel and aluminium

transmission welding of polymers

surface modification of polymers with respect to their wetting behaviour

surface texturing of steel and ceramics

drilling of steel, ceramic and polymers

Literature
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
J. Schneider: Skript zur Vorlesung „Physikalische Grundlagen der Lasertechnik“
Course: Lab Computer-aided methods for measurement and control [2137306]

Coordinators: Christoph Stiller, Philip Lenz

Part of the modules:
- SP 04: Automation Technology (p. 121)[SP_04_mach]
- SP 18: Information Technology (p. 138)[SP_18_mach]
- SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]
- SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]
- SP 40: Robotics (p. 162)[SP_40_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Colloquia

Conditions
Basic studies and preliminary examination; basic lectures in automatic control

Learning Outcomes
Powerful and cheap computation resources have led to major changes in the domain of measurement and control. Engineers in various fields are nowadays confronted with the application of computer-aided methods. This lab tries to give an insight into the modern domain of measurement and control by means of practically oriented and flexible experiments. Based on experiments on measurement instrumentation and digital signal processing, elementary knowledge in the domain of visual inspection and image processing will be taught. Thereby, commonly used software like MATLAB/Simulink will be used in both simulation and realization of control loops. The lab closes with selected applications, like control of a robot or supersonic computer tomography.

Content
1. Digital technology
2. Digital storage oscilloscope and digital spectrum analyzer
3. Supersonic computer tomography
4. Lighting and image acquisition
5. Digital image processing
6. Image interpretation
7. Control synthesis and simulation
8. Robot: Sensors
9 Robot: Actuating elements and path planning

The lab comprises 9 experiments.

Literature
Instructions to the experiments are available on the institute's website.
Course: Practical Course Technical Ceramics [2125751]

Coordinators: Franz Porz

Part of the modules: SP 43: Technical Ceramics and Powder Materials (p. 166)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Certificate to be issued after evaluation of the lab class report or oral examination

duration 30 minutes.

No tools or reference materials may be used during the exam.

Conditions
Lab class report

Recommendations
Courses in ceramic materials

Learning Outcomes
The aim of the course is to learn the experimental techniques and to understand the scientific background. In a report the results have to be discussed. The practical course takes place during the week after the end of the semester.

Content
The course is focused on aspects of processing of a ceramic part. Characterisation of starting powder, forming and sintering, microstructural and mechanical characterisation are the basic topics

Literature

Richerson, D. R.: Modern Ceramic Engineering, Marcel Dekker, New York-Basel, 1992
Course: Mobile Robot Systems Lab [2146194]

Coordinators: Albert Albers, Markus Frietsch

Part of the modules:
- SP 10: Engineering Design (p. 129)[SP_10_mach]
- SP 02: Powertrain Systems (p. 119)[SP_02_mach]
- SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]
- SP 40: Robotics (p. 162)[SP_40_mach]

ECTS Credits: 3
Hours per week: 3
Term: Summer term
Instruction language:

Learning Control / Examinations
Certification of participation / No optional subject!

Conditions
None.

Recommendations
Basic knowledge of electrical engineering, control engineering and computer science (programming)

Learning Outcomes
The theoretical contents of different lectures will be practiced based on the development of an exemplary mechatronic system, an omnidirectional powered robot platform. The bandwidth involves simulation and measurement technology, open and closed-loop control and programming. The students will not deal with separated tasks, but work on the development of one platform during the whole semester. The objective of the lab is to successfully integrate and test all necessary components into one working system. At this not only professional skill but also soft skills like teamwork or communication abilities are practiced. Especially in mechatronics these capabilities are mandatory.

Content
Development of a mobile robot system:

- Sensors
- Modelling
- Programming (Matlab/Simulink, C, …)
- Development of electronic components
- Manufacturing
- System integration

Literature
Manuals for the laboratory available
Course: ?? [2105025]

Coordinators: Ralf Mikut
Part of the modules: SP 32: Medical Technology (p. 153)[SP_32_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Lab course experimental solid mechanics [2162275]

Coordinators: Thomas Böhlke, Mitarbeiter

Part of the modules: SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach]

ECTS Credits: 2

Hours per week: 2

Term: Summer term

Instruction language: de

Learning Control / Examinations
attestation without grade

Conditions
None.

Recommendations
None.

Learning Outcomes
The students know the basic measurement techniques for determination of all material parameters necessary in linear thermoelasticity. They master the identification of important parameters of stress-strain-curves based on measurements under appropriate stress states. The students can define simply nonlinear material laws.

Content
• Experiments for determination of the five material constants of thermoelasticity
• Experiments for determination of parameters of the inelastic material behaviour

Literature
is announced during lab course
Course: Introduction to Microsystem Technology - Practical Course [2143875]

Coordinators: Arndt Last
Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
non-graded: preparation of the experiments
graded (together with the lecture MST I resp. II): 50% questions concerning the practical training in the written 2h-exam of the lecture ‘Grundlagen der Mikrosystemtechnik I resp. II’

Conditions
pre-condition: attendance of the lecture ‘Grundlagen der Mikrosystemtechnik I bzw. II’

Learning Outcomes
• Deepening of the contents of the lecture MST I resp. II
• Understanding the technological processes in the micro system technology
• Experience in lab-work at real workplaces where normally research is carried out

Content
In the practical training includes nine experiments:
1. Hot embossing of plastics micro structures
2. Micro electroforming
4. UV-lithography
5. Optical waveguides
6. Capillary electrophoresis on a chip
7. SAW gas sensor
8. Metrology
9. Atomic force microscopy
Each student takes part in only five experiments.

The experiments are carried out at real workstations at the IMT and coached by IMT-staff.
Course: Computational Methods in Fluid Mechanics (Exercise) [2157442]

Coordinators: Balazs Pritz

Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Certificate of participation;
oral examination on request

Conditions
none

Learning Outcomes
This practical course serves as supplement of the lecture “Computational Methods for Fluid Dynamics”. The methods as taught within the lecture, required for performing fluid dynamics calculations will be practised on PC. Fluid dynamics calculations include the geometry and mesh generation, the definition of boundary conditions, the calculation and the visualisation and interpretation of data. First, the single steps at the PC will be developed by using appropriate examples and software. Later on, full calculation cycles (starting with mesh generation through to data interpretation) will be performed within small groups, solving typical fluid flow problems.

Content
1. Brief introduction into Linux
2. Mesh generation for an example geometry
3. Data visualisation and interpretation of preset calculation results
4. Handling of the flow solver
5. Full calculation cycle I: Flat plate
6. Further calculation cycles

Literature
1. Lecture notes/handout
2. See literature list of lecture „Numerische Methoden der Strömungstechnik“
Course: Electrical Powertrains in Practice [23311]

Coordinators: Michael Braun, Braun
Part of the modules: SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Product Lifecycle Management [2121350]

Coordinators: Jivka Ovtcharova
Part of the modules: SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

written examination
Duration: 1.5 hours

Auxiliary Means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The goal of PLM lecture is to provide an overview of management and organizational approach to product lifecycle management. The students:

- know the management concept of PLM, its objectives and are able to highlight the economic benefits of the PLM concept
- know provider of PLM solutions and can represent the current market situation
- Understand the need for an integrated and cross-departmental business process - from planning, portfolio construction and return of customer information, from the use phase to maintenance and recycling of products
- know the processes and functions needed to support the entire product life cycle
- become aware of the main operating software systems (PDM, ERP, SCM, CRM) and the mainstreaming of these systems
- develop techniques to successfully introduce the concept of Management PLM.

Content

Product Lifecycle Management (PLM) is an approach to the holistic and cross-company management and control of all product-related processes and data throughout the life cycle along the extended supply chain - from design and production to sales, to the dismantling and recycling.
Product Lifecycle Management is a comprehensive approach for effective and efficient design of the product life cycle. Based on all product information, which comes up across the entire value chain and across multiple partners, processes, methods and tools are made available to provide the right information at the right time, quality and the right place.
The course covers:

- A consistent description of all business processes that occur during the product life cycle (development, production, sales, dismantling, ...)
- the presentation of methods for the performance of the PLM business processes,
- explaining the most important corporate information systems to support the life cycle (PDM, ERP, SCM, CRM systems) to sample the software manufacturer SAP

Literature

Lecture slides.

Course: Product, Process and Resource Integration in the Automotive Industry [2123364]

Coordinators: Sama Mbang
Part of the modules: SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination, Durations: 20 min, Auxiliary Means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
A considerable aspect of this lecture is to combine engineering knowledge with the practical, real industrial problems and applications.

Thus, the objectives of the lecture are:

- collaborative drafting of industrial and academic state of the art regarding the basics.
- specification of exigencies, requirements and concepts for an integrated CAx-process chain,
- introduction in the paradigms of the integrated process-oriented product development
- to convey practical industrial knowledge about the integrated product development in the automotive sector

The industrial focus of the lecture gives the students an insight into specific industrial implementation as well as the possibility to become acquainted with the industrial IT-applications, IT- and work processes in the automotive industry.

Content
The lecture

- Overview of product development in the automotive sector (process- and work cycle, IT-Systems)
- Integrated product models in the automotive industry (product, process and resource)
- New CAx modeling methods (intelligent feature technology, templates & functional modeling)
- Automation and knowledge-based mechanism for product design and production planning
- Product development in accordance with defined process and requirement (3D-master principle, tolerance models)
- Concurrent Engineering, shared working
- Enhanced concepts: the digital and virtual factory (application of virtual technologies and methods in the product development)
- Systems: CAD/CAM modeling (CATIA V5), planning (CATIA/DELMIA), archiving – PDM (CATIA/SmarTeam).

Additionally, a practical industrial project study is offered, which is based on an integrated application scenario (from design of production resources, over testing and validation method planning to the manufacturing and implementation of the production resources).

Since the student will be divided in small teams, this study will also teach the students about team work and distributed development.

Literature
Lecture slides

Remarks
Max. 20 students, registration necessary (ILIAS)
Course: Project Work in Product Development [2145300]

Coordinators: Albert Albers
Part of the modules: SP 20: Integrated Product Development (p. 140)[SP_20_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination (60 minutes)
combined examination of lectures, tutorials and project work

Conditions
The participation in “Integrated Product Development” requires the concurrent participation in lectures (2145156), tutorials (2145157) and project work (2145300).
Due to organizational reasons, the number of participants is limited to 42 persons. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK homepage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Recommendations
none

Learning Outcomes
The center of “Integrated Product Development” constitutes itself in the development of a technical product within independent working student teams on the basis of the market situation up to virtual and real prototypes. Thereby the integrate treatment of the product development process is of importance. The project teams hereby represent development departments of medium sized companies, in which the presented methods and tools are field-experienced applied and ideas are transformed into concrete product models.
For the preparation of this development project the basics of 3D-CAD-modelling (Pro/ENGINEER) as well as different tools and methods of creative designing, of sketching and solution finding are mediated in workshops. Special events impart an insight of presentation techniques and the meaning of technical design.

Content
The project work begins with the early stages of product development, i.e. the identification of market trends and needs. Based on this information the students develop scenarios for future markets and create product profiles, which describe the customers and their demands without anticipating possible product solutions. After having passed several following milestones for ideas, concepts and designs, virtual prototypes and function prototypes are presented to an audience.
The project work is supported by coaching through skilled faculty staff. Additionally weekly tutorials, respectively workshops are given. For doing the project the teams gain access to team workspaces featuring IT-infrastructure and relevant software, such as office, CAD or FEA. Further on the teams learn how team cooperation and knowledge management can be supported in design project by using a wiki system.
Course: Product Ergonomics (in German) [2109025]

Coordinators: Gert Zülch

Part of the modules: SP 03: Work Science (p. 120)[SP_03_mach], SP 10: Engineering Design (p. 129)[SP_10_mach], (p. 174)[SP_51_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

Conditions
None.

Recommendations
• Willingness to learn interdisciplinarily (Product design, Legal regulations Work physiology, Work psychology . . .)
• Knowledge of Technical design is useful

Learning Outcomes
• Become proficient within the general terms of ergonomics
• Know legal regulations
• Know elementary methods and procedures
• Become proficient in applying ergonomic evaluation and judgement

Content
1. Introduction and case study
2. Terminology of ergonomics
3. Course of action of construction and legal regulations
4. Anthropometrical design (Body measures, functional dimensions, kinematics, statics, kinetics)
5. Design of Human-machine-interfaces (Functional design, readouts, adjustment mechanisms)
6. Evaluation of design solutions

Literature
Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Industrial Engineering I (in German) [2109028]

Coordinates: Gert Zülch

Part of the modules:
- SP 03: Work Science (p. 120)[SP_03_mach]
- SP 37: Production Management (p. 159)[SP_37_mach]
- SP 10: Engineering Design (p. 129)[SP_10_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

Conditions

None.

Recommendations

- Willingness to learn interdisciplinarily (Technique, Economy, Legal regulations, Informatics . . .)

Learning Outcomes

- Become proficient within the general terms of Production Management
- Know the basics of production planning and control

Content

1. Terminology
2. Departmental organisation
3. Process organisation
4. Product development and programme planning
5. Work preparation (Operations planning, Production planning and control)
6. Materials management

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

- REFA - Verband für Arbeitsstudien und Betriebsorganisation (Hrsg.): Planung und Steuerung.
 - Teil 1: Grundbegriffe...
 - Teil 2: Programm und Auftrag...
 - Teil 3: Durchlaufzeit- und Terminermittlung...
 München: Carl Hanser Verlag, 1991. (Methodenlehre der Betriebsorganisation)

Please refer to the latest edition.
Course: Industrial Engineering II [2110028]

Coordinators: Gert Zülch

Part of the modules: SP 37: Production Management (p. 159)[SP_37_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

Conditions

None.

Recommendations

- Willingness to learn interdisciplinarily (Technique, Economy, Legal regulations, Informatics . . .)
- Knowledge of the lecture “Production Management I” (2109028) is usefull
- Otherwise: Study Terminology in “Wiendahl, Betriebsorganisation für Ingenieure”

Learning Outcomes

- Know methods and strategies for indirect production areas
- Ability to manage projects in factory planning
- Know about the importance of management systems

Content

1. Manufacturing organisation (Manufacturing, Assembly, Maintenance)
2. Quality control
3. Recycling
4. Management systems
5. Factory planning
6. Project management

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Production Planning and Control (Planning Game of a Bicycle Factory; in German) [2110032]

Coordinators: Andreas Rinn

Part of the modules: SP 37: Production Management (p. 159) [SP_37_mach], SP 39: Production Technology (p. 160) [SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes (only in German)

Allowed resource materials: none

Conditions
- Compact course
- Limited number of participants
- Registration in the ifab-office necessary
- Compulsory attendance during the whole lecture

Recommendations
- Knowledge in Production Management (resp. Industrial Engineering) is necessary
- Knowledge of Work Science and Economics is useful
- Knowledge of Informatics is not required, but useful

Learning Outcomes
- Get deeper insights within production management
- Increase knowledge of production planning and control
- Understand basic techniques for the modelling and simulation of production systems

Content
1. Goals and recommendations for production planning and control
2. Strategies for work control
3. Case study: Manufacturing of bicycles
4. FASI-Plus: Simulation of a bicycle factory for the production planning and control
5. Simulation of the order processing
6. Decision making about order control and procurement of purchased parts
7. Evaluation of the simulation protocols
8. Realisation of production planning and control

Literature
Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Production Systems and Production Technology in Major Assembly Production [2150690]

Coordinators: VolkerMichael Stauch
Part of the modules: SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam

Conditions
None.

Recommendations
Attendance of the lecture ‘Manufacturing Engineering’ [2149657] is recommended prior to attending this lecture.

Learning Outcomes
The student
• understands the challenges a global automotive company is facing in current times
• knows the possibilities of modern manufacturing engineering and is aware of specific application examples from major assembly production
• is able to apply the methods and approaches covered by the lecture to problems from the context of the lecture.

Content
This lecture has a clear focus on real-life situations and conditions, provides many recent examples from industry and illustrates these examples by means of a study trip to Daimler’s Untertürkheim plant. In addition to the technological aspects of major assembly production (engines, axles, transmissions), management-related aspects (HR management of approximately 20,000 employees), logistics-related aspects and other important general conditions (e.g. environmental requirements) will be addressed.

Main topics of the lecture:
• Facts and figures of the Daimler group and of the Untertürkheim plant
• Overview over the MDS and the major assembly process
• Powertrain systems
• Factory planning, start-up and total cost of ownership
• MPS - Mercedes Benz Production System
• Logistics
• Occupational health and safety and environmental protection
• Management and HR
• Quality management
• Study trip to the Untertürkheim plant

Literature
lecture notes
Course: Production Techniques Laboratory [2110678]

Coordinators: Kai Furmans, Jivka Ovtcharova, Volker Schulze, Gert Zülch, Research assistants of wbk, ifab und IFL

Part of the modules: SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 37: Production Management (p. 159)[SP_37_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Participate in practice exercise courses and complete the colloquia successfully.

Conditions
Participation in the following lectures:
- Informationssystems in logistics and supply chain management,
- Material flow in logistic systems,
- Manufacturing Technology,
- Work Science

Recommendations
none

Learning Outcomes
The student:

- knows the components of a modern factory are presented,
- is able to gain a deeper understanding of these components by exercises.

Content
The production technique laboratory (PTL) is a collaboration of the institutes wbk, IFL, IMI and ifab.

1. Computer Aided Product Development
2. Production of parts with CNC turning machines
3. Controlling of production systems using PLCs
4. Workplace configuration
5. NN
6. Configuration of Display Work Stations
7. Time study
8. Optical identification in production and logistics
9. NN
10. Storage and order-picking systems
11. Computer communication in factory

Media
several

Literature
lecture notes

Remarks
none
Course: Controlling of Production Economics (in German) [2110029]

Coordinators: Gert Zülch

Part of the modules: SP 37: Production Management (p. 159), SP 39: Production Technology (p. 160)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

Conditions
None.

Recommendations
- Willingness to learn interdisciplinarily (Technique, Economy, Legal regulations, Informatics . . .)
- Knowledge of the lecture “Production Management I” (2109028) is usefull
- Otherwise: Study Terminology in “Wiendahl, Betriebsorganisation für Ingenieure”

Learning Outcomes
The participants of the lecture should:
- Understand the basics of controlling
- Know about the importance of production-oriented controlling
- Know the basics of traditional economic controlling
- Know aspects of production logistics in controlling
- Be able to apply various analysing techniques
- Have seen the mode of operations of measure of production kogistic
- Be able to apply a generic method for the controlling of production economics

Content
1. Basics of the controlling of production economics
2. Development and controlling of organisations
3. Economic controlling
4. Material- and product-oriented controlling
5. Controlling of resources
6. Controlling of organisation structures
7. Controlling of dynamic production processes
8. Seminar on the static and dynamic analysis of a bicycle factory
6 COURSES OF THE MAJOR FIELDS

6.1 All Courses

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: Project Workshop: Automotive Engineering [2115817]

Coordinates: Frank Gauterin
Part of the modules: SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral Examination
Duration: 30 up to 40 minutes
Auxiliary means: none

Conditions
None.

Learning Outcomes
The students are familiar with typical industrial development processes and working style. They are able to apply knowledge gained at the university to a practical task.

Content
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by a German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Literature

The scripts will be supplied in the start-up meeting.
Course: Development of Mobile Hydraulic Systems [2113071]

Coordinators: Gerhard Geerling

Part of the modules: SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Conditions
knowledge in the fluidics

Learning Outcomes
During the lecture the design and development of fluidic systems with special respect to the mobile hydraulics are to be mediated:

- marketing und development
- temperature regulation
- hydro-storage
- filtration

Content
Introduction to the application-oriented development of mobile hydraulic systems with practice-oriented applications.
Course: Project Management in Rail Industry [2115995]

Coordinators: Peter Gratzfeld
Part of the modules: SP 50: Rail System Technology (p. 173)[SP_50_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral examination
- Duration: 20 minutes
- No tools or reference materials may be used during the exam.

Conditions
None

Recommendations
None

Learning Outcomes
- The students learn the basic of project management.
- They learn about the roles of project manager and project core team.
- They understand the project phases and know about processes and tools.
- They understand the governance process behind.

Content
- Project management system (project, project management, project phases, main processes and supporting processes, governance)
- Organization (organizational structure within a company, project organization, roles in a project organization)
- Main processes (project start, project plan, DPS, WBS, risk and opportunity management, change management, project closure)

Media
All slides are available for download (Ilias-platform).

Literature
A bibliography is available for download (Ilias-platform).

Remarks
None.
Course: Project management in Global Product Engineering Structures [2145182]

Coordinators: Peter Gutzmer

Part of the modules:
- SP 23: Power Plant Technology (p. 143)[SP_23_mach]
- SP 31: Mechatronics (p. 152)[SP_31_mach], (p. 174)[SP_51_mach]
- SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]
- SP 02: Powertrain Systems (p. 119)[SP_02_mach]
- SP 12: Automotive Technology (p. 132)[SP_12_mach]
- SP 20: Integrated Product Development (p. 140)[SP_20_mach]
- SP 10: Engineering Design (p. 129)[SP_10_mach]
- SP 32: Medical Technology (p. 153)[SP_32_mach]
- SP 34: Mobile Machines (p. 155)[SP_34_mach]
- SP 37: Production Management (p. 159)[SP_37_mach]

ECTS Credits: 4
Hours per week: 2
Term: Winter term
Instruction language: de

Learning Control / Examinations
Oral examination
Duration: 20 minutes
Auxiliary means: none

Conditions
none

Learning Outcomes
The management of projects is an factor of high significance for successfull companies. The course introduces the methods of the project management with the help of practical examples. Product development processes and the required organizational structures are also discussed. Participants learn to handle project management situations in global operating companies.

Content
- Product development process,
- Coordination of product development and handling of complexity,
- project management,
- matrix organization,
- planning / specification / target system,
- interaction of development and production

Literature
lecture notes
Course: Process Design and Industrial Engineering [2110036]

Coordinators: Sascha Stowasser

Part of the modules:
- SP 39: Production Technology (p. 160)[SP_39_mach], SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 03: Work Science (p. 120)[SP_03_mach], SP 37: Production Management (p. 159)[SP_37_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral exam, length: 30 minutes
(only in German)

Allowed resource materials: none

There is the possibility to acquire the so-called “MTM-Grundschein” (non-academic certificat).

Conditions

- Compact course (one week full-time)
- Limited Number of Participants
- Registration in the ifab-office necessary
- Compulsory attendance during the whole lecture

Recommendations

- Knowledge of work science is useful

Learning Outcomes

- Ability to design work operations and processes effectively and efficiently
- Instruction in methods of time study (MTM, Data acquisition etc.)
- Instruction in methods and principles of process design
- The Students are able to apply methods for the design of workplaces, work operations and processes.
- The Students are able to apply actual approaches of process and production organisation.

Content

1. Definition and terminology of process design and industrial engineering
2. Tasks of industrial engineering
3. Actual approaches of organisation of production (Holistic production systems, Guided group work et al.)
4. Methods and principles of industrial engineering and production systems
5. Case studies and exercises for process design

Media

Powerpoint, movies, exercises

Literature

Learning material:
Handout online on: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_cat_29099.html

Literature:

Please refer to the latest edition.
Course: process simulation in forming operations [2161501]

Coordinators: Dirk Helm

Part of the modules:
- SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach]
- SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- oral examination (30 min)

Conditions
- None.

Learning Outcomes
The student knows the most important forming operations and technological aspects of them. He learns the elementary basis of modelling and simulating as well as of continuum mechanics and material theory. The students knows how to numerically solve initial-boundary-value problems using the finite element method.

Content
The lectures gives an introduction to simulation of formings processes of metallic materials and contains the basics of continuum mechanics, material theory and numerics.
Course: process simulation in cutting [2149668]

Coordinators: Andreas Zabel
Part of the modules: SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral

Conditions
None.

Learning Outcomes
The student
• is able to name the different methods of process simulation in cutting and to explain their functions
• is able to classify the methods by their general structure and functionality and knows their potentials and limitations
• is able to perform a selection for predetermined boundary conditions based on the methods he/she has learned about and their characteristics
• is able to identify the correlation between different methods

Content
The aim of the lecture is to present the different techniques and potentials of process simulation in cutting.
1. The CAD-CAM-NC-process chain
2. Basics: information technology and geometry
3. Basics: process technology
4. Simulationsystem for three-axial milling
5. FE-modelling of milling processes
6. Simulation and optimization of machine tools
7. Simulationsystem for five-axial milling
8. Simulation of process dynamics at milling
9. Application of the simulationsystem (1)
10. Application of the simulationsystem (2)
11. Methods of visualisation
12. Summary

Media
Slides and lecture notes for the process simulation in cutting lecture will be made available through ilias.

Literature
script
Course: Advanced powder metals [2126749]

Coordinators: Rainer Oberacker

Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 43: Technical Ceramics and Powder Materials (p. 166)[SP_43_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20-30 min) taking place at the agreed date. The re-examination is offered upon agreement.

Conditions
Knowledge of basic material science is assumed. Therefore it is recommended to attend the courses Material Science I and Material Science II beforehand.

Learning Outcomes
The students know the basics of powder metallurgy. They are able to assess the conditions for applying either powder metallurgy or competing production methods. They have knowledge on production, properties and application of the most important PM materials.

Content
The lecture gives an overview on production, properties and application structural and functional powder metallurgy material. The following groups of materials are presented: PM High Speed Steels, Cemented Carbides, PM Metal Matrix Composites, PM Specialities, PM Soft Magnetic and Hard Magnetic Materials.

Literature
R.M. German. “Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
Course: Quality Management [2149667]

Coordinators: Gisela Lanza

Part of the modules: SP 20: Integrated Product Development (p. 140) [SP_20_mach], SP 44: Technical Logistics (p. 167) [SP_44_mach], SP 49: Reliability in Mechanical Engineering (p. 172) [SP_49_mach], SP 37: Production Management (p. 159) [SP_37_mach], SP 51: Production Technology (p. 174) [SP_51_mach], SP 10: Engineering Design (p. 129) [SP_10_mach], SP 39: Production Technology (p. 160) [SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exams: Mechanical Engineering (Maschinenbaudiplom); Erasmus and Industrial Engineering (Wi.-Ing.): written examination

Conditions
None.

Learning Outcomes
The student
- has knowledge of the content covered by the lecture,
- understands the quality philosophies covered by the lecture,
- is able to apply the QM tools and methods he/she has learned about in the lecture to new problems from the context of the lecture,
- is able to analyse and evaluate the suitability of the methods, procedures and techniques he/she has learned about in the lecture for a specific problem.

Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service-related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:
1. The term "quality"
2. Total Quality Management (TQM) and Six Sigma
3. Universal methods and tools
4. QM during early product stages – product definition
5. QM during product development and in procurement
6. QM in production – manufacturing metrology
7. QM in production – statistical methods
8. QM in service
9. Quality management systems
10. Legal aspects of QM

Literature
Lecture notes
Course: Quantitative Methods for Supply Chain Risk Management [2118090]

Coordinators: Andreas Cardeneo

Part of the modules: SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach], SP 28: Life-cycle Engineering (p. 149)[SP_28_mach], SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Presumably oral, duration 20 minutes, in each case at the beginning and at the end of the lecture-free time

Conditions
None.

Recommendations
Basic knowledge in operations research, statistics and logistics are recommended.

Learning Outcomes
The student knows mathematical models and methods to control the various kinds of risks.

Content
The planning and the enterprise of logistics systems are connected in large measure with uncertainty: It is the unknown demand, varying transportation times, unexpected delays, irregularly production yield or volatile rates of exchange: Quantities, times, qualities and prices are uncertain values. Therefore it is necessarily to deal with particular these uncertain values to avoid negative effects.

That logistics systems should be efficiently operated is obvious. But their function must also be reliably. In this lecture we concern with mathematical models and methods with which most different kinds of risks can be controled. Risk analysis, durable location planning, durable transportation networks, Multi Sourcing strategies, Capacity options, infrastructure protection and flexible production planning are parts of it. Topics of the lectures are supplemented and deepened during the exercises.

Media
Presentations, black board

Literature
ILIAS-System: https://ilias.rz.uni-karlsruhe.de/goto_rz-uka_crs_7817.html

Remarks
None
Course: Scanning probe microscopy [2142860]

Coordinators: Hendrik Hölscher, Martin Dienwiebel, Stefan Walheim

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 47: Tribology (p. 170)[SP_47_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
80% attendance, oral examination

Conditions
Physics
Fundamental mathematics

Learning Outcomes
Introduction into the main measurement principles of scanning probe methods for the analysis of the physical and chemical properties of surfaces

Content
1) Introduction into nanotechnology
2) History of scanning probe techniques
3) Scanning tunneling microscopy (STM)
4) Atomic force microscopy (AFM)
5) Dynamic Modes (DFM, ncAFM, MFM, KPFM, ...)
6) Friction force microscopy & nanotribology
7) Nanolithography
8) Other families of the SPM family

Literature
Lecture notes, slides, script
Course: Reactor Design and Safety Evaluation using Modern Analysis Measures [2189410]

Coordinators: Maria Avramova

Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Reactor Safety: Safety Assessment of Nuclear Power Plants [2190464]

Coordinators: Victor Hugo Sánchez-Espinoza
Part of the modules: SP 21: Nuclear Energy (p. 141)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
The lecture is addressed to students of engineering sciences and physics after the intermediate diploma. It is ideally complemented with the lectures dealing with neutron physics for fusion and fission reactors, nuclear power plant technologies and energy systems I and II. The objective of this lecture is to introduce the principles of reactor safety, of safety assessment methods and to discuss the safety features/systems of nuclear reactors. The mathematical and physical elements of computer-aided safety simulation tools will be presented and selected applications will be given.

Content
Potential risks of nuclear power plants and related national regulations of nuclear activities
General definitions and principles of reactor safety and its realization in a nuclear power plant
Goals and methods of safety evaluations of nuclear power plants
Basic principles of reactor dynamics and control systems of nuclear power plants
Safety evaluation of pressurized light water reactors using numerical safety analysis tools
Safety evaluation of boiling water reactors using advanced numerical safety analysis tools

Literature
Lecture notes
Course: Computational Dynamics [2162246]

Coordinators: Carsten Proppe

Part of the modules:
- SP 42: Technical Acoustics (p. 165)[SP_42_mach]
- SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach]
- SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach]
- SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]
- SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach]
- SP 06: Computational Mechanics (p. 124)[SP_06_mach]
- SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral examination, no auxiliary means allowed

Conditions
- none

Recommendations
- none

Learning Outcomes
The lecture teaches the ability to compute solutions for problems in structure dynamics. For this purpose differential equations for the vibration of structure elements are presented and solved by means of numerical methods.

Content
1. Fundamentals of elasto-kinetics (Equations of motion, principle of Hamilton and principle of Hellinger-Reissner)
2. Differential equations for the vibration of structure elements (bars, plates)
3. Numerical solutions of the equations of motion
4. Numerical algorithms
5. Stability analyses

Literature
1. Lecture notes (in German) will be provided!

Remarks
The course takes place every two years (in pair years).
Course: Computational Vehicle Dynamics [2162256]

Coordinators: Carsten Proppe

Part of the modules:
- SP 50: Rail System Technology (p. 173)[SP_50_mach], SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

ECTS Credits
4

Hours per week
2

Term
Summer term

Instruction language
de

Learning Control / Examinations
Oral examination, no auxiliary means allowed

Conditions
none

Recommendations
none

Learning Outcomes
This course serves as an introduction to the computational modelling and simulation of the technical system road/vehicle. A method based perspective is taken, which allows for a unified treatment of various kinds of vehicles. The vehicle model is obtained by dividing the system into functional subsystems and defining interfaces between these subsystems. In the first part of the course, vehicle models will be developed based on models of the suspensions, the road, and the contact forces between road and vehicle. The focus of the second part of the course is on computational methods for linear and non-linear models of vehicle systems. The third part of the course discusses design criteria for stability, safety and ride comfort. The multi body dynamics software Simpack will be used.

Content
1. Introduction
2. Models of load bearing systems
3. Contact forces between wheels and roadway
4. Simulation of roadways
5. Vehicle models
6. Methods of calculation
7. Performance indicators

Literature

Remarks
The course takes place every two years (impair years only).
Course: Computerized Multibody Dynamics [2162216]

Coordinators: Wolfgang Seemann

Part of the modules: SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

ECTS Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam

Conditions
Knowledge of EM III, EM IV

Learning Outcomes
Goal of the course is to understand to analyse the spatial motion of a rigid body or of a system of rigid bodies by using computer programs. By doing the puzzling mathematical reformulations and evaluations by the computer code it is possible to concentrate on the ‘Mechanics which is behind it’. At the end of the course the student should be able to understand the principles which are used in commercial computer codes to generate the equations of motion and to do a numerical integration.

Content
Description of the orientation of a rigid body, angular velocity, angular acceleration, derivatives in different reference frames, derivatives of vectors, holonomic and nonholonomic constraints, derivation of the equations of motion using d’Alembert’s principle, the principle of virtual power, Lagrange’s equations or Kane’s equations. Structure of the equations of motion, foundations of numerical integration.

Media
Following programs are used: AUTOLEV, MATLAB, MATHEMATICA/MAPLE

Literature
AUTOLEV: User Manual
Course: Computer Integrated Planning of New Products [2122387]

Coordinators: Roland Kläger
Part of the modules: SP 28: Lifecycle Engineering (p. 149)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination
Duration: 30 minutes

No tools or reference materials may be used during exam.

Conditions
None.

Recommendations
None.

Learning Outcomes
The students got a basic understanding of relations, procedures and structure elements of standard processes in product planning and are capable of using these as guidelines for planning of new products. They acquired knowledge of requirements and options in choosing and applying the right methods and tools for an efficient and reasonable assistance for specific use cases. The students are familiar with elements and methods of computer aided idea and innovation management. They acquired knowledge of simultaneous assistance to the product planning process by using the technologies of rapid prototyping during development phases.

Content
The increase in creativity and the strength of innovation for the planning and development of new products has become a key factor for the competitiveness of the industry. Shorter innovation cycles, an overwhelming flood of information and an increasing demand for information and communication makes the use of computer absolutely necessary. Against this background this lecture discusses the success factors for new products, and introduces a product innovation process in conjunction with planning of new products based on the concepts of system engineering. In the following the methodological assistance to this process is being discussed by introducing innovation management, idea management, problem solving strategies, creativity and rapid prototyping for instance.

Literature
Handouts during lecture
Course: Computational Mechanics I [2161250]

Coordinators: Thomas Böhlke, Tom-Alexander Langhoff

Part of the modules:
- SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach]
- SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach]
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]
- SP 35: Modeling and Simulation (p. 156)[SP_35_mach]
- SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]
- SP 06: Computational Mechanics (p. 124)[SP_06_mach]
- SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Conditions
None.

Recommendations
"Mathematical Methods in Strength of Materials" and "Introduction to the Finite Element Method"

Learning Outcomes
The students know the principles and the theory of the linear finite element method. They master the basic applications of the finite element method in solid mechanics and know the formulation as well as the numerical solution of linear two-dimensional problems.

Content
- numerical solution of linear systems
- basics of boundary value problems of linear elasticity
- solution methods of boundary value problem of linear elasticity;
- matrix displacement method
- variational principles of linear elasticity
- finite-element-technology for linear static problems

Literature
Course: Computational Mechanics II [2162296]

Coordinators: Thomas Böhlke, Tom-Alexander Langhoff

Part of the modules: SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Conditions
Successful participation in lecture Computational Mechanics I

Learning Outcomes
The students can effectively use the theoretical basics of inelastic mechanical material behaviour and master the numerical implementation. They know the weak formulation of two-dimensional non-linear problems of solid mechanics and obtain a numerical solution of the discretized equations using the Finite-Element-Method. They know the basics of numerics of nonlinear systems, kinematics and balance equations of non-linear solid mechanics, of finite elasticity and infinitesimal plasticity, of linear and non-linear thermoelasticity.

Content
- overview quasistatic nonlinear phenomena
- numerics of nonlinear systems
- foundations of nonlinear continuum mechanics
- balance equations of geometrically nonlinear solid mechanics
- finite elasticity
- infinitesimal plasticity
- linear and geometrically nonlinear thermoelasticity

Literature
Course: Reduction methods for the modeling and the simulation of combustion processes [2166543]

Coordinators: Viatcheslav Bykov, Ulrich Maas

Part of the modules:
- SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach]
- SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral
- Duration: 30 min.

Conditions
None

Recommendations
None

Learning Outcomes
This lecture introduces the fundamental mathematical principles of model reduction for reacting flows. Moreover the methods for the analysis of the properties of chemical kinetic models, allowing a reduction of the system, are discussed.

Content
- Fundamentals of the mathematical methods and the analysis of chemical kinetics
- Methodology of model reduction and its implementation
- Description of different combustion regimes (e.g. auto-ignition, steady flames, flame quenching) with simplified and idealised models
- Examples of reduction strategies

Literature
- Course notes
- N. Peters, B. Rogg: Reduced kinetic mechanisms for application in combustion systems, Lecture notes in physics, 15, Springer Verlag, 1993
Course: Replication Technologies in Microsystem Technology [2143893]

Coordinators: Matthias Worgull
Part of the modules: SP 33: Microsystem Technology (p. 154)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination (30 minutes)

Conditions
Intermediate examination or bachelor degree of mach/wing necessary.

Recommendations
Basic knowledge of the micro-system technology (but not a requirement) and interdisciplinary interest are favourable

Learning Outcomes
The lesson gives an overview over the different kinds of replication technologies in the science of microsystem technology. Fundamentals like replication materials, processes and it's technologies, and a process simulation based on hot embossing will be presented. The aim of the lesson is to give the students the knowledge to decide which materials and processes are required to replicate a desired microstructured design. The theoretical aspects of the lesson will be supported by a large diversity of examples in science and industry. Finally a visit of the selected labs at the Forschungszentrum Karlsruhe will give a detailed view to the topics of the lesson. The students will finally having an expertise to compare the different processes based on scientific and technical items. This includes also aspects of

- quality of the moulded parts,
- material properties,
- technologies,
- mould design,
- cost efficiency.

Content
Replication - Introduction and Overview

- Diversity of Replication - A short definition
- Historic examples
- Materials for replication
- Overview over the different replication processes

Polymers – Properties and theoretical description

- Classification of polymers
- Mechanical and thermal behaviour
- Rheology of polymer melts
- Measurement system for characterisation of polymers
- Approaches for the theoretical description of viscoelastic behaviour

Microstructured replication tools

- Requirements on microstructured mould inserts
• Fabrication methods
• Electroplating of mould inserts
• Materials and coatings
• Design rules

Replikation processes and technologies
• Overview and characteristics of all processes
• Micro injection moulding
• Injection compression moulding
• Reaction injection moulding
• Thermoforming / Blow moulding
• Micro hot embossing / Nanoimprint
• Comparison of processes

Charakterisation of replicated parts
• Quality of replicated parts - definition of criteria
• Lateral accuracy
• Surface quality
• Classification of cases of damage

Simulation of replication processes - hot embossing
• Process simulation based on analytic models
• Process simulation based on FEM systems
• Simulation of a hot embossing cycle
• Heating / Cooling - Effects of heat conduction, heat transfer, and convection
• Embossing based on a two step embossing cycle
• Cooling of a moulded part
• Demoulding - Stress on moulded parts

Presentation of actual research topics in micro replication
• Lab tour Campus North

Media
Printouts of the lecture presentation, if applicable further scientific articles
Course: Robotic I [24152]

Coordinators: Rüdiger Dillmann, Kai Welke, Dillmann, Welker, Do

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 40: Robotics (p. 162)[SP_40_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: ?? [24712]

Coordinators: Rüdiger Dillmann, Sven Schmidt-Rohr, Dillmann, Gindele, Schmidt-Rohr
Part of the modules: SP 40: Robotics (p. 162)[SP_40_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: ?? [24635]

Coordinators: Mehri Azad, Rüdiger Dillmann, Alexander Kasper, Dillmann, Kasper, Azad

Part of the modules: SP 40: Robotics (p. 162)[SP_40_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: ?? [24681]

Coordinators: Jörg Raczkowsky, Raczkowsky

Part of the modules: SP 32: Medical Technology (p. 153)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Decommissioning of Nuclear Facilities I [19435]

Coordinators: Sascha Gentes
Part of the modules: SP 21: Nuclear Energy (p. 141)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Failure Analysis [2173562]

Coordinators: Katja Poser

Part of the modules: SP 23: Power Plant Technology (p. 143)[SP_23_machi], SP 02: Powertrain Systems (p. 119)[SP_02_machi], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_machi], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_machi], SP 26: Materials Science and Engineering (p. 146)[SP_26_machi], SP 46: Thermal Turbomachines (p. 169)[SP_46_machi]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: 20 - 30 minutes
no notes

Conditions
basic knowledge in materials science (e.g. lecture materials science I and II)

Learning Outcomes
The students are able to discuss damage evaluation and to perform damage investigations. They know the common necessary investigation methods and can regard failures considering load and material resistance. Furthermore they can describe and discuss the most important types of failure and damage appearance.

Content
Aim, procedure and content of examining failure

Examination methods

Types of failure:
Failure due to mechanical loads
Failure due to corrosion in electrolytes
Failure due to thermal loads
Failure due to tribological loads

Damage systematics

Literature
A literature list, specific documents and partial lecture notes shall be handed out during the lecture.
Course: Rail Vehicle Technology [2115996]

Coordinators: Peter Gratzfeld
Part of the modules: SP 50: Rail System Technology (p. 173)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- Oral examination
- Duration: 20 minutes
- No tools or reference materials may be used during the exam.

Conditions
none

Recommendations
none

Learning Outcomes

- The students learn about advantages and disadvantages of different types of traction drives and judge which one fits best for each application.
- They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
- They know about the basics of running dynamics and bogies.
- They define suitable vehicle concepts based on requirements for modern rail vehicles.

Content

- Main systems of rail vehicles
- Electric and non-electric traction drives
- Brakes
- Bogies
- Vehicle concepts for mass transit and main line

Media

All slides are available for download (Ilias-platform).

Literature

A bibliography is available for download (Ilias-platform).

Remarks

None.
Course: Fast Reactor Physics [2189520]

Coordinators: Kostadin Ivanov

Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Welding Technology I [2173565]

Coordinators: Bernhard Spies
Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: 30 minutes
(Welding Technology I+II)
no auxiliary material

Conditions
basics of material science (iron- and non-iron alloys), of electrical engineering, of production processes.

Learning Outcomes
knowledge and understanding of the most important welding processes and its industrial application.

recognition, understanding and handling of problems occurring during the application of different welding processes relating to design, material and production.

classification and importance of welding technology within the scope of connecting processes (advantages/disadvantages, alternatives).

Content
definition, application and differentiation: welding, welding processes, alternative connecting technologies.
history of welding technology
sources of energy for welding processes

Survey: fusion welding, pressure welding, seam preparation/design, welding positions, weldability, gas welding, thermal cutting

manual metal-arc welding
submerged arc welding
IV characteristics: arc/sources of energy
gas-shielded metal-arc welding

Literature
Ruge: Handbuch der Schweißtechnik, Springer-Verlag, 1985
Fachbände des Deutschen Verlags für Schweißtechnik
Course: Welding Technology II [2174570]

Coordinators: Bernhard Spies
Part of the modules:
SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral

Duration: 30 minutes (Welding Technology I + II)

no auxiliary material

Conditions
lecture on Welding Technology I.
basics of material science (iron- and non-iron alloys), of electrical engineering, of production processes.

Learning Outcomes
recognition, understanding and handling of problems occurring during the application of different welding processes relating to design, material and production.

consolidation of and amplification to the knowledge of Welding Technology I

consolidation of knowledge of material behaviour during welding
design and properties of welded constructions
quality assurance for welding processes

Content
narrow gap welding
TIG-welding
plasma arc welding
electron beam welding
laser welding

spot welding / projection welding
heat flow at welding

welding of low-alloy steel / time-temperature-transformation curve.
welding of high-alloy steel / austenite / Schaefflerdiagramm
low temperature steels
welding of cast iron

heat treatment for welding
welding of aluminium alloys
residual welding stress
methods of testing
design of welded constructions

Literature
Ruge: Handbuch der Schweißtechnik, Springer-Verlag, 1985
Course: Fatigue of Metallic Materials [2173585]

Coordinators: Karl-Heinz Lang

Part of the modules: SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: 30 minutes
none

Conditions
none, basic knowledge in Material Science will be helpful

Learning Outcomes
The lecture gives an overview of the deformation and damage behaviour of metallic materials under cyclic loading. Both the fundamental microstructural processes as well as the development of macroscopic damages are mentioned. The fundamental procedures for the evaluation of uniform and stochastic cyclical loadings are also explained. The students will be able to recognize possible damage due to cyclical loadings and evaluate the fatigue behaviour of components both qualitatively as well as quantitatively.

Content
Introduction: some interesting cases of damage
Testing Facilities
Cyclic Stress Strain Behaviour
Crack Initiation
Crack Propagation
Lifetime Behaviour under Cyclic Loading
Fatigue of Notched Components
Structural Durability

Literature
Lecture notes that include a list of current literature will be distributed.
Course: Schwingungstechnisches Praktikum [2161241]

Coordinators: Hartmut Hetzler, Alexander Fidlin

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Colloquium to each session.

Conditions
None.

Recommendations
Vibration theory, mathematical methods of vibration theory, dynamic stability, nonlinear vibrations

Learning Outcomes
* Introduction to common measurement principles for mechanical vibrations
* selected vibrational problems are demonstrated from a theoretical and experimental aspect
* Measurement, evaluation and comparison with analytical calculations.

Content
* Frequency response of a force-excited oscillator (1DoF)
* stochastically excited oscillator (1DoF)
* digital processing of measurement data
* Determination of Lehr’s damping measure from resonance
* forces vibrations of a Duffing oscillator
* isolation of acoustical waves by means of additional masses
* critical speeds of a rotor in elastic bearings
* stability of a parametrically excited oscillator
* resonance of clamped beams with variable cross section
* experimental modal analysis

Literature
comprehensive instructions will be handed out
Course: Failure Analysis Seminar [2173577]

Coordinators: Katja Poser

Part of the modules: SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
participation, report

Conditions
knowledge in ‘failure analysis’

Learning Outcomes
The seminar deals with real failed parts. The students will carry out complete failure analyses incl. appropriate reporting. It starts with the basic failure mechanisms of mechanically, chemically, and thermally induced failures and its failure appearances. After the failure mechanisms are known possible counters to measure are presented and discussed.

Content
analyse of real failed parts

- failure appearances
- mechanisms of failure
- prevention of failure
- writing a report
Course: Safety engineering [2117061]

Coordinators: Hans-Peter Kany

Part of the modules: SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 03: Work Science (p. 120)[SP_03_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach], SP 44: Technical Logistics (p. 167)[SP_44_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 10: Engineering Design (p. 129)[SP_10_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral / written (if necessary) ⇒ (see “Studienplan Maschinenbau”, version of 7.7.2010)
examination aids: none

Conditions
none

Recommendations
none

Learning Outcomes
The student:

- has basic knowledge of safety engineering,
- knows the basics of industrial health and labour protection in Germany,
- is familiar with the national and European safety regulations and the basics for the safe methods of design of machinery.
- is able to realize these objectives by using examples in the field of storage- and conveyor-systems.

Content
The course provides basic knowledge of safety engineering. In particular the basics of health at the working place, job safety in Germany, national and European safety rules and the basics of safe machine design are covered. The implementation of these aspects will be illustrated by examples of material handling and storage technology. This course focuses on: basics of safety at work, safety regulations, basic safety principles of machine design, protection devices, system security with risk analysis, electronics in safety engineering, safety engineering for storage and material handling technique, electrical dangers and ergonomics. So, mainly, the technical measures of risk reduction in specific technical circumstances are covered.

Media
presentations

Literature

Remarks
none
Course: Signals and Systems [23109]

Coordinators: Fernando Puente

Part of the modules: SP 31: Mechatronics (p. 152)[SP_31_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Simulation of Coupled Systems [2114095]

Coordinators: Marcus Geimer

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

ECTS Credits: 4
Hours per week: 2/2
Term: Summer term
Instruction language: de

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
It is recommended to have:

- Knowledge of ProE (ideally in current version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

Learning Outcomes
The limitation of the simulation programs and the related problems will be introduced by using the example of the working movement of a wheel loader. As a solution the coupled simulation of multiple programs by using the mentioned example will be shown.

Content

- Knowledge of the basics of multi-body and hydraulic simulation programs
- Possibilities of coupled simulations
- Development of a simulation model by using the example of a wheel loader
- Documentation of the result in a short report

Literature
Elective literature:

- miscellaneous guides according the software-tools pdf-shaped
- information to the wheel-type loader
Course: Simulation in product development process [2185264]

Coordinators: Albert Albers, Thomas Böhlke, Jivka Ovtcharova

Part of the modules:
- SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 20: Integrated Product Development (p. 140)[SP_20_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 13: Strength of Materials/ Continuum Mechanics (p. 134)[SP_13_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 10: Engineering Design (p. 129)[SP_10_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 32: Medical Technology (p. 153)[SP_32_mach], SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Not graded:
- term paper in group work
 - written part: 10 pages per person
 - presentation: 15 minutes per group

Conditions

None.

Recommendations

None.

Learning Outcomes

The students learn the connections between simulation methods, the necessary IT technique and the integration of such methods within the product development process. They know the basic approximation methods in mechanics and methods of modelling material behaviour using the finite-element-method. The students learn the integration within the product development process as well as the necessity of coupling different methods and systems. They master the modelling of heterogeneous technical systems and know the foundations of virtual reality.

Content

- approximation methods of mechanics: FDM, BEM, FEM, MBS
- material modelling using the finite-element-method
- product life cycle
- coupling of methods and system integration
- modelling heterogeneous technical systems
- functional Digital Mock-Up (DMU), virtual prototypes

Literature

Slides of lectures will be available
Course: Simulation of turbulent flow and heat transfer using statistical models [2169988]

Coordinators: Dominic von Terzi, v. Terzi

Part of the modules: SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes
no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
Introduction to turbulent flow physics and its simulation. Introduction to different simulation techniques with focus on calculations based on turbulence models. In detail description of the most common statistical models for turbulent transport of momentum and heat. Discussion of the capabilities and limits of the introduced models based on illustrating application cases. Presentation of the state of the art and current trends, e.g. so called hybrid methods (DES, SAS etc.).

Content
- Closure problem for computing turbulent flows
- Basic equations
- Energy cascade and local isotropy
- Turbulence (film by Stewart)
- Introduction to turbulence modelling
- $K-\varepsilon$ model
- Two-equation models
- Boundary conditions and treatment of near-wall regions
- Reynolds Stress Models (RSM) and Algebraic Stress Models (ASM)
- Modelling turbulent heat transfer
- Hybrid RANS/LES
- RANS for unsteady turbulent flows (URANS)

Literature
- Fröhlich, J.; Large Eddy Simulation turbulenter Strömungen, Teubner Verlag, 2006
Course: Simulation of production systems and processes [2149605]

Coordinators: Kai Furmans, Volker Schulze, Gert Zülch

Part of the modules: SP 33: Microsystem Technology (p. 154)[SP_33_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 37: Production Management (p. 159)[SP_37_mach], SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Conditions
none

Recommendations
none

Learning Outcomes
The student knows different possibilities of simulation technology within the production technology and is able to use those methods. They range from the modeling of production and work systems down to simulation of single manufacturing processes.

Content
The lecture is focused on the various aspects and possibilities of the usage of simulation technologies within the production technology. First the definition of the terminology and the basic knowledge is pointed out. In the chapter “Design of experiments and validation” the procedure of a simulation study with the preparation work, the selection of the simulation tools, the validation and the analysis of the simulation runs will be discussed. The chapter “Statistical basics” deals with probability distribution and random numbers as well as the use of Monte-Carlo-simulations in practical exercises. The chapter “Simulation of plant, machinery and processes” addresses the simulative analysis of single manufacturing processes via the examination of machine tools down to the modeling of a digital plant with the focus on the production facility. The chapter “Simulation of work systems” in addition considers the personnel integrated and orientated simulation. Here the assembly systems and the enterprise orientated simulation is considered. Finally the specifications of the material flow simulation for production systems are examined.

Literature
none

Remarks
The lecture starts in winter term 2011/12
Course: Simulation of spray and mixture formation processes in combustion engines [2133114]

Coordinators: Carsten Baumgarten

Part of the modules:
- SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach]
- SP 35: Modeling and Simulation (p. 156)[SP_35_mach]
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]
- SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]
- SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

ECTS Credits: 4
Hours per week: 2
Term: Winter term
Instruction language: de

Learning Control / Examinations
oral examination, Duration: ca. 45 min., no auxiliary means

Conditions
None.

Recommendations
basic knowledge in combustion engines and fluid dynamics helpful

Learning Outcomes
Students get to know the more and more important field of mathematical modelling and simulation of three dimensional spray and mixture formation processes. After describing the fundamental mechanisms and categories of the in-cylinder spray and mixture formation the basic equations needed for sub-processes such as spray breakup, droplet decelleration, droplet collision, ignition etc. are discussed. Last but not least trend-setting mixture formation strategies and their potential for engines with direct injection are discusses.

Content
Fundamentals of mixture formation in combustion engines
Injection systems and nozzle types
basic equations of fluid dynamics
modelling of spray and mixture formation
DI Diesel engines
DI Gasoline engines
HCCI combustion process

Literature
Slides available in the lectures
Course: Scaling in fluid dynamics [2154044]

Coordinators: Leo Bühler

Part of the modules: SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral

Duration: 30 minutes

no auxiliary means

Conditions

none

Learning Outcomes

The definition of nondimensional groups ensures the transfer of results from model experiments to real applications. Moreover, these groups reduce the number of experimental parameters and thereby the direct experimental effort. Scaling laws allow the identification of essential variable. They form the base for meaningful simplifications (modeling) of fluid dynamics equations as a starting point for efficient solution strategies.

Content

- Introduction
- Similarity rules (examples)
- Dimensional analysis (Pi-theorem)
- Scaling in differential equations
- Scaling in boundary layers
- Self-similar solutions
- Scaling in turbulent shear layers
- Rotating flows
- Magnetohydrodynamic flows

Literature

G. I. Barenblatt, 1979, Similarity, Self-Similarity, and Intermediate Asymptotics, Plenum Publishing Corporation (Consultants Bureau)

J. Zierep, 1982, Ähnlichkeitsgesetze und Modellregeln der Strömungsmechanik, Braun

Course: Mechatronic Softwaretools [2161217]

Coordinators: Carsten Proppe

Part of the modules: SP 50: Rail System Technology (p. 173)[SP_50_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written exam, duration: 1 h

Conditions
none

Recommendations
none

Learning Outcomes
Mechatronic Softwaretools is a practical training course on using the software packages Maple, Matlab, Simulink and Adams. Mechatronic problems are solved using these packages on PCs.

Content
1. Introduction to Maple: Generating of the nonlinear equations of motion for a double pendulum. Stability and resonance investigation of a Laval-rotor.
3. Introduction to Simulink: Block diagrams of one-mass- and two-mass-oscillators. PID-distance control of two vehicles.
4. Introduction to Adams: Modelling and dynamic simulation of a simple robotic manipulator.

Literature

Programmbeschreibungen des Rechenzentrums Karlsruhe zu Maple, Matlab und Simulink
Course: [2163113]

Coordinators: Alexander Fidlin

Part of the modules:
SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 min (optional subject)
20 min (major subject)

Means are not allowed

Conditions
None.

Recommendations
Vibration theory, mathematical methods of vibration theory

Learning Outcomes

- to learn the most important methods of the stability analysis
- to apply the stability analysis for equilibria
- to apply the stability analysis for periodic solution
- to apply the stability analysis for systems with feedback control

Content

- Basic concepts of stability
- Lyapunov's functions
- Direct lyapunov's methods
- Stability of equilibria positions
- Attraction area of a stable solution
- Stability according to the first order approximation
- Systems with parametric excitation
- Stability criteria in the control theory

Literature

Course: Control engineering [2150683]

Coordinators: Christoph Gönnheimer

Part of the modules: SP 39: Production Technology (p. 160)[SP_39_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach], SP 18: Information Technology (p. 138)[SP_18_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Conditions
None.

Learning Outcomes
The lecture deals with technical bases of process-oriented information- and control technologies, signal theory and electrical drive technology, programmable logic control, numerical control and robot control technologies as long as computer communication and process control. Furthermore modern field bus technologies are illustrated and current trends in automation technologies are presented. Demonstration of the production science laboratory and an excursion to an industry partner shows the implementation in real applications of the lecture themes.

Content
1. Basics of control engineering
2. Control periphery
3. Programmable logic control (PLC)
4. Numerical control (NC)
5. Robot Control
6. Communication technology
7. Trends in automation technology
Course: Radiation protection I [23271]

Coordinators: Manfred Urban, Urban

Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Strategic Product Planning [2146193]

Coordinators: Andreas Siebe

Part of the modules:
- SP 20: Integrated Product Development (p. 140)[SP_20_mach], (p. 174)[SP_51_mach],
- SP 12: Automotive Technology (p. 132)[SP_12_mach],
- SP 02: Powertrain Systems (p. 119)[SP_02_mach],
- SP 10: Engineering Design (p. 129)[SP_10_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- oral exam

Conditions
- registration

Learning Outcomes
Successful enterprises at an early stage know how their offers do look like on the markets of tomorrow. Thus, beneath the market potentials, also the possible market ratings i.e. the products as well as the underlying technologies must be thought ahead. The lecture introduces systematically into future management. Different approaches are explained and evaluated. Based on this foundation, the scenario-based strategic product planning is explained theoretically and exemplified through concretely.

Content
Introduction into future management, Development of scenarios, scenario-based strategy development, trend management, strategic early detection, innovation- and technology management, scenarios in product development, from profiles of requirements to new products, examples out of industrial praxis.
Course: Flows in rotating systems [2154407]

Coordinator: Rainer Bohning

Part of the modules: SP 41: Fluid Mechanics (p. 164) [SP_41_mach], SP 46: Thermal Turbomachines (p. 169) [SP_46_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 minutes (optional subject), 20 minutes (major subject)

No tools or reference materials may be used during the exam

Learning Outcomes

Rotating fluids occur in a wide variety of technical contexts and in geophysics, particularly in the atmosphere and in the oceans. The fundamental phenomena involved as well as the mathematical and physical aspects are being presented in the lecture.

Content

- Introduction
- Governing equations in a rotating System
- Exact solutions (circular flows)
- Dynamic similarity (Rossby Number Ekman Number)
- Hyperbolicity (Inertia waves, Rossby waves)
- Taylor Proudman theorem
- Ekman-layer
- Instabilities in rotating systems

Literature

Greenspan, H. P.: The Theory of Rotating Fluids

Lugt, H. J.: Vortex Flow in Rotating Fluids (with Mathematical Supplement), Wiley Interscience

Pedlosky, J.: Geophysical Fluid Dynamic
Course: Flows with chemical reactions [2153406]

Coordinators: Andreas Class

Part of the modules: SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach], SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Duration: 30 min

Lecture

Conditions
None.

Learning Outcomes
Chemical reactions of liquid or gaseous media are tightly coupled to the underlying fluid flow. Often they even drive the flow.

Some typical examples are combustion (laminar and turbulent gas premixed or diffusion flames), the processes within the industrial reactors of chemical industry, the directional polymerization of plastics, the burning of a cigar, the high temperature synthesis of new materials, and also the explosion of a star as a supernova.

Content
In the lecture we mainly consider problems, where chemical reaction is confined to a thin layer. The problems are solved analytically or they are at least simplified allowing for efficient numerical solution procedures. We apply simplified chemistry and focus on the fluid mechanic aspects of the problems.

Literature
Lecture

Buckmaster, J.D.; Ludford, G.S.S.: Lectures on Mathematical Combustion, SIAM 1983
Course: Structural and Functional Ceramics [2126775]

Coordinators: Michael Hoffmann

Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 43: Technical Ceramics and Powder Materials (p. 166)[SP_43_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral
20 min
Auxiliary means:none

Conditions

None.

Learning Outcomes

Based on concrete examples the importance of microstructural constitution on mechanical, thermal, chemical and electrical properties is shown.

Content

The lecture gives an overview on structure and properties of technical relevant structural and functional ceramic materials and parts. The following groups of materials are presented:

- Silicon Nitride
- Silicon Carbide
- Alumina
- Zirconia
- Ferroelectric ceramics

Literature

Course: Structural and functional materials of fusion and nuclear reactors [2190499]

Coordinators: A. Möslang

Part of the modules: SP 53: Fusion Technology (p. 175) [SP_53_mach], SP 21: Nuclear Energy (p. 141) [SP_21_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Structural and phase analysis [2125763]

Coordinators: Susanne Wagner

Part of the modules: SP 43: Technical Ceramics and Powder Materials (p. 166)[SP_43_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
20 min
auxiliary means: none

Conditions
None.

Learning Outcomes

1. Understanding of the fundamentals of X-ray generation as well as their interaction with crystalline materials
3. It is demonstrated, how the detected X-ray spectra can be analyzed by qualitative and quantitative phase analysis. Furthermore texture analysis will be explained.

Content

1. Production and properties of X-Ray’s
2. Fundamentals and application of different measuring methods
3. Qualitative and quantitative phase analysis
4. Texture analysis (pole figures)
5. Residual stress measurements

Literature

Course: Superhard Thin Film Materials [2177618]

Coordinators: Sven Ulrich

Part of the modules: SP 47: Tribology (p. 170)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination (30 min)

no tools or reference materials

Conditions
None.

Recommendations
None.

Learning Outcomes
Superhard materials are solids with a hardness higher than 4000 HV 0.05. The main topics of this lecture are modelling, deposition, characterization and application of superhard thin film materials.

Content
Introduction

Basics

Plasma diagnostics

Particle flux analysis

Sputtering and ion implantation

Computer simulations

Properties of materials, thin film deposition technology, thin film analysis and modelling of superhard materials

Amorphous hydrogenated carbon

Diamond like carbon

Diamond

Cubic Boronitride

Materials of the system metall-boron-carbon-nitrogen-silicon

Literature
G. Kienel (Ed.): Vakuumbeschichtung 1 - 5, VDI Verlag, Düsseldorf, 1994

Copies with figures and tables will be distributed
Course: Supply chain management [2117062]

Coordinators: Knut Alicke

Part of the modules: SP 29: Logistics and Material Flow Theory (p. 150)[SP_29_mach], SP 19: Information Technology of Logistic Systems (p. 139)[SP_19_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]

ECTS Credits 6
Hours per week 4
Term Winter term
Instruction language de

Learning Control / Examinations
oral examination

No tools or reference materials may be used during the exam.

Conditions
limited number: application necessary

Learning Outcomes
The student knows theoretical and practical basics to use approaches of Supply Chain Management within the operational practice.

Content

• Bullwhip-Effect, Demand Planning & Forecasting
• Conventional planning processes (MRP + MRPII)
• Stock keeping strategy
• Data acquisition and analysis
• Design for logistics (Postponement, Mass Customization, etc.)
• Logistic partnerships (VMI, etc.)
• Distribution structures (central vs. distributed, Hub&Spoke)
• SCM-metrics (performance measurement) e-business
• Special sectors as well as guest lectures

Media
presentations

Literature
Alicke, K.: Planung und Betrieb von Logistiknetzwerken
Simchi-Levi, D., Kaminsky, P.: Designing and Managing the Supply Chain
Goldratt, E., Cox, J.: The Goal

Remarks
this course is a block course
Course: Sustainable Product Engineering [2146192]

Coordinators: Karl-Friedrich Ziegahn

Part of the modules: SP 20: Integrated Product Development (p. 140)[SP_20_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach], SP 10: Engineering Design (p. 129)[SP_10_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam

Conditions
None.

Learning Outcomes
The goal of the lecture is to convey the main elements of sustainable product development in the economic, social and ökologichen context.

Content

- understanding of sustainability objectives and their role in product development, the interaction between technical products and their environment, the holistic approach and the equality of economic, social and environmental aspects and environmental aspects
- skills for life-cycle product design using the example of complex automotive components such as airbag systems and other current products
- understanding of product environmental stresses with relevancy to praxis at the example of technology-intensive components, robustness and durability of products as the basis for a sustainable product development, development of skills for the application of environmental simulation during the process of development of technical products
- delivery of key skills such as team skills / project / self / presentation based on realistic projects
Course: Theoretical description of mechatronic systems [2161219]

Coordinators: Wolfgang Seemann

Part of the modules: SP 04: Automation Technology (p. 121)[SP_04_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral

30 minutes (optional subject), 20 minutes (major subject)

Conditions

EM III, EM IV, Control theory

Learning Outcomes

The development of new products by spatial and functional integration of mechanical, electrical or electronic and computational components is a rapidly increasing trend in many technical areas. The system-theoretical analysis of such mechatronical systems is therefore very important. The course focuses on the description of mechatronic systems by physical and mathematical models. Emphasis is put on the complete system which may incorporate different disciplines. Aim of the course is to provide principles and tools to derive the mathematical models of mechatronic systems.

Content

Literature

Script of the course.

Course: Technical Acoustics [2158107]

Coordinators: Martin Gabi

Part of the modules: SP 42: Technical Acoustics (p. 165)[SP_42_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach], SP 10: Engineering Design (p. 129)[SP_10_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach]

ECTS Credits

<table>
<thead>
<tr>
<th>Credit</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination
Duration: 30 minutes
No tools or reference materials may be used during the exam.

Conditions
none

Recommendations
none

Learning Outcomes
First, the students get to know the fundamental physical-mathematical laws of acoustics in general and the human hearing characteristics. Second, the difference of sound and noise will be outlined. Physical-empirical laws for determination of sound and noise levels of various emission and immission situations will be worked out or derived. Furtheron general sound measurement methods of machinery will be taught. A special focus here are fluid machinery.

Content
Human ear, wave propagation, wave equation, concept of acoustice poles, acoustic level notation, levels of various physical magnitudes, and levels which are corrected by means of hearing sensation, physical-empirical laws of wave propagation in various media, measurement techniques for machinery, fluid driven noise

Literature
1. Lecture notes (downloadable from institute's homepage).
Course: Computer Engineering [2106002]

Coordinators: Georg Bretthauer

Part of the modules:
- SP 18: Information Technology (p. 138)[SP_18_mach]
- SP 40: Robotics (p. 162)[SP_40_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written examination

Duration: 2 hours (compulsory subject)

Auxiliary means: none

Conditions

None.

Recommendations

None.

Learning Outcomes

The students possess essential knowledge about information processing in digital computers. Based on information representation and calculations of complexity, students are capable to design algorithms efficiently. The students are able to apply the knowledge about efficient algorithm design to important numerical computation methods in mechanical engineering. Students understand the importance of software quality in mechanical engineering and know basic concepts and important measures of quality assurance.

Content

Introduction: definitions, basic concepts, introductory examples

Information coding on finite automata: numbers, characters, commands, examples

Algorithm design: definitions, complexity of algorithms, complexity classes P and NP, examples

Sorting algorithms: relevance, algorithms, simplifications, examples

Software quality assurance: terms and measures, errors, phases of quality assurance, constructive measures, analytical measures, certification

Lectures are complemented by an exercise course.

Literature

Vorlesungsskript (Internet)

Course: Vibration Theory [2161212]

Coordinators: Wolfgang Seemann

Part of the modules:
- SP 42: Technical Acoustics (p. 165)[SP_42_mach],
- SP 46: Thermal Turbomachines (p. 169)[SP_46_mach],
- SP 09: Dynamic Machine Models (p. 128)[SP_09_mach],
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach],
- SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach],
- SP 35: Modeling and Simulation (p. 156)[SP_35_mach],
- SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written exam

If course is chosen as optional subject or part of major subject:
Oral exam, 30 minutes (optional subject), 20 minutes (major subject), no means

Conditions

EM III, EM IV

Learning Outcomes

The course gives an introduction into the vibration theory of linear systems. First, general vibration in form of harmonic signals is considered. One degree of freedom systems are treated in detail for free and forced vibration, especially for harmonic, periodic and arbitrary excitation. This is the foundation for systems with many degrees of freedom as these may be transformed with the help of modal coordinates. For multiple dof systems the eigenvalue problem is solved. Then forced vibration is treated. Finally, wave propagation problems and eigenvalue problems for systems with distributed parameters are discussed. As an application an introduction into rotor dynamics is given.

Goal of the course is to see the similarities for systems with one dof and with multiple dof. Besides typical phenomena like resonance a systematic mathematical approach to vibration problems and an interpretation of the mathematical results should be obtained.

Content

Concept of vibration, superposition of vibration with equal and with different frequencies, complex frequency response.

Vibration of systems with one dof: Free undamped and damped vibration, forced vibration for harmonic, periodic and arbitrary excitation. Excitation of undamped vibration in resonance.

Vibration of systems with distributed parameters: Partial differential equations as equations of motion, wave propagation, d’Alembert’s solution, Ansatz for separation of time and space, eigenvalue problem, infinite number of eigenvalues and eigenfunctions.

Introduction to rotor dynamics: Laval rotor in rigid and elastic bearings, inner damping, Laval rotor in anisotropic bearings, synchronous and asynchronous whirl, rotors with asymmetric shaft.

Literature

Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd 1 and Bd 2, Berlin, 1987

Course: Technical Design in Product Development [2146179]

Coordinators: Markus Schmid, Dr. -Ing. Markus Schmid
Part of the modules: SP 03: Work Science (p. 120)[SP_03_mach], SP 10: Engineering Design (p. 129)[SP_10_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
For the reason of high student number the exam is a written exam. Only dictionary is allowed.

Conditions
Authorisation by the Examination Office.

Recommendations
None

Learning Outcomes
Status of Technical Design in current Product Development; the lecture supports current examples of the fields of Precision Mechanics, Mechanical and Automotive Engineering

Content
Introduction
Relevant parameters on product value in Technical Design
Design in Methodical Development and Engineering and for a differentiated validation of products
Design in the concept stage of Product Development
Design in the draft and elaboration stage of Product Development

Media
-

Literature
Hexact (R) Lehr- und Lernportal

Remarks
-
Course: Technology of steel components [2174579]

Coordinators: Volker Schulze

Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126)[SP_07_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- oral
- duration 20 minutes
- No tools or reference materials may be used during the exam

Conditions
- Materials Science and Engineering I & II

Learning Outcomes
At the begin of this lecture the basics for the evaluation of the influence of manufacturing processes on the behaviour of metallic components are imparted. After this, the different aspects of changing the behaviour of steel components by forming, heat treating, mechanical surface treatments and joining are discussed.

Content
- Meaning, development and characterization of component states
- Description of the influence of component states on
 - mechanical properties at quasistatic loading
 - mechanical properties at cyclic loading
 - tribological properties
- Stability of component states
- Component states due to forming
- Component states due to quenching and tempering
- Component states due to case hardening
- Component states due to surface hardening
- Component states due to nitriding
- Component states due to machining
- Component states due to mechanical surface treatments
- Component states due to joining

Literature
- Script will be distributed within the lecture
- VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984
- V. Schulze: Modern Mechanical Surface Treatments, Wiley, Weinheim, 2005
Course: Technologies for energy efficient buildings [2158106]

Coordinators: Ferdinand Schmidt
Part of the modules: SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination
Duration: 30 minutes
No tools or reference materials may be used during the exam.

Conditions
Basic knowledge of thermodynamics and heat transfer

Learning Outcomes
Students know the main factors influencing the final energy consumption of buildings; they know the criteria for indoor comfort as well as principles of energy efficient and solar building design. Students acquire knowledge on the current state of technologies for the building envelope (including solar thermal energy utilisation) as well as technologies for heating, cooling and air-conditioning of energy efficient buildings. Students are able to check building energy concepts for plausibility and can estimate how different technologies can be integrated into highly efficient complete systems.

Content
More than one third of the primary energy consumption in Europe can be directly related to the heating, cooling and climatisation of buildings. As a contribution to climate change mitigation, a reduction of greenhouse gas emissions to about one fifth of today’s values is required over the next half century. This course deals with the potentials for reducing the energy demand of buildings and for integrating utilisation of solar energy and environmental energy into building energy concepts. Available technologies and current development trends for efficient energy use in buildings are presented. The influence of various technology options and system concepts on energy demand is discussed referring to building simulation results for selected reference buildings.

1. Terms and definitions: energy economics, climate change mitigation, energy use in buildings
2. Factors influencing energy consumption in buildings and occupants’ comfort
3. Heat transfer through the building envelope, insulation technologies
4. Windows and glazings
5. Daylight use, glare protection, shadings
6. Ventilation and air-conditioning, „passive house“ concept
7. Heating and cooling with low-exergy systems (LowEx); ground heat sources and sinks
8. Solar thermal energy use in buildings
9. Heat and cold storage
10. Heat pumps (mechanically / thermally driven)
11. Solar Cooling
12. Cogeneration and Trigeneration
13. Examples of realised system concepts
14. Buildings within supply infrastructures; district heating
15. Excursion

Media
Powerpoint, blackboard, clicker (audience response system)

Literature
Remarks
Participation in the computer lab exercise (2158108) is a prerequisite for the exam.
Course: Thermal Solar Energy [2169472]

Coordinators: Robert Stieglitz

Part of the modules: SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Conditions
Basics in heat and mass transfer

Learning Outcomes
The lecture elaborates the basics of the solar technology and the definition of the major wordings and its physical content such as radiation, thermal use, insulation etc. Further the design of solar collectors for different purposes is discussed and analyzed. The functional principle of solar plants is elaborated before at the end the ways for solar climatization is discussed.

Content

Literature
At the end of the lecture the content will be distributed by a CD containing all relevant information of the given lectures.
Course: Thermal Turbomachines I [2169453]

Coordinators: Hans-Jörg Bauer

Part of the modules: SP: Engineering Thermodynamics (p. 168)[SP_45_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]

ECTS Credits: 6
Hours per week: 3
Term: Winter term
Instruction language: de

Learning Control / Examinations
oral
Duration: approximately 1 hour

no tools or reference materials may be used during the exam

Conditions
None.

Recommendations
None.

Learning Outcomes
The main topics of the course are the design principles, construction and applications of modern turbo-machinery. These issues are not only addressed on the level of individual components and assemblies, but are also considered by viewing the role of the complete turbine in the power generation process. In this manner the role of physical, economic and ecological factors in the design of the machines becomes evident. It is a recommended lecture combination with 'Thermal Turbomachines II'.

Content
Basic concepts of thermal turbomachinery
Steam Turbines - Thermodynamic process analysis
Gas Turbines - Thermodynamic process analysis
Combined cycle and cogeneration processes
Overview of turbomachinery theory and kinematics
Energy transfer process within a turbine stage
Types of turbines (presented through examples)
1-D streamline analysis techniques
3-D flow fields and radial momentum equilibrium in turbines
Compressor stage analysis and future trends in turbomachinery

Literature
Lecture notes (available via Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
Course: Thermal Turbomachines II [2170476]

Coordinators: Hans-Jörg Bauer
Part of the modules: SP: Engineering Thermodynamics (p. 168)[SP_45_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral (can only be taken in conjunction with 'Thermal Turbomachines I')
Duration: approximately 60 minutes (including Thermal Turbomachines I)

Auxiliary: no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
This lecture builds on the fundamentals learned in Thermal Turbo Machines I and focusses on the design aspects and operations of the machines. It is a recommended lecture combination with 'Thermal Turbomachines I'.

Content
General overview, trends in design and development

Comparison turbine - compressor

Integrating resume of losses

Principal equations and correlations in turbine and compressor design, stage performance

Off-design performance of multi-stage turbomachines

Control system considerations for steam and gas turbines

Components of turbomachines

Critical components

Materials for turbine blades

Cooling methods for turbine blades (steam and air cooling methods)

Short overview of power plant operation

Combustion chamber and environmental issues

Literature
Course not packet

Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993

Course: Thermodynamics of dispersed systems [22010]

Coordinators: Karlheinz Schaber, Schaber
Part of the modules: SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: [2193002]

Coordinators: Hans Jürgen Seifert

Part of the modules: SP 26: Materials Science and Engineering (p. 146)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Seminar: Introduction to numerical fluid mechanics [2153409]

Coordinators: Torsten Schenkel
Part of the modules: SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

ECTS Credits: 4
Hours per week: 2
Term: Winter term
Instruction language: de

Learning Control / Examinations
Presentation, Paper

Conditions
None.

Learning Outcomes
The student knows the fundamental concepts for practical, numerical simulation of fluid mechanical problems. He can transfer a simple fluid mechanical problem into a mathematical-numerical model and apply it.

In addition to a 2 hour weekly meeting, in which the topics and problems can be discussed, problems that occur while working on the posed problem can be solved in the consultation hours. The problems are solved in groups in the workstation pool. Every group will solve a different problem. In the seminar the groups will present their results in front of the others. Die results are also presented in the form of written papers, which will be published as an internal summary report.

Content
- Grid dependency on type and resolution
- Numerical diffusion
- Dissipative grids
- Order of discretisation
- Dependency on boundary conditions. What is a 'well posed' problem?
- Dimensionality: When to reduce the dimensionality of a simulation model?
- 3D-Effects
- Assymetry in symmetric geometry
- Selection of turbulence models and their influence on the solution.

Literature
Laurin, Oertel: Numerische Strömungsmechanik. Vieweg, 2009
Course: Tractors [2113080]

Coordinators: Martin Kremmer
Part of the modules: SP 34: Mobile Machines (p. 155)[SP_34_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination

Conditions
basic knowledge in mechanical engineering

Learning Outcomes

- A close look on problems in agricultural engineering
- Customer requirements and their implementation to the tracktor
- Overview about tractor engineering

Content

Tractors are one of the most underestimated vehicles in regard to performance und technics. Almost none vehicle is as multifunctional and fulfilled with high-tec as a tractor. Automatic guidance, special chassis suspension or special concepts of power trains are one of the topics where tractors are in leading position in technologies.

During the lecture an overview about the design and construction and application area is given. A close look will be taken on the historical background, legal requirements, ways of development, agricultural organizations and the process of development itself.

In detail the following topics will be dealt with:

- agricultural organization / legal requirements
- history of tractors
- tractor engineering
- tractor mechanics
- chassis suspension
- combustion engine
- transmission
- interfaces
- hydraulics
- wheels and tyres
- cabin
- electrics and electronics

Literature

- K.T. Renius: Traktoren - Technik und ihre Anwendung; DLG Verlag (Frankfurt), 1985
- E. Schilling: Landmaschinen - Lehr- und Handbuch für den Landmaschinenbau; Schilling-Verlag (Köln), 1960
Course: Tribology A [2181113]

Coordinators: Matthias Scherge, Martin Dienwiebel

Part of the modules: SP 47: Tribology (p. 170)[SP_47_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
None.

Recommendations
preliminary knowledge in mathematics, mechanics and materials

Learning Outcomes
The lecture Tribology A introduces fundamental mechanisms present in tribological systems. In the course of the lecture the principal aspects of Tribology at the interface of Mechanical Engineering, Physics, Chemistry and Materials Science are treated. At the end of the lecture participants are able to evaluate Friction and Wear in tribological Systems and can name possible solutions for tribological optimization.

Content
* Chapter 1: Friction Adhesion, geometrical and real area of contact, Friction experiments, friction powder, tribological stressing, environmental influences, tribological age, contact models, Simulation of contacts, roughness.

* Chapter 2: Wear, plastic deformation at the asperity level, dissipation modes, mechanical mixing, Dynamics of the third body, running-in, running-in dynamics, shear stress.

* Chapter 3: Lubrication, base oils, Stabweck plot, lubrication regimes (HD, EHD, mixed lubrication), additives, oil characterization, solid lubrication.

Literature

Course: Tribology B [2182139]

Coordinators: Matthias Scherge, Martin Dienwiebel

Part of the modules: SP 47: Tribology (p. 170)[SP_47_mach], SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination in combination with tribology A, Duration: 0,5 hours, also possible as a part of a major subject, no auxiliary means

Conditions
None.

Recommendations
helpful: basic knowledge about engines and materials science

Learning Outcomes
The students get to know the analysis of mechanical interaction, ist consequences as well as the prevention of defects and breakdown

On the basis of a wide physical introduction the problems of dissipation as well as the reaction of solid bodies are discussed with the help of practical examples of engine components.

Additionally state-of-the-art measuring methods are introduced, which characterize the mechanical processes on the length scale from millimeters to the atomic range.

Content
Friction
Wear

Lubrication, additives

Literature
Lecture notes available in the lectures

Course: Turbine and compressor Design [2169462]

Coordinators: Hans-Jörg Bauer, Achmed Schulz
Part of the modules: SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes
no tools or reference materials may be used during the exam

Conditions
Thermal Turbomachines I+II

Learning Outcomes
The lecture is intended to expand the knowledge from Thermal Turbomachines I+II. Special types of components such as radial turbines and transonic compressors are discussed with emphasis on the proper design of each individual component.

Content
Thermal Turbomachines, general overview
Design of a turbomachine: Criteria and development
Radial machines
Transonic compressors
Combustion chambers
Multi-spool installations

Literature

Master Course Mechanical Engineering (M.Sc.)
Module Handbook, Date: 29.06.2011
Course: Turbo Jet Engines [2170478]

Coordinators: Hans-Jörg Bauer, Achmed Schulz

Part of the modules: SP 24: Energy Converting Engines (p. 144)[SP_24_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

Auxiliary: no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
The lecture concentrates on design concepts and operation of modern jet engines. Based on thermodynamics and fluidmechanics the main components of a jet engine are introduced such as intake, compressor, combustor, turbine and thrust nozzle. Various methods for reducing emissions, noise and fuel consumption are also discussed.

Content
Introduction to jet engines and their components

Demands on engines and propulsive efficiency

Thermodynamic and gas dynamic fundamentals and design calculations

Components of air breathing engines

Jet engine design and development process

Engine and component design

Current developments in the jet engines industry

Literature
Hagen, H.: Fluggasturbinen und ihre Leistungen, G. Braun Verlag, 1982
Hünnecke, K.: Flugtriebwerke, ihre Technik und Funktion, Motorbuch Verlag, 1993
Course: manufacturing technology exercises [2149658]

Coordinators: Volker Schulze

Part of the modules: SP 10: Engineering Design (p. 129)[SP_10_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
None.

Conditions
None.

Learning Outcomes
The student
- is able to name the different manufacturing methods and to explain their functions
- is able to classify the manufacturing methods by their general structure and functionality according to specific main groups
- is able to perform a process selection based on the methods he/she has learned about and their characteristics
- is able to identify the correlation between different methods
- is able to evaluate the different methods against specific applications on the basis of technical and economical aspects

Content
The objective of the lecture is to look at manufacturing engineering within the wider context of production engineering, to provide an overview over the different manufacturing methods and to impart detailed process knowledge of the common methods. The lecture covers the basic principles of manufacturing engineering and deals with the manufacturing methods according to their classification into main groups on the basis of technical and economical aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:
- Introduction
- Quality control
- Primary processing (casting, plastics engineering, sintering, generative manufacturing processes), Forming (sheet-metal forming, massive forming, plastics engineering),
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment
- Process chains in manufacturing
- Work preparation

Media
Practice sheets for the manufacturing technology exercises will be made available through ilias.
Course: Übungen zu Integrierte Produktionsplanung [2150661]

Coordinators: Gisela Lanza

Part of the modules: SP 37: Production Management (p. 159)[SP_37_mach], SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

The exercises and practical examples demonstrate the contents of the lecture. Concrete exercises and casestudies from the industrial practice are presented and solved.

Content

1. Introduction (external lecturer)
2. Site location, site selection + target definition and value benefit analysis
3. Integrated production systems
4. Lean methods, value stream mapping
5. Manufacturing planning
6. Capacity determination and layout planning for the manufacturing
7. Assembly layout, cycle time calculation
8. Shift model, manual assembly layout
9. Life-Cycle-Performance: Calculation of LCP-key figures
10. Summary and outlook (external lecturer)
Course: Mathematical methods of vibration theory (Tutorial) [2162242]

Coordinators: Wolfgang Seemann, N.N.

Part of the modules: SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
Technische Mechanik III, IV / Engineering Mechanics III, IV

Learning Outcomes
Deepen understanding of the course by solving corresponding problems

Content
Seven tutorials with examples of the contents of the course

Literature
Riener, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
Course: Tutorial in Mathematical Methods of Fluid Mechanics [2154433]

Coordinators: Torsten Schenkel

Part of the modules: SP 14: Fluid-Structure-Interaction (p. 135)[SP_14_mach], SP 41: Fluid Mechanics (p. 164)[SP_41_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
none (exam of 2154432)

Conditions
None.

Learning Outcomes
The tutorial to lecture 2154432 in which the application of the methods can be trained.

The students can apply the mathematical methods of Dynamics effectively and precisely. They're able to use the basic mathematical methods for analytical and numerical modelling of the non linear behaviour moving fluids.

The students have a basic understanding of the procedures to describe, simplify and solve the Navier-Stokes equations by analytical integration, linearisation and important approximate solution methods (Finite Differences, Finite Volumes) for numerical calculations of the behaviour of flows.

In the accompanying tutorial 2154433 the application of the methods can be trained.

Content
1.2 Regions of Flow

4.1.2 Linearisation
4.2.3 Finite Differences Method, Convergence, Stability
4.2.4 Finite Volume Method
5. Fluid Mechanical Applications
3.2.2 Reynolds Equations
3.2.3 Basic Turbulence Modelling

Numbering according to Lehrbuch Strömungsmechanik

Literature

Course: Introduction into the nonlinear vibrations (Tutorial) [2162248]

Coordinators: Alexander Fidlin, N.N.

Part of the modules:
- SP 09: Dynamic Machine Models (p. 128)[SP_09_mach],
- SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach],
- SP 05: Calculation Methods in Mechanical Engineering (p. 122)[SP_05_mach],
- SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Exercises Product Lifecycle Management [2121351]

Coordinators: Jivka Ovtcharova, Mitarbeiter
Part of the modules: SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.
Recommendations
None.

Learning Outcomes
The theoretical Konzepts and contents of the lecture will be trained within practical relevance by basic functionalities of PLM System solutions. First, an overview of the GUI will be given. Then, techniques for the handling of meta and product data will be introduced, followed by enterprise application integration of CAD systems and the correlating management of data and information. Subsequent to basic methods of numbering, revision and klassification of data and information, manipulating methods with product structure editors will be explained. Based on these product structures, the management of product variants and the derivation of 2D-drafts, bill of materials and where-used lists will be done. After being trained in the basic functionalities, the students will work team-oriented in a collaborative environment in terms of workflow management, followed by processing Engineering Change Management.

Content
Course: Exercises Virtual Engineering I [2121353]

Coordinators: Jivka Ovtcharova, Mitarbeiter

Part of the modules: SP 28: Lifecycle Engineering (p. 149) [SP_28_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
None.

Learning Outcomes
The students know the different operating philosophies of important CAx tools and are able to apply the basic functions of corresponding software systems.

Content
In this module, the practical application of different CAx software systems is exemplarily conducted in small groups, the main focus being the CAD systems CATIA V5 (DASSAULT SYSTEMES) and NX 5 (Siemens PLM Software).

Literature
Exercise notes
Course: Exercises Virtual Engineering II [2122379]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>Jivka Ovtcharova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
None.

Learning Outcomes
The students learn about the different operating philosophies of further CAx tools from the fields of validation, Virtual Reality and digital factory and are able to apply the basic functions of corresponding software systems.

Content
In this module, the practical use of various software systems in the environment of virtual mock-up and digital factory for solving problems in engineering is demonstrated in small groups.

Literature
Exercise notes
Course: metal forming [2150681]

Coordinators: Rolf Geiger, Dr. Herlan
Part of the modules: SP 39: Production Technology (p. 160)[SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral, duration 30 min., no resources

Conditions
None.

Learning Outcomes
The lecture introduces into the basics of metal forming. Processes, tools, tool machines and equipment are presented in a systematic and integrated way. The student should be placed in a position to understand metal forming processes, to identify contexts and to transfer knowledge onto other metal forming problems.

Content
1. Basics
2. Definition of forming
3. Metallographic fundamentals
4. Plasto mechanics
5. Tribology
6. Dimensioning of metal forming processes
7. Processes
8. Extrusion
9. Sheet forming
10. Deep drawing

Literature
Lecture notes
Course: Environmentally compatible energy generation / wind turbines [23381]

Coordinators: Norbert Lewald, Lewald

Part of the modules: SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Vacuum Technology and Fuel Cycle of Fusion Reacters [22035]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>Beate Bornschein, Christian Day, Day, Bornschein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>SP 53: Fusion Technology (p. 175)[SP_53_mach]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Variational methods and applications to PDEs [1054]

Coordinators: Michael Plum, Wolfgang Reichel, Plum, Reichel

Part of the modules: SP 06: Computational Mechanics (p. 124)[SP_06_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Conditions

None.

Learning Outcomes

Content
Course: Combustion diagnostics [2167048]

Coordinators: Robert Schießl, Ulrich Maas

Part of the modules: SP: Engineering Thermodynamics (p. 168)[SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- **Oral**
- **Duration:** 30 min.

Conditions
- None

Recommendations
- None

Learning Outcomes
The aim of the course is to impart comprehension of the physical principles of diagnositcal methods. In addition special methods are applied to combustion processes and discussed afterwards.

Content
- Diagnostical methods: Laser induced fluorescence, Rayleigh-scattering, Raman-scattering, Chemoluminescence.
- Reduced description of combustion processes and measurements.
- Discussion of the potential and limits of specific strategies in different combustion systems.

Literature
- Lecture notes
Course: Combustion Engines A with tutorial [2133101]

Coordinators: Ulrich Spicher

Part of the modules:
- SP 24: Energy Converting Engines (p. 144)[SP_24_mach],
- SP 15: Fundamentals of Energy Technology (p. 136)[SP_15_mach],
- SP 48: Internal Combustion Engines (p. 171)[SP_48_mach],
- SP: Engineering Thermodynamics (p. 168)[SP_45_mach],
- SP 12: Automotive Technology (p. 132)[SP_12_mach],
- SP 02: Powertrain Systems (p. 119)[SP_02_mach],
- SP 34: Mobile Machines (p. 155)[SP_34_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: 45 min., no auxiliary means

Conditions
None.

Recommendations
None.

Learning Outcomes
The students get basic knowledgement in construction, thermodynamic process, main concepts of gasoline and Diesel engines, driving gear dynamics and design of combustion engines. In particular the thermodynamic processes and the problems of exhaust gas emissions are discussed. Also, this lecture provides fundamentals for continuative lectures in the field of combustion engines.

Content
Introduction
Engine and operating parameters

Thermodynamics of combustion engines

Gas exchange

Otto-process

Diesel-process

Literature
Lecturer notes available in the 'Studentenhaus'

Remarks
weekly exercises to consolidate the lecture material
Course: Combustion Engines B with Tutorial [2134135]

Coordinators: Ulrich Spicher

Part of the modules:
- SP 34: Mobile Machines (p. 155)[SP_34_mach]
- SP 48: Internal Combustion Engines (p. 171)[SP_48_mach]
- SP 02: Powertrain Systems (p. 119)[SP_02_mach]
- SP 24: Energy Converting Engines (p. 144)[SP_24_mach]
- SP 12: Automotive Technology (p. 132)[SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: 0,5 hours, no auxiliary means

Conditions
None.

Recommendations
Combustion Engines A helpful

Learning Outcomes
The students deepen and complement their knowledge from the lecture combustion engines A. They get to know construction elements, development tools and latest development trends. They will be able to understand and judge a wide variety of powertrain concepts.

Content
- Emissions
- Fuels
- Drive Train Dynamics
- Engine Parts
- Boosting
- Alternative Powertrain Concepts

Special Engine Concepts

Power Transmission

Literature
Lecture notes available in the 'Studentenhaus'

Remarks
exercises every two weeks to consolidate the lecture material
Course: Behaviour Generation for Vehicles [2138336]

Coordinators: Christoph Stiller, Thao Dang

Part of the modules:
- SP 44: Technical Logistics (p. 167)[SP_44_mach], SP 04: Automation Technology (p. 121)[SP_04_mach], SP 31: Mechatronics (p. 152)[SP_31_mach], SP 22: Cognitive Technical Systems (p. 142)[SP_22_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach], SP 01: Advanced Mechatronics (p. 117)[SP_01_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 11: Vehicle Dynamics, Vehicle Comfort and Acoustics (p. 131)[SP_11_mach], SP 18: Information Technology (p. 138)[SP_18_mach], SP 40: Robotics (p. 162)[SP_40_mach], SP 08: Dynamics and Vibration Theory (p. 127)[SP_08_mach], SP 09: Dynamic Machine Models (p. 128)[SP_09_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 30 minutes

no reference materials

Conditions

Fundamentals in measurement, system and control theory, e.g. from the lecture “Measurement and Control Systems”

Learning Outcomes

Modern vehicle control systems like ABS or ESP transform the intention of the driver into a corresponding behaviour of the vehicle. This is achieved by compensating disturbances like a varying traction for example. Within the recent years, vehicles have been increasingly equipped with sensors that gather information about the environment (Radar, Lidar and Video for example). This enables the vehicles to generate an 'intelligent' behaviour and transform this behaviour into control signals for actors. Several so called 'driver assistance systems' have already achieved remarkable improvements as far as comfort, safety and efficiency are concerned. But nevertheless, several decades of research will be required to achieve an automated behaviour with a performance equivalent to a human operator ('the driver'). The lecture addresses students in mechanical engineering and related subjects who intend to get an interdisciplinary knowledge in a state-of-the-art technical domain. Information technology, control theory and kinematic aspects are treated to provide a broad overview over vehicle guidance. Application examples from cutting-edge and future driver assistance systems illustrate the discussed subjects.

Content

1. Driver assistance systems
2. Driving comfort and safety
3. Vehicle dynamics
4. Path and trajectory planning
5. Path control
6. Collision avoidance

Literature

TBA
Course: Failure of Structural Materials: Fatigue and Creep [2181715]

Coordinator: Oliver Kraft, Peter Gumbsch, Patric Gruber

Part of the modules:
SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 25: Lightweight Construction (p. 145)[SP_25_mach], SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]

ECTS Credits: 4 | Hours per week: 2 | Term: Winter term | Instruction language: de

Learning Control / Examinations
oral exam 30 minutes

Conditions
compulsory preconditions: none

Learning Outcomes

- Mechanical Understanding of Load vs Material Strength
- Empirical Material Behavior
- Physical Understanding of Failure Phenomena
- Statistical Description of Failure
- Material Selection and Understanding Alloying Effects

Content

1 Fatigue
1.1 Introduction
1.2 Statistical Aspects
1.3 Lifetime
1.4 Fatigue Mechanisms
1.5 Material Selection
1.6 Thermomechanical Loading
1.7 Notches and Shape Optimization
1.8 Case Study: ICE-Desaster

2 Creep
2.1 Introduction
2.2 High Temperature Plasticity
2.3 Phänomenologische DEscription of Creep
2.4 Creep Mechanisms
2.5 Alloying Effects

Literature

3. Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
Course: Failure of structural materials: deformation and fracture [2181711]

Coordinators: Peter Gumbsch, Oliver Kraft, Daniel Weygand

Part of the modules:
- SP 46: Thermal Turbomachines (p. 169)[SP_46_mach]
- SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach]
- SP 02: Powertrain Systems (p. 119)[SP_02_mach]
- SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach]
- SP 43: Technical Ceramics and Powder Materials (p. 166)[SP_43_mach]
- SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]
- SP 25: Lightweight Construction (p. 145)[SP_25_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
compulsory preconditions: none

Learning Outcomes

- Mechanical Understanding of Load vs Material Strength
- Empirical Material Behavior
- Physical Understanding of Failure Phenomena

Content
1. Introduction
2. linear elasticity
3. classification of stresses
4. Failure due to plasticity
 * tensile test
 * dislocations
 * hardening mechanisms
 * guidelines for dimensioning
5. composite materials
6. fracture mechanics
 6.1 hypotheses for failure
 6.2 linear elastic fracture mechanics
 6.3 crack resistance
 6.4 experimental measurement of fracture toughness
 6.5 defect measurement
 6.6 crack propagation
 6.7 application of fracture mechanics
 6.8 atomistics of fracture

Literature
3. Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
Course: Gear Cutting Technology [2149655]

Course: Gear Cutting Technology [2149655]

Coordinators:
Klaus Felten

Part of the modules:
SP 12: Automotive Technology (p. 132) [SP_12_mach], SP 39: Production Technology (p. 160) [SP_39_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral, duration 30 min., no resources

Conditions
None.

Learning Outcomes
The student
• has the knowledge about the presented content,
• understands the within the lecture taught theory of gears and gear cutting as well as the taught basics and characteristics of the covered gear cutting processes,
• is able to transfer the within the lecture learned knowledge about the basics of the gearing geometry and the manufacturing of gears on new problematic issues and
• is able to analyze and to evaluate the applicability of the taught processes and techniques for various problems.

Content
This lecture is focused on the demands of the modern manufacturing process of gears on the basis of the gearing geometry and the theory of gears and transmission types. For this purpose the processes for manufacturing various gearing types are covered, which are state of the technology in current operational practice. The subdivision of the processes is made in soft and hard machining, in each case in cutting and non-cutting methods. For the comprehensive understanding of the taught processes initially the description of the kinematics, the machine technology, the tools, the fields of application and the speciality as well as the current trends are made. Subsequent for the evaluation and classification in the fields of application and the capability of the processes finally the sequence of manufacturing of gears in mass production and the manufacturing errors are covered in the lecture.
The content of the lecture will be rounded off by demonstrative example parts and the possibility of the visit of real manufacturing environments within two short excursions to gear manufacturing companies.

1. History of gears
2. Basic factors of gear geometry
3. Types of toothed wheel
4. Types of gearings
5. Overview of methods for soft machining of gears (subdivided in metal-cutting and non-cutting, representation of the different processes regarding kinematics, machine-tool, tool and trend of development)
6. Overview over methods for hard machining of gears (subdivided in geometrical defined and undefined cutting edge, representation of the different processes regarding kinematics, machine-tool, tool and trend of development)
7. Sequence of manufacturing in mass production
8. Manufacturing errors of gears
9. Special applications of gearings

Literature
Lecture notes
Course: Virtual Engineering for Mechatronic Products [2121370]

Coordinators: Stefan Rude

Part of the modules: SP 28: Lifecycle Engineering (p. 149)[SP_28_mach], SP 34: Mobile Machines (p. 155)[SP_34_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination, Duration: 20 min, Auxiliary Means: none

Conditions
None.

Recommendations
Knowledge of CAx is assumed. Therefore it is recommended to attend the course Virtual Engineering I [2121352] beforehand.

Learning Outcomes
Students should be able to apply the procedure of integrating mechatronic components in products. Students should understand special requirements of functional networked systems. Practical relevance of the methods are communicated with examples from automotive industry.

Content
The integration of mechatronic components in all products changes geometry-oriented construction activities in function-oriented activities. In this context, the application of IT systems needs to be realigned. The lecture deals with the following issues from the perspective of the automobile industry:

- challenges in the construction process concerning the integration of mechatronic components in products,
- support of task clarification through requirements management,
- problem-solving on the basis of functionally networked systems,
- implementation of solutions on the basis of electronics (sensors, actuators, networked control devices),
- control of distributed software systems through software engineering and
- challenges in tests and backups, concerning the system quality that needs to be achieved.

Literature
Lecture slides
Course: Virtual Engineering I [2121352]

Coordinators: Jivka Ovtcharova
Part of the modules: SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination
Duration: 30 min
Auxiliary Means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The students will acquire an introduction in Product Lifecycle Management (PLM) and understand the application of PLM in Virtual Engineering. They will be able to utilize CAD/PLM systems in different phases of the product development process. Furthermore, they will have an extensive knowledge of the data models, the specific modules and functions of CAD systems. They will have an awareness of the IT background of CAx systems, as well as the integration problems and possible approaches.
Students will receive an overview of various CAE analysis methods along with the application possibilities, basic conditions and limitations. They will know the different function of preprocessor, solver and postprocessor of CAE systems, the different types of integration of CAD/CAE systems with their advantages and disadvantages. They will know how to integrate CAM modules (or systems) with CAD systems and will be able to define and simulate production processes in CAM modules. They will have an understanding of the Virtual Engineering philosophy and virtual factory. They will be able to clearly identify the advantages of Virtual Engineering compared with the conventional approach.

Content
The lecture presents the informational interrelationship required for understanding the virtual product development process. For this purpose, an emphasis and focus will be placed on IT-systems used in the industrial sector as support for the process chain of virtual engineering:

- Product Lifecycle Management refers to the entire lifecycle of the product, beginning with the concept phase up through disassembling and recycling.
- CAx-systems for the virtual product development allow the modeling of a digital product in regards to design, construction, manufacturing and maintenance.
- Validation Systems allow the checking of the product in regard to static, dynamics, safety and build ability.

The goal of the lecture is to clarify the relationship between construction and validation operations through the usage of virtual prototypes and VR/AR/MR visualisation techniques in connection with PDM/PLM-systems. This will be achieved through an introduction to each particular system along with praxis-oriented exercises.

Literature
Lecture slides
Course: Virtual Engineering II [2122378]

Coordinators: Jivka Ovtcharova

Part of the modules: SP 09: Dynamic Machine Models (p. 128)[SP_09_mach], SP 28: Lifecycle Engineering (p. 149)[SP_28_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination
Duration: 20 min

Auxiliary Means: none

Conditions
None.

Recommendations
None.

Learning Outcomes
The students will get to know the definition of virtual reality how the stereoscopic effect occurs and which technologies can be used to simulate this effect. They will be able to model a scene in VR and store the VR graph on a computer. They will understand the inner workings of the VR pipeline for visualizing the scene works. They will be familiar with various systems of interacting with the VR scene and will be able to assess the advantages and disadvantages of various manipulation and tracking devices.

Moreover, they will know which validation tests can be carried through in the product development process with the aid of a virtual mock-up (VMU) and what's the difference between a VMU, a physical mock-up (PMU) and a virtual prototype (VP).

They will get to know the vision of an integrated virtual product development and understand which challenges need to be resolved towards that vision.

Content
The lecture presents the informational interrelationship required for understanding the virtual product development process. For this purpose, an emphasis and focus will be placed on IT-systems used in the industrial sector as support for the process chain of virtual engineering:

- The corresponding models can be visualized in Virtual Reality Systems, from single parts up through a complete assembly.
- Virtual Prototypes combine CAD-data as well as information about the remaining characteristics of the components and assembly groups for immersive visualisation, functionality tests and functional validations in the VR/AR/MR environment.
- Integrated Virtual Product Development explains exemplified the product development process from the point of view of Virtual Engineering.

The goal of the lecture is to clarify the relationship between construction and validation operations through the usage of virtual prototypes and VR/AR/MR visualisation techniques in connection with PDM/PLM-systems. This will be achieved through an introduction to each particular IT-system along with praxis-oriented exercises.

Literature
Lecture slides
Course: Virtual Reality Laboratory [2123375]

Coordinators: Jivka Ovtcharova, Jurica Katicic

Part of the modules:
- SP 27: Modeling and Simulation in Energy- and Fluid Engineering (p. 148)[SP_27_mach]
- SP 35: Modeling and Simulation (p. 156)[SP_35_mach]
- SP 31: Mechatronics (p. 152)[SP_31_mach]
- SP 04: Automation Technology (p. 121)[SP_04_mach]
- SP 28: Lifecycle Engineering (p. 149)[SP_28_mach]
- SP 40: Robotics (p. 162)[SP_40_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Presentation of project work (40%)
- Individual project participation (30%)
- Written test (20%)
- Soft skills (10%)

Conditions
None

Recommendations
Participation in the course Virtual Engineering 2 [2122378]

Learning Outcomes
The students are able to operate and use hardware and software for Virtual Reality applications in order to:

- draft solutions for complex tasks in a team.
- solve subtasks within a specific work package in small groups, keeping the interfaces to other work packages in mind and
- merge this solution in the final product.

Content
The Virtual Reality lab course consists of following three parts:

- Basics: Introduction in Virtual Reality (hardware, software, applications)
- Tool Kit: 3DVIA Virtools as application development environment
- Application: autonomous further development of an existing driving simulator in Virtual Reality in small groups

Media
Stereoscopic projection in MR and VR at the Lifecycle Engineering Solutions Center (LESC), 15 computers, beamer

Literature
Presentations, Exercise documents, Tutorials, Books for individual work
Course: Heatpumps [2166534]

Coordinators: Heiner Wirbser, Ulrich Maas

Part of the modules: SP: Engineering Thermodynamics (p. 168) [SP_45_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral

Duration: 30 min.

Conditions

None

Recommendations

None

Learning Outcomes

Setup and operation of heat pumps

Various models of heatpumps

Energy policy requirements

Advantages and drawbacks of heat pumps as heating systems

Content

The aim of this lecture is to promote heat pumps as heating systems for small and medium scale facilities and to discuss their advantages as well as their drawbacks. After considering the actual energy situation and the political requirements the different aspects of heat pumps are elucidated. The requirements concerning heat sources, the different components and the various types of heat pumps are discussed. In addition ecological and economical aspects are taken into consideration. The coupling of heat pumps with heat accumulators in heating systems will also be part of the lecture.

Literature

Vorlesungsunterlagen

Bach, K.: Wärmepumpen, Bd. 26 Kontakt und Studium, Lexika Verlag, 1979

Course: Hydrogen Technologies [2170495]

Coordinators: Thomas Jordan

Part of the modules: SP 23: Power Plant Technology (p. 143) [SP_23_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

Auxiliary: no tools or reference materials may be used during the exam

Conditions
None.

Learning Outcomes
The course content is the cross-cutting issue of hydrogen as energy carrier. The basic hydrogen technologies will be presented in order to analyse and substantiate the idea of a hydrogen economy. The physical properties of hydrogen will be introduced. The production, distribution, storage and applications are explained. The latter comprise hydrogen utilization in combustion engines and in fuel cells. The safety aspects will be treated as a cross-cutting issue by comparing with hazards of conventional energy carriers.

Content
Basic concepts
Production
Transport and storage
Application
Safety aspects

Literature
Ullmann’s Encyclopedia of Industrial Chemistry
http://www.hysafe.net/BRHS

Course: Material Analysis [2174586]

Coordinators: Jens Gibmeier

Part of the modules: SP 26: Materials Science and Engineering (p. 146)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination
duration: 20 - 30 minutes
no auxillary resources

Conditions
obligation: Material Science I/II

Learning Outcomes
The students have basic knowledge about methods of material analysis. They have a basic understanding to transfer this basic knowledge on problems in engineering science. Furthermore, the students have the ability to describe technical material by its microscopic and submicroscopic structure

Content
The following methods will be introduced within this module:

microscopic methods: optical microscopy, electron microscopy (SEM/TEM), atomic force microscopy

material and microstructure analyses by means of X-ray, neutron and electron beams

spectroscopic methods

Literature
lecture notes (will be provided at the beginning of the lecture)

literature will be quoted at the beginning of the lecture
Course: Materials and mechanical loads in the power train: engines, gearboxes and drive sections [2173570]

Coordinators: Jürgen Hoffmeister

Part of the modules: SP 12: Automotive Technology (p. 132)[SP_12_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 02: Powertrain Systems (p. 119)[SP_02_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
duration: 20 - 30 minutes
none

Conditions
None.

Learning Outcomes
Deep understanding of materials and mechanical loads in engines, gearboxes and drive sections, especially cast materials (cast aluminium alloys, cast magnesium alloys, cast iron), case-hardened steel, and other structural materials used in the power train.

Content
Introduction

constructive, production-orientated and material aspects in the power train

engines

stress in the engines
cast aluminium alloys
cast magnesium alloy
cast irons
and other materials

gearboxes

stress in the gearboxes
case-hardened steel
and other materials

drive sections

stress in the drive sections
materials for the clutch
materials for the power train
materials in other elements of the drive sections

Literature
Reference, data and draft in the lecture
Course: Materials for Lightweight Construction [2174574]

Coordinators: Kay Weidenmann

Part of the modules:
- SP 46: Thermal Turbomachines (p. 169) [SP_46_mach]
- SP 25: Lightweight Construction (p. 145) [SP_25_mach]
- SP 10: Engineering Design (p. 129) [SP_10_mach]
- SP 26: Materials Science and Engineering (p. 146) [SP_26_mach]
- SP 07: Dimensioning and Validation of Mechanical Constructions (p. 126) [SP_07_mach]
- SP 12: Automotive Technology (p. 132) [SP_12_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral examination
 - Duration: 20 - 30 Min
 - none

Conditions
- Werkstoffkunde I/II (recommended)

Learning Outcomes
- The students know different lightweight materials, their composition, properties and fields of application and can apply this knowledge effectively and precisely.
- They master the hardening mechanisms of lightweight materials and can transfer this knowledge to applied problems.
- The students have a basic understanding of basic mechanical models of composites - mainly polymer matrix composites - and can depict differences in the mechanical properties depending on composition and structure.

Content
- Introduction
 - Constructive, production-orientied and material aspects of lightweight construction
 - Aluminium-based alloys
 - Aluminium wrought alloys
 - Aluminium cast alloys
 - Magnesium-based alloys
 - Magnesium wrought alloys
 - Magnesium cast alloys
 - Titanium-based alloys
 - Titanium wrought alloys
 - Titanium cast alloys
 - High-strength steels
 - High-strength structural steels
 - Heat-treatable and hardenable steels
 - Composites - mainly PMC
 - Matrices
 - Reinforcements

Literature
- Presentation slides and additional lecture notes are handed out during the lecture, additional literature recommendations given
Course: Material Science III [2173553]

Coordinators: Alexander Wanner

Part of the modules: SP 26: Materials Science and Engineering (p. 146)[SP_26_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral; 30-40 minutes

Conditions
Basic knowledge in materials science and engineering (Werkstoffkunde I/II)

Learning Outcomes
The students are familiar with the thermodynamic foundations of phase transformations, the kinetics of phase transformations in the solid states (nucleation and growth phenomena), the mechanisms of microstructure formation and microstructure-property relationships. They can assess the effects of heat treatments and of alloying on the microstructure and the properties of iron-based materials (steels in particular). They can select steels for structural applications in mechanical engineering and subject them to appropriate heat treatments.

Content
Properties of pure iron; thermodynamic foundations of single-component and of binary systems; nucleation and growth; diffusion processes in crystalline iron; the phase diagram Fe-Fe3C; effects of alloying on Fe-C-alloys; nonequilibrium microstructures; multicomponent iron-based alloys; heat treatment technology; hardenability and hardenability tests.

Literature
Lecture Notes; Problem Sheets; Bhadeshia, H.K.D.H. & Honeycombe, R.W.K.
Steels – Microstructure and Properties
Course: Materials modelling: dislocation based plasticity [2182740]

Coordinators: Daniel Weygand

Part of the modules: SP 35: Modeling and Simulation (p. 156)[SP_35_mach], SP 26: Materials Science and Engineering (p. 146)[SP_26_mach], SP 13: Strength of Materials/Continuum Mechanics (p. 134)[SP_13_mach], SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
None.

Learning Outcomes
Understanding of the physical basics of dislocations and their interaction with other point, line and area defects. Knowledge of modelling approaches for dislocation based plasticity. Modelling of microstructure evolution with discrete methods.

Content
1. Introduction
2. elastic fields of dislocations
3. slip, crystallography
4. equations of motion of dislocations
 a) fcc
 b) bcc
5. interaction between dislocations
6. discrete dislocation dynamics in two dimensions
7. discrete dislocation dynamics in three dimensions
8. continuum description of dislocations
9. microstructure evolution: grain growth
 a) physical basis: small/large angle boundaries
 b) interaction between dislocations and GBs
10. Monte Carlo methods in microstructure evolution

Literature
- D. Hull and D.J. Bacon, Introduction to Dislocations, Oxford Pergamon 1994
Course: Machine Tools and Industrial Handling [2149902]

Coordinators: Jürgen Fleischer

Part of the modules: SP 04: Automation Technology (p. 121)[SP_04_mach], SP 39: Production Technology (p. 160)[SP_39_mach], SP 10: Engineering Design (p. 129)[SP_10_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Performance is assessed in the form of one oral examination (45 min) during the lecture-free period. The examination will take place once every semester and can be retaken at every official examination date.

Conditions
None.

Learning Outcomes
The student
- has knowledge about the application of machine tools.
- comprehends the assembly and the operation purpose of the major components of a machine tool.
- is able to apply methods of selection and assessment of production machines to new tasks.
- is able to assess the dimensioning of a machine tool.

Content
The lecture overviews the assembly, dimensioning and application of machine tools and industrial handling. A consolidated and practice oriented knowledge is imparted about the choice, dimensioning and assessment of production machines. At first, the major components of machine tools are explained systematically. At this, the characteristics of dimensioning of machine tools are described in detail. Finally, the application of machine tools is demonstrated by means of example machines of the manufacturing processes turning, milling, grinding, massive forming, sheet metal forming and toothing.

Media
Lecture notes for the lecture “Machine Tools and Industrial Handling” will be made available through ilias.

Literature
lecture notes
Course: Scientific computing for Engineers [2181738]

Coordinators: Daniel Weygand, Peter Gumbsch

Part of the modules: SP 49: Reliability in Mechanical Engineering (p. 172)[SP_49_mach], SP 30: Engineering Mechanics and Applied Mathematics (p. 151)[SP_30_mach], SP 35: Modeling and Simulation (p. 156)[SP_35_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam 30 minutes

Conditions
compulsory preconditions: none

Learning Outcomes
The student learns the programming language C++ used for computational material science on parallel platforms. Numerical methods for the solution of differential equations are learned and used.

Content
1. Introduction: why scientific computing
2. computer architectures
3. Introduction to Unix/Linux
4. Foundations of C++
 * programm organization
 * data types, operator, control structures
 * dynamic memory allocation
 * functions
 * class
 * OpenMP parallelization
5. numeric / algorithms
 * finite differences
 * MD simulations: 2nd order differential equations
 * algorithms for particle simulations
 * solver for linear systems of eqns.

Literature
[1] C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München

Numerik:
[1] Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
Course: Workshop Product Development [2145157]

Coordinators: Albert Albers
Part of the modules: SP 20: Integrated Product Development (p. 140) [SP_20_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination (60 minutes)
combined examination of lectures, tutorials and project work

Conditions
The participation in “Integrated Product Development” requires the concurrent participation in lectures (2145156), tutorials (2145157) and project work (2145300).
Due to organizational reasons, the number of participants is limited to 42 persons. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK homepage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Recommendations
none

Learning Outcomes
The theoretical background taught in the lecture, is deepened through methodworkshops, business games and case studies. The reflexion of the onself procedure allows for an applicability and practicability of the contents in the accompanying development project as well as for the career entry.

Content
problem solving: analysis techniques, creativity techniques and evaluation methods
professional skills: presentation techniques, moderation and teamcoaching
development tools: MS Project, Szenario-Manager & Pro/Engineer Wildfire

Literature
none
Course: Two-Phase Flow and Heat Transfer [2169470]

Coordinators: Thomas Schulenberg, Martin Wörner
Part of the modules: SP 21: Nuclear Energy (p. 141)[SP_21_mach], SP 23: Power Plant Technology (p. 143)[SP_23_mach], SP 53: Fusion Technology (p. 175)[SP_53_mach]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral
Duration: approximately 30 minutes

no tools or reference materials may be used during the exam

Conditions
Bachelor

Learning Outcomes
This lecture is addressed to students of mechanical engineering or chemical engineering. Two-phase flows with heat transfer are phenomena occurring in steam generators and condensers, like in power stations or refrigerators.

Content
Examples for technical applications
Definitions and averaging of two-phase flows
Flow regimes and transitions
Two-phase models
Pressure drop of two-phase flows
Pool boiling
Forced convective boiling
Condensation
Two-phase flow instabilities

Literature
lecture notes
Amtliche Bekanntmachung

2008 Ausgegeben Karlsruhe, den 09. September 2008 Nr. 79

Inhalt

Studien- und Prüfungsordnung der Universität Karlsruhe (TH) 374
für den Masterstudiengang Maschinenbau
Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Masterstudiengang Maschinenbau

Der Rektor hat seine Zustimmung am 28. Februar 2008 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich, Ziele
§ 2 Akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Aufbau der Prüfungen
§ 5 Anmeldung und Zulassung zu den Prüfungen
§ 6 Durchführung von Prüfungen und Erfolgskontrollen
§ 7 Bewertung von Prüfungen und Erfolgskontrollen
§ 8 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen
§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
§ 10 Mutterschutz, Elternzeit
§ 11 Masterarbeit
§ 12 Berufspraktikum
§ 13 Zusatzmodule, Zusatzleistungen
§ 14 Prüfungskommission
§ 15 Prüferinnen und Beisitzende
§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

II. Masterprüfung
§ 17 Umfang und Art der Masterprüfung
§ 18 Leistungsnachweise für die Masterprüfung
§ 19 Bestehen der Masterprüfung, Bildung der Gesamtnote
§ 20 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
§ 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
§ 22 Ungültigkeit der Masterprüfung, Entziehung des Mastergrades
§ 23 Einsicht in die Prüfungsakten
§ 24 In-Kraft-Treten
In dieser Satzung wurde nur die weibliche Sprachform gewählt. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

Die Universität Karlsruhe (TH) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studiendauer der Bachelorgrad der Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Ziele

(1) Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Maschinenbau an der Universität Karlsruhe (TH).

(2) Im Masterstudium sollen die im Bachelorstudium erworbenen wissenschaftlichen Qualifikationen weiter vertieft oder ergänzt werden. Die Studentin soll in der Lage sein, die wissenschaftlichen Erkenntnisse und Methoden selbstständig anzuwenden und ihre Bedeutung und Reichweite für die Lösung komplexer wissenschaftlicher und gesellschaftlicher Problemstellungen zu bewerten.

§ 2 Akademischer Grad

Aufgrund der bestandenen Masterprüfung wird der akademische Grad „Master of Science“ (abgekürzt: „M.Sc.“) verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Die Regelstudienzeit beträgt vier Semester. Sie umfasst Prüfungen, ein Berufspraktikum und die Masterarbeit.

(2) Die im Studium zu absolvierenden Lehrinhalte sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren, thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Art, Umfang und Zuordnung der Lehrveranstaltungen zu einem Modul sowie die Möglichkeiten, Teilmodule untereinander zu kombinieren, beschreibt der Studienplan. Die Module und ihr Umfang werden in § 17 definiert.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.

(5) Die Verteilung der Leistungspunkte im Studienplan auf die Semester hat in der Regel gleichmäßig zu erfolgen.

(6) Lehrveranstaltungen können auch in englischer Sprache angeboten werden.
§ 4 Aufbau der Prüfungen

(2) Erfolgskontrollen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z.B. Vorträge, Markstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Studienplan ausgewiesen sind.

(3) In der Regel sind mindestens 50 % einer Modulprüfung in Form von schriftlichen oder mündlichen Prüfungen (Abs. 2, Nr. 1 und 2) abzulegen, die restlichen Prüfungen erfolgen durch Erfolgskontrollen anderer Art (Abs. 2, Nr. 3).

§ 5 Anmeldung und Zulassung zu den Prüfungen

(1) Um zu schriftlichen und mündlichen Modulteilprüfungen (§ 4 Abs. 2, Nr. 1 und 2) in einem bestimmten Modul zugelassen zu werden, muss die Studentin vor der ersten schriftlichen oder mündlichen Modulteilprüfung in diesem Modul beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls bzw. der Lehrveranstaltungen, wenn diese Wahlmöglichkeit besteht, abgeben. Darüber hinaus muss sich die Studentin für jede einzelne Modulteilprüfung, die in Form einer schriftlichen oder mündlichen Prüfung (§ 4 Abs. 2, Nr. 1 und 2) durchgeführt wird, beim Studienbüro anmelden. Dies gilt auch für die Zulassung zur Masterarbeit.

(2) Um an den Modulprüfungen teilnehmen zu können, muss sich die Studentin schriftlich oder per Online-Anmeldung beim Studienbüro anmelden. Hierbei sind die gemäß dem Studienplan für die jeweilige Modulprüfung notwendigen Studienleistungen nachzuweisen.

(3) Die Zulassung darf nur abgelehnt werden, wenn
 1. die Studentin in einem mit dem Maschinenbau vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat,
 2. die gemäß dem Studienplan für die jeweilige Modulprüfung notwendigen Studienleistungen nicht nachgewiesen werden können,
 3. die in § 18 genannte Voraussetzung nicht erfüllt ist.

In Zweifelsfällen entscheidet die Prüfungskommission.

(4) Die Anmeldung zu einer ersten schriftlichen Modulprüfung gilt zugleich als bedingte Anmeldung für die Wiederholung der Modulprüfung bei nicht bestandener Prüfung.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2, Nr. 1 bis 3) der einzelnen Lehrveranstaltungen wird von der Prüferin der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lehrziele des Moduls festgelegt. Die Prüferin, die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Bildung der Lehrveranstaltungsnote und der Modulnote müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im
Einvernehmen zwischen Prüferin und Studentin kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Abs. 3 zu berücksichtigen.

(3) Eine schriftlich durchzuführende Prüfung kann auch mündlich, eine mündlich durchzuführende Prüfung kann auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

(4) Weist eine Studentin nach, dass sie wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, kann die zuständige Prüfungskommission – in dringenden Angelegenheiten, deren Erledigung nicht bis zu einer Sitzung der Kommission aufgeschoben werden kann, deren Vorsitzende – gestatten, Erfolgskontrollen in einer anderen Form zu erbringen.

(5) Bei Lehrveranstaltungen in englischer Sprache können mit Zustimmung der Studentin die entsprechenden Erfolgskontrollen in englischer Sprache abgenommen werden.

(7) Mündliche Prüfungen (§ 4 Abs. 2, Nr. 2) sind von mehreren Prüferinnen (Kollegialprüfung) oder von einer Prüferin in Gegenwart einer Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die Prüferin die anderen an der Kollegialprüfung mitwirkenden Prüferinnen an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studentin.

(9) Bei Prüfungen nach § 4 Abs. 2, Nr. 1 und Nr. 2 kann von der Prüferin ein Bonus von bis zu maximal 0.4 Notenpunkten für vorlesungsbegleitende Übungen oder Projektarbeiten des Pflichtbereichs, die mit der Note 1.0 bewertet werden, vergeben werden. Die Note wird in diesem Falle um den gewährten Bonus verbessert. Entspricht das so entstandene Ergebnis keiner der in § 7 Abs. 2, Satz 2 definierten Notenstufen, so ist auf die nächstliegende Notenstufe zu runden.

(10) Studentinnen, die sich in einem späteren Prüfungszweitzeitraum der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen als Zuhörerinnen bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse. Aus wichtigen Gründen oder auf Antrag der zu prüfenden Studentin ist die Zulassung zu versagen.

(12) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

(13) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben der Prüferin eine Beisitzende anwesend sein, die zusätzlich zur Prüferin die Protokolle zeichnet.
§ 7 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüferinnen in Form einer Note festgesetzt.

(2) Im Masterzeugnis dürfen nur folgende Noten verwendet werden:

1 = sehr gut (very good) = hervorragende Leistung,
2 = gut (good) = eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
3 = befriedigend (satisfactory) = eine Leistung, die durchschnittlichen Anforderungen entspricht,
4 = ausreichend (sufficient) = eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
5 = nicht ausreichend (failed) = eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Für die Masterarbeit und die Modulteilprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1 : 1.0, 1.3 = sehr gut
2 : 1.7, 2.0, 2.3 = gut
3 : 2.7, 3.0, 3.3 = befriedigend
4 : 3.7, 4.0 = ausreichend
5 : 4.7, 5.0 = nicht ausreichend

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Erfolgskontrollen anderer Art kann im Studienplan die Benotung mit „bestanden“ (passed) oder „nicht bestanden“ (failed) vorgesehen werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf in demselben Studiengang nur einmal angerechnet werden. Die Anrechnung eines Moduls, einer Lehrveranstaltung oder einer Erfolgskontrolle ist darüber hinaus ausgeschlossen, wenn das betreffende Modul, die Lehrveranstaltung oder die Erfolgskontrolle bereits in einem grundständigen Bachelorstudiengang angerechnet wurde, auf dem dieser Masterstudiengang konsekutiv aufbaut.

(6) Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur einge- rechnet werden, wenn die Benotung nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan festgelegt.

(7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

(9) Enthält der Studienplan keine Regelung darüber, wann eine Modulprüfung bestanden ist, so ist diese Modulprüfung dann endgültig nicht bestanden, wenn eine dem Modul zugeordnete Modulteilprüfung endgültig nicht bestanden wurde.
Die Ergebnisse der Masterarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.

Die Noten der Teilmodule eines Moduls gehen in die Modulnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

Innerhalb der Regelstudienzeit, einschließlich der Urlaubssemester für das Studium an einer ausländischen Hochschule (Regelprüfungszeit), können in einem Modul auch mehr Leistungspunkte erworben werden als für das Bestehen der Modulprüfung erforderlich sind. Bei der Festlegung der Modulnote werden dabei alle Teilmodule gemäß ihrer Leistungspunkte gewichtet.

Die Gesamtnote der Masterprüfung, die Modulnoten und die Modulteilnoten lauten:

- bis 1.5 = sehr gut
- von 1.6 bis 2.5 = gut
- von 2.6 bis 3.5 = befriedigend
- von 3.6 bis 4.0 = ausreichend

Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Modulteilprüfungen, Modulprüfungen und für die Masterprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Definition mit Quote</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>gehört zu den besten 10 % der Studentinnen, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>B</td>
<td>gehört zu den nächsten 25 % der Studentinnen, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>C</td>
<td>gehört zu den nächsten 30 % der Studentinnen, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>D</td>
<td>gehört zu den nächsten 25 % der Studentinnen, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>E</td>
<td>gehört zu den letzten 10 % der Studentinnen, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>FX</td>
<td>nicht bestanden (failed) - es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden,</td>
</tr>
<tr>
<td>F</td>
<td>nicht bestanden (failed) - es sind erhebliche Verbesserungen erforderlich.</td>
</tr>
</tbody>
</table>

Die Quote ist als der Prozentsatz der erfolgreichen Studentinnen definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studentinnen auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.

§ 8 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen

(1) Studentinnen können eine nicht bestandene mündliche Prüfung (§ 4 Abs. 2, Nr. 2) einmal wiederholen.

(2) Studentinnen können eine nicht bestandene schriftliche Prüfung (§ 4 Abs. 2, Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4.0) sein.
(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann die zuständige Prüfungskommission auf Antrag zulassen. Fehlversuche an anderen Hochschulen sind anzurechnen.

(4) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Abs. 2, Nr. 3) wird im Studienplan geregelt.

(6) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.

(7) Eine Modulprüfung ist endgültig nicht bestanden, wenn mindestens ein Teilmodul des Moduls endgültig nicht bestanden ist.

(9) Ist gemäß § 34 Abs. 2, Satz 3 LHG die Masterprüfung bis zum Beginn der Vorlesungszeit des achten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang Maschinenbau, es sei denn, dass die Studentin die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft die Prüfungskommission.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

(2) Eine Modulprüfung gilt als mit „nicht ausreichend“ bewertet, wenn die Studentin einen Prüfungstermin ohne triftigen Grund versäumt oder wenn sie nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, die Studentin hat die Fristüberschreitung nicht zu vertreten.

(4) Versucht die Studentin das Ergebnis seiner Modulprüfung durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Modulprüfung als mit „nicht ausreichend“ (5.0) bewertet. Bei Modulprüfungen, die aus mehreren Teilprüfungen bestehen, werden die Prüfungsleistungen dieses Moduls, die bis zu einem anerkannten Rücktritt bzw. einem anerkannten Versäumnis einer Prüfungsleistung dieses Moduls erbracht worden sind, angerechnet.

(5) Eine Studentin, die den ordnungsgemäßen Ablauf der Prüfung stört, kann von der jeweiligen Prüferin oder Aufsicht Führenden von der Fortsetzung der Modulprüfung ausgeschlossen werden.
In diesem Fall gilt die betreffende Prüfungsleistung als mit „nicht ausreichend“ (5.0) bewertet. In schwerwiegenderen Fällen kann die Prüfungskommission die Studentin von der Erbringung weiterer Prüfungsleistungen ausschließen.

(7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika („Verhaltensordnung“).

§ 10 Mutterschutz, Elternzeit

§ 11 Masterarbeit

(1) Voraussetzung für die Zulassung zur Masterarbeit ist grundsätzlich, dass die Studierende alle Modulteilprüfungen bis auf maximal ein Modul des ersten Abschnitts laut § 17 sowie das Berufspraktikum nach § 12 absolviert hat. Der Antrag auf Zulassung zur Masterarbeit ist innerhalb von drei Monaten nach Ablegung der letzten Modulprüfung zu stellen. Versäumt die Studentin diese Frist ohne trifftige Gründe, so gilt die Masterarbeit im ersten Versuch als mit „nicht ausreichend“ (5.0) bewertet. Im Übrigen gilt §18 entsprechend. Auf Antrag der Studentin sorgt ausnahmsweise die Vorsitzende der Prüfungskommission dafür, dass die Studentin innerhalb von vier Wochen nach Antragstellung von einer Betreuerin ein Thema für die Masterarbeit erhält. Die Ausgabe des Themas erfolgt in diesem Fall über die Vorsitzende der Prüfungskommission.

(2) Thema, Aufgabenstellung und Umfang der Masterarbeit sind von der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 3 festgelegten Arbeitsaufwand bearbeitet werden kann.

Die Masterarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsteil zu bewertende Beitrag der einzelnen Studentin aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach Absatz 3 erfüllt. Die Masterarbeit kann im Einvernehmen mit den Prüferinnen auch auf Englisch oder Französisch geschrieben werden.

(5) Bei der Abgabe der Masterarbeit hat die Studentin schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst hat und keine anderen als die von ihr angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit „nicht ausreichend“ (5.0) bewertet.

§ 12 Berufspraktikum

(2) Die Studentin setzt sich in eigener Verantwortung mit geeigneten privaten bzw. öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Die Studentin wird dabei von einer Prüferin nach § 15 Abs. 2 und einer Firmenbetreuerin betreut.

(3) Bei der Anmeldung zum zweiten Abschnitt der Masterprüfung muss das komplette Berufspraktikum anerkannt sein.

(4) Weitere Regelungen zu Inhalt, Durchführung und Anerkennung des Berufspraktikums finden sich im Studienplan. Das Berufspraktikum geht nicht in die Gesamtnote ein.

§ 13 Zusatzmodule, Zusatzleistungen

(1) Die Studentin kann sich weiteren Prüfungen im Umfang von höchstens 20 Leistungspunkten unterziehen. § 3 und § 4 der Prüfungsordnung bleiben davon unberührt.

(3) Die Studentin hat bereits bei der Anmeldung zu einer Modulteilprüfung in einem Modul diese als Zusatzleistung zu deklarieren.
§ 14 Prüfungskommission

(2) Die Vorsitzende, ihre Stellvertreterin, die weiteren Mitglieder der Prüfungskommission sowie deren Stellvertreterinnen werden vom Fakultätsrat bestellt, die Mitglieder der Gruppe der wissenschaftlichen Mitarbeiterinnen nach § 10 Abs. 1, Satz 2, Nr. 2 LHG und die Vertreterin der Studentinnen auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Die Vorsitzende und deren Stellvertreterin müssen Professorin oder Juniorprofessorin sein. Die Vorsitzende der Prüfungskommission nimmt die laufenden Geschäfte wahr und wird durch die Prüfungsssekretariate unterstützt.

(4) Die Prüfungskommission kann die Erledigung ihrer Aufgaben für alle Regelfälle auf die Vorsitzende der Prüfungskommission übertragen.

(6) In Angelegenheiten der Prüfungskommission, die eine an einer anderen Fakultät zu absolviierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes der Prüfungskommission eine fachlich zuständige und von der betroffenen Fakultät zu nennende Professorin, Juniorprofessorin, Hochschul- oder Privatdozentin hinzuziehen. Sie hat in diesem Punkt Stimmrecht.

§ 15 Prüferinnen und Beisitzende

(1) Die Prüfungskommission bestellt die Prüferinnen und die Beisitzenden. Sie kann die Bestellung der Vorsitzenden übertragen.

(2) Prüferinnen sind Hochschullehrerinnen und habilitierte Mitglieder sowie wissenschaftliche Mitarbeiterinnen der Fakultät für Maschinenbau, denen die Prüfungsbefugnis übertragen wurde. Zur Prüferin und Beisitzenden darf nur bestellt werden, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Masterarbeit muss eine Prüferin Hochschullehrerin sein.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zur Prüferin bestellt werden, wenn die jeweilige Fakultät ihr eine diesbezügliche Prüfungsbefugnis erteilt hat.
(4) Zur Besitzenden darf nur bestellt werden, wer einen Diplom- oder Masterabschluss in einem Studiengang der Fakultät für Maschinenbau oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studienleistungen, Modulprüfungen und Modulteilprüfungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(4) Absatz 1 gilt auch für Studienzeiten, Studienleistungen, Modulprüfungen und Modulteilprüfungen, die in staatlich anerkannten Fernstudien- und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien erworben wurden.

(6) Zuständig für die Anrechnungen ist die Prüfungskommission. Vor Feststellungen über die Gleichwertigkeit können die zuständigen Fachvertreterinnen gehört werden. Die Prüfungskommission entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

II. Masterprüfung

§ 17 Umfang und Art der Masterprüfung

(1) Im Masterstudiengang Maschinenbau besteht die Möglichkeit der Wahl einer Vertiefungsrichung. Die möglichen Vertiefungsrichtungen sind im Studienplan angegeben.

(3) In den beiden Studienjahren sind die Modulteilprüfungen aus folgenden Modulen abzulegen:
1. Drei Wahlpflichtfächer: im Umfang von je 5 Leistungspunkten,
2. Mathematische Methoden: im Umfang von 6 Leistungspunkten,
3. Produktentstehung: im Umfang von 15 Leistungspunkten,
4. Modellbildung und Simulation: im Umfang von 7 Leistungspunkten,
5. Fachpraktikum: im Umfang von 3 Leistungspunkten,
6. Wahlfach: im Umfang von 4 Leistungspunkten,
7. Fachübergreifendes Wahlfach Bereich Naturwissenschaften/Informatik/Elektrotechnik: im Umfang von 6 Leistungspunkten,
8. Fachübergreifendes Wahlfach Bereich Wirtschaft/Recht: im Umfang von 4 Leistungspunkten,

Neben den in Absatz 3 genannten Modulen findet die Vermittlung von Schlüsselqualifikationen im Umfang von 6 Leistungspunkten im Rahmen der fachwissenschaftlichen Übungen und Projekte statt.

(4) Die den Modulen zugeordneten, wählbaren Lehrveranstaltungen und Leistungspunkte, die Erfolgskontrollen und Studienleistungen sowie die für die Schwerpunkte zur Auswahl stehenden Module sind im Studienplan festgelegt. Die Wahlmöglichkeiten richten sich dabei nach der gewählten Vertiefungsrichtung. Zu den entsprechenden Modulteilprüfungen kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(5) Im vierten Semester ist als eine weitere Prüfungsleistung eine Masterarbeit gemäß § 11 anzufertigen.

§ 18 Leistungsnachweise für die Masterprüfung
Voraussetzung für die Anmeldung zur letzten Modulprüfung der Masterprüfung ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 12. In Ausnahmefällen kann die Prüfungskommission die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.

§ 19 Bestehen der Masterprüfung, Bildung der Gesamtnote
(1) Die Masterprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mindestens mit „ausreichend“ bewertet wurden.
(2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt.
(3) Hat die Studentin die Masterarbeit mit der Note 1.0 und die Masterprüfung mit einem Durchschnitt von 1.2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 20 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement
(1) Über die Masterprüfung wird nach Bewertung der letzten Prüfungsleistung eine Masterurkunde und ein Zeugnis erstellt. Die Ausfertigung von Masterurkunde und Zeugnis soll nicht später als sechs Wochen nach der Bewertung der letzten Prüfungsleistung erfolgen. Masterurkunde und Masterzeugnis werden in deutscher und englischer Sprache ausgestellt. Masterurkunde und

(5) Die Masterurkunde, das Masterzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.

III. Schlussbestimmungen

§ 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

(1) Der Bescheid über die endgültig nicht bestandene Masterprüfung wird der Studentin in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.

(2) Hat die Studentin die Masterprüfung endgültig nicht bestanden, wird ihr auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 22 Ungültigkeit der Masterprüfung, Entziehung des Mastergrades

(1) Hat die Studentin bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei deren Erbringung die Studentin getäuscht hat, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die Studentin darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die Studentin die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung der Prüfungskommission ist Gelegenheit zur Äußerung zu geben.
§ 23 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Masterprüfung wird der Studentin auf Antrag innerhalb eines Jahres Einsicht in ihre Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.
(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.
(3) Die Prüferin bestimmt Ort und Zeit der Einsichtnahme.
(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 24 In-Kraft-Treten

Karlsruhe, den 28. Februar 2008

Professor Dr. sc. tech. Horst Hippler
(Rektor)
Index

Symbols

A

Adaptive Control Systems ... 178
Adaptive Finite Element Methods 177
Advanced Methods in Strength of Materials 69, 335
Advanced powder metals .. 480
Aerothermodynamics .. 54, 179
Airport logistics ... 379
Analysis and Design of Multisensor Systems 180
Analysis tools for combustion diagnostics 408
Analytical methods in material flow methodology (mach and wiwi) .. 181
Application of advanced programming languages in mechanical engineering 191
Application of technical logistics in modern crane systems .. 189
Application of technical logistics in sorting- and distribution technology .. 190
Applied Fluid Mechanics .. 183
Applied Tribology in Industrial Product Development 185
Atomistic simulations and molecular dynamics 201
Automated Production Line ... 216
Automation Systems ... 217
Automobile and Environment .. 218
Automotive Engineering I .. 314
Automotive Engineering II ... 315
Automotive Logistics .. 378
Automotive Vision ... 291

B

Basic Chemistry of the Nuclear Fuel Cycle 239
Basics and Methods for Integration of Tires and Vehicles 327
Basics of Ground Born Guided Systems 325
Basics of Technical Logistics .. 322
Basics Operation Systems of Ground Born Guided Systems 268
Behaviour Generation for Vehicles 563
Biogas - Prospects and possibilities 224
Biomechanics: design in nature and inspired by nature 225
BioMEMS - Microsystems Technologies for Life-
Sciences and Medicine I .. 228
BioMEMS - Microsystems Technologies for Life-
Sciences and Medicine II .. 229
BioMEMS - Microsystems Technologies for Life-
Sciences and Medicine III .. 230
Boundary and Eigenvalue Problems 232
Building- and Environmental Aerodynamics 306

BUS-Controls ... 233

C

CAD-NX5 training course .. 235
CAE-Workshop .. 57, 236
CATIA V5 CAD training course 234
CFD in Power Engineering ... 237
CFD-Lab using Open Foam .. 238
Chemical, physical and material scientific aspects of polymers in microsystem technologies 240
Coal fired power plants ... 361
Cognitive Automobiles - Laboratory 359
Cognitive Systems ... 360
Combustion diagnostics ... 560
Combustion Engines A with tutorial 561
Combustion Engines B with Tutorial 562
Composites for Lightweight Design 294
Compulsory optional subject EU (M) 34
Compulsory optional subject FzgT (M) 35
Compulsory optional subject MM (M) 37
Compulsory optional subject PEK (M) 39
Compulsory optional subject PT (M) 41
Compulsory optional subject ThM (M) 42
Compulsory optional subject UMM (M) 32
Compulsory optional subject WS (M) 44
Computational Dynamics ... 486
Computational Intelligence I .. 241
Computational Intelligence II ... 242
Computational Intelligence III ... 243
Computational Mechanics I .. 490
Computational Mechanics II .. 491
Computational Methods in Fluid Mechanics 433
Computational Methods in Fluid Mechanics (Exercise) 456
Computational Vehicle Dynamics 487
Computer Engineering .. 107, 531
Computer Integrated Planning of New Products 489
Computer-Supported Operations Planning (in German) 192
Computerized Multibody Dynamics 488
Constitution and Properties of Protective Coatings 203
Constitution and Properties of Wear resistant materials 202
Control engineering ... 518
Controlling and Simulation of Production Systems 244
Controlling of Production Economics (in German) 470
Cooling of thermally high loaded gas turbine components 369
Correlation Methods in Measurement and Control 366

Decommissioning of Nuclear Facilities I 499
Design and Development of Mobile Machines 215
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of combustion chamber in gas turbines (Project)</td>
<td>213</td>
</tr>
<tr>
<td>Design of highly stresses components</td>
<td>214</td>
</tr>
<tr>
<td>Design Principles and Materials for High-Temperature Components</td>
<td>363</td>
</tr>
<tr>
<td>Design with Plastics</td>
<td>362</td>
</tr>
<tr>
<td>Designing with composites</td>
<td>249</td>
</tr>
<tr>
<td>Designing with numerical methods in product development</td>
<td>248</td>
</tr>
<tr>
<td>Development of Mobile Hydraulic Systems</td>
<td>473</td>
</tr>
<tr>
<td>Development Project for Machine Tools and Industrial Handling</td>
<td>276</td>
</tr>
<tr>
<td>Dezentral gesteuerte Intralogistiksysteme</td>
<td>58</td>
</tr>
<tr>
<td>Digital Control</td>
<td>247</td>
</tr>
<tr>
<td>Drive Train of Mobile Machines</td>
<td>186</td>
</tr>
<tr>
<td>Driving Dynamics Evaluation within the Global Vehicle Simulation</td>
<td>285</td>
</tr>
<tr>
<td>Dynamics of mechanical Systems with tribological Contacts</td>
<td>250</td>
</tr>
<tr>
<td>Efficient creativity - Processes and Methods within the automotive industry</td>
<td>252</td>
</tr>
<tr>
<td>Electric Rail Vehicles</td>
<td>271</td>
</tr>
<tr>
<td>Electrical Powertrains in Practice</td>
<td>457</td>
</tr>
<tr>
<td>Electronic Business for industrial Companies</td>
<td>270</td>
</tr>
<tr>
<td>Elements of Technical Logistics</td>
<td>272</td>
</tr>
<tr>
<td>Energy efficient Intralogistics systems</td>
<td>273</td>
</tr>
<tr>
<td>Energy Systems I: Renewable Energy</td>
<td>274</td>
</tr>
<tr>
<td>Energy systems II: Nuclear Energy Fundamentals</td>
<td>275</td>
</tr>
<tr>
<td>Engine laboratory (block course)</td>
<td>419</td>
</tr>
<tr>
<td>Engine measurement techniques</td>
<td>420</td>
</tr>
<tr>
<td>Environmentally compatible energy generation / wind turbines</td>
<td>557</td>
</tr>
<tr>
<td>Ergonomics and Work Economics (in German)</td>
<td>277</td>
</tr>
<tr>
<td>Exercises Product Lifecycle Management</td>
<td>553</td>
</tr>
<tr>
<td>Exercises Virtual Engineering I</td>
<td>554</td>
</tr>
<tr>
<td>Exercises Virtual Engineering II</td>
<td>555</td>
</tr>
<tr>
<td>Experimental Modelling</td>
<td>280</td>
</tr>
<tr>
<td>Fabrication Processes in Microsystem Technology</td>
<td>296</td>
</tr>
<tr>
<td>Factory Planning Laboratory</td>
<td>284</td>
</tr>
<tr>
<td>Failure Analysis</td>
<td>500</td>
</tr>
<tr>
<td>Failure Analysis Seminar</td>
<td>507</td>
</tr>
<tr>
<td>Failure of structural materials: deformation and fracture</td>
<td>565</td>
</tr>
<tr>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>564</td>
</tr>
<tr>
<td>Fast Reactor Physics</td>
<td>502</td>
</tr>
<tr>
<td>Fatigue of Metallic Materials</td>
<td>505</td>
</tr>
<tr>
<td>FEM Difference Workshop – constitutive laws</td>
<td>295</td>
</tr>
<tr>
<td>Finite Difference Methods for numerical solution of thermal and fluid dynamical problems</td>
<td>246</td>
</tr>
<tr>
<td>Finite Element Workshop</td>
<td>300</td>
</tr>
<tr>
<td>Finite Elements for Field- and Time Dependent Problems</td>
<td>299</td>
</tr>
<tr>
<td>Finite Volume Methods for Fluid Flow</td>
<td>301</td>
</tr>
<tr>
<td>Flows in rotating systems</td>
<td>521</td>
</tr>
<tr>
<td>Flows with chemical reactions</td>
<td>104</td>
</tr>
<tr>
<td>Fluid Technology</td>
<td>303</td>
</tr>
<tr>
<td>Fluid-Structure-Interaction</td>
<td>302</td>
</tr>
<tr>
<td>Foundations of nonlinear continuum mechanics</td>
<td>321</td>
</tr>
<tr>
<td>Foundry Technology</td>
<td>308</td>
</tr>
<tr>
<td>Fundamentals of refrigeration</td>
<td>317</td>
</tr>
<tr>
<td>Fuels and Lubricants for Combustion Engines and their Testing</td>
<td>220</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicles Bodies I</td>
<td>328</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicles Bodies II</td>
<td>329</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>330</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>331</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development I</td>
<td>332</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development II</td>
<td>333</td>
</tr>
<tr>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>318</td>
</tr>
<tr>
<td>Fundamentals of combustion II</td>
<td>324</td>
</tr>
<tr>
<td>Fundamentals of Energy Technology</td>
<td>313</td>
</tr>
<tr>
<td>Fundamentals of Combustion I</td>
<td>67, 323</td>
</tr>
<tr>
<td>Fusion Technology A</td>
<td>304</td>
</tr>
<tr>
<td>Fusion Technology B</td>
<td>305</td>
</tr>
<tr>
<td>Gear Cutting Technology</td>
<td>566</td>
</tr>
<tr>
<td>Global Production and Logistics - Part 1: Global Production</td>
<td>309</td>
</tr>
<tr>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>310</td>
</tr>
<tr>
<td>Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie</td>
<td>316</td>
</tr>
<tr>
<td>Grundlagen der Statistik und Wahrscheinlichkeitstheorie</td>
<td>66</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>286</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>287</td>
</tr>
<tr>
<td>Heat and mass transfer</td>
<td>114</td>
</tr>
<tr>
<td>Heat pumps</td>
<td>571</td>
</tr>
<tr>
<td>High Performance Computing</td>
<td>334</td>
</tr>
<tr>
<td>Human Robot Cooperation</td>
<td>406</td>
</tr>
<tr>
<td>Hydraulic Fluid Machinery I (Basics)</td>
<td>337</td>
</tr>
<tr>
<td>Hydraulic Fluid Machinery II</td>
<td>338</td>
</tr>
<tr>
<td>Hydrodynamic Stability: From Order to Chaos</td>
<td>339</td>
</tr>
<tr>
<td>Hydrogen Technologies</td>
<td>572</td>
</tr>
<tr>
<td>Industrial aerodynamics</td>
<td>340</td>
</tr>
<tr>
<td>Industrial Automation Technology</td>
<td>342</td>
</tr>
<tr>
<td>Industrial Engineering I (in German)</td>
<td>464</td>
</tr>
<tr>
<td>Industrial Engineering II</td>
<td>465</td>
</tr>
<tr>
<td>Industrial Management Case Study</td>
<td>292</td>
</tr>
<tr>
<td>Information Processing in Sensor Networks</td>
<td>349</td>
</tr>
<tr>
<td>Information Systems in Logistics and Supply Chain Management</td>
<td>346</td>
</tr>
<tr>
<td>Course</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Informationstechnik in der industriellen Automation</td>
<td>347</td>
</tr>
<tr>
<td>Informationsverarbeitung in mechatronischen Systemen</td>
<td>348</td>
</tr>
<tr>
<td>Innovative Nuclear Systems</td>
<td>350</td>
</tr>
<tr>
<td>Integrated Information Systems for engineers</td>
<td>108</td>
</tr>
<tr>
<td>Integrated measurement systems for fluid mechanics applications</td>
<td>351</td>
</tr>
<tr>
<td>Integrated Product Development</td>
<td>352</td>
</tr>
<tr>
<td>Integrated production planning</td>
<td>353</td>
</tr>
<tr>
<td>Introduction into Mechatronics</td>
<td>59, 264</td>
</tr>
<tr>
<td>Introduction into the multi-body dynamics</td>
<td>60, 265</td>
</tr>
<tr>
<td>Introduction into the nonlinear vibrations (Tutorial)</td>
<td>552</td>
</tr>
<tr>
<td>Introduction to Automotive Lightweight Technology</td>
<td>256</td>
</tr>
<tr>
<td>Introduction to Ceramics</td>
<td>261</td>
</tr>
<tr>
<td>Introduction to Ergonomics</td>
<td>258</td>
</tr>
<tr>
<td>Introduction to Industrial Engineering</td>
<td>254</td>
</tr>
<tr>
<td>Introduction to Industrial Production Economics</td>
<td>343</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>455</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology I</td>
<td>64, 319</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology II</td>
<td>65, 320</td>
</tr>
<tr>
<td>Introduction to the Finite Element Method</td>
<td>260</td>
</tr>
<tr>
<td>Introduction to the Mechanics of Composite Materials</td>
<td>263</td>
</tr>
<tr>
<td>Introduction to Theory of Materials</td>
<td>262</td>
</tr>
<tr>
<td>IT for facility logistics</td>
<td>354</td>
</tr>
<tr>
<td>Lab Computer-aided methods for measurement and control</td>
<td>450</td>
</tr>
<tr>
<td>Lab course experimental solid mechanics</td>
<td>454</td>
</tr>
<tr>
<td>Laboratory “Laser Materials Processing”</td>
<td>449</td>
</tr>
<tr>
<td>Laboratory Exercise in Energy Technology</td>
<td>376</td>
</tr>
<tr>
<td>Laboratory mechatronics</td>
<td>81, 403</td>
</tr>
<tr>
<td>Laser in automotive engineering</td>
<td>374</td>
</tr>
<tr>
<td>Leadership and Conflict Management (in German)</td>
<td>73, 386</td>
</tr>
<tr>
<td>Leadership and Product Development</td>
<td>71, 375</td>
</tr>
<tr>
<td>Lightweight Engineering Design</td>
<td>364</td>
</tr>
<tr>
<td>Localization of Mobile Agents</td>
<td>380</td>
</tr>
<tr>
<td>Logistics - organisation, design and control of logistic systems</td>
<td>377</td>
</tr>
<tr>
<td>Low Temperature Technology</td>
<td>184</td>
</tr>
<tr>
<td>Machine Dynamics</td>
<td>75, 388</td>
</tr>
<tr>
<td>Machine Dynamics II</td>
<td>389</td>
</tr>
<tr>
<td>Machine Tools and Industrial Handling</td>
<td>578</td>
</tr>
<tr>
<td>Machine Vision</td>
<td>381</td>
</tr>
<tr>
<td>Magnet Technology of Fusion Reactors</td>
<td>383</td>
</tr>
<tr>
<td>Magnetohydrodynamics</td>
<td>72, 382</td>
</tr>
<tr>
<td>Major Field 1 (M)</td>
<td>50</td>
</tr>
<tr>
<td>Major Field 2 (M)</td>
<td>51</td>
</tr>
<tr>
<td>manufacturing technology</td>
<td>297</td>
</tr>
<tr>
<td>manufacturing technology exercises</td>
<td>548</td>
</tr>
<tr>
<td>Material Analysis</td>
<td>573</td>
</tr>
<tr>
<td>Material flow in logistic systems</td>
<td>390</td>
</tr>
<tr>
<td>Material Science III</td>
<td>576</td>
</tr>
<tr>
<td>Materials and mechanical loads in the power train: engines, gearboxes and drive sections</td>
<td>574</td>
</tr>
<tr>
<td>Materials and processes for the lightweight production of car bodies</td>
<td>391</td>
</tr>
<tr>
<td>Materials for Lightweight Construction</td>
<td>575</td>
</tr>
<tr>
<td>Materials modelling: dislocation based plasticity</td>
<td>577</td>
</tr>
<tr>
<td>Mathematical Foundation for Computational Mechanics</td>
<td>392</td>
</tr>
<tr>
<td>Mathematical Methods in Dynamics</td>
<td>76, 393</td>
</tr>
<tr>
<td>Mathematical Methods in Fluid Mechanics</td>
<td>79, 396</td>
</tr>
<tr>
<td>Mathematical Methods in Strength of Materials</td>
<td>77, 394</td>
</tr>
<tr>
<td>Mathematical Methods in Structural Mechanics</td>
<td>80, 397</td>
</tr>
<tr>
<td>Mathematical methods of vibration theory</td>
<td>78, 395</td>
</tr>
<tr>
<td>Mathematical methods of vibration theory (Tutorial)</td>
<td>110, 550</td>
</tr>
<tr>
<td>Mathematical models and methods in combustion theory</td>
<td>399</td>
</tr>
<tr>
<td>Mathematical models in Mechanics</td>
<td>398</td>
</tr>
<tr>
<td>Measurement II</td>
<td>407</td>
</tr>
<tr>
<td>Measurement Instrumentation Lab</td>
<td>82</td>
</tr>
<tr>
<td>Mechanics and Strengths of Polymers</td>
<td>401</td>
</tr>
<tr>
<td>Mechanics in Microtechnology</td>
<td>402</td>
</tr>
<tr>
<td>Mechanics of laminated composites</td>
<td>400</td>
</tr>
<tr>
<td>Mechatronic Software tools</td>
<td>516</td>
</tr>
<tr>
<td>Men-Machine-Systems in Automation Technology</td>
<td>405</td>
</tr>
<tr>
<td>metal forming</td>
<td>556</td>
</tr>
<tr>
<td>Metallographic Lab Class, Metallographic Lab Class, Ferrous Materials</td>
<td>281</td>
</tr>
<tr>
<td>Metallographic Lab Class, Non-Ferrous Materials</td>
<td>282</td>
</tr>
<tr>
<td>Methodic Development of Mechatronic systems</td>
<td>409</td>
</tr>
<tr>
<td>Micro manufacturing laboratory</td>
<td>371</td>
</tr>
<tr>
<td>Microactuators</td>
<td>411</td>
</tr>
<tr>
<td>Microoptics and Lithography</td>
<td>410</td>
</tr>
<tr>
<td>Mobile Machines</td>
<td>413</td>
</tr>
<tr>
<td>Mobile Robot Systems Lab</td>
<td>452</td>
</tr>
<tr>
<td>Mobility Concepts of Rail Transportation in 2030</td>
<td>414</td>
</tr>
<tr>
<td>Modeling and Simulation (M)</td>
<td>46</td>
</tr>
<tr>
<td>Modeling of Thermodynamical Processes</td>
<td>416</td>
</tr>
<tr>
<td>Modelling and Simulation</td>
<td>851, 417</td>
</tr>
<tr>
<td>Modelling of Microstructures</td>
<td>84, 412</td>
</tr>
<tr>
<td>Modern Concepts of Control</td>
<td>418</td>
</tr>
<tr>
<td>Modern Physics for Engineers</td>
<td>87</td>
</tr>
<tr>
<td>Motor Vehicle Laboratory</td>
<td>368</td>
</tr>
<tr>
<td>Nanoanalytics</td>
<td>421</td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams</td>
<td>88, 422</td>
</tr>
<tr>
<td>Nanotribology and -Mechanics</td>
<td>423</td>
</tr>
<tr>
<td>Neutron Physics for Fission Reactors</td>
<td>426</td>
</tr>
<tr>
<td>Neutron physics of fusion reactors</td>
<td>425</td>
</tr>
<tr>
<td>Nonlinear vibrations</td>
<td>427</td>
</tr>
<tr>
<td>Novel actuators and sensors</td>
<td>424</td>
</tr>
<tr>
<td>Nuclear Power Plant Technology</td>
<td>357</td>
</tr>
<tr>
<td>Nuclear Energy</td>
<td>356</td>
</tr>
<tr>
<td>Nuclear Reactor Kinetics and Dynamics</td>
<td>358</td>
</tr>
<tr>
<td>Nuclear Thermal-Hydraulics</td>
<td>429</td>
</tr>
<tr>
<td>Numerical Fluid Mechanics</td>
<td>437</td>
</tr>
<tr>
<td>Course Title</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Numerical Mathematics for Engineers</td>
<td>89, 431</td>
</tr>
<tr>
<td>Numerical Methods in Mechanics I</td>
<td>266</td>
</tr>
<tr>
<td>Numerical Methods in Mechanics II</td>
<td>432</td>
</tr>
<tr>
<td>Numerical Simulation of Multi-phase Flows</td>
<td>434</td>
</tr>
<tr>
<td>Numerical simulation of reacting two phase flows</td>
<td>435</td>
</tr>
<tr>
<td>Numerical Simulation of Turbulent Flows</td>
<td>436</td>
</tr>
<tr>
<td>Project Workshop: Automotive Engineering</td>
<td>472</td>
</tr>
<tr>
<td>Project Management in Rail Industry</td>
<td>474</td>
</tr>
<tr>
<td>Project Work in Product Development</td>
<td>461</td>
</tr>
<tr>
<td>Quality Management</td>
<td>99, 481</td>
</tr>
<tr>
<td>Quantitative Methods for Supply Chain Risk Management</td>
<td>482</td>
</tr>
<tr>
<td>Radiation protection I</td>
<td>519</td>
</tr>
<tr>
<td>Rail System Technology</td>
<td>219</td>
</tr>
<tr>
<td>Rail Vehicle Technology</td>
<td>501</td>
</tr>
<tr>
<td>Reactor Design and Safety Evaluation using Modern Analysis Measures</td>
<td>484</td>
</tr>
<tr>
<td>Reactor Safety: Safety Assessment of Nuclear Power Plants</td>
<td>485</td>
</tr>
<tr>
<td>Reduction methods for the modeling and the simulation of combustion processes</td>
<td>492</td>
</tr>
<tr>
<td>Replication Technologies in Microsystem Technology</td>
<td>493</td>
</tr>
<tr>
<td>Robotic I</td>
<td>495</td>
</tr>
<tr>
<td>Safety engineering</td>
<td>508</td>
</tr>
<tr>
<td>Scaling in fluid dynamics</td>
<td>515</td>
</tr>
<tr>
<td>Scanning probe microscopy</td>
<td>483</td>
</tr>
<tr>
<td>Schwingungstechnisches Praktikum</td>
<td>506</td>
</tr>
<tr>
<td>Scientific computing for Engineers</td>
<td>115, 579</td>
</tr>
<tr>
<td>Selected Applications of Technical Logistics</td>
<td>206</td>
</tr>
<tr>
<td>Selected Applications of Technical Logistics and Project</td>
<td>207</td>
</tr>
<tr>
<td>Selected chapters of the combustion fundamentals</td>
<td>211</td>
</tr>
<tr>
<td>Selected Problems of Applied Reactor Physics and Exercises</td>
<td>205</td>
</tr>
<tr>
<td>Selected Topics in Aeronautics I</td>
<td>208</td>
</tr>
<tr>
<td>Selected Topics in Aeronautics II</td>
<td>209</td>
</tr>
<tr>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers</td>
<td>210</td>
</tr>
<tr>
<td>Seminar: Introduction to numerical fluid mechanics</td>
<td>542</td>
</tr>
<tr>
<td>Service Operations Management</td>
<td>384</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td>509</td>
</tr>
<tr>
<td>Simulation in product development process</td>
<td>511</td>
</tr>
<tr>
<td>Simulation of Coupled Systems</td>
<td>510</td>
</tr>
<tr>
<td>Simulation of production systems and processes</td>
<td>101, 513</td>
</tr>
<tr>
<td>Simulation of spray and mixture formation processes in combustion engines</td>
<td>514</td>
</tr>
<tr>
<td>Simulation of turbulent flow and heat transfer using statistical models</td>
<td>512</td>
</tr>
<tr>
<td>Size effects in micro and nanostructures materials</td>
<td>312</td>
</tr>
<tr>
<td>SP 01: Advanced Mechatronics (SP)</td>
<td>117</td>
</tr>
<tr>
<td>SP 02: Powertrain Systems (SP)</td>
<td>119</td>
</tr>
<tr>
<td>SP 03: Work Science (SP)</td>
<td>120</td>
</tr>
<tr>
<td>SP 04: Automation Technology (SP)</td>
<td>121</td>
</tr>
<tr>
<td>SP 05: Calculation Methods in Mechanical Engineering (SP)</td>
<td>122</td>
</tr>
<tr>
<td>SP 06: Computational Mechanics (SP)</td>
<td>124</td>
</tr>
<tr>
<td>Occupational Health and Safety Management (in German)</td>
<td>196</td>
</tr>
<tr>
<td>Occupational Safety and Environmental Protection (in German)</td>
<td>344</td>
</tr>
<tr>
<td>Occupational Safety and Labour Legislation (in German)</td>
<td>194</td>
</tr>
<tr>
<td>Operation Systems of Ground Born Guided Systems</td>
<td>269</td>
</tr>
<tr>
<td>Optical Flow Measurement: Fundamentals and Applications</td>
<td>326</td>
</tr>
<tr>
<td>Optional subject (M)</td>
<td>45</td>
</tr>
<tr>
<td>Optofluidics</td>
<td>438</td>
</tr>
<tr>
<td>Power and Heat economics</td>
<td>367</td>
</tr>
<tr>
<td>Powertrain Systems Technology A: Automotive Systems</td>
<td>187</td>
</tr>
<tr>
<td>Powertrain Systems Technology B: Stationary Machinery</td>
<td>188</td>
</tr>
<tr>
<td>Practical Course Technical Ceramics</td>
<td>451</td>
</tr>
<tr>
<td>Process Design and Industrial Engineering</td>
<td>476</td>
</tr>
<tr>
<td>process simulation in cutting</td>
<td>479</td>
</tr>
<tr>
<td>process simulation in forming operations</td>
<td>478</td>
</tr>
<tr>
<td>Product Development (M)</td>
<td>47</td>
</tr>
<tr>
<td>Product Development - Manufacturing and Material Technology</td>
<td>98</td>
</tr>
<tr>
<td>Product Development - Methods of Product Development</td>
<td>97</td>
</tr>
<tr>
<td>Product Ergonomics (in German)</td>
<td>462</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>95, 458</td>
</tr>
<tr>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>460</td>
</tr>
<tr>
<td>Production Planning and Control (Planning Game of a Bicycle Factory; in German)</td>
<td>466</td>
</tr>
<tr>
<td>Production Systems and Production Technology in Major Assembly Production</td>
<td>468</td>
</tr>
<tr>
<td>Production Techniques Laboratory</td>
<td>469</td>
</tr>
<tr>
<td>Project management in Global Product Engineering Structures</td>
<td>475</td>
</tr>
<tr>
<td>Project Management in Rail Industry</td>
<td>474</td>
</tr>
<tr>
<td>Replication Technologies in Microsystem Technology</td>
<td>493</td>
</tr>
<tr>
<td>Robotic I</td>
<td>495</td>
</tr>
<tr>
<td>Safety engineering</td>
<td>508</td>
</tr>
<tr>
<td>Scaling in fluid dynamics</td>
<td>515</td>
</tr>
<tr>
<td>Scanning probe microscopy</td>
<td>483</td>
</tr>
<tr>
<td>Schwingungstechnisches Praktikum</td>
<td>506</td>
</tr>
<tr>
<td>Scientific computing for Engineers</td>
<td>115, 579</td>
</tr>
<tr>
<td>Selected Applications of Technical Logistics</td>
<td>206</td>
</tr>
<tr>
<td>Selected Applications of Technical Logistics and Project</td>
<td>207</td>
</tr>
<tr>
<td>Selected chapters of the combustion fundamentals</td>
<td>211</td>
</tr>
<tr>
<td>Selected Problems of Applied Reactor Physics and Exercises</td>
<td>205</td>
</tr>
<tr>
<td>Selected Topics in Aeronautics I</td>
<td>208</td>
</tr>
<tr>
<td>Selected Topics in Aeronautics II</td>
<td>209</td>
</tr>
<tr>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers</td>
<td>210</td>
</tr>
<tr>
<td>Seminar: Introduction to numerical fluid mechanics</td>
<td>542</td>
</tr>
<tr>
<td>Service Operations Management</td>
<td>384</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td>509</td>
</tr>
<tr>
<td>Simulation in product development process</td>
<td>511</td>
</tr>
<tr>
<td>Simulation of Coupled Systems</td>
<td>510</td>
</tr>
<tr>
<td>Simulation of production systems and processes</td>
<td>101, 513</td>
</tr>
<tr>
<td>Simulation of spray and mixture formation processes in combustion engines</td>
<td>514</td>
</tr>
<tr>
<td>Simulation of turbulent flow and heat transfer using statistical models</td>
<td>512</td>
</tr>
<tr>
<td>Size effects in micro and nanostructures materials</td>
<td>312</td>
</tr>
<tr>
<td>SP 01: Advanced Mechatronics (SP)</td>
<td>117</td>
</tr>
<tr>
<td>SP 02: Powertrain Systems (SP)</td>
<td>119</td>
</tr>
<tr>
<td>SP 03: Work Science (SP)</td>
<td>120</td>
</tr>
<tr>
<td>SP 04: Automation Technology (SP)</td>
<td>121</td>
</tr>
<tr>
<td>SP 05: Calculation Methods in Mechanical Engineering (SP)</td>
<td>122</td>
</tr>
<tr>
<td>SP 06: Computational Mechanics (SP)</td>
<td>124</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Sustainable Product Engineering</td>
<td>528</td>
</tr>
<tr>
<td>Systematic Materials Selection</td>
<td>105</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Technical Acoustics</td>
<td>530</td>
</tr>
<tr>
<td>Technical Design in Product Development</td>
<td>533</td>
</tr>
<tr>
<td>Technologies for energy efficient buildings</td>
<td>535</td>
</tr>
<tr>
<td>Technology of steel components</td>
<td>534</td>
</tr>
<tr>
<td>Theoretical description of mechatronic systems</td>
<td>529</td>
</tr>
<tr>
<td>Thermal Solar Energy</td>
<td>537</td>
</tr>
<tr>
<td>Thermal Turbomachines I</td>
<td>538</td>
</tr>
<tr>
<td>Thermal Turbomachines II</td>
<td>539</td>
</tr>
<tr>
<td>Thermodynamics of dispersed systems</td>
<td>540</td>
</tr>
<tr>
<td>Topics in turbulent flows for power and fluids engineering</td>
<td>212</td>
</tr>
<tr>
<td>Tractors</td>
<td>543</td>
</tr>
<tr>
<td>Tribology A</td>
<td>544</td>
</tr>
<tr>
<td>Tribology B</td>
<td>545</td>
</tr>
<tr>
<td>Turbine and compressor Design</td>
<td>546</td>
</tr>
<tr>
<td>Turbo Jet Engines</td>
<td>547</td>
</tr>
<tr>
<td>Tutorial in Mathematical Methods of Fluid Mechanics</td>
<td>111</td>
</tr>
<tr>
<td>Two-Phase Flow and Heat Transfer</td>
<td>581</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Integrierte Produktionsplanung</td>
<td>549</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vacuum Technology and Fuel Cycle of Fusion Reacters</td>
<td>558</td>
</tr>
<tr>
<td>Variational methods and applications to PDEs</td>
<td>559</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics I</td>
<td>288</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics II</td>
<td>289</td>
</tr>
<tr>
<td>Vehicle Mechatronics I</td>
<td>290</td>
</tr>
<tr>
<td>Vibration of continuous systems</td>
<td>365</td>
</tr>
<tr>
<td>Vibration Theory</td>
<td>109</td>
</tr>
<tr>
<td>Virtual Engineering for Mechatronic Products</td>
<td>567</td>
</tr>
<tr>
<td>Virtual Engineering I</td>
<td>568</td>
</tr>
<tr>
<td>Virtual Engineering II</td>
<td>569</td>
</tr>
<tr>
<td>Virtual Reality Laboratory</td>
<td>570</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Warehousing and distribution systems</td>
<td>372</td>
</tr>
<tr>
<td>Wave propagation</td>
<td>267</td>
</tr>
<tr>
<td>Welding Lab Course, in groups</td>
<td>283</td>
</tr>
<tr>
<td>Welding Technology I</td>
<td>503</td>
</tr>
<tr>
<td>Welding Technology II</td>
<td>504</td>
</tr>
<tr>
<td>Work Science (Lecture and Exercises; in German)</td>
<td>55, 198</td>
</tr>
<tr>
<td>Work Science Laboratory Course (in German)</td>
<td>200</td>
</tr>
<tr>
<td>Workshop Product Development</td>
<td>580</td>
</tr>
</tbody>
</table>